
Group Signatures without NIZK:

From Lattices in the Standard Model

Shuichi Katsumata1,2 and Shota Yamada2

1 The University of Tokyo
2National Institute of Advanced Industrial Science and Technology (AIST)

shuichi.katsumata@it.k.u-tokyo.ac.jp, yamada-shota@aist.go.jp

April 25, 2019

Abstract

In a group signature scheme, users can anonymously sign messages on behalf of the group
they belong to, yet it is possible to trace the signer when needed. Since the first proposal
of lattice-based group signatures in the random oracle model by Gordon, Katz, and Vaikun-
tanathan (ASIACRYPT 2010), the realization of them in the standard model from lattices
has attracted much research interest, however, it has remained unsolved. In this paper, we
make progress on this problem by giving the first such construction. Our schemes satisfy CCA-
selfless anonymity and full traceability, which are the standard security requirements for group
signatures proposed by Bellare, Micciancio, and Warinschi (EUROCRYPT 2003) with a slight
relaxation in the anonymity requirement suggested by Camenisch and Groth (SCN 2004). We
emphasize that even with this relaxed anonymity requirement, all previous group signature
constructions rely on random oracles or NIZKs, where currently NIZKs are not known to be
implied from lattice-based assumptions. We propose two constructions that provide tradeoffs
regarding the security assumption and efficiency:

• Our first construction is proven secure assuming the standard LWE and the SIS assump-
tion. The sizes of the public parameters and the signatures grow linearly in the number
of users in the system.

• Our second construction is proven secure assuming the standard LWE and the subex-
ponential hardness of the SIS problem. The sizes of the public parameters and the
signatures are independent of the number of users in the system.

Technically, we obtain the above schemes by combining a secret key encryption scheme with
additional properties and a special type of attribute-based signature (ABS) scheme, thus by-
passing the utilization of NIZKs. More specifically, we introduce the notion of indexed ABS,
which is a relaxation of standard ABS. The above two schemes are obtained by instantiating
the indexed ABS with different constructions. One is a direct construction we propose and
the other is based on previous work.

1 Introduction

1.1 Background

Group signatures, originally proposed by Chaum and van Heyst [Cv91], allow members of a group
to sign on behalf of the group while guaranteeing the properties of authenticity, anonymity, and

1

traceability. The signatures do not reveal the particular identity of the group member who issued
it, however, should the need arise, a special entity called the group manager can trace the signature
back to the signer using some secret information, thus holding the group members accountable for
their signatures. Due to the appealing properties group signatures offer, they have proven to be
useful in many real-life applications including privacy-protecting mechanisms, anonymous online
communication, e-commerce systems, and trusted hardware attestation such as Intel’s SGX.

Since their introduction, numerous constructions of group signatures have been proposed with
different flavors: in the random oracle model [BBS04, CL04, GKV10] or standard model [BMW03,
BW06, Gro07], supporting static groups [BMW03] or dynamic groups [BSZ05, BCC+16], and con-
structions based on various number theoretical assumptions such as strong RSA [ACJT00, CL02],
paring-based [BW06, Gro07], and lattice-based [GKV10, LLLS13]. Despite the vast amount of
research concerning group signatures, in essence all constructions follow the encrypt-then-prove
paradigm presented by Bellare, Micciancio, and Warinschi [BMW03]. To sign on a message, a
group member encrypts its certificate provided by the group manager and then proves in (non-
interactive) zero-knowledge of the fact that the ciphertext is an encryption of a valid certificate
while also binding the message to the zero-knowledge proof.

Thus far, all group signature schemes have relied on non-interactive zero-knowledge (NIZK)
proofs in the proving stage of the encrypt-then-prove paradigm. Since NIZKs for general lan-
guages are implied from (certified doubly enhanced) trapdoor permutations [FLS90, BY93] and
from bilinear maps [GOS06, GS08], group signatures in the standard model are known to exist
from factoring-based and pairing-based assumptions [BMW03, BW06, BW07, Gro07]. In con-
trast, constructions of lattice-based group signatures in the standard model have shown to be
considerably difficult. Since the first lattice-based group signature in the random oracle model
(ROM) proposed by Gordon et al. [GKV10], there has been a rich line of subsequent works
[LLLS13, NZZ15, LNW15, LLM+16a, LLNW16, LNWX18, PLS18], however, all schemes are
only provably secure in the ROM. This situation stems from the notorious fact that lattices are
ill-fit with NIZKs. Although more than a decade has passed since the emergence of lattices, there
is still only one construction of NIZK known in the standard model [PV08], where the language
supported by [PV08] seems unsuitable to devise group signatures. Notably, the open problem
of constructing lattice-based group signatures in the standard model, which has explicitly been
stated in Laguillaumie et al. [LLLS13] for example, has not made any progress in the past decade
or so. Taking prior works on group signatures into consideration, it seems we would require a
breakthrough result for lattice-based NIZKs or to come up with a different approach than the
encrypt-then-prove paradigm to obtain a lattice-based group signature in the standard model.

1.2 Our Contribution

In this paper, we make progress on this problem and give the first construction of group signatures
from lattices in the standard model. Our main result can be stated informally as follows:

Theorem 1 (Informal). Under the hardness of the LWE and SIS problems with polynomial
approximation factors1, there exists a group signature scheme with full-traceability and CCA-
selfless anonymity in the standard model.

We explain the statement in more details in the following. Here, we basically adopt the syn-
tax and the security notions of the group signatures defined by Bellare, Micciancio, and Warin-

1 By LWE and SIS problems with polynomial approximation factors, we mean they are problems which are as
hard as certain worst case lattice problems with polynomial approximation factor.

2

schi [BMW03], which are presumably one of the most widely accepted definitions. Our construc-
tion satisfies the standard notion of full-traceability, which asserts that an adversary cannot forge
a valid signature that can be opened to an uncorrupted user or that cannot be traced to anyone.
As for anonymity, our construction satisfies CCA-selfless anonymity introduced by Camenisch
and Groth [CG05]. The notion of CCA-selfless anonymity is a relaxation of CCA-full anonymity
defined by Bellare et al. [BMW03]. Informally, full-anonymity requires that the adversary cannot
distinguish signatures from two different members even if all the signing keys of the members of
the system are exposed and it has access to an open oracle. On the other hand, CCA-selfless
anonymity requires anonymity to hold only when the signing keys of the two members in question
are not exposed and it has access to an open oracle. While the latter definition is weaker, as dis-
cussed by Camenisch and Groth [CG05], it is sufficient for some natural situations. For example,
consider a situation where an adversary can adaptively corrupt users while the parties cannot
erase the data. In this setting, the former security notion does not buy any more security than
the latter. We emphasize that even with this relaxed security notion, no group signature from
lattices is known in the standard model prior to our work. In particular, regardless of what the
security notion we consider for anonymity, all prior lattice-based constructions required random
oracles.

One potential drawback of the above construction may be that it has rather large public
parameters and signatures, whose sizes grow linearly in the number of users in the system. A
natural question would be whether we can make these sizes independent of the number of users.
As a side contribution, we answer this question affirmatively under a stronger assumption:

Theorem 2 (Informal). Under the hardness of the LWE problem with polynomial approximation
factors and the subexponential hardness of the SIS problem with polynomial approximation factors,
there exists a group signature scheme with full-traceability and CCA-selfless anonymity whose sizes
of the public parameters and signatures are independent of the number of users.

These results are obtained by a generic construction of group signatures from one-time signa-
tures (OTS), secret key encryptions (SKE), and a new primitive which we call indexed attribute-
based signatures (indexed ABS). We require the standard notion of strong unforgeability for the
OTS and it can be instantiated by any existing schemes such as [Moh11]. For the SKE, we re-
quire some special properties. Specifically, we require the SKE to be anonymous in addition to
standard notions of hiding the message. We also require the SKE to have a decryption circuit
with logarithmic depth and the property which we call key-robustness. Intuitively speaking, the
key-robustness requires that the ciphertext spaces corresponding to two random secret keys to
be disjoint with all but negligible probability. Such an SKE with special properties can be in-
stantiated from the standard LWE assumption. The indexed ABS is a relaxation of the standard
notion of ABS, where the setup and key generation algorithms take additional inputs. We require
it to satisfy the security notion that we call co-selective unforgeability and (perfect) privacy. We
show two ways of instantiating the indexed ABS. As for the first instantiation, we provide a con-
struction of an indexed ABS that is proven to have the required security properties under the
standard hardness of the SIS assumption. This instantiation leads us to Theorem 1. As for the
second instantiation, we view the constrained signature scheme by Tsabary [Tsa17] as an indexed
ABS scheme. Using this we obtain Theorem 2. We note that unlike our first instantiation, since
the constrained signature scheme in [Tsa17] does not offer sufficient security properties for our
purpose, we need to utilize complexity leveraging that incurs a subexponential reduction loss to
when constructing our group signature.

3

1.3 Overview of Our Technique

Preprocessing NIZKs. The starting point of our work is the recent breakthrough result of
preprocessing NIZK for NP from lattices in the standard model by Kim and Wu [KW18]. In a
preprocessing NIZK [DMP88], a trusted third party generates a proving key kP and a verification
key kV independently of the statement to be proven and provides kP to the prover and kV to
the verifier. The prover can construct proofs using kP and the verifier can validate the proofs
using kV . Preprocessing NIZKs can be seen as a general form of NIZKs; if both kP and kV
need not be secret, then it corresponds to NIZKs in the common reference string (CRS) model;
if kP can be public but kV needs to be secret, then it corresponds to designated verifier NIZKs
[PsV06, DFN06]. The lattice-based preprocessing NIZK of Kim and Wu [KW18] can be viewed
as a designated prover NIZK (DP-NIZK), where the proving key kP needs to be kept secret but
the verification key kV can be made public.2 Here, the zero-knowledge property of DP-NIZKs
crucially relies on the fact that the verifier does not know the proving key kP .

At first glance, DP-NIZKs seem to be all that we require to construct group signatures. The
trusted group manager provides the user a (secret) proving key kP on time of joining the group
and publicly publishes the verification key kV . This meets the criteria of DP-NIZKs since kP will
be kept secret by the group members and the proofs (i.e., signatures) can be publicly verified.
Therefore, one might be tempted to substitute NIZKs in the CRS model with lattice-based DP-
NIZKs to obtain a lattice-based group signature in the standard model. Unfortunately, this naive
approach is trivially insecure. Specifically, the anonymity will be broken the moment a single
group member becomes corrupt. If the group manager provides the same proving key kP to the
group members, then in case any of the group members become corrupt, kP will be in the hands
of the adversary. As we mentioned above, the zero-knowledge property of DP-NIZKs will break
if the proving key kP is known. An easy fix may be to instead provide proving keys (kP i)i∈I
respectively to each group members i ∈ I and publicly publish the corresponding verification keys
(kV i)i∈I . In this case, even if some of the group members become corrupt, their proving keys will
not affect the zero-knowledge property of the other non-corrupt members using an independent
proving key. However, the problem with this approach is that each proof constructed by a proving
key kP i is implicitly associated with a unique verification key kV i. Since each verification key kV i
is associated to a group member i ∈ I, the adversary can simply check which verification key
accepts the proof (i.e., signature) to break anonymity. Therefore, although DP-NIZKs seem to
be somewhat useful for constructing group signatures, it itself is not sufficient to be a substitute
for NIZKs in the CRS model.

Viewing Attribute-Based Signatures as DP-NIZKs. The problem with the approach using
DP-NIZKs is the following: if we give the same proving key kP to every group member, then
the scheme will be insecure against collusion attacks and if we give different proving keys kP i
individually to each group members, then the scheme will lose anonymity. Therefore, the primitive
we require for constructing group signatures is something akin to DP-NIZKs that additionally
provides us with both collusion resistance and anonymity.

At this point, we would like to draw the attention to attribute-based signatures (ABS)
[MPR11]. In ABS, a signer assigned with an attribute y is provided a signing key sky from
the authority and the signer can anonymously sign a message associated with a policy C using
sky if and only if C(y) = 1. In addition, using the master public key mpk, anybody can verify

2 As mentioned in Section 4 of [KW18], their scheme is only publicly verifiable when considering a slightly weaker
notion of zero-knowledge than the standard notion of zero-knowledge for preprocessing NIZKs. In our work, the
weaker notion suffices.

4

the signature regardless of who signed it. The first requirement of an ABS, which captures un-
forgeability, is that any collusion of signers with attributes (yi)i∈I cannot forge a signature on a
message associated with a policy C if C(yi) = 0 for all i ∈ I. The second requirement, which
captures anonymity, is that given a valid signature on a message associated with a policy C,
the attribute y that was used to sign the message must remain anonymous. Namely, signatures
generated by sky0 and sky1 are indistinguishable if C(y0) = C(y1) = 1. Looking at the similarity
between DP-NIZKs and ABS, it is tempting to view a witness w as an attribute y and to set the
proving key kP as the ABS signing key skw. To prove that w is a valid witness to the statement
x, i.e., (x,w) ∈ R for the NP relation R, the prover first prepares a circuit Cx(w) := R(x,w)
that has the statement x hard-wired to it. Then the prover signs some message associated with
the policy Cx using its proving key kP = skw and outputs the signature as the proof π. The
verifier can publicly verify the proof π by checking whether or not the signature is valid. At a
high level, the soundness of the proof system would follow from the unforgeability of ABS and
the zero-knowledge property would follow from the anonymity of ABS. Furthermore, our initial
motivation of satisfying collusion resistance and anonymity is met by the properties of ABS; even
if the proving keys (kP i = skwi)i∈I are compromised, it cannot be used to prove a statement x
such that R(x,wi) = 0 for all i ∈ I and the proofs constructed by different proving keys are
indistinguishable from one another since the single mpk can be used to check the validity of all
proofs (unlike the above case where unique verification keys kV i were assigned to each proving
keys kP i).

Constructing Groups Signatures from ABS. While the idea of viewing ABS as some variant
of DP-NIZK seems to be a great step forward, the question of how to use it to construct a group
signature remains. Let us come back to the basic but powerful encrypt-then-prove paradigm of
Bellare et al. [BMW03]. Recall that with this approach, the group manager issues a certificate
to each group member i ∈ I and publishes a public key for a public-key encryption scheme. To
sign, a group member i encrypts its certificate as cti under the public key of the group manager
and creates a NIZK proof of the fact that cti encrypts the certificate. Observe that each group
member i implicitly constructs a member-specific statement xi = cti when generating the NIZK
proof and sets the pair of certificate and the randomness used to create cti as the witness wi.
Traceability follows since each statement xi encrypts the identity of the signer and the group
manager who holds the secret key can decrypt them. Anonymity of the group signature is also
intact even though the statement xi used by each group member is different, due to the semantic
security of the underlying public-key encryption scheme. Now, let us look at the above approach
through the lens of NIZK-like ABSs: The group manager issues a certificate and an ABS signing
key skwi for some witness wi to each group member i ∈ I, and to sign, a group member i encrypts
its certificate as cti under the public key of the group manager and uses the ABS signing key
skwi to create an ABS signature for some policy Cxi which serves as a NIZK proof of the fact
that cti encrypts the certificate. In order for this approach to work, the witness (i.e., attribute)
embedded to the ABS signing key skwi must be an accepting input to the policy Cxi which has
the statement xi = cti hard-wired. Although it may be not obvious at first glance, as a matter
of fact, this approach is impossible! Notably, the group manager cannot prepare in advance a
witness wi to a statement xi that will be chosen by the group member at the time of signing.
Recall that the witness wi to xi = cti was the certificate and the randomness used to create cti.
The group manager can embed in the ABS signing key a certificate but not the randomness since
there is no way to not know what kind of randomness will be used to generate the ciphertext by
the group member beforehand. Therefore, to use the ABS as a type of NIZK proof system, we
must devise a mechanism for constructing statements xi while keeping the witness wi fixed once

5

and for all at the time of preparation of the ABS signing key.
This brings us to our final idea. To overcome the above problem, we embed the group member

identifier i ∈ I and a key Ki of a secret key encryption scheme to the ABS signing key ski||Ki .
We then construct the statements xi so that i and Ki can be reused as the fixed witness.3 The
following is the high-level construction of our group signature.

-GS.KeyGen: The group manager provides user i ∈ I with a key Ki of an SKE scheme and an
ABS signing key ski||Ki where the string i||Ki is interpreted as an attribute.

-GS.Sign: To sign on a message M, the group member i ∈ I prepares a ciphertext cti ←
SKE.Enc(Ki, i), views the statement xi as cti, and prepares a circuit Cxi with the state-
ment xi hard-wired such that Cxi(i||Ki) := (i ∈ I) ∧ (i = SKE.Dec(Ki, cti)). Then using
ski||Ki , it runs the ABS signing algorithm on message M with Cxi as the policy. The signature
is Σ = (σABS, cti).

-GS.Vrfy: To verify a signature Σ = (σABS, ct), it prepares the circuit Cct(z||y) := (z ∈ I) ∧ (z =
SKE.Dec(y, ct)) and runs the ABS verification algorithm with message M, signature σABS
and policy Cct.

-GS.Open: To trace a signer from a signature Σ = (σABS, ct), the group manager uses the secret
keys (Ki)i∈I to extract the group member identifier from the ciphertext ct.

It can be checked that the scheme is correct. If the ciphertext cti encrypts i ∈ I, then ski||Ki can be
used to construct a signature for the policy Cxi where xi = cti. We briefly sketch the traceability
and anonymity of our group signature. First, traceability holds from the key robustness of the
SKE scheme and the unforgeability of the ABS scheme. The former property states that the
ciphertext space of a different set of secret keys must be disjoint. In particular, this implies that
the set of statements xi = cti (i.e., languages) constructed by each group member will be disjoint.
Therefore, since this also implies that the set of policies Cxi used by each group members will be
disjoint, it allows us to reduce the problem of traceability to the unforgeability of the underlying
ABS scheme. We note that although key robustness may be a non-standard property to consider
for SKE schemes, it is an easy property to satisfy. Second, anonymity holds from the anonymity
and semantic security of the SKE scheme and the anonymity of the ABS scheme. Here, anonymity
of an SKE scheme informally states that the ciphertext does not leak what secret key was used
to construct it. Specifically, if there were two ciphertexts, it must be difficult to tell whether they
are an encryption under the same key or two different keys. These two properties allow us to
argue that the ciphertext cti leaks no information of the group member identity. Furthermore,
the anonymity of the ABS scheme ensures that σABS does not leak the group member identity as
well. Hence the signature σ = (σABS, cti) remains anonymous.

Interestingly, our construction does not need to explicitly rely on “certificates” anymore as
was done in prior constructions. This is because the signing key ski||Ki is not only a proving key
for the NIZK proof system, but also implicitly a certificate. In particular, since the ABS can be
viewed as a variant of designated prover NIZKs, the fact that a signer was able to construct a
valid signature implicitly implies that the signer was certified by the group manager. Therefore,
there is no need for adding another layer of certificate to our construction as was done in previous
group signature constructions. Finally, we point out in advance that our actual construction

3 Our core idea of fixing the witness can also be realized by instead embedding i ∈ I and a (weak) PRF seed
into the ABS signing key, and using a public key encryption scheme. We provide detailed discussions on our choice
of using SKEs in Remark 5.

6

in Section 4 is more complicated than the above high-level structure due to the fact that we
additionally capture CCA anonymity rather than only CPA anonymity. In CCA anonymity, the
adversary is further provided with an open oracle that opens (i.e., traces) a signature to a signer.
Since in the security proof, the reduction algorithm will no longer hold the opening key and
must simulate the open oracle on its own, extra complications are incurred compared to the CPA
anonymity setting where there is no such open oracle. This situation is analogous to the difference
between CPA and CCA-encryption schemes.

To the knowledgeable readers, we remark that the above idea is similar to those of Kim and
Wu [KW18] for constructing DP-NIZKs. In particular, the way we embed a key of an SKE scheme,
rather than the witness, to the ABS signing key is analogous to the way [KW18] embeds the key
of an SKE scheme to a signature of a homomorphic signature scheme [GVW15]. Notably, both
schemes crucially rely on the fact that once some private information has been embedded into
an ABS signing key (resp. a homomorphic signature), the signing key (resp. signature) can be
reused to generate proofs for arbitrary statements.

Constructing ABS with the Desired Properties. We now change the discussion on how to
instantiate the above generic construction. Since we can instantiate SKEs through a combination
of relatively standard techniques, we focus on how to instantiate ABSs from lattices in this
overview. A natural way of instantiating the ABS required in our GS construction would be
to use the ABS scheme proposed by Tsabary [Tsa17] proven secure under the SIS assumption,
which is the only known ABS construction from lattices.4 In their paper, two ABS schemes are
proposed. The first scheme is constructed from homomorphic signatures and the second is a direct
construction. We focus on the second construction here, because the anonymity notion achieved
by the first scheme is not sufficient for our purpose.5 In fact, even the latter scheme does not
provide a sufficient security notion that is required for our purpose, namely, for the proof of full-
traceability. While Tsabary’s ABS scheme achieves selective unforgeability where the adversary is
forced to declare its target policy with respect to which it will forge a signature at the beginning
of the security game, we require the ABS to be unforgeable even if the adversary is allowed to
adaptively choose its target policy. The necessity of the adaptiveness of the target policy can be
seen by recalling that a forgery in the full-traceability game is of the form Σ? = (σ?ABS, ct

?), where
ct? is an adaptively chosen ciphertext that specifies the target policy Cct? . An easy way to resolve
this discrepancy is to assume the subexponential hardness of the SIS problem and prove that
Tsabary’s scheme is adaptively unforgeable via complexity leveraging [BB04b]. This approach
leads us to Theorem 2.

Though the above approach works, it incurs a subexponential security loss, which is not
desirable. At first glance, one may think that the underlying ABS must be adaptively unforgeable
to be used in our generic GS construction; an adversary can adaptively make arbitrary many key
queries and signing queries, and generate a forgery depending on the answers which it gets from
these queries. Unfortunately, the only known construction of a lattice-based ABS scheme in the
standard model with such a strong security property is provided by complexity leveraging as
described above. However, a more careful observation reveals that we do not actually require
the full power of adaptive unforgeability. First, the ABS scheme does not have to support an

4 Actually, the paper proposes constructions of constrained signature (CS), which is a slightly different primitive
from ABS. However, this primitive readily implies ABS.

5More specifically, the first scheme only achieves a so-called weakly-hiding property, where the key attribute is
not leaked from a signature, but two signatures that are signed by the same user can be linked. Translated into
the setting of group signature, this allows an adversary to link two different signatures by the same user, which
trivially breaks anonymity.

7

unbounded number of signing keys since the number of members in the group signature is fixed
at setup in the static setting. Furthermore, we can relax the syntax of the ABS so that the key
generation algorithm takes a user index i as an additional input, since each signing key in the group
signature is associated with a user index. Finally, we can relax the unforgeability requirement
of the ABS so that the adversary is forced to make all the key queries at the beginning of the
security game while the target policy associated with the forgery can be chosen adaptively. We
call this security notion co-selective unforgeability, since this is somewhat dual to the selective
unforgeability notion where the key queries can be adaptive but the target policy is required to
be declared at the beginning of the game.

Indeed, co-selective unforgeability is enough for instantiating our generic GS construction,
because, in the construction the attributes hardwired to the signing keys of the ABS are {i‖Ki}
independent from the public parameter of the ABS and can be chosen at the outset of the security
game. With this observation in mind, we define a relaxed version of ABS which we call indexed
ABS and provide a construction which does not resort to complexity leveraging.

Constructing Indexed ABS. Our starting point is the observation made by Tsabary [Tsa17],
who showed that a homomorphic signature scheme can be viewed as a very weak form of an ABS
scheme. In light of this observation, we can view the fully homomorphic signature scheme by
Gorbunov, Vaikuntanathan, and Wichs [GVW15] as a single-user ABS scheme. In the scheme,
the master public key is of the form mpk = (A, ~B = [B1‖ · · · ‖Bk]) where A and Bi are random
matrices over Zn×mq and a secret key skx for an attribute x ∈ {0, 1}k is a matrix with small entries
~R = [R1‖ · · · ‖Rk] such that ~B = A~R + x ⊗ G, where G is the special gadget matrix whose
trapdoor is publicly known. To sign on a policy F : {0, 1}k → {0, 1} and a message M, the signer
uses the homomorphic evaluation algorithms [BGG+14, GV15] to compute matrices RF and BF

such that BF = ARF + F (x)G from skx, where RF is a matrix with small entries and BF is a
publicly computable matrix. When F (x) = 1, the signer can compute the trapdoor for the matrix
[A‖BF] from RF using the technique of [ABB10a, MP12] and sample a short vector eF from
a Gaussian distribution such that [A‖BF]eF = 0 using the trapdoor. The signature on (F,M)
is the vector eF . It can be seen that eF does not leak information of x, since the distribution
from which it is sampled only depends on the master public key and F . Furthermore, the scheme
satisfies a relaxed version of the co-selective unforgeability, where the adversary can corrupt a
single user but is not allowed to make signing queries. To see this, let us assume that there is an
adversary who chooses x at the beginning of the game and generates a forgery eF ? for F ? such
that F ?(x) = 0 given (mpk, skx). Then, we can solve the SIS problem using this adversary. The
reduction algorithm is given a matrix A as the problem instance of SIS and x from the adversary.
It then sets ~B = A~R + x⊗G and gives skx := ~R to the adversary at the beginning of the game.
For the forgery eF ? output by the adversary, we have [A‖BF ?]eF ? = 0. Since BF ? = ARF ? ,
we can extract a short vector z := [I‖RF ?]e such that Az = 0, which is a solution to the SIS
problem.

There are two problems with this scheme. First, the scheme can only support a single user,
whereas we need a scheme to support multiple users. It can be seen that the security of the above
scheme can be broken in case the adversary obtains the keys of two different users. Second, the
unforgeability of the scheme is broken once the adversary is given an access to a signing oracle.
Indeed, a valid signature for a policy-message pair (F,M) is also valid for (F,M′) with different
M′ 6= M, since the above signing and verification algorithms simply ignore the messages M. In
other words, the message is not bound to the signature.

We first address the former problem. In order to accommodate multiple users in the system,
we change the master public key of the scheme to be (A, {~B(i)}i∈[N]), where N is the number of

8

users. The secret key for a user i and an attribute x(i) is R(i) such that ~B(i) = A~R(i) + x(i) ⊗G.

To sign on a message, the user i first computes the trapdoor for [A‖B(i)
F] similarly to the above

single-user construction. It then extends the trapdoor for the matrix [A‖B(1)
F ‖ · · · ‖B

(N)
F] using

the trapdoor extension technique [CHKP10]. Then, it samples a short vector eF from a Gaussian

distribution such that [A‖B(1)
F ‖ · · · ‖B

(N)
F]eF = 0. It can be observed that eF does not reveal the

attribute x nor the user index i since the distribution from which it is sampled only depends on
the master public key and F . Note that the trapdoor extension step is essential for hiding the
user index i. We can prove unforgeability for the scheme similarly to the single-user case. A key
difference here is that, since there are now N matrices in the master public key, we can embed
up to N user attributes {x(i)}i∈[N] into the master public key as B(i) = AR(i) + x(i) ⊗G.

Next, we address the latter problem. We apply the classic OR-proof technique [FLS90] and
show that a scheme that is unforgeable only when the adversary cannot make signing queries can
be generically converted into a scheme that is unforgeable even when the adversary can make
signing queries. To do so, we introduce a dummy user that is not used in the real system. In the
security proof, the signing queries are answered using the signing key of the dummy user. In order
to enable this proof strategy, a näıve approach would be to change the scheme so that in order to
sign on (F,M), the signer signs on a modified new policy F ′, which on input x ∈ {0, 1}k outputs
F (x) and outputs 1 on input a special symbol. Then, we associate the attribute of the dummy
user with the special symbol. By the privacy property of the original (no signing query) ABS, the
fact that the signing queries are answered using the dummy key instead of the key specified by the
adversary will be unnoticed. A problem with this approach is that since the reduction algorithm
has the secret key associated with the special symbol, it can sign on any message and policy.
Namely, any forgery output by the adversary will not be useful for the reduction algorithm since
it could have constructed it on its own to begin with. To resolve this problem, we partition the
space of all possible message-policy pairs into two sets, the challenge set and the controlled set,
using an admissible hash [BB04a, FHPS13]. Then, we associate the dummy key with an attribute
that can sign on any pair in the controlled set, but not on the challenge set. We then hope that the
adversary outputs the pair that falls into the challenge set, which allows us to successfully finish
the reduction. By the property of the admissible hash, this happens with noticeable probability
and we can prove the security of the resulting scheme.

1.4 Related Works

Different Models of Group Signatures. One can classify group signatures in a few types of
models. The largest distinctions are whether the group signature is static or dynamic and whether
it achieves selfless-anonymity or full-anonymity. If the group signature allows the members of a
group to dynamically change, then it is dynamic. Otherwise, it is static. Furthermore, it is called
fully-anonymous when a member’s signing key is exposed and it is still impossible to tell which
signatures are made by the member in question. It is called selfless-anonymous when anonymity
of the signature holds only when the signing key of the member in question is not exposed.

The first proper security model introduced by Bellare et al. [BMW03] defines a static group
signature with full-anonymity. Later Camenisch and Groth [CG05] introduced the weaker notion
of selfless-anonymity to the model of [BMW03]. Soon after, Bellare et al. [BSZ05] and Kiayias
and Yung [KY06] independently extended the prior definitions to the dynamic setting. Other
than these two distinctions, group signatures are enriched with many other useful properties such
as verifier local revocation [BS04], message-dependent-opening [SEH+13], and opening soundness
[SSE+12]. Although there are various types of models of group signatures, so far, there exists no

9

lattice-based group signature in the standard model for any of them.

Group Signatures from Different Assumptions. The first group signature in the standard
model was proposed by Bellare et al. [BMW03]. They showed that (doubly enhanced) trapdoor
permutations suffice for constructing group signatures; (doubly enhanced) trapdoor permutations
is known to imply NIZKs [FLS90, BY93, Gol04]. In particular their results imply group signatures
from factoring-based assumptions. From a theoretical aspect, Camenisch and Groth [CG05],
showed that group signatures schemes are implied from the existence of one-way functions and
NIZKs for general NP languages.6 Since such NIZKs are implied from the existence of one-way
functions in the ROM [Rom90, Nao91, PsV06], their results show that one-way functions imply
group signatures in the ROM. Constructions of pairing-based group signatures in the standard
model were proposed by Boyen and Waters [BW06, BW07] and Groth [Gro07], where they relied
on the Groth-Sahai methodology [GS08] for designing NIZKs in the standard model for specific
languages involving elements over bilinear groups. The first construction of lattice-based group
signatures in the ROM from lattices were proposed by Gordon et al. [GKV10]. Subsequent works
[LLLS13, NZZ15, LNW15, LLNW16, PLS18] proposed simpler and more efficient solutions. The
recent work of Ling et al. [LNWX18] constructs a group signature where the parameters of
the scheme are independent of the number of group members. Group signatures in the dynamic
setting were proposed by Libert et al. [LLM+16b] and extended by Ling et al. [LNWX17]. Lattice-
based group signatures with other types of properties such as verifier local revocation [LLNW14]
and message-dependent opening [LLNW16] have also been constructed. All the lattice-based
group signatures are proved secure in the ROM using the Fiat-Shamir heuristic [FS87]. Finally,
Bellare and Fuchsbauer [BF14] proposed the notion of policy-based signatures and showed that
policy-based signatures supporting NP-relations imply group signatures. We note that although
Tsabaray [Tsa17] constructs policy-based signatures, they cannot be used to construct group
signatures since their scheme only supports relations in P and not NP.

1.5 Independent Work and Open Problems

After our paper was accepted to Eurocrypt 2019, Peikert and Shiehian [PS19] posted a paper
on ePrint Archive that finally closed the long-standing open problem of constructing NIZK proof
system for any NP language from the LWE assumption. Their idea builds on the recent line
of works that realize the Fiat-Shamir paradigm [FS87] in the standard model [CCR16, KRR17,
CCRR18, HL18, CCH+19] using correlation-intractable hash functions. Notably, the result of
[PS19] combined with [CG05] immediately recovers our main result, that is, the construction
of selfless anonymous group signature from lattices. Moreover, [PS19] combined with [BMW03]
yields a fully anonymous group signature scheme, whereas, we do not see how to realize this with
our framework.

However, on the other hand, our framework enables constructions of selfless-anonymous group
signatures from several assumptions that are not covered by a simple combination of [PS19] and
[CG05]. For example, we obtain selfless-anonymous group signatures from (1) the LPN assumption
with constant noise rate and the SIS assumption with polynomial approximation factors or (2)
the SIS assumption with subexponential approximation factors. We refer to Sec. 7 for the details.
The main difference between our framework and the generic approach of using NIZK system of
[PS19] is that the former can avoid the potentially stronger LWE assumption whereas the latter

6 We note that the security model of the achieved group signature is slightly weaker than that of [BMW03], i.e.,
it satisfies selfless-anonymity but not full-anonymity.

10

cannot. We leave it as an open problem to construct fully anonymous group signature solely from
the SIS assumption.

2 Preliminaries

Notations. For an algorithm A that takes as input x and randomness r, “y ∈ A(x)” means
Prr[y

′ = y : y′ ← A(x; r)] > 0. We denote by “⊕” the (bit-wise) exclusive-or operation. For
matrices A1 and A2 that have the same number of rows, [A1‖A2] denotes their horizontal con-
catenation. For an integer q, we assume that an element in Zq is represented by an integer in
(−q/2, q/2]. A function f(·) : N→ [0, 1] is said to be negligible if for all polynomials p(·) and all
sufficiently large κ ∈ N, we have f(κ) < 1/p(κ). The function f is noticeable when there exists
a polynomial p(·) such that we have f(κ) ≥ |1/p(κ)| for all sufficiently large κ. Throughout the
paper, we use “κ” to denote a security parameter (which is given to algorithms always in the
unary form 1κ). We denote by “poly(·)” an unspecified integer-valued positive polynomial of κ
and by “negl(κ)” an unspecified negligible function of κ.

2.1 Group Signature

Here, we adopt the definition of group signature schemes from the work of Bellare, Micciancio,
and Warinschi [BMW03], with the relaxation regarding the anonymity suggested by Camenisch
and Groth [CG05].

Syntax. Let {Mκ}κ∈N be a family of message spaces. In the following, we occasionally drop
the subscript and simply write M when the meaning is clear. A group signature (GS) scheme is
defined by the following algorithms:

GS.KeyGen(1κ, 1N)→ (gpk, gok, {gski}i∈[N]): The key generation algorithm takes as input the se-
curity parameter κ and the number of users N both in the unary form and outputs the
group public key gpk, the opening key gok, and the set of user secret keys {gski}i∈[N].

GS.Sign(gpk, gski,M)→ Σ: The signing algorithm takes as input the group public key gpk, the i-
th user’s secret key gski (for some i ∈ [N]), and a message M ∈Mκ and outputs a signature
Σ.

GS.Vrfy(gpk,M,Σ)→ > or ⊥: The verification algorithm takes as input the group public key gpk,
the message M, and a signature Σ and outputs > if the signature is deemed valid and ⊥
otherwise.

GS.Open(gpk, gok,M,Σ)→ i or ⊥: The opening algorithm takes as input the group public key
gpk, the opening key gok, a message M, a signature Σ and outputs an identity i or the
symbol ⊥.

For GS, we require correctness, CCA-selfless anonymity, and full traceability.

Correctness. We require that for all κ, N ∈ poly(κ), (gpk, gok, {gski}i∈[N]) ∈ GS.KeyGen(1κ, 1N),
i ∈ [N], M ∈Mκ, and Σ ∈ GS.Sign(gpk, gski,M), GS.Vrfy(gpk,M,Σ) = > holds.

Full Traceability. We now define the full traceability for GS scheme. This security notion is
defined by the following game between a challenger and an adversary A. During the game, the
challenger maintains lists Q and T , which are set to be empty at the beginning of the game.

11

Setup: At the beginning of the game, the challenger runs GS.KeyGen(1κ, 1N)→ (gpk, gok, {gski}i∈[N])
and gives (1κ, gpk, gok) to A.

Queries: During the game, A can make the following two kinds of queries unbounded polynomi-
ally many times.

- Corrupt Query: Upon a query i ∈ [N] from A, the challenger returns gski to A. The
challenger also adds i to T .

- Signing Queries: Upon a query (i,M) ∈ [N]×Mκ from A, the challenger runs GS.Sign(gpk,
gski,M)→ Σ and returns Σ to A. The challenger adds (i,M) to Q.

Forgery: Eventually, A outputs (M?,Σ?) as the forgery. We say that A wins the game if:

1. GS.Vrfy(gpk,M?,Σ?)→ >, and

2. either of the following conditions (a) or (b) is satisfied:

(a) GS.Open(gpk, gok,M?,Σ?) = ⊥,

(b) GS.Open(gpk, gok,M?,Σ?) = i? 6∈ T ∧ (i?,M?) 6∈ Q.

We define the advantage of an adversary to be the probability that the adversary A wins, where
the probability is taken over the randomness of the challenger and the adversary. A GS scheme
is said to satisfy full traceability if the advantage of any PPT adversary A in the above game is
negligible for any N = poly(κ).

CCA-Selfless Anonymity. We now define CCA-selfless anonymity for a GS scheme. This
security notion is defined by the following game between a challenger and an adversary A.

Setup: At the beginning of the game, the adversary A is given 1κ as input and sends i?0, i
?
1 ∈ [N]

to the challenger. Then the challenger runs GS.KeyGen(1κ, 1N)→ (gpk, gok, {gski}i∈[N]) and
gives (gpk, {gski}i∈[N]\{i?0,i?1}) to A.

Queries: During the game, A can make the following two kinds of queries unbounded polynomi-
ally many times.

- Signing Queries: Upon a query (b,M) ∈ {0, 1} × Mκ from A, the challenger runs
GS.Sign(gpk, gski?b ,M)→ Σ and returns Σ to A.

- Open Queries: Upon a query (M,Σ) from A, the challenger runs GS.Open(gpk, gok,M,Σ)
and returns the result to A.

Challenge Phase: At some point, A chooses its target message M?. The challenger then samples
a secret coin coin

$← {0, 1} and computes GS.Sign(gpk, gski?coin ,M
?)→ Σ?. Finally, it returns

Σ? to A.

Queries: After the challenge phase, A may continue to make signing and open queries unbounded
polynomially many times. Here, we add a restriction that A cannot make an open query for
(M?,Σ?).

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say that the adversary A wins the game if ĉoin = coin. We define the advantage of an adversary
to be |Pr[A wins] − 1/2|, where the probability is taken over the randomness of the challenger
and the adversary. A GS scheme is said to be CCA-selfless anonymous if the advantage of any
PPT adversary A is negligible in the above game for any N = poly(κ).

12

Remark 1. Note that the above security definition is slightly different from the selfless anonymity
notion defined by Camenisch and Groth [CG05]. In their definition, the adversary is allowed to
adaptively choose the targets and corrupt the users other than the targets. Since the number of
users N is polynomially bounded, it can easily be shown that these security definitions are actually
equivalent by a straightforward reduction that simply guesses i?0 and i?1 at the beginning of the game
and aborts if the guess turns out to be incorrect. We use the above definition because it is simpler
and handy.

2.2 Secret Key Encryption and Other Primitives

We will use some cryptographic primitives such as secret key encryptions (SKE) and one-time
signatures (OTS) to construct a GS scheme. The definitions of these primitives will appear in
Appendix A. Since we require an SKE to have some non-standard properties, we provide a brief
explanation here. We require key robustness, which intuitively says that the ciphertext spaces cor-
responding to two random secret keys are disjoint with all but negligible probability. In addition,
we require SKE to satisfy INDr-CCA security, which stipulates that a ciphertext is indistin-
guishable from a pseudorandom ciphertext that is publicly samplable, even if the distinguisher is
equipped with a decryption oracle.

2.3 Admissible Hash Functions

Here, we define the notion of admissible hash, which was first introduced by [BB04a]. We follow
the definition of [FHPS13, BV15] with minor changes.

Definition 1. Let ` := `(κ) and `′ := `′(κ) be some polynomials. We define the function WldCmp :
{0, 1}` × {0, 1}` × {0, 1}` → {0, 1} as

WldCmp(y, z, w) = 0⇔ ∀i ∈ [`]
(
(yi = 0) ∨ (zi = wi)

)
where yi, zi, and wi denote the i-th bit of y, z, and w respectively. Intuitively, WldCmp is a
string comparison function with wildcards where it compares z and w only at those points where
yi = 1. Let {Hκ : {0, 1}`′(κ) → {0, 1}`(κ)}κ∈N be a family of hash functions. We say that {Hκ}κ
is a family of admissible hash functions if there exists an efficient algorithm AdmSmp that takes
as input 1κ and Q ∈ N and outputs (y, z) ∈ {0, 1}` × {0, 1}` such that for every polynomial Q(κ)
and all X?, X(1), . . . X(Q) ∈ {0, 1}`′(κ) with X? 6∈ {X(1), . . . , X(Q)}, we have

Pr
(y,z)

[
WldCmp(y, z,H(X?)) = 0 ∧

(
WldCmp(y, z,H(X(j))) = 1 ∀j ∈ [Q]

)]
≥ ∆Q(κ),

for a noticeable function ∆Q(κ), where the probability above is taken over the choice of (y, z)
$←

AdmSmp(1κ, Q).

As shown in previous works [Lys02, FHPS13], a family of error correcting codes {Hκ :
{0, 1}`′(κ) → {0, 1}`(κ)}κ∈N with constant relative distance c ∈ (0, 1/2) is an admissible hash
function. Explicit and efficient constructions of such codes are given in [SS96, Zém01, Gol08] to
name a few.

13

3 Indexed Attribute-Based Signatures

In this section, we define the syntax and the security notion of indexed attribute-based signature
(indexed ABS). We require indexed ABS to satisfy unforgeability and privacy. For the former, we
consider two kinds of security notions that we call co-selective unforgeability and no-signing-query
unforgeability. While the latter notion of unforgeability is weaker, we will show that an indexed
ABS scheme that only satisfies this weaker security notion can be converted into a scheme with
the stronger security notion without loosing privacy.

3.1 Indexed Attribute-Based Signature

Syntax. Let {Cκ}κ∈N be a family of circuits, where Cκ is a set of circuits with domain {0, 1}k(κ)

and range {0, 1}, and the size of every circuit in Cκ is bounded by poly(κ). Let also {Mκ}κ∈N
be a family of message spaces. In the following, we occasionally drop the subscript and simply
write C and M when the meaning is clear. An indexed attribute-based signature (indexed ABS)
scheme for the circuit class C is defined by the following algorithms:

ABS.Setup(1κ, 1N)→ (mpk,msk): The setup algorithm takes as input the security parameter κ
and the bound on the number of users N both in the unary form and outputs the master
public key mpk and the master secret key msk.

ABS.KeyGen(msk, i, x)→ skx: The key generation algorithm takes as input the master secret key
msk, the user index i ∈ [N], and the attribute x ∈ {0, 1}k and outputs the user secret key
skx. We assume that i and x are implicitly included in skx.

ABS.Sign(mpk, skx,M, C)→ σ: The signing algorithm takes as input the master public key mpk,
the secret key skx associated to x, a message M ∈ Mκ, and a policy C ∈ Cκ and outputs
the signature σ.

ABS.Vrfy(mpk,M, C, σ)→ > or ⊥: The verification algorithm takes as input the master public
key mpk, a message M, a policy C, and a signature σ. It outputs > if the signature is
deemed valid and ⊥ otherwise. We assume that the verification algorithm is deterministic.

We require correctness, privacy, and co-selective unforgeability.

Correctness. We require correctness: that is, for all κ, N ∈ poly(κ), (mpk,msk) ∈ ABS.Setup(1κ, 1N),
i ∈ [N], x ∈ {0, 1}k, C ∈ Cκ such that C(x) = 1, M ∈ Mκ, skx ∈ ABS.KeyGen(msk, i, x), and
σ ∈ ABS.Sign(mpk, skx,M, C), ABS.Vrfy(mpk,M, C, σ) = > holds.

Perfect Privacy. We say that the ABS scheme has perfect privacy if for all κ, N ∈ poly(κ),

(mpk,msk) ∈ ABS.Setup(1κ, 1N), x0, x1 ∈ {0, 1}k, i0, i1 ∈ [N], C ∈ Cκ satisfying C(x0) = C(x1) =
1, M ∈ M, skx0 ∈ ABS.KeyGen(msk, i0, x0), and skx1 ∈ ABS.KeyGen(msk, i1, x1), the following
distributions are the same:

{σ0
$← ABS.Sign(mpk, skx0 ,M, C)} ≈ {σ1

$← ABS.Sign(mpk, skx1 ,M, C)}.

Co-Selective Unforgeability. We now define the co-selective unforgeability for ABS scheme.
This security notion is defined by the following game between a challenger and an adversary A.
During the game, the challenger maintains a list Q, which is set to be empty at the beginning of
the game.

14

Key Queries: At the beginning of the game, the adversary A is given 1κ as input. It then sends
1N , {(i, x(i))}i∈[N], and S ⊆ [N] such that x(i) ∈ {0, 1}k for all i ∈ [N] to the challenger.

Setup: The challenger runs ABS.Setup(1κ, 1N) → (mpk,msk) and ABS.KeyGen(msk, i, x(i)) →
skx(i) for i ∈ [N]. It then gives mpk and {skx(i)}i∈[S] to A.

Signing Queries: During the game, A can make signing queries unbounded polynomially many
times. When A queries (M, C, i) such that M ∈ M, C ∈ C, i ∈ [N], and C(x(i)) = 1, the
challenger runs ABS.Sign(mpk, skx(i) ,M, C) → σ and returns σ to A. The challenger then
adds (M, C) to Q.

Forgery: Eventually, A outputs (M?, C?, σ?) as the forgery. We say that A wins the game if:

1. C? ∈ C,
2. ABS.Vrfy(mpk,M?, C?, σ?)→ >,

3. C?(x(i)) = 0 for i ∈ S,

4. (M?, C?) 6∈ Q.

We define the advantage of the adversary to be the probability that the adversary A wins in the
above game, where the probability is taken over the coin tosses made by A and the challenger.
We say that a scheme satisfies co-selective unforgeability if the advantage of any PPT adversary
A in the above game is negligible in the security parameter.

No-Signing-Query Unforgeability. We now define a weaker definition of unforgeability. We
define the no-signing-query unforgeability game by modifying the co-selective unforgeability game
above by adding some more restrictions on A. Namely, we prohibit A from making any signing
queries and require S 6= ∅. We do not change the winning condition of the game and define the
advantage of A as the probability that A wins. Note that Item 4 becomes vacuous because we
will always have Q = ∅. We say that a scheme satisfies no-signing-query unforgeability if the
advantage of any PPT adversary A in the game is negligible.

Here, we provide some remarks on the syntax and the security definitions of indexed ABS.

Remark 2 (Comparing indexed ABS with standard ABS). The syntax of the indexed ABS is
a relaxation of the standard ABS [MPR11, OT11, SAH16]: the setup algorithm takes 1N as an
additional input and the key generation algorithm takes an index i as an additional input. It is
easy to check that standard ABS can be used as indexed ABS by simply ignoring the additional
inputs.

Remark 3 (Co-selective Unforgeability v.s. Selective Unforgeability). Here, we briefly compare
co-selective unforgeability defined for indexed ABS with selective unforgeability [HLLR12, Tsa17]
defined for (standard) ABS. They are in some sense dual notions and are incomparable. Concern-
ing the signing key queries, the latter is a stronger notion since an adversary can adaptively make
unbounded number of signing key queries, whereas in the former the adversary must make all the
signing key queries before seeing mpk. On the other hand, concerning the target policy which an
adversary makes a forgery on, the former is a stronger security definition since an adversary can
choose its target C? adaptively, where as in the latter an adversary must declare its target before
seeing mpk.

15

Remark 4 (Regarding No-Signing-Query Unforgeability). We note that the no-signing-query
security is a very weak security notion. Notably, it may be possible for A to forge a signature
(M′, C, σ′) such that C(x(i)) = 0 for i ∈ S and M′ 6= M, if A were to obtain a valid message-
signature pair (M, C, σ) via a signing query (which we prohibit in the definition). In fact, the
signing and the verification algorithms of our ABS scheme proposed in Sec. 5.2 ignores completely
the message being input and our ABS scheme is vulnerable to such an attack. However, as we
show in Sec. 3.2, an indexed ABS scheme that satisfies the no-signing-query unforgeability can be
generically converted into a scheme that satisfies the stronger co-selective security.

3.2 From No-Signing-Query Unforgeability to Co-selective Unforgeability

Here, we show that an indexed ABS scheme ABS = (ABS.Setup,ABS.KeyGen,ABS.Sign,ABS.Vrfy)
that is no-signing-query unforgeable can be generically converted into a new indexed ABS scheme
ABS′ = (ABS′.Setup,ABS′.KeyGen,ABS′.Sign,ABS′.Vrfy) that is co-selective unforgeable. If ABS
is perfectly private, so is ABS′. To enable the resulting scheme ABS′ to deal with function class
C = {Cκ}κ∈N, where Cκ is a set of circuits C such that C : {0, 1}k(κ) → {0, 1}, we require ABS to
be able to deal with a (slightly) more complex function class F = {Fκ}κ∈N. We define Fκ as

Fκ =
{
F [M̃, C] : {0, 1}k(κ)+2`(κ)+1 → {0, 1}

∣∣∣ M̃ ∈ {0, 1}`(κ), C ∈ Cκ
}
, (1)

where F [M̃, C] is defined in Fig. 1. We assume that the circuit F [M̃, C] is deterministically
constructed from M̃ and C in a predetermined way. Let {Hκ}κ be a family of collision resistant
hash functions where an index h ∈ Hκ specifies a function h : {0, 1}∗ → {0, 1}`′(κ), where {0, 1}`′(κ)

is the input space of an admissible hash function Hκ : {0, 1}`′(κ) → {0, 1}`(κ). We construct ABS′

as follows.

ABS′.Setup(1κ, 1N) : It runs ABS.Setup(1κ, 1N+1) → (mpk,msk) and samples a random index of

collision resistant hash function h
$← Hκ. It then outputs the master public key mpk′ =

(mpk, h) and the master secret key msk′ := msk.

ABS′.KeyGen(msk, i, x): It runs ABS.KeyGen(msk, i, x‖02`+1)→ skx‖02`+1 and returns sk′x := skx‖02`+1 .

ABS′.Sign(mpk′, sk′x,M, C): It first parses mpk′ → (mpk, h) and sk′x → skx‖02`+1 and computes

M̃ = H(h(M‖C)). It then constructs a circuit F [M̃, C] that is defined as in Fig. 1. It finally
runs ABS.Sign(mpk, skx‖02`+1 ,M, F [M̃, C])→ σ and outputs σ′ := σ.

ABS′.Vrfy(mpk′,M, C, σ): It first parses mpk′ → (mpk, h). It then computes M̃ = H(h(M‖C)) and
constructs a circuit F [M̃, C] that is defined as in Fig. 1. It then outputs ABS.Vrfy(mpk,M, F [M̃, C], σ).

Correctness. We observe that if C(x) = 1, we have F [M̃, C](x‖02`+1) = C(x) = 1 by the
definition of F [M̃, C]. The correctness of ABS′ therefore follows from that of ABS.

Perfect Privacy. The following theorem addresses the privacy of ABS′ constructed above.

Theorem 3. If ABS is perfectly private, so is ABS′.

Proof. If C(x0) = C(x1) = 1, we have F [M̃, C](x0‖02`+1) = C(x0) = 1 and F [M̃, C](x1‖02`+1) =
C(x1) = 1 by the definition of F [M̃, C]. The theorem therefore follows from the perfect privacy
of ABS.

16

F [M̃, C](x‖y‖z‖b)
Hardwired constants: A bit string M̃ ∈ {0, 1}` and a circuit C : {0, 1}k → {0, 1}.

1. Parse the input to retrieve x ∈ {0, 1}k, y, z ∈ {0, 1}`, and b ∈ {0, 1}.
2. If b = 0, output C(x).
3. If b = 1, output WldCmp(y, z, M̃) ∈ {0, 1}.

Figure 1: Description of the circuit F [M̃, C].

Co-selective Unforgeability. The following theorem addresses the co-selective unforgeability
of ABS′.

Theorem 4. If ABS is no-signing-query unforgeable and perfectly private, Hκ is a family of
collision resistant hash functions, and Hκ is an admissible hash function, then ABS′ is co-selective
unforgeable.

Proof. To prove the theorem, it suffices to show that any PPT adversary A against the co-selective
unforgeability of ABS′ with advantage ε can be converted into a PPT adversary B against the
no-signing-query unforgeability of ABS with advantage polynomially related to ε. Therefore,
assuming that ABS satisfies no-signing-query unforgeability, we conclude that ε is negligible. We
show this by considering the following sequence of games. In the following, let Ei denote the
probability that A is successful in Game i and the challenger does not abort. We also let Q(κ) be
the upper bound of the number of signing queries made by A during the game.

Game 0. We define Game 0 as the actual experiment between the challenger and the adversary
A. The success probability of A in the game be Pr[E0] = ε.

Game 1. In this game, the challenger aborts if A outputs (M?, C?, σ?) such that h(M?‖C?) =
h(M‖C) for some (M, C) ∈ Q as the forgery. By a straightforward reduction from the
collision resistance of H, we have Pr[E1] ≥ Pr[E0]− negl(κ).

Game 2. In this game, we change Game 1 so that the challenger performs the following additional
step at the end of the game. First, the challenger runs (y, z)

$← AdmSmp(1κ, Q) and checks
whether the following condition holds:

(WldCmp(y, z,H(h(M‖C))) = 1 ∀(M, C) ∈ Q) ∧ (WldCmp(y, z,H(h(M?‖C?))) = 0) .

If it does not hold, the challenger aborts the game. Since we have |Q| ≤ Q and h(M?‖C?) 6=
h(M‖C) for (M, C) ∈ Q, we have Pr[E2] ≥ ∆Q(κ) · Pr[E1] for a noticeable function ∆Q(κ)
by the property of the admissible hash.

Game 3. In this game, the challenger chooses (y, z)
$← AdmSmp(1κ, Q) at the beginning of the

game instead of at the end of the game. Furthermore, the challenger aborts the game as
soon as A makes a signing query for (M, C, i) such that WldCmp(y, z,H(h(M‖C))) = 0 or
makes a forgery (M?, C?, σ?) such that WldCmp(y, z,H(h(M?‖C?))) = 1. Since this is simply
a conceptual change, we have Pr[E3] = Pr[E2].

17

Game 4 In this game, we change the way A answers the signing queries. The challenger runs
ABS.KeyGen(msk, N + 1, 0k‖y‖z‖1)→ sk0k‖y‖z‖1 right after having sampled mpk′ and msk′.

Then, when A makes a signing query for (M, C, i), B first computes M̃ = H(h(M‖C)) and
aborts if WldCmp(y, z, M̃) = 0 (as specified in Game 3). Otherwise, B then runs

ABS.Sign(mpk, sk0k‖y‖z‖1,M, F [M̃, C])→ σ

and returns σ to A. As we will show in Lemma 1, we have Pr[E4] = Pr[E3] by the perfect
privacy of ABS.

Finally, in Lemma 2, we show Pr[E4] ≤ negl(κ). Putting these together, we have Pr[E0] = ε =
negl(κ), which concludes the proof of the theorem. It remains to prove Lemma 1 and 2.

Lemma 1. If ABS is perfectly private, we have Pr[E3] = Pr[E4].

Proof. To sample an answer σ for a signing query (M, C, i), the challenger runs ABS.Sign(mpk,
sk0k‖y‖z‖1,M, F [M̃, C])→ σ in Game 4, whereas it is sampled as ABS.Sign(mpk, skx(i)‖02`+1 ,M, F [M̃, C])→
σ in Game 3. We have F [M̃, C](x(i)‖02`+1) = C(x(i)) = 1 and F [M̃, C](0k‖y‖z‖1) = WldCmp(y, z, M̃) =
1, where the latter holds when the abort condition is not satisfied. This implies that the distri-
butions of σ in these two games are the same due to the perfect privacy of ABS. By applying this
argument for each of the signing queries one-by-one, the lemma follows.

Lemma 2. If ABS has no-evaluation-query unforgeability, we have Pr[E4] ≤ negl(κ).

Proof. For the sake of the contradiction, let us assume that E4 happens with non-negligible prob-
ability ε. We then construct an adversary B that breaks the no-evaluation-query unforgeability
of ABS with the same probability. The adversary B proceeds as follows.

At the beginning of the game, B is given 1κ from its challenger. Then, B inputs 1κ on A,
who returns 1N , {(i, x(i))}i∈[N], and S ⊆ [N]. Here, x(i) ∈ {0, 1}k. Then, B samples h

$← Hκ
and (y, z)

$← AdmSmp(1κ, Q). It then sets x̄(i) := x(i)‖02`+1 for i ∈ [N], x̄(N+1) := 0k‖y‖z‖1,
and S̄ := S ∪ {N + 1}. Then, it submits 1N+1, {x̄(i)}i∈[N+1], and S̄ to the challenger. Then, the
challenger gives mpk and {skx(i)‖02`+1}i∈[S]∪{sk0k‖y‖z‖1} to B. B then passes mpk′ := (mpk, h) and
{skx(i)‖02`+1}i∈S to A. During the game, A makes signing queries. B handles these queries using
sk0k‖y‖z‖1 as specified in Game 4. At the end of the game, A outputs its forgery (M?, C?, σ?). Then,

B computes M̃? = H(h(M?‖C?)). It aborts and outputs ⊥ if ABS′.Vrfy(mpk,M?, C?, σ?) 6= > or
WldCmp(y, z, M̃?) = 1 (as specified in Game 3). Otherwise, B outputs (M?, F [M̃?, C?], σ?) as its
forgery.

We claim that B wins the game whenever E4 occurs. To see this, we first observe that we have
ABS.Vrfy(mpk,M?, F [M̃?, C?], σ?) = > by ABS′.Vrfy(mpk,M?, C?, σ?) = >. We also have S̄ 6= ∅
even if S = ∅ because N + 1 ∈ S̄. We then prove that A has never made prohibited corrupt
queries. Namely, we show F [M̃?, C?](x̄(i)) = 0 for all i ∈ S̄. For i ∈ S, we have F [M̃?, C?](x̄(i)) =
F [M̃?, C?](x(i)‖02`+1) = C?(x(i)) = 0, where the last equality follows from the restriction posed on
A. As for i = N +1, we have F [M̃?, C?](x̄(N+1)) = F [M̃?, C?](0k‖y‖z‖1) = WldCmp(y, z, M̃?) = 0,
where the last equality follows from the abort condition introduced in Game 2. We also observe
that B has never made any signing query during the game. Since B perfectly simulates Game 4,
we have that the winning probability of B is exactly ε. This concludes the proof of the lemma.

18

4 Generic Construction of Group Signatures

In this section, we give a generic construction of a GS scheme from three building blocks: an
indexed ABS, an OTS, and an SKE. As we will show in Sec. 7, by appropriately instantiating the
building blocks, we obtain the first lattice-based GS scheme in the standard model.

Ingredients. Here, we give a generic construction of a GS scheme GS = (GS.KeyGen,GS.Sign,
GS.Vrfy,GS.Open) from an indexed ABS scheme ABS = (ABS.Setup,ABS.KeyGen,ABS.Sign,ABS.Vrfy)
with perfect privacy and co-selective unforgeability, an OTS scheme OTS = (OTS.KeyGen,OTS.Sign,
OTS.Vrfy) with strong unforgeability, and an SKE scheme SKE = (SKE.Gen,SKE.Enc, SKE.Dec)
with key robustness and INDr-CCA security. We require the underlying primitives to satisfy the
following constraints:

• SKE.Mκ ⊇ [N + 1] × {0, 1}`1(κ), where SKE.Mκ denotes the plaintext space of SKE and
`1(κ) denotes the upper-bound on the length of ovk that is output by OTS.Setup(1κ).

• We require the underlying indexed ABS scheme to be able to deal with function class
C = {Cκ}κ∈N, where Cκ is defined as

Cκ =
{
C[ovk, ct]

∣∣∣ ovk ∈ {0, 1}`1(κ), ct ∈ {0, 1}`2(κ)
}
, (2)

where C[ovk, ct] is defined in Fig. 2 and `2(κ) is the upper bound on the length of a ciphertext
ct output by SKE.Enc(K,M) for K ∈ SKE.Gen(SKE.Setup(1κ)) and M ∈ SKE.Mκ.

• We require OTS.Mκ = {0, 1}∗, where OTS.Mκ denotes the message space of OTS. Note
that any OTS scheme with sufficiently large message space can be modified to satisfy this
condition by applying a collision resistant hash to a message before signing.

Construction. We construct GS as follows.

GS.KeyGen(1κ, 1N) : It first samples pp
$← SKE.Setup(1κ) and (mpk,msk)

$← ABS.Setup(1κ, 1N+1).

It then samples Ki
$← SKE.Gen(pp) and ski‖Ki

$← ABS.KeyGen(msk, i, i‖Ki) for i ∈ [N]. Fi-
nally, it outputs

gpk := (pp, mpk) , gok := { Ki }i∈[N] ,
{
gski :=

(
i, Ki, ski‖Ki

) }
i∈[N]

.

GS.Sign(gski,M) : It first samples (ovk, osk)
$← OTS.KeyGen(1κ) and computes ct

$← SKE.Enc(Ki, i‖ovk).
It then runs

ABS.Sign(mpk, ski‖Ki , C[ovk, ct],M)→ σ,

where the circuit C[ovk, ct] is defined in Fig. 2. It then runs

OTS.Sign(osk,M‖σ)→ τ.

Finally, it outputs Σ := (ovk, ct, σ, τ).

GS.Vrfy(gpk,M,Σ) : It first parses Σ→ (ovk, ct, σ, τ). It then outputs > if

ABS.Vrfy(mpk,M, C[ovk, ct], σ) = > ∧ OTS.Vrfy(ovk,M‖σ, τ) = >,

where C[ovk, ct] is defined in Fig. 2. Otherwise, it outputs ⊥.

19

C[ovk, ct](i‖K)

Hardwired constants: A verification key ovk of OTS and a ciphertext ct of SKE.

1. Parse the input to retrieve i ∈ [N + 1] and K. If the input does not conform to the
format, output 0.

2. If i = N + 1, output 1.
3. Compute SKE.Dec(K, ct) = i′‖ovk′. If i′ = i and ovk′ = ovk, output 1.

Otherwise, output 0.

Figure 2: Description of the circuit C[ovk, ct].

GS.Open(gpk, gok,M,Σ) : It first runs GS.Vrfy(gpk,M,Σ) and returns ⊥ if the verification result
is ⊥. Otherwise, it parses Σ → (ovk, ct, σ, τ). It then computes di ← SKE.Dec(Ki, ct) for
i ∈ [N] and outputs the smallest index i such that di 6= ⊥. If there is not such i, it returns
⊥.

Remark 5 (Alternative Construction Using Public Key Encryption). Here, we discuss an alter-
native construction of a GS scheme using a public key encryption (PKE) instead of an SKE. In
the construction, we instead hardwire a secret key of a weak PRF to the ABS signing key. Then,
when signing, a signer chooses a random input to the weak PRF, generates a ciphertext of the
PKE using the randomness that is derived by evaluating the weak PRF on the random input, and
proves that the ciphertext is generated in this manner using the ABS signing key. Note that all
users use the same public key when generating the ciphertext, while each user is provided with a
different weak PRF key. The advantage of this construction over the construction in Sec. 4 is that
the open algorithm can be very efficient. Namely, we set gok as the secret key of the PKE and the
open algorithm simply decrypts the ciphertext and extracts the corresponding user index. We do
not adopt this alternative construction because we do not know how to instantiate it from the LWE
assumption with polynomial approximation factors. In particular, to the best of our knowledge,
all constructions of weak PRFs that can be evaluated in NC1, which is the required property in
order to combine it with our indexed ABS, require the LWE assumption with super-polynomial
approximation factors.

Correctness. We show that correctly generated signature Σ = (ovk, ct, σ, τ) passes the verifi-
cation. We have OTS.Vrfy(ovk,M‖σ, τ) = > by the correctness of OTS. Furthermore, we have
ABS.Vrfy(mpk,M, C[ovk, ct], σ) = > since C[ovk, ct](i‖Ki) = 1, which follows from SKE.Dec(Ki, ct) =
i‖ovk by the correctness of SKE.

CCA-Selfless Anonymity. The following theorem addresses the CCA-selfless anonymity of
the above GS scheme.

Theorem 5. If ABS is perfectly private and co-selective unforgeable, OTS is strongly unforge-
able, and SKE is INDr-CCA-secure and key robust, then GS constructed above is CCA-selfless
anonymous.

Proof. We show the theorem by considering the following sequence of games between a PPT
adversary A against the CCA-selfless anonymity and the challenger. In the following, let Ei
denote the probability that A wins the game in Game i.

20

Game 0: We define Game 0 as an ordinary CCA-selfless anonymity game between A and the
challenger. The advantage of A is |Pr[E0] − 1/2|. In the following, the challenge signature
is denoted by Σ? = (ovk?, ct?, σ?, τ?). Here, note that ct? is constructed using Ki?coin by the
specification of the game.

Game 1: In this game, we change the game so that the challenger aborts the game and forces A
to output a random bit if there exists i ∈ [N]\{i?coin} such that SKE.Dec(Ki, ct

?) 6= ⊥. As
we will show in Lemma 3, we have |Pr[E0]−Pr[E1]| = negl(κ) by the key robustness of SKE.

Game 2: In this game, we change the way the open queries are answered after the challenge phase.
When A makes an open query for (M,Σ = (ovk, ct, σ, τ)) such that ct = ct? and ovk 6= ovk?,
it returns ⊥. As we will show in Lemma 4, we have |Pr[E1] − Pr[E2]| = negl(κ) assuming
the co-selective unforgeability of ABS.

Game 3: Recall that in Game 1, the challenger aborts the game if there exists i ∈ [N]\{i?coin} such
that SKE.Dec(Ki, ct

?) 6= ⊥. In this game, we remove this abort condition and change the
game so that the challenger continues the game even if there exists such i. As we will show
in Lemma 5, we have |Pr[E2] − Pr[E3]| = negl(κ) by the key robustness of SKE. This step
will be used to argue the winning probability of adversary in our final game Game 7.

Game 4: In this game, we further change the way the open queries are answered after the challenge
phase. When A makes an open query for (M,Σ = (ovk, ct, σ, τ)) such that ct = ct? and
ovk = ovk?, it returns ⊥. As we will show in Lemma 6, we have |Pr[E3]−Pr[E4]| = negl(κ)
assuming the strong unforgeability of OTS. Notice that in this game, the challenger returns
⊥ for any open query (M,Σ = (ovk, ct, σ, τ)) with ct = ct? after the challenge phase.

Game 5: In this game, the challenger samples KN+1
$← K and runs skN+1‖KN+1

$← ABS.KeyGen(msk, N+

1, N + 1‖KN+1) after having run GS.KeyGen(1κ, 1N). Then, all the signatures created by
the challenger are answered using skN+1‖KN+1

. More specifically, the challenger answers the
signing queries and the challenge queries as follows.

• When A makes a signing query for (b,M), the challenger samples (ovk, osk)
$← OTS.KeyGen(1κ),

ct
$← SKE.Enc(Ki?b , i

?
b‖ovk),

σ
$← ABS.Sign(mpk, skN+1‖KN+1

, C[ovk, ct],M),

and τ
$← OTS.Sign(osk,M‖σ) and returns Σ = (ovk, ct, σ, τ) to A.

• When A makes the challenge query for M?, the challenger samples (ovk?, osk?)
$←

OTS.KeyGen(1κ), ct?
$← SKE.Enc(Ki?coin , i

?
coin‖ovk

?),

σ?
$← ABS.Sign(mpk, skN+1‖KN+1

, C[ovk?, ct?],M?),

and τ?
$← OTS.Sign(osk?,M?‖σ?) and returns Σ? = (ovk?, ct?, σ?, τ?) to A.

As we will show in Lemma 7, we have Pr[E4] = Pr[E5] assuming the perfect privacy of ABS.

Game 6: In this game, we change the way the challenge query is answered. When A makes the
challenge query for M?, the challenger proceeds as in the previous game if coin = 1. If
coin = 0, the challenger samples (ovk?, osk?)

$← OTS.KeyGen(1κ),

ct?
$← SKE.CTSamp(pp),

21

σ?
$← ABS.Sign(mpk, skN+1‖KN+1

, C[ovk?, ct?],M?), and τ?
$← OTS.Sign(osk?,M?‖σ?) and

returns Σ? = (ovk?, ct?, σ?, τ?) to A. As we will show in Lemma 8, we have |Pr[E5]−Pr[E6]| =
negl(κ) assuming the CCA-security of SKE.

Game 7: In this game, we further change the way the challenge query is answered. When A
makes the challenge query for M?, the challenger generates the challenge signature as follows
(regardless of the value of coin). It samples (ovk?, osk?)

$← OTS.KeyGen(1κ),

ct?
$← SKE.CTSamp(pp),

σ?
$← ABS.Sign(mpk, skN+1‖KN+1

, C[ovk?, ct?],M?), and τ?
$← OTS.Sign(osk?,M?‖σ?) and

returns Σ? = (ovk?, ct?, σ?, τ?) to A. As we will show in Lemma 9, we have |Pr[E6]−Pr[E7]| =
negl(κ) assuming the CCA-security of SKE.

In Game 7, the challenge signature Σ? is sampled from the same distribution regardless of the
value of coin. Furthermore, due to the change we made in Game 3 (i.e., getting rid of the abort
procedure), the view of the adversary A is independent from the value of coin. Therefore, we
have Pr[E7] = 1/2. By combining Lemma 3, 4, 5, 6, 7, 8, and 9, we have that |Pr[E0] − 1/2| is
negligible.

Lemma 3. If SKE is key robust, we have |Pr[E0]− Pr[E1]| = negl(κ).

Proof. Let F be the event such that SKE.Dec(Ki, ct
?) 6= ⊥ holds for some i ∈ [N]\{i?coin}. It can

be easily seen that |Pr[E0] − Pr[E1]| ≤ Pr[F] and it suffices to show that Pr[F] is negligible. We
have

Pr[F]

≤ Pr

[
pp

$← SKE.Setup(1κ), Kj
$← SKE.Gen(pp) for j ∈ [N] :

∃ct? ∈ {0, 1}∗, ∃i, i? ∈ [N] s.t. i 6= i? ∧ SKE.Dec(Ki, ct
?) 6= ⊥ ∧ SKE.Dec(Ki? , ct

?) 6= ⊥

]
≤

∑
i,i?∈[N] s.t. i 6=i?

Pr

[
pp

$← SKE.Setup(1κ), Ki,Ki?
$← SKE.Gen(pp) :

∃ct? ∈ {0, 1}∗ s.t. SKE.Dec(Ki, ct
?) 6= ⊥ ∧ SKE.Dec(Ki? , ct

?) 6= ⊥

]
≤ N(N − 1)/2 · negl(κ)

= negl(κ),

where the first inequality is by the fact that SKE.Dec(Ki?coin , ct
?) 6= ⊥, the second inequality is by

the union bound, and the third inequality is by the key robustness of SKE. This concludes the
proof of the lemma.

Lemma 4. If ABS is co-selective unforgeable, we have |Pr[E1]− Pr[E2]| = negl(κ).

Proof. We observe that Game 1 and Game 2 are the same unless the adversary makes an open
query Σ = (ovk, ct, σ, τ) such that ct = ct?, ovk 6= ovk?, and ABS.Vrfy(mpk,M, C[ovk, ct], σ) =
> ∧ OTS.Vrfy(ovk,M‖σ) = > after the challenge phase. We denote this event by F and define ε
as the probability of F occurring in Game 1. Since |Pr[E1]− Pr[E2]| ≤ Pr[F], it suffices to show ε
is negligible. To show this, we prove that there exists an adversary B who breaks the co-selective
unforgeability of ABS with probability ε. We give the description of B in the following.

At the beginning of the game, B is given 1κ from its challenger. Then, B inputs 1κ on A,
who returns (i?0, i

?
1) ∈ [N] × [N]. Then, B samples pp

$← SKE.Setup(1κ), coin
$← {0, 1}, and

22

Ki
$← SKE.Gen(pp) for i ∈ [N] and sends 1N , {(i, i‖Ki)}i∈[N], and S = [N] to its challenger.

Then, the challenger gives mpk and {ski‖Ki}i∈[N] to B. B then sets gski = (i,Ki, ski‖Ki) for
i ∈ [N] and gok = {Ki}i∈[N] and gives mpk and {gski}i∈[N]\{i?0,i?1} to A. B answers the challenge
query, signing queries, and open queries as in Game 1 using {gski}i∈[N] and gok except for the
following modification: When A makes an open query for (M,Σ = (ovk, ct, σ, τ)) such that ct =
ct?, ovk 6= ovk?, and ABS.Vrfy(mpk,M, C[ovk, ct], σ) = > after the challenge phase, it outputs
(M, C[ovk, ct], σ) as its forgery and halts. If A terminates without making such an open query, B
aborts.

We claim that B wins the game whenever F happens. To prove this, we show that B has
not made any prohibited key query. Namely, we show that for the final output (M, C[ovk, ct], σ)
of B, C[ovk, ct](i‖Ki) = 0 holds for all i ∈ [N]. For i ∈ [N]\{i?coin}, we have SKE.Dec(Ki, ct) =
SKE.Dec(Ki, ct

?) = ⊥ by the change introduced in Game 1 and thus C[ovk, ct](i‖Ki) = 0. For i =
i?coin, we also have C[ovk, ct](i?coin‖Ki?coin) = 0 because SKE.Dec(Ki?coin , ct

?) = i?coin‖ovk
? 6= i?coin‖ovk.

Since B perfectly simulates Game 1 unless F occurs, the winning probability of B is exactly ε. This
concludes the proof of the lemma.

Lemma 5. If SKE is key robust, we have |Pr[E2]− Pr[E3]| = negl(κ).

Proof. The proof is the same as that of Lemma 3.

Lemma 6. If OTS is a strongly unforgeable one-time signature, we have |Pr[E3] − Pr[E4]| =
negl(κ).

Proof. We observe that Game 3 and Game 4 are the same unless the adversary makes an open
query Σ = (ovk, ct, σ, τ) such that ct = ct?, ovk = ovk?, and ABS.Vrfy(mpk,M, C[ovk, ct], σ) =
> ∧ OTS.Vrfy(ovk,M‖σ) = > after the challenge query. We denote this event by F and define ε
as the probability of F occurring in Game 3. Since |Pr[E3]− Pr[E4]| ≤ Pr[F], it suffices to show ε
is negligible. To show this, we prove that there exists B who breaks the strong unforgeability of
OTS with probability ε. We give the description of B in the following.

At the beginning of the game, B is given 1κ and ovk? from its challenger. Then, B inputs
1κ to A, who returns (i?0, i

?
1) ∈ [N] × [N]. Then, B runs GS.KeyGen(1κ, 1N) to obtain gpk, gok

and {gski}i∈[N] and samples coin
$← {0, 1}. It then returns {gski}i∈[N]\{i?0,i?1} to A. B answers the

signing queries and the open queries as in Game 3 using {gski}i∈[N] and gok until the challenge

phase. When A makes the challenge query for M?, B computes ct?
$← SKE.Enc(Ki?coin , i

?
coin‖ovk

?)
and runs ABS.Sign(mpk, ski?coin‖Ki?coin

, C[ovk?, ct?],M?)→ σ?. B then queries a signature on M?‖σ?

to its challenger. B is then given τ? from the challenger and gives Σ? := (ovk?, ct?, σ?, τ?) to A.
After the challenge phase, B answers the signing queries and open queries as before except for
the following modification: When A makes an open query for (M,Σ = (ovk, ct, σ, τ)) such that
ct = ct?, ovk = ovk?, and OTS.Vrfy(ovk,M, τ) = >, it outputs (M‖σ, τ) as its forgery and stops.
If A terminates without making such an open query, B aborts.

We claim that B wins the game whenever F happens. To prove this, it suffices to show
(M‖σ, τ) 6= (M?‖σ?, τ?) for B’s forgery (M‖σ, τ). To see this, let us denote the open query
by A that corresponds to B’s forgery by (M,Σ = (ovk, ct, σ, τ)). For such a query, we have
(M?,Σ?) 6= (M,Σ) by the restriction posed on A in the CCA-selfless anonymous security game.
This in particular implies (M?‖σ?, τ?) 6= (M‖σ, τ) as desired, since ct = ct? and ovk = ovk?. Since
B simulates Game 3 unless F occurs, the winning probability of B is exactly ε. This concludes the
proof of the lemma.

23

Lemma 7. If ABS is perfectly private, we have Pr[E4] = Pr[E5].

Proof. We claim that the view of the adversary is unchanged. To see this, we first observe that
for a signing query (b,M), we have C[ovk, ct](i?b‖Ki?b) = 1 and C[ovk, ct](N + 1‖KN+1) = 1 for any
ovk ∈ OTS.KeyGen(1κ) and ct ∈ SKE.Enc(Ki?b , i

?
b‖ovk). The former follows from the correctness

of SKE whereas the latter is by the definition of C[ovk, ct]. Therefore, by the perfect privacy of
ABS, the following distributions are the same:

{σ $← ABS.Sign(mpk, ski?b‖Ki?b
, C[ovk, ct],M)} ≈ {σ $← ABS.Sign(mpk, skN+1‖KN+1

, C[ovk, ct],M)}.

Note that σ is generated as in the left-hand side in Game 4 and as in the right-hand side in
Game 5. Similarly, we can show that the distribution of the challenge signature is unchanged
from the previous game. By applying the above argument for each of the signing queries and the
challenge query one-by-one, we have Pr[E4] = Pr[E5].

Lemma 8. If SKE is INDr-CCA-secure, we have |Pr[E5]− Pr[E6]| = negl(κ).

Proof. For the sake of contradiction, let us assume that ε := |Pr[E5] − Pr[E6]| is non-negligible.
We first observe that since the view of Game 5 and Game 6 are the same when coin = 1, we
have |Pr[E5|coin = 0]− Pr[E6|coin = 0]| = 2ε. We then construct an adversary B that breaks the
INDr-CCA-security of SKE with non-negligible advantage using A. We give the description of B
in the following.

At the beginning of the game, B is given 1κ and pp from its challenger. Then, B inputs 1κ to
A, who returns (i?0, i

?
1) ∈ [N]× [N]. Then, B runs (mpk,msk)

$← ABS.Setup(1κ, 1N+1) and samples

Ki
$← SKE.Gen(pp) and ski‖Ki

$← ABS.KeyGen(msk, i, i‖Ki) for i ∈ [N + 1]\{i?0}. It then sets
gpk := (pp,mpk) and gski := (i,Ki, ski‖Ki) for i ∈ [N]\{i?0} and returns gpk and {gski}i∈[N]\{i?0,i?1}
to A. The queries by A are answered as follows. We note that B implicitly sets Ki?0 as the secret
key chosen by its challenger and coin is set to be 0 in the following.

• For a signing query (b,M) made by A, B proceeds as follows. If b = 1, B can answer the query

using Ki?1 and skN+1‖KN+1
. If b = 0, it first samples (ovk, osk)

$← OTS.KeyGen(1κ) and makes
an encryption query for its challenger on i?0‖ovk. Given the ciphertext ct from the challenger,

B then runs σ
$← ABS.Sign(mpk, skN+1‖KN+1

, C[ovk, ct],M) and τ
$← OTS.Sign(osk,M‖σ)

and returns Σ := (ovk, ct, σ, τ) to A.

• For an open query (M,Σ = (ovk, ct, σ, τ)) made by A before the challenge phase, B first
runs GS.Vrfy(gpk,M,Σ) and returns ⊥ to A if the output is ⊥. Otherwise, B computes
di := SKE.Dec(Ki, ct) for i ∈ [N]\{i?0}. It also makes a decryption query for its challenger
on ct and sets the decryption result as di?0 . Finally, it returns the smallest index i ∈ [N]
such that di 6= ⊥ to A. If there is not such i, it returns ⊥.

• For the challenge query M? made by A, B proceeds as follows. It first samples (ovk?, osk?)
$←

OTS.KeyGen(1κ) and makes the challenge query for its challenger on i?0‖ovk?. It is then given

ct? from the challenger. Then, it samples σ?
$← ABS.Sign(mpk, skN+1‖KN+1

, C[ovk?, ct?],M?)

and τ?
$← OTS.Sign(osk,M?‖σ?) and returns Σ? = (ovk?, ct?, σ?, τ?) to A.

• For an open query (M,Σ = (ovk, ct, σ, τ)) made by A after the challenge phase, B returns ⊥
to A if ct = ct?. Otherwise, it proceeds as in the case where the query is made before the
challenge phase.

24

Finally, A outputs its guess ĉoin. Then, B outputs 1 if ĉoin = 0 and 0 otherwise.

We observe that B perfectly simulates Game 5 with coin = 0 if the challenge ciphertext is
sampled as ct?

$← SKE.Enc(Ki?0 , i
?
0‖ovk?) and Game 6 with coin = 0 if it is sampled as ct?

$←
SKE.CTSamp(pp). Furthermore, it can be seen that B does not make any prohibited decryption
queries. Therefore, the lemma readily follows.

Lemma 9. If SKE is CCA-secure, we have |Pr[E6]− Pr[E7]| = negl(κ).

Proof. The proof is almost the same as that of Lemma 8. The main difference is that B simulates
the game with coin = 1 (instead of coin = 0) and implicitly sets Ki?1 (instead of Ki?0) as the secret
key chosen by its challenger.

This completes the proof of the theorem.

Traceability. The following addresses the traceability of the above GS scheme.

Theorem 6. If ABS is co-selective unforgeable and SKE has key robustness, then GS constructed
above has full traceability.

Proof. Let us fix a PPT adversary A and consider the full traceability game played between A
and a challenger. Let (M?,Σ?) be a forgery output by A. We define F1 to be the event that A
wins the game and GS.Open(gpk, gok,M?,Σ?) = ⊥ holds, and F2 be the event that A wins the
game and GS.Open(gpk, gok,M?,Σ?) = i? holds for i? such that i? 6∈ T . Since both F1 and F2

are collectively exhaustive events of a successful forgery, it suffices to prove Pr[F1] = negl(κ) and
Pr[F2] = negl(κ).

Lemma 10. If ABS is co-selective unforgeable, we have Pr[F1] = negl(κ).

Proof. For the sake of the contradiction, let us assume that F1 happens with non-negligible prob-
ability ε. We then construct an adversary B that breaks the co-selective unforgeability of ABS
with the same probability. The adversary B proceeds as follows.

At the beginning of the game, B is given 1κ from its challenger. B then samples pp
$←

SKE.Setup(1κ) and Ki
$← SKE.Gen(pp) for i ∈ [N] and submits 1N , {(i, i‖Ki)}i∈[N], and S = [N]

to its challenger. Then, B receives mpk and {ski‖Ki}i∈[N] from the challenger. It then gives
1κ, gpk := (pp,mpk), and gok := {Ki}i∈[N] to A and keeps {gski := (i,Ki, ski‖Ki)}i∈[N] se-
cret. During the game, A makes signing and corrupt queries. These queries are trivial to
handle because B has {gski}i∈[N]. In particular, B can handle all signing queries from A with-
out making signing query to its challenger. Eventually, A will output a forgery (M?,Σ? =
(ovk?, ct?, σ?, τ?)). If GS.Vrfy(gpk,M?,Σ?) = > and GS.Open(gpk, gok,M?,Σ?) = ⊥ hold, B out-
puts (M?, C[ovk?, ct?], σ?) as its forgery. Otherwise, B aborts.

We claim that B wins the game whenever F1 happens. To prove this, we first observe that
ABS.Vrfy(mpk, C[ovk?, ct?], σ?) = > holds because GS.Vrfy(gpk,M?,Σ?) = >. We then show
that B has not made any prohibited key query. Namely, we show C[ovk?, ct?](i‖Ki) = 0 for all
i ∈ [N]. This follows since otherwise we have SKE.Dec(Ki, ct

?) 6= ⊥ for some i, which contradicts
GS.Open(gpk, gok,M?,Σ?) = ⊥. We also note that B has not made any signing query. Since B’s
simulation is perfect, we can conclude that B wins the game with probability ε. This concludes
the proof of the lemma.

Lemma 11. If ABS is co-selective unforgeable and SKE has key robustness, we have Pr[F2] =
negl(κ).

25

Proof. For the sake of the contradiction, let us assume that F2 happens with non-negligible prob-
ability ε. We then construct an adversary B that breaks the co-selective unforgeability of ABS
with non-negligible probability. We show this by considering the following sequence of games. In
the following, let Ei denote the probability that F2 occurs and the challenger does not abort in
Game i.

Game 0: We define Game 0 as the ordinary full traceability game between A and the challenger.
By assumption, we have Pr[E0] = ε.

Game 1: In this game, the challenger samples j?
$← [N] at the beginning of the game and aborts

if j? 6= i? at the end of the game. Since the view of A is independent from j? and GS.Open
does not output any symbol outside [N] ∪ {⊥}, we have Pr[E1] = ε/N .

Game 2: In this game, the challenger aborts the game as soon as j? 6= i? turns out to be true.
Namely, it aborts if A makes a corruption query for j?, or i? defined at the end of the game
does not equal to j?. Since this is only a conceptual change, we have Pr[E2] = Pr[E3].

Game 3: In this game, we change the previous game so that the challenger aborts at the end of the
game if |{i ∈ [N] : SKE.Dec(Ki, ct

?) 6= ⊥}| 6= 1 for (M?,Σ? = (ovk?, ct?, σ?, τ?)) output by
A as the forgery. We claim that the probability that F2 and |{i ∈ [N] : SKE.Dec(Ki, ct

?) 6=
⊥}| 6= 1 occur at the same time is negligibly small. Note that by the definition of GS.Open, F2

implies SKE.Dec(Ki? , ct
?) 6= ⊥ for i? ∈ [N]. We therefore have |{i ∈ [N] : SKE.Dec(Ki, ct

?) 6=
⊥}| ≥ 2. However, the probability of this occurring is bounded by

Pr [|{i ∈ [N] : SKE.Dec(Ki, ct
?) 6= ⊥}| ≥ 2]

≤ Pr

[
pp

$← SKE.Setup(1κ), Kj
$← SKE.Gen(pp) for j ∈ [N] : ∃ct? ∈ {0, 1}∗, ∃i, i? ∈ [N]

s.t. i 6= i? ∧ SKE.Dec(Ki, ct
?) 6= ⊥ ∧ SKE.Dec(Ki? , ct

?) 6= ⊥

]
≤

∑
i,i?∈[N] s.t. i 6=i?

Pr

[
pp

$← SKE.Setup(1κ), Ki,Ki?
$← SKE.Gen(pp) : ∃ct? ∈ {0, 1}∗

s.t. SKE.Dec(Ki, ct
?) 6= ⊥ ∧ SKE.Dec(Ki? , ct

?) 6= ⊥

]
≤ N(N − 1)/2 · negl(κ)

= negl(κ),

where the second inequality is by the union bound and the third inequality is by the key
robustness of SKE. Therefore, we have |Pr[E2]− Pr[E3]| = negl(κ).

We then replace the challenger in Game 3 with an adversary B against the co-selective un-
forgeability of ABS with advantage Pr[E3]. The adversary B proceeds as follows.

At the beginning of the game, B is given 1κ from its challenger. Then, B chooses its guess
j?

$← [N] for i?, samples pp
$← SKE.Setup(1κ) and Ki

$← SKE.Gen(pp) for i ∈ [N], and sends 1N ,
{(i, i‖Ki)}i∈[N], and S = [N]\{j?} to the challenger. Then, B receives mpk and {ski‖Ki}i∈[N]\{j?}
from the challenger. It then sets gpk := (pp,mpk), gski := (i,Ki, ski‖Ki) for i ∈ [N]\{j?}, and
gok := {Ki}i∈[N] and gives 1κ, gpk, and gok to A. During the game, A makes two kinds of queries.
B answers the queries as follows.

• When A makes a corrupt query for i ∈ [N], B proceeds as follows. If i = j?, B aborts.
Otherwise, it gives gski to A.

26

• When A makes a signing query for (i,M), B answers the query using gski if i 6= j?. If i = j?,

B first samples (ovk, osk)
$← OTS.KeyGen(1κ) and computes ct

$← SKE.Enc(Kj? , j
?‖ovk). It

then makes a signing query (M, C[ovk, ct], j?) to its challenger, who returns σ to B. Then,
it runs OTS.Sign(osk,M‖σ)→ τ and returns Σ := (ovk, ct, σ, τ) to A.

Eventually, A will output a forgery (M?,Σ? = (ovk?, ct?, σ?, τ?)). If either of GS.Vrfy(gpk,M?,Σ?) =
> or i? = j? does not hold, where i? := GS.Open(gpk, gok,M?,Σ?), B aborts. It also aborts if
|{i ∈ [N] : SKE.Dec(Ki, ct

?) 6= ⊥}| 6= 1. Otherwise, B outputs (M?, C[ovk?, ct?], σ?) as its forgery.

We claim that B wins the game whenever E3 occurs. To see this, we first observe that we have
ABS.Vrfy(mpk, C[ovk?, ct?], σ?) = > by GS.Vrfy(gpk,M?,Σ?) = >. We then prove that B has never
made prohibited corrupt queries. Namely, we show C[ovk?, ct?](i‖Ki) = 0 for all i ∈ [N]\{i?}.
This follows since we have |{i ∈ [N] : SKE.Dec(Ki, ct

?) 6= ⊥}| = 1 and SKE.Dec(Ki? , ct
?) 6=

⊥, where the latter follows from GS.Open(gpk, gok,M?,Σ?) = i?. Finally, we show that B has
never made prohibited signing queries. Recall that B has only made signing queries of the form
(M, C[ovk, ct], i?) and all such queries are made in order to answer the signing query (i?,M)
made by A. Because A has won the game, we have M? 6= M, which implies (M?, C[ovk?, ct?]) 6=
(M, C[ovk, ct]) as desired. Since B simulates Game 3 perfectly, we have that the winning probability
of B is exactly Pr[E3]. This concludes the proof of the lemma.

This completes the proof of the theorem.

5 Construction of Indexed ABS from Lattices

In this section, we give a new construction of indexed ABS scheme from the SIS assumption.
Combined with an appropriate SKE scheme and OTS scheme, we can instantiate the generic
construction of GS in Sec. 4 to obtain the first lattice-based GS scheme in the standard model.
We refer Sec. 7 to more discussions.

5.1 Preliminaries on Lattices

Here, we recall some facts on lattices that are needed for the exposition of our construction.
Throughout this section, n, m, and q are integers such that n = poly(κ) and m ≥ ndlog qe. In the
following, let SampZ(γ) be a sampling algorithm for the truncated discrete Gaussian distribution
over Z with parameter γ > 0 whose support is restricted to z ∈ Z such that |z| ≤

√
nγ.7

Definition 2 (The SIS Assumption). Let n,m, q, β be integer parameters. We say that the
SIS(n,m, q, β) hardness assumption holds if for any PPT adversaries A we have

Pr
[

A · z = 0 ∧ ‖z‖∞ ≤ β(κ) ∧ z 6= 0 : A
$← Zn(κ)×m(κ)

q(κ) , z← A(1κ,A)
]
≤ negl(κ).

We also say that the SIS(n,m, q, β) problem is subexponentially hard if the above probability is
bounded by 2−O(nε) · negl(κ) for some constant 0 < ε < 1.

For any n = poly(κ), any m = poly(n), any β(n) > 0, and q ≥ β
√
n ·ω(log n), it is known that

the SIS(n,m, q, β) problem is as hard as certain worst case lattice problems with approximation

7 During construction, we fix n and consider this very weak bound for one-dimensional discrete Gaussian samples
for simplicity of analysis.

27

factor β(n) · poly(n). We abuse the term and refer to SIS(n,m, q, β) with β ≤ poly(κ) as the SIS
problem with polynomial approximation factor.

Trapdoors. Let us consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′
q , we let A−1

γ (V) be an

output distribution of SampZ(γ)m×m
′

conditioned on A ·A−1
γ (V) = V. A γ-trapdoor for A is a

trapdoor that enables one to sample from the distribution A−1
γ (V) in time poly(n,m,m′, log q),

for any V. We slightly overload notation and denote a γ-trapdoor for A by A−1
γ . We also define

the special gadget matrix G ∈ Zn×mq as the matrix obtained by padding In⊗(1, 2, 4, 8, . . . , 2dlog qe)
with zero-columns. The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 12 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
γ , one can obtain A−1

γ′ for any γ′ ≥ γ.

2. Given A−1
γ , one can obtain [A‖B]−1

γ and [B‖A]−1
γ for any B.

3. For all A ∈ Zn×mq and R ∈ Zm×m, one can obtain [AR + G‖A]−1
γ for γ = m · ‖R‖∞ ·

ω(
√

logm).

4. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1
γ0) where A ∈

Zn×mq for some m = O(n log q) and is 2−n-close to uniform, where γ0 = ω(
√
n log q logm).

Furthermore, the following distributions are statistically close for any m′ = poly(κ) and
γ ≥ γ0:

(A,A−1
γ ,U,V)

stat
≈ (A,A−1

γ ,U′,V′),

where U
$← SampZ(γ)m×m

′
, V = AU, V′

$← Zn×m′
q , and U′

$← A−1
γ (V′).

Lemma 13 (Fully Homomorphic Computation [GV15]). There exists a pair of deterministic
algorithms (PubEval,TrapEval) with the following properties.

• PubEval(~B, F) → BF . Here, ~B = [B1‖ · · · ‖Bk] ∈ (Zn×mq)k and F : {0, 1}k → {0, 1} is a
circuit.

• TrapEval(~R, F, x) → RF,x. Here, ~R = [R1‖ . . . ‖Rk] ∈ (Zn×mq)k, ‖Ri‖∞ ≤ δ for i ∈ [k],

x ∈ {0, 1}k, and F : {0, 1}k → {0, 1} is a circuit with depth d. We have

PubEval(A~R + x⊗G) = ARF,x + F (x)G

where we denote [x1G‖ · · · ‖xkG] by x⊗G. Furthermore, we have

‖RF,x‖∞ ≤ δ ·m · 2O(d).

• The running time of (PubEval,TrapEval) is bounded by poly(k, n,m, 2d, log q).

The above algorithms are taken from [GV15], which is a variant of a similar algorithms pro-
posed by Boneh et al. [BGG+14]. The algorithms in [BGG+14] work for any polynomial-sized
circuit F , but ‖RF,x‖∞ becomes super-polynomial even if the depth of the circuit is shallow (i.e.,
logarithmic depth). On the other hand, the above algorithm runs in polynomial time only when
F is of logarithmic depth, but ‖RF,x‖∞ can be polynomially bounded. The latter property is
useful since our main focus is on the constructions of GS schemes from the SIS assumption with
polynomial approximation factors.

28

Min-Entropy and Leftover Hash Lemma. We define the min-entropy of a random variable
X as

H∞(X) = − log(max
x

Pr[X = x])

and the average min-entropy of X conditioned on another random variable Y as

H∞(X|Y) = − logE
y

$←Y
[2−H∞(X|Y=y)],

where E denotes the expectation. The following lemma will be used in the security proof.

Lemma 14 (Generalized Leftover Hash Lemma [DRS04]). Let X and Y be arbitrarily random
variables where the support of Y lies in Y. Then H∞(X|Y) ≥ H∞(X)− log(|Y|).

5.2 Construction

Here, we show our construction of indexed ABS. The scheme satisfies no-signing-query unforge-
ability. By applying the conversion in Sec. 3.2 to the scheme, we can obtain a scheme with
co-selective unforgeability. Note that the signing and the verification algorithm below ignore the
input message M. This is not a problem because the no-signing-query security does not require
non-malleability with respect to the message (See also Remark 4).

We denote the circuit class that is dealt with by the scheme by {Fκ}κ, where Fκ is a set of
circuits F such that F : {0, 1}k(κ) → {0, 1} and with depth at most dF = O(log κ).

ABS.Setup(1κ, 1N): On input 1κ and 1N , it sets the parameters n, m, q, γ0, γ, and β as specified

later in this section, where q is a prime number. Then, it picks random matrices B
(i)
j

$←
Zn×mq for i ∈ [N], j ∈ [k]. We denote ~B(i) = [B

(i)
1 ‖ · · · ‖B

(i)
k]. It also picks (A,A−1

γ0)
$←

TrapGen(1n, 1m, q) such that A ∈ Zn×mq and a random vector r
$← {0, 1}m. It then computes

u := Ar ∈ Znq . It finally outputs

mpk =
(

A, {~B(i)}i∈[N], u,
)

and msk =
(

A−1
γ0 , {~B

(i)}i∈[N]

)
.

ABS.KeyGen(msk, i, x): On input msk = (A−1
γ0 , {~B

(i)}i∈[N]), i ∈ [N], and x ∈ {0, 1}k, it samples

~R(i) $← A−1
γ0

(
~B(i) − x⊗G

)
where ~R(i) ∈ Zm×mk

using A−1
γ0 . Note that ~B(i) = A~R(i) + x ⊗G and ‖~R(i)‖∞ ≤ γ0

√
n holds by the definition

of the distribution A−1
γ0 (~B(i) − x⊗G). It then outputs skx := (i, ~R(i)).

ABS.Sign(mpk, skx,M, F): It outputs ⊥ if M 6∈ Mκ, F 6∈ F , or F (x) = 0. Otherwise, it first parses

skx → (i, ~R(i)). It then computes B
(i)
F := PubEval(~B(i), F) and R

(i)
F,x := TrapEval(~R(i), F, x)

such that ‖R(i)
F,x‖∞ ≤ γ. By Lemma 13 and since F (x) = 1, we have B

(i)
F = AR

(i)
F,x + G. It

then computes [A‖B(i)
F]−1

β from R
(i)
F,x (see Item 3 in Lemma 12) and further computes[
A‖B(1)

F ‖ · · · ‖B
(N)
F

]−1

β

from [A‖B(i)
F]−1

β (see Item 2 in Lemma 12). Finally, it samples

e
$← [A‖B(1)

F ‖ · · · ‖B
(N)
F]−1

β (u)

and outputs the signature σ := e ∈ Zm(N+1).

29

ABS.Vrfy(mpk,M, σ, F): It outputs ⊥ if F 6∈ F or σ = e 6∈ Zm(N+1). Otherwise, it first computes

B
(i)
F = PubEval(F, ~B(i)) for i ∈ [N]. It then checks whether ‖e‖∞ ≤

√
nβ and[

A‖B(1)
F ‖ · · · ‖B

(N)
F

]
e = u. (3)

If they hold, it outputs > and otherwise ⊥.

Correctness. The correctness of the scheme can be seen by observing that Eq. (3) and ‖e‖∞ ≤√
nβ follow from the definition of the distribution [A‖B(1)

F ‖ · · · ‖B
(N)
F]−1

β (u) from which e is sam-
pled.

Parameter Selection. As long as the maximum depth of the circuit class Fκ is bounded by
O(log κ), we can set all of n, m, γ0, γ, β, and q to be polynomial in κ. Notably, this allows
us to reduce the security of the scheme to SIS(n,m, q, βSIS) with βSIS = poly(κ). We refer to
Appendix B for the precise requirements for these parameters and a concrete selection.

Remark 6 (A variant that can deal with polynomial depth circuits.). We remark that if we
assume the SIS assumption with subexponential approximation factor, then the above construction
yields an indexed ABS that can deal with any (bounded) polynomial dF . The only modifications
is to use the evaluation algorithms of [BGG+14] rather than [GV15] and change the parameters
appropriately (See also the discussion right after Lemma 13). In particular, we have to take
q = mO(dF).

5.3 Security Proofs

Theorem 7. Our ABS scheme is perfectly private.

Proof. It can be seen that the signature σ = e for (F,M) is chosen from the distribution

[A‖B(1)
F ‖ · · · ‖B

(N)
F]−1

β (u), which only depends on mpk and F . The theorem readily follows.

Theorem 8. Our ABS scheme satisfies no-signing-query unforgeability assuming SIS(n,m, q, βSIS)
is hard.

Proof. To prove the theorem, it suffices to show that for any PPT adversary A against the no-
signing-query unforgeability of our ABS scheme with advantage ε, we can construct a PPT algo-
rithm B that solves the SIS problem with probability at least ε−negl(κ). Therefore, by assuming
the hardness of the SIS problem, we conclude that ε is negligible. We show this by considering the
following sequence of games. Below, let Ei denote the probability that A is successful in Game i.

Game 0: We define Game 0 as an experiment between the challenger and the adversary A. Here,
we have Pr[E0] = ε.

Game 1: In this game, we change the way {~B(i)}i∈[N] are chosen. At the beginning of the game,

the challenger receives 1N , {(i, x(i))}i∈[N], and S ⊆ [N] from A. Then, the challenger samples
~R(i) $← SampZ(γ0)m×mk for i ∈ [N] and sets the matrices as

~B(i) =

{
A~R(i) + x(i) ⊗G if i ∈ S
A~R(i) + x(imin) ⊗G if i 6∈ S

, where imin := min{ i | i ∈ S }. (4)

We remark that we have S 6= ∅ by the definition of the game and thus imin above is well-
defined. Then the challenger gives {skx(i) := (i, ~R(i))}i∈S to A. By Item 4 of Lemma 12, the

30

distribution of (A, {~B(i)}i∈[N], {~R(i)}i∈S) in both games are statistically close. Therefore,
we have Pr[E1] ≥ Pr[E0]− negl(κ). Note that in this game, the challenger does not use the
trapdoor A−1

γ0 any more.

Game 2: In this game, we change the way A is sampled. Namely, the challenger samples A as
A

$← Zn×mq instead of sampling it with the trapdoor as (A,A−1
γ0)

$← TrapGen(1n, 1m, q). By
Item 4 of Lemma 12, the distribution of A in this game is statistically close to that of the
previous game. Therefore, we have Pr[E2] ≥ Pr[E1]− negl(κ).

Finally, we replace the challenger in Game 2 with an algorithm B that solves the SIS problem
with probability Pr[E2]− negl(κ), which is at least ε− negl(κ) combining the above together. We
give the description of B in the following.

Initial Phase: The adversary B is given A ∈ Zn×mq as the problem instance of the SIS problem.

Then, the adversary B runs A on input 1κ and is given 1N , {(i, x(i))}i∈[N], and S ⊆ [N] from A.

Setup: The challenger picks ~R(i) $← SampZ(γ0)m×mk for i ∈ [N] and sets {~B(i)}i∈[N] as Eq. (4). It

also samples a random vector r
$← {0, 1}m and sets u = Ar. B then gives mpk = (A, {~B(i)}i∈[N],u)

and {skx(i) := (i, ~R(i))}i∈S to A.

Forgery: Eventually, A outputs (M?, F ?, σ? = e) as the forgery. B first checks whether A won
the game and aborts otherwise. Then, B computes

S(i) :=

{
TrapEval(~R(i), F ?, x(i)) if i ∈ S
TrapEval(~R(i), F ?, x(imin)) if i 6∈ S

for i ∈ [N]. Finally, B sets S := [Im‖S(1)‖ · · · ‖S(N)] and outputs z := Se − r as the solution to
the SIS problem.

Analysis: We prove that B succeeds in solving the SIS problem with a probability that is
negligibly close to Pr[E2]. It can easily be seen that B perfectly simulates Game 2. We first prove
Az = 0 and ‖z‖∞ ≤ Nmnβγ. From Eq.(4) and F ?(x(i)) = 0 for i ∈ S, which in particular implies

F ?(x(imin)) = 0, we have B
(i)
F ? = AS(i) for i ∈ [N] by Lemma 13. By the same lemma and our choice

of γ, we also have ‖S(i)‖∞ ≤ γ. Assuming A won the game, we have [A‖B(1)
F ?‖ · · · ‖B

(N)
F ?]e = u

and ‖e‖∞ ≤
√
nβ. This implies that we have

[A‖B(1)
F ?‖ · · · ‖B

(N)
F ?] · e = A · [Im‖S(1)‖ · · · ‖S(N)]︸ ︷︷ ︸

=S

·e = u,

which implies Az = A(Se− r) = u− u = 0. Furthermore, we have

‖z‖∞ = ‖r− Se‖∞ ≤ ‖r‖∞ + (N + 1)m · ‖S‖∞ · ‖e‖∞ ≤ 1 + (N + 1)mβγ
√
n ≤ Nmnβγ

as desired.
It remains to show z = r− Se 6= 0 with overwhelming probability. We can prove this even if

A is computationally unbounded and is given all the randomness during the game except for r.
The proof is by an entropy argument. We have

H∞(r|Ar) ≥ m− n log q ≥ ω(log κ)

by Lemma 14. This implies Pr[r = Se] ≤ 2−ω(log κ) ≤ negl(κ) since r is chosen uniformly at
random and independently from any other variables during the game. We therefore have that B
successfully solves the SIS problem with probability Pr[E2]−negl(κ). This concludes the proof of
the theorem.

31

6 Instantiating SKE

Here, we discuss how to instantiate the SKE required for the generic construction of GS in Sec. 4.
Since this can be done by a combination of known results and standard techniques, we only give
a high level overview here and refer to Appendix C for more details. We require the SKE to be
INDr-CCA secure and to have key robustness. We also want the decryption circuit of the SKE to
be as shallow as possible. In particular, if the depth of the decryption circuit is O(log κ), we can
instantiate our indexed ABS scheme in Sec. 5.2 with polynomial-sized modulus when combining it
with the SKE to obtain a GS scheme, which is desirable both from security and efficiency reasons.
On the other hand, if the depth of the decryption circuit is poly(κ), the modulus size for the
indexed ABS becomes subexponential (See also Remark 6).

To obtain such an SKE scheme, we follow the MAC-then-Encrypt paradigm and show a generic
construction of such an SKE from another SKE and a MAC. For the latter SKE, we require INDr-
CPA security and key robustness. For the MAC, we require strong unforgeability. We also want
the depth of the decryption circuit of the (ingredient) SKE and the verification circuit of the MAC
to be as shallow as possible since the depth of the decryption circuit of the resulting SKE will be
their sum. Although an insecure example of the MAC-then-Encrypt approach is known [BN00],
we avoid the pitfall by authenticating a part of the ciphertext in addition to the plaintext using the
MAC. We also note that the Encrypt-then-MAC approach may not work in our setting because
the MAC part may reveal the information about the user and destroy the INDr-CCA security (in
particular, anonymity) of the resulting SKE scheme.

In the following, we discuss various ways of instantiating the SKE from different assumptions.

Instantiation from LWE. We discuss how to instantiate the inner SKE and MAC from the
LWE assumption. For the SKE, we use a secret key variant of the Regev encryption scheme
[Reg05], where we pad the message with zeroes before encrypting it and the decryption algorithm
returns ⊥ to a ciphertext that does not conform to this format. The padding makes the ciphertext
somewhat redundant, and due to this redundancy, we can prove key robustness of the scheme by
a standard counting argument. The INDr-CPA security of the scheme is proven from the LWE
assumption by a straightforward reduction. The decryption circuit of the scheme can be imple-
mented by an O(log κ)-depth circuit, since the decryption algorithm only involves basic algebraic
operations such as the computation of an inner-product, modulo reduction, and comparison, all
of which are known to be in NC1. We then discuss how to instantiate the MAC. We need the
MAC scheme to have strong unforgeability and a decryption circuit with O(log κ)-depth. To ob-
tain such a scheme, we downgrade the (public key) signature scheme proposed by Micciancio and
Peikert [MP12] to a MAC scheme. Since the scheme satisfies strong unforgeability as a signature
scheme, it is trivial to see that the scheme is strongly unforgeable as a MAC as well. The verifica-
tion circuit of the scheme can be implemented by an O(log κ)-depth circuit, since the verification
algorithm only involves basic algebraic operations, similarly to the decryption algorithm of the
above SKE.

Finally, we remark that another way of obtaining the SKE required for the generic construction
in Sec. 4 from lattices may be to downgrade the CCA-secure public key encryption scheme by
Micciancio and Peikert [MP12] to an SKE scheme. However, this approach requires the LWE
assumption with larger approximation factor than our approach described above.

Instantiation from LPN. We discuss how to instantiate the SKE from the LPN assumption
with constant noise rate. As for the SKE, we use the analogue of the LWE-based SKE we discussed
in the previous paragraph. The difference here is that in the LPN setting, we encode the message
by the repetition code. The key robustness of the scheme can be shown by a similar combinatorial

32

argument to the LWE setting. The decryption circuit for the SKE scheme can be implemented
in depth O(log κ) because it only involves simple algebraic operations. As for the MAC, we use
the construction in [DKPW12] from the LPN assumption, which is an improvement of [KPV+11].
Though it is not explicitly mentioned in [DKPW12], the MAC is strongly unforgeable as observed
in [AHM+14]. The verification algorithm of the MAC can be implemented by a circuit with
depth O(log κ), since the verification algorithm only involves simple algebraic operations and the
computation of a pair-wise independent hash which can also be implemented by O(log κ)-depth
circuits.

Instantiation from SIS. Finally, we discuss how to instantiate the SKE from the SIS assump-
tion. We instantiate the SKE with the key robust SKE proposed by Ishida [Ish18], which relies
on one-way functions. Note that since the SIS assumption implies the existence of one-way func-
tions, the SKE can be instantiated by the same assumption. We also instantiate the MAC by
downgrading the strongly unforgeable (public key) signature scheme by Rückert [Rüc10]. Note
that in this instantiation, we can no longer bound the depth of the decryption circuit of the
resulting SKE scheme by O(log κ). Therefore, when we combine the SKE with an indexed ABS
in the construction of GS, we require the indexed ABS to be able to deal with polynomial-depth
circuits.

7 New Group Signature Constructions

By combining all the results in the previous sections, we obtain the first lattice-based group sig-
natures in the standard model. We show four instantiations, which provide tradeoffs between
the security assumption and efficiency. The first instantiation leads to a scheme that is proven
secure under the SIS and LWE assumption with polynomial approximation factors, but has long
parameters, meaning that the group public key and signatures are linear in the number of users N .
The second instantiation is more efficient and these parameters do not depend on N . However,
in order to prove security, we have to assume the subexponential hardness of the SIS problem
(with polynomial approximation factors). The third instantiation is proven secure under the LPN
assumption with constant noise rate and the SIS assumption with polynomial approximation fac-
tors, and has long parameters. The fourth instantiation is proven secure from the SIS assumption
with subexponential approximation factors and has large parameters.

First Instantiation. The generic construction of GS schemes in Sec. 4 requires an OTS scheme,
an SKE scheme, and an indexed ABS scheme. We instantiate the OTS by the scheme proposed
by Mohassel [Moh11], which is strongly unforgeable under the SIS assumption with polynomial
approximation factors. We instantiate the SKE by the scheme sketched in Sec. 6 (and described in
full details in Appendix C). The scheme satisfies INDr-CCA security under the LWE assumption
with polynomial approximation factors, key-robustness, and can have arbitrarily large message
space, which are the required properties for the generic construction. Furthermore, the maximum
depth of the decryption circuit of the SKE, which is denoted by dDec hereafter, is O(log κ). We
now consider how to instantiate the indexed ABS scheme. In addition to the perfect privacy and
co-selective unforgeability, we require the indexed ABS to be capable of dealing with the circuit
class Cκ defined in Eq. (2). It is easy to see that we can bound the maximum depth dC of circuits
in Cκ by dC = O(logN + log `1 + dDec) = O(log κ). To obtain such an indexed ABS scheme,
we apply the conversion in Sec. 3.2 to our indexed ABS scheme in Sec. 5.2, whose no-signing-
query unforgeability is shown under the SIS assumption with polynomial approximation factors.
Note that the conversion requires a collision resistant hash, which is known to be implied by the

33

same SIS assumption [MR04]. In order to make sure that the ABS scheme obtained through this
conversion can deal with the circuit class Cκ, we require the original indexed ABS to be capable
of dealing with a circuit class Fκ defined in Eq. (1). It is easy to see that the function WldCmp
can be implemented by an O(log `)-depth circuit and thus we can bound the maximum depth dF
of the circuit class Fκ by dF = dC +O(log `) = O(log κ). Since dF = O(log κ), we can instantiate
the latter indexed ABS by the construction in Sec. 5.2. Summing up the above discussion, we
have the following theorem:

Theorem 9 (Theorem 1 restated). Under the hardness of the SIS and LWE problem with poly-
nomial approximation factors, we have a group signature scheme with CCA-selfless anonymity
and full traceability in the standard model whose public parameters and signature sizes are linear
in the number of users N .

Second Instantiation. Here, we show another way of instantiating our generic construction
in Sec. 4. We use the same SKE as the first instantiation above, but we instantiate the indexed
ABS scheme with the scheme proposed by Tsabary [Tsa17]. To do so, we first state the following
theorem.

Theorem 10 (Adapted from Sec. 6 of [Tsa17]). There is an indexed ABS scheme for the circuit
class Cκ defined in Eq. (2) with perfect privacy and co-selective unforgeability whose master public
key and signature sizes are bounded by poly(κ), i.e., independent of the number of users N ,
assuming the subexponential hardness of the SIS problem with polynomial approximation factors.

The above theorem is obtained by the result of [Tsa17], but some adaptations are required. We
refer to Appendix D for discussions.

We then combine the ABS scheme given by Theorem 10 with the SKE scheme used in the
first instantiation. We obtain the following theorem.

Theorem 11 (Theorem 2 restated). Under the hardness of the LWE problem and the subexpo-
nential hardness of the SIS problem with polynomial approximation factors, there exists a group
signature scheme with full-traceability and CCA-selfless anonymity whose public parameters and
signature sizes are poly(κ), i.e., independent of the number of users N .

Third Instantiation. By combining the SKE from the LPN described in the previous section
with the indexed ABS used in the first instantiation, we have a new group signature from the
LPN assumption with constant noise rate and the SIS assumption with polynomial approximation
factors. Note that this combination is possible since the decryption circuit of the LPN-based SKE
can be implemented by a circuit with depth O(log κ).

Theorem 12 (Theorem 1 restated). Under the hardness of the SIS problem with polynomial
approximation factors and the LPN problem with constant noise rate, we have a group signature
scheme with CCA-selfless anonymity and full traceability in the standard model whose public
parameters and signature sizes are linear in the number of users N .

Fourth Instantiation. By combining the indexed ABS that can deal with polynomial depth
circuits described in Remark 6 along with the SKE scheme based on the SIS assumption described
in Sec. 6, we obtain a group signature solely from the SIS assumption, but with a subexponential
approximation factor.

34

Theorem 13 (Theorem 1 restated). Under the hardness of the SIS problem with subexponential
approximation factors, we have a group signature scheme with CCA-selfless anonymity and full
traceability in the standard model whose public parameters and signature sizes are linear in the
number of users N .

Acknowledgement. The authors would like to thank Yusuke Sakai and Ai Ishida for helpful
discussions and anonymous reviewers of Eurocrypt 2019 for their valuable comments. The first
author was partially supported by JST CREST Grant NumberJPMJCR1302 and JSPS KAK-
ENHI Grant Number 17J05603. The second author was supportedby JST CREST Grant No.
JPMJCR1688 and JSPS KAKENHI Grant Number 16K16068.

References

[ABB10a] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model.
In EUROCRYPT, pages 553–572, 2010.

[ABB10b] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In CRYPTO, pages 98–115, 2010.

[ACJT00] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In CRYPTO, pages 255–270, 2000.

[AHM+14] J. Alwen, M. Hirt, U. Maurer, A. Patra, P. Raykov. Key-Indistinguishable Message
Authentication Codes. SCN, pages 476-493, 2014.

[BB04a] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443–459, 2004.

[BB04b] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In EUROCRYPT, pages 223–238, 2004.

[BBS04] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, pages
41–55, 2004.

[Boy10] X. Boyen. Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure
Short Signatures and More. In PKC, pages 499–517, 2010.

[BCC+16] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully
dynamic group signatures. In ACNS 16, pages 117–136, 2016.

[BCH86] P. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related
problems. SIAM J. Comput., 15(4):994–1003, 1986.

[BF14] M. Bellare and G. Fuchsbauer. Policy-based signatures. In PKC, pages 520–537, 2014.

[BGG+14] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In EUROCRYPT, pages 533–556, 2014.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of
learning with errors. In STOC, pages 575–584, 2013.

35

[BMW03] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions.
In EUROCRYPT, pages 614–629, 2003.

[BN00] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In ASIACRYPT, pages 531–545,
2000.

[BS04] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In ACM
CCS, pages 168–177, 2004.

[BSZ05] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In CT-RSA, pages 136–153, 2005.

[BV15] Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic PRFs from stan-
dard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
TCC 2015, Part II, pages 1–30, 2015.

[BW06] X. Boyen and B. Waters. Compact group signatures without random oracles. In
EUROCRYPT 2006, pages 427–444, 2006.

[BW07] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signa-
tures. In PKC, pages 1–15, 2007.

[BY93] M. Bellare and M. Yung. Certifying cryptographic tools: The case of trapdoor per-
mutations. In CRYPTO, pages 442–460, 1993.

[CCH+19] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. Rothblum, R. Rothblum, and D.
Wichs. Fiat-Shamir: From Practice to Theory. In STOC 2019, to appear.

[CCR16] R. Canetti, Y. Chen, and L. Reyzin. On the correlation intractability of ob-fuscated
pseudorandom functions. In TCC, pages 389415, 2016.

[CCRR18] R. Canetti, Y. Chen, and L. Reyzin, and R. D. Rothblum. Fiat-Shamir and cor-relation
intractability from strong KDM-secure encryption. EUROCRYPT2018, pages 91122,
2018.

[CG05] J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical
aspects. In SCN 04, pages 120–133, 2005.

[CH85] S. A. Cook and H. J. Hoover. A depth-universal circuit. SIAM J. Comput., 14(4):833–
839, 1985.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. In EUROCRYPT, pages 523–552, 2010.

[CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In CRYPTO, pages 61–76, 2002.

[CL04] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In CRYPTO, pages 56–72, 2004.

36

[Cv91] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT, pages 257–265,
1991.

[DFN06] I. Damg̊ard, N. Fazio, and A. Nicolosi. Non-interactive zero-knowledge from homo-
morphic encryption. In TCC, pages 41–59, 2006.

[DMP88] A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof sys-
tems. In CRYPTO, pages 52–72, 1988.

[DKPW12] Y. Dodis, E. Kiltz, K. Pietrzak, and D. Wichs. Message authentication, revisited. In
EUROCRYPT 2012, volume 7237 of LNCS, pages 355–374, 2012.

[DRS04] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In EUROCRYPT, pages 523–540, 2004.

[FHPS13] E. S. V. Freire, D. Hofheinz, K. G. Paterson, and C. Striecks. Programmable hash
functions in the multilinear setting. In CRYPTO 2013, Part I, pages 513–530, 2013.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In FOCS, pages 308–317, 1990.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86, pages 186–194, 1987.

[GKV10] S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from lattice
assumptions. In ASIACRYPT, pages 395–412, 2010.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, 2004.

[Gol08] O. Goldreich. Computational complexity - a conceptual perspective. Cambridge Uni-
versity Press, 2008.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP.
In EUROCRYPT, pages 339–358, 2006.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[Gro07] J. Groth. Fully anonymous group signatures without random oracles. In ASIACRYPT,
pages 164–180, 2007.

[GS08] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In
EUROCRYPT, pages 415–432, 2008.

[GV15] S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient ABE for branch-
ing programs. In ASIACRYPT 2015, Part I, pages 550–574, 2015.

[GVW15] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic signatures
from standard lattices. In STOC, pages 469–477, 2015.

[HL18] J. Holmgren, R. Rothblum. Delegating Computations with (Almost) Minimal Time
and Space Overhead. In FOCS, pages 124–135, 2018.

37

[HLLR12] J. Herranz, F. Laguillaumie, B. Libert, and C. Ràfols. Short attribute-based signatures
for threshold predicates. In CT-RSA 2012, pages 51–67, 2012.

[Ish18] A. Ishida. Studies on Group Signature, 2018. PhD thesis, Tokyo Institute of Technol-
ogy.

[KRR17] Y. T. Kalai, G. N. Rothblum, and R. D. Rothblum. From obfuscation to thesecurity
of fiat-shamir for proofs. In CRYPTO 2017, Part II, pages. 224251, 2017.

[KW18] S. Kim and D. J. Wu. Multi-theorem preprocessing NIZKs from lattices. In
CRYPTO 2018, Part II, pages 733–765, 2018.

[KY06] A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and
separable authorities. IJSN, 1(1/2):24–45, 2006.

[KPV+11] E. Kiltz, K. Pietrzak, D. Cash, A. Jain, D. Venturi: Efficient Authentication from
Hard Learning Problems. In EUROCRYPT 2011, pages 7–26, 2011.

[LLLS13] F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé. Lattice-based group signatures
with logarithmic signature size. In ASIACRYPT 2013, Part II, pages 41–61, 2013.

[LLM+16a] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions. In
ASIACRYPT 2016, Part II, pages 373–403, 2016.

[LLM+16b] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In ASI-
ACRYPT 2016, Part II, pages 101–131, 2016.

[LLNW14] A. Langlois, S. Ling, K. Nguyen, and H. Wang. Lattice-based group signature scheme
with verifier-local revocation. In PKC, pages 345–361, 2014.

[LLNW16] B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In EUROCRYPT 2016, Part II, pages 1–31, 2016.

[LNW15] S. Ling, K. Nguyen, and H. Wang. Group signatures from lattices: Simpler, tighter,
shorter, ring-based. In PKC, pages 427–449, 2015.

[LNWX17] S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-based group signatures: Achieving
full dynamicity with ease. In ACNS 17, pages 293–312, 2017.

[LNWX18] S. Ling, K. Nguyen, H. Wang, and Y. Xu. Constant-size group signatures from lattices.
In PKC 2018, Part II, pages 58–88, 2018.

[Lys02] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In CRYPTO, pages 597–612, 2002.

[Moh11] P. Mohassel. One-time signatures and chameleon hash functions. In SAC 2010, pages
302–319, 2011.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, pages 700–718, 2012.

38

[MPR11] H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In CT-
RSA, pages 376–392, 2011.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian
measures. In FOCS, pages 372–381, 2004.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[NZZ15] P. Q. Nguyen, J. Zhang, and Z. Zhang. Simpler efficient group signatures from lattices.
In PKC, pages 401–426, 2015.

[OT11] T. Okamoto and K. Takashima. Efficient attribute-based signatures for non-monotone
predicates in the standard model. In PKC, pages 35–52, 2011.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[PLS18] R. Del Pino, Va. Lyubashevsky, and G. Seiler. Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. ACM-CCS, 2018 (To appear).

[PsV06] R. Pass, a. shelat, and V. Vaikuntanathan. Construction of a non-malleable encryption
scheme from any semantically secure one. In CRYPTO, pages 271–289, 2006.

[PV08] C. Peikert and V. Vaikuntanathan. Noninteractive statistical zero-knowledge proofs
for lattice problems. In CRYPTO, pages 536–553, 2008.

[PS19] C. Peikert and S. Shiehian. Noninteractive Zero Knowledge for NP from (Plain)
Learning With Errors. Available from https://eprint.iacr.org/2019/158.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387–394, 1990.

[Rüc10] M. Rückert. Strongly Unforgeable Signatures and Hierarchical Identity-Based Signa-
tures from Lattices without Random Oracles. In PQCrypto, pages 182–200, 2010.

[SAH16] Y. Sakai, N. Attrapadung, and G. Hanaoka. Attribute-based signatures for circuits
from bilinear map. In PKC 2016, Part I, pages 283–300, 2016.

[SEH+13] Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote. Group
signatures with message-dependent opening. In PAIRING, pages 270–294, 2013.

[SS96] M. Sipser and D. A. Spielman. Expander codes. IEEE Trans. Information Theory,
42(6):1710–1722, 1996.

[SSE+12] Y. Sakai, J. C. N. Schuldt, K. Emura, G. Hanaoka, and K. Ohta. On the security of
dynamic group signatures: Preventing signature hijacking. In PKC, pages 715–732,
2012.

[ST01] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In CRYPTO,
pages 355–367, 2001.

39

https://eprint.iacr.org/2019/158

[Tsa17] R. Tsabary. An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In TCC 2017, Part II, pages 489–518,
2017.

[Zém01] G. Zémor. On expander codes. IEEE Trans. Information Theory, 47(2):835–837, 2001.

A Omitted Definitions from Section 2

A.1 Secret Key Encryption

Syntax. Let {Mκ}κ∈N be a family of message spaces. In the following, we occasionally drop
the subscript and simply writeM when the meaning is clear. An SKE is defined by the following
algorithms:

SKE.Setup(1κ)→ pp: The setup algorithm takes as input the security parameter κ and generates
a public parameter pp.

SKE.Gen(pp)→ K: The key generation algorithm takes as input the public parameter pp and
outputs a secret key K.

SKE.Enc(K,M)→ ct: The encryption algorithm takes as input a secret key K and a message
M ∈Mκ and outputs a ciphertext ct.

SKE.Dec(K, ct)→ M or ⊥: The decryption algorithm takes as input a secret key K and a cipher-
text ct and outputs a message M or ⊥, which indicates that the ciphertext is not in a valid
form. We assume that the decryption algorithm is deterministic.

Correctness. We require correctness: that is, for all κ, pp ∈ SKE.Setup(1κ), K ∈ SKE.Gen(pp),
and M ∈Mκ, SKE.Dec(K, SKE.Enc(K,M)) = M holds.

Key Robustness. We say that an SKE scheme has key robustness if the following holds:

Pr

[
pp

$← SKE.Setup(1κ), K
$← SKE.Gen(pp), K′

$← SKE.Gen(pp), :
∃ct ∈ {0, 1}∗ s.t. SKE.Dec(K, ct) 6= ⊥ ∧ SKE.Dec(K′, ct) 6= ⊥

]
= negl(κ).

INDr-CCA-security. We now define INDr-CCA-security for an SKE scheme. This security
notion is defined by the following game between a challenger and an adversary A. Let SKE.CTSamp
be some efficient algorithm that takes pp as input and outputs a pseudorandom ciphertext.

Setup: At the beginning of the game, the challenger runs SKE.Setup(1κ) → pp and samples

K
$← SKE.Gen(pp). It then gives 1κ and pp to A.

Queries: During the game, A can make the following two kinds of queries unbounded polynomi-
ally many times.

- Encryption Queries: Upon a query M ∈Mκ from A, the challenger runs SKE.Enc(K,M)→
ct and returns ct to A.

- Decryption Queries: Upon a query ct from A, the challenger runs SKE.Dec(K, ct) and
returns the result to A.

40

Challenge Phase: At some point, A chooses its target message M?. The challenger then samples
a secret coin coin

$← {0, 1}. If coin = 0, it samples the challenge ciphertext as ct?
$←

SKE.Enc(K,M?). If coin = 1, it samples the challenge ciphertext as ct?
$← SKE.CTSamp(pp).

Finally, it returns ct? to A.

Queries: After the challenge phase, A may continue to make encryption and decryption queries
unbounded polynomially many times. Here, we add a restriction that A cannot make a
decryption query for ct?.

Guess: Eventually, A outputs ĉoin as a guess for coin.

We say that the adversary A wins the game if ĉoin = coin. We define the advantage of an adver-
sary to be |Pr[A wins]−1/2|, where the probability is taken over the randomness of the challenger
and the adversary. An SKE scheme is said to be CCA-secure if there exists an efficient pseudo-
random ciphertext sampling algorithm SKE.CTSamp and the advantage of any PPT adversary A
is negligible in the above game.

INDr-CPA-security. We now define INDr-CPA security, which is a weaker security notion
than INDr-CCA security. We define the INDr-CPA security game by modifying the INDr-CCA
security by prohibiting the adversary A from making any decryption queries. We do not change
the winning condition of the game and the definition of the advantage. We say that a scheme
satisfies INDr-CPA if the advantage of any PPT adversary A in the game is negligible.

Remark 7. We note that INDr-CPA and INDr-CCA security defined above encompass the no-
tion of anonymity, since it requires that a correctly generated ciphertext using a secret key K is
indistinguishable from a random sample from SKE.CTSamp(pp), which is a distribution that only
depends on pp.

A.2 One-Time Signature

Syntax. Let {Mκ}κ∈N be a family of message spaces. A one-time signature (OTS) is defined
by the following algorithms:

OTS.KeyGen(1κ)→ (ovk, osk): The key generation algorithm takes as input the security parame-
ter 1κ and a message M ∈Mκ and outputs a verification key ovk and a singing key osk.

OTS.Sign(osk,M)→ τ : The signing algorithm takes as input a secret key osk and a message
M ∈Mκ and outputs a signature τ .

OTS.Vrfy(ovk,M, τ)→ > or ⊥: The verification algorithm takes as input a verification key ovk,
a message M, and a signature τ and outputs > or ⊥.

Correctness. We require correctness: that is, for all κ, (ovk, osk) ∈ OTS.KeyGen(1κ), M ∈Mκ,
and τ ∈ OTS.Sign(osk,M), OTS.Vrfy(ovk,M, τ) = > holds.

Strong Unforgeability. We now define strong unforgeability for an OTS scheme. This security
notion is defined by the following game between a challenger and an adversary A.

Setup: At the beginning of the game, the challenger runs OTS.KeyGen(1κ)→ (ovk, osk) and gives
1κ and ovk to A.

The Signing Query: During the game, A makes a single signing query. When A submits M ∈
Mκ to the challenger, it runs OTS.Sign(osk,M)→ τ and returns (M, τ) to A.

41

Forgery: A then outputs a forgery (M?, τ?).

We say that A wins the game if OTS.Vrfy(ovk,M?, τ?) = > and (M, τ) 6= (M?, τ?). We define the
advantage of an adversary to be the probability that the adversary A wins, where the probability
is taken over the randomness of the challenger and the adversary. An OTS scheme is said to be
strongly unforgeable if the advantage of any any PPT adversary A in the above game is negligible.

A.3 Message Authentication Codes

Syntax. Let {Mκ}κ∈N be a family of message spaces. A message authentication code (MAC)
is defined by the following algorithms:

MAC.Gen(1κ)→ K: The key generation algorithm takes as input a security parameter 1κ and
outputs a secret key K.

MAC.Sign(K,M)→ µ: The signing algorithm takes as input a secret key K and a message M ∈Mκ

and outputs a tag µ.

MAC.Vrfy(K,M, µ)→ > or ⊥: The verification algorithm takes as input a secret key K, a message
M, and a tag µ and outputs > or ⊥.

Correctness. We require correctness: that is, for all κ, K ∈ MAC.Gen(1κ) and M ∈ Mκ,
µ ∈ MAC.Sign(K,M), MAC.Vrfy(K,M, µ) = > holds.

Strong Unforgeability. We now define strong unforgeability for a MAC scheme. This security
notion is defined by the following game between a challenger and an adversary A. During the
game, the challenger maintains a list Q, which is set to be empty at the beginning of the game.

Setup: At the beginning of the game, the challenger samples K
$← MAC.Gen(1κ) and gives 1κ

to A.

Queries: During the game, A can make the following two kinds of queries unbounded polynomi-
ally many times.

- Signing Queries: When A submits M ∈Mκ to the challenger, it runs MAC.Sign(K,M)→
µ and returns µ to A. Then, the challenger adds the tuple (M, µ) to Q.

- Verification Queries: Upon a query (M, µ) from A, the challenger runs MAC.Vrfy(K,M, µ)
and returns the result to A.

Forgery: A then outputs a forgery (M?, µ?).

We say that A wins the game if MAC.Vrfy(K,M?, µ?) = > and (M?, µ?) 6∈ Q. We define the
advantage of an adversary to be the probability that the adversary A wins, where the probability
is taken over the randomness of the challenger and the adversary. A MAC scheme is said to be
strongly unforgeable if the advantage of any PPT adversary A in the above game is negligible.

A.4 Collision Resistant Hash Functions

Let H = {Hκ}κ∈N be a family of functions, where Hκ is a set of functions with domain {0, 1}∗
and range {0, 1}`, where `(κ) is some polynomial. We say that H is a family of collision resistant
hash functions if it is possible to efficiently sample an index of the function h from Hκ and

Pr
[
h

$← Hκ, (x, x′)← A(1κ, h), : x 6= x′ ∧ h(x) = h(x′)
]

= negl(κ)

holds for any PPT adversary A.

42

B Parameter Selection

Here, we choose parameters and the circuit class for the indexed ABS scheme in Sec. 5.2. For the
system to satisfy correctness and make the security proof work, we need the following restrictions.

- TrapGen operates properly (i.e., m = Ω(n log q) and γ0 = ω(
√
n log q logm) by Item 4 of

Lemma 12),

- γ is sufficiently large so that R
(i)
F,x in the signing algorithm and S(i) in the security proof satisfy

‖R(i)
F,x‖∞ ≤ γ and ‖S(i)‖∞ ≤ γ, (i.e., γ > γ0

√
n · 2O(dF) by Lemma 13),

- β is sufficiently large so that R
(i)
F,x can be extended to [A‖B(1)

F ‖ · · · ‖B
(N)
F]−1

β (i.e., β ≥ γm ·
ω(
√

logm) by Item 2 and 3 in Lemma 12),

- we can apply Lemma 14 in the proof (i.e., m > n log q + ω(log κ)),

- the security of the scheme can be reduced to the hardness of SIS(n,m, q, βSIS) (i.e., βSIS >
Nnmβγ), and

- SIS(n,m, q, βSIS) is hard (i.e., q > βSIS ·
√
n · ω(log n)).

Candidate Choice of the Parameters. We choose the parameters for the scheme as follows:

n = Θ̃(κ), m = n1.1, γ0 = n0.6, γ = n1.1 · 2O(dF),

β = n2.3 · 2O(dF), βSIS = N · n5.5 ·
(

2O(dF)
)2
, q = N · n6.2 ·

(
2O(dF)

)2
,

where O(dF) above represents the same function that is determined by Lemma 13. Since we have
dF (κ) = O(log κ) = O(log n) and N = poly(κ) = poly(n), we have βSIS = poly(n) and thus the
security of the scheme is eventually based on worst case lattice problems with polynomial approxi-
mation factors. Note that we cannot deal with ω(log κ)-depth circuits because (PubEval,TrapEval)
does not work in polynomial time any more in this setting.

C Omitted Details from Section 6

In this section, we give the construction of SKE that is required for the generic construction of GS
in Sec. 4. After reviewing some background in Appendix C.1, we show a generic construction of
the required SKE from an SKE scheme with some mild (non-standard) properties and a strongly
unforgeable MAC scheme in Appendix C.2. We then show how to instantiate the two building
blocks from lattices: SKE from the LWE assumption in Appendix C.3 and the MAC from the
SIS assumption in Appendix C.4.

C.1 Computation in NC1

Here, we review some operations can be performed in NC1, since we will use the facts extensively
in this section. We first recall the result of Beame, Cook, and Hoover [BCH86]. They show
that the computation of x mod p given two positive integers x ∈ {0, 1}n and p ∈ {0, 1}n can be
performed in NC1, namely, can be implemented by an O(log n)-depth circuit, where x and p are
interpreted as integers by natural binary representations. This together with the well-known fact

43

that arithmetic operations such as addition, subtraction, and multiplication over the integer are
in NC1 imply that these operations in Zp are in NC1 as well. Similarly, since the inner-product
of two vectors over the integer can be performed in NC1, so is the inner-product over Zp. Finally,
we note that given two integers x ∈ {0, 1}n and y ∈ {0, 1}n, the comparison of them can be
performed in NC1 as follows:

(
x

?
> y

)
=
∨
i∈[n]

 ∧
j∈[i−1]

(
xj

?
= yj

)∧(
xi

?
> yi

) ,

where x and y are interpreted as integers by natural binary representations and xi and yi are the
i-th bit of x and y, respectively.

C.2 Generic Construction

Here, we construct an SKE scheme SKE′ = (SKE′.Setup,SKE′.Gen,SKE′.Enc, SKE′.Dec) that
has INDr-CCA security, key-robustness, and a decryption circuit with O(log κ)-depth from an
SKE scheme SKE = (SKE.Setup, SKE.Gen, SKE.Enc,SKE.Dec) that has INDr-CPA security, key-
robustness, and a decryption circuit with O(log κ)-depth and a MAC scheme MAC = (MAC.Gen,
MAC.Sign,MAC.Vrfy) that has strong unforgeability and a verification circuit with O(log κ)-depth.
We require SKE and MAC to satisfy the following (very mild) constraints:

• The message space of SKE can be set arbitrarily large. Namely, for any `(κ) = poly(κ), we
can set SKE.M⊇ {0, 1}`, where SKE.M is the message space of SKE.

• The message space of MAC can be set arbitrarily large. Namely, for any `(κ) = poly(κ), we
can set MAC.M⊇ {0, 1}` where MAC.M is the message space of MAC.

• The tag size of MAC is independent of the size of the message space. Namely, there exists
a fixed polynomial ¯̀(κ) such that for any `(κ) = poly(κ), M ∈ {0, 1}` ⊆ MAC.M, KMAC ∈
MAC.Gen(1κ), and µ ∈ MAC.Sign(KMAC,M), we have µ ∈ {0, 1}¯̀

. We say that MAC has
succinctness if it satisfies this condition.

Note that any SKE scheme can be modified to satisfy the first constraint by encrypting smaller
chunks in parallel. Similarly, any MAC scheme can be modified to satisfy the second and the
third constraints by applying a collision resistant hash function to a message before signing on it.
However, we explicitly require these conditions because it slightly simplifies the generic construc-
tion mentioned here. The instantiations of SKE and MAC that appear in Appendix C.3 and C.4
satisfy these conditions.

Let the message space of the resulting SKE scheme SKE′ be {0, 1}` and ¯̀ be the upper bound
on the length of the tag for MAC. We then set the message space SKE.M of SKE sufficiently
large so that we have SKE.M ⊇ {0, 1}L, where L := ` + ¯̀. We then also set the message space
of MAC sufficiently large so that for any R ∈ {0, 1}L, pp ∈ SKE.Setup(1κ), KSKE ∈ SKE.Gen(pp),
ct0 ∈ SKE.Enc(KSKE,R), and M ∈ {0, 1}`, we have ct0‖M ∈ MAC.M. The construction of SKE′ is
as follows.

SKE′.Setup(1κ): It first runs SKE.Setup(1κ)→ pp and outputs pp′ := pp.

SKE′.Gen(pp′): Recall that we have pp′ = pp. It samples KSKE
$← SKE.Gen(pp), KMAC

$←
MAC.Gen(1κ) and outputs K′ = (KSKE,KMAC).

44

SKE′.Enc(K′,M): It first parses K′ as K′ → (KSKE,KMAC). It then samples R
$← {0, 1}L and

computes SKE.Enc(KSKE,R)→ ct0 and MAC.Sign(KMAC, ct0‖M)→ µ. Finally, it sets ct1 :=
R⊕ (M‖µ) and outputs ct′ = (ct0, ct1).

SKE′.Dec(K′, ct′): It first parses K′ as K′ → (KSKE,KMAC) and ct′ as ct′ → (ct0, ct1). It then
proceeds as follows.

1. It first computes R := SKE.Dec(KSKE, ct0). If R = ⊥ or R 6∈ {0, 1}L, it outputs ⊥.

2. Otherwise, it computes M‖µ := ct1 ⊕ R.

3. It then computes MAC.Vrfy(KMAC, ct0‖M, µ). If the result is ⊥, it outputs ⊥. Other-
wise, it outputs M.

Correctness. The correctness of the scheme is easy to verify.

Key Robustness. It is easy to see that SKE′ has key robustness if so does SKE.

Depth of the Decryption Circuit. It is easy to see that the decryption algorithm of SKE′ can
be implemented by a O(log κ)-depth circuit if so are the decryption algorithm of SKE and the
verification algorithm of MAC.

INDr-CCA Security. We have the following theorem.

Theorem 14. SKE′ defined above is INDr-CCA-secure if MAC is strongly unforgeable and SKE
is INDr-CPA-secure.

Proof. We show the theorem by considering the following sequence of games between a PPT
adversary A against the INDr-CCA security game and the challenger. In the following, let Ei
denote the probability that A wins in Game i. We define the distribution SKE′.CTSamp(pp)
to be the direct product of SKE.CTSamp(pp) and the uniform distribution over {0, 1}L, where
SKE.CTSamp is the pseudorandom ciphertext sampling algorithm associated to SKE.

Game 0: We define Game 0 as an ordinary INDr-CCA-security game between A and the challenger.
The advantage of A is |Pr[E0]− 1/2|.

Game 1: We change the game so that the challenger maintains lists L0 and L1 that are set to be
∅ at the beginning of the game. When A makes an encryption query for M, the challenger
first generates the ciphertext ct′ = (ct0, ct1) as R

$← {0, 1}L, SKE.Enc(KSKE,R) → ct0,
MAC.Sign(KMAC, ct0‖M)→ µ, and ct1 := R⊕ (M‖µ). Right after the challenger returns the
ciphertext ct′ to A, it updates the lists as L0 ← L0 ∪ {ct0} and L1 ← L1 ∪ {(ct0,R)}. Note
that the challenger does not update the lists when generating a ciphertext at the challenge
phase. This is done only after the encryption queries. Since this change is only conceptual,
we have Pr[E0] = Pr[E1].

Game 2: In this game, we change the way the decryption queries are answered. When A makes a
decryption query for ct′ = (ct0, ct1), it returns ⊥ if ct0 6∈ L0. As we will show in Lemma 15,
we have |Pr[E1]− Pr[E2]| = negl(κ) assuming the strong unforgeability of MAC.

Game 3: In this game, we further change the way the decryption queries are answered. When
A makes a decryption query for ct′ = (ct0, ct1), the challenger searches for the tuple of the
form (ct0,R) for some R in L1. If it cannot find such a tuple, it returns ⊥. Otherwise, it
computes M‖µ := R⊕ct1 and MAC.Vrfy(KMAC, ct0‖M, µ). If MAC.Vrfy(KMAC, ct0‖M, µ) = >,
it returns M. Otherwise, it returns ⊥. Note that in this game, the challenger no longer needs

45

the secret key to answer the decryption queries. (However, the secret key is still needed to
answer the encryption queries and the challenge query.)

We claim that this does not change the view of A from the previous game. For a decryption
query ct′ = (ct0, ct1) such that ct0 6∈ L0, the challenger returns ⊥ in both games. For
a decryption query ct′ = (ct0, ct1) such that ct0 ∈ L0, the only difference is the way the
challenger computes R. While the challenger computes SKE.Dec(KSKE, ct0) → R in the
previous game (as in the actual SKE′.Dec algorithm), it simply retrieves R in (ct0,R) ∈ L1

in this game. Since we have SKE.Dec(KSKE, ct0) = R for all (ct0,R) ∈ L1 by the correctness of
SKE, the two ways of computing result in the same R, and hence, the subsequent procedure
of the challenger after computing R are exactly the same. We therefore have Pr[E2] = Pr[E3].

Game 4: In this game, we change the way the challenge query is answered. When A makes a
challenge query for M?, it samples ct?0

$← SKE.CTSamp(pp), ct?1
$← {0, 1}L and returns

(ct?0, ct
?
1) to A regardless of whether coin = 0 or 1. As we will show in Lemma 16, we have

|Pr[E3]− Pr[E4]| = negl(κ) assuming the INDr-CPA security of SKE.

In Game 4, the challenge ciphertext is sampled from the same distribution regardless of the value
of coin. Therefore, we have Pr[E4] = 1/2. By combining Lemma 15 and 16, we have that
|Pr[E0]− 1/2| is negligible.

Lemma 15. If MAC is strongly unforgeable, we have |Pr[E1]− Pr[E2]| = negl(κ)

Proof. We observe that Game 1 and Game 2 are the same unless the adversary makes a decryption
query ct′ = (ct0, ct1) such that (SKE′.Dec(K′, ct′) 6= ⊥) ∧ (ct0 6∈ L0). We denote this event by
F and define ε as the probability of F occurring in Game 1. Since |Pr[E1] − Pr[E2]| ≤ Pr[F], it
suffices to show ε is negligible. To show this, we prove that there exists B who breaks the strong
unforgeability of MAC with probability ε. We give the description of B in the following.

At the beginning of the game, B is given 1κ from its challenger. Then, B runs SKE.Setup(1κ)→
pp and SKE.Gen(pp) → KSKE. It then gives 1κ and pp to A. During the game, A makes three
kinds of queries. B answers these queries as follows.

• When A makes an encryption query for M, B first samples R
$← {0, 1}L and computes

SKE.Enc(KSKE,R) → ct0. It then makes a signing query to its challenger for ct0‖M. Given
µ from the challenger, it then sets ct1 := R⊕ (M‖µ) and returns ct′ = (ct0, ct1) to A. It also
updates L0 ← L0 ∪ {ct0} and L1 ← L1 ∪ {(ct0,R)}.

• When A makes the challenge query for M?, B proceeds as follows. If coin = 0, B first
samples R?

$← {0, 1}L and computes ct?0 as SKE.Enc(KSKE,R
?) → ct?0. It then makes a

signing query to its challenger for ct?0‖M?. Then, given µ? from the challenger, B computes
ct?1 := R? ⊕ (M?‖µ?). Finally, it returns ct?′ = (ct?0, ct

?
1) to A. If coin = 1, it samples

ct?0
$← SKE.CTSamp(pp) and ct?1

$← {0, 1}L and returns ct?′ = (ct?0, ct
?
1) to A.

• When A makes a decryption query for ct′ = (ct0, ct1), B first computes R := SKE.Dec(KSKE, ct0).
If R = ⊥ or R 6∈ {0, 1}L, it returns ⊥ to A. Otherwise, it computes M‖µ := ct1 ⊕ R and
makes a verification query to its challenger for (ct0‖M, µ). If the answer is ⊥, it returns ⊥
to A. Otherwise, it checks whether ct0 6∈ L0. If it holds, B aborts and outputs (ct0‖M, µ)
as its forgery. Otherwise, it returns M to A.

46

If A terminates and outputs a bit without making B abort, B outputs ⊥.

We claim that B wins the game whenever F happens. It can easily be seen that B aborts
and outputs a forgery if and only if F happens. Therefore, it suffices to prove that if B outputs
a forgery (ct0‖M, µ), then the pair (ct0‖M, µ) is a successful forgery (i.e., not obtained from a
signing query). There are three cases to consider.

• We first consider the case of coin = 1. In this case, B has made signing queries only for
messages of the form c̃t0‖M̃ such that c̃t0 ∈ L0. This implies that B has not made a signing
query for ct0‖M since ct0 6∈ L0.

• We then consider the case where coin = 0 and B output (ct0‖M, µ) before A makes the
challenge query. In this case, similarly to the above case, B has made signing queries only
for messages of the form c̃t0‖M̃ such that c̃t0 ∈ L0. This implies that B has not made a
signing query for ct0‖M since ct0 6∈ L0.

• We finally consider the case where coin = 0 and B output (ct0‖M, µ) after A made the
challenge query. In this case, B has made signing signing queries only for messages of the
form c̃t0‖M̃ such that c̃t0 ∈ L0 or (c̃t0, M̃) = (ct?0,M

?). There are two sub-cases to consider.

– We first consider the case of ct0 6= ct?0. In this case, B has not made a signing query
for ct0‖M since ct0 6∈ L0 and ct0 6= ct?0.

– We then consider the case of ct0 = ct?0. It suffices to show (ct0‖M, µ) 6= (ct?0‖M?, µ?).
Let (ct0, ct1) be the decryption query made by A that corresponds to the forgery
(ct0‖M, µ). We have ct1 = R? ⊕ (M‖µ), otherwise B has not output (ct0‖M, µ) as the
forgery. Since we have (ct0, ct1) 6= (ct?0, ct

?
1) by the restriction posed on A, we have

ct1 6= ct?1, where we recall ct?1 = R? ⊕ (M?‖µ?). This implies M?‖µ? 6= M‖µ, which in
particular implies (ct0‖M, µ) 6= (ct?0‖M?, µ?) as desired.

Since B simulates Game 1 unless F occurs, we have that the winning probability of B is exactly ε.
This concludes the proof of the lemma.

Lemma 16. If SKE is INDr-CPA-secure, we have |Pr[E3]− Pr[E4]| = negl(κ).

Proof. For the sake of contradiction, let us assume that ε := |Pr[E3] − Pr[E4]| is non-negligible.
We first observe that since the view of Game 3 and Game 4 when coin = 1 are the same, we
have |Pr[E3|coin = 0]− Pr[E4|coin = 0]| = 2ε. It suffices to show an adversary B that breaks the
IND-rCPA security of SKE. We give the description of B in the following.

At the beginning of the game, B is given pp from its challenger. B then samples KMAC
$←

MAC.Gen(1κ) and R?
$← {0, 1}L and makes the challenge query to its challenger for R?. Then, ct?0

is given to B. Here, we have ct?0
$← SKE.CTSamp(pp) or ct?0

$← SKE.Enc(KSKE,R
?), where KSKE is

the secret key chosen by the challenger. B then gives pp to A. During the game, A makes three
kinds of queries. B answers these queries as follows.

• For an encryption query M made by A, B samples R
$← {0, 1}L and makes an encryption

query for its challenger on R. Given ct0, it runs MAC.Sign(KMAC, ct0‖M)→ µ and computes
ct1 := R ⊕ (M‖µ). Finally, it returns ct′ = (ct0, ct1) to A and updates the list as L0 ←
L0 ∪ {ct0} and L1 ← L1 ∪ {(ct0,R)}.

47

• For a decryption query ct′ = (ct0, ct1) made by A before the challenge phase, B returns ⊥ if
ct0 6∈ L0. Otherwise, B retrieves the unique tuple of the form (ct0,R) from L1 and computes
M‖µ := R⊕ ct1. It then returns M if MAC.Vrfy(KMAC, ct0‖M, µ) = > and ⊥ otherwise.

• For the challenge query M? made by A, B runs MAC.Sign(KMAC, ct
?
0‖M?)→ µ? and computes

ct?1 := R? ⊕ (M?‖µ?). Then, it returns ct?′ = (ct?0, ct
?
1) to A.

Finally, A outputs its guess coin′. Then, B outputs 1 if coin′ = 0 and 0 otherwise.

We observe that B perfectly simulates Game 3 with coin = 0 if ct?0 is generated as ct?0
$←

SKE.Enc(KSKE,R
?). On the other hand, if it is sampled as ct?0

$← SKE.CTSamp(pp), R? is dis-
tributed uniformly at random over {0, 1}L independently from ct?0. Therefore, ct?1 = R?⊕(M?‖µ?)
is uniformly random as well. Therefore, B simulates Game 4 with coin = 0 in this case. Combining
these observations, the lemma readily follows.

This concludes the proof of Theorem 14.

C.3 Instantiating the Inner SKE from the LWE

Here, we give an instantiation of the SKE that is required for the generic construction in Sec. C.2
from the LWE assumption. We require the SKE scheme to be INDr-CPA secure and to have a
decryption circuit with O(log κ)-depth. Here, we show that a secret key variant of the Regev’s
scheme [Reg05] satisfies these properties.

The message space of the scheme is {0, 1}`. In the following, we set n = poly(κ), q to be a
polynomially bounded prime with q ≥ 24n+ 2, and m = κ+ ndlog qe.

SKE.Setup(1κ): It first sets the dimension of the matrix n and m and the modulus q. It then
outputs pp := (n,m, q).

SKE.Gen(pp): It samples S0
$← Zn×mq and S1

$← Zn×`q . It then outputs the secret key K = (S0,S1).

SKE.Enc(K,M): It first parses K as K→ (S0,S1). It then samples a
$← Znq \{0}, x0

$← SampZ(3
√
n)m,

and x1
$← SampZ(3

√
n)`. It then computes c>0 := a>S0+x>0 and c>1 := a>S1+x>1 +dq/2e·M,

where M ∈ {0, 1}` is treated as a row vector in Z1×`
q here. Finally, it outputs ct := (a, c0, c1).

SKE.Dec(K, ct): It first parses the ciphertext as ct→ (a, c0, c1). It then proceeds as follows.

1. It checks whether (a ∈ Znq \{0} ∧ c0 ∈ Zmq ∧ c1 ∈ Z`q) and outputs ⊥ if otherwise.

2. It then computes v>0 := c>0 − a>S0 and v>1 := c>1 − a>S1.

3. If v0 6∈ [−3n, 3n]m, it outputs ⊥.

4. Otherwise, it recovers Mi ∈ {0, 1}` for i ∈ [`] as follows. If the i-th coefficient of v1 is
in [−3n, 3n], Mi = 0. Otherwise, Mi = 1.

Correctness. Since we have ‖x0‖∞, ‖x1‖∞ ≤ 3n with probability 1 and q ≥ 24n + 2, the
correctness of the scheme immediately follows.

Depth of the Decryption Circuit. We show that the decryption circuit SKE.Dec(·, ·) can be
implemented by a circuit with O(log κ)-depth. To show this, we observe that Step 1 checks
whether each entry of the vectors is in Zq or Z∗q , Step 2 computes inner products between vectors,
and Step 3 and Step 4 check whether each entry of the vectors is in [−3n, 3n] or not. As we have
seen in Appendix C.1, these operations can be implemented by a circuit with O(log κ)-depth.

Key Robustness.

48

Theorem 15. The above scheme has key robustness.

Pr

[
pp

$← SKE.Setup(1κ), K,K′
$← SKE.Gen(pp) :

∃ct ∈ {0, 1}∗, s.t. SKE.Dec(K, ct) 6= ⊥ ∧ SKE.Dec(K′, ct) 6= ⊥

]
≤ Pr

[
S0,S

′
0

$← Zn×mq :

∃a ∈ Znq \{0}, ∃c0 ∈ Zmp s.t. c>0 − a>S0 ∈ [−3n, 3n]1×m ∧ c>0 − a>S′0 ∈ [−3n, 3n]1×m

]
≤ Pr

[
S0,S

′
0

$← Zn×mq : ∃x ∈ [−6n, 6n]m, ∃a ∈ Znq \{0} s.t. a>(S0 − S′0) = x>
]

≤
∑

x∈[−6n,6n]m,a∈Znq \{0}

Pr
[
S′′0

$← Zn×mq , a>S′′0 = x>
]

≤ (12n+ 1)m · (qn − 1) · q−m

≤ 2−κ,

where the first inequality follows from Step 3 of the decryption algorithm, the third inequality
follows from the union bound, and the last inequality follows from our choice of parameters.

INDr-CPA Security. Here, we define the LWE assumption and then prove security of the
scheme under the assumption.

Definition 3 (The LWE Assumption). Let n := n(κ),m := m(κ), and q := q(κ) be integer pa-
rameters and χ be some distribution over Z. We say that the LWE(n,m, q, χ) hardness assumption
holds if for any PPT adversaries A we have∣∣∣Pr

[
s

$← Znq : AOs(n,m, q)→ 1
]
− Pr

[
AO$(n,m, q)→ 1

]∣∣∣ = negl(κ),

where Os is an oracle that returns (a, b) that is (freshly) sampled as a
$← Znq \{0}, b = a>s + x

for x
$← χ when it is called and O$ is an oracle that returns (a, b) that is freshly sampled as

a
$← Znq \{0}, b

$← Zq when it is called.

Regev [Reg05] (see also [GKV10]) showed that solving LWEn,m,q,χ for χ = SampZ(3
√
n) is

(quantumly) as hard as approximating the SIVP and GapSVP problems to within Õ(
√
nq) factors

in the `2 norm, in the worst case. In the subsequent works, (partial) dequantumization of the
Regev’s reduction were achieved [Pei09, BLP+13].

The following lemma can be shown by a straightforward hybrid argument.

Lemma 17. Let us assume that LWE(n,m, q, χ) assumption holds. Then, for any PPT adver-
saries A and polynomially bounded integer k(κ), we have∣∣∣Pr

[
S

$← Zn×kq : AOS(n,m, q)→ 1
]
− Pr

[
AO

′
$(n,m, q)→ 1

]∣∣∣ = negl(κ),

where OS is an oracle that returns (a,b) that is (freshly) sampled as a
$← Znq \{0}, b> = a>S+x>

for x
$← χk when it is called and O′$ is an oracle that returns (a,b) that is freshly sampled as

a
$← Znq \{0}, b

$← Zkq when it is called.

The following theorem addresses the INDr-CPA security of the scheme.

49

Theorem 16. The above construction is INDr-CPA-secure if the LWEn,m,q,χ assumption holds
with χ = SampZ(3

√
n).

Proof. We show the theorem by considering the following sequence of games between a PPT
adversary A against the INDr-CPA security game and the challenger. In the following, let Ei
denote the probability that A outputs 1 in Game i. We first define SKE.CTSamp(pp) as the

algorithm that samples a
$← Znq \{0}, c0

$← Zmq , and c1
$← Z`q and outputs (a, c0, c1).

Game 0: We define Game 0 as an ordinary INDr-CPA-security game between A and the challenger
with coin = 0.

Game 1: We change the game so that the challenger returns a ciphertext that is sampled from
SKE.CTSamp(pp) when A makes a challenge query or an encryption query. As we will show
in Lemma 18, we have |Pr[E0]− Pr[E1]| = negl(κ) under the LWEn,m,q,χ assumption.

Game 2: We change the game so that the challenger honestly returns the encryption of M when A
makes an encryption query for a message M. However, the challenge query is still answered
by the sample from SKE.CTSamp(pp). As we will show in Lemma 19, we have |Pr[E1] −
Pr[E2]| = negl(κ) under the LWEn,m,q,χ assumption.

Game 3: We define Game 3 as an ordinary INDr-CPA-security game between A and the challenger
with coin = 1. As we can see, Game 2 and Game 3 are the same. Therefore, we have
Pr[E3]| = Pr[E2].

By combining Lemma 18 and 19, we have |Pr[E0]−Pr[E3]| = negl(κ), which concludes the proof.

Lemma 18. If LWEn,m,q,χ holds, we have |Pr[E0]− Pr[E1]| = negl(κ).

Proof. For the sake of the contradiction, let us assume that there exists an adversary A who
distinguishes the games. We then prove that there exists an adversary B who is given (n,m, q) as
input and an oracle access to O and distinguish whether O = O′$ or O = O′S with non-negligible
adavantage, where these oracles are defined as in Lemma 17. By the same lemma, it indicates
that there exists an adversary who breaks the LWEn,m,q,χ, which is a contradiction. The adversary
B proceeds as follows.

At the beginning of the game, B is given (n,m, q) as the problem instance. Then, B sets
pp := (n,m, q) and inputs (1κ, pp) to A. During the game, A makes two kinds of queries. B
answers these queries as follows.

• When A makes an encryption query for M, B first makes an oracle call to O to obtain
(a,b0,b1). It then sets c0 = b0 and c1 := b1 + dq/2e ·M and returns ct = (a, c0, c1) to A.

• When A makes a challenge query for M?, B first makes an oracle call to O to obtain
(a?,b?0,b

?
1). It then sets c?0 = b?0 and c?1 := b?1 + dq/2e ·M? and returns ct = (a?, c?0, c

?
1) to

A.

Finally, A outputs its guess. B outputs the same bit as its guess.

We can easily see that B simulates Game 0 if O = OS and Game 1 if O = O′$. Therefore, B
has non-negligible advantage if so does A. This completes the proof of the lemma.

Lemma 19. If LWEn,m,q,χ holds, we have |Pr[E1]− Pr[E2]| = negl(κ).

50

Proof. The proof of the lemma is the same as that of Lemma 18, except that B does not make
a query to O to answer the challenge query. Instead, it runs SKE.CTSamp(pp) to obtain the
pseudorandom ciphertext and returns it to A.

This completes the proof of the theorem.

C.4 Instantiating the MAC from the SIS

Here, we give an instantiation of the MAC from the SIS assumption that is required for the
generic construction in Appendix C.2. We require the MAC scheme to be strongly unforgeable
and to have succinct tags and a verification circuit with O(log κ)-depth. Such a scheme can be
obtained by using the (public key) signature scheme proposed by Micciancio and Peikert [MP12],
which is a variant of the signature scheme by Boyen [Boy10], as a MAC scheme. In more details,
they construct a signature scheme that satisfies an intermediate security notion that they call
strong unforgeability under static chosen-message attack from the SIS assumption and suggest to
combine the scheme with a suitable chameleon hash function. It is known that the resulting scheme
satisfies strong unforgeability under adaptive chosen message attack [ST01]. The chameleon hash
can be instantiated by the construction given by Cash et al. [CHKP10]. After combining them,
we then downgrade the resulting (public key) signature scheme to obtain a MAC scheme. The
resulting MAC scheme inherits strong unforgeability from the public key signature scheme.

The message space of the MAC will be {0, 1}`(κ) for some polynomial `(κ). In the following, we
set integer parameters n(κ) = poly(κ), k = dlog qe = O(log n), L = nk, q = O(n4), m̄ = O(nk),
m = m̄+ 2nk, β = ω(

√
n log q logm), and γ = O(nk) · ω(log n).

MAC.Gen(1κ): It first sets the parameters n, k, L, q, m̄,m, β, γ as above. It then samples (A,A−1
γ0)

$←
TrapGen(1n, 1m̄+nk, q), A0,A1, . . . ,AL

$← Zn×nkq , B
$← Z`+mq , and u

$← Znq . It finally out-
puts K = (A,A−1

γ0 ,A0,A1, . . . ,AL,B,u).

MAC.Sign(K,M): To sign on a message M ∈ {0, 1}`, it first samples r
$← SampZ(β)m. It then

computes M̃ := B (Mr) ∈ Znq . We then interpret M̃ as a bitstring in {0, 1}L. Then, it
computes A

M̃
defined as

A
M̃

:=

A0 +
∑
i∈[L]

M̃i ·Ai

 , (5)

where M̃i is the i-th bit of M̃. Then, it extends A−1
γ0 to [A‖A

M̃
]−1
γ and samples a vector e

as e
$← [A‖A

M̃
]−1
γ (u). Finally, it returns µ = (r, e).

MAC.Vrfy(K,M, µ): It first parses the tag as µ→ (r, e) ∈ Zm × Zm. It then proceeds as follows.

1. It first checks whether ‖r‖22 ≤ β2m and ‖e‖22 ≤ γ2m and outputs ⊥ otherwise.

2. It then computes M̃ := B (Mr) and then A
M̃

as Eq. (5). Here, each operations between
the entries of vectors and matrices are computed in parallel.

3. It then checks whether [A‖A
M̃

]e
?
= u. Otherwise, it outputs ⊥.

Correctness and Strong Unforgeability. The correctness is immediate. The strong unforge-
ability of the scheme as a MAC can be proven under the SIS assumption (with polynomial
modulus) by the results of [MP12] and [CHKP10].

51

Succinctness of the Tag. We can see that the length of a tag is bounded by 2m log q ≤
O(n log2 q) = O(n log2 n), which is independent of the message length `. Thus, the tag is succinct
in our sense.

Depth of the Verification Circuit. We show that the verification circuit MAC.Vrfy(·, ·) can
be implemented by a circuit with O(log κ)-depth. To show this, we observe that Step 1 requires
computation of Euclidean norms of vectors and comparisons between integers, Step 2 requires
computation of inner-products over Zq to compute M̃ and A

M̃
, and Step 3 requires multiplications

of vectors and matrices over Zq. As we have seen in Appendix C.1, these operations can be
implemented by a circuit with O(log κ)-depth.

D Detailed Discussion on Theorem 10

Theorem 10 is obtained by the result by [Tsa17], but some adaptations are required. In fact, the
scheme shown in the paper is a constrained signature (CS), not an indexed ABS. Here, we discuss
that the scheme implies an adaptively unforgeable ABS scheme via complexity leveraging, which
in turn implies an indexed ABS scheme with the required properties. Here, we use the fact that
an ABS scheme with adaptive unforgeability and perfect privacy can be used as an indexed ABS
with co-selective unforgeability and perfect privacy, by simply ignoring the additional inputs.

In CS, a signing key is associated with a circuit C and it is possible to sign on a string x iff
C(x) = 1. On the other hand, in ABS, a signing key is associated with a string x and it is possible
to sign on a circuit-message pair (C,M) iff C(x) = 1. To use CS as an ABS, we associate the
signing key with a universal circuit U(·, ·, x), which takes as input a circuit-message pair (C,M)
and outputs C(x), and generate a signature for (C,M) by regarding it as a string. As for the
function class, we require the ABS scheme to support the class of O(log κ)-depth circuit. Since
we can construct a universal circuit U whose depth is only constant times deeper than that of C
by the result of Cook and Hoover [CH85], we require the original CS to support the function class
of O(log κ)-depth circuits. While the CS scheme given by Tsabary can support any polynomially
bounded depth circuits, this requires subexponential modulus for the scheme. However, observing
that we only require a CS scheme for O(log κ)-depth circuits for our application, we can obtain a
scheme with polynomial modulus by switching to the more modulus-size efficient lattice evaluation
algorithm proposed by Gorbunov and Vinayagamurthy [GV15] (which only works for O(log κ)-
depth circuits) from those proposed by Boneh et al. [BGG+14] (which works for any polynomially
bounded depth circuits). As for security, since the CS scheme is proven selectively unforgeable,
so is the ABS scheme. Namely, we can prove the security when the adversary chooses its target
circuit-message pair (C?,M?) for the forgery at the beginning of the game. This security notion is
not enough for our purpose, but by utilizing complexity leveraging [BB04b], we can prove adaptive
security of the scheme. In the reduction from selective security to adaptive security, we have to
randomly guess (C?,M?). Recall that we need to support the circuit class Cκ that is defined in
Eq. (2). Since the length of the message M? is bounded by poly(κ) and a circuit C? ∈ Cκ can be
described by ovk and ct, which can be described by binary strings with length poly(κ, logN), the
reduction loss is 2−poly(κ,logN). To compensate for the degradation in the advantage, we need to
enlarge the dimension n of the scheme to be poly(κ, logN)1/ε = poly(κ) where ε is some constant
in (0, 1) dictating the subexponential hardness of the SIS problem. Summing up our discussion,
we obtain Theorem 10.

52

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Contribution . 2
1.3 Overview of Our Technique . 4
1.4 Related Works . 9
1.5 Independent Work and Open Problems . 10

2 Preliminaries 11
2.1 Group Signature . 11
2.2 Secret Key Encryption and Other Primitives . 13
2.3 Admissible Hash Functions . 13

3 Indexed Attribute-Based Signatures 14
3.1 Indexed Attribute-Based Signature . 14
3.2 From No-Signing-Query Unforgeability to Co-selective Unforgeability 16

4 Generic Construction of Group Signatures 19

5 Construction of Indexed ABS from Lattices 27
5.1 Preliminaries on Lattices . 27
5.2 Construction . 29
5.3 Security Proofs . 30

6 Instantiating SKE 32

7 New Group Signature Constructions 33

A Omitted Definitions from Section 2 40
A.1 Secret Key Encryption . 40
A.2 One-Time Signature . 41
A.3 Message Authentication Codes . 42
A.4 Collision Resistant Hash Functions . 42

B Parameter Selection 43

C Omitted Details from Section 6 43
C.1 Computation in NC1 . 43
C.2 Generic Construction . 44
C.3 Instantiating the Inner SKE from the LWE . 48
C.4 Instantiating the MAC from the SIS . 51

D Detailed Discussion on Theorem 10 52

53

	Introduction
	Background
	Our Contribution
	Overview of Our Technique
	Related Works
	Independent Work and Open Problems

	Preliminaries
	Group Signature
	Secret Key Encryption and Other Primitives
	Admissible Hash Functions

	Indexed Attribute-Based Signatures
	Indexed Attribute-Based Signature
	From No-Signing-Query Unforgeability to Co-selective Unforgeability

	Generic Construction of Group Signatures
	Construction of Indexed ABS from Lattices
	Preliminaries on Lattices
	Construction
	Security Proofs

	Instantiating SKE
	New Group Signature Constructions
	Omitted Definitions from Section 2
	Secret Key Encryption
	One-Time Signature
	Message Authentication Codes
	Collision Resistant Hash Functions

	Parameter Selection
	Omitted Details from Section 6
	Computation in NC1
	Generic Construction
	Instantiating the Inner SKE from the LWE
	Instantiating the MAC from the SIS

	Detailed Discussion on Theorem 10

