
(R)CCA Secure Updatable Encryption with
Integrity Protection

Michael Klooß1, Anja Lehmann2, and Andy Rupp1

1 Karlsruhe Institute for Technology, Germany
{andy.rupp, michael.klooss}@kit.edu

2 IBM Research – Zurich, Switzerland
anj@zurich.ibm.com

Abstract. An updatable encryption scheme allows a data host to update
ciphertexts of a client from an old to a new key, given so-called update
tokens from the client. Rotation of the encryption key is a common
requirement in practice in order to mitigate the impact of key compromises
over time. There are two incarnations of updatable encryption: One is
ciphertext-dependent, i.e. the data owner has to (partially) download all
of his data and derive a dedicated token per ciphertext. Everspaugh et al.
(CRYPTO’17) proposed CCA and CTXT secure schemes in this setting.
The other, more convenient variant is ciphertext-independent, i.e., it allows
a single token to update all ciphertexts. However, so far, the broader
functionality of tokens in this setting comes at the price of considerably
weaker security: the existing schemes by Boneh et al. (CRYPTO’13) and
Lehmann and Tackmann (EUROCRYPT’18) only achieve CPA security
and provide no integrity protection. Arguably, when targeting the scenario
of outsourcing data to an untrusted host, plaintext integrity should be
a minimal security requirement. Otherwise, the data host may alter or
inject ciphertexts arbitrarily. Indeed, the schemes from BLMR13 and
LT18 suffer from this weakness, and even EPRS17 only provides integrity
against adversaries which cannot arbitrarily inject ciphertexts. In this
work, we provide the first ciphertext-independent updatable encryption
schemes with security beyond CPA, in particular providing strong integrity
protection. Our constructions and security proofs of updatable encryption
schemes are surprisingly modular. We give a generic transformation
that allows key-rotation and confidentiality/integrity of the scheme to
be treated almost separately, i.e., security of the updatable scheme is
derived from simple properties of its static building blocks. An interesting
side effect of our generic approach is that it immediately implies the
unlinkability of ciphertext updates that was introduced as an essential
additional property of updatable encryption by EPRS17 and LT18.

1 Introduction

Updatable encryption was introduced by Boneh et al. [Bon+13] as a convenient
solution to enable key rotation for symmetric encryption. Rotating secret keys is
considered good practice to realize proactive security: Periodically changing the

2 Michael Klooß, Anja Lehmann, and Andy Rupp

cryptographic key that is used to protect the data reduces the risk and impact
of keys being compromised over time. For instance, key rotation is mandated
when storing encrypted credit card data by the PCI DSS standard [PCI16], and
several cloud storage providers, such as Google and Amazon, offer data-at-rest
encryption with rotatable keys [Eve+17b].

The challenge with key rotation is how to efficiently update the existing
ciphertexts when the underlying secret key is refreshed. The straightforward
solution is to decrypt all old ciphertexts and re-encrypt them from scratch using
the new key. Clearly, this approach is not practical in the typical cloud storage
scenario where data is outsourced to a (potentially untrusted) host, as it would
require the full download and upload of all encrypted data.

An updatable encryption scheme is a better solution to this problem: it extends
a classic symmetric encryption scheme with integrated key rotation and update
capabilities. More precisely, these schemes allow to derive a short update token
from an old and new key, and provide an additional algorithm that re-encrypts
ciphertexts using such a token. A crucial property for updatable encryption is
that learning an update token does not impact the confidentiality and also the
integrity of the ciphertexts. Thus, the procedure for re-encrypting all existing
ciphertexts can be securely outsourced to the data host.

State of the Art. There are two different variants of updatable encryption,
depending on whether the update tokens are generated for a specific ciphertext
or are ciphertext-independent. The former type – called ciphertext-dependent
updatable encryption – has been introduced by Boneh et al. [Bon+15] and requires
the data owner to (partially) download all outsourced ciphertexts, derive a
dedicated token for each ciphertext, and return all tokens to the host. Everspaugh
et al. [Eve+17b] provide a systematic treatment for such schemes i.e., defining the
desirable security properties and presenting provably secure solutions. Their focus
is on authenticated encryption schemes, and thus CCA security and ciphertext
integrity (CTXT) are required and achieved by their construction.

While ciphertext-dependent schemes allow for fine-grained control of which
ciphertexts should be re-encrypted towards the new key, they are clearly far less
efficient and convenient for the data owner than ciphertext-independent ones.
In ciphertext-independent schemes, the update token only depends on the new
and old key and allows to re-encrypt all ciphertexts. The idea of ciphertext-
independent schemes was informally introduced by Boneh et al. [Bon+13] and
recently Lehmann and Tackmann [LT18] provided a rigorous treatment of their for-
mal security guarantees. The broader applicability of update tokens in ciphertext-
independent schemes is an inherent challenge for achieving strong security proper-
ties though: as a single token can be used to update all ciphertexts, the corruption
of such a token gives the adversary significantly more power than the corruption
of a ciphertext-dependent token. As a consequence, the ciphertext-independent
schemes proposed so far only achieve CPA security instead of CCA, and did not
guarantee any integrity protection [LT18].

(R)CCA Secure Updatable Encryption with Integrity Protection 3

Encrypt-and-MAC (E&M, Sec. 3) Naor-Yung (NYUAE, Sec. 4)
Confidentiality CCA RCCA

Integrity ciphertext integrity plaintext integrity
ReEnc algorithm deterministic probabilistic

ReEnc oracle honestly derived ciphertexts only arbitrary ciphertexts

Fig. 1. Overview of the core differences of our two main schemes and considered settings.

Updatable encryption needs (stronger) integrity protection. Given that updatable
encryption targets a cloud-based deployment setting where encrypted data is
outsourced to an (untrusted) host, neglecting the integrity protection of the
outsourced data is a dangerous shortcoming. For instance, the host might hold
encrypted financial or medical data of the data owner. Clearly, a temporary
security breach into the host should not allow the adversary to create new and
valid ciphertexts that will temper with the owners’ records. For the targeted
setting of ciphertext-independent schemes no notion of (ciphertext) integrity was
proposed so far, and the encryption scheme presented in [LT18] is extremely
vulnerable to such attacks: their symmetric updatable encryption scheme (termed
RISE) is built from (public-key) ElGamal encryption, which only uses the public
key in the update token. However, a single corruption of the update token will
allow the data host to create valid ciphertexts of arbitrary messages of his choice.

For the ciphertext-dependent setting, the scheme by Everspaugh et al [Eve+17b]
does provide ciphertext-integrity, but only against a weak form of attacks: the
security definition for their CTXT notion does not allow the adversary to obtain
re-encryptions of maliciously formed ciphertexts. That is, the model restricts
queries to the re-encryption oracle to honestly generated ciphertexts that the
adversary has received from previous (re)encryption oracle queries. Thus, integrity
protection is only guaranteed against passive adversaries. Again, given the cloud
deployment setting in which updatable encryption is used in, assuming that an
adversary that breaks into the host will behave honestly and does not temper
with any ciphertexts is a critical assumption.

Our Contributions. In this work we address the aforementioned shortcomings
for ciphertext-independent updatable encryption and present schemes that provide
significantly stronger security than existing solutions. First, we formally define
the desirable security properties of (R)CCA security, ciphertext (CTXT) and
plaintext integrity (PTXT) for key-evolving encryption schemes. Our definitions
allow the adversary to adaptively corrupt the secret keys or update tokens of the
current and past epochs, as long as it does not empower him to trivially win the
respective security game. We then propose two constructions: the first achieves
CCA and CTXT security (against passive re-encryption attacks), and the second
scheme realizes RCCA and PTXT security against active attacks. Both schemes
make use of a generic (proof) strategy that derives the security of the updatable
scheme from simple properties of the underlying static primitives, which greatly
simplifies the design for such updatable encryption schemes. In more detail, our
contributions are as follows:

4 Michael Klooß, Anja Lehmann, and Andy Rupp

Scheme Assumption Ciph.
indep.

arbitr.
ReEnc

IND INT UN-
LINK

|c| (Re)Enc Dec

BLMR [Bon+15] DDH (+ ROM) 7 7 (?) 7 (?) 2G* 2G 2G
EPRS [Eve+17b] DDH + ROM 7 (7) CPA CTXT 3 2G* 2G 2G

RISE [LT18] DDH 3 7 CPA 7 3 2G 2G 2G
E&M Sec. 3 DDH + ROM 3 7 CCA CTXT 3 3G 3G 3G
NYUE Sec. 4 SXDH 3 3 RCCA 7 3 (34, 34) (60, 70) 22e

NYUAE Sec. 4 SXDH 3 3 RCCA PTXT 3 (58, 44) (110, 90) 29e

Fig. 2. Comparison of ciphertext-independent and -dependent updatable encryption
schemes. The second set of columns states the achieved security notions, and whether
security against arbitrary (opposed to honest) re-encryption attacks is achieved. For
EPRS, security against arbitrary re-encryption attacks is only considered for confidential-
ity, not for integrity. For BLMR, it was shown that a security proof for confidentiality is
unlikely to exist [Eve+17b], and the formal notion of unlinkability of re-encryptions was
only introduced later. The final set of columns states the efficiency in terms of ciphertext
size and costs for (re-)encryption and decryption in the number of exponentiations and
pairings. Tuples (x, y) specify x (resp. y) elements/exponentiations in G1 (resp. G2)
in case of underlying pairing groups, and a pairing is denoted by e. (Re)encryption
and decryption costs for NYUE and NYUAE are approximate. The ciphertext size is
given for messages represented as a single group element (in G or G1). BLMR and EPRS
support encryption of arbitrary size message with the ciphertext size growing linearly
with the message blocks.

CCA and CTXT Secure Ciphertext-Independent Updatable Encryption. Our first
updatable encryption applies the Encrypt-and-MAC (E&M) transformation to
primitives which are key-rotatable and achieves CCA and CTXT security. Using
Encrypt-and-MAC is crucial for the updatability as we need direct access to
both the ciphertext and the MAC. In order to use E&M, which is not a secure
transformation for authenticated encryption in general, we require a one-to-
one mapping between message-randomness pairs and ciphertexts as well as the
decryption function to be randomness-recoverable. By applying a PRF on both,
the message and the encryption randomness, we obtain the desired ciphertext
integrity. Interestingly, we only need the underlying encryption and PRF to be
secure w.r.t. their standard, static security notions and derive security for the
updatable version of E&M from additional properties we introduce for the update
token generation.

An essential property of this first scheme is that its re-encryptions are de-
terministic. This enables us to define and realize a meaningful CCA security
notion, as the determinism allows the challenger to keep track of re-encryptions
of the challenge ciphertext and prevent decryption of such updates. Similar to
the CCA-secure (ciphertext-dependent) scheme of [Eve+17b], we only achieve
security against passive re-encryption attacks, i.e., where the re-encryption oracle
in the security game can only be queried on honestly generated ciphertexts.

RCCA and PTXT Security Against Malicious Re-Encryption Attacks. Our second
scheme then provides strong security against active re-encryption attacks. On a

(R)CCA Secure Updatable Encryption with Integrity Protection 5

high-level, we use the Naor-Yung approach [NY90] that lifts (public-key) CPA to
CCA security by encrypting each message under two public keys and appending
a NIZK that both ciphertexts encrypt the same message. The crucial benefit
of this approach is that it allows for public verifiability of ciphertexts, and thus
for any re-encryption it can first be checked that the provided ciphertext is
valid — which then limits the power of malicious re-encryption attacks. To lift
the approach to an updatable encryption scheme, we rely on the key-rotatable
CPA-secure encryption RISE [LT18] and GS proofs [GS12; EG14] that exhibit
the malleability necessary for rotating the associated NIZK proof.

A consequence of this approach is that re-encryptions are now probabilistic
(as in RISE) and ciphertexts are re-randomizable in general. Therefore, CCA
and CTXT are no longer achievable, and we revert to Replayable CCA (RCCA)
and plaintext integrity. Informally, RCCA is a relaxed variant of CCA security
that ensures confidentiality for all ciphertexts that are not re-randomization of
the challenge ciphertext [CKN03]. Plaintext integrity is a weaker notion than
ciphertext integrity, as forging ciphertexts is now trivial, but still guarantees that
an adversary can not come up with valid ciphertexts for fresh messages.

In Fig. 1 we provide an overview of both solutions and their settings, and
Fig. 2 gives a compact comparison between our new schemes and the existing
ones.

Generic (Proof) Transformation & Unlinkability of Re-Encryption. The security
models for updatable encryption are quite involved, which in turn makes proving
security in these models rather cumbersome [Eve+17b; LT18]. A core contribution
of our work is a generic transformation that yields a surprisingly simple blueprint
for building updatable encryption: We show that it is sufficient to consider the
underlying encryption and the key-rotation capabilities (almost) separately. That
is, we only require the underlying scheme – provided by the Enc,Dec algorithms
in isolation – to satisfy standard security. In addition we need re-encryption to
produce ciphertexts that are indistinguishable from fresh encryption and token
generation to be simulatable. The latter allows us to produce “fake” tokens
when we are dealing with a static CCA/RCCA game, and the former is used to
answer re-encryption oracle calls in the security game with decrypt-then-encrypt
calls. Further, we leverage the fact that all ciphertext-independent schemes so
far are bi-directional, i.e., ciphertexts can also be downgraded. This property
comes in very handy in the security proof as it essentially allows to embed a
static-CCA/RCCA challenger in one epoch, and handle queries in all other epochs
by rotating ciphertexts back-and-forth to this “challenge” epoch.

The notion of indistinguishability of re-encryptions and fresh encryptions
(termed perfect re-encryption) that we define also has another very nice side-effect:
it implies the property of re-encryption unlinkability as introduced in [Eve+17b;
LT18]. Both works propose a security notion that guarantees that a re-encrypted
ciphertext can no longer be linked to its old version, which captures that the full
ciphertext must get refreshed during an update. We adapt this unlinkability notion
to the CCA and RCCA setting of our work and show that perfect re-encryption

6 Michael Klooß, Anja Lehmann, and Andy Rupp

(in combination with CCA resp. CPA security) implies such unlinkability. Both
of our schemes satisfy this strong security notion.

Other Related Work. Recently, Jarecki et al. [JKR18] proposed an updatable
and CCA secure encryption scheme in the context of an Oblivious Key Manage-
ment Systems (KMS). The KMS is an external service that hosts the secret key,
whereas the data owner stores all ciphertexts and adaptively decrypts them with
the help of the KMS. Thus, their setting is considerably different to our notion
of updatable encryption where the ciphertexts are outsourced, and the secret is
managed by the data owner.

Another primitive that is highly related to updatable encryption is proxy
re-encryption (PRE). In a recent work, Fuchsbauer et al. [Fuc+18] show how
to lift selectively secure PRE to adaptive security without suffering from an
exponential loss when using straightforward approaches. Their overall idea is
similar to our generic transformation, as it also relies on additional properties of
the re-encryption procedure that facilitate the embedding of the static challenger.
The different overall setting makes their work rather incomparable to ours: we
exploit bi-directional behaviour of updates, whereas [Fuc+18] focuses on uni-
directional schemes, and we consider a symmetric key setting whereas the PRE’s
are public-key primitives. In fact, our security proofs are much tighter (partially
due to these differences). We conjecture that our techniques can be applied to
obtain adaptive security with polynomial security loss for a class of PRE schemes,
cf. App. I. This would improve upon the superpolynomial loss in [Fuc+18].

Organisation. We start our paper by recalling the necessary standard build-
ing blocks and the generic syntax of updatable encryption in Sec. 2. In Sec. 3,
we then present our formal definitions for CCA and CTXT secure updatable
encryption, tailored to our setting of schemes with deterministic re-encryption
and covering passive re-encryption attacks. This section also contains our generic
transformation for achieving these notions from the static security of the un-
derlying building blocks, and our Encrypt-and-MAC construction that utilizes
this generic approach. In Sec. 4 we then introduce RCCA and PTXT security
against active re-encryption attacks and present our Naor-Yung inspired scheme.
Since our generic transformation immediately implies the unlinkability property
UP-REENC introduced in [Eve+17b; LT18] we refer the formal treatment of this
notion to App. A.

2 Preliminaries
In this section we introduce our notational conventions and all necessary (stan-
dard) building blocks along with their security definitions.

2.1 Notation
We denote the security parameter by κ. All schemes and building blocks in this
paper make use of some implicit PPT algorithm pp ← GenPP(1κ) which on input

(R)CCA Secure Updatable Encryption with Integrity Protection 7

of the security parameter 1κ outputs some public parameters pp. The public
parameters, e.g., include a description of the cyclic groups and generators we
use. We assume for our security definitions that pp also contains the security
parameter. For the sake of simplicity, we omit GenPP in all definitions including
security experiments. When composing building blocks as in our Encrypt-and-
MAC construction, for example, the same GenPP algorithm is assumed for all
those building blocks and the output pp is shared between them.

By G we denote a commutative group and by (e,G1,G2,GT) a pairing
group. All groups are of prime order p. The integers modulo p are denoted Fp.
We use additive notation for groups, in particular the well-established implicit
representation introduced in [Esc+13]. That is, we write [1] for the generator
g ∈ G and [x] = xg (in multiplicative notation, gx). For pairing groups, we
write [1]1, [1]2 and [1]T and we require that e([1]1, [1]2) = [1]T . We define
G× := G \ {[0]}. By supp(X) we denote the support of a random variable X, i.e.
the set of outcomes with positive probability.

2.2 Symmetric and Tidy Encryption

We use the following definition of a symmetric encryption scheme, where the
existence of a system parameter generation algorithm GenSP reflects the fact,
that we partially rely on primitives with public parameters (like a Groth-Sahai
CRS) for our constructions.

Definition 1. A symmetric encryption scheme SKE = (GenSP,GenKey,Enc,Dec)
is defined by the following PPT algorithms

SKE.GenSP(pp) returns system parameters sp. We treat sp as implicit inputs for
the following algorithms.

SKE.GenKey(sp) returns a key k.
SKE.Enc(k,m; r) returns a ciphertext c for message m, key k and randomness r.
SKE.Dec(k, c) returns the decryption m of c. (m = ⊥ indicates failure.)

We assume that the system parameters fix not only the key space Ksp, but also
the ciphertext space Csp, message space Msp and randomness space Rsp. Also,
we assume that membership in Csp and Msp can be efficiently tested.

Tidy Encryption. Our construction of an updatable encryption scheme with
deterministic reencryption resorts to tidy encryption. For this purpose, we use
the following definition which is a slightly adapted version of the definition
in [NRS14].

Definition 2. A symmetric encryption scheme SKE is called randomness-
recoverable if there is an associated efficient deterministic algorithm RDec(k, c)
such that

∀k,m, r : RDec(k,Enc(k,m; r)) = (m, r). (1)

8 Michael Klooß, Anja Lehmann, and Andy Rupp

We call a randomness-recoverable SKE tidy if

∀k, c : RDec(k, c) = (m, r) =⇒ Enc(k,m; r) = c. (2)

In other words, SKE is tidy if Enc and RDec are bijections (for a fixed key)
between message-randomness pairs and valid ciphertexts (i.e. ciphertexts which
do not decrypt to ⊥).3

Indistinguishability Notions. For our constructions, we consider a number
of slight variations of the standard security notions IND-CPA and IND-CCA
security.

One such variation is IND-RCCA security [CKN03] which relaxes IND-CCA
in the sense that it is not considered an attack if a ciphertext can be transformed
into a new ciphertext of the same message. Hence, the RCCA decryption oracle
refuses to decrypt any ciphertext containing one of the challenge messages.

Furthermore, we consider CPA, CCA, and RCCA security under key-leakage.
Here the adversary is additionally given leak(k) as input, where leak is some
function on the key space. This leakage reflects the fact that in one of our
constructions (Sec. 4.2), that actually relies on public-key primitives, the cor-
responding public keys need to be leaked to the adversary. So we would have
k = (sk, pk) and leak(k) = pk in this case. For the deterministic construction in
Sec. 3.2 we do not consider key-leakage, i.e., leak(k) = ⊥.

Finally, we can define (stronger) real or random variants (IND$-CPA/CCA)
of the former notions. Here, the adversary provides a single challenge message and
the challenger responds with either an encryption of this message or a randomly
chosen ciphertext.

Def. 3 compactly formalizes the security notions sketched above.

Definition 3. Let SKE be a secret key encryption scheme. Let leak : K → L be
a leakage function. We call SKE IND-X secure, where X ∈ {CPA,CCA,RCCA},
under key-leakage leak, if for every efficient PPT adversary A, the advantage

Advind-X
SKE,A(κ) :=

∣∣∣Pr[Expind-X
SKE,A(κ, 0) = 1]− Pr[Expind-X

SKE,A(κ, 1) = 1]
∣∣∣

in the experiment described in Fig. 3 is negligible. Analogous to IND-X, we define
IND$-X security for X ∈ {CPA,CCA}, with the experiments also described in
Fig. 3. IND$-X is the strictly stronger notion, i.e., it implies IND-X.

Integrity Notions. We consider both plaintext (PTXT) and ciphertext (CTXT)
integrity. In the PTXT experiment, the adversary wins if it is able to output
a valid ciphertext for a fresh plaintext, i.e., a ciphertext that decrypts to a
plaintext for which it has not queried the encryption oracle before. In the CTXT
experiment, in order to win, the adversary just needs to output a valid and fresh
3 Since encryption of ⊥ also yields ⊥, Eq. (2) trivially holds for invalid ciphertexts.

(R)CCA Secure Updatable Encryption with Integrity Protection 9

Experiment Expind-X
SKE,A(κ, b)

sp ← GenSP(pp); k ← GenKey(sp);
(m∗0 ,m∗1 , state)← AEnc,Dec(pp, sp, leak(k));
abort if |m∗0 | 6= |m∗1 | or m∗0 ,m∗1 6∈Msp
c∗ ← Enc(k,m∗b);
return AEnc,Dec(state, c∗) ?= b

Experiment Expind$-X
SKE,A(κ, b)

sp ← GenSP(pp); k ← GenKey(sp);
(m∗, state)← AEnc,Dec(pp, sp, leak(k));
abort if m∗ 6∈Msp
c∗0 ← Enc(k,m∗); c∗1 ←R C; c∗ := c∗b
return AEnc,Dec(state, c∗) ?= b

Fig. 3. The encryption oracle Enc(m) returns c ←R Enc(k,m). The decryption oracle
Dec(m) computes m ←R Dec(k, c) but then behaves differently depending on the notion.
For CPA, Dec(c) always returns ⊥. For CCA, Dec(c) returns m except if c = c∗, in
which case it returns ⊥. For RCCA, Dec(c) returns m except if m ∈ {m∗0 ,m∗1} in
which case it returns invalid. Note that invalid 6= ⊥, i.e. A learns that (one of) the
challenge messages is encrypted in c. Everything else is unchanged.

ciphertext, i.e., one not resulting from a previous call to the encryption oracle. In
both experiments, the adversary is equipped with a decryption oracle instead of
an oracle that just tests the validity of ciphertexts. For CTXT, this actually makes
no difference. For PTXT, however, there are (pathological) insecure schemes
which are only secure w.r.t. validity oracles. Again, we consider variants of these
integrity notions under key-leakage. Def. 4 formalizes these notions.

Definition 4. Let SKE be a symmetric encryption scheme. Let leak : K → L be
a leakage function. The INT-CTXT as well as the INT-PTXT experiments are
defined in Fig. 4. We call SKE INT-CTXT secure under (key-)leakage leak if the
advantage Advint-ctxt

SKE,A(κ) := Pr[Expint-ctxt
SKE,A(κ) = 1] is negligible. Similarly, we call

SKE INT-PTXT secure under (key-)leakage leak if the advantage Advint-ptxt
SKE,A (κ) :=

Pr[Expint-ptxt
SKE,A (κ) = 1] is negligible.

Experiment Expint-ptxt
SKE,A(κ)

M = ∅; Q = ∅;
sp ← GenSP(pp); k ← GenKey(sp);
c ← AEnc,Dec(pp, sp, leak(k));
m ← Dec(k, c);
return 0 iff m ∈M or m = ⊥

Experiment Expint-ctxt
SKE,A(κ)

M = ∅; Q = ∅;
sp ← GenSP(pp); k ← GenKey(sp);
c ← AEnc,Dec(pp, sp, leak(k));
m ← Dec(k, c);
return 0 iff c ∈ Q or m = ⊥

Fig. 4. The INT-PTXT (left) and INT-CTXT (right) games. The encryption oracle
Enc(m) returns c ← Enc(k,m) and adds m to the list of queried messages M and adds
c to the list of queried ciphertexts Q. The oracle Dec(c) returns Dec(k, c).

2.3 Updatable Encryption

Roughly, an updatable encryption scheme is a symmetric encryption scheme
which offers an additional re-encryption functionality that moves ciphertexts
from an old to a new key.

10 Michael Klooß, Anja Lehmann, and Andy Rupp

The encryption key evolves with epochs, and the data is encrypted with
respect to a specific epoch e, starting with e = 0. When moving from epoch e to
epoch e+ 1, one first creates a new key ke+1 via the UE.GenKey algorithm and
then invokes the token generation algorithm UE.GenTok on the old and new key,
ke and ke+1, to obtain the update token ∆e+1. The update token ∆e+1 allows
to update all previously received ciphertexts from epoch e to e + 1 using the
re-encryption algorithm UE.ReEnc.

Definition 5 (Updatable Encryption). An updatable encryption scheme
UE is a tuple (GenSP,GenKey,GenTok,Enc,Dec,ReEnc) of PPT algorithms de-
fined as:

UE.GenSP(pp) is given the public parameters and returns some system parameters
sp. We treat the system parameters as implicit input to all other algorithms.

UE.GenKey(sp) is the key generation algorithm which on input of the system
parameters outputs a key k ∈ Ksp.

UE.GenTok(ke, ke+1) is given two keys ke and ke+1 and outputs some update
token ∆e+1.

UE.Enc(ke,m) is given a key ke and a message m ∈ Msp and outputs some
ciphertext ce ∈ Csp.

UE.Dec(ke, ce) is given a key ke and a ciphertext ce and outputs some message
m ∈Msp or ⊥.

UE.ReEnc(∆e, ce−1) is given an update token ∆e and a ciphertext ce−1 and
returns an updated ciphertext ce.

Given UE, we call SKE = (GenSP,GenKey,Enc,Dec) the underlying (standard)
encryption scheme.
UE is called correct if SKE is correct and ∀sp ← GenSP(pp),∀kold, knew ←
GenKey(sp),∀∆← GenTok(kold, knew),∀c ∈ C : Dec(knew,ReEnc(∆, c)) = Dec(kold, c).

We will use both notations, i.e., ke, ke+1 and kold, knew synonymous throughout
the paper, where the latter omits the explicit epochs e whenever they are not
strictly necessary and we simply want to refer to keys for two consecutive epochs.

In our first construction, the re-encryption algorithm UE.ReEnc will be a
deterministic algorithm, whereas for our second scheme the ciphertexts are
updated in a probabilistic manner. We define the desired security properties
(UP-IND-CCA,UP-INT-CTXT) for updatable encryption schemes with deter-
ministic re-encryption and (UP-IND-RCCA,UP-INT-PTXT) for schemes with
a probabilistic UE.ReEnc algorithm in the following sections.

RISE. In [LT18], Lehmann and Tackmann proposed an updatable encryption
scheme called RISE which is essentially (symmetric) ElGamal encryption with
added update functionality. We use RISE as a building block in our RCCA and
PTXT secure scheme. Please refer to App. F.1 for a description of RISE in our
setting.

(R)CCA Secure Updatable Encryption with Integrity Protection 11

3 CCA and CTXT Secure Updatable Encryption

In this section, we first introduce the considered confidentiality and integrity
definitions for updatable encryption with deterministic re-encryption (Sec. 3.1).
This is followed by a generic transformation that allows to realize these no-
tions from simple, static security properties (Sec. 3.2). Finally, we describe a
Encrypt-and-MAC construction that can be used in this transformation and give
instantiations of its building blocks (Sec. 3.3).

3.1 Security Model

We follow the previous work on updatable encryption and require confidentiality
of ciphertexts in the presence of temporary key and token corruption, covering
both forward and post-compromise security. This is formalized through the
indistinguishability-based security notion UP-IND-CCA which can be seen as
the extension of the standard CCA game to the context of updatable encryption.
In addition to confidentiality, we also require integrity of ciphertexts, which we
formulate via our UP-INT-CTXT definition.

Both security notions are defined through experiments run between a chal-
lenger and an adversary A. Depending on the notion, the adversary may issue
queries to different oracles. At a high level, A is allowed to adaptively corrupt
arbitrary choices of secret keys and update tokens, as long as they do not allow
him to trivially win the respective security game.

Oracles and CCA Security. Our UP-IND-CCA notion is essentially the
regular IND-CCA definition where the adversary is given additional oracles that
capture the functionality inherent to an updatable encryption scheme.

These oracles are defined below and are roughly the same in all our security
definitions. We describe the oracles in the context of our UP-IND-CCA security
game, which needs some extra restrictions and care in order to prevent a decryp-
tion of the challenge ciphertext. When introducing our other security notions,
we explain the differences w.r.t. the oracles presented here. An overview of all
oracles and their differences in our security games is given in Figure 5.

The oracles may access the global state (sp, ke, ∆e,Q,K,T,C∗) which is
initialized via Init(pp) as follows:

Init(pp): This initializes the state of the challenger as (sp, k0, ∆0,Q,K,T,C∗)
where e ← 0, sp ←R UE.GenSP(pp) k0 ←R UE.GenKey(sp), ∆0 ← ⊥, Q ←
∅,K← ∅, T← ∅ and C∗ ← ∅.

The current epoch is denoted as e, and the list Q contains “honest” ciphertexts
which the adversary has obtained entirely through the Enc or ReEnc oracles. The
challenger also keeps sets K,T and C∗ (all initially set to ∅) that are used to
keep track of the epochs in which A corrupted a secret key (K), token (T), or
obtained a re-encryption of the challenge-ciphertext (C∗). These will later be
used to check whether the adversary has made a combination of queries that

12 Michael Klooß, Anja Lehmann, and Andy Rupp

CCA CTXT RCCA PTXT

Next() moves to the next epoch e+ 1 by generating new key and update token

Enc(m) returns encryption c of message m under current epoch key ke

stores ciphertext (e, c) in Q stores (e,m, c) in Q stores (e,m) in Q

Dec(c) returns decryption m of ciphertext c under current epoch key ke

ignores c if it is the
challenge c∗ or a
re-encryption of c∗

— ignores c if it
decrypts to m0 or m1

—

ReEnc(i, c) returns re-encryption ce of ciphertext c from epoch i into current epoch e

allows only
ciphertexts in Q and
derivations of c∗

allows only
ciphertexts in Q

allows arbitrary ciphertexts

if c is c∗ or a
re-encryption of c∗ it
adds epoch e to C∗

— if c decrypts to m0 or
m1 and (i, ∗, c) /∈ Q
it adds epoch e to C∗

—

Corrupt(x, i) returns either ki (if x = key) or ∆i (if x = token) for 0 ≤ i ≤ e

Fig. 5. Overview of oracles and their restrictions in our different security games. C∗ is
the set of challenge-equal epochs used in the CCA and RCCA games, c∗ denotes the
challenge ciphertext in the CCA game, and m0,m1 are the two challenge plaintexts
chosen by A in the RCCA game. Q is the set of queried (re)encryptions.

trivially allow him to decrypt the challenge ciphertext. For our integrity notions
UP-INT-CTXT and UP-INT-PTXT we will omit the set C∗ that is related to
the challenge ciphertext. Moreover, the predicate isChallenge, which identifies
challenge-related ciphertexts, unnecessary for integrity notions. We implicitly
assume that the oracles only proceed when the input is valid, e.g,. for the epoch i
it must hold that 0 ≤ i < e for re-encryption queries, and 0 ≤ i ≤ e for corruption
queries. The decryption or re-encryption oracle will only proceed when the input
ciphertext is “valid” (which will become clear in the oracle definitions given
below). For incorrect inputs, the oracles return invalid.

Next(): Runs ke+1 ←R UE.GenKey(sp), ∆e+1 ←R UE.GenTok(ke, ke+1), adds
(ke+1, ∆e+1) to the global state and updates the current epoch to e← e+ 1.

Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q← Q ∪ {(e, c)}.
Dec(c): If isChallenge(ke, c) = false, it returns m← UE.Dec(ke, c).
ReEnc(i, c): The oracle returns the re-encryption of c from the i-th into the

current epoch e. That is, it returns ce that is computed iteratively through
c` ← UE.ReEnc(∆`, c`−1) for ` = i+ 1, . . . , e and ci ← c. The oracle accepts
only ciphertexts c that are honestly generated, i.e., either (i, c) ∈ Q or
isChallenge(ki, c) = true. It also updates the global state depending on
whether the query is a challenge ciphertext or not:
– If (i, c) ∈ Q, set Q← Q ∪ {(e, ce)}.
– If isChallenge(ki, c) = true, set C∗ ← C∗ ∪ {e}.

(R)CCA Secure Updatable Encryption with Integrity Protection 13

Corrupt({key, token}, i): This oracle models adaptive and retroactive corruption
of keys and tokens, respectively:
– Upon input (key, i), the oracle sets K← K ∪ {i} and returns ki.
– Upon input (token, i), the oracle sets T← T ∪ {i} and returns ∆i.

Finally, we define UP-IND-CCA security as follows, requesting the adversary
after engaging with the oracles defined above, to detect whether the challenge
ciphertext c∗ ←R UE.Enc(ke,mb) is an encryption of m0 or m1. The adversary
wins if he correctly guesses the challenge bit b and has not corrupted the secret
key in any challenge-equal epoch. In the following we explain how we define the
set of challenge-equal epochs Ĉ∗ and prevent trivial wins.

Definition 6. An updatable encryption scheme UE (with deterministic re-encryp-
tion) is called UP-IND-CCA secure if for any PPT adversary A the advantage

Advup-ind-cca
UE,A (pp) :=

∣∣∣Pr[Expup-ind-cca
UE,A (pp, 0) = 1]− Pr[Expup-ind-cca

UE,A (pp, 1) = 1]
∣∣∣

is negligible in κ.

Experiment Expup-ind-cca
UE,A (pp, b)

(sp, k0, ∆0,Q,K,T,C∗)← Init(pp)
(m0,m1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |m0| = |m1| and m0,m1 ∈Msp
c∗ ←R UE.Enc(ke,mb), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)

Preventing decryption of an updated challenge ciphertext. We use a predicate
isChallenge(ki, c) to detect attempts of decrypting the challenge ciphertext c∗
or a re-encryption thereof. Whether a given ciphertext is a re-encryption of the
challenge c∗ can be tested efficiently by exploiting the deterministic behaviour of
the re-encryption algorithm, and the fact that all secret keys and token are known
to the challenger. This approach has also been used to define CCA-security for
ciphertext-dependent schemes by Everspaugh et al. [Eve+17b].

For the following definition, recall that c∗ is the challenge ciphertext obtained
in epoch e∗, or c∗ = ⊥ if the adversary has not made the challenge query yet.
isChallenge(ki, c) :
– If i = e∗ and c∗ = c, return true.
– If i > e∗ and c∗ 6= ⊥, return true if c∗i = c where c∗i for epoch i is computed

iteratively as c∗` ← UE.ReEnc(∆`+1, c∗`) for ` = e∗, . . . , i.
– Else return false.

Defining trivial wins. A crucial part of the definition is to capture the information
the adversary has learned through his oracle queries. In particular, any corruption
of the token ∆e+1 in an epoch after where the adversary has learned the challenge
ciphertext c∗e (directly or via a re-encryption) will enable to adversary to further
update the challenge ciphertext into the next epoch e+ 1. The goal of capturing
this inferable information, is to exclude adversaries following a trivial winning

14 Michael Klooß, Anja Lehmann, and Andy Rupp

e0 e1 e2 e3 e4 e5 e6 e7 e8
∆1 ∆2 ∆7

Fig. 6. Example of corrupted tokens, keys (boxed) and challenge-equal epochs (circled)
in a UP-IND-CCA game. Corrupting ∆3 and ∆8 is forbidden, as they would allow to
re-encrypt the challenge ciphertext into an epoch where A knows the secret key.

strategy such as, e.g., corrupting a key under which a given challenge ciphertext
has been (re-)encrypted.

We use the notation from [LT18] to define the information the adversary may
trivially derive. We focus on schemes that are bi-directional, i.e., we assume up
and downgrades of ciphertexts. That is, we assume that a token ∆e may enable
downgrades of ciphertexts from epoch e into epoch e− 1. While bi-directional
security and schemes are not preferable from a security point of view, all currently
known (efficient) solutions exhibit this additional property.4 Thus, for the sake
of simplicity we state all our definitions for this setting. As a consequence, it is
sufficient to consider only the inferable information w.r.t. ciphertexts: [LT18]
also formulate inference of keys, which in the case of bi-directional schemes has
no effect on the security notions though.

For the (R)CCA game, we need to capture all the epochs in which the
adversary knows a version of the challenge ciphertext, which we define through
the set Ĉ∗ containing all challenge-equal epochs. Recall that C∗ denotes the
set of epochs in which the adversary has obtained an updated version of the
ciphertext via the challenge query or by updating the challenge ciphertext via the
ReEnc oracle. The set T contains all epochs in which the adversary has corrupted
the update tokens, and eend denotes the last epoch of the game. The set Ĉ∗ of all
challenge-equal ciphertexts is defined via the recursive predicate challenge-equal:

Ĉ∗ ← {e ∈ {0, . . . , eend} | challenge-equal(e) = true}
and true← challenge-equal(e) iff: (e ∈ C∗) ∨

(challenge-equal(e− 1) ∧ e ∈ T) ∨ (challenge-equal(e+ 1) ∧ e+ 1 ∈ T)

Note that Ĉ∗ is efficiently computable (e.g. via fixpoint iteration).

Re-encryptions of the challenge ciphertext. Note that we allow ReEnc to skip keys,
as we let A give the starting epoch i as an additional parameter and return the
re-encryption from any old key ki to the current one. This is crucial for obtaining
a meaningful security model: any ReEnc query where the input ciphertext is a
derivation of the challenge ciphertext (that the adversary will receive in the CCA
game), marks the current target epoch e as challenge-equal by adding e to C∗. In
our UP-IND-CCA security game defined below we disallow the adversary from
corrupting the key of any challenge-equal epoch to prevent trivial wins. Calling
the ReEnc oracle for a re-encryption of the challenge ciphertext from some epoch
i to e will still allow A to corrupt keys between i and e.
4 Note that bi-directionality is a property of the security model, not the scheme per se.
That is, uni-directional schemes are evidently also bi-directional secure, even though
they do not allow ciphertext downgrades.

(R)CCA Secure Updatable Encryption with Integrity Protection 15

Ciphertext Integrity. Updatable encryption should also protect the integrity
of ciphertexts. That is, an adversary should not be able to produce a ciphertext
himself that correctly decrypts to a message m 6= ⊥. Our definition adapts he
classic INT-CTXT notion to the setting of updatable encryption. We use the
same oracles as in the UP-IND-CCA game defined above, but where isChallenge
always returns false (as there is no challenge ciphertext). Again, the tricky part
of the definition is to capture the set of trivial wins – in this case trivial forgeries –
that the adversary can make given the secret keys and update tokens he corrupts.
For simplicity, we only consider forgeries that the adversary makes in the current
and final epoch eend, but not in the past. This matches the idea of updatable
encryption where the secret keys and update tokens of old epochs will (ideally)
be deleted, and thus a forgery for an old key is meaningless anyway.

Clearly, when the adversary corrupted the secret key at some previous epoch
and since then learned all update tokens until the final epoch eend, then all
ciphertexts in this last epoch can easily be forged. This is captured by the first
case in the definition of UP-INT-CTXT security.

Definition 7. An updatable encryption scheme UE is called UP-INT-CTXT
secure if for any PPT adversary A the following advantage is negligible in κ:
Advup-int-ctxt

UE,A (pp) := Pr[Expup-int-ctxt
UE,A (pp) = 1].

Experiment Expup-int-ctxt
UE,A (pp)

(sp, k0, ∆0,Q,K,T)← Init(pp)
c∗ ←R ANext,Enc,Dec,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend , c

∗) 6= ⊥ and (eend, c
∗) /∈ Q∗ and

@e ∈ K where i ∈ T for i = e to eend; i.e. A did not trivially win.

Defining trivial ciphertext updates. When defining the set of trivial ciphertexts
Q∗ for the UP-INT-CTXT game defined above, we now move from general epochs
to concrete ciphertexts, i.e., we capture all ciphertexts that the adversary could
know, either through queries to the Enc or ReEnc oracle or through updating
such ciphertexts himself. We exploit that ReEnc is deterministic to define the
set of trivial forgeries Q∗ as narrow as possible. More precisely, Q∗ is defined
by going through the ciphertexts (e, c) ∈ Q the adversary has received through
oracle queries and iteratively update them into the next epoch e+ 1 whenever
the adversary has corrupted ∆e+1. The latter information is captured in the set
T that contains all epochs in which the adversary learned the update token. We
start with Q∗ ← ∅ and amend the set as follows:
for each (e, c) ∈ Q:
set Q∗ ← Q∗ ∪ (e, c), and i← e+ 1, ci−1 ← c
while i ∈ T:
set Q∗ ← Q∗ ∪ (i, ci) where ci ← UE.ReEnc(∆i, ci−1), and i← i+ 1

On the Necessity of the “Queried Restriction”. Restricting ReEnc queries
to honestly generated ciphertexts seems somewhat unavoidable, as the ability of

16 Michael Klooß, Anja Lehmann, and Andy Rupp

ciphertext-independent key-rotation seems to require homomorphic properties
on the encryption. In our construction, an adversary could exploit this homo-
morphism to “blind” the challenge ciphertext before sending it to the ReEnc
oracle, and later “unblind” the re-encrypted ciphertext. This blinding would
prevent us from recognizing that the challenge ciphertext was re-encrypted, and
thus the target epoch would no longer be marked as challenge-equal, allowing
the adversary to corrupt the secret key in the new epoch and trivially win by
decrypting the re-encrypted challenge. A similar restriction is used in the CTXT
definition for ciphertext-dependent schemes in [Eve+17b] as well.5 In Sec. 4 we
overcome this challenge by making ciphertexts publicly verifiable. The above
“blinding” trick then no longer works as it would invalidate the proof of ciphertext
correctness.

3.2 Generic Transformation for Secure Updatable Encryption

In the following we prove UP-IND-CCA and UP-INT-CTXT security for a class of
updatable encryption schemes satisfying some mild requirements. The goal is that
given an updatable encryption scheme UE = (Gen,GenKey,GenTok,Enc,Dec,ReEnc),
we can prove the security of UE based only on classical security of the underlying
encryption scheme SKE = (Gen,GenKey,Enc,Dec) and simple properties satisfied
by GenTok and ReEnc.

Properties of the (Re-)Encryption and Token Generation. Now we
define the additional properties that are needed to lift static IND-CCA and
INT-CTXT security to their updatable version with adaptive key and token
corruptions as just defined.

Tidy Encryption & Strong CCA/CTXT. When re-encryptions are determinis-
tic, we need the underlying standard encryption scheme SKE of an updatable
scheme to be tidy (cf. Def. 2), so there is a one-to-one correspondence between
ciphertexts and message-randomness pairs. Further, we need slightly stronger
variants of the standard security definitions IND-CCA and INT-CTXT in the
deterministic setting where the encryption oracle additionally reveals the used
encryption randomness. We denote these stronger experiments by S-IND-CCA
and S-INT-CTXT, or simply by saying strong IND-CCA/INT-CTXT.

Definition 8. An (updatable) encryption scheme is called strong IND-X (or
S-IND-X) secure for X ∈ {CPA,CCA} if it remains secure even if the en-
cryption oracle returns the encryption randomness, including the (purported)
encryption randomness of the challenge ciphertext. For IND$, in case of a random
ciphertext, a purported randomness is drawn. (We assume that encryption ran-
domness is uniform in the randomness space R.) Analogously, we define strong
INT-CTXT (S-INT-CTXT).
5 The CTXT definition in the proceedings version of their paper did not have such
a restriction, however the revised ePrint version [Eve+17a] later showed that the
original notion is not achievable and a weaker CTXT definition is introduced instead.

(R)CCA Secure Updatable Encryption with Integrity Protection 17

Simulatable & Reverse Tokens. We need further properties (Definitions 9 and 10)
that are concerned with the token generation of an updatable encryption scheme.
It should be possible to simulate perfectly indistinguishable tokens as well as
reverse tokens, inverting the effect of the former ones, without knowing any key.

Definition 9. We call a token ∆′ a reverse token of a token ∆ if for every
pair of keys kold, knew ∈ K with ∆ ∈ supp(UE.GenTok(kold, knew)) we have
∆′ ∈ supp(UE.GenTok(knew, kold)).

Definition 10. Let UE be an updatable encryption scheme. We say that UE has
simulatable token generation if it has the following property: There is a PPT
algorithm SimTok(sp) which samples a pair (∆,∆′) of token and reverse token.
Furthermore, for arbitrary (fixed) kold ← UE.GenKey(sp) following distributions
of ∆ are identical: The distribution of ∆

– induced by (∆,_)←R SimTok(sp).
– induced by ∆←R UE.GenTok(kold, knew) where knew ←R UE.GenKey(sp).

In other words, honest token generation and token simulation are perfectly indis-
tinguishable.

Re-encryption = decrypt-then-encrypt. The final requirement states that the
re-encryption of a ciphertext c = UE.Enc(kold,m; r) looks like a fresh encryption
of m under knew where UE.Enc uses the same randomness r. To formalize this, we
make use of UE.RDec, the randomness-recoverable decryption algorithm of the
underlying encryption scheme (Def. 2), where we have (m, r)← UE.RDec(k, c)
for c ← UE.Enc(k,m; r).

Definition 11. Let UE be an updatable encryption scheme with deterministic
re-encryption. We say that re-encryption (for UE) is randomness-preserving
if the following holds: First, as usually assumed, UE encrypts with uniformly
chosen randomness (i.e., UE.Enc(k,m) and UE.Enc(k,m; r) for uniformly chosen
r are identically distributed). Second, for all sp ←R UE.GenSP(pp), all keys
kold, knew ←R UE.GenKey(sp), tokens ∆←R UE.GenTok(kold, knew), and all valid
ciphertexts c under kold, we have

UE.Enc(knew,UE.RDec(kold, c)) = UE.ReEnc(∆, c).

More precisely, UE.Enc(knew,UE.RDec(kold, c)) is defined as UE.Enc(knew,m; r)
where (m, r)← UE.RDec(kold, c).

In App. A, we argue that this randomness-preserving property additionally
guarantees unlinkability of re-encrypted ciphertexts (UP-REENC security) as
considered by prior work [LT18; Eve+17b].

UP-IND-CCA and UP-INT-CTXT Security. We are now ready to state
our generic transformation for achieving security of the updatable encryption
scheme. The proofs for both properties are very similar, and below we describe
the core ideas of our proof strategy. The detailed proofs are given in App. B.

18 Michael Klooß, Anja Lehmann, and Andy Rupp

Theorem 1. Let UE = (Gen,GenKey,GenTok,Enc,Dec,ReEnc) be an updat-
able encryption scheme with deterministic re-encryption. Suppose that UE has
randomness-preserving re-encryption and simulatable token generation and the
underlying encryption scheme SKE = (Gen,GenKey,Enc,Dec) is tidy.

– If SKE is S-IND-CCA-secure, then UE is UP-IND-CCA-secure.
– If SKE is S-INT-CTXT-secure, then UE is UP-INT-CTXT-secure.

Proof (sketch). In the following, we illustrate the main challenges occurring in
our security proofs as well as how we can cope with these using the properties
we just introduced. Let us consider the problems that arise when we embed a
static challenge, say an IND-CCA challenge, into an UP-IND-CCA game. Let us
assume the UP-IND-CCA adversary A asks for its challenge under key ke∗ and
we want to embed our IND-CCA challenge there. Then ke∗ is unknown to us but
we can answer A’s encryption and decryption queries under ke∗ using our own
IND-CCA oracles.

However, the token ∆e∗+1 might be corrupted by A. Note that in this case,
ke∗+1 cannot be corrupted, since A could trivially win. Now, the question is how
∆e∗+1 can be generated without knowing ke∗ . For this purpose, we make use
of the simulatable token generation property (Def. 10) that ensures that well-
distributed tokens can be generated even without knowing keys. So we can hand
over a simulated ∆e∗+1 to A if it asks for it. But when simulating tokens in this
way, we do not know the corresponding keys. This is a potential problem as we
need to be able to answer encryption and decryption queries under the unknown
key ke∗+1. To cope with this problem, we use the corresponding IND-CCA oracle
for ke∗ and update or downgrade the ciphertexts from/to epoch e∗. That means,
if we are asked to encrypt under ke∗+1, we actually encrypt under ke∗ and update
the resulting ciphertext to epoch e∗ + 1 using ∆e∗+1. Now, we need to ensure
that ciphertexts created in this way look like freshly encrypted ciphertexts under
key ke∗+1. This is what Def. 11 requires. Similarly, if we are asked to decrypt
under ke∗+1, we downgrade the ciphertext using the reverse token ∆′e∗+1 (Def. 9)
that was generated along with ∆e∗+1 (Def. 10). Note that in this case, we do
not need the downgraded ciphertext to look like a fresh one as A never sees
it. Assuming the next token ∆e∗+2 gets also corrupted we can do the same to
handle encryption and decryption queries for epoch e∗ + 2.

Now let us assume that not the token ∆e∗+1 but the key ke∗+1 gets corrupted.
In this case we can neither generate ∆e∗+1 regularly as we do not know ke∗ nor
simulate it as ke∗+1 is known to the adversary. As we know ke∗+1, we have no
problems in handling encryption and decryption queries for epoch e∗+1. But it is
not clear how we can re-encrypt a (non-challenge) ciphertext c freshly generated
in epoch e∗ to e∗ + 1 without knowing ∆e∗+1. As we called our IND-CCA
encryption oracle to generate c, we certainly know the contained message m.
So we could just encrypt m under key ke∗+1 yielding ciphertext c′. However,
now the freshly encrypted ciphertext c′ and a ciphertext c′′ resulting from
regularly updating c′ to epoch e∗ + 1 may look different as they involve different
randomness. To circumvent this problem, we require the IND-CCA encryption
oracle to additionally output the randomness r which has been used to generate

(R)CCA Secure Updatable Encryption with Integrity Protection 19

k0 . . . k`−1 k`
. . . kj . . . kr kr+1 . . . kemax

(c`, r)←R C.Enc(m)

Re-encrypt c` to kj

cj

m ← C.Dec(c`)
Re-encrypt cj to k`

cj

Fig. 7. Encryption and decryption in the insulated region. The keys in the grey area
(k` to kr) are not known in the reduction. Encryption and decryption for other keys is
unchanged. The S-INT-CTXT resp. S-IND-CCA challenger C is embedded in epoch `.

c. Computing c′ using randomness r then yields perfect indistinguishability
assuming Def. 11. Hence, we need SKE to be S-IND-CCA (and S-INT-CTXT)
and not only IND-CCA (and INT-CTXT) secure.

Finally, let us consider how to handle queries to the left of the challenge
epoch. For this, let us assume that ke∗−1 gets corrupted and ∆e∗ is uncorrupted
but unknown to us. Then again we can easily handle encrypt/decrypt queries
for epoch e∗ − 1 but cannot re-encrypt a ciphertext c from epoch e∗ − 1 to e∗ in
a straightforward manner. Now, as c needs to result from a previous query the
corresponding message-randomness pair (m, r) (due to tidyness there is only one
such pair) is known. So, as before, we would like to replace the re-encryption by a
fresh encryption under key ke∗ . Unfortunately, the S-IND-CCA encryption oracle
we would use for this purpose only accepts the message but not the randomness
as input. We cope with this as follows: when we are asked to encrypt a message
m under key ke∗−1 (or prior keys), we will always first call the S-IND-CCA oracle
to encrypt m yielding a ciphertext c′ and randomness r. Then we would encrypt
(m, r) under key ke∗−1 yielding c. The ciphertext c′ can then be stored until a
re-encryption of c is needed. Again Def. 11 ensures perfect indistinguishability
from a real re-encryption. (Here, we use that encryption randomness is chosen
uniformly, independent of the key.)

Note that the case that ∆e∗ is corrupted could actually be handled analogous
to the case that ∆e∗+1 is corrupted by additionally demanding randomness-
preserving re-encryption for reverse tokens but we can get around this.

Overall, this solves the main challenges when embedding an S-IND-CCA
challenge into an UP-IND-CCA game.

Key Insulation. Our key insulation technique aims at coping with the problems
when embedding challenges and follows the ideas just described. However, instead
of guessing the challenge epoch and the region to the left and to the right in
which the adversary corrupted all of the tokens (and none of keys) and embed our
S-IND-CCA/S-INT-CTXT challenge there, we rather do the following: we only
guess the boundaries of this region {`, . . . , r} (containing the challenge epoch)
and embed the S-IND-CCA/S-INT-CTXT challenge at epoch `. Note that the
tokens ∆` and ∆r entering and leaving the boundaries of this “insulated” region
are not corrupted.

20 Michael Klooß, Anja Lehmann, and Andy Rupp

k0 . . . k`−1 k`
. . . ke∗ . . . kr kr+1 . . . kemax

Dec-then-Enc Dec-then-Enc

ReEnc(∆i, c) ReEnc(∆i, c) ReEnc(∆i, c)

Fig. 8. Entering and leaving the insulated region. Re-encryption in the underbraced
regions is done using the known tokens. The two missing tokens are “emulated” by
decrypt-then-encrypt.

Now we change the inner workings in this region and the way it can be
entered from the left using the ideas described before. Namely, only key k` in the
region is generated. Recall, in the reduction we have S-IND-CCA/S-INT-CTXT
oracles at our disposal to replace this key. The tokens ∆`+1, . . . ,∆r+1 along
with corresponding reverse tokens are generated using SimTok (cf. Def. 10). For
encryption in the region, we encrypt under k` and update the ciphertext to
the desired epoch. For decryption, we the use reverse tokens to downgrade the
ciphertext to k` and decrypt with this key. This is illustrated in Fig. 7. Leaving
and entering the region which was originally done by re-encryption, is now
essentially done by retrieving the plaintext and randomness of the ciphertext
that should be reencrypted (so we sort of decrypt the queried ciphertext) and
use it to generate a fresh ciphertext inside or outside the region by encryption.
This is depicted in Fig. 8.

3.3 An Encrypt-and-MAC Construction

We construct an UE scheme with deterministic re-encryption that achieves
UP-IND-CCA, UP-REENC, and UP-INT-CTXT security. For this, we use generic
building blocks which can be securely instantiated from the DDH assumption.

High-Level Idea. Our idea is to do a Encrypt-and-MAC (E&M) construction
with primitives which are key-rotatable. Using Encrypt-and-MAC instead of the
more standard Encrypt-then-MAC approach is crucial for the updatability as we
need “direct access” to both the ciphertext and the MAC.

It is well-known that, in general, E&M is not a secure transformation for
authenticated encryption, as the MAC could leak information about the plaintext
and does not authenticate the ciphertext. However, when using a tidy encryption
scheme SKE (cf. Def. 2) and a pseudorandom function PRF as MAC, then E&M
does provide (static) CCA and CTXT security. Recall that tidy encryption means
that decryption is randomness-recoverable, i.e., it also outputs the randomness r
used in the encryption. This allows to apply the PRF on both, the message and
the randomness r, which then guarantees the integrity of ciphertexts.

We start with such tidy E&M for static primitives but also require that SKE
and PRF support key-rotation and updates of ciphertexts and PRF values. Then,
for yielding the updatable version of the E&M transform, one simply relies on
the key-rotation capabilities of SKE and PRF and updates the individual parts

(R)CCA Secure Updatable Encryption with Integrity Protection 21

of the authenticated ciphertext. Security of the UE scheme obtained in this way
follows since the properties from Sec. 3.2 are satisfied.

Encrypt-and-MAC. First we recall the E&M transformation and its security
for tidy (randomness recoverable) encryption. To make it clear that decryp-
tion recovers the encryption randomness we write RDec for decryption and
make the randomness chosen in the encryption explicit as Enc(k,m; r). Let
SKE = (GenSP,GenKey,Enc,RDec) be a tidy encryption scheme and PRF =
(GenSP,GenKey,Eval) be a pseudorandom function, then the E&M transform of
SKE and PRF is defined as follows:

– AE.GenSP(pp) returns sp = (spSKE, spPRF) where spSKE ←R SKE.GenSP(pp)
and spPRF ←R PRF.GenSP(pp).

– AE.GenKey(sp) returns k = (kSKE, kPRF), where kSKE ←R SKE.GenKey(spSKE)
and kPRF ←R PRF.GenKey(spPRF).

– AE.Enc(k,m; r) returns (c, τ) where c ← SKE.Enc(kSKE,m; r) and τ ←
PRF.Eval(kPRF, (m, r)).

– AE.RDec(k, (c, τ)) computes (m, r)← SKE.RDec(kSKE, c). It returns (m, r) if
PRF.Eval(kPRF, (m, r)) = τ , and ⊥ otherwise.

Lemma 1 essentially follows from [NRS14] where, however, a slightly different
definition of tidy was used. But the adaption to our setting is straightforward.

Lemma 1. If SKE is a tidy encryption scheme satisfying S-IND-CPA security,
and PRF is a secure pseudorandom function (with domain M ×R), then AE as
defined above is a S-IND-CCA and S-INT-CTXT secure tidy encryption scheme.
The same holds for IND$ instead of IND.

Updatable Encrypt-and-MAC. To make this E&M construction a secure updatable
encryption scheme, we need that both underlying primitives support key-rotation
satisfying certain properties. That means, for SKE we assume that additional
algorithms GenTok(kold, knew) and ReEnc(∆, c) as in Def. 5 are given satisfying
simulatable token generation (Def. 10) and randomness-preserving re-encryption
(Def. 11). Likewise, we need similar algorithms GenTok(kold, knew) and Upd(∆, τ)
for the PRF satisfying similar properties, i.e., a straightforward adaption of
simulatable token generation (see Def. 20) and correctness in the sense that
Upd(∆,Eval(kold, (m, r))) = Eval(knew, (m, r)).

We now obtain our secure UE scheme by extending the AE scheme defined
above with the following GenTok and ReEnc algorithms:

– AE.GenTok(kold, knew) computes∆SKE ←R SKE.GenTok(kold
SKE, knew

SKE) and∆PRF ←R

PRF.GenTok(kold
PRF, knew

PRF) and returns ∆ := (∆SKE, ∆PRF).
– AE.ReEnc(∆, (c, τ)) computes c′ ← SKE.ReEnc(∆SKE, c) and τ ′ ← PRF.Upd(∆PRF, τ)

and returns (c′, τ ′).

UP-IND-CCA and UP-INT-CTXT security directly follows from Thm. 1 and
UP-REENC-CCA follows from Thm. 5 (where we also state the definition for
UP-REENC security adapted to the CCA setting).

22 Michael Klooß, Anja Lehmann, and Andy Rupp

Corollary 1. Suppose AE is the E&M construction as in Lemma 1, in partic-
ular S-IND-CCA and S-INT-CTXT secure. Suppose AE supports randomness-
preserving reencryption and simulatable token generation as described above, i.e.
AE constitutes an updatable encryption scheme. Then AE is UP-IND-CCA and
UP-INT-CTXT secure. Moreover, if AE is S-IND$-CCA secure, then it is also
UP-REENC-CCA secure.

Instantiating the key-rotatable building blocks. We now show how the
key-rotatable building blocks SKE and PRF can be securely instantiated. First we
construct the encryption scheme which is S-IND$-CPA secure under the DDH
assumption and also tidy. Then we present the key-rotatable PRF that is secure
under the DDH assumption in the random oracle model.

SKEDDH. Since we need a tidy, and hence randomness recoverable encryption
scheme, we must pick the encryption randomness [r] ←R G from G if discrete
logarithms are hard. A straightforward choice is to use [r]sk instead of r[pk] in
RISE/ElGamal. However, our result which gives UP-REENC security (i.e., the
unlinkability of re-encryptions) for free, c.f. Thm. 5, requires strong IND$-CCA
security. Thus, we instead use following variation of the mentioned approach:

SKEDDH.GenSP(pp) does nothing. That is, it returns sp = pp.
SKEDDH.GenKey(sp) returns k = (k1, k2)←R F∗p × Fp = K.
SKEDDH.GenTok(kold, knew) returns ∆ = (∆1, ∆2) = (knew

1
kold

1
,

knew
2 −kold

2
kold

1
) ∈ D = K.

SKEDDH.Enc(k, [m]; [r]) returns [c], encryption of a message [m] ∈ G with ran-
domness [r]←R G as [c] = (k1[r], k2[r] + [m]) ∈ G2 = C.

SKEDDH.RDec(k, [c]) returns ([r], [m])> via [r] = 1
k1

[c1], [m] = [c2]− k2[r].
SKEDDH.ReEnc(∆, [cold]) returns [cnew] = [∆1cold

1 , ∆2cold
1 + cold

2].

It is easy to see that the scheme is correct with deterministic re-encryption.

Lemma 2. The scheme SKEDDH is tidy, has simulatable token generation, and
randomness-preserving deterministic re-encryption. The underlying encryption
of SKEDDH is strong IND$-CPA secure under the DDH assumption over G.

It is evident, that the scheme is tidy. Randomness-preserving re-encryption
follows from straightforward calculations. For simulatable token generation, note
that any two of kold, ∆, knew, determine the third uniquely (and it is efficiently
computable). Moreover, if we define invert((∆1, ∆2)) = (1

∆1
,−∆2

∆1
) then invert(∆)

is a token which downgrades ciphertexts from knew to kold With this, token
simulation is easy to see. S-IND$-CPA security follows from a straightforward
adaptation of the standard ElGamal security proof. Note that we do not allow
key-leakage, i.e. leak(k) = ⊥.

PRFDDH. Using a hash function H : {0, 1}∗ → G, we instantiate the key-rotatable
PRF as PRFDDH : F×p × {0, 1}∗ → G. The core part of the PRF is the classical
DDH-based construction from [NPR99; Bon+15]. We show that it can also be
extended to allow for key-rotation for which it enjoys token simulation.

(R)CCA Secure Updatable Encryption with Integrity Protection 23

PRFDDH.GenSP(pp) does nothing, i.e. returns sp = pp.
PRFDDH.GenKey(sp) returns k ←R Fp = K.
PRFDDH.GenTok(kold, knew) returns ∆ = knew

kold .
PRFDDH.Eval(k, x) returns [τ] = k H(x) ∈ G.
PRFDDH.Upd(∆, [τ]) returns ∆[τ].

Lemma 3. The PRFDDH = (GenSP,GenKey,Eval) scheme defined above (with-
out GenTok and Upd) is secure under the DDH assumption on G if H is a
(programmable) random oracle. PRFDDH has simulatable token generation.

The security of PRFDDH was shown in [NPR99], and the simulatable properties
of the token generation follow from the same observations as for SKEDDH.

4 RCCA and PTXT Secure Updatable Encryption

In this section, we first define RCCA and PTXT security for updatable encryption
under active re-encryption attacks (Sec. 4.1). In Sec. 4.2 we then present our
Naor-Yung inspired scheme that satisfies these strong security notions.

4.1 Security Model

We now present our definitions for updatable encryption with Replayable CCA
(RCCA) security and plaintext integrity (PTXT). The oracles used in these
definitions are mostly equivalent to the ones introduced for CCA security in
Section 3.1, and thus we focus on the parts that have changed.

The most important difference is that the ReEnc oracle can be invoked on
arbitrary ciphertexts in both definitions, whereas our CCA and CTXT definitions
only allowed re-encryptions of ciphertexts that had been obtained through oracle
queries themselves. This strengthening to arbitrary inputs is much closer to the
reality of updatable encryption, where ciphertexts and the update procedure are
outsourced to potentially untrusted data hosts. All previous definitions cover
only passive corruptions of such a host, whereas our notions in this section even
guarantee security against active adversaries.

RCCA Security. Standard RCCA is a relaxed variant of CCA security which is
identical to CCA with the exception that the decryption oracle will not respond
with invalid whenever a ciphertext decrypts to either of the challenge messages
m0 or m1. This includes ciphertexts that are different from the challenge cipher-
text c∗ the adversary has obtained. RCCA is a suitable definition in particular
for schemes where ciphertexts can be re-randomized, and thus cannot achieve
the standard CCA notion. Our setting allows similar public re-randomization
as ciphertext updates are now probabilistic instead of deterministic. Thus, as
soon as the adversary has corrupted an update token we can no longer trace
re-encryptions of the challenge ciphertexts (as we did in the UP-IND-CCA defini-
tion for deterministic schemes) in order to prevent the adversary from decrypting
the challenge ciphertext.

24 Michael Klooß, Anja Lehmann, and Andy Rupp

Thus, instead of tracing the challenge ciphertext we now follow the RCCA
approach. Our definition of UP-IND-RCCA security is essentially the standard
RCCA definition adapted for updatable encryption by giving the adversary access
to a re-encryption oracle and allowing him to adaptively corrupt secret keys and
tokens in the current or any past epoch.

In Enc and ReEnc described below we still keep track of honestly generated
ciphertexts (and their plaintexts) which allows us to be less restrictive when a
ciphertext-query can be traced down to a non-challenge ciphertext. We explain
this modelling choice in more detail below.
Next(), Corrupt({key, token}, i): as in CCA game
Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q← Q ∪ {(e,m, c)}.
Dec(c): If isChallenge(ke, c) = false, the oracle returns m← UE.Dec(ke, c).
ReEnc(c, i): The oracle returns ce which it iteratively computes as c` ←R

UE.ReEnc(∆`, c`−1) for ` = i + 1, . . . , e and ci ← c. It also updates the
global state depending on whether the queried ciphertext is the challenge
ciphertext or not:
– If (i,m, c) ∈ Q (for some m), then set Q← Q ∪ {(e,m, ce)}.
– Else, if isChallenge(ki, c) = true, then set C∗ ← C∗ ∪ {e}.

As for UP-IND-CCA security, the challenge is to prevent trivial wins where an
adversary tries to exploit the update capabilities of such schemes. We again achieve
this by capturing the indirect knowledge of the adversary through the recursive
predicate that defines all challenge-equal epochs Ĉ∗. This set (which is as defined
in Section 3.1) contains all epochs in which the adversary trivially knows a version
of the challenge ciphertext, either through oracle queries or by up/downgrading
the challenge ciphertext himself. The adversary wins UP-IND-RCCA if he can
determine the challenge bit b used to compute c∗ ←R UE.Enc(ke,mb) and does
not corrupt the secret key in any challenge-equal epoch.

Definition 12. An updatable encryption scheme UE is called UP-IND-RCCA
secure if for any PPT adversary A the following advantage is negligible in κ:
Advup-ind-rcca

UE,A (pp) :=
∣∣∣Pr[Expup-ind-rcca

UE,A (pp, 0) = 1]− Pr[Expup-ind-rcca
UE,A (pp, 1) = 1]

∣∣∣ .
Experiment Expup-ind-rcca

UE,A (pp, b)
(sp, k0, ∆0,Q,K,T,C∗)← Init(pp)
(m0,m1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |m0| = |m1| and m0,m1 ∈Msp
c∗ ←R UE.Enc(ke,mb), M∗ ← (m0,m1), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)

Handling queries of (potential) challenge ciphertexts. As in the standard RCCA
definition, we do not allow any decryption of ciphertexts that decrypts to either
of the two challenge plaintexts m0, or m1. This is expressed via the isChallenge
predicate that is checked for every Dec and ReEnc query and is defined as follows:

isChallenge(ki, c) :

(R)CCA Secure Updatable Encryption with Integrity Protection 25

– If UE.Dec(ki, c) = mb where mb ∈ M∗, return true. Else, return false.

Whereas the decryption oracle will ignore any query where isChallenge(ke, c) =
true, the re-encryption oracle is more generous: When ReEnc is invoked on (i, c)
where isChallenge(ki, c) = true, it will still update the ciphertext into the current
epoch e. The oracle might mark the epoch e as challenge-equal though, preventing
the adversary from corrupting the secret key of epoch e. However, this is only
done when c is not a previous oracle response from an encryption query (or
re-encryption of such a response). That is, the re-encryption oracle will treat
ciphertexts normally when they can be traced down to a honest encryption query,
even when they encrypt one of the challenge messages. This added “generosity” is
crucial for re-encryptions, as otherwise an adversary would not be able to see any
re-encryption from a ciphertext that encrypts the same message as the challenge
and corrupt the secret key in such an epoch.

Plaintext Integrity. Another impact of having a probabilistic instead of a
deterministic ReEnc algorithm is that ciphertext integrity can no longer be
guaranteed: When the adversary has corrupted an update token it can create
various valid ciphertexts by updating an old ciphertext into the new epoch. Thus,
instead we aim for the notion of plaintext integrity and request the adversary to
produce a ciphertext that decrypts to a message for which he does not trivially
know an encryption of.

The oracles used in this game are as in the UP-IND-RCCA definition above,
except that we no longer need the isChallenge predicate and the set of honest
queries Q only records the plaintexts but not the ciphertexts.
Next(), Corrupt({key, token}, i): as in CCA game
Enc(m): Returns c ←R UE.Enc(ke,m) and sets Q← Q ∪ {(e,m)}.
Dec(c): Returns m← UE.Dec(ke, c) and sets Q← Q ∪ {(e,m)}.
ReEnc(c, i): Returns ce, the re-encryption of c from epoch i to the current epoch e.

It also sets Q← Q ∪ {(e,m)} where m ← UE.Dec(ke, ce).

As in our definition of UP-INT-CTXT, we have to capture all plaintexts for
which the adversary can easily create ciphertexts, based on the information he
learned through the oracles and by exploiting his knowledge of some of the secret
keys and update tokens. Again, the first case in our definition of UP-INT-PTXT
security excludes adversaries that have corrupted a secret key and all tokens
from then on, as this allows to create valid ciphertexts for all plaintexts

Definition 13. An updatable encryption scheme UE is called UP-INT-PTXT
secure if for any PPT adversary A the following advantage is negligible in κ:
Advup-int-ptxt

UE,A (pp) := Pr[Expup-int-ptxt
UE,A (pp) = 1].

Experiment Expup-int-ptxt
UE,A (pp)

(sp, k0, ∆0,Q,K,T)← Init(pp)
c∗ ←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend , c

∗) = m∗ 6= ⊥ and (eend,m
∗) /∈ Q∗,

and @e ∈ K where i ∈ T for i = e to eend; i.e. if A does not trivially win.

26 Michael Klooß, Anja Lehmann, and Andy Rupp

Our definition of trivial plaintext forgeries Q∗ is to the one for CTXT security.
That is, when the adversary has received a ciphertext for a message m in epoch
e (which is recorded in Q) and the update token ∆e+1 (which is recorded in T)
for the following epoch, then we (iteratively) declare m to be a trivial forgery for
epoch e+ 1 as well. We start with Q∗ ← ∅ and amend the set as follows:

for each (e,m) ∈ Q:
set Q∗ ← Q∗ ∪ (e,m), and i← e+ 1
while i ∈ T: set Q∗ ← Q∗ ∪ (i,m) and i← i+ 1

4.2 RCCA and PTXT Secure Construction

We now present our construction with probabilistic re-encryption that achieves our
definition of RCCA and PTXT security (under leakage). The main idea is to use
the Naor-Yung (NY) CCA-transform [NY90] (for public-key schemes). That is, a
message is encrypted under two (public) keys of a CPA-secure encryption scheme
and accompanied with a NIZK proof that both ciphertexts indeed encrypt the
same message. By relying on building blocks that support key-rotation, we then
lift this approach into the setting of updatable encryption. For the key-rotatable
CPA-secure encryption we use the RISE scheme as presented in [LT18], and
NIZKs are realized with Groth–Sahai (GS) proofs which provide the malleability
capabilities that are necessary for key rotation. As in the case of our deterministic
scheme presented in Sec. 3, we prove the full security of the updatable scheme
based on static properties of the underlying building blocks and simulation-based
properties of their token generation and update procedures.

A downside of this NY approach is that it yields a public key encryption
scheme in disguise. That is, we expose the resulting public key scheme in a
symmetric key style and only use the “public key” for key rotation. However,
the corruption of an update token then allows the adversary to create valid
ciphertexts for messages of his choice. Thus, this scheme would not achieve the
desirable PTXT security yet. We therefore extend the NY approach and let each
encryption also contain a proof that one knows a valid signature on the underlying
plaintext. This combined scheme then satisfies both RCCA and PTXT security.

The crucial feature of this overall approach is that it allows for public verifia-
bility of well-formedness of ciphertexts, and thus provides security under arbitrary
(as opposed to queried) re-encryption attacks.

Structure of the rest of this section. We start with an overview of GS proofs
systems and their essential properties. We continue with perfect re-encryption, a
stronger definition than randomness-preserving. Then, we give give the intuition
and definition of the basic NY-based RCCA-secure updatable encryption scheme.
Finally we describe how to add plaintext integrity.

Linearly malleable proofs. As our proof system, we use Groth–Sahai proofs
which is a so-called commit-and-prove system [GS12; EG14]. That is, one (first)
commits to a witness w (with randomness r) and then proves statement(s)

(R)CCA Secure Updatable Encryption with Integrity Protection 27

stmt about the committed witness by running π ← Prove(crs, stmt, w, r). The
statement(s) stmt are “quadratic” equations, e.g. pairing product equations. See
App. D for details.

Groth–Sahai proofs are a so-called dual-mode proof system, which has two
setups: GS.SetupH(pp) (resp. GS.SetupB(pp)) generates a hiding (resp. binding)
crs for which commitments are perfectly hiding (resp. perfectly binding) and the
proof π is perfectly zero-knowledge (resp. perfectly sound). Moreover, binding
commitments to groups are extractable.

Groth–Sahai proofs offer extra-functionality. They are perfectly rerandomis-
able, i.e. the commitments and proofs can be re-randomised. Also, they are
linearly malleable. Roughly, given a set of “quadratic” equations, one can apply
(certain) linear transformations to the witness and statement (i.e. the constants
in the equation), which map satisfying assignments to satisfying assignments,
and compute adapted commitments and proofs. In particular, the commitments
are homomorphic. See App. D or [Cha+12; Fuc11] for more.

Perfect re-encryption. Perfect re-encryption is a strengthening of randomness-
preserving re-encryption. It assures that decrypt-then-encrypt has the same
distribution as re-encryption, without any exceptions. In particular, it does neither
require the encryption randomness, nor is it restricted to valid ciphertexts.

Definition 14. Let UE be an updatable encryption scheme where UE.ReEnc
is probabilistic. We say that re-encryption (of UE) is perfect, if for all sp ←R

UE.GenSP(pp), all keys kold, knew ←R UE.GenKey(sp), token ∆←R UE.GenTok(kold,
knew), and all ciphertexts c, we have

UE.Enc(knew,UE.Dec(kold, c)) dist≡ UE.ReEnc(∆, c).

Note that Enc(k,⊥) = ⊥ by definition.

The General Idea: RCCA Security via NY Transform. Our first goal is
to build a UP-IND-RCCA-secure updatable encryption scheme. which we achieve
via the double-encryption technique of Naor-Yung[NY90] using key-rotatable
building blocks: we use a linear encryption with a linearly malleable NIZK, namely
RISE (i.e. ElGamal-based updatable encryption) with Groth–Sahai proofs[GS12].
The malleability and re-randomizability of GS proofs allow for key rotation and
ciphertext re-randomisation (as part of the re-encryption procedure).

A double-encryption with a simulation sound consistency proof (as formalized
in [Sah99; Gro06]) is too rigid and yields CCA security. We must allow certain
transformations of the ciphertext, namely re-randomisation and re-encryption.
Thus, we weaken our security to RCCA and rely on a relaxation of simulation
soundness, which still ensures that the adversary cannot maul the message, but
allows re-randomisation and re-encryption.

We achieve this property by the following variation of a standard technique,
which was previously used in conjunction with Groth–Sahai proofs, e.g. in [HJ12].
Our NIZK proves that either the NY statement holds, i.e., two ciphertexts

28 Michael Klooß, Anja Lehmann, and Andy Rupp

c1 = Enc(pk1,m1) and c2 = Enc(pk2,m2) encrypt the same message m1 = m2,
or m1,m2 (possibly being different) are signed under a signature verification key
which is part of the system parameters. In the security proof the simulator will be
privy of the signing key and thus can produce valid NIZK proofs for inconsistent
ciphertexts. Further, the signature scheme is structure-preserving, which allows to
hide the signature σ and its verification Verify(vk,m1,m2, σ) in the NIZK proof.
Note that the signature scheme does not have to be key-rotatable as the key is
fixed throughout all epochs.

Definition 15 (NYUE). Our Naor–Yung-like transformation NYUE of the key-
rotatable encryption RISE, using GS proofs and a structure-preserving signature
SIG, is defined as:

NYUE.GenSP(pp): Run crsGS ←R GS.SetupH(pp), spEnc ←R RISE.GenSP(pp),
spSIG ←R SIG.GenSP(pp) and (_, vkSIG)←R SIG.GenKey(spSIG). Return sp =
(crsGS, spEnc, (spSIG, vkSIG)).

NYUE.GenKey(sp): Run ki ←R RISE.GenKey(spEnc) for i = 1, 2 and parse ki =
(ski, pki). Let sk = (sk1, sk2) and pk = (pk1, pk2). Return k = (sk, pk).

NYUE.Enc(k,m; r1, r2): Parse k = (sk, pk). Compute ci = RISE.Enc(pki,m; ri)
for i = 1, 2 and the following proof π ←R NIZK(OR(SNY,SSIG)) with common
input sp, pk1, pk2, c1, c2 where6

– SNY: ∃m̂, r̂1, r̂2 : RISE.Enc(pk1, m̂; r̂1) = c1, ∧ RISE.Enc(pk2, m̂; r̂2) = c2
– SSIG: ∃m̂1, m̂2, r̂1, r̂2, σ̂ : RISE.Enc(pk1, m̂1; r̂2) = c1 ∧ RISE.Enc(pk2, m̂2; r̂2) =

c2 ∧ SIG.Verify(vkSIG, (m̂1, m̂2), σ̂) = 1
Return (c1, c2, π).

NYUE.Dec(k, (c1, c2, π)): Parse k = (sk, pk) and verify the proof π w.r.t. pk =
(pk1, pk2). If π is valid, return RISE.Dec(sk1, c1), and ⊥ otherwise.

NYUE.GenTok(kold, knew): Compute ∆i ←R RISE.GenTok(kold
i , knew

i) for i = 1, 2
where kold and knew is parsed as in NYUE.GenKey. Return ∆ = (∆1, ∆2).

NYUE.ReEnc(∆, c): is sketched below.

We use a hiding crsGS in the above construction to attain perfect re-encryption.
just like RISE, c.f. Rem. 2.

For the ease of exposition, we use RISE for both encryptions in the NY
transform. If one follows the classical NY approach that immediately deletes sk2
(in epoch 0), it would be sufficient to require key-rotatable encryption only for c1,
whereas encryption for c2 merely needs to be re-randomizable (as we also aim
for UP-REENC security).

Re-encryption for NYUE. The high-level idea of the re-encryption is us-
ing the linear malleability, and re-randomisability of RISE and GS proofs. For
NYUE.ReEnc(∆, c) with c = (c1, c2, π) we proceed in four steps. Steps 2 and 3
constitute a computation of RISE.ReEnc, separated into key-rotation and re-
randomisation, c.f. Rem. 2.
6 Here we exploit the public key nature of the construction, i.e., we only need pki (not

ski) for verifying consistency proofs.

(R)CCA Secure Updatable Encryption with Integrity Protection 29

(1) Verify ciphertext. Note that the re-encryption tokens of RISE (and there-
fore NYUE) contain essentially the old and new public keys. We use this to
let NYUE.ReEnc first verify the consistency proof of a ciphertext before start-
ing the update procedure. Thus, re-encryption only works for well-formed,
decryptable ciphertexts.

(2) Key rotation. We use the key rotation of RISE on the ciphertexts parts c1
and c2 of c = (c1, c2, π), but without the implicit re-randomisation. Addition-
ally, we use malleability of GS proofs to adapt the proof π.

(3) Re-randomise c1, c2. We re-randomise the RISE (i.e. ElGamal) ciphertexts
c1, c2, thus completing the computation of RISE.ReEnc(∆i, ci) for i = 1, 2.
Additionally, we use malleability of GS proofs to adapt the proof π.

(4) Re-randomise π. We re-randomise the proof π using re-randomisability of
GS proofs.

Thus, we first switch to the new key, and then ensure that the ciphertext is dis-
tributed identically to a fresh encryption by re-randomising the RISE ciphertexts
and the GS proofs (both of which are perfectly re-randomisable).

UP-IND-RCCA Security of NYUE. We now argue how NYUE achieves our
notion of UP-IND-RCCA security that captures arbitrary re-encryption attacks.
First, we observe that NYUE has perfect re-encryption, i.e., a re-encrypted
ciphertext (c′1, c′2, π′) has the same distribution as a fresh encryption (Def. 14).
This follows because RISE has perfect re-encryption and GS proofs with hiding
CRS have perfect re-randomisation. Furthermore, NYUE satisfies simulatable
token generation under (key-)leakage, see App. C.
Lemma 4. The updatable encryption scheme NYUE has perfect re-encryption
and simulatable token generation under leakage leak(k) = pk, c.f. App. C.

Lemma 4 follows easily from token simulation for RISE, see App. G. The
UP-IND-RCCA security of NYUE is shown analogous to UP-IND-CCA security
in Thm. 1. That is, we bootstrap the UP-IND-RCCA security from the (static)
IND-RCCA security of NYUE, perfect re-encryption and token simulation. By
a standard reduction, the underlying encryption of NYUE is IND-RCCA secure
(under leakage leak(k) = pk), see App. G.1. There are three major differences
compared to UP-IND-CCA:

First, NYUE.ReEnc uses the public verifiability of ciphertexts to reject invalid
inputs, i.e., it updates only ciphertexts for which NYUE.Dec will not return ⊥.
Hence, the decrypt-then-encrypt strategy (used in the proof of Thm. 1) is not
impacted by allowing arbitrary requests in the ReEnc oracle. Consequently, the
queried restriction is not giving the adversary any additional advantage.

Second, re-encryption is perfect, which is stronger than randomness-preserving
re-encryption. This simplifies the proof strategy slightly. Third, leak(k) = pk is
non-trivial, unlike for the deterministic schemes. All in all, we obtain:
Proposition 1 (App. G). Suppose the SXDH assumption holds in (e,G1,G2,GT),
and SIG is (one-time) EUF-CMA secure. Then the updatable encryption scheme
NYUE from Def. 15 is UP-IND-RCCA secure.

30 Michael Klooß, Anja Lehmann, and Andy Rupp

The SXDH assumption guarantees the security of RISE and GS proofs.

NYUAE Construction: Adding PTXT Security. As discussed, NYUE is a
public key encryption scheme in disguise (with the public key “hidden” in the
update token). Thus, a (corrupt) data host can trivially create new ciphertext to
chosen messages, and thus we do not achieve the desired PTXT security yet.

To obtain such plaintext integrity, using a structure-preserving key-rotatable
MAC [KPW15] on the plaintext seems a straightforward solution. However, for
proving security against arbitrary re-encryption attacks, we need that ciphertext
validity is publicly verifiable. Thus, we use the signature from [KPW15] instead
(which is constructed from the MAC). Furthermore, we hide the signature (and
its verification) behind a GS proof, to ensure confidentiality.

Updatable Signatures. Opposed to the signature SIG used in NYUE for the
simulatability of the main GS proof, we need the signature scheme which ensures
integrity of the plaintext to be key-rotatable and updatable as well. The definition
of an updatable signature scheme USIG is straightforward and given in App. E.
We stress that we will not require USIG to be secure in the updatable setting, but
only need standard static (one-time) EUF-CMA security in combination with
generic properties of the token generation (c.f. Def. 10).

We now incorporate plaintext integrity into the NYUE construction using such
a key-rotatable signature USIG. For encryption, we additionally sign the plaintext
with USIG and include this signature in the main NY statement of the GS proof π.
That is, SNY+I now asserts that c1 and c2 encrypt the same USIG-signed message.
As before, we use concrete instantiations of all key-rotatable building blocks to
avoid a cumbersome abstraction of malleability properties. We use the one-time
signature OTS from [KPW15, Fig. 2] for USIG with simulatable token generation
and malleable signature verification. In App. E we recall their scheme, define its
key-rotation capabilities, and show that it satisfies all required properties (OTS
is one-time EUF-CMA secure under the SXDH assumption).

In the following we describe our final construction NYUAE. For the sake of
brevity, we refer to the NYUE scheme whenever we use it in an unchanged way.

Definition 16 (NYUAE). The Naor-Yung transformation with plaintext in-
tegrity from key-rotatable encryption RISE, GS proofs and structure-preserving
signature SIG (with RISE and SIG being abstracted away in the NYUE scheme),
and a key-rotatable structure-preserving signature OTS (c.f. Def. 26) is defined
as follows:
NYUAE.GenSP(pp): Run spNYUE ←R NYUE.GenSP(pp), and spOTS ←R OTS.GenSP(pp).

Return sp = (spNYUE, spOTS).
NYUAE.GenKey(sp): Run kNYUE ←R NYUE.GenKey(spNYUE), and (skOTS, vk)←R

OTS.GenKey(spOTS). Let sk = (skNYUE, skOTS), pk = (pkNYUE, vk). Return
k = (sk, pk).

NYUAE.Enc(k,m; r1, r2): Parse k = ((skNYUE, skOTS), (pkNYUE, vk)) compute c1, c2
as in NYUE, σ ← OTS.Sign(skOTS,m) and a proof π ←R NIZK(OR(SNY+I,SSIG))
where

(R)CCA Secure Updatable Encryption with Integrity Protection 31

– SNY+I: ∃ m̂, r̂1, r̂2, σ̂ : OTS.Verify(pkOTS, m̂, σ̂) = 1 ∧ SNY
and with SNY,SSIG defined as in NYUE (Def. 15). Return (c1, c2, π).

NYUAE.Dec(k, (c1, c2, π)): If π is valid, return RISE.Dec(k1, c1), and ⊥ else.
NYUAE.GenTok(kold, knew): Run ∆NYUE ←R NYUE.GenTok(kold

NYUE, knew
NYUE) and

∆OTS ←R OTS.GenTok(kold
OTS, knew

OTS). Return ∆ = (∆NYUE, ∆OTS).
NYUAE.ReEnc(∆, c): is as NYUE.ReEnc (Def. 15), but also adapts the proof of

knowledge of an OTS-signature.

The details for generating, verifying and updating the proof π are given in
App. F. The proof of security as an updatable encryption scheme follows the
usual blueprint. As for NYUE, UP-REENC security follows from Thm. 3.

Theorem 2. Suppose SIG is unbounded EUF-CMA secure, and SXDH holds in
(G1,G2,GT , e). Then NYUAE is UP-IND-RCCA and UP-INT-PTXT secure.

Acknowledgments. We thank Kenny Paterson for fruitful discussions at early
stages of this work. We also thank the reviewers for helpful suggestions. The first
author is supported by the German Federal Ministry of Education and Research
within the framework of the project “Sicherheit kritischer Infrastrukturen (SKI)”
in the Competence Center for Applied Security Technology (KASTEL). The
second author was supported by the European Union’s Horizon 2020 research
and innovation program under Grant Agreement No. 786725 (OLYMPUS). The
third author is supported by DFG grant RU 1664/3-1 and KASTEL.

References

[Abe+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralam-
biev, and Miyako Ohkubo. “Structure-Preserving Signatures and
Commitments to Group Elements”. In: CRYPTO 2010. Ed. by Tal
Rabin. Vol. 6223. Aug. 2010, pp. 209–236.

[Bel+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss,
Anna Lysyanskaya, and Hovav Shacham. “Randomizable Proofs and
Delegatable Anonymous Credentials”. In: CRYPTO 2009. Ed. by
Shai Halevi. Vol. 5677. Aug. 2009, pp. 108–125.

[Bon+13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth
Raghunathan. “Key Homomorphic PRFs and Their Applications”.
In: CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8042. Aug. 2013, pp. 410–428.

[Bon+15] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghu-
nathan. Key Homomorphic PRFs and Their Applications. Cryptol-
ogy ePrint Archive, Report 2015/220. http://eprint.iacr.org/
2015/220. 2015.

[Cha+12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah
Meiklejohn. Malleable Proof Systems and Applications. Cryptology
ePrint Archive, Report 2012/012. http://eprint.iacr.org/2012/
012. 2012.

http://eprint.iacr.org/2015/220
http://eprint.iacr.org/2015/220
http://eprint.iacr.org/2012/012
http://eprint.iacr.org/2012/012

32 Michael Klooß, Anja Lehmann, and Andy Rupp

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. “Relaxing
Chosen-Ciphertext Security”. In: CRYPTO 2003. Ed. by Dan Boneh.
Vol. 2729. Aug. 2003, pp. 565–582.

[Coh17] Aloni Cohen. What about Bob? The Inadequacy of CPA Security for
Proxy Reencryption. Cryptology ePrint Archive, Report 2017/785.
http://eprint.iacr.org/2017/785. 2017.

[EG14] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs”. In:
PKC 2014. Ed. by Hugo Krawczyk. Vol. 8383. Mar. 2014, pp. 630–
649.

[Esc+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge
Villar. “An Algebraic Framework for Diffie-Hellman Assumptions”.
In: CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8043. Aug. 2013, pp. 129–147.

[Eve+17a] Adam Everspaugh, Kenneth Paterson, Thomas Ristenpart, and Sam
Scott. Key Rotation for Authenticated Encryption. Cryptology ePrint
Archive, Report 2017/527. http://eprint.iacr.org/2017/527.
2017.

[Eve+17b] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and
Samuel Scott. “Key Rotation for Authenticated Encryption”. In:
CRYPTO 2017, Part III. Ed. by Jonathan Katz and Hovav Shacham.
Vol. 10403. Aug. 2017, pp. 98–129.

[Fuc+18] Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof
Pietrzak. Adaptively Secure Proxy Re-encryption. Cryptology ePrint
Archive, Report 2018/426. https://eprint.iacr.org/2018/426.
2018.

[Fuc11] Georg Fuchsbauer. “Commuting Signatures and Verifiable Encryp-
tion”. In: EUROCRYPT 2011. Ed. by Kenneth G. Paterson. Vol. 6632.
May 2011, pp. 224–245.

[Gro06] Jens Groth. “Simulation-Sound NIZK Proofs for a Practical Lan-
guage and Constant Size Group Signatures”. In: ASIACRYPT 2006.
Ed. by Xuejia Lai and Kefei Chen. Vol. 4284. Dec. 2006, pp. 444–459.

[GS12] Jens Groth and Amit Sahai. “Efficient Noninteractive Proof Systems
for Bilinear Groups”. In: SIAM J. Comput. 41.5 (2012), pp. 1193–
1232.

[GW11] Craig Gentry and Daniel Wichs. “Separating succinct non-interactive
arguments from all falsifiable assumptions”. In: 43rd ACM STOC.
Ed. by Lance Fortnow and Salil P. Vadhan. June 2011, pp. 99–108.

[Her+17] Gottfried Herold, Max Hoffmann, Michael Klooß, Carla Ràfols, and
Andy Rupp. “New Techniques for Structural Batch Verification
in Bilinear Groups with Applications to Groth-Sahai Proofs”. In:
ACM CCS 17. Ed. by Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu. 2017, pp. 1547–1564.

[HJ12] Dennis Hofheinz and Tibor Jager. “Tightly Secure Signatures and
Public-Key Encryption”. In: CRYPTO 2012. Ed. by Reihaneh Safavi-
Naini and Ran Canetti. Vol. 7417. Aug. 2012, pp. 590–607.

http://eprint.iacr.org/2017/785
http://eprint.iacr.org/2017/527
https://eprint.iacr.org/2018/426

(R)CCA Secure Updatable Encryption with Integrity Protection 33

[Hof16] Dennis Hofheinz. “Algebraic Partitioning: Fully Compact and (al-
most) Tightly Secure Cryptography”. In: TCC 2016-A, Part I. Ed.
by Eyal Kushilevitz and Tal Malkin. Vol. 9562. Jan. 2016, pp. 251–
281.

[Jaf+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. “Be Adaptive, Avoid Over-
committing”. In: CRYPTO 2017, Part I. Ed. by Jonathan Katz and
Hovav Shacham. Vol. 10401. Aug. 2017, pp. 133–163.

[JKR18] Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch. Threshold
Partially-Oblivious PRFs with Applications to Key Management.
Cryptology ePrint Archive, Report 2018/733. https://eprint.
iacr.org/2018/733. 2018.

[KPW15] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. “Structure-Preserving Sig-
natures from Standard Assumptions, Revisited”. In: CRYPTO 2015,
Part II. Ed. by Rosario Gennaro and Matthew J. B. Robshaw.
Vol. 9216. Aug. 2015, pp. 275–295.

[LT18] Anja Lehmann and Björn Tackmann. “Updatable Encryption with
Post-Compromise Security”. In: EUROCRYPT 2018, Part III. Ed.
by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. 2018,
pp. 685–716.

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. “The Kernel Matrix
Diffie-Hellman Assumption”. In: ASIACRYPT 2016, Part I. Ed. by
Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. Dec. 2016, pp. 729–
758.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. “Distributed Pseudo-
random Functions and KDCs”. In: EUROCRYPT’99. Ed. by Jacques
Stern. Vol. 1592. May 1999, pp. 327–346.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton.
“Reconsidering Generic Composition”. In: EUROCRYPT 2014. Ed.
by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. May 2014,
pp. 257–274.

[NY90] Moni Naor and Moti Yung. “Public-key Cryptosystems Provably
Secure against Chosen Ciphertext Attacks”. In: 22nd ACM STOC.
May 1990, pp. 427–437.

[Ràf15] Carla Ràfols. “Stretching Groth-Sahai: NIZK Proofs of Partial Satis-
fiability”. In: TCC 2015, Part II. Ed. by Yevgeniy Dodis and Jesper
Buus Nielsen. Vol. 9015. Mar. 2015, pp. 247–276.

[Sah99] Amit Sahai. “Non-Malleable Non-Interactive Zero Knowledge and
Adaptive Chosen-Ciphertext Security”. In: 40th FOCS. Oct. 1999,
pp. 543–553.

[PCI16] PCI Security Standards Council. Requirements and security assess-
ment procedures. PCI DSS v3.2. 2016.

https://eprint.iacr.org/2018/733
https://eprint.iacr.org/2018/733

34 Michael Klooß, Anja Lehmann, and Andy Rupp

A Unlinkability of Re-Encryptions

Our security models UP-IND-CCA and UP-IND-RCCA lift the classical CCA
and RCCA notions to the setting of updatable encryption. As argued in [Eve+17b]
and [LT18], these definitions would allow parts of the ciphertext to remain static
which somehow contradicts the idea that full security can be re-gained when
moving a ciphertext into a new epoch. Both aforementioned works therefore
introduce an additional security notion that guarantees that a re-encrypted
ciphertext can no longer be linked to its old version, thus capturing that the full
ciphertext must get refreshed in an update.

We follow their argumentation and adapt the notion of unlinkability of re-
encryptions from [LT18] to the CCA and RCCA setting of our work (which we call
UP-REENC). We also point out that an even stronger notion might be desirable:
namely that fresh and re-encrypted ciphertexts are indistinguishable (which is
not guaranteed by UP-REENC). Interestingly, defining these stronger security
notions (Definitions 11 and 14) is much simpler than the adaptive UP-REENC
notion, and (in combination with UP-IND-RCCA resp. UP-IND$-CCA security)
imply UP-REENC security.

A.1 Defining UP-REENC Security

We now present our definitions for updatable encryption with unlinkability of
re-encryptions. This notion, called UP-REENC, has a very similar security game
to UP-IND-CCA and UP-IND-RCCA. The major difference is, that it deals
with re-encryptions of ciphertexts instead of encryptions of plaintexts. That is,
the challenge messages are replaced by challenge ciphertexts, and the challenge
encryption is replaced by a challenge re-encryption. We only allow valid ciphertext
as challenge, i.e. ciphertexts which do not decrypt to ⊥.

UP-REENC necessarily comes in multiple variants. Namely, the re-encryption
oracle may restrict to queried re-encryptions or allow arbitrary re-encryptions.
The decryption (and re-encryption) oracle may reject ciphertexts, depending
on the definition of isChallenge and we need some definition of trivial wins.
A suitable combination of these properties yields the UP-REENC notions for
deterministic (resp. probabilistic) re-encryption and CCA (resp. RCCA) security.
We will only consider the combinations of deterministic queried re-encryption
plus CCA security and probabilistic arbitrary re-encryption plus RCCA security.
We abbreviate these cases simply by referring to CCA and RCCA respectively.7

Oracles. The oracles and game are essentially the same as in the UP-IND-CCA
and UP-IND-RCCA games:

Next(): as always.
7 These are the relevant cases for us. Other combinations, are straightforward to define.
For example, (probabilistic) queried re-encryption plus CPA security corresponds to
the definition of UP-REENC in [LT18].

(R)CCA Secure Updatable Encryption with Integrity Protection 35

Enc(m): Returns c ←R UE.Enc(kecur ,m). Adds the information to Q as specified
in the CCA resp. RCCA game.

Dec(c): If isChallenge(ecur, c) = false, the oracle returns m← UE.Dec(kecur , c).
The definition of isChallenge depends whether a CCA resp. RCCA variant is
played.

ReEnc(c, i): Works as specified in the CCA resp. RCCA game. In particular,
it updates the respective sets Q and C∗ and checks isChallenge. (Also the
queried re-encryptions restriction is enforced.)

Corrupt({key, token}, i): as always.

The challenge in an UP-REENC experiment are two ciphertexts c0, c1, which
are re-encrypted from the previous epoch ecur − 1 to the next epoch ecur. Let
c∗0 , c∗1 be the re-encryptions. The adversary obtains c∗b (for b ←R {0, 1}) and
must guess b. Whereas in the RCCA variant, both ciphertexts can be chosen
arbitrarily by the adversary (as long as both decrypt to some message mb 6= ⊥),
we limit the adversary to queried-ciphertexts in the CCA game.

Trivial wins for the UP-REENC games are defined exactly as in the UP-IND-CCA
and UP-IND-RCCA notions, building the inferable set Ĉ∗ of challenge-equal
epochs and requiring the adversary not to corrupt a key (captured in the set
K) in a challenge-equal epoch. Clearly, there is one additional and unavoidable
restriction when re-encryption is deterministic: An adversary which corrupts ∆e∗

loses due to trivial win.
Now, we give explicit security games for the two relevant combinations:

UP-REENC-CCA security for schemes for deterministic re-encryption, and
UP-REENC-RCCA security for schemes that re-encrypt probabilistically.
Definition 17. An updatable encryption scheme UE is called UP-REENC-X se-
cure for X ∈ {CCA,RCCA} if for any PPT adversary A the following advantage
is negligible in κ:

Advup-reenc-x
UE,A (pp) :=

∣∣∣Pr[Expup-reenc-x
UE,A (pp, 0) = 1]− Pr[Expup-reenc-x

UE,A (pp, 1) = 1]
∣∣∣ .

Experiment Expup-reenc-cca
UE,A (pp, b)

(sp, k0, ∆0,Q,K,T,C∗)← Init(pp)
(c0, c1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |c0| = |c1| and (ecur − 1, c0) ∈ Q and (ecur − 1, c1) ∈ Q
c∗ ←R UE.ReEnc(∆ecur , cb), C∗ ← {ecur}
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return b and K ∩ Ĉ∗ = ∅ and e∗ 6∈ T, i.e. if A did not trivially win.

Experiment Expup-reenc-rcca
UE,A (pp, b)

(sp, k0, ∆0,Q,K,T,C∗)← Init(pp)
(c0, c1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |c0| = |c1| and m0 6= ⊥ and m1 6= ⊥ where

m0 ← Dec(kecur−1, c0) and m1 ← Dec(kecur−1, c1)
c∗ ←R UE.ReEnc(∆ecur , cb), M∗ ← (m0,m1), C∗ ← {ecur}
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(c∗, state)
return 1 if b′ = b and K ∩ Ĉ∗ = ∅, i.e. if A did not trivially win

36 Michael Klooß, Anja Lehmann, and Andy Rupp

Indistinguishability of fresh vs. re-encrypted ciphertexts. Note that UP-REENC
guarantees unlinkability of updated ciphertexts, but it does not ensure that up-
dated and fresh ones are indistinguishable. For instance, an updatable encryption
scheme could simply set a “is-fresh” bit to 1 for freshly encrypted ciphertexts (i.e.
Enc) and set it to 0 upon re-encryption (i.e. ReEnc). Thus, “fresh” ciphertexts
are trivially distinguishable from “old” ones (but the scheme would still be be
UP-REENC secure). A stronger notion would also prevent such leakage.

We observe that a very simple approach can be used for expressing this
additional security: Perfect and randomness-preserving re-encryption (as defined
in Definitions 11 and 14) guarantee that such a leak does not exist, and imply (in
combination with UP-IND-RCCA resp. UP-IND$-CCA security) the UP-REENC
notions defined above.

A.2 UP-REENC-RCCA from perfect re-encryption

In this section, we show that UP-REENC-RCCA is actually implied by perfect
re-encryption and a decryption oracle.

Theorem 3. Let UE be an updatable encryption scheme with perfect re-encryption.
Suppose that UE is UP-IND-RCCA secure. Then UE is UP-REENC-RCCA se-
cure (via a tight reduction to UP-IND-RCCA).

Proof. Let C be the UP-IND-RCCA challenger who plays with B, and let A

be the UP-REENC-RCCA adversary (who plays against B). By construction
B, simply forwards (and records) all oracle calls of A to C.8 In particular, Dec
behaves exactly the same in both games. Naturally, there is one exception: In
epoch e∗, the adversary sends the ciphertext pair c0, c1. By assumption c0 and c1
are valid ciphertexts under epoch e∗−1, hence B can decrypt them using C. More
concretely, B requests C to rotate ci to epoch e∗, obtaining c′i and then requests
the decryption mi ← C.Dec(c′i). (Remember that the decryption oracle works
(implicitly) under the current epoch ecur, which is e∗ in this case.) Note that
mi 6= ⊥ (otherwise A loses and B can abort). Now, B issues m0,m1 as its own
challenge messages to C (under epoch e∗). Thus, B obtains c∗ = Enc(ke∗ ,mb),
where C picks b←R {0, 1}. The distribution of c∗ is perfectly indistinguishable
from ReEnc(∆e∗ , cb) because UE has perfect re-encryption. Consequently, B

perfectly simulates the UP-REENC-RCCA game for A up to this point.
Continuing from this point onwards, it is evident that only the simulation of

the Dec-oracle could be problematic. Fortunately, the UP-IND-RCCA challenger
C rejects a decryption query (only) if Dec(kecur , c) ∈ {m0,m1} and c was not
queried. This is the same as in the UP-REENC-RCCA game. Consequently,
B perfectly simulates the UP-REENC-RCCA game for A. Finally, B simply
forwards A’s guess as its own guess. Due to perfect simulation B wins the
UP-IND-RCCA if and only if A wins UP-REENC-RCCA.
8 Note that the UP-IND-RCCA game allows corruption of the same keys as the
UP-REENC-RCCA game, but possibly more tokens (for the deterministic re-
encryption).

(R)CCA Secure Updatable Encryption with Integrity Protection 37

In fact, even the UP-REENC security of RISE follows as above, by considering
a “trivial” decryption oracle, which “decrypts” by a table-lookpu of ciphertexts
which were previously encrypted via Enc or rotated. (Remember that RISE only
guarantees security against queried re-encryptions, not against arbitrary. Thus,
the challenge ciphertext c0, c1 are honestly generated and their plaintext is
known.)

A.3 UP-REENC-CCA from randomness-preserving reencryption

Unlike perfect re-encryption which easily implies UP-REENC-RCCA, the situ-
ation for randomness-preserving re-encryption is less convenient. Nevertheless,
we give a sufficient criterion for this implication to hold. For this we define the
following.

Definition 18. The UP-IND$-CCA security of an updatable encryption scheme
is defined exactly like the UP-IND-CCA security, except for the following: The
challenge is only a single message m∗. The challenge ciphertext c∗ is either an
encryption of m∗ or is drawn uniformly at random from C.

The security definition of strong UP-IND$-CCA is the same as for UP-IND$-CCA,
except that encryption oracle calls (and the challenge encryption) return the
(purported) encryption randomness.9 Similarly, we define strong UP-IND-CCA
security.

Evidently, UP-IND$-CCA implies UP-IND-CCA. Furthermore, the results
from Thm. 1 work without change for IND$ instead of IND. And it is easy to
see that strong UP-IND-CCA and strong UP-IND$-CCA are also implied by
Thm. 1, since the underlying encryption is assumed strongly secure anyway. The
extension of strong security to updatable schemes in done in the obvious way: All
encryptions (including the challenge encryption) leak the (purported) encryption
randomness to the adversary.

Theorem 4. Let UE be an updatable encryption scheme with deterministic reen-
cryption. Suppose that UE has randomness-preserving reencryption and simulat-
able token generation and the underlying encryption scheme SKE is tidy. Then,
under queried reencryption, UE is

– strongly UP-IND-CCA-secure if SKE is strongly IND-CCA-secure
– strongly UP-IND$-CCA-secure if SKE is strongly IND$-CCA-secure

Proof. The proof of Thm. 1 works essentially unchanged. For achieving strong
UP-IND-CCA security, note that we already took care of all the encryption
randomness in the that proof. Indeed, the embedded challenger was assumed to
be strong IND-CCA-secure. For IND$-CCA, the changes to the embedding of
the challenger are straightforward.
9 Here we assume that the encryption randomness can be chosen “independent” of a
ciphertext. This is the case in all of our schemes.

38 Michael Klooß, Anja Lehmann, and Andy Rupp

With this, we can state our theorem.

Theorem 5. Let UE be an updatable encryption scheme with deterministic
randomness-preserving reencryption. Suppose that UE is strong UP-IND$-CCA
secure (under queried reencryption). Then UE is (strong) UP-REENC-CCA se-
cure (under queried reencryption).

The reason for IND$ instead of IND is trouble with consistency of encryption
randomness. In UP-REENC-CCA games, we have two challenge ciphertexts c0, c1.
They are embedded in UP-IND$-CCA by guessing which messages m0,m1 they
encrypt (plus randomness). Here we crucially rely on the queried restriction, as
well as deterministic reencryption, to be able to guess the adversary’s ciphertexts
by guessing from which Enc(m) they originate. When embedding the CCA
challenge in these messages, we ensure consistent encryption randomness, as
we did in the proof of Thm. 1. Herein lies the reason for IND$. If we use IND-
security, we can replace challenge reencryptions c∗ of (the respective ciphertexts
of) m0 and m1 by encryptions of 0. But the encryption randomness for c∗, i.e.
r0 or r1, would still be consistent w.r.t. the challenge ciphertexts prior to the
challenge reencryption (even though the encrypted message is inconsistent). We
do not know how to finish the reduction in this case. Our solution is to rely on
IND$-security, where the ciphertext is replaced by a random ciphertext. Thus, it
bears no connection to the purported reencryption randomness.10

There are some smaller technical issues with reducing UP-REENC-CCA to
UP-IND$-CCA. For example, the initial encryptions of m0 and m1 may be in
different epochs and long before the actual challenge epoch. But the solutions to
these problems are straightforward.

Proof. We only give a proof sketch which leaves out many formal details, e.g.
tracking all (re)encryptions as done in Thm. 1. All details are straightforward to
fill in by consulting earlier proofs.

Game 1: Let B be the UP-REENC-CCA challenger, playing with A. Let
bB be B’s challenge bit. We hook an UP-IND$-CCA challenger C up to our
UP-REENC-CCA game. For now, this is only conceptual. More precisely, we make
B against an adversary against UP-IND$-CCA. In this game, we merely proxy
all requests, i.e. all oracles calls. This is perfectly “simulates” UP-REENC-CCA
for A. (The output of B does not matter at the moment, but suppose that B
forwards A’s guess as it’s own. Since B never requests a challenge from C, its
“advantage” is 0.)

Game 2: B guesses the challenge epoch e∗ and the encryption requests `0,
`1 which correspond to the ciphertexts c0, c1 which A will use as its challenge,
i.e. ci is an update of Enc(m`i

), where the messages from requested encryptions
10 Weaker security notions, e.g. a definition of “very strong” (UP)-RoR-CCA where

the challenge (c, r) either satisfies c = Enc(k,m, r) or c = Enc(k, s1, s2) for random
r, s1, s2 would suffice as well. But are even more tailored for our purpose, hence we
chose IND$ for the presentation. (This is stronger than the natural “strong” notion
of RoR-CCA. The purported encryption randomness r is now also inconsistent.)

(R)CCA Secure Updatable Encryption with Integrity Protection 39

are enumerated as m0,m1, Note that this is possible, since the adversary is
restricted to queried reencryption. We assume correct guesses in the following.

Game 3: B immediately “skips” to epoch e∗ (by calling C.Next() e∗ times).
Also, B corrupts the keys k0, . . . , ke∗−1 and tokens {∆1, . . . ,∆e∗−1} before the
challenge epoch e∗. For all epochs 0, . . . , e∗ − 1, B channels encryptions through
C (in epoch e∗) to obtain the encryption randomness, which B uses to answer
encryption requests using the corrupted key. Here, we use that B plays a strong
UP-IND$-CCA game. This works just as in Thm. 1 and exploits randomness-
preserving reencryption. For all later epochs, B does everything through C again.
This is change of behaviour of internal workings is perfectly indistinguishable.

Note that corrupting these epochs and tokens will not pose a problem, since
the UP-IND-CCA challenge will be embedded in e∗. Furthermore, since A plays
UP-REENC-CCA with deterministic reencryption, we can assume that A does
not corrupt token ∆e∗ (as this implies immediate loss of the game).

Game 4 replaces the reencryption c∗0 by randomness. Here, we finally embed
a challenge. Instead of honestly encrypting message m`0 via C.Enc(m`0), B passes
m`0 as its challenge to C. As answer, B obtains purported encryption randomness
r0 and ciphertext c∗, which B treats as c∗0 for A. From now on, B continues
honestly, i.e. it encrypts m`0 with randomness r0 in the epoch A originally
requested. Everything else works exactly as in Game 3.

If A distinguishes between Games 3 and 4, B distinguishes between the real
encryption and the random ciphertext by simply forwarding A’s guess.

Game 5 replaces the reencryption c∗1 by randomness. This is done analogous
to Game 4.

Game 6: The challenge reencryption for A is c∗b , where c∗0 , c∗1 ←R C are
drawn uniformly at random by B. Therefore, the view of A is independent of
the bit bB. Hence A has advantage 0.

Note again that, if c∗0 , c∗1 are replaced by encryptions of 0, but with consistent
randomness r0, r1, then the view of A still depends on bB. Thus, to “randomise
the randomness”, we required IND$ instead of IND. Also note that giving A the
encryption randomness for all of its encryption calls is not a problem, hence the
proof actually shows strong UP-REENC-CCA security.

Unlike the reduction for UP-IND-RCCA, Thm. 3 suffers from a significant
loss in advantage of (emax + 1)−3 due to guessing.

B Generic security proof for deterministic reencryption

In this section, we give the proofs of the generic security theorems for determin-
istic reencryption. Recall that we say a scheme is strong IND-CPA, IND-CCA,
INT-CTXT, etc., secure if it is secure under following modification: The encryp-
tion oracle Enc additionally leaks the encryption randomness to the adversary.

We start with a useful lemma.

Lemma 5. Suppose UE has deterministic randomness-preserving reencryption.
Let k0, . . . , ke be a sequence of keys and ∆i ∈ supp(GenTok(ki−1, ki)) a sequence

40 Michael Klooß, Anja Lehmann, and Andy Rupp

of update tokens connecting them. Then for any ciphertext c∗e = Enc(ke,m; r) we
have that c0 := Enc(k0,m; r) yields reencryptions consistent with c∗e in the sense
that ce = c∗e , where ci := ReEnc(∆i, ci−1)

Suppose that ∆′i are reverse tokens for ∆. Then the reverse of the above holds,
i.e. let c∗0 = Enc(k0,m, r) be arbitrary. Then we have that ce := Enc(ke,m; r)
yields reencryptions consistent with c∗e in the sense that ce = c∗e , where ci−1 :=
ReEnc(∆′i, ci)

Proof. The proof for the first statement is a simple consequence of the definition of
randomness-preserving reencryption. Namely, it guarantees that ReEnc(∆,Enc(kold,m, r)) =
Enc(knew,m, r) for any key and token choice. Thus, naturally, the claim holds
for e = 1. By induction, the claim holds for arbitrary e.

The proof of the second statement follows from the first one, because our
definition of reverse tokens requires that ∆′ is a token itsself.

Note that the second statement need not hold for relaxed definitions of reverse
token, i.e. definitions where reverse token information need not be of the form
of an actual token and an algorithm different from ReEnc is allowed as “reverse
reencryption”. This relaxation is quite natural, but fortunately, all of our examples
satisfy our stronger notion. From this lemma, we obtain a useful corollary.

Corollary 2. Suppose the UE has tidy encryption. Then a ciphertext is uniquely
determined by the message and encryption randomness. Hence in the situation
of Lemma 5, the ciphertexts ci are the unique ciphertexts which are compatible
with c∗0 (resp. c∗e). In other words, all valid ciphertext for (connected) keys are in
bijection via ReEnc.

Note that the previous lemma was concerned with ciphertexts of the form
Enc(k,m, r). But there may be more valid, i.e. decryptable ciphertexts. Tidiness
ensures that all valid ciphertexts are indeed of the form Enc(k,m, r).

B.1 UP-INT-CTXT

We begin with the simpler proof, the one for ciphertext integrity.

Theorem 6. Let UE = (Gen,GenKey,GenTok,Enc,Dec,ReEnc) be an updatable
encryption scheme with deterministic reencryption. Let us assume that UE has
randomness-preserving reencryption and simulatable token generation and the
underlying encryption scheme SKE := (Gen,GenKey,Enc,Dec) is tidy. Then UE
is UP-INT-CTXT-secure if SKE is S-INT-CTXT-secure.

Proof. Let A be an adversary against UE in the UP-INT-CTXT game which
makes at most emax calls to the Next oracle. Starting from Game 1, which
equals UP-INT-CTXT, we gradually introduce Game 3 in which A’s advantage
is reduced by a polynomial factor. Let AdvGamei

UE,A (κ) := Pr[ExpGamei

UE,A (sec) = 1]
denote the advantage of A in Game i. Then, we have

AdvGame3
UE,A (κ) ≥ 1

(emax + 1)2 AdvGame1
UE,A (κ) (3)

(R)CCA Secure Updatable Encryption with Integrity Protection 41

Finally, we show that an adversary A in Game 3 can be turned directly into an
S-INT-CTXT adversary B against the underlying encryption scheme SKE such
that

AdvGame3
UE,A (κ) = Advs-int-ctxt

SKE,B (κ) (4)

Game 1: This is the standard UP-INT-CTXT game for UE (with reencrytion
for queried ciphertexts only).

Game 2: This game equals Game 1, except that we try to guess the region
of epochs {`, . . . , r} for which the following properties are satisfied:

– the challenge epoch e∗ in which A outputs its forgery c∗ is contained in
{`, . . . , r}.

– A does not corrupt any of the keys k`, . . . , kr.
– A corrupts the tokens ∆`+1, . . . ,∆r.
– A corrupts neither ∆` nor ∆r+1.

Note that such a region exists in any execution of Game 1 in which A does not
(trivially) lose due to trivial win conditions being true. We guess this region by
simply drawing `←R {0, . . . , emax} and r ←R {`, . . . , emax} uniformly at random.
Thus, this guess is correct with probability at least 1

(emax+1)2 . (If the guess turns
out to be wrong, we abort.)

Game 3: This game implements the key insulation technique described in
Sec. 3.2 (Thm. 1 and Figs. 7 and 8) and is perfectly indistinguishable from Game
2 assuming UE has randomness-preserving reencryption and simulatable token
generation and SKE is tidy. In summary, in this game we apply the following
modifications:

– The challenger does
• not generate keys k`+1, . . . , kr,
• not generate tokens ∆` and ∆r+1,
• generate tokens ∆`+1, . . . ,∆r along with reverse tokens ∆′`+1, . . . ,∆

′
r

using SimTok.
– An Enc(m) call in epoch
• ` < ecur ≤ r is handled by first computing c` ←R UE.Enc(k`,m) and then

cecur via cj ← UE.ReEnc(∆j , cj−1) for `+ 1 ≤ j ≤ ecur.
• 0 ≤ ecur < ` is handled by first computing (c`, r)←R UE.Enc(k`,m) and

then cecur ← UE.Enc(kecur ,m; r).
– A Dec(c) call in epoch ` < ecur ≤ r is handled by first computing c` via

cj−1 ← UE.ReEnc(∆′j , cj) for ecur ≥ j > ` and then m ← UE.Dec(k`, c`).
– A ReEnc(ci, i) call in epoch ecur > i is handled by computing a series of

ciphertexts cj for i < j ≤ ecur, where
• cj ← UE.ReEnc(∆j , cj−1) for j 6= `, r + 1 (as usual).
• c` is computed by looking up the message-randomness pair (m, r) cor-
responding to ci and then set to the ciphertext for (m, r) under key k`
which has been automatically created when calling Enc(m) in some epoch
i′ ≤ i ≤ ` (cf. modification to Enc). Since ReEnc only accepts queried
ciphertexts, the lookup of (m, r) succeeds.

42 Michael Klooß, Anja Lehmann, and Andy Rupp

• cr+1 is computed by looking up the message-randomness pair (m, r)
corresponding to ci (possible since queried before) and then computing
cecur ← UE.Enc(kr+1,m; r).

To convince ourselves that all the changes described above cannot be noticed
by A, we may consider the following sequence of games.

Game 3.1: In contrast to Game 2, we simply generate all keys k0, . . . , kemax us-
ing UE.GenKey(sp) and all tokens∆1, . . . ,∆emax , where∆i+1 ←R UE.GenTok(ki, ki+1),
at the beginning of the game. Clearly, this is only a conceptual change.

Game 3.2: In this game we get rid of the keys in region {`, . . . , r} while
still ensuring that encryption, decryption, and reencryption in the region works
perfectly fine.

More precisely, we generate k0, . . . , k` and kr+1, . . . , kemax as in the previous
game, but we omit generating k`+1, . . . , kr. Consequently, we also need to generate
∆i for ` + 1 ≤ i ≤ r differently, as we are missing the corresponding keys. To
this end, we make use of UE’s simulatable token generation property which
allows to sample tokens without knowing the corresponding keys. So we run
(∆i, ∆

′
i)←R SimTok(sp) for `+ 1 ≤ i ≤ r. Note that this property also ensures

that ∆i in this and the previous game are identically distributed. So a ciphertext
updated with one of these tokens will look the same in both games. (We do
not need this property for the reverse tokens ∆′i as ciphertexts resulting from
applying a reverse token will not be handed to the adversary.)

As another consequence of not knowing the keys k`+1, . . . , kr anymore, we
need to redefine how encryption and decryption under these key should work
now. For this, we simply do encryptions (resp. decryptions) only under key k`
and update to (resp. from) epoch ecur ∈ {`+ 1, . . . , r} using the corresponding
(reverse) tokens. More precisely, we do the following:

– Upon an Enc(m) call in epoch ` + 1 ≤ ecur ≤ r, we first compute c` ←R

UE.Enc(k`,m; r) (for random r). Then compute ci ← ReEnc(∆i, ci−1) for
`+ 1 ≤ i ≤ ecur and return cecur .

– Upon an Dec(cecur) call in epoch `+ 1 ≤ ecur ≤ r, we first compute ci−1 ←
ReEnc(∆′i, ci) for ecur ≥ i ≥ ` + 1. Then we call UE.Dec(k`, c`) and return
whatever Dec returns.

Due to randomness-preserving reencryption, Enc is identical to Enc in the previous
game.11 Since the reverse tokens generated by SimTok guarantee that the messages
contained in the ciphertexts they are applied to stay the same, Dec is identical
to Enc in the previous game. Note that encryption and decryption for epochs in
{`, . . . , r} are now done in a “centralised” way using k`. As also the challenge
key only exists implicitly now, we need to redefine when the ciphertext that A
outputs decrypts correctly under this key. Consequently, we say that it decrypts
correctly when the updated ciphertext in epoch ` decrypts correctly. By Cor. 2
this is equivalent to the game before.
11 Note again that choosing encryption randomness indepent from keys is an integral

part of the definition of randomness-preserving reencryption.

(R)CCA Secure Updatable Encryption with Integrity Protection 43

Game 3.3: In this game, we only add some bookkeeping done by the challenger.
We maintain a list L with all trivial knowledge about ciphertexts the challenger
generates.

– For every execution of c ←R UE.Enc(kecur ,m; r) (as part of an Enc or ReEnc
call), we add ((c, ecur),m, r) to L.

– For every execution of c′ ← UE.ReEnc(∆i, c) (as part of an Enc or ReEnc call),
we look up ((c′, i− 1),m, r) ∈ L and add ((c′, i),m, r) to L. Note that since
reencryption is randomness-preserving, it holds that c′ = UE.Enc(ki,m; r).

Game 3.4: In this game, we change the way how encryption calls for epochs
“left” to our region {`, . . . , r} are handled (in order to realize reencryptions into
this region when the “entry” token ∆` to the region is missing later on). When
receiving an Enc(m) call in epoch ecur < `, we run c′ ←R UE.Enc(k`,m) also
yielding encryption randomness r. Then we use r to encrypt m under key kecur ,
i.e. we run c ← UE.Enc(kecur ,m; r) and return the resulting ciphertext c to the
adversary. Note that this also results in two entries being added to list L. Due
to randomness-preserving reencryption, Game 3.4 and Game 3.3 are perfectly
indistinguishable.

Game 3.5: In this game, we get rid of the token ∆` and, consequently, need
to change the way ReEnc calls are handled. In the previous game, a ReEnc(c, i)
call in epoch ecur (for e > i) was handled by a series of cj ← UE.ReEnc(∆j , cj−1)
computations for i ≤ j ≤ ecur. Since ∆` is missing now, we need to compute
c` differently: We simply lookup the entry ((c`−1, ` − 1),m, r) in L. Since we
have a bijection between ciphertexts and message-randomness pairs, there is
only one entry containing c`−1. Then we look up the entry containing `,m, r
yielding some ciphertext c′. This entry exists due to the change we made in the
previous game. We set c` := c′ and go on as usual in a reencryption call. Perfect
indistinguishability follows from randomness-preserving reencryption.

Game 3.6: In this game, we additionally get rid of the token∆r+1. To this end,
we again slightly change the way ReEnc calls are handled. Similar to the previous
game, we only need to replace the UE.ReEnc computation involving ∆r+1: We
simply lookup the entry ((cr, r),m, r) in L and set cr+1 ← UE.Enc(kr+1,m; r).
Perfect indistinguishability follows from randomness-preserving reencryption.

INT-CTXT Adversary B: B embeds the (secret) challenge key k∗ of SKE
as key k` in Game 3 he simulates for adversary A. Note that in this game, due
to the key-insulation technique, k` is only needed in the scope of decryption and
encryption operations (and not for generating tokens). Moreover, when encrypting
with this key, also the used encryption randomness is required. However, all this
can be realized using the decryption and encryption oracle of the S-INT-CTXT
game which B is playing. Thus, Game 3 can be perfectly simulated by B. The
forgery A finally outputs will be a ciphertext c∗ecur

under a (unknown) key kecur

in the epoch region {`, . . . , r} (assuming our guess was correct). This ciphertext
is then updated by B to a ciphertext c∗` under key k` using the corresponding
reverse tokens. Assuming (ecur, c∗ecur

) 6∈ Q then we also have that (`, c∗`) 6∈ Q
because re-encryption (of valid ciphertext) us a bijection (due to tidiness and
randomness-preserving re-encryption, c.f. Cor. 2). If A’s forgery is valid then

44 Michael Klooß, Anja Lehmann, and Andy Rupp

also B’s forgery, as the former already requires that c∗ecur
updated to k` decrypts

correctly. Since message-randomness pairs and ciphertexts are in bijection, the
forgery remains a fresh ciphertext after rotation to k`, see Cor. 2.

B.2 UP-IND-CCA Security.

Using the key insulation technique repeatedly, we prove the following result for
UP-IND-CCA security.

Theorem 7. Let UE be an updatable encryption scheme with deterministic re-
encryption. Suppose that UE has randomness-preserving re-encryption and simu-
latable token generation and the underlying encryption scheme SKE is tidy. Then
UE is UP-IND-CCA-secure if SKE is S-IND-CCA-secure.

k0 . . . k`−1 k`
. . . kj . . . kr kr+1 . . . kemax

Enc(k`,m∗b ; r) or Enc(k`,m∗0 ; r) Enc(kr+1,m∗0 ; r)

Fig. 9. A sketch of the indistinguishability argument for hybrid games H`−1 and H`: The
S-IND-CCA challenge is embedded in epoch `. Reencryptions of ciphertexts in epoch r
with isChallenge = 1 are replaced by encryptions of m∗0 . If a challenge reencryption in
epoch `− 1 is replaced by an encryption of m∗0 then we are in Game H`−1. Otherwise,
the game is identical to Game H`.

The techniques behind the proof are quite similar to the UP-INT-CTXT proof.
The proof proceeds in two steps. In the first step, all reencryptions of the challenge
ciphertext are replaced by encryptions of the fixed challenge message m∗0 (instead
of m∗b). This is done using a sequence of hybrid games H` for ` = emax, . . . , 0,
where in H` we essentially want to replace challenge reencryptions to epoch j > `.
However, due to deterministic re-encryption, doing this in a straightforward
way does not work: Assume the adversary corrupted the token ∆`, then it can
trivially spot the inconsistency between the games H`−1 and H` by comparing its
own re-encryption result ReEnc(∆`, c`−1) with the output of the re-encryption
oracle call ReEnc(c`−1, ` − 1) in epoch `. Therefore, in H` we guess the first
token ∆r+1 where r + 1 > `, which A does not corrupt, and replace challenge
reencryptions from epoch r to r + 1 with encryptions of m∗0 . Note that this
modification is sufficient to replace challenge reencryptions from an arbitrary
epoch i ≤ r to an arbitrary epoch j > r as we can use all other tokens ∆t,
t 6= r + 1, as usual for this purpose. All indistinguishability reductions make use
of key insulation and a direct embedding of an S-IND-CCA challenge. Fig. 9
illustrates the indistinguishability argument for hybrids H`−1 and H`. In the

(R)CCA Secure Updatable Encryption with Integrity Protection 45

actual proof, we have to take care of some special cases, e.g., the hybrids H`−1
and H` can be equal sometimes.

In a second step, the challenge encryption is finally replaced by an encryption
of m∗0 . Thus no information about the challenge bit b remains. This can again be
done using our key insulation technique.

In more detail, the full proof is as follows:

Proof. We proceed in Games. We assume that adversaryA against UP-IND-CCA
requests at most emax keys (via Next).

Game 0 is the standard UP-IND-CCA game for deterministic re-encryption
with the queried restriction for ciphertexts. Let bB ∈ {0, 1} be the challenge bit.

Game 1. Let B be the challenger. B replaces almost all reencryptions of
challenge ciphertexts, by (re-)encryptions of m∗0 (with consistent randomness).
More precisely, B picks r ←R {0, . . . , emax} and hopes that r has the property:

– A corrupts all tokens ∆j for j = e∗ + 1, . . . r.
– A does not corrupt ∆r+1 (or it does not exist, in case of ∆emax+1).

where e∗ is the challenge epoch and c∗e∗ ← Enc(ke∗ ,m∗bB ; r∗) the challenge cipher-
text. For reencryptions, B acts honestly, i.e. uses c∗j ← ReEnc(∆j , c∗j−1) except
for j = r + 1. In that case, B sets c∗r+1 = Enc(kr+1,m∗0 ; r∗). Since ∆r+1 is not
corrupted, we can redefine isChallenge in a “consistently inconsistent” manner
too. Concretely, we split isChallenge in two parts. For epochs 0, . . . , r, isChallenge
is computed with c∗e∗ (and K≤r, T≤r). For epochs r + 1, . . . , emax, isChallenge is
computed with (the inconsistent) c∗r+1 (and K≥r+1, T≥r+1).

Indistinguishability of Game 0 and Game 1 is seen via a series of hybrid
games H` defined as follows (where B plays challenger): B first picks r ←R

{`, . . . , emax} and hopes that r has the property that A corrupts all tokens ∆j

for j = i + 1, . . . , emax, but does not corrupt ∆r+1 (or it does not exist). If
B’s guess turns out wrong, it aborts. Furthermore, B changes how (internally)
reencryption steps are handled:

– If j 6= r or isChallenge(c, j) = 0 nothing changes, i.e. ReEnc(∆j , c) is used.
– For j = r and isChallenge(cr, r) = 1, we reencrypt via (m∗, r∗)← RDec(kr, c),

and c∗r+1 = Enc(kr+1,m; r∗). More precisely, we use bookkeeping instead of
RDec, as in Thm. 6, Game 3, and look (m∗, r∗) up in L.

In other words, reencryptions of challenge ciphertexts from r to r + 1 are always
replaced by encryptions of m∗0 (with consistent randomness). Note again that
isChallenge is adapted accordingly.

Note that Game Hemax+1 is Game 0. Game H−1 (already He∗) is Game 1.
The indistinguishability of H`−1 and H` uses key-insulation to construct an
S-IND-CCA adversary from A. It is detailed in Lemma 6.

Game 2 replaces the challenge encryption by an encryption of m∗0 . Indis-
tinguishability from Game 1 is again shown via a reduction to an S-IND-CCA
adversary using key-insulation, very similar to the hybrids. Thus, prove security
by reduction to S-IND-CCA with a loss of 1

(emax+1)2 . One factor of 1
emax+1 is

46 Michael Klooß, Anja Lehmann, and Andy Rupp

incurred by carrying out the hybrid argument, and another one by the hybrid
indistinguishability itsself.

Lemma 6. Games H`−1 and H` in Thm. 7 are indistinguishable. Concretely, if
A has advantage ε for breaking UP-IND-CCA, we obtain an adversary B with
advantage ε

emax+1 against S-IND-CCA.

Proof. The proof is a straightforward application of key-insulation (Game 3 in
Thm. 6). Suppose A distinguishes hybrid games Game H`−1 and Game H` (for
some 0 ≤ ` ≤ emax + 1). We construct an adversary B against S-IND-CCA as
follows. B guesses r ←R {`, . . . , emax} with the property that A corrupts tokens
∆`+1, . . . ,∆r, but does not corrupt ∆r+1. If the guess is wrong, B aborts. In the
following, we assume correct guesses. We distinguish several cases.

Case 1. A corrupts ∆`. Then Game H`−1 and Game H` are identical.
Case 2. A corrupts a key in the range {`, . . . , r}. Then A must not request a

reencryption of a challenge ciphertext into epochs {`, . . . , r}. If it does, the
game is aborted (and A loses). Again, Game H`−1 and H` behave identical.

Case 3. A corrupts neither ∆` nor any key in the range {`, . . . , r}.

Cases 1 and 2 are trivial in the sense that A cannot win, so B just returns
bB ←R {0, 1}. Thus we concentrate on case 3. In case 3, Game H`−1 replaces
reencryptions of challenge ciphertexts by encryptions of m0 for any epoch e ≥ `.
Thus, the only difference w.r.t. Game H` are reencryptions of challenge ciphertexts
into the region {`, . . . , r}, which are honest in Game H`, but not in Game H`−1.

We use key-insulation on the region {`, . . . , r} and modify B accordingly.
Then we embed the strong IND-CCA challenger C into epoch ` in the insulated
region. Note that by key-insulation, as in Thm. 6, we run all encryption queries
for ecur < ` through C to obtain suitable encryption randomness. Suppose A

sends (m∗0 ,m∗1) as challenge messages. Then B passes (m∗bB ,m
∗
0) as his challenge

message to strong IND-CCA challenger C. Let (c∗` , r∗) be C’s answer. The
challenge ciphertext for A is computed as c∗ ← Enc(kecur ,m∗bB ; r∗). In the rest of
the game, B proceeds as before except for the following:

– Treat c∗` as the challenge reencryption in epoch `. That is, reencryption from
epoch `− 1 to ` for c with isChallenge(c, `− 1) = 1 outputs c∗` . This embeds
the challenge from C.

– For challenge reencryption from r to r + 1, c∗r+1 ← Enc(kr+1,m∗0 ; r∗) is used.
– Split isChallenge(c, j) into three parts for j < i, i ≤ j ≤ r, r < j.

Note that due to deterministic randomness-preserving reencryption, this all fits
together. Close inspection shows the following: If bC = 0, i.e. C encrypts m∗bB ,
then the game is identical to Game H`. If bC = 1, i.e. C encrypts m∗0 , then the
game is identical to Game H`−1. Consequently, B has advantage 1

emax+1ε against
S-IND-CCA.

(R)CCA Secure Updatable Encryption with Integrity Protection 47

C Generalising Simulatable Token Generation

Here we sketch how token simulation for a large class of schemes can be defined.
We consider updatable keyed schemes UKS, i.e. schemes which have a secret
key k. Moreover, we consider (key-)leakage leak : K → L for UKS. Lastly, for a
definition of simulatable token generation in our setting, we need the existence
of reverse tokens. First, we give the definition of reverse tokens in general.

Definition 19. Let UKS be an updatable keyed scheme. We call a token ∆′

a reverse token of a token ∆ if for any pair of keys kold, knew ∈ K with
∆ ∈ supp(GenTok(kold, knew)) we have ∆′ ∈ supp(GenTok(knew, kold)).

Caution. Def. 19 for reverse token needs perfect correctness of UKS to be sensible.
It can be relaxed in the obvious way, by using “correctness of re-operation” for
∆′ instead of ∆′ ∈ supp(GenTok(knew, kold)).

With this, we can state token simulation in general. We add (key-)leakage since
it is necessary to treat schemes such as RISE, NYUE and NYUAE, which “leak”
information related to the secret key. Namely, ∆ explicitly contains leak(knew) =
pknew as information. Token simulation must ensure that this “key-leakage” is
correctly simulated. This is impossible without knowledge of leak(kold).

Definition 20. Let UKS be some updatable keyed scheme, i.e. a cryptographic
scheme which provides GenKey and GenTok functionality. For example updatable
encryption UE, updatable PRF PRF or updatable signatures USIG. We say that
UKS has simulatable token generation under (key-)leakage leak : K → L if it
has following property:
There is an algorithm SimTok(sp, leak(kold)) which samples a triple (∆,∆′, lk)
of token, reverse token and key leak. Furthermore, for arbitrary (fixed) kold ←
GenKey(sp) following distributions of ∆ are identical: The distribution of (∆, lknew)

– induced by (∆,_, lknew)←R SimTok(sp, leak(kold)).
– induced by ∆←R GenTok(kold, knew) and lknew = leak(knew), where knew ←R

GenKey(sp).

In other words, honest token generation and token simulation are perfectly indis-
tinguishable, and key leakage can also be simulated.

D Groth–Sahai proofs: Brief overview

In this section, we give a brief overview of Groth–Sahai proofs and OR-compilation.
While our constructions do not necessarily rely on Groth–Sahai proofs, they need
randomisability and (linear) malleability of proofs. And Groth–Sahai proofs are
a prime example of such a proof system. Our presentation of Groth–Sahai proofs
(and their linear malleability), follows the presentation in [Hof16]. It is informal
and meant to highlight key ideas and techniques. For formal definitions and

48 Michael Klooß, Anja Lehmann, and Andy Rupp

justifications, we refer to [GS12; EG14; Bel+09; Fuc11; Cha+12] in the relevant
places.

Let (e,G1,G2,GT) be a pairing group. Groth–Sahai proofs are typed commit-
and-prove systems [EG14] for quadratic equations. That is, one commits to a
witness, i.e. an assignment of variables, and then proves that the committed
witness is solution for the given (system of) quadratic equations.

Definition 21 (GS proofs[GS12; EG14]). The Groth–Sahai proof system
consists of the following algorithms:

Common reference string: crs ←R GS.SetupH(gp) (resp. crs ←R GS.SetupB(gp))
generates a suitable hiding (resp. binding) CRS. The CRS crs is an implicit
input for all following algorithms.

Commitments. c ← Comt(x; r) commits to a variable of type t. The type t
decides for example, if x is in G1 or G2 (or a scalar in Fp), c.f. [EG14].
If crs is hiding (resp. binding) the commitments are perfectly hiding (resp.
perfectly binding).

Proofs: Let E be an equation which may involve variables and constants over G1,
G2, and Fp. Let (wi)i be a solution to E, i.e. a suitable variable assignment
with variable wi of type ti. Let (ri)i be commitment randomness for wi,
and let (Ci)i = (Comti

(wi; ri))i be the set of commitments. Then π ←R

Prove(E, (wi)i, (ri)i) produces a proof.
Verification: Given an equation E, commitments (Ci)i, and a proof π, Verify(E, (Ci)i, π)

either accepts or rejects.
Systems of equations: To prove conjunctions, i.e. systems of equations (Ej)j,

it suffices to prove/verify each Ej for the same committed solution (Ci)i.

Note that π is usually called “the proof” and the commitments are implicit.
Groth–Sahai proofs prove satisfiability of sets of (linear and) quadratic (pair-

ing) equations, e.g. equations of the form12∑
i,j

Γi,je([xi]1, [yj]2) +
∑
i

e([xi]1, [bi]2) +
∑
j

e([aj]1, [yj]2) = [t]T , (5)

where Γi,j ∈ Fp, [xi]1, [aj]1 ∈ G1, [bi]2, [yj]2 ∈ G2 and [t]T ∈ GT . The statement
(i.e. the equation) is given by Γi,j , [aj]1 and [bi]2. The witness (i.e. solution) is
given by [xi]1, [yj]2. More generally, the pairing e in Eq. (5) can be replaced by
other bilinear maps between Fp, G1, G2, e.g. scalar multiplication in G1, that
is G1 × Fp → G1, ([x]1, y) 7→ [x]1y = [xy]1. This yields quadratic equations of
different types. For more details, see App. F and [GS12; EG14].

Theorem 8 (Properties of GS proofs[GS12]). The Groth–Sahai proof sys-
tem has following properties.

Perfect completeness: For any crs, any solution (wi)i of equation E, and any
commitment randomness (ri)i, Prove yields an accepting proof.

12 Considering only the dlog’s in Eq. (5), we get
∑

i,j
Γi,jxiyj +

∑
i
xibi +

∑
j
aj , yj = t,

which is evidently a general quadratic equation. Hence the name.

(R)CCA Secure Updatable Encryption with Integrity Protection 49

Perfect soundness. Given a binding CRS, GS proofs are perfectly sound. (I.e.
if the contents of (ci)i do not satisfy E, there is no accepting proof.)

Extraction. A binding CRS can be generated together with trapdoor information
td, so that commitments to group elements are perfectly extractable.

Perfect simulation. A hiding CRS crs can be generated together with trap-
door information td, which allows to perfectly simulate certain equations, c.f.
App. F and [EG14] for details. Moreover, ((Com(wi, ri))i,Prove(E, (wi)i, (ri)i))
and ((Com(0, ri))i,SimProve(td,E, 0, (ri)i)) are identically distributed.

Homomorphic rerandomisable commitments. The commitment schemes
are (additively) homomorphic, i.e. Com(a; r) + Com(b; s) = Com(a+ b; r+ s).
Moreover, they are perfectly rerandomisable.

Rerandomisation. Groth–Sahai proofs are perfectly rerandomisable. More con-
cretely, given commitments (Ci)i and proofs πj, it is possible to perfectly
rerandomise commitments and proofs, i.e. the rerandomised commitments
and proofs are distributed exactly as a new proof (with the same witness).

Linear malleability. Given proofs for a system of equations, one can compute
proofs for linear combinations of these equations. More concretely: Adding
two equations together as well as multiplying an equation by a scalar and
computing an adapted proof is always possible. Combining this with the
homomorphism of commitments, one can manipulate statements, witnesses
and proofs to obtain proofs for (linearly) related statements (even without
knowing a witness).

The extractability of GS proofs is so useful and wide-spread, that it spawned
the property of so-called structure-preserving cryptographic schemes. Rerandomis-
ability of GS proofs is another widely used feature, typically applied to obtain
unlinkability, e.g. in electronic voting. Rerandomisable proofs were formalised
in [Bel+09]. Linear malleability of GS proofs is also well-known. We refer to
[Fuc11, Section 5] especially [Fuc11, Lemma 3] for a quick reference, and [Cha+12,
Appendix A] for a detailed, but technical, reference.

D.1 OR-compilation for quadratic equations

We first describe the folklore OR-compilation (e.g. [Gro06]) without reference to
GS proofs. The OR-compilation technique for sets of equations E0, E1 is simple:
Enumerate all constants and variables, call them x1, . . . , xn. Let x1, . . . , xk be
the constants. Add a bit b to the variables, say xn+1. Duplicate all variables xi as
xi,0 and xi,1 and define the set of equations E′OR = {bxi,1 = bxi} ∪ {(1− b)xi,0 =
(1− b)xi} ∪ {b(1− b) = 0}. Let E′b be Eb, but with xi replaced by xi,b. Define the
set of equations OR(E0,E1) as the union E′0 ∪ E′1 ∪ E′OR.

Given a solution (xi)i to Eb, one does the following: (Set xn+1 = b.) Set
xi,b = xi and xi,1−b = 0. This is a witness for OR(E1,E2),

The idea is simple: Depending on b, we copy the statement (i.e. constants)
and witness xi for Eb into xi,b, and set the unsatisfied statement (and witness)
to 0 (hence the equalities trivially hold). It is easy to reconstruct a witness (xi)i
from a witness for OR(E0,E1).

50 Michael Klooß, Anja Lehmann, and Andy Rupp

Application to Groth–Sahai proofs. We use the typed commit-and-prove
point of view from [EG14]. Our constant/variable types and equation types are
as in [EG14] with the notational difference that we use G1 and G2 instead of Ĝ
and Ȟ, e.g. we write com1 instead of comĜ.

To apply the above technique to Groth–Sahai proofs with asymmetric pairings,
one has to distinguish the left and right operands of pairings, exponentiations and
multiplications, even for scalars, since they use different commitment schemes.
The necessary translations for scalars are straigtforward. E.g. to prove that b is a
bit, i.e. b(1− b) = 0, one needs to: First decide on a type, say b has type sca1 (i.e.
a “left operand”). Now b · b is invalid, since b is not allowed to be a right operand
of a multiplication. So define b′ of type sca1 and prove that b · 1′ − 1 · b′ = 0 and
b · b′ − 1 · b′ = 0. Here, 1 (resp. 1′) has type unit1 (resp. unit2).

Optimisations and malleability There are some trivial optimisations to the
OR-compilation.

– Logical equivalence: Using logic to simplify the OR-statement prior to (or
after) compilation. Malleability of the equivalent sets of equations may differ.

– No “over-allocation”: Unused variables (or constants) need not be copied.
This preserves malleability.

– Zero-knowledge simulation: Equations where Groth–Sahai proofs are zero-
knowledge have a special structure, see for example [EG14]. Roughly, when
replacing constants of type unit1, unit2, base1 and base2 and all (equivoca-
ble) variables, i.e. types com1, com2, sca1, sca2, by 0, the quadratic equation
must be satisfied. This means that replacing unit1, unit2 and base1, base2
(i.e. 1, 1′, [1]1, [1′]2) by b resp. 1− b (in the correct type) ensures that one
of the two equations can be simulated. This affects malleability, because it
replaces constants by variables.

Also see [Cha+12, Appendix B] for an OR-compilation with a slightly different
(better) technique.

Let us briefly sketch why the naive OR-compilation preserves malleability:
Mauling a copied variable (by addition/scalar multiplication) is straightforward.
Maul the original and both copies. For example x1b

′ − x1,1b
′ = 0 or equivalently

(x1 − x1,1)b′ = 0 can trivially be mauled to (αx1 − αx1,1)b′ = 0 by using the
linearity of GS commitments. Similarly, one can use linearity to add z to x1 in the
OR-statement: ((x1 + z)− (x1,1 + z))b′ = (x1 − x1,1)b′ = 0, hence replacing the
commitment to x1 by a mauled commitment to x1 + z works (if the commitment
to x1,1 is also replaced by (x1,1 + z)). Obviously, the same has to be done for
x1,0.

A bit more concretely, given commitments cb′ = Comsca1(b′), cx = Comcom1(x),
cx0 = Comcom1(x0), cz = Comcom1(z), we let cx+z := cx + cz = Com(x + z) and
cx0+z := cx0 + cz (with suitable, but unknown randomness). Then

ẽ(cx, cb′)− ẽ(cx0 , cb′) = ẽ(cx+cz, cb′)− ẽ(cx0 +cz, cb′) = ẽ(cx+z, cb′)− ẽ(cx0+z, cb′)

(R)CCA Secure Updatable Encryption with Integrity Protection 51

and thus the same GS proof works for this mauled “copy-equation”. Here ẽ denotes
the pairing defined on the commitments, not the “base pairing” e : G1×G2 → GT .

This is a sketchy, high-level demonstration that OR-compilation preserves
malleability. A detailed, formal explanation can be found in [Cha+12].

E Key-rotatable structure preserving signatures

Here, we define properties such as structure preserving and key-rotation for sig-
natures. Then, we present concrete (one-time and zero-time) structure preserving
signatures, which allow key-rotation and have simulatable token generation.

E.1 Key-rotatable structure preserving signatures

In this section, we define signatures and EUF-CMA security as usual. Except
perhaps, that we add system parameters, as for all of our schemes.

Definition 22. A signature scheme SIG consists of following algorithms:

SIG.GenSP(pp): returns system parameter sp which are implicit input for follow-
ing algorithms.

SIG.GenKey(sp): returns a secret key sk and verification key vk.
SIG.Sign(sk,m): returns a signature σ of message m with secret key sk.
SIG.Verify(vk,m, σ): either accepts or rejects signature σ for message m under vk.

Definition 23. A signature scheme SIG is unbounded resp. m-time EUF-CMA
secure if any PPT adversary has negligible advantage in the EUF-CMA game in
Fig. 10 (given unbounded resp. m signing oracle queries).

To put this into perspective with “leakage”, one may say that SIG is secure under
leakage leak(k) = vk.

Experiment Expeuf-cma
SKE,A (κ)

M = ∅; sp ← GenSP(pp); (sk, vk)← GenKey(sp);
σ ← ASign(pp, sp, vk);
return m 6∈M and Verify(vk,m, σ) = 1

Fig. 10. The EUF-CMA game. Sign(m) returns Sign(sk,m) and adds m to M.

Structure-preserving signatures. Signature schemes which are compatible
with Groth–Sahai proofs in the sense that a valid signature-message pair can be
extracted from a Groth–Sahai proof of signature verification are called structure
preserving.

52 Michael Klooß, Anja Lehmann, and Andy Rupp

Definition 24 (See [Abe+10]). A signature scheme is structure-preserving
(or short a SPS) if messages, the verification key and the signature are group ele-
ments in G1 or G2, and if the verification equation is a pairing product equation.
(See App. D for pairing product equations.)

In our case, a slightly weaker definition of “structure preserving”, namely only
message and signatures have to be group elements, would suffice. The verification
key and equation types are irrelevant, since we only need to extract a valid
signature under a known verification key from a valid proof.

Key-rotatable signatures. The definition of key-rotatable signatures is straight-
forward. Given an update token, one can rotate a signature from one verification
key to another. In line with other security definitions under leakage, we may con-
sider the “leakage” of a secret key to be respective (public) verification key. Thus,
simulatable token generation is defined as usual for key-rotatable signatures.

Definition 25. A (key-rotatable or) updatable signature scheme USIG con-
sists of (GenSP,GenKey,Sign,Verify,GenTok,ReSig) such that

– (GenSP,GenKey,Sign,Verify) is the underlying signature scheme.
– GenTok(sp, kold, knew) returns an update token ∆.
– ReSig(∆,σold) returns the updated signature σnew.

All algorithms (except GenSP) receive sp and pp as implicit inputs.
For correctness, we require the correctness of the underlying signature scheme

as well as: For all sp ← GenSP(pp), kold = (skold, vkold)← GenKey(sp), knew =
(sknew, vknew) ← GenKey(sp), ∆ ← GenTok(skold, sknew) and for all purported
signatures σ, we have

Verify(vknew,ReSig(∆,σ)) = Verify(vkold, σ)

We call USIG (m-time) EUF-CMA secure, if its underlying signature is (m-
time) EUF-CMA secure.

Just like for key-rotatable PRFs, we do not define security games for key-
rotatable signatures. Simulatable token generation for the signature allows to
reduce directly to the security of the underlying signature scheme. The definition
of simulatable token generation (for signatures) is the general one, i.e. the one
given in App. C.

E.2 A key-rotatable one-time signature

In this section, we recall the one-time structure preserving signature of interest
from [KPW15]. Our definition differs slightly from [KPW15] since we need to fix
a part of the verification key as a system parameter in order to have simulatable
token generation. The security proof of [KPW15, Theorem 1] still works without
change.

(R)CCA Secure Updatable Encryption with Integrity Protection 53

Definition 26 ([KPW15, Fig. 2 with k = 1]). Define the one-time SPS
OTS for messages in Gn1 as follows:

– OTS.GenSP(pp): returns sp = [A]2, where A =
(

1
r

)
for r ← Fp.

– OTS.GenKey(sp) computes (sk, vk) as follows:
• sk = K← F(n+1)×1

p ,
• vk = [C]2 where [C]2 = [KA]2 = K[A]2.

– OTS.Sign(sk, [m]1) = [(1,m)K]1 ∈ G1×2
1 where m ∈ Fn.

– OTS.Verify(vk, [m]1, σ) checks if e(σ, [A]2)− e([1,m]1, [C]2) = 0.

Note that signing is deterministic. For key-rotation, we define

– OTS.GenTok(kold, knew): for skold = Kold, sknew = Knew return ∆ = Knew−
Kold

– OTS.ReSig(∆,σold): returns σnew as σnew = σold + [(1,m)∆]1 ∈ G1×2
1 .

For use as the signature scheme SIG in NYUE, one needs n = 2. For OTS in
NYUAE n = 1 is sufficient. Key-rotation is only necessary for OTS.

Remark 1. The one-time signature OTS from Def. 26 satisfies simulatable token
generation under “leakage” of the verification key leak(sk) = vk = [C]2. This is
straightforward to see: Namely the relation between vkold and vknew is [Cnew] =
∆[A]−[Cold]. Hence, given∆ and one verification key the unique other verification
key can be efficiently computed. Also, invert(∆) = −∆ yields a reverse token.
Moreover, given any two entries of (sk1, ∆, sk2), there is an (efficiently computable)
unique third. With this, it’s easily checked that token generation is simulatable
under “leakage” of leak(sk) = vk.

Lemma 7. The one-time SPS OTS in Def. 26 is EUF-CMA secure under SXDH
in (G1,G2,GT , e).

Proof. Theorem 1 of [KPW15] easily extends to the setting where [A]2 is used
as a system parameter. Indeed, the proof embeds a “Dk-KerMDH” challenge in
[A]2 (and a purported signature), and works essentially without change. The
“Dk-KerMDH” assumption is implied by SXDH, c.f. [MRV16].

Key-rotation. We now take a closer look at the ReSig algorithm and verification
equation. The former is affine, the latter is linear. All in all, we can use linear
malleability of GS proofs to adapt the proof of knowledge of a signature.

In the proof π (c.f. Def. 16) for statement SNY+I, we have commitments to
[m̂]1 and [σ̂old]1 ∈ G2

1. We need a rotated committed signature [σ̂new]1 ∈ G2
1.

Let [M̂] :=
[

1
m̂

]
and note that it is unaffected by key-rotation, which must

preserve the signed message. The relevant equations (in dlogs) are

σ̂oldA− M̂Cold = 0 (6)

σ̂new = σ̂old + M̂∆ (7)

54 Michael Klooß, Anja Lehmann, and Andy Rupp

The update token ∆ is by definition K2−K1. Note that in Eq. (7), a commitment
to σ̂new can be computed from the commitments to σ̂old, M̂ , since Groth–Sahai
commitments are linearly homomorphic. Consequently, given a proof π for Eq. (6),
and the update token ∆, we find a proof for Eq. (7). Using ∆A = Cnew −Cold

in Eq. (7), yields

0 = σ̂oldA− M̂Cold

= (σ̂old + M̂∆)A− M̂(Cold +∆A)

= σ̂newA− M̂Cnew

Note that we merely substituted the definition of σ̂new. Computing the com-
mitment to [σ̂new]1 = [σ̂old] + [M̂]1∆ homomorphically from the commitments
to [σ̂old]1 and [M̂]1 is possible (and by construction, satisfies the verfication
equation under the vknew). Thus, the GS proof for the original statement also
proves the adapted equation. This shows that OTS supports key-rotation under
Groth–Sahai proofs.

E.3 Key-rotatable zero-time signature

In our security proof for plaintext integrity of NYUAE, we encounter the interesting
situation that we do not rely on the one-time security, but the zero-time security,
of OTS. That is, we obtain an adversary which breaks OTS without requesting a
signature at all. Here, we give another scheme, which is only zero-time secure.

Zero-time EUF-CMA security is “strange”. A zero-time signature can be
independent of the message, i.e. Verify can ignore the message. Indeed, a hard
relation already yields a zero-time signature. Thus, a zero-time signature can
simply return its secret key as the signature. Without seeing a signature, finding
sk such that Verify(pk,m, sk) is hard. In other words, Verify(pk,m,_) is a hard
relation for all messages. After seeing a single signature, there are no security
guarantees anymore. So having message-independent “signature” σ = sk is not a
problem.

These weak security guarantees allow quite simple and efficient instantiations.

Definition 27. We define a zero-time key-rotatable structure preserving signa-
ture ZTS as follows.

– ZTS.GenSP(pp) does nothing, i.e. sp = pp.
– ZTS.GenKey(sp) picks x←R Fp and returns (sk, vk) = (x, [x]2) ∈ Fp ×G2.
– ZTS.Sign(sk,m) returns σ = [sk]1 = [x]1.
– ZTS.Verify(vk,m, σ) accepts if e(σ, [1]2) = e([1]1, vk).
– ZTS.GenTok(skold, sknew) returns ∆ = sk2 − sk1.
– ZTS.ReSig(∆,σold) returns σnew = σold + [∆]1.

It is easy to see that ZTS as above is a zero-time signature if the SXDH assumption
holds in (e,G1,G2,GT). Furthermore, the verification equations and key-rotation
are linear, hence GS proofs of ZTS verification can be adapted to the new key.
Lastly, ZTS has simulatable token generation under “leakage” of vk.

(R)CCA Secure Updatable Encryption with Integrity Protection 55

F Detailed definition of NYUE and NYUAE
In this section, we present more details regarding the definitions of NYUE and
NYUAE. We start with an intuitive explanation of the malleability, ignoring the
OR-compilation. Then we explain how OR-compilation works and give a bit of
intuition why OR-compilation preserves malleability. Finally, we give the exact
statements (i.e. equations) whose proof (of satisfiability) shows OR(SNY,SSIG).

F.1 RISE
In this section, we recall RISE, an updatable encryption scheme defined in [LT18].
RISE is essentially ElGamal encryption. It is proven UP-IND-CPA secure for
queried reencryptions in [LT18]. The definition of updatable encryption schemes
in [LT18] is slightly more general than ours, so we redefine RISE in our setting.
Definition 28. The updatable encryption scheme RISE is defined as follows:
RISE.GenSP(pp): does nothing. We have K = F×p , D = F×p ×G×, M = G.
RISE.GenKey(sp): Pick sk ←R K. Return k = (sk, pk) where pk = [sk].
RISE.Enc(k,m; r): For r ∈ Fp (which is drawn uniformly at random if not speci-

fied), parse k = (sk, pk) and return [c] = [c1, c2] := [0,m] + r[pk, 1] ∈ G2.
RISE.Dec(k, c): parse k = (sk, pk) and return [m] = [c2]− 1

sk [c1].
RISE.GenTok(kold, knew): Parse kold = (skold, pkold), knew = (sknew, pknew) and

let ∆ = (sknew

skold , pknew) ∈ F×p ×G×.
RISE.ReEnc(∆, c): parse ∆ = (ρ, pknew), pick r ←R Fp and return

c′ =
[
ρc1
c2

]
+
[
pknew

1

]
r, where c = [c1, c2]> ∈ G2. (8)

We consider security (of the underlying encryption) under leakage leak(k) = pk,
as pk is necessary for reencryption (as part of ∆).
It is easy to see that RISE satisfies correctness. Under the DDH assumption on
G, the underlying encryption scheme of RISE is IND-CPA secure for key-leakage
leak(k) = pk. Indeed, IND-CPA security reduces directly DDH.

We do not (explicitly) need any further security guarantees of RISE — its
UP-IND-CPA security is not directly needed anywhere. This is because we
essentially reprove the security in our setting.
Remark 2. RISE has perfect re-encryption. Indeed, reencryption of RISE should be
seen as a two-step process. In a first step, the first component c1 of the ciphertext
c is multiplied by ρ (where ∆ = (ρ, pknew)). This changes the encryption from
kold to knew. In a second step, the key-rotated ciphertext is rerandomised under
pknew. Since randomisation is perfect (i.e. looks like a fresh encryption), so is
re-encryption.
Lemma 8. RISE has simulatable token generation under leakage leak(k) = pk.
Proof. Pick ∆ = (ρ, pknew) via ρ ← F×p , pknew ← ρpkold where pkold = leak(k).
Let ∆′ = invert((ρ, pknew)) = (ρ−1, ρ−1pknew). Now ∆′ is the reverse token for
∆ and sampling ∆ as described satisfies the properties for SimTok.

56 Michael Klooß, Anja Lehmann, and Andy Rupp

F.2 Reencryption

For convenience, we repeat the 4 steps for reencryption of NYUE (and NYUAE).
Every step adapts the GS proofs, if necessary.

(1) Verify ciphertext. Verify the consistency proof. Return ⊥ on failure.
(2) Key rotation. Use key rotation of RISE on the ciphertexts parts c1 and

c2 of c = (c1, c2, π), but without the implicit re-randomisation. For NYUAE,
also the committed signature is rotated.

(3) Re-randomise c1, c2. The ciphertexts c1, c2 are re-randomised, thus com-
pleting the computation of RISE.ReEnc(∆i, ci) for i = 1, 2.

(4) Re-randomise π. The proof π is rerandomised. (More precisely, all GS
commitments and all GS proofs are rerandomised.)

We now describe the individual steps (2)-(3) for key-rotation and re-randomisation
of (c1, c2) in more detail. Steps (1) and (4) are trivial and therefore omitted.

For constructing the OR-proof in NYUE we can use folklore compilation
techniques (App. D.1). Fortunately, this compilation preserves linear malleability
of the original set of equations [Cha+12]. Therefore, we only explain how to maul
proofs for SNY and SSIG separately.

(2) Key rotation. First, we apply RISE.ReEnc without rerandomisation, i.e. Eq. (8)
with r = 0. The equations proven in SNY are

∀i ∈ {1, 2} :
[

0
m̂

]
1
1 +

[
pkold
i

1

]
1
r̂1 −

[
cold
i,1

cold
i,2

]
1
1 =

[
0
0

]
1
. (9)

There are two corresponding equations in SSIG (with m̂i instead of m̂) which
are dealt with completely analogously. Key-rotation for RISE with r = 0 simply
multiplies the top row in Eq. (9) by ρi, yielding (cnew

i,1 cnew
i,2) = (ρicold

i,1 cold
i,2). Note

that pknew
i = ρipkold

i , so we end up with the right key.
We then use the GS malleability to adapt the consistency proof π to this new

statement. Note that we know the token ∆ = (∆1, ∆2), which includes ρi and
pknew
i (and hence implicitly pkold

i). By linear malleability, an adapted proof πnew

after multiplication by ρi can be computed. This leaves us with a proof for

∀i ∈ {1, 2} :
[

0
m̂

]
1
1 +

[
pknew
i

1

]
1
r̂1 −

[
cnew
i,1

cnew
i,2

]
1
1 =

[
0
0

]
1
. (10)

Thus, we now have an updated ciphertext under knew. Therefore, we drop the
“old” and “new” superscripts in the following.

(3) Re-randomise (c1, c2). Here, we exploit that we can add two equations with
“attached” GS proofs and produce an adapted GS proof for the sum. Again, we
merely consider how SNY, i.e. Eq. (9), is affected by a re-randomisation. Moreover
we only look at c1, i.e. we consider re-randomisation of a RISE ciphertext under
GS proofs. Dealing with c2 and SSIG is completely analogous.

(R)CCA Secure Updatable Encryption with Integrity Protection 57

First, we pick random r̂′ ← Fp and compute the rerandomised ciphertext
[c′1]1 = [c′1,1, c′1,2]1, with rerandomisation randomness r̂′. Then we construct a
GS proof π′ for [

pk1
1

]
1
r̂′ +

[
c1,1
c1,2

]
1
−
[
c′1,1
c′1,2

]
1

=
[
0
0

]
1
,

which states c′1 = (c′1,1, c′1,2) is a rerandomisation of c1, c.f. Rem. 2. Now, we use
the linearity of GS proofs to find that, given proofs for[

0
m̂

]
1
1 +

[
pk1
1

]
1
r̂1−

[
c1,1
c1,2

]
1
1 = 0 and

[
pk1
1

]
1
r̂′+

[
c1,1
c1,2

]
1
1−

[
c′1,1
c′1,2

]
1
1 =

[
0
0

]
1
,

we can compute a proof for the sum:[
0
m̂

]
1
1 +

[
pk1
1

]
1
(r̂1 + r̂′)−

[
c′1,1
c′1,2

]
1
1 =

[
0
0

]
1
.

Thus, we successfully rerandomised c1 (to c′1 with new encryption randomness
r̂1 + r̂′) and can adapt the proof.

F.3 The consistency proof for NYUE

We use the notation of Def. 15. For convenience, we repeat the proven statement
OR(SNY,SSIG):

– SNY: ∃m̂, r̂1, r̂2 : RISE.Enc(pk1, m̂; r̂1) = c1, ∧ RISE.Enc(pk2, m̂; r̂2) = c2
– SSIG: ∃m̂1, m̂2, r̂1, r̂2, σ̂, : RISE.Enc(pk1, m̂1; r̂2) = c1, ∧ RISE.Enc(pk2, m̂2; r̂2) =

c2 ∧ SIG.Verify(vkSIG, (m̂1, m̂2), σ̂) = 1

Here pki is the key-leakage, essentially an ElGamal public key pki = [ski]1.
From App. D.1, it should be evident how to compile the equations naively. We

present a simpler (and more efficient) OR-compilation, essentially applying some of
the stated optimisations. We prove that (for SNY) we have [m̂1]1 = [m̂1]2 = [m̂]1.
But in SSIG the variables [m̂1]1 and [m̂1]2 are unconstrained. In both cases, the
RISE.Enc parts must be satisfied.

Compilation for NYUE. We have following typed equations:

b · 1′ − 1 · b′ = 0 ∧ b · b′ − 1 · b′ = 0 (11)

where b is of type sca1, b′ of type sca2. (1 has type unit1 and 1′ has type unit2.)
The equation type is QE. If b = 0, we want to prove SNY. If b = 1, we want to
prove SSIG.

The OR-compiled “message consistency” for SNY is given by

([m̂1]1 − [m̂]1) · (1′ − b′) = 0 ∧ ([m̂2]1 − [m̂]1) · (1′ − b′) = 0

where [m̂i]1 and [m] have type com1. The equation types are ME1.

58 Michael Klooß, Anja Lehmann, and Andy Rupp

Proving the equations[
0
m̂1

]
1
1′ +

[
pk1
1

]
1
r̂1 −

[
c1,1
c1,2

]
1
1′ =

[
0
0

]
T[

0
m̂2

]
1
1′ +

[
pk2
1

]
1
r̂2 −

[
c2,1
c2,2

]
1
1′ =

[
0
0

]
T

already ensures SNY (if b = 0). Here, pk1 has type pub1 and r̂ has type sca2.
The equations have type ME1 in the first and MConst1 in the second component.

It should be evident, that this equation is still linearly malleable. Furthermore,
this part of the equation is the only part which must be malleable. To finish the set
of equations, we need to choose some signature SIG and finish the OR-statement,
which is: If b = 0, then there is a committed valid signature [σ̂]1 on [m̂1, m̂2]1.

For example, when using the one-time signature OTS from Def. 26, we could
introduce an additional “bit” [d]1 ∈ G1, committed with comG1 and prove

[d]11′ − [1]1(1′ − b′) = [0]1,

which has type ME1. The verification equation of the signature becomes

e([σ̂]1, [A]2)− e([d, m̂1, m̂2]1, [C]2) = [0]T ,

where [A]2 and [C]2 are part of the signature verification key. This equation has
type PPE. Clearly, if b = 1, then [d]1 = [1]1 and this enforces a valid signature. If
b = 0, then [d]1 = [0]1 and σ̂ = 0 is a trivial solution to the equation. Note that
the signature verification is not malleable anymore.

Compilation for NYUAE. For NYUAE with OTS, we cannot just use the above
compilation, (with equation [d]1(1− b′) = [0]1 replaced by [d]1b′ = [0]1). Because
now we need malleability of the sigature, which is destroyed in the above OR-
compilation. For efficiency and space reasons, we therefore instantiate NYUAE
with the zero-time signature ZTS from Def. 27. We use the naive OR-compilation,
where we copy the constants (only vk in this case). Thus, we add following
equations:

b · ([v̂]1 − [vk]2) = 0
e([σ̂]1, [1]2)− e([1]1, [v̂]2) = 0

The equations have type ME2 and PPE. If b = 0, then [σ̂]1] = [0]1 and [v̂]2 = [0]2
allow simulation. Signature rotation of ZTS is preserved due to linear malleability
of the (compiled) equation.

This completes SNY+I. For SSIG, we need some (unbounded) EUF-CMA
signature scheme. Using [KPW15, Fig. 3] with SXDH (k = 1), we have signature
consisting of [σ̂i]1 ∈ G1×2

1 for i = 1, 2, 3 and [σ̂4]2 ∈ G2. Moreover, the verification
equation consists of k + 1 PPE’s, which can be OR-compiled like for OTS before.
(Remember that we do not need malleability for SSIG. Simulation works by zeroing
all σ̂i and m̂i and using [d] = [0] as before.)

(R)CCA Secure Updatable Encryption with Integrity Protection 59

π sca1 sca2 com1 com2 QE ME1 MConst1 ME2 PPE PConst2 G1 G2

NYUE 1 4 5 0 2 5 2 0 0 1 28 34
NYUAE 1 4 5 + 6 1 + 1 2 4 2 1 0 + 3 0 54 44

Table 1. Size of consistency proofs. (Without public constants, e.g. the ciphertexts c1, c2
and the signature verification keys.) We use the signatures described in the detailed
instantiation of NYUE and NYUAE. The costs introdcued by SIG (instantiated with
[KPW15, Fig. 3]) are written additively in NYUAE.

Efficiency estimate. In the following, we give rough efficiency outlines. For
NYUE we count

We could use the encryption type from [EG14] and replace group commitments
with encryptions. This would decrease the size of the proofs since MEnc1 has size
(2, 2) opposed to (2, 4). Another option is to may be [Ràf15], which could yield
more efficient OR-proofs. However, the number of commitments to necessary
values alone is so much, that the scheme is still very far practical interest.
Therefore, we did not pursue such optimisations further.

We approximate the number of exponentiations by twice for proof generation
by the number of group elements (and rerandomisation and reencryption). (This is
exact for commitments, but for proofs, it is a rough approximation.) This give us
≈ (60, 70) exponentiations (in G1 resp. G2) for NYUE and ≈ (110, 90) for NYUAE.
We do not know whether the prover-chosen commitment technique of [EG14] pre-
serves rerandomisability of proofs. It would reduce the necessary exponentiations
roughly by half. Still, proofs and rerandomisation remain expensive.

For decryption, we need to check the equations. Using the probabilistic
verification of [Her+17], we can reduce the number of pairings needed to compute
to rougly 22 for NYUE and 29 for NYUE. We ignore the additional overhead,
which is one (small) exponentiation per commitment and several per proof.

G Security proofs for NYUE and NYUAE

In this section, we give formal proofs for of security of NYUE and NYUAE. We
prove their underlying encryption schemes secure under (key-)leakage leak(k) =
pk. Then we prove their security as updatable encryption schemes. The proofs
have a structure which is very similar to the proof of UP-IND-CCA security in
Thm. 1. Important differences between schemes allowed in Thm. 1 and NYUE
(resp. NYUAE) are:

– Ciphertext consistency is publicly verifiable.
– Reencryption is perfect.
– (Key-)Leakage is non-trivial and simulatable token generation under leakage

is necessary, see App. C.

The first two properties actually simplify the proof. The last one hardly affects
the proof. It does however affect the security requirements on the underlying
encryption schemes.

60 Michael Klooß, Anja Lehmann, and Andy Rupp

Reencryption and token generation. For NYUE and NYUAE we showed perfect
reencryption when defining how reencryption works. For token simulation, it
is easy to see that it suffices if the building blocks, i.e. RISE and OTS have
simulatable token generation.

Corollary 3. NYUE and NYUAE have simulatable token generation under leak-
age leak(k) = pk as in Definitions 15 and 16. Moreover they have perfect reen-
cryption.

G.1 IND-RCCA Security of NYUE

Proposition 2. Suppose SIG is (one-time) EUF-CMA secure and SXDH holds
in (G1,G2,GT , e). Then the underlying encryption scheme of NYUE is IND-RCCA-
secure under leakage leak(k) = pk as in Def. 15.

The security proof is a straightforward use of double encryption [NY90]. First, we
possibly make the second component of the challenge ciphertext, c2, inconsistent,
by always encrypting m∗0 there. Then, we switch the decryption from first to the
second component. To distinguish, the adversary has to break the (one-time)
EUF-CMA security of SIG, which is used to provide (a weak form of) simulation
soundness. After this, we also encrypt m∗0 in c1, thus perfectly hiding the challenge
bit b from A.

Proof. The assumption, that DDH holds in G1 and G2, guarantees that GS
proofs are zero-knowledge and the underlying encryption of RISE is secure under
the given leakge. Requiring that SIG is (one-time) EUF-CMA secure ensures
that the adversary cannot simulate a consistency proof for a fresh message, even
in the presence of simulated proofs. More precisely, if crsGS is a binding CRS,
then proving SSIG is a proof of knowledge of a (fresh) signature on (m̂1, m̂2).
On the other hand SNY, guarantees that both ciphertexts encrypt the same
plaintext. Since GS proofs are perfectly sound for binding CRS, any simulated
proof contains a valid signature.

A sketch of the security reduction for IND-RCCA is in Table 2 in the form
of game hops. The comments in Game i state the properties used to prove
indistinguishability of Game (i− 1) and Game i.

From Game 3 to Game 4, we embed an IND-CPA challenger (against RISE) as
follows: We generate crsGS and save the simulation trapdoor tdGS. All proofs are
simulated, so we do not need a satisfying witness. In particular, we can generate c2
by simply using the public key of the IND-CPA challenger. When the distinguisher
D sends his challenge (m∗0 ,m∗1), we pick m∗ := m∗b . We send (m∗,m∗0) as our
IND-CPA challenge, and obtain c∗2 . We generate c1 ←R RISE.Enc(pk1,m∗b) and
simulate π∗ (as always). Finally, at the end of the experiment, D returns b′, and
we also return b′. Depending on the IND-CPA challenger’s bit bC, we played
Game 3 (bC = 0) or Game 4 (bC = 1). If D distinguishes Game 3 and Game 4
with advantage ε, then we break IND-CPA with advantage ε.

The crucial step is the transition from Game 7 to Game 8. Here, we switch
decryption from c1 to c2, by playing a (one-time) EUF-CMA game. That is, we

(R)CCA Secure Updatable Encryption with Integrity Protection 61

obtain as the verification key vkSIG from the EUF-CMA challenger. We make
exactly one signature request, namely for (m∗b ,m∗0).

We modify internal decryption of (c1, c2, π) as follows: Check the consistency
proof π, return ⊥ if false. Otherwise, return Dec(sk2, c2). The decryption ora-
cle Dec adds the usual check for RCCA, i.e. it returns invalid if the interal
decryption procedure yields m ∈ {m∗0 ,m∗1}.

For A, there is at most a difference in Game 7 and Game 8, if A queries Dec
with a ciphertext (c1, c2, π) where m̂1 6= m̂2 and (m̂1, m̂2) 6= (m∗,m∗0). Since GS
proofs are in binding mode, they are perfectly sound and we have an extraction
trapdoor. Because SSIG is structure-preserving, we can extract a witness for SSIG
from any such inconsistent fresh ciphertext. Hence, we obtain a valid signature on
(m̂1, m̂2), which is a signature on a fresh message, breaking (one-time) EUF-CMA.

Game Dec stmt m̂1 m̂2 π∗ tdGS crsGS

1 c1 hon m∗ m∗ Prove ⊥ hide Honest.
2 c1 hon m∗ m∗ SimProve sim hide Simulate proofs. (Perfect ZK)
3 c1 sig m∗ m∗ SimProve sim hide (Perfect) ZK of GS.
4 c1 sig m∗ m∗0 SimProve sim hide IND-CPA
5 c1 sig m∗ m∗0 Prove sim hide (Perfect) ZK of GS.
6 c1 sig m∗ m∗0 Prove ⊥ bind Switch crsGS. (SXDH)
7 c1 sig m∗ m∗0 Prove ext bind Stat. indist.
8 c2 sig m∗ m∗0 Prove ext bind EUF-CMA (*)
9 c2 sig m∗ m∗0 Prove ⊥ bind Stat. indist.
10 c2 sig m∗ m∗0 Prove ⊥ hide Switch crsGS. (SXDH)
11 c2 sig m∗ m∗0 SimProve sim hide Simulate proofs. (Perfect ZK)
12 c2 sig m∗0 m∗0 SimProve sim hide IND-CPA

Table 2. Proof sketch: The columns m̂1 and m̂2 denote the messages in the ciphertexts
(c∗1, c∗2, π∗) (which can be extracted under a binding GS CRS with the extraction
trapdoor). For the honest branch SNY, the proof ensures m̂1 = m̂2 = m. For the
signature branch SSIG, m̂1 6= m̂2 is possible. The reduction eventually replaces the
challenge message m∗ = m∗b by m∗0 . Hence, Game 12 is independent of the bit b, and A

has advantage 0.

G.2 INT-PTXT Security of NYUAE

We only give a proof sketch for plaintext integrity of NYUAE in Table 3, as
IND-RCCA of NYUAE follows as in Prop. 2. In fact, the proof for plaintext
integrity is also similar.

Proposition 3. Suppose SIG is unbounded EUF-CMA secure, and SXDH holds
in (G1,G2,GT , e). Then the underlying encryption scheme of NYUAE in Def. 16 is
IND-RCCA and INT-PTXT secure under (key-)leakage leak(k) = pk. Moreover,
it has perfect reencryption and simulatable token generation.

62 Michael Klooß, Anja Lehmann, and Andy Rupp

Perfect reencryption and token simulation were already established, see Cor. 3.
SXDH ensures that NYUE is IND-RCCA secure and OTS (from App. E) one-time
EUF-CMA secure.

Proof (Sketch). The proof for IND-RCCA is identical to the IND-RCCA proof
for NYUE, Prop. 2. For plaintext integrity, the same overall strategy as for
IND-RCCA works. The major difference is that we switch all consistency proofs
to simulated proofs via SSIG. This reduces to zero-knowledge of GS proofs. Then
we switch GS proofs into binding mode. Hence, from a valid consistency proof,
a signature for either OTS or SIG can be extracted. Thus, a forgery for a fresh
message m either yields a fresh SIG-signature, or a fresh OTS-signature. Thus,
breaking the (one-time) EUF-CMA security of (OTS resp.) SIG. The strategy is
detailed in Table 3. For completeness, we explain Game 6. In Game 6, GS proofs
are in binding mode and extractable, hence perfectly sound. In particular, we can
extract (messages and) signatures. If A wins, there are two cases:

– A proves the simulation branch SSIG. Since the encrypted and committed
plaintext pair [m̂1, m̂2]1 is fresh, A breaks EUF-CMA security of SIG.

– A proves the honest branch SNY+I. The signature σOTS on [m̂1]1 = [m̂2]1
must be valid and fresh, hence A breaks the zero-time EUF-CMA security of
OTS. (Zero-time, because we never constructed/requested a OTS-signature.
Thus, a one-time signature is more than necessary.)

Consequently, we see that A can be converted into an adversary against either
SIG or OTS (or both).

Note that a zero-time structure-preserving signature (essentially a hard rela-
tion) is sufficient for the security of NYUAE. Inuitively the reason is the following:
The scheme is already IND-RCCA secure, even without the signature. To pre-
vent an adversary from generating its own ciphertext it is therefore sufficient to
add some secret to the message and fail decryption if the secret is wrong. To
preserve public verifiability, we need a verifiable secret which is compatible with
Groth–Sahai proofs.

Remark 3. At first glance, having OTS may seem unnecessary, because one
can reduce to breaking a SIG-signature even without OTS. But these are two
conceptually different things: Either breaking simulation soundness of the proof
system, or breaking zero-time security of OTS (i.e. integrity).

G.3 Security of NYUE (UP-IND-RCCA and UP-INT-PTXT)

The security of NYUE as an updatable encryption scheme can be shown with
a proof resembling the proof for deterministic updatable encryption of Thm. 1.
Roughly, we replace all (re)encryptions of the challenge by 0. This is done via
hybrid games, starting from the last reencryption. Notably, due to perfect reen-
cryption, these hybrids are simpler than the ones used in Thm. 1 for deterministic

(R)CCA Secure Updatable Encryption with Integrity Protection 63

Game σOTS stmt π tdGS crsGS

1 hon hon Prove ⊥ hide Honest.
2 hon hon SimProve sim hide Perfect ZK.
3 hon sig SimProve sim hide Perfect ZK.
4 0 sig SimProve sim hide Perfect ZK.
5 0 sig Prove ⊥ bind ZK (of GS proofs).
6 0 sig Prove ext bind Extraction.

Table 3. A proof sketch for plaintext integrity of NYUAE.

reencryption. Compared to randomness-preserving reencryption, perfect reen-
cryption spares us from ensuring “consistent reencryption randomness”. Proving
indistinguishability of hybrids is very similar to Thm. 1, i.e. we guess a region
{`, . . . , r} in which we embed an RCCA challenger.

Supporting arbitrary reencryption (instead of queried) works by construction.
Remember that the strategy of replacing reencryptions by decrypt-then-encrypt
was the main reason for restricting to queried reencryption in the security proofs,
e.g. in Thm. 1. The problem was that one cannot ensure that replacing reencryp-
tion by decrypt-then-encrypt works for invalid ciphertexts, i.e. for ciphertexts
c with Dec(c) = ⊥.13 However, the public verifiability of the consistency proof
ensures that ReEnc(c) can safely return ⊥ if the proof is invalid. If it is valid,
decryption succeeds! Thus, replacing reencryption by decrypt-then-encrypt works
for NYUE and NYUAE. This is enough to support arbitrary reencryption.

We state the results in more general terms.

Theorem 9. Let UE be an encryption scheme and consider (key-)leakage leak(k) =
pk. Suppose UE has perfect reencryption, i.e. decrypt-then-encrypt and reencrypt
are indistinguishable even for invalid ciphertexts. Suppose moreover that UE has
simulatable token generation under (key-)leakage leak. Then UE is

– UP-IND-RCCA-secure if UE is (multi-)IND-RCCA-secure under leakage
leak.

– UP-INT-PTXT-secure if UE is INT-PTXT-secure under leakage leak.

under arbitrary reencryption.

By multi-IND-RCCA, we mean multi-ciphertext security.
We note that the proof of security also works for UP-IND-CPA under queried

reencryption. The reason is that queried reencryption plus CPA gives a trivial
way to implement a “decryption” oracle (namely table lookup), which can be
used instead of the decryption oracle in the proof — nothing breaks thanks to
queried reencryption which ensures that decrypt-then-encrypt works. In a sense,
restriction to queried reencryptions in the security notion allows to relax perfect
reencryption to “perfect for valid ciphertexts”. Thus, our general proof essentially
subsumes the security of RISE.
13 Indeed, there are concrete attacks for certain schemes, see App. H.

64 Michael Klooß, Anja Lehmann, and Andy Rupp

The strategy of the proof is identical to the UP-IND-CCA and UP-INT-CTXT
proofs, c.f. App. B. Indeed, the definition of hybrids and key-insulation steps
is essentially identical. The arguments are somewhat simpler, because encryp-
tion randomness does not need to be “tracked” anymore, thanks to perfect
reencryption.

Proof. UP-IND-RCCA: We proceed in Games. We assume that the adversary
A requests at most emax epochs (via Next).

Game 0 is the standard UP-IND-RCCA game for probabilistic reencryption
with the “arbitrary” restriction for reencryption. The challenge bit is bB ∈ {0, 1}.

In Game 1, the challenge reencryptions are replaced by (fresh) encryptions
of m∗0 . More concretely, B picks r ←R {0, . . . , emax} and hopes that r has the
property:

– A corrupts all tokens ∆j for j = e∗ + 1, . . . , r.
– A does not corrupt ∆r+1 (or it does not exist, in case of ∆emax+1).

where e∗ is the challenge epoch and c∗e∗ ← Enc(ke∗ ,m∗bB ; r∗) the challenge cipher-
text. Reencryptions ReEnc(c, i) in case of isChallenge(c, i) = 1 are computed as
follows: ReEnc(c, i) computes cj for j = i+ 1, . . . , ecur as

– if j ≤ r, cj = ReEnc(∆j , cj−1).
– if j ≥ r+ 1, cj = Enc(kj ,m∗0). That is, the reencryption is replaced by a fresh

encryption of m∗0 .14

If isChallenge(c, i) = 0, there are no changes to reencryption.
We prove indistinguishability of Game 0 and Game 1 by a hybrid argument.

Game H` is defined as Game 1, but the (definition of the) region {e∗, . . . , r}
is replaced by {`, . . . , r}. (Compare to Thm. 7.) Clearly, He∗ is Game 1, and
Game Hemax+1 is Game 0. Thus, we have to prove that distinguishing Game H`−1
and Game H` yields a (multi-)IND-RCCA adversary. We do this by using the
same key-insulation technique as in Thm. 1. We delay the proof to Lemma 9.

In Game 2, we replace the encryption of the challenge ciphertext by an en-
cryption of m∗0 . Again, we use key-insulation to embed an IND-RCCA challenger,
analogous to the IND-RCCA embedding in the hybrid games.

This finishes the proof, as Game 2 contains no information about the challenge
bit anymore. Overall, we reduce to the underlying (multi-)IND-RCCA security
with a loss of (roughly) 1

(emax+1)2 . One factor of 1
emax+1 is incurred by carrying out

a hybrid argument, and another factor of 1
emax+1 is incurred by indistinguishability

of the hybrids, c.f. Lemma 9, which requires guessing.
UP-INT-PTXT: To prove UP-INT-PTXT from INT-PTXT, the same strat-

egy works. In fact, the proof of Thm. 1 is easily adapted: The region {`, . . . , r}
we guess has the same properties, i.e. the UP-INT-PTXT adversary will forge
a ciphertext and corrupt every token in this region. We use key insulation and
14 Doing this replacement only for the first time is enough. Repeating the replacement

(i.e. freshly encrypting m∗0) or honestly reencrypting is perfectly indistinguishable
(due to perfect reencryption). Depending on the situation, either action is preferable.

(R)CCA Secure Updatable Encryption with Integrity Protection 65

embed the INT-PTXT challenger in the insulated region. Note that there are
no special cases for Enc, Dec or ReEnc since there is no challenge message and
INT-PTXT will never reject a decryption (or encryption) query. Thus we obtain
an adversary against UP-INT-PTXT from an adversary against INT-PTXT. We
suffer a security loss of (roughly) 1

(emax+1)2 .

Lemma 9. The hybrid games H`−1 and H` are indistinguishable. Concretely,a
distinguisher with advantage ε yields a multi-IND-RCCA adversary with advan-
tage at least ε

emax+1 , where emax is the final epoch generated via Next.

Proof. Suppose an adversary A distinguishes hybrid games Game H`−1 and
Game H` (for 0 ≤ ` ≤ emax+1). We construct an adversary B against IND-RCCA
from A with polynomial loss in advantage (namely 1

emax+1). Let C be the
IND-RCCA adversary.

The reduction is as follows:15 B guesses r ←R {`, . . . , emax} with the property
that A corrupts tokens ∆`+1, . . . ,∆r, but does not corrupt ∆r+1. For simplicity,
B aborts, i.e. returns a random b←R {0, 1} to C, if the guess is wrong. In the
following, we assume correct guesses. We distinguish following cases.

Case 1. A corrupts ∆`. Then Game H`−1 and Game H` are identical.
Case 2. A corrupts a key in epochs {`, . . . , r}. Then A must not request a

reencryption of challenge ciphertexts into epochs {`, . . . , r}. If it does, the
game is aborted (and A loses). Again, Game H`−1 and H` behave identical.

Case 3. A corrupts neither ∆` nor any key in the range {`, . . . , r}.

Cases 1 and 2 are trivial in the sense that B simply returns bB ←R {0, 1} as
its guess. (A is of no use after all.) Thus we concentrate on Case 3. In Case 3,
Game H`−1 replaces reencryptions of challenge ciphertexts by encryptions of m∗0
for any epoch e ≥ `. Thus, the only difference w.r.t. Game H` are reencryptions
of challenge ciphertexts in the region {`, . . . , r}, which are honest in Game H`,
but not in Game H`−1.

We use key-insulation on the region {`, . . . , r} and modify B accordingly.
Then we embed the IND-RCCA challenger C into the insulated region as follows.

We recall the changes introduced by key-insulation (Thm. 1 and App. B),
now with leakage leak(k) = pk. These changes are perfectly indistinguishable due
to perfect reencryption and simulatable token generation.

– Adversary B

• does not generate keys k`+1, . . . , kr,
• does not generate tokens ∆` and ∆r+1,
• simulates tokens ∆`+1, . . . ,∆r along with reverse tokens ∆′`+1, . . . ,∆

′
r

using (∆i, ∆i+1, pki+1)←R SimTok(pk`) where pk` = leak(k`).
– An Enc(m) call in epoch
• ` < ecur ≤ r is handled as by first computing c` ←R UE.Enc(k`,m) and
then cecur via cj ← UE.ReEnc(∆j , cj−1) for `+ 1 ≤ j ≤ ecur.

15 Again, this reduction is essentially the same as in Thm. 1, but slightly simpler since
we have perfect reencryption.

66 Michael Klooß, Anja Lehmann, and Andy Rupp

• Other epochs ecur are handled without change.16

– A Dec(c) call in epoch ` < ecur ≤ r is handled by first computing c` via
cj−1 ← UE.ReEnc(∆′j , cj) for ecur ≥ j > ` and then m ← UE.Dec(k`, c`).
Otherwise, B computes Dec without change.

– A ReEnc(ci, i) call in epoch ecur > i is handled by computing a series of
ciphertexts cj for i < j ≤ ecur, where
• Except computing c` and cr+1 reencryption uses the tokens as usual.
• c` is computed from c`−1 by decrypting c`−1 and freshly encrypting under
epoch `.

• cr+1 is computed from cr by decrypting cr, using the changed decryptiong
procedure described above, and freshly encrypting under epoch r + 1.

– For isChallenge(c, i), we return 0 if c ∈ Q. Otherwise, we decrypt c under
epoch i to m, perhaps using the modified decryption procedure above, and
return 1 iff m ∈ M∗.

After insulating the region {`, . . . , r} as above, we can embed the IND-RCCA
challenger C in epoch `. Oracle queries for ReEnc(c, i) with isChallenge(c, i) = 0,
as well as Enc and Dec, in the insulated region (i.e. for ` ≤ ecur ≤ r) are handled
as described. Note that blackbox-access to encryption and decryption in epoch `,
plus leakage pk` are sufficient for key-insulation. Thus, the IND-RCCA challenger
C gives B the necessary oracles (plus leakage).

Note that checking isChallenge(c, i) with ` < i ≤ r, boils down to using the
decryption oracle C.Dec (after rotating the ciphertext to epoch `). By definition
of the hybrid games, C.Dec(c) responds with invalid if and only if c encrypts a
message in M∗ = {m∗0 ,m∗1}. (We note that the additional “generosity” of allowing
reencryptions of queried ciphertexts, even if they contain a challenge message, is
preserved.)

Challenge ciphertext reencryptions are treated differently, depending on the
epochs. We describe how a single hop from j− 1 to j is implemented. So consider
a challenge ciphertext c∗j−1 under epoch j − 1 (with isChallenge(c∗j , j − 1) = 1).

– j 6= ` and j 6= r + 1: The update token ∆j is used.
– j = `: Decrypt m := Dec(k`−1, c∗) ∈ M. Instead of freshly encrypting

with C.Enc, B sends a challenge message pair (m,m∗0) to C and receives a
ciphertext c∗` .

– j = r + 1: Encrypt c∗r+1 = Enc(kr+1,m∗0) in compliance with both hybrid
games.17

Note that we rely on multi-IND-RCCA. Otherwise, we could only replace one
reencryption from `− 1 to `.

By close inspection, one finds that A plays game Game H`−b. That is, if C
picks b = 0, then A plays a game which is identical to Game H`, otherwise it is
identical to Game H`−1.
16 Here perfect reencryption spares us the “get randomness from epoch `”, which was

necessary for randomness-preserving reencryption.
17 Both hybrid games replace challenge reencryptions by encryption of m∗0 for epochs

after `.

(R)CCA Secure Updatable Encryption with Integrity Protection 67

Thus, B essentially returns A’s guess bA as its own. The distinguishing
advantage εA of A translates to a multi-IND-RCCA adversary with advantage
εB ≥ 1

emax+1εA .

Remark 4. Another, maybe more direct proof strategy for UP-IND-RCCA, along
the lines of the UP-INT-PTXT proof, is also possible. In Game 1, replace all
reencryptions by decrypt-then-encrypt. In Game 2, guess ` and r with ` ≤ e∗ ≤ r.
Use it to embed the IND-RCCA challenger C into ` as usual. And replace all
challenge reencryptions by fresh challenge encryptions, i.e. C.EncLR(m∗0 ,m∗1) calls.
The security loss is essentially the same as for the proof we presented.

H Difficulties of updatable reencryption and open
problems

In this section, we explain some difficulties and obstacles where solutions (different
from the ones we presented) remain as major open problems. Note that we
exclusively consider bidirectional schemes.

Arbitrary reencryption. Consider an updatable encryption scheme ReEnc in a
group setting. Since (generic) groups essentially offer linear operations, and since
re/de/encryption algorithms typically use group operations in a blackbox manner,
let us assume that m 7→ Enc(sk,m; r), c 7→ Dec(sk, c), c 7→ ReEnc(∆, c; r) are
essentially linear/affine maps.18 By essentially linear, we mean that if the result
is not ⊥, i.e. if all consistency checks pass, then the map is linear. Deterministic
linear reencryption satisfies (for arbitrary c1, c2, ∆)

ReEnc(∆, c1 + c2) = ReEnc(∆, c1) + ReEnc(∆, c2).

After applying c 7→ Dec(k, c) to both sides, this equality can also hold for proba-
bilistic schemes, for example RISE. This “unchecked” linearity of reencryption
allows a trivial attack if arbitrary reencryptions are allowed: Split c∗ randomly
into c∗ = c1 + c2. Query reencryptions c′1, c′2 of c1, c2 to an uncompromised key.
Ask for a decryption of c′1 + c′2. This shows that non-linearity, which gives some
kind of “integrity” or “non-malleability”, is essential for security under arbitrary
re-encryption.

In NYUE we achieve this “non-linearity” by making ciphertext consistency
publicly verifiable. Another way to artificially prevent this attack, for example
by restricting to reencryptions to (honest previously) queried ciphertexts.

(Probabilistic) RCCA-secure encryption without public verifiability. The solution
of NYUE, to enforce public verifiability of consistency of ciphertexts, is not
evidently necessary. After all updatable encryption is secret key, not public key,
primitive. Thus, hash proof systems and designated verifier NIZKs with suitable
malleability should also work. It is likely that the decrypt-then-encrypt step in
our proofs has to be replaced by some other (perhaps entirely different) argument
for such schemes. Finding such schemes is an interesting open problem.
18 Pairing groups break this assumption.

68 Michael Klooß, Anja Lehmann, and Andy Rupp

Simulatable token generation implies randomisation. For probabilistic schemes,
simulatable token generation essentially implies randomisability of the underly-
ing encryption scheme. Simply define ReRand(c) as ReEnc(∆′,ReEnc(∆, c)) for
(∆,∆′)←R SimTok(sp).

Probabilistic CCA-secure updatable encryption. The implied randomisation from
simulatable token generation is an obstruction to CCA-security. Evidently, “bidi-
rectional” reencryption allows rerandomisation via back-and-forth reencryption.
Hence, CCA-secure probabilistic reencryption must not allow ciphertext down-
grades. It is not clear if CCA-security already enforces unidirectional security.
Nevertheless, CCA-secure probabilistic updatable encryption should be “close”
to being unidirectional.

Computational indistinguishability. Most of our properties are perfect (or sta-
tistical). Finding secure schemes where these properties are only computational
may offer significant efficiency improvements and insights about the nature of
these properties and their relation to the security proofs.

I Conjectured application to adaptive security of
unidirectional proxy-reencryption

We conjecture, that our approach to security proofs, namely key-insulation,
also works for unidirectional proxy re-encryption, at least in the setting where
only queried reencryptions are allowed. (Consequently, we expect it to work
for unidirectional updatable encryption in the same setting.) Note that the
stronger security definition of honest reencryption attacks (HRA, c.f. [Coh17;
Fuc+18]) for proxy reencryption is essentially the security for (unidirectional)
updatable encryption defined in [LT18]. Namely, queried (re)encryptions only
and no decryption oracle. Recalling the definitions of proxy reencryptions, let
alone the many flavours in [Fuc+18] here is too much and not our goal. We
only note we are somewhat confident, that our techniques are applicable in that
setting, and improve significantly over those in [Fuc+18] (for a certain class of
schemes). Since the topic is delicate and prone to mistakes, we do not claim
correctness, as we do not present formal proofs of the intuition below.

I.1 Remarks on proxy-reencryption and [Fuc+18]

Typically, security for proxy reencryption is only shown selectively secure, i.e. the
adversary can corrupt in an initial Phase 1. In the second Phase 2, no corruption
oracle is available, but instead the adversary now has (re)encryption and chal-
lenge oracles. In [Fuc+18], the approach of “pebbling” from [Jaf+17], is used to
obtain tighter, non-trivial security loss for adaptively secure unidirectional proxy
reencryption. Their security loss depends on the allowed (directed) “graph of
reencryptions” (called “recoding graph”), i.e. they restrict the available reencryp-
tion tokens to a (family of) graphs (with say n nodes). Their proven security loss

(R)CCA Secure Updatable Encryption with Integrity Protection 69

is superpolynomial, namely at least nO(log(n)), even in very simple cases, such
as a “chain” of reencryptions. This “chain graph” essentially is the setting of
unidirectional updatable encryption. Moreover, for general graphs, their loss is
still exponential.

The schemes considered in [Jaf+17] are unidirectional schemes with special
properties. Very roughly, these properties are:

IND-CPA: The underlying encryption scheme is IND-CPA secure.
Weak key-privacy for reencryption tokens: A reencryption token can be simu-

lated given only the target public key. (Note that in the unidirectional (proxy
reencryption) setting, we essentially have ∆i→j ←R GenTok(ski, pkj).)

Source-hiding: Reencryptions and fresh encryption are indistinguishable. (This
is essentially what we call perfect reencryption.)

These properties are very close to our properties (although our setting is a priori
neither public key nor unidirectional). The major difference is weak key-privacy.
This difference is mostly caused by unidirectionality, which essentially forces a
change in the simulation of tokens. Namely, only outbound 19 reencryption tokens
can be simulated (without secret key), but only those need to be simulated. Due
to the unidirectional setting, one can always create tokens ∆i→j if ski is known
(and pkj), so this poses no problems.

Unidirectionality causes a change in the arguments, but seems to simplify
rather than complicate. The basic idea to achieve adaptive security is exactly as
for updatable encryption.

– Establish a key-insulation technique. In fact, in this setting key-insulation
truly insulates a single key, thanks to unidirectionality. (Unsurprisingly, weak
key-privacy and source-hiding is used here.)

– Define suitable hybrids, which only differ in places which can be key-insulated.
– Show the hybrids are indistinguishable by using IND-CPA security of the

underlying encryption scheme.

Due to unidirectionality, hybrids and key-insulation are greatly simplified.

Hybrids. For a reencryption graph of size n, we define hybrid games H0, . . .Hn+1
as follows: In Game Hi

– all challenge encryptions20 under keys pkj for j ≥ i encrypt m0 (independent
of b).

– all inbound challenge re-encryptions to pkj for j ≥ i are replaced by (fresh)
encryptions of m0.

19 By outbound, we mean token from (challenge) keys to other keys. That is ∆i→j is
outbound for key i and inbound for key j.

20 There is only a single challenge reencryption in the standard security games. But for
multi-ciphertext games, this is how it must be defined.

70 Michael Klooß, Anja Lehmann, and Andy Rupp

Hybrid indistinguishability. Evidently, hybrid Hi and Hi+1 differ only in their
actions on pki. Thus, it is sufficient to consider this key. There are two cases:

– pki is not challenge-related.
– pki is challenge-related (i.e. a challenge (re)encryption is made there).

In the first case, Game Hi and Game Hi+1 are identical. Thus, we focus on
the second case. In this case, we want to embed a IND-CPA challenger (of the
underlying encryption scheme). However, since we claimed to replace all (inbound
re-)encryption of the challenge at once, we actually assume multi-IND-CPA (to
spare us another hybrid argument). Clearly, to embed an IND-CPA challenger, we
need to key-insulate first (because we cannot generate outbound tokens without
knowledge of ski). As in the blueprint for updatable encryption, we separate this
insulation into an argument of its own.

Key-insulation of key ski. Key insulation in this setting is very straightforward.
A sketch is provided in Fig. 11. First, one uses source-hiding (i.e. perfect) reen-
cryption, to compute all outbound reencryption requests (i.e. from i to j) by
decrypt-then-encrypt.21 Thus, we do not need any tokens ∆i→j anymore, and
essentially only Enc calls are used for pki.

Second, one uses weak key-privacy to simulate all outbound tokens ∆i→j via
∆i→j ←R SimTok(pki, skj). W.l.o.g. A never queries ski. (Because we assumed
that pki is challenge-related, querying ski implies that A loses the game). Thus,
embedding weak key-privacy is straightforward.

Now, we do not need ski anymore and only use encryption for pki (so no
reencryption either).22 (Because (fresh) encryption only needs pki, and tokens
are simulated.)

ski

sk`1

...

sk`n

skr1

...

skrn

∆`1→i

∆`n→i

∆i→r1

∆i→rn

Dec-then-Enc

ski

sk`1

...

sk`n

skr1

...

skrn

∆`1→i

∆`n→i

∆i→r1

∆i→rn

Dec-then-Enc

∆i→rj
←R SimTok(pkrj

)

Fig. 11. A sketch of key-insulation. Changes are highlighted in grey.

21 “Decrypt” is simply a table lookup since only queried reencryption is allowed.
22 By forwarding decryption queries to the challenger, RCCA and CCA security may

also be provably secure using these techniques.

(R)CCA Secure Updatable Encryption with Integrity Protection 71

Estimated security loss. We used a polynomial number of key-privacy, source-
hiding and multi-IND-CPA embeddings. Namely, at most n2 for an n-vertex
graph (i.e. at most one for each edge), distributed over all hybrid games. Hence
we estimate the security loss to be roughly O(n2(εkey-anon + εsource-hiding) +
nQεIND-CPA), where Q is a bound on the number of challenge (re)encryption
queries. This would improve upon [Fuc+18] as the bound holds for an arbitrary
graph of allowed reencryptions, and is polynomial (instead of superpolynomial.)

Note again that this is not a formal proof, and the devil is in the details. We
do not claim that this sketch works without change (or at all).

Finally, we expect that using (rerandomisable) zero-knowledge succinct non-
interactive proofs of knowledge (zk-SNARK), the same Naor-Yung technique
used in NYUE should yield RCCA secure unidirectional PRE (and updatable
encryption as well). (Unfortunately, all known SNARKs rely on non-falsifiable
assumptions, see also [GW11]. But SNARKs are not a necessity. Weaker primitives
may already allow malleable proofs, as seen with Groth–Sahai proofs in the
bidirectional setting.)

	(R)CCA Secure Updatable Encryption with Integrity Protection
	Introduction
	Preliminaries
	Notation
	Symmetric and Tidy Encryption
	Updatable Encryption

	CCA and CTXT Secure Updatable Encryption
	Security Model
	Generic Transformation for Secure Updatable Encryption
	An Encrypt-and-MAC Construction

	RCCA and PTXT Secure Updatable Encryption
	Security Model
	RCCA and PTXT Secure Construction

	Unlinkability of Re-Encryptions
	Defining UP-REENC Security
	UP-REENC-RCCA from perfect re-encryption
	UP-REENC-CCA from randomness-preserving reencryption

	Generic security proof for deterministic reencryption
	UP-INT-CTXT
	UP-IND-CCA Security.

	Generalising Simulatable Token Generation
	Groth–Sahai proofs: Brief overview
	OR-compilation for quadratic equations

	Key-rotatable structure preserving signatures
	Key-rotatable structure preserving signatures
	A key-rotatable one-time signature
	Key-rotatable zero-time signature

	Detailed definition of NYUE and NYUAE
	RISE
	Reencryption
	The consistency proof for NYUE

	Security proofs for NYUE and NYUAE
	IND-RCCA Security of NYUE
	INT-PTXT Security of NYUAE
	Security of NYUE (UP-IND-RCCA and UP-INT-PTXT)

	Difficulties of updatable reencryption and open problems
	Conjectured application to adaptive security of unidirectional proxy-reencryption
	Remarks on proxy-reencryption and EPRINT:FKKP18

