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Abstract

In 2005, [2] Philippe Guillot presented a new construction of Boolean
functions using linear codes as an extension of Maiorana-McFarland’s con-
struction of bent functions. In this paper, we study a new family of
Boolean functions with cryptographically strong properties such as non-
linearity, propagation criterion, resiliency and balance. The construction
of cryptographically strong boolean functions is a daunting task and there
is currently a wide range of algebraic techniques and heuristics for con-
structing such functions , however these methods can be complex, com-
putationally difficult to implement and not always produce a sufficient
variety of functions. We present in this paper a construction of Boolean
functions using algebraic codes following Guillot’s work.

1 Introduction

Here we follow [1]. Let 3 be the binary vector space of dimension n over
the Galois Field of two elements Fy. Given two vectors a,b € F3, we define
the scalar product
a-b=(a1b1 ® ... D anby)
and the sum as
a®b= (a1 Db1,...,an ® by),

where the product and sum @ (also called XOR) are over Fs.



A n-variable boolean function f is a mapping
f : Fg — [Fa.

We will denote by B, the set of all Boolean functions of n variables. The
set B, is a vector space over Fo with the addition & defined by

(f ®9)(@) = f(z) & g(),

for any f,g € B, and any = € F5. The polar form f : F5 — R, or sign
function, of a boolean function f € B,, is defined by

fla) = (=1

The support f, denoted by Supp(f), is the set of vectors in F5 whose
image under f is 1. That is

Supp(f) = {z € Fy | f(x) = 1}.

The weight of a boolean function f € B,, denoted by w(f), is the car-
dinality of its support, that is w(f) = |Supp(f)|. We will say that a
function f € B, is balanced if w(f) = 2"7!, that is, the truth table of
f contains the same number of 0 and 1. This property is desirable in a
Boolean function to resist differential attacks such as those introduced by
A. Shamir against the DES algorithm.

A boolean function f € B, is called affine if we can write it as

f(@) = (a,z) ©b

for some a € Fy and b € Fy. If b = 0, we say that f is linear function.
The set of affine functions will be denoted by A,. Let f,g € B,,. The
distance, d(f,g), between f and g, is the weight of the function f & g,
i.e.,

d(f,9) = w(f @ 9g).

The nonlinearity of a boolean function f € B, denoted by N, is the
minimum distance between f and the set of affine functions A, i.e.,

Ny =min{d(f, ) | ¢ € An}.

A high nonlinearity is desired to reduce the effect of linear cryptanalysis
attacks.

The Truth Table of a Boolean function f is the vector, indexed by
the elements of F3 (in lexicographical order),

(f(ﬁ),f(i),,f(Q" - 1))

where 0 = (0,...,0,0), T = (0,...,0,1), ...,2" =1 = (1,...,1,1). The
polar truth table of f is the (1,—1) sequence defined by

(/@ ()Y

A Boolean function in F3 can be expressed uniquely as a polynomial in

Fz[l’l,...,l‘n}/(xf@fl,nwl’i@xn)



through its Algebraic Normal Form (ANF)

f@)= ) cantayr, (1)

a€Fy

where ¢, € F2 and a = (a1,...,an), with co = >, f(x), where z < a
means that x; < a;, for all 1 < i < n. That is, ¢, = g(a1,...,an), and
g is a function in B, called the Md&bius Transform of f, denoted by
g = p(f). The Algebraic Degree of a boolean function f is the degree
of its ANF. It follows that the algebraic degree of f € B,, does not exceed
n— 1.

The Walsh-Hadamard Transform of a function f in F3 is the map-
ping H(f) : F3 — R, defined by:

H(f)(h) =Y f@) ()", (2)

z€Fy

Let f € B, be a boolean function, let S be an arbitrary subspace of
F5 and S+ the dual(annihilator) of S, i.e.,

St={zcFy:z-5=0,Vs€ S}

then,
DoH () =2 N f(w). ®3)
u€esS ueS+
From the definition of the Walsh-Hadamard Transform, it follows that
H(f)(u) equals the number of zeros minus the number of ones in the
binary vector f & lu(lu € An, or, l,(v) = >, u;v;) and such that

H(f)(w) =27 = 24(£, ) uiva) @)
A,y i) = 52" — H()(w) ©)
A8 S wiw) = 52"+ H()(w) (6)

We summarize these earlier results in the following theorem

Theorem 1.1. The nonlinearity f is determined by the Walsh-Hadamard
Transform of f, i.e.

Ny =27 & ma [H(F) ()] ™)

u€l,

In what follows we summarize some factors which are important in the
design of Boolean functions with good cryptographic properties [3]:

A n-variable boolean function is said to have Correlation immunity
of order m if and only if H(f)(u) = 0, with 1 < w(u) < m. A Boolean
function with Correlation Immunity of order m and balanced is called m-

resilient. The fundamental relationship between the number of variables



n, algebraic degree d and order of correlation immunity m of a boolean
function is
m+d<n.

The autocorrelation function 7 (s) for a Boolean function f is de-
fined from its polar representation as

ri(s)= 3 f@)f@es).

z€Fy

This value is proportional to the imbalance of all the first-order derivatives
of the Boolean function. Small autocorrelation values are desirable while
boolean functions having larger values are considered weak.

We say that a Boolean function has Propagation Criteria of order [,
denoted by PC(1) if f(z)® f(z®wu) is balanced for all uw with 1 < w(u) < L.

The Strict Avalanche Criterion (SAC), refers to the effect of
changing all input bits. A boolean function f is said to satisfy SAC if
f(x) ® f(z @ u) is balanced for all u with w(u) = 1.

Let ¢ = 2™, and let F, be the finite field with ¢q elements. An F;—linear
error correcting code C of length n is an Fy—linear subspace of Fy.
The elements of C' are called words. The weight wt(z) of a word x in
C is the number of its non-zero coordinates. The minimum weight d of
the code C' is defined as the minimum of the weights among all non-zero
words occurring in C. For z,y € C, we define the Hamming distance
d(z,y) between z and y as wt(z —y). The minimum distance of a code
C is defined as

d =min{d(z,y)|z,y € C,x # y}.

If £ is the dimension of C as a vector space over Fy, then we say that C
isa
[n, k,d]q
error correcting code. The Singleton bound states that the parameters of
a code C' must satisfy
n+1>k+d

A code satisfying the previous inequality with equality is called a maxi-
mum distance separable code, or simply a MDS-Code.

For ¢ > 2,h > 1. Let Q = ¢". Consider two codes which we call outer
code and inner code. Let C be outer code with parameters [N, K, D]g and
let I be inner code with parameters [n, h,d]q. The concatenation method
constructs a code F' over Fy out of a code over Fg. The first step is to fix
any isomorphism ¢ : Fqg — I C Fy. Then

F = {(@(61)), .. '7@(1’N))|(:r17 cee ,Z'N) (S C}

The code F' has parameters

[N -n,K-h,D-d,.



2 Maiorana-McFarland-Guillot’s construc-
tion

The Maiorana-McFarland construction was originally designed to obtain
bent functions. It has been extended to construct resilient functions [2].
For n > 2 an integer and F3 = E @ F a decomposition into two
complementary subspaces: E of dimension p y F' of dimension ¢ = n — p.
For any application 7 : E — F5 and any application h : E — Fq
the Maiorana-McFarland(MM) construction defines a Boolean function f

as follows:
f : FE b F — IFQ

r+y = w(@)-y+h(z),
The application 7 is defined on F3, but since 7(x) is wrapped by an in-
ternal product with an element of F', the value of f it is invariant when

m(z) is moved by a vector of FL. So, w can be considered to be defined
over the space Fy /F*+ =~ E* son: E — E*.

One of the properties we are interested in from a Boolean function is
the Propagation Criteria, in [2] it is shown that for a Boolean function to
have Propagation Criteria of order k it is enough that the coset xo + F,
with zg € E, has w(zo + F) > k. Therefore, to find a Boolean function
with PC(k—1) it is enough to select an appropriate zo in the complement
of I, such that the lateral class xo + I’ has weight > k.

3 Reed-Solomon Codes

The class of Reed-Solomon Codes is considered of great importance in
coding theory. They are members of the family of algebraic codes. Recall
one of the standard descriptions of an extended Reed-Solomon code over
F,( [4]). Let Fy = {0,1,,02,--- ,a?"2}. Consider the set

L={f(z) € Fqlq] | degree(f(x)) <r}.
The code Reed-Solomon code RS(r,q) of length n = g is defined by
RS(T, Q) = {C = (f(0)7f(1)7f(a)7f(a2)7 e 7f(aq_2)) | f(.%’) € L}

Because a polynomial of degree [ has at most [ zeros in F,, we see that
RS(r,q) has minimum distance d = ¢ — r + 1, which is the best possible,
i.e., RS(r,q) is a maximum distance separable(MDS) code [4]. The code
RS(r, q) has parameters

lg,r g —7r+1],.
In this paper we will assume that ¢ = 2™, then RS(r,¢) has parameters

[2’”1’7,7 2771 —-r+ 1]2m



4 Boolean functions from RS(r,2™)

For our construction of boolean functions we will use a concatenated Reed-
Solomon code. Let C = RS(r,2™), this is our outer code. Let I be the
all even weight codewords, then with parameters [m +1,m,2],. After
concatenation we obtain a code F' with parameters

[(m+1)2™ m-r22™ —r+1)],.

We will use our code F as the main ingredient to the Maiorana-McFarland
construction. Obtaining a new family of Boolean functions, in n = (m +
1)2™ wvariables. The dimension of the complementary vector space E is
therefore b = (m + 1)2™ —m-r. And FS"*V?" = Ea F.

We focus now in the lateral class xo + F'. As F is constructed by eval-
uating all polynomials of degree less than r over Fom [z], we can assume
that xo is also constructed by evaluating a polynomial L(z) over Fom [z].
A polynomial L(z) can be obtained using Lagrange interpolation whose
evaluation produces a suitable concatenated xg.

Let a1, ..., ar be a set of information coordinates for the code RS(r,2™),
by Lagrange interpolation, we can obtain a polynomial L(z) of degree r
such that L(a;) = 0fori=1,...,rand L(b) # 0 forallb € F—{a4,...,ar}.
The vector ev(L) is a vector in the complement of RS(r,2™) as a vector
space over Fom, and the lateral class ev(L) + RS(r,2™) has minimum
weight > 2™ — r. Let o be the image of ev(L) under concatenation,
it follows that x¢ is a vector in the complement of F' as a binary vector
space and, by construction, the minimum weight of the lateral class zo+ F
is > 2(2™ — r). Thus, by using our proposed F and zo in Guillot’s
construction, we obtain a boolean function satisfying PC/(2™" — 2r —1).

5 Example

Suppose we want to build a 12 variable boolean function. As the main
ingredient we use the Reed-Solomon code C' = RS(3,4) over F4 with
parameters [4, 3, 2]

A generator matrix for C is

1 1 1 1
G = 0 «@ a+1l 1
0 a+1 a 1

Where a®? + a +1 = 0. We now obtain a binary code from C by
concatenation with the even weight code I = {000,101,011,110} with
parameters [3,2,2]. Any other 2-dimensional binary code will serve as
an inner code. The next step is to choose any homomorphism v be-
tween Fy and [ as vector spaces over 2. For our example we choose
0+~ 000,1+ 101, +— 011, + 1 +— 110. After concatenation we obtain
a binary code F' with parameters [12,6,4]. A systematic generator matrix
for F' is given by



10 0 00 01 0 01 01
010000 1 0 O0O0OT11
Gp = 0 061000 01 0101
0 001 00 010011
0 00001 00 0 1 1 01
0 00001 0 O0OT1O0T11

The row span of G is the binary vector space F' in the MM construction.
As G is systematic, that is, the first 6 columns are the information
coordinates of code F', we may easily describe the complementary space
FE with generator matrix

00000 O1O0O0UO0OTO0OTFO

00000 OO0OT1O0O0OTUO0ODO

Gp— 0 0000OOO0OOT1TUO0OTG OO

0 000O0OOOOTOT1IO0TUO

0 000O0OOO0OOTOOTI1@O

0 0000 OO0OOTUO0OTG OO 1
In this example we have n = 12,p = 6,q = 6, so we will build a
two to one function w. The next step is to build g € E by concate-
nation of the evaluation vector of L(z) = 2® + x. We obtain zy =

{0,0,0,0,0,0,1,1,1,1,0,0} € E. For each lateral class u + F* with
u € E+ we construct the sets

Eo={veu+F" v -20=0}
and
Ei={veu+F":v-azo=1}.

Let do = d(Eo),d1(E1) be the minimum distances of Ey and E; respec-
tively, and let d; = maxz{do,d1}. Next we store in an array the pairs



(u, 7). In this example the array is given by

S
>
g

)—lHI—‘}—‘HD—‘)—‘HD—‘OOOOOO;&DOOOHD—‘)—‘HD—‘}—'H)—l)—')—‘ooo
PR HRFO0O0000O0O R R HRFHEFRERPRPOOOOREEFHEREREOOORRFERF
SR, P PR OORHEPRPPRPOORRPRPORRERPRPRP,OOORRFEORRFO
HO O PR HFPFOOFRFOFRFFOOFRFORFRFEFORFRHERFOORRRFEORRFERFROR
O OO OO HFOFOHKFEFRFEFOFRFRFERFERFROFEFORORROMFO R =

(u,0/1) =

Yo Lo Lo Larn Tern Tenn Yo Yoo Yecn Lorn Lace Lo Renn Yo Teon Renn orn Larn tanl oot eten o tor tor t ot onaTeanTeanTane)
el el el el el el e el el el el el e N = e i e M e M an i e B e B s M an B e i e B an J an)
M e e M e e e e e e e e e e e e e e e e e e e e e e e e N e
SCOOHOHOOOHOOODOOHOFHROOFOFHOOH,HOF,FOOOOO

As you may have noticed all v in the previous array have weight > 3, as
expected from Guillot’s results, so the boolean function we will construct
will have resilience order 2. For € E we define 7(z) = w(z + zo) € F
at random, and define h(z) = h, and h(z + Xo) = hy + ht where hy is a
random value in Fs.

By using 7 and h defined above in the Maoirana-McFarland construc-
tion the following cryptographic paramenters for the boolean function f
were checked using sage:

e Balanced

e Non linearity: 1984

e Algebraic Immunity of order 5
e Propagation criteria of order 3

Resilience of order 2
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