
Communication Lower Bounds for Statistically
Secure MPC, with or without Preprocessing

Ivan Damg̊ard?, Kasper Green Larsen??, and Jesper Buus Nielsen? ? ?

Computer Science. Aarhus University

Abstract. We prove a lower bound on the communication complexity
of unconditionally secure multiparty computation, both in the standard
model with n = 2t + 1 parties of which t are corrupted, and in the
preprocessing model with n = t+ 1. In both cases, we show that for any
g ∈ N there exists a Boolean circuit C with g gates, where any secure
protocol implementing C must communicate Ω(ng) bits, even if only
passive and statistical security is required. The results easily extends to
constructing similar circuits over any fixed finite field. This shows that
for all sizes of circuits, the O(n) overhead of all known protocols when
t is maximal is inherent. It also shows that security comes at a price:
the circuit we consider could namely be computed among n parties with
communication only O(g) bits if no security was required. Our results
extend to the case where the threshold t is suboptimal. For the honest
majority case, this shows that the known optimizations via packed secret-
sharing can only be obtained if one accepts that the threshold is t =
(1/2 − c)n for a constant c. For the honest majority case, we also show
an upper bound that matches the lower bound up to a constant factor
(existing upper bounds are a factor lgn off for Boolean circuits).

1 Introduction

In secure multiparty computation (MPC) a set of n parties compute an agreed
function on inputs held privately by the parties. The goal is that the intended
result is the only new information released and is correct, even if t of the parties
are corrupted by an adversary.

In this paper we focus on unconditional security where even an unbounded
adversary cannot learn anything he should not, and we ask what is the min-
imal amount of communication one needs to compute a function securely. In
particular: how does this quantity compare to the size of the inputs and to the
circuit size of the function? Since one can always compute the function with-
out security by just sending the inputs to one party and let her compute the
function, an interesting question is what overhead in communication (if any) is

? Supported by the ERC Advanced Grant MPCPRO.
?? Supported by a Villum Young Investigator grant and an AUFF starting grant. Part

of this work was done while KGL was a long term visitor at the Simons Institute for
Theory of Computing.

? ? ? Supported by the Independent Research Fund Denmark project BETHE.

required for a secure protocol? An even harder question is if the communication
must be larger than the circuit size of the function. Note that the questions only
seem interesting for unconditional security: for computational security we can
use homomorphic encryption to compute any function securely with only a small
overhead over the input size.

There is a lot of prior work on lower bounding communication in interactive
protocols, see for instance [Kus92, FY92, CK93, FKN94, KM97, KR94, BSPV99,
GR03] (and see [DPP14] for an overview of these results). The previous work
most relevant to us is [DPP14]. They consider a special model with three parties
where only two have input and only the third party gets output, and consider
perfect secure protocols. This paper was the first to show an explicit example of
a function where the communication for a (perfectly) secure protocol must be
larger than the input.

Later, in [DNOR16], a lower bound was shown on the number of messages
that must be sent to compute a certain class of functions with statistical security.
When the corruption threshold t is Θ(n), their bound is Ω(n2). This of course
implies that Ω(n2) bits must be sent. However, we are intersted in how the
communication complexity relates to the input and circuit size of the function,
so once the input size become larger than n2 the bound from [DNOR16] is not
interesting in our context.

In [DNPR16], lower bounds on communication were shown that grow with the
circuit size. However, these bounds only hold for a particular class of protocols
known as gate-by-gate protocols, and we are interested in lower bounds with no
restrictions on the protocol.

In [IKM+13] the case of statistically secure 2-party computation with prepro-
cessing is considered, where the parties are given access to correlated randomness
at the start of the protocol. They show that the input size is (essentially) both an
upper and a lower bound for the communication needed to compute a non-trivial
function in this model, if one allows exponentially large preprocessed data. If one
insists on the more practical case of polynomial size preprocessing, virtually all
known protocols have communication proportional to the circuit size of the func-
tion. However, in [Cou18] it was shown (also for the 2PC case) that even with
polynomial size preprocessed data, one can have communication smaller than
the circuit size of the function, for a special class of so-called layered circuits.

1.1 Our results

In this paper, we prove lower bounds for the model with n parties of which t are
passively and statically corrupted. The network is synchronous, and we assume
that the adversary can learn the length of any message sent (in accordance with
the standard ideal functionality modeling secure channels which always leaks the
message length). We consider statistically secure protocols in both the standard
model with honest majority, n = 2t + 1 and the preprocessing model where
n = t+ 1 is possible.

To understand our results, note first that any function can be computed in-
securely by sending the inputs to one party and let her compute the function.

2

This takes communication S where S is the input size. What we show in both
models is now that for any S, there exists a function f with input size S such
that any protocol that evaluates f securely must communicate Ω(nS) bits. As
mentioned, [DPP14] showed that such an overhead over the input size is some-
times required, we are the first to show that it grows with the number of players.
So we see that security sometimes comes at a price, compared to an insecure
solution.

However, we can say even more: we are able to construct functions f as
we just claimed such that they can be evaluated by circuits of size O(S). This
means we also get the following: In both models, for any g ∈ N there exists a
Boolean circuit C with g gates, where any protocol that evaluates C securely
must communicate Ω(ng) bits. For the honest majority case, the result easily
extends to constructing similar circuits over any fixed finite field. This shows that
for all sizes of circuits, the Ω(n) overhead of all known protocols for maximal t is
inherent. It is the first time it has been shown that there are circuits of all sizes
which must suffer this Ω(n) overhead ([DNOR16] implies this result for circuits
of size n).

The reader should note that since our result only talks about functions with
linear size circuits, this leaves open the question of overhead over the circuit size
when the circuit is much bigger than the inputs1.

Our results extend to the case where the threshold t is suboptimal. Namely,
if n = 2t+ s, or n = t+ s for the preprocessing model, then the lower bound is
O(gn/s) and this shows that the improvement in communication that we know
we can get for honest majority using so-called packed secret-sharing, can only be
obtained if one accepts that the threshold t is t = (1/2− c)n for a constant c. In
more detail, [DIK10] shows that for large n end even larger circuits of “sufficiently
nice” shape, one can get a perfectly secure protocol with communication Õ(g)
for circuits with g gates (where the Õ hides logarithmic factors in g and n).
This protocol uses packed secret sharing which allows us to share a vector of
Θ(n) field elements where each share is only one field element. We can therefore
do Θ(n) secure arithmetic operations in parallel “for the price of one”. This
construction gives communication Õ(g) but a corruption threshold much smaller
than n/2. However, using the so-called committee approach (originally by Bracha
but introduced for MPC in [DIK+08]), one can build a new protocol for the same
function and similar complexity but now with threshold t = (1/2 − c)n for an
arbitrarily small constant c. Our results now imply that there is no way to
improve the committee approach (or any other approach) to yield t = (1/2 −
o(1))n: the circuits we build in this paper are indeed “nice enough” to be handled
by the protocol from [DIK10], so any hypothetical improvement as stated would
yield a protocol contradicting our lower bound.

1 This is a much harder question of a completely different nature: for instance, if you
are given a circuit to evaluate securely, there might exist a much smaller circuit
computing the same function, so proving something on the overhead over the circuit
size in general seems out of the question unless we are “magically” given the smallest
circuit for the function in question.

3

For honest majority, we also show an upper bound that matches the lower
bound up to a constant factor for all values of t < n/2. This is motivated by the
fact that the existing upper bound from [DN07] is a factor lg n off for Boolean
circuits. We do this by exploiting recent results by Cascudo et al. [CCXY18] on
so-called reverse multiplication friendly embeddings.

For dishonest majority with preprocessing, an upper bound for t = n−1 was
already known. Namely, by an easy generalization of the two party protocol from
[IKM+13] (already mentioned there), one obtains communication complexity
O(nS) for any function where S is the input size, using an exponential amount
of preprocessed data. This matches our lower bound up to a constant factor: for
the functions we consider, circuit and input size are essentially the same, so our
bound is Ω(ng) = Ω(nS). This settles the question of communication complexity
in the preprocessing model for maximal t and exponential size preprocessing.
For the case of suboptimal values of t where t = n− s we show an upper bound
O(tg/s) with polynomial size preprocessing, using a simple generalization of
known protocols. We do not know if this can be strengthened to Ω(St/s) if one
allows exponential size preprocessing.

On the technical side, what we show are actually lower bounds on the entropy
of the messages sent on the network when the inputs have certain distributions.
This then implies similar bounds in general on the average number of bits to
send: an adversary who corrupts no one still learns the lengths of messages,
and must not be able to distinguish between different distributions of inputs.
Hence message lengths cannot change significantly when we change the inputs,
otherwise the protocol is insecure.

To show our results, we start from a lower bound for the communication
complexity of private information retrieval with or without preprocessing and
one server. While such a bound follows from the results in [IKM+13], we give
our own (much simpler) proof for self-containment. From this bound we show
lower bounds for honest majority in the 3-party case and then finally “lift” the
results to the multiparty case, while for dishonest majority we go directly from
2-party to multiparty. The observations we make in the 3-party case are related,
at least in spirit, to what was done in [DPP14], indeed we also prove a lower
bound for a case where 2 parties have input and the third has output. There are
two important differences, however: first, we prove results for statistical security
which is stronger than perfect security as in [DPP14] (because we show lower
bounds). Second, while [DPP14] considers a very general class of functions, we
consider a particular function (the inner product) which makes proofs simpler,
but more importantly, we need the structure of this function to lift our results
to the multiparty case.

The lifting is done using a simple but effective trick which is new to the
best of our knowledge: loosely speaking, we start from a circuit computing, say
f(x1, .., xn) where the xi’s are the private inputs. Then we introduce an extra
input bit bi for Pi, and demand that her output be bi·f(x1, ..., xn). By a reduction
to the 3-party case, we can show that Pi must communicate a lot when bi = 1
and bj = 0 for j 6= i. Since now the identity of the party who gets the output is

4

determined by the inputs, a secure protocol is not allowed to reveal this identity,
and this forces all players to communicate a lot.

2 Preliminaries

2.1 Information Theory

We first recall the well-known Fano’s inequality which implies that for a random
variable X, if we are given the value of another random variable X ′ which is
equal to X except with probability δ, then the uncertainly of X drops to 0 as
δ → 0:

Lemma 1. Let δ be the probability that X 6= X ′ and X be the support set of X
and X ′. Then H(X | X ′) ≤ h(δ) + δ(lg |X | − 1), where h() is the binary entropy
function.

It is easy to see from this result that if δ is negligible in some security parameter
while lg |X | is polynomial, then H(X | X ′) is also negligible.

In the following we will use D(X,X ′) to denote the statistical distance be-
tween the distributions of X and X ′ with common support X , that is:

D(X,X ′) =
1

2

∑
x∈X
|Pr(X = x)− Pr(X ′ = x)|

Now, from Lemmas 4.5 and 4.6 in [DPP98] it follows immediately that we can
bound the change in entropy in terms of the distance;

Lemma 2. |H(X)−H(X ′)| ≤ D(X,X ′)(lgX − lg D(X,X ′))

The other result we need considers a case where we have two random variables
X,Y and another pair X ′, Y ′ such that D((X,Y), (X ′, Y ′)) is bounded by some
(small) δ. Then we can show that H(X | Y) is close to H(X ′ | Y ′):
Corollary 1. Assume D((X,Y), (X ′, Y ′)) ≤ δ, and let XY be the support set
of X,Y . Then we have |H(X | Y)−H(X ′ | Y ′)| ≤ 2δ(lg |XY| − lg δ)

Proof. By the triangle inequality, it is easy to see that

D(Y, Y ′) ≤ D((X,Y), (X ′, Y ′)) .

Now we can use the above lemma and the triangle inequality again to calculate
as follows:

|H(X|Y)−H(X ′|Y ′)| = |H(X,Y)−H(Y)− (H(X ′, Y ′)−H(Y ′))|
≤ |H(X,Y)−H(X ′, Y ′)|+ |H(Y)−H(Y ′)|
≤ δ(lg |XY| − lg δ) + D(Y, Y ′)(lg |Y| − lg D(Y, Y ′))

≤ 2δ(lg |XY| − lg δ) .

ut
Again we can see that if δ is negligible in a security parameter while |XY| is
polynomial, then the difference in conditional entropies is negligible.

5

2.2 Unconditionally Secure MPC

We look at a special case of MPC called secure function evaluation. There are
n parties P1, . . . ,Pn. They are connected by secure point-to-point channels in
a synchronous network. Each of them has an input xi ∈ {0, 1}I in round 1.
Eventually each Pi gives an output yi ∈ {0, 1}O. We assume that t < n/2 of
the parties can be corrupted. We consider only passive security. In this setting
security basically means that the outputs are correct and that the distribution
of the view of any t parties and be sampled given only their inputs and outputs.

P1 P2

P3

x1 x2

y3

r1 r2

r3

c1;2

c2;3c1;3

Fig. 1. A special case of the model where n = 3 and P3 has no input and P1,P2 have
no output.

We define security as in [Can00]. Here we give a few details for self con-
tainment. Each party Pi has a random tape ri. In the pre-processing model or
correlated randomness model r = (r1, . . . , rn) is drawn from a joint distribution
R,

(r1, . . . , rn)← R .

In the standard model, each ri is uniform and independent of everything else.
We use

(y1, . . . , yn) = 〈P1(x1; r1), . . . ,Pn(xn; rn)〉

to denote a run of the protocol with input x = (x1, . . . , xn) and fixed random
tapes, resulting in Pi(xi; ri) outputting yi. We use ci,j to denote the communi-
cation between Pi(xi; ri) and Pj(xj ; rj). We let ci,j = cj,i. We let

viewi(x, r) = (xi, ri, ci,1, . . . , ci,n, yi) .

6

This is all the values seen by Pi in the protocol. In Fig. 1, the model is illustrated
for n = 3 and for the case where P3 has no input and P1,P2 have no output.

For a set C ⊆ {P1, . . . ,Pn} and an input vector x we let

viewC(x, r) = (x, {(i, viewi(x, r))}i∈C ,y) ,

where y = (y1, . . . , yn) and yi is the output of Pi. We use viewC x to denote
viewC(x, r) for a uniformly random r

We now define perfect correctness and perfect privacy.

Definition 1 (perfect correctness). For all inputs (x1, . . . , xn) and all ran-
dom tapes (r1, . . . , rn) it holds that

〈P1(x1; r1), . . . ,Pn(xn; rn)〉 = f(x1, . . . , xn) .

An adversary structure is a set A of subsets C ⊆ {P1, . . . ,Pn}. It is usual to
require that A is monotone but we do not do that here. For a simulator S and
a set C of corrupted parties we define

simC,S x = (x, S{(i, xi, yi)}i∈C , fx) .

The simulator might be randomized, and we use simC,S x to denote the distri-
bution obtained by a random run.

Definition 2 (perfect privacy). We say that a protocol for f has perfect pri-
vacy against A if there exists a simulator S such that for all inputs x and y = fx
and all C ∈ A it holds that the distributions simC,S x and viewC x are the same.

Note that perfect privacy implies perfect correctness.

When working with statistical security we introduce a security parameter
σ ∈ N. The protocol and the simulator is allowed to depend on σ. We use

(y1, . . . , yn) = 〈P1(σ, x1; r1), . . . ,Pn(σ, xn; rn)〉

to denote a run of the protocol with fixed security parameter σ and fixed random
tapes, resulting in Pi(σ, xi; ri) outputting yi. We let

viewi(x, r, σ) = (σ, xi, ri, ci,1, . . . , ci,n, yi) .

We use
(y1, . . . , yn)← 〈P1(σ, x1), . . . ,Pn(σ, xn)〉

to denote a random run. In a random run, viewi(x, σ) becomes a random vari-
able. For a simulator S, a set C of corrupted parties and security parameter σ
we define

simC,S(x, σ) = (x, S({(i, xi, yi)}i∈C , σ), fx) .

We use D(V1, V2) to denote the statistical distance between the distributions
of random variables V1 and V2. Statistical security is defined as usual: even given
the inputs and outputs of honest parties, the simulated views of the corrupted
parties are statistically close to the real views.

7

Definition 3 (negligible function). We call a function ε : N → R negligible
if for all c ∈ N there exists n ∈ N such that

∀n > n0 (ε(n) < n−c) .

We use negl to denote a generic negligible function, i.e., the term negl both
takes the role as a function, but also has the implicit claim that this function is
negligible.

Definition 4 (statistical privacy). We say that a protocol for f has statistical
privacy against A if there exists a simulator S such that for all inputs x, all
values of σ, y = fx, and all C ∈ A it holds that

D(simC,S(x, σ), viewC(x, σ)) .

is negligible (as a function of σ).

We call a protocol t-private if it is private for the adversary set consisting of
all subsets of size at most t.

2.3 Private Information Retrieval

A special case of MPC is private information retrieval. The setting is illustrated
in Fig. 2. The input of P1 is a bit string x1 ∈ {0, 1}I . The input of P2 spec-
ifies an index x2 ∈ {0, . . . , I − 1}. The output y2 is bit number x2 in x1. In
the correlated randomness setting the randomness can be sampled as any joint
distribution (r1, r2)← R and ri securely given to Pi. We call this pre-processing
PIR (PP-PIR). In contrast, PIR takes place in the standard model where r1, r2
are independent and uniform.

P1 P2

x1 x2

y2
c1;2

(r1; r2) R

r1 r2

Fig. 2. PIR with pre-processing (PP-PIR).

8

Definition 5 (PIR). We call π a perfect (PP-)PIR if it is perfectly correct and
it is perfect {{P1}}-private, i.e., the view of Pi can be simulated given just x1.
We call π a statistical (PP-)PIR if it is statistical {{P1}}-private, i.e., the view
of Pi can be simulated statistically given just x1 and the protocol is statistically
close to correct.

We first (re)prove some basic facts about PIR. These results are known, at
least in the folklore. However, we could not find a reference for the proof in the
statistical security case, so we include proofs here for self-containment. Let c1,2
denote the communication between P1 and P2. Then:

Lemma 3. If π is a perfect PIR, then there exists a function x such that x1 =
x(c1,2).

Proof. The function postulated in the lemma can be implemented by computing
each value x1[j] as follows: Given c1,2, set x2 = j and iterate over all values of
r2, until one is found where where (x2, r2, c1,2) is a possible value of P2’s view of
π. More concretely, if P2 starts from x2, r2 and we assume P1 sent the messages
in c1,2 (with P1 as sender), then P2 would send the messages occurring in c1,2
(with P2 as sender). Once such an r2 is found, output the value y that P1 would
output based on this view. It now follows immediately from perfect correctness
that if the loop terminates, then y = x1[j]. Moreover, perfect privacy implies
that an r2 as required for termination must exist: Given any view x1, r1, c1,2 for
P1, then for any x2 there must be an r2 leading to this view. Otherwise, P1 could
exclude one or more values of x2. ut

Lemma 4. Assume that π is a statistical PIR. Let X1, X2 denote random vari-
ables describing uniformly random inputs to P1,P2. Let C1,2 be the random vari-
able describing c1,2 after a random run on X1, X2. Then there exists a function
x such that Pr[X1 = x(C1,2)] = 1− negl(σ).

Proof. Let C1,2(x2) denote C1,2 when the input of P2 is x2. We now prove two
claims.

Claim 1. There exists a function xx2
such that

Pr[X1[x2] = xx2
(C1,2(x2))] = 1− negl(σ) .

Claim 2. For all x2 and x′2 it holds that

D((X1, C1,2(x2)), (X1, C1,2(x′2))) = negl(σ) .

Let us first see that if these claims are true, then we are done. By combining
the claims we get that:

Pr[X1[x2] = xx2
(C1,2(x′2))] = 1− negl(σ) .

Now let x(C) = (x0(C), . . . , xI−1(C)). Then by a union bound

Pr[X1 = x(C1,2(x′2))] = 1− negl(σ) ,

9

as I is polynomial in σ. This holds for all x′2, so

Pr[X1 = x(C1,2)] = 1− negl(σ) ,

as desired.

Claim 1 follows from statistical correctness. Consider a random run of P2

using input x2 and uniformly random (r1, r2), resulting in communication c1,2
and output y2. We know that

Pr [y2 = X1[x2]] = 1− negl(σ) .

Assume now that someone gave you the execution of the protocol but deleted
x1, r1, r2, and y2, and hence left you with only c1,2 and x2. Consider now sampling
a uniformly random x′1, r

′
1 and r′2 that are consistent with c1,2 and x2, i.e.,

running P1(x′1; r′1) and P2(x2; r′2) produced exactly the messages c1,2. Let y′2 be
the resulting output of P2(x2; r′2) when running P1(x′1; r′1) and P2(x2; r′2).

Then clearly y′2 and y2 will have the same distribution. Namely, the distri-
bution of the deleted x1, r1 and r2 were also uniform, consistent with c1,2, x2.
Hence

Pr [y′2 = X1[x2]] = 1− negl(σ) .

Let y be the function which samples y′2 from c1,2, x2 as described above. Let
xx2(·) = y(·, x2). Then

Pr [xx2
(C1,2(x2)) = X1[x2]] = 1− negl(σ) ,

as desired.

Claim 2 follows directly from statistical privacy (P1 does not learn x2).
Namely, we have that

sim{P1},S(x, σ) = ((X1, x2), S(X1, σ), X1[x2])

and

view{P1}(x, σ) = ((X1, x2), (X1, C1,2), X1[x2])

are statistically indistinguishable, so if we let C ′1,2 be the distribution of C1,2

output by S, then

D((X1, C1,2(x2)), (X1, C
′
1,2)) = negl(σ)

for all x2. Then use the triangle inequality:

D((X1, C1,2(x2)), (X1, C1,2(x′2))) ≤
D((X1, C1,2(x2)), (X1, C

′
1,2)) + D((X1, C

′
1,2), (X1, C1,2(x′2))) = negl(σ).

ut

10

These results imply that the communication in single server PIR must be
large: By Lemma 4 and Lemma 1 we can conclude that H(C1,2) ≥ I(X1;C1,2) =
H(X1) − H(X1|C1,2) ≥ H(X1) − negl(σ). We now show that a similar result
holds for PP-PIR:

Lemma 5. Assume that π is a statistical PP-PIR. Let X1, X2 denote random
variables describing uniformly random inputs to P1,P2. Let C1,2 be the random
variable describing c1,2 after a random run on X1, X2. Then H(C1,2) ≥ H(X1)−
negl(σ).

Proof. Let R be the function used to sample the correlated randomness (r1, r2),
i.e., (r1, r2) = R(r) for a uniformly random r. Notice that since (PP-)PIR does
not impose any privacy restrictions on what P2 learns, we can construct a secure
PIR protocol π′ from π as follows: P2 runs R, sends r1 to P1, and then we
run π. We can now apply Lemma 4 and Lemma 1 to π′ and conclude that
H(X1|C1,2, R1) = negl(σ), here R1 is a random variable describing the choice of
r1 and we note that the conversation in π′ consists of r1 and c1,2. Since X1 and
R1 are independent, we have H(X1) = H(X1|R1) and now the chain rule gives
immediately that H(C1,2) ≥ H(X1) − negl(σ) as desired (intuitively, given R1,
the uncertainty on X1 is maximal, but if we add C1,2 the uncertainty drops to
essentially 0, and so C1,2 must contain information corresponding to the entropy
drop). ut

3 Lower Bounds Without Correlated Randomness

In this section we prove that there is an n-party function describable by a cir-
cuit C of size |C| where each of the n parties have communication Θ(|C|), in the
standard model. For the sake of presentation we present it via a series of simpler
results, each highlighting one essential idea of the proof. We first give a function
for three parties where one party must have high communication, proving the
result first for perfect and then statistical security. Then we lift this up to an
n-party function where there is a special heavy party. A heavy party has a short
input and a short output, but still must have communication Θ(|C|) bits. Then
we embed this function into a slightly more complicated one, where each party
can obliviously choose to be the heavy party. This gives an n-party function
where all parties must have communication Θ(|C|). This is because they must
have communication Θ(|C|) when they are the heavy party, and a private pro-
tocol is not allowed to leak who is the heavy party. Throughout this series of
results we assume maximal threshold n = 2t + 1 for simplicity. At the end we
investigate how the bound behaves when n = 2t+ s for 1 ≤ s ≤ t.

Our main theorem will be the following.

Theorem 1. Let n = 2t+s. There exists a function ÎPI,n with circuit complexity

O(nI) such that in any statistically t-private protocol for ÎPI,n in the model
without preprocessing, the average communication complexity is at least Int

2s −ε =
Θ(ntI)/s for a negligible ε.

11

3.1 Lower Bound, Perfect Security, Three Parties

We start by considering a protocol for three parties of the form in Fig. 1. The
input of P1 is x1 ∈ {0, 1}I , the input of P2 is x2 ∈ {0, 1}I . The output of P3 is
the inner product between x1 and x2, i.e., the single bit

y3 =

I⊕
i=1

x1,ix2,i .

Denote this function by IPI,3.

P1 P2

P3

X1 X2

Y3

C1;2

C2;3C1;3

Fig. 3. A special case of the model where n = 3 and P3 has no input and P1,P2 have
no output, and where the inputs are uniformly random.

Theorem 2. In any protocol for IPI,3 that is perfectly correct and perfectly
private if P1 or P2 are corrupt, party P3 will for random inputs have average
communication complexity at least I.

Proof. Assume that we have a protocol implementing IPI,3 with security as
assumed. Let X1 denote a random variable that is uniformly random on {0, 1}I .
Let X2 denote an independent random variable that is uniformly random on
{0, 1}I . Let Ci,j denote the communication between Pi and Pj in a random
execution 〈P1(X1),P2(X2),P3〉 and let Y3 denote output of P3 in the random
execution. See Fig. 3.

Below, we will first prove that the following two inequalities implies high
communication for P3:

H(X1 | C1,2, C1,3, C2,3) ≤ ε . (1)

H(X1 | C1,2, C2,3) ≥ I − ε . (2)

12

P1 P2

x1 x2

r1 r2

c1;2

c2;3c1;3

P3
y3

r3

Fig. 4. Collapsing P2 and P3 into a single party.

These inequalities will be true with ε = 0 for perfect security and for a negligible
ε for statistical security. We will show that this implies:

H(C1,3) ≥ I − 2ε , (3)

To see this, we use the chain rule for conditional Shannon entropy:

I − ε ≤ H(X1 | C1,2, C2,3) ≤ H(X1C1,3 | C1,2C2,3) =

H(X1 | C1,3C1,2C2,3) +H(C1,3 | C1,2C2,3) ≤ ε+H(C1,3).

We conclude that H(C1,3) ≥ I − 2ε, i.e., P3 must communicate on average at
least 1− 2ε bits.

We now prove that for a perfectly secure protocol, (1) holds with ε = 0. For
this purpose, consider the 3-party protocol π′ in Fig. 4, where we consider P2

and P3 as one party. We call P1 the sender and (P2,P3) the receiver. Notice
that x2 can be taken to be any vector which is all-zero, except it has a 1 in
position j. In that case it follows from perfect correctness of π that the receiver
always learns the j’th bit of x1. Furthermore, if π is perfectly private when P1 is
corrupted, then the sender learns nothing about j. This is because a corrupted
sender learns only x1 and r1, exactly as in the protocol. So, if π is a perfectly
correct and perfectly 1-private protocol for IP3,I , then π′ is a perfect PIR. Hence
(1) follows from Lemma 3.

We then prove (2) for ε = 0. To see this note that by perfect privacy when
P2 is corrupt, we can simulate (C1,2, C2,3) given X2 as P2 has no output. This
implies that

H(X1 | C1,2, C2,3) ≥ H(X1 | X2) = I

as we wanted.
This completes the proof of Theorem 2. ut

13

3.2 Lower Bound, Statistical Security, Three Parties

We now prove that essentially the same result holds also for statistical security.

Theorem 3. In any protocol for IPI,3 that is statistically correct and statis-
tically private if P1 or P2 are corrupt, party P3 will for random inputs have
average communication complexity at least I − ε for a negligible ε.

Proof. From the previous section it is clear that we only have to prove that (1)
and (2) still hold.

As for (1), we clearly get a statistically secure PIR by considering P2 and
P3 as one party, exactly as in the proof for perfect security. Then, by Lemma
4, it follows that given C1,2, C1,3 one can compute a guess at X ′1 such that
Pr[X ′1 6= X1] is negligible. Then (1) follows by Lemma 1:

H(X|C1,2, C1,3, C2,3) ≤ H(X | C1,2, C1,3) ≤ H(X1 | X ′1) ≤ ε

for a negligible ε.
As for (2), we exploit the fact that the protocol is statistically secure against a

corrupt P2. This means there exists a simulator that (using only x2 as input) will
simulate the view of P2, including c1,2, c2,3. The definition of statistical security
requires that the simulated view is statistically close to the real view even given
the input x1 (of the honest P1). Note that here the distributions are taken only
over the random coins of the parties and the simulator.

Now we run the protocol with a uniformly random X1 as input for P1, and
a uniformly random input X2 for P2. As before we let C1,2, C2,3 denote the
variables representing the communication in the real protocol while C ′1,2, C

′
2,3

denote the simulated conversation. The statistical security now implies that

D((X1, (C1,2, C2,3)), (X1, (C
′
1,2, C

′
2,3)))

is negligible — actually statistical security implies the stronger requirement that
the distance be small for every fixed value of X1 and X2. Now (2) follows imme-
diately from this and Corollary 1.

This completes the proof of Theorem 3. ut

3.3 Lower Bound, Statistical Security, n Parties, Maximal
Resilience

We now generalize the bound to more parties. Assume that n = 2t + 1. We
will call the parties P1,1, . . . ,P1,t,P2,1, . . . ,P2,t,P3. We assume that P3 only has
output and the other parties only have inputs. Consider the following function
IPn,I , where each Pj,i for i = 1, . . . , t; j = 1, 2 has an input xj,i ∈ {0, 1}I and no
output, and where P3 has no input and has an output yn ∈ {0, 1}. The output
yn is the inner product between x1,1x1,2 . . . , x1,t and x2,1x2,2 . . . , x2,t computed
in the field with two elements. See Fig. 5.

14

P1;1 P2;1

P3

x1;1 x2;1

r1;1 r2;1

r3

P1;2 P2;2

x1;2 x2;2

r1;2 r2;2

P1;3 P2;3

x1;3 x2;3

r1;3 r2;3

y3

Fig. 5. A special case of the model where n = 7 and P3 has no input and
P1,1,P1,2,P1,3,P2,1,P2,2,P2,3 have no outputs.

Theorem 4. Let n = 2t+ 1. In any statistically t-private and statistically cor-
rect protocol for IPI,n party P3 will for all inputs have average communication
complexity at least tI − ε for a negligible ε.

Proof. Given a protocol for IPI,n, we can make a protocol for IPtI,3 by grouping
parties together as in Fig. 6. Corrupting one party in IPtI,3 corrupts at most t
parties in IPI,n. Therefore we can apply Theorem 3. ut

3.4 Stronger Lower Bound, Statistical Security, n Parties, Maximal
Threshold

We now give a function where all parties need to have high communication com-
plexity. We do this essentially by making a function where each party obliviously
can choose to be the party P3 in the proof of Theorem 4. Since nobody knows
who plays the role of P3 and P3 needs to have high communication complexity,
all parties must have high communication complexity.

Assume that n = 2t+1. We will call the parties P1,1, . . . ,P1,t,P2,1, . . . ,P2,t,P3.
Consider the following function IP′n,I , where each Pj,i for i = 1, . . . , t; j = 1, 2

has an input xj,i ∈ {0, 1}I and an input bj,i ∈ {0, 1}, and where P3 has input
b3 ∈ {0, 1}. First compute y to be the inner product between x1,1x1,2 . . . , x1,t and
x2,1x2,2 . . . , x2,t. The output of P3 is y3 = b3y. The output of Pj,i is yj,i = bj,iy.

15

P1;1 P2;1

P3

x1;1 x2;1

r1;1 r2;1

r3

P1;2 P2;2

x1;2 x2;2

r1;2 r2;2

P1;3 P2;3

x1;3 x2;3

r1;3 r2;3

y3

Fig. 6. Reduction from the n-party case to the 3-party case, maximal threshold n =
2t+ 1.

P1;1 P2;1

P3

r1;1 r2;1

r3

P1;2 P2;2

x1;2 x2;2

r1;2 r2;2

P1;3 P2;3

x1;3 x2;3

r1;3 r2;3

y1;1

Fig. 7. Reduction from IP to IP′.

16

Theorem 5. Let n = 2t+1. In any statistically t-private and statistically correct
protocol for IP′I,n the average total communication is at least (n(t − 1)I)/2 − ε
for a negligible ε.

Proof. Assume we have such a protocol for IP′I,n. Notice that if we pick any

input except that we hard-code the inputs b3 = 1 and bj,i = 0, then IP′I,n is just
IPI,n, so it follows trivially that for these inputs the communication complexity
of P3 is tI − ε. And this holds for all possible inputs (by statistical security and
by considering the case where no parties are corrupted), in particular also the
inputs where we set all non-hardcoded inputs to be all-zero, i.e., xj,i = 0 and
x3 = 0. Call this input vector x3.

Consider then hard-coded inputs where we make the change that b3 = 0,
b1,1 = 1, bj,i = 0 for (j, i) 6= (1, 1), x1,1 = 0, and x2,1 = 0. If we have a secure
protocol for IP′n,I we of course also have one for the case with these hard-coded
inputs. We can then via the reduction in Fig. 7 apply Theorem 3 to see that the
communication complexity of P1,1 must be at least (t− 1)I − ε. Note that it is
t−1 and not t as we had to get rid of the input of P1,1 to be able to reduce to the
three-party case. The communication complexity of P1,1 is at least (t− 1)I − ε
for all ways to set the non-hardcoded inputs, so also when we set them to be
all-zero. Call this input vector x1,1.

Similarly, define xj,i to be the set of inputs where all inputs are 0 except that
bj,i = 1. We can conclude as above, that on this input Pj,i has communication
complexity at least (t− 1)I − ε.

Consider then the input vector 0 where all inputs are 0. The only difference
between for instance xj,i and 0 is whether bj,i = 1 or bj,i = 0. Notice, how-
ever, that since all other inputs are 0, this change does not affect the output of
any other party. Therefore their views cannot change by more than a negligible
amount. This easily implies that the average amount of communication with Pj,i

cannot change by more than a negligible amount. By linearity of expectation it
follows that the average communication complexity of Pj,i cannot change by
more than a negligible amount. So on input 0 party Pj,i will have average com-
munication complexity negligibly close to (t− I)I − ε. This holds for all parties.
Therefore the average total communication is at least (n(t− 1)I)/2− ε/2. It is
not (t− 1)I as we would be counting each bit of communication twice (both at
the sending and the receiving end). ut

3.5 Lower Bound, Statistical Security, n Parties, Sub-Maximal
Resilience

We now generalize our bound to the case with sub-maximal threshold, i.e.,
n > 2t + 1. Let s = n − 2t. We will first show that one group of s players
must communicate a lot. We consider the function IPI,n,t, where each Pj,i for
i = 1, . . . , t; j = 1, 2 has an input xj,i ∈ {0, 1}I and no output, and where
P3,1, . . . ,P3,s have no input, and P3,1 has an output yn ∈ {0, 1} which is the
inner product of between x1,1x1,2 . . . , x1,t and x2,1x2,2 . . . , x2,t computed in the
field with two elements. Call this function IPI,n,t. See Fig. 8.

17

P1;1 P2;1

P3;2

x1;1 x2;1

r1;1 r2;1

r3;2

P1;3 P2;3

x1;3 x2;3

r1;3 r2;3

P3;1 P3;3

r3;1 r3;3

y3;1

P1;2

x1;2

r1;2

P2;2

x2;2

r2;2

Fig. 8. Reduction from the n-party case to the 3-party case, sub-maximal threshold,
here n = 9 and t = 3.

18

Theorem 6. Let s = n − 2t. In any statistically t-private protocol for IPI,n,t

parties P3,1, . . . ,P3,s will for all inputs have average total communication com-
plexity at least tI − ε for a negligible ε.

Proof. Given a protocol for IPI,n,t, we can make a 3-party protocol for IPtI,3 by
grouping parties together as in Fig. 8. This protocol is secure against corruption
of P1 or P2 since this corrupts at most t parties in the protocol for IPn,I,t.
Therefore we can apply Theorem 3 (recall that to show that result, we only
needed to corrupt P1 or P2). ut

3.6 Stronger Lower Bound, Statistical Security, n Parties,
Sub-Maximal Threshold

Assume that n = 2t+ s. Assume for simplicity that s is even and that s divides
n. Let n = 2T .

We will call the parties P1,1, . . . ,P1,T ,P2,1, . . . ,P2,T . Consider the function

ÎPn,I . Each Pj,i for i = 1, . . . , t; j = 1, 2 has an input xj,i ∈ {0, 1}I along with an
input bj,i ∈ {0, 1} and an output yj,i ∈ {0, 1}. The outputs are defined as follows.
First let y be the inner product between x1,1x1,2 . . . , x1,T and x2,1x2,2 . . . , x2,T
computed in the field with two elements. Let yj,i = bj,iy.

We prove Theorem 1, which we recall here:

Theorem 7. Let n = 2t+s. There exists a function ÎPI,n with circuit complexity

O(nI) such that in any statistically t-private protocol for ÎPI,n in the model
without preprocessing, the average communication complexity is at least Int

2s −ε =
Θ(ntI)/s for a negligible ε.

Proof. Assume we have a protocol for ÎPI,n. Let h = s/2. We can group the
parties into n/s groups of s parties, indexed by g = 0, . . . , n/s− 1. In group Gg

we put the parties P1,hg+1, . . . ,P1,hg+h and P2,hg+1, . . . ,P2,hg+h.
For each g we can define three virtual parties Pg

1,P
g
2,P

g
3. We let Pg

3 = Gg. We
let Pg

1 = {P1,1, . . . ,P1,T } \ Gg and we let Pg
2 = {P2,1, . . . ,P2,T } \ Gg. We then

hardcode the inputs of the parties in Gg to be all-zero, except that we let P1,hg+1

choose to be the heavy party by setting b1,hg+1 = 1. For all other parties, let
them use bj,i = 0. It follows by statistical security, as in the proof of Theorem
5, that the communication complexity for these hardcoded inputs must be the
same as for some fixed input, say the all-0 one.

Note that |Pg
1| = |Pg

2| = T − s/2 = t. So if the protocol we start from is
private against t corruptions, then the derived protocol for the three virtual
parties is private against corruption of Pg

1 or Pg
2. By Theorem 3, it follows that

Pg
3 must communicate at least tI−ε bits. There are n/s groups. Since the choice

of g depends only on the private inputs, we can argue exactly as in the proof
of Theorem 5 that all groups must communicate this much, so this gives a total
communication of at least (tIn/s)/2− ε/2.

Finally, it is easy to see that the circuit complexity of ÎPn,I is O(nI), since
the cost of computing the function is dominated by the cost of computing the
inner product. ut

19

4 Lower Bounds, Correlated Randomness

In this section, we consider lower bounds for protocols in the correlated random-
ness model and arrive at the following result:

Theorem 8. Let n = t + s. There exists a function PIRn,I with circuit com-
plexity O(nI) such that in any statistically t-private protocol for PIRn,I in the
preprocessing model, the average communication complexity is at least Θ(ntI)/s.

We sketch the proof of this result, the details are trivial to fill in, as they are
extremely similar to the ideas in the previous section.

We define the function PIRn,I as follows: each party Pi has three inputs:
xi ∈ {0, 1}I , zi ∈ {0, 1}lg(nI) and bi ∈ {0, 1}. To evaluate the function, set x to
be the concatenation of all the xi’s and set z = ⊕n

i=1zi. Interpret z as an index
that points to a bit in x which we denote x[z] . Then the output for Pi is bi ·x[z].

Assume first that we have a protocol π that computes PIRI,n with statistical
security in the correlated randomness model when t = n−1 parties are corrupted.
We consider the case s > 1 later.

For any fixed value 1 ≤ i ≤ n, we can group the parties {Pj | j 6= i} together
to form one virtual party P1

i , and let Pi play the role of a second virtual party
P2
i . Furthermore we hardcode the inputs as follows: bi = 1 and bj = 0 for j 6= i,

and furthermore zj = 0lg(nI) for j 6= i. With this hardcoding we clearly obtain
a PP-PIR where P1

i is the sender and P2
i is the receiver. It follows from Lemma

5 that the communication complexity for P2
i must be Ω(nI). Since this holds

for any i, and since the communication pattern is not allowed to depend on the
inputs, it follows as in the proof of Theorem 5 that all players must have this
much communication always, so we see that the total communication complexity
is Ω(n2I).

Assume now that the threshold t is sub-optimal, i.e., t = n − s, where we
assume for simplicity that s divides n. Now, given a protocol that computes
PIRI,n in this setting, we can divide the set of players in n/s disjoint subsets of
size s and show that each group of s players must have communication complex-
ity Ω(nI). This follows similarly to what we just did, by hardcoding the inputs
appropriately. As a result we get a lower bound of Ω(ntI/s) for this case.

Finally, we note that for any all large enough I (compared to n), the circuit
complexity of PIRn,I is O(nI). To see this, note that the cost of computing the
function is dominated by computing x[z] from x, z. This is known as the storage
access function and is known to have a linear size circuit [Weg87].

5 Upper bounds

5.1 Honest majority

In this section, we prove upper bounds that match up to a constant factor the
lower bounds we proved for the standard model with honest majority. At first
sight this may seem like a trivial exercise: In [DN07] a passively secure protocol

20

was presented that securely evaluates any arithmetic circuit C of size |C| with
communication complexity O(n|C|) field elements. This seems to already match
our lower bound. However, that protocol only works for a field F with more than
n elements, and so cannot be directly used for the Boolean case.

One can partially resolve this by noticing that all our lower bounds hold
for any finite field, in fact the proofs do not use the size of field at all. So if we
consider instead the inner product function over a larger field F, then the bounds
match. But this is still not completely satisfactory because the result still holds
only as long as n < |F|.

To get a cleaner result, we can combine the protocol from [DN07] with a
recent technique from [CCXY18] known as reverse multiplication friendly em-
beddings (RMFE). Such an embedding can be defined when we have a base field
F and an extension field K. Then the embedding consists of two F-linear map-
pings S, T where S : Fk 7→ K and T : K 7→ Fk. The defining property we need is
that

T (S(a) · S(b)) = a ∗ b

for any a, b ∈ Fk, and where a ∗ b is the coordinate-wise (Schur) product.
So these mappings allow us to implement k multiplications in parallel in F

by one multiplication in K. In [CCXY18] it is shown how to construct (families
of) RMFE(s) such that F = F2 and K = F2u where u is Θ(k). So the encoding
of a as an element in K comes with only a constant factor overhead. With these
tools, we can prove:

Theorem 9. There exists a perfect passive secure protocol for honest majority
such that for any n and all large enough I, the protocol computes IP ′I,n with

communication complexity O(n2I) bits.

Remark 1. Since the protocol handles n = 2t+ 1 this matches our upper bound
in Theorem 5, up to a constant factor.

Proof. (Sketch) First we choose an RMFE by the above construction, so we have
S : Fk 7→ K and T : K 7→ Fk, we make the choice such that n < |K| = 2u. Then
the protocol we build will work as long as I ≥ k.

Recall that in the function IP ′I,n, which is defined at the start of Section 3.4,
the first 2t parties get as input a vector consisting of I bits. We will call these
the vector parties. In addition, each party also gets an input bit that decides if
that party gets output. For convenience in this proof, we will denote the parties
by a single index, so that Pj , for j = 1..2t are the input parties, whereas Pn’s
only input is the bit bn. Initially, each vector party will split his input vector
into dI/ke vectors of length k bits each, padding the last block with 0’s if it
is incomplete. By appropriate renumbering we can say that between them, the
vector parties now hold k-bit vectors x1, ...,xv and y1, ...,yv, where party Pj

holds a subset of the xi’s if 1 ≤ j ≤ t, and holds a subset of the yi’s if t < j ≤ 2t.
Let x be the concatenation of all the xi’s and y the concatenation of all yi’s.
Now the desired output for party Pj , for all j, can be written as bj(x · y) where
x · y is the inner product.

21

Now, note that one way to compute x · y product is to first compute z =∑
i xi ∗ yi and then add all coordinates in z (recall that ∗ denotes the Schur or

coordinate-wise product). This is essentially the strategy we will follow.

Recall that each vector party Pj holds a subset of xi’s or a subset of yi’s.
He applies S to each vector in his subset to get a set Vj of elements in K. The
parties will now use the Vj ’s as input to an instance of the protocol from [DN07].
This protocol can compute any arithmetic circuit over K and is based on Shamir
secret sharing. It can therefore be used to compute securely [

∑
i S(xi) · S(yi)],

which denotes a secret sharing of
∑

i S(xi) ·S(yi), i.e., each party holds a share
of the value.

Let w =
∑

i S(xi) · S(yi). Note that by linearity

T (w) = T (
∑
i

S(xi) · S(yi)) =
∑
i

T (S(xi) · S(yi)) =
∑
i

xi ∗ yi = z

So this means that the only remaining problem is the following: given a secret
sharing of w, we need to securely compute T (w) and add all coordinates of the
resulting vector. The result of this will be x · y, the result we want. If we think
of K as a u-dimensional vector space over F, the combined operation of applying
T and adding the coordinates is an F-linear mapping and hence has a matrix
M over F, actually with just 1 row. Therefore we will first compute sharings
[w1], ..., [wu] where he wi’s are the coordinates of w. This can be done by a
standard method where we first create [r], [r1], ..., [ru] for a random r ∈ K (by
adding random contributions from all players). Then we open w−r, compute its
coordinates in public and add them to [r1], ..., [ru] to get [w1], ..., [wu]. Finally
linearity of the secret sharing implies we apply M to the coordinates by only
local computation to get a secret sharing of the result [x · y]. We can assume
that each party Pj has also secret shared a bit bj where bj = 1 if and only if he
is to get the result. We can then compute [bjs] for each j and open this privately
to Pj .

Let us compute the cost of all this: the main part of the computation is to
compute [w] from sharings of the inputs. This requires essentially dIn/ke secure
multiplications which the protocol from [DN07] can do at communication cost
dIn/ke · n elements in K. An element in K has u bits and u is O(k). So the cost
in bits is O(In/k · n · k) = O(In2). One easily sees that the cost of sharing the
inputs initially is also O(In2). The final stage where we go from [w] to the result
does not depend on I and its cost can therefore be ignored for all large enough
I. ut

For values of t that are smaller than the maximal value, the protocol in
the above proof can be optimized in a straightforward way using packed secret
sharing. Concretely, if n = 2t+ `, one can secret share a vector of ` values where
shares are only 1 field element, so this saves a factor ` compared to the original
protocol. This way, we easily obtain an upper bound matching the result from
Theorem 1.

22

5.2 Dishonest Majority

In this section, we sketch a generalization of known protocols in the preprocessing
model leading to an upper bound that matches our lower bound for the PIRI,n

function.
Let us consider a passively secure variant of the well known SPDZ protocol

for n = t + 1, i.e., the secret values are additively secret shared among the
players (no authentication is needed because we consider passive security). Linear
operations can be done with no communication and multiplications are done
using multiplication triples that are taken from the preprocessed data. It is clear
that such a protocol would work with any linear secret sharing scheme as long
as corruption of t players gives no information the secret.

So for the case of n = t+s, we can use Shamir secret-sharing with polynomials
of degree t. Using the packed secret-sharing technique we can then encode a
vector of Θ(s) values as the secret, instead of one value. This allows us to perform
Θ(s) multiplications in parallel while communicating only O(n) field elements.
Namely, a multiplication involves opening two values, and this is done by sending
shares to one player who reconstructs and sends the result to all parties.

Now, if we consider computing the PIRI,n function, the dominating part
is to compute the storage access function (see Section 4). This function has a
logarithmic depth layered circuit of size O(In). We can therefore compute it by
doing s operations in parallel at a time, leading to a communication complexity
of O(In2/s) field elements.

One caveat is that this protocol will need a field with at least n elements,
and the PIRI,n function is defined on binary values. This leads to an overhead
factor of lg n. However, using reverse multiplication friendly embeddings as in
the previous subsection, we can get rid of this overhead.

Since we only need to consider n > t ≥ n/2 in this model, we can assume
that n is Θ(t), so a communication complexity of O(In2/s) bits matches our
lower bound Ω(Int/s).

6 Conclusion and Future Work

In a nutshell, we have seen that nS where S is the input size, is a (up to a constant
factor) lower bound on the communication complexity of unconditionally secure
MPC, and for the particular functions we consider, this bound even equals the
product of n and the circuit size of the function. For the dishonest majority
case with preprocessing O(nS) is also an upper bound (at least if one allows
exponentially large storage for preprocessing).

Now, for honest majority, the obvious open problem is what happens for
functions where the circuit size is much larger than the input: is there a lower
bound that grows with the circuit size of the function (if we also require compu-
tational complexity polynomial in the circuit size)? Another question is whether
our lower bound for suboptimal corruption threshold t is tight, in terms of the
input size. Here n = t+s and the bound is Ω(tS/s), so the question is if there is
a matching upper bound, possibly by allowing exponential size preprocessing?

23

References

[BSPV99] Carlo Blundo, Alfredo De Santis, Giuseppe Persiano, and Ugo Vaccaro.
Randomness complexity of private computation. Computational Complex-
ity, 8(2):145–168, 1999.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. J. Cryptology, 13(1):143–202, 2000.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited. In
CRYPTO (3), volume 10993 of Lecture Notes in Computer Science, pages
395–426. Springer, 2018.

[CK93] Benny Chor and Eyal Kushilevitz. A communication-privacy tradeoff for
modular addition. Inf. Process. Lett., 45(4):205–210, 1993.

[Cou18] Geoffroy Couteau. A note on the communication complexity of multi-
party computation in the correlated randomness model. Cryptology ePrint
Archive, Report 2018/465, 2018.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and
Adam D. Smith. Scalable multiparty computation with nearly optimal work
and resilience. In CRYPTO, volume 5157 of Lecture Notes in Computer
Science, pages 241–261. Springer, 2008.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
445–465. Springer, 2010.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In CRYPTO, volume 4622 of Lecture Notes in
Computer Science, pages 572–590. Springer, 2007.

[DNOR16] Ivan Damg̊ard, Jesper Buus Nielsen, Rafail Ostrovsky, and Adi Rosén.
Unconditionally secure computation with reduced interaction. In EURO-
CRYPT (2), volume 9666 of Lecture Notes in Computer Science, pages
420–447. Springer, 2016.

[DNPR16] Ivan Damg̊ard, Jesper Buus Nielsen, Antigoni Polychroniadou, and
Michael A. Raskin. On the communication required for unconditionally
secure multiplication. In CRYPTO (2), volume 9815 of Lecture Notes in
Computer Science, pages 459–488. Springer, 2016.

[DPP98] Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. Statistical
secrecy and multibit commitments. IEEE Trans. Information Theory,
44(3):1143–1151, 1998.

[DPP14] Deepesh Data, Manoj Prabhakaran, and Vinod M. Prabhakaran. On the
communication complexity of secure computation. pages 199–216, 2014.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure com-
putation (extended abstract). pages 554–563, 1994.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure
computation (extended abstract). pages 699–710, 1992.

[GR03] Anna Gál and Adi Rosén. Lower bounds on the amount of randomness in
private computation. pages 659–666, 2003.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. On the power of correlated randomness in secure com-
putation. In TCC, volume 7785 of Lecture Notes in Computer Science,
pages 600–620. Springer, 2013.

24

[KM97] Eyal Kushilevitz and Yishay Mansour. Randomness in private computa-
tions. SIAM J. Discrete Math., 10(4):647–661, 1997.

[KR94] Eyal Kushilevitz and Adi Rosén. A randomnesss-rounds tradeoff in private
computation. pages 397–410, 1994.

[Kus92] Eyal Kushilevitz. Privacy and communication complexity. SIAM J. Discrete
Math., 5(2):273–284, 1992.

[Weg87] Ingo Wegener. The complexity of boolean functions.
https://eccc.weizmann.ac.il/static/books/The Complexity of Boolean Functions/,
1987.

25

