
Round Optimal Secure Multiparty Computation
from Minimal Assumptions

Arka Rai Choudhuri∗ Michele Ciampi† Vipul Goyal‡ Abhishek Jain§

Rafail Ostrovsky¶

March 9, 2020

Abstract

We construct a four round secure multiparty computation (MPC) protocol in the plain model that achieves
security against any dishonest majority. The security of our protocol relies only on the existence of four
round oblivious transfer. This culminates the long line of research on constructing round-efficient MPC
from minimal assumptions (at least w.r.t. black-box simulation).

∗Johns Hopkins University. achoud@cs.jhu.edu
†The University of Edinburgh. mciampi@ed.ac.uk
‡Carnegie Mellon University. goyal@cs.cmu.edu
§Johns Hopkins University. abhishek@cs.jhu.edu
¶University of California, Los Angeles. rafail@cs.ucla.edu

1

Contents

1 Introduction 3
1.1 Our Results . 3

2 Technical Overview 4
2.1 Enforcing Honest Behavior . 5
2.2 Rewinding Related Challenges . 7
2.3 Protocol Design Summary . 10
2.4 Related Work . 11

3 Preliminaries 12
3.1 Secure Multiparty Computation . 12
3.2 Garbled Circuits . 14
3.3 Extractable Commitment Scheme . 14
3.4 Extractable Commitments with Bounded Rewinding Security 15
3.5 Trapdoor Generation Protocol with Bounded Rewind Security 17

3.5.1 Construction . 19
3.6 Witness Indistinguishable Proofs with Bounded Rewinding Security 20
3.7 Non-Malleable Commitments . 21

3.7.1 Definitions . 22
3.7.2 Proof of Special Non-Malleable Commitments . 24

4 Oblivious Transfer with Bounded Rewind Security 25
4.1 Definition . 26
4.2 Construction . 26
4.3 Four Round Delayed Input Multiparty Computation with Bounded Rewind Security 29

5 Four Round MPC 31
5.1 The Protocol . 33

5.1.1 Overview of Security Proof . 36

6 Full Security Proof 37
6.1 Overview of the Simulation . 37
6.2 Simulator Sim . 39

6.2.1 Hybrids . 45
6.2.2 Indistinguishability of Hybrids . 49

7 Acknowledgments 69

A Bidirectional to Alternating message model 74

2

1 Introduction

The ability to securely compute on private datasets of individuals has wide applications of tremendous benefits
to society. Secure multiparty computation (MPC) [Yao86, GMW87a] provides a solution to the problem of
computing on private data by allowing a group of parties to jointly evaluate any function over their private
inputs in such a manner that no one learns anything beyond the output of the function.

Since its introduction nearly three decades ago, MPC has been extensively studied along two fundamental
lines: necessary assumptions [GMW87a, Kil88, IPS08], and round complexity [GMW87a, BMR90, KOS03,
KO04, Pas04, PW10, Wee10, Goy11, GMPP16, ACJ17, BHP17, COSV17a, COSV17b].1 Even for the case of
malicious adversaries who may corrupt any number of parties, both of these topics, individually, are by now
pretty well understood:

– It is well known that oblivious transfer (OT) is both necessary and sufficient [Kil88, IPS08] for MPC.

– A recent sequence of works have established that four rounds are both necessary [GMPP16] and suffi-
cient [ACJ17, BHP17, BGJ+18, HHPV18] for MPC (with respect to black-box simulation). However,
the assumptions required by these works are far from optimal, ranging from sub-exponential hardness as-
sumptions [ACJ17, BHP17] to polynomial hardness of specific forms of encryption schemes [HHPV18]
or specific number-theoretic assumptions [BGJ+18].

In this work, we consider the well studied goal of building round-efficient MPC while minimizing the
underlying cryptographic assumptions. Namely:

Can we construct round optimal MPC from minimal assumptions?

Precisely, we ask whether it is possible to construct four round MPC from four round OT. This was explicitly
left as an open problem in the elegant work of Benhamouda and Lin [BL18] who constructed k-round MPC
from k-round OT for k ≥ 5.

1.1 Our Results

In this work, we resolve the above question in the affirmative. Namely, we construct four round malicious-
secure MPC based only on four round (malicious-secure) OT. Our protocol admits black-box simulation and
achieves security against malicious adversaries in the dishonest majority setting.

Theorem 1 (Informal). Assuming the existence of four round OT, there exists a four round MPC protocol for
any efficiently computable functionality in the plain model.

This settles the long line of research on constructing round efficient MPC from minimal cryptographic
assumptions.

Our Approach. To obtain our result, we take a conceptually different approach from the works of [ACJ17,
BHP17, BGJ+18, HHPV18] for enforcing honest behavior on (possibly malicious) protocol participants. Un-
like these works, we do not require the parties to give an explicit proof of honest behavior within the first three
rounds of the protocol. Instead, we devise a multiparty conditional disclosure of secrets mechanism that en-
sures that the final round messages of the honest parties become “opaque” if even a single participant behaved
maliciously. A key property of this mechanism is that it allows for each party to obtain a public witness that
attests to honest behavior of all the parties, without compromising the security of any party. We refer the reader
to Section 2 for details.

1A detailed discussion on related works can be found in Appendix 2.4.

3

On the Minimal Assumptions. We study MPC in the standard broadcast communication model, where in
each round, every party broadcasts a message to the other parties. In this model, k-round MPC implies k-round
bidirectional OT, where each round consists of messages from both the OT sender and the receiver. However,
it is not immediately clear whether it also implies k-round OT in the standard, alternating-message model for
two-party protocols where each round consists of a message from only one of the two parties. As such, the
minimal assumption for k-round MPC is, in fact, k-round bidirectional OT (as opposed to alternating-message
OT).

Towards establishing the optimality of Theorem 1, we observe that k-round bidirectional OT implies k-
round alternating-message OT.

Theorem 2. k-round bidirectional OT implies k-round alternating-message OT.

Our transformation is unconditional and generalizes a message rescheduling strategy previously considered
by Garg et al. [GMPP16] for the specific case of three round coin-tossing protocols. In fact, this transformation
is even more general and applies to any two-party functionality, with the restriction that only one party learns
the output in the alternating-message protocol.

An important corollary of Theorem 2 is that it establishes the missing piece from the result of Benhamouda
and Lin [BL18] who constructed k-round MPC from any k-round alternating-message OT for k ≥ 5. Their
result, put together with our main result in Theorem 1 provides a full resolution of the fundamental question of
basing round efficient MPC on minimal assumptions.

In the sequel, for simplicity of exposition, we refer to alternating-message OT as simply OT.

2 Technical Overview

Before we dive into the technical contributions of our work, for the uninitiated reader, we provide a brief
summary of the key challenges that arise in the design of a four round MPC protocol and the high-level strategies
adopted in prior works for addressing them. We group these challenges into three broad categories, and will
follow the same structure in the remainder of the section.

Enforcing honest behavior. A natural idea, adopted in prior works, is to start with a protocol that achieves
security against semi-malicious2 adversaries and compile it using zero-knowledge (ZK) proofs [GMR89] à la
GMW compiler [GMW87b] to achieve security against malicious adversaries. This is not easy, however, since
we are constrained by the number of rounds. As observed in prior works, when the underlying protocol is
delayed semi-malicious3 [ACJ17, BL18], we can forego establishing honest behavior in the first two rounds.
In particular, it suffices to establish honest behavior in the third and fourth rounds. The main challenge that
still persists, however, is that ZK proofs – the standard tool for enforcing honest behavior – are impossible in
three rounds w.r.t. black-box simulation [GK96b]. Thus, an alternative mechanism is required for establishing
honest behavior in the third round.

Need for rewind security. Due to the constraint on the number of rounds, all prior works utilize design
templates where multiple sub-protocols are executed in parallel. This creates a challenge when devising a
black-box simulation strategy that works by rewinding the adversary. In particular, if the simulator rewinds the
adversary (say) during second and third round of the protocol, e.g., to extract its input, we can no longer rely on
stand-alone security of sub-protocols used in those rounds. This motivates the use of sub-protocols that retain
their security even in the presence of some number of rewinds. Indeed, much work is done in all prior works to
address this challenge.

2Roughly speaking, such adversaries behave like semi-honest adversaries, except that they may choose arbitrary random tapes.
3Roughly speaking, a delayed semi-malicious adversary is similar to semi-malicious adversary, except that in the second last round

of a k-round protocol, it is required to output (on a special tape) a witness (namely, its input and randomness) that establishes its honest
behavior in all the rounds so far.

4

Non-malleability. For similar reasons as above, we can no longer rely on standard soundness guarantee of
ZK proofs (which only hold in the stand-alone setting). All prior works address this challenge via a careful
use of some non-malleable primitive such as non-malleable commitments [DDN91] in order to “bootstrap non-
malleability” in the entire protocol. This leads to an involved security analysis.

Our primary technical contribution is in addressing the first two issues. We largely follow the template of
prior works in addressing non-malleability challenges. As such, in the remainder of this technical overview, we
focus on the first two issues, and defer discussion on non-malleability to Section 3.7.

Organization. We describe our key ideas for tackling the first and second issues in Sections 2.1 and 2.2,
respectively. We conclude by providing a summary of our protocol in Section 2.3.

2.1 Enforcing Honest Behavior

In any four round protocol, a rushing adversary may always choose to abort after receiving the messages
of honest parties in the last round. At this point, the adversary has already received enough information to
obtain the output of the function being computed. This suggests that we must enforce “honest behavior” on
the protocol participants within the first three rounds in order to achieve security against malicious adversaries.
Indeed, without any such safeguard, a malicious adversary may be able learn the inputs of the honest parties,
e.g., by acting maliciously so as to change the functionality being computed to the identity function.

Since three-round ZK proofs with black-box simulation are known to be impossible, all recent works on
four round MPC devise non-trivial strategies that only utilize weaker notions of ZK (that are achievable in
three or less rounds) to enforce honest behavior within the first three rounds of the MPC protocol. However,
all of these approaches end up relying on assumptions that are far from optimal: [ACJ17] and [BHP17] use
super-polynomial-time hardness assumptions, [HHPV18] use Zaps [DN00] and affine-homomorphic encryp-
tion schemes, and [BGJ+18] use a new notion of promise ZK together with three round strong WI [JKKR17],
both of which require specific number-theoretic assumptions.

A Deferred Verification Approach. We use a different approach to address the above challenge. We do not
require the parties to give an explicit proof of honest behavior within the first three rounds. Of course, this
immediately opens up the possibility for an adversary to cheat in the first three rounds in such a manner that by
observing the messages of the honest parties in the fourth round, it can completely break privacy. To prevent
such an attack, we require the parties to “encrypt” their last round message in such a manner that it can only
be decrypted by using a “witness” that establishes honest behavior in the first three rounds. In other words, the
verification check for honest behavior is deferred to the fourth round.

In the literature, the above idea is referred to as conditional disclosure of secrets (CDS) [AIR01]. Typically,
however, CDS is defined and constructed as a two-party protocol involving a single encryptor – who encrypts a
secret message w.r.t. some statement – and a single decryptor who presumably holds a witness that allows for
decryption.4 This does not suffice in the multiparty setting due to the following challenges:

– The multiparty setting involves multiple decryptors as opposed to a single decryptor. A naive way to
address this would be to simply run multiple executions of two-party CDS in parallel, each involving a
different decryptor, such that the ith execution allows party i to decrypt by using a witness that establishes
its own honest behavior earlier in the protocol. However, consider the case where the adversary corrupts
at least two parties. In the above implementation, a corrupted party who behaved honestly during the first
three rounds would be able to decrypt the honest party message in the last round even if another corrupted
party behaved maliciously. This would clearly violate security. As such, we need a mechanism to jointly
certify honest behavior of all the parties (as opposed to a single party).

4There are some exceptions; we refer the reader to Section 2.4 for discussion on other models.

5

– In the two-party setting, the input and randomness of the decryptor constitutes a natural witness for
attesting its honest behavior. In the multiparty setting, however, it is not clear how an individual decryptor
can obtain such a witness that establishes honest behavior of all the parties without trivially violating
privacy of other parties.

We address these challenges by implementing a multiparty conditional disclosure of secrets (MCDS) mech-
anism. Informally speaking, an MCDS scheme can be viewed as a tuple of (possibly interactive) algorithms
(Gen,Enc,Dec): (a) Gen takes as input an instance and witness pair (x,w) and outputs a “public” witness π.
(b) Enc takes as input n statements (x1, . . . , xn) and a message m and outputs an encryption c of m. (c) Dec
takes as input a ciphertext c and tuples (x1, π1), . . . , (xn, πn) and outputs m or ⊥. We require the following
properties:

– Correctness: If all the instances (x1, . . . , xn) are true, then dec outputs m.

– Message Privacy: If at least one instance is false, then c is semantically secure.

– Witness Privacy: There exists a simulator algorithm that can simulate the output π of Gen without using
the private witness w.

The security properties of MCDS allow us to overcome the aforementioned challenges. In particular, the
witness privacy guarantee allows the parties to publicly release the witnesses (π1, . . . , πn) while maintaining
privacy of their inputs and randomness.

In order to construct MCDS with witness privacy guarantee, we look towards ZK proof systems. As a first
attempt, we could implement public witnesses via a delayed-input5 four round ZK proof system. Specifically,
each party i is required to give a ZK proof for xi such that the last round of the proof constitutes a public witness
πi. Further, a simple, non-interactive method to implement the encryption and the decryption mechanism
is witness encryption [GGSW13]. However, presently witness encryption is only known from non-standard
assumptions (let alone OT).

To achieve our result from minimal assumptions, we instead use garbled circuits [Yao86] and four round
OT to implement MCDS. Namely, each party i garbles a circuit that contains hardwired the entire transcript of
the first three rounds as well the fourth message of party i. Upon receiving as input a witness π1, . . . , πn, where
πj is a witness for honest behavior of party j, it outputs the fourth round message. Each party j can encode its
witness πj in the OT receiver messages, and then release its private randomness used inside OT in the fourth
round so that any other party j′ can use it to compute the output of the OT, thereby learning the necessary wire
labels for evaluating the garbled circuit sent by party i.

A problem with the above strategy is that in a four round OT, the receiver’s input must be fixed by the third
round. This means that we can no longer use four round ZK proofs, and instead must use three round proofs
to create public witnesses of honest behavior. But which three round proofs must we use? Towards this, we
look to the weaker notion of promise ZK introduced by [BGJ+18]. Roughly, promise ZK relaxes the standard
notion of ZK by guaranteeing security only against malicious verifiers who do not abort. Importantly, unlike
standard ZK, distributional6 promise ZK can be achieved in only three rounds with black-box simulation in the
bidirectional message model. This raises two questions – is promise ZK sufficient for our purposes, and what
assumptions are required for three round promise ZK?

Promise ZK Under the Hood. Let us start with the first question. An immediate challenge with using promise
ZK is that it provides no security in the case where the verifier always aborts. In application to four round MPC,
this corresponds to the case where the (rushing) adversary always aborts in the third round. Since the partial
transcript at the end of third round (necessarily) contains inputs of honest parties, we still need to argue security

5A proof system is said to be delayed input if the instance is only required for computing the last round of the proof.
6That is, where the instances are sampled from a public distribution.

6

in this case. The work of [BGJ+18] addressed this problem by using a “hybrid” ZK protocol that achieves the
promise ZK property when the adversary is non-aborting, and strong witness-indistinguishability (WI) property
against aborting adversaries. The idea is that by relying on strong WI property (only in the case where adversary
aborts in the third round), we can switch from using real inputs of honest parties to input 0. However, three
round strong WI is only known based on specific number-theoretic assumptions [JKKR17].

To minimize our use of assumptions, we do not use strong WI, and instead devise a hybrid argument strategy
– similar to that achieved via strong WI – by using promise ZK under the hood. Recall that since we use the
third round prover message of promise ZK as a witness for conditional decryption, it is not given in the clear,
but is instead “encrypted” inside the OT receiver messages in the third round. This has the positive effect of
shielding promise ZK from the case where the adversary always aborts in the third round.7 In particular, we
can use the following strategy for arguing security against aborting adversaries: we first switch from using
promise ZK third round prover message to simply using 0’s as the OT receiver’s inputs. Now, we can replace
the honest parties’ inputs with 0 inputs by relying on the security of the sub-protocols used within the first three
rounds. Next, we can switch back to using honestly computed promise ZK third round prover message as the
OT receiver’s inputs.

Let us now consider the second question, namely, the assumptions required for three round promise ZK. The
work of [BGJ+18] used specific number-theoretic assumptions to construct three round (distributional) promise
ZK. However, we only wish to rely on the use of four round OT. Towards this, we note that the main ingredient
in the construction of promise ZK by [BGJ+18] that necessitated the use of number-theoretic assumptions
is a three round WI proof system that achieves “bounded-rewind-security.” Roughly, this means that the WI
property holds even against verifiers who can rewind the prover an a priori bounded number of times.

Towards minimizing assumptions, we note that a very recent work of [GR19] provides a construction of
such a WI based only on non-interactive commitments. By using their result, we can obtain three round promise
ZK based on non-interactive commitments, which in turn can be obtained from four round OT using the recent
observation of Lombardi and Schaeffer [LS19].

2.2 Rewinding Related Challenges

While the above ideas form the basis of our approach, we run into several obstacles during implementation
due to rewinding-related issues that we mentioned earlier. In order to explain these challenges and our solution
ideas, we first describe a high-level template of our four round MPC protocol based on the ideas discussed so
far. To narrow the focus of the discussion on the challenges unique to the present work, we ignore some details
for now and discuss them later.

An Initial Protocol Template. We devise a compiler from four round delayed semi-malicious MPC protocols
of a special form to a four round malicious-secure MPC protocol. Specifically, we use a four round delayed
semi-malicious protocol Π obtained by plugging in a four-round malicious-secure (which implies delayed semi-
malicious security) OT in the k-round semi-malicious MPC protocol of [GS18, BL18] based on k-round semi-
malicious OT. An important property of this protocol that we rely upon is that it consists only of OT messages
in the first k − 2 rounds. Further, we also rely upon the random self-reducibility of OT, which implies that
the first two rounds do not depend on the OT receiver’s input, and the first three rounds do not depend on the
sender’s input.8

To achieve malicious security, similar to prior works, our compiler uses several building blocks (see Section
2.3 for a detailed discussion). One prominent building block is a three-round extractable commitment scheme
that is executed in parallel with the first three rounds of the delayed semi-malicious MPC. The extractable
commitment scheme is used by the parties to commit to their inputs and randomness. This allows the simulator

7Note that if the protocol does progress to the fourth round, then we do not need to shield promise ZK anymore.
8We note that this property was also used by [BL18] in their construction of k-round malicious-secure MPC.

7

for our protocol to extract the adversary’s inputs and randomness by rewinding the second and third rounds,
and then use them to simulate the delayed semi-malicious MPC.

Bounded-Rewind-Secure OT. The above template poses an immediate challenge in proving security of the
protocol. Since the simulator rewinds the second and third rounds in order to extract the adversary’s inputs,
this means that the second and third round messages of the delayed semi-malicious MPC also get rewound.
For this reason, we cannot simply rely upon delayed semi-malicious security of the MPC. Instead, we need
the MPC protocol to remain secure even when it is being rewound. More specifically, since we are using an
MPC protocol where the first two rounds only consist of OT messages, we need a four round rewind-secure OT
protocol. Since the third round of a four round OT only contains a message from the OT receiver, we need the
following form of rewind security property: an adversarial sender cannot determine the input bit used by the
receiver even if it can rewind the receiver during the second and third round.

Clearly, an OT protocol with black-box simulation cannot be secure against an arbitrary number of rewinds.
In particular, the best we can hope for is security against an a priori bounded number of rewinds. Following
observations from [BGJ+18], we note that bounded-rewind security of OT is, in fact, sufficient for our purposes.
Roughly, the main idea is that the rewind-security of OT is invoked to argue indistinguishability of two consec-
utive hybrids inside our security proof. In order to establish indistinguishability by contradiction, it suffices to
build an adversary that breaks OT security with some non-negligible probability (as opposed to overwhelming
probability). This, in turn means that the reduction only needs to extract the adversary’s input required for
generating its view with non-negligible probability. By using a specific extractable commitment scheme, we
can ensure that the number of rewinds necessary for this task are a priori bounded.

Standard OT protocols, however, do not guarantee any form of bounded-rewind security. Towards this, we
provide a generic construction of a four round bounded-rewind secure OT starting from any four round OT,
which may be of independent interest. Our transformation is in fact more general and works for any k ≥ 4
round OT, when rewinding is restricted to rounds k− 2 and k− 1. For simplicity, we describe our ideas for the
case where we need security against one rewind; our transformation easily extends to handle more rewinds.

A natural idea to achieve one-rewind security for receivers, previously considered in [BL18], is the follow-
ing: run two copies of an OT protocol in parallel for the first k−2 rounds. In round k−1, the receiver randomly
chooses one of the two copies and only continues that OT execution, while the sender continues both the OT
executions. In the last round, the parties only complete the OT execution that was selected by the receiver in
round k − 1. Now, suppose that an adversarial sender rewinds the receiver in rounds k − 2 and k − 1. Then,
if the receiver selects different OT copies on the “main” execution thread and the “rewound” execution thread,
we can easily reduce one-rewind security of this protocol to stand-alone security of the underlying OT.

The above idea suffers from a subtle issue. Note that the above strategy for dealing with rewinds is in-
herently biased, namely, the choice made by the receiver on the rewound thread is not random, and is instead
correlated with its choice on the main thread. If we use this protocol in the design of our MPC protocol, it
leads to the following issue during simulation: consider an adversary who chooses a random z and then always
aborts if the receiver selects the z-th OT copy. Clearly, this adversary only aborts with probability 1/2 in an
honest execution. Now, consider the high-level simulation strategy for our MPC protocol discussed earlier,
where the simulator rewinds the second and third rounds to extract the adversary’s inputs. In order to ensure
rewind security of the OT, this simulator, with overall probability 1/2, will select the z-th OT copy on all the
rewound execution threads. However, in this case, the simulator will always fail in extracting the adversary’s
inputs no matter how many times it rewinds.

We address the above problem via a secret-sharing approach to eliminate the bias. Instead of simply running
two copies of OT, we run ` · n copies in parallel during the first k− 2 rounds. These ` · n copies can be divided
into n tuples, each consisting of ` copies. In round k − 1, the receiver selects a single copy from each of the
n tuples at random. It then uses n-out-of-n secret sharing to divide its input bit b into n shares b1, . . . , bn, and
then uses share bi in the OT copy selected from the i-th tuple. In the last round, sender now additionally sends
a garbled circuit (GC) that contains its input (x0, x1) hardwired. The GC takes as input all the bits b1, . . . , bn,

8

reconstructs b and then outputs xb. The sender uses the labels of the GC as its inputs in the OT executions.
Intuitively, by setting ` appropriately, we can ensure that for at least one tuple i, the OT copies randomly
selected by the receiver on the main thread and the rewound threads are different, which ensures that bi (and
thereby, b) remains hidden. We refer the reader to the technical section for more details.

Proofs Of Proofs. We now describe another challenge in implementing our template of four round MPC. As
discussed earlier, we use a three round extractable commitment scheme to enable extraction of the adversary’s
inputs and randomness. For reasons similar to those as for the case of OT, we actually use an extractable
commitment scheme that achieves bounded-rewind security. Specifically, we use a simplified variant of the
three-round commitment scheme constructed by [BGJ+18].9

A specific property of this commitment scheme is that in order to achieve rewind security, it is designed
such that the third round message of the committer is not “verifiable.” This means that the committer may be
able to send a malformed message without being detected by the receiver. For this reason, we require each
party to prove the “well-formedness” of its commitment via promise ZK. This, however, poses the following
challenge during simulation: since the third round prover message of promise ZK is encrypted inside OT
receiver message, the simulator doesn’t know whether the adversary’s commitment is well-formed or not. In
particular, if the adversary’s commitment is not well-formed, the simulator may end up running forever, in its
attempt to extract the adversary’s input via rewinding.

One natural idea to deal with this issue is to first extract adversary’s promise ZK message from the OT
executions via rewinding, and then decide whether or not to attempt extracting the adversary’s input. However,
since we are using an arbitrary (malicious-secure) OT, we do not know in advance the number of rewinds
required for extracting the receiver’s input. This in turn means that we cannot correctly set the rewind security
of the sub-protocols used in our final MPC protocol appropriately in advance.

We address this issue via the following strategy. We use another three round (delayed-input) extractable
commitment scheme [PRS02] (ecom) as well as another copy of promise ZK. This copy of promise ZK proves
honest behavior in the first three rounds, and its third message is committed inside the extractable commitment.
Further, the third round message of this extractable commitment is such that it allows for polynomial-time
extraction (with the possibility of “over-extraction”). This, however, comes at the cost that this extractable
commitment does not achieve any rewind security. Interestingly, stand-alone security of this scheme suffices
for our purposes since we only use it in the case where the adversary always aborts in the third round (and
therefore, no rewinds are performed).

The main idea is that by using such a special-purpose extractable commitment scheme, we can ensure that
an a priori fixed constant number of rewinds are sufficient for extracting the committed value, namely, the
promise ZK third round prover message, with noticeable probability. This, in turn, allows us to set the rewind
security of other sub-protocols used in our MPC protocol in advance to specific constants.

Of course, the adversary may always choose to commit to malformed promise ZK messages within the
extractable commitment scheme. In this case, our simulator may always decide not to extract adversary’s
input, even if the adversary was behaving honestly otherwise. This obviously would lead to a view that is
distinguishable from the real world. To address this issue, we use a proofs of proofs strategy. Namely, we
require the first copy of promise ZK, which is encrypted inside OT, to prove that the second copy of promise ZK
is “accepting”. In this case, if the adversary commits malformed promise ZK messages within the extractable
commitment, the promise ZK message inside OT will not be accepting. This, in turn, means that due to the
security of garbled circuits, the fourth round messages of the parties will become “opaque”.

Finally, we remark that for technical reasons, we do extract the promise ZK encrypted inside the OT receiver
message in our final hybrid. However, in this particular hybrid, the number of rewinds required for extraction
do not matter since in this hybrid, we only make change inside a non-interactive primitive (specifically, garbled
circuit) that is trivially secure against an unbounded polynomial number of rewinds.

9The commitment scheme of [BGJ+18] also achieves some security properties, in addition to bounded rewind security, that are not
required by our compiler. Hence, we use a simplified variant of their scheme.

9

2.3 Protocol Design Summary

Putting all the various pieces together, we describe the overall structure of the protocol at a high level to
demonstrate the purpose of its various components in the context of the protocol.

Pi Pj
recom1 msg1(x, r) td1 ncom1 rwi1,a ecom1 rwi1,b ot1 wi1

recom2 msg2(x, r) td2 ncom2 rwi2,a ecom2 rwi2,b ot2 wi2

recom3(x, r) msg3(x, r) td3 ncom3(̃r) ecom1(rwi3,a) ot3(rwi3,b)

GC
(
msg4(x, r)

)
ot4 wi3

For simplicity we consider the messages sent from Pi to Pj . Note that even though Pj is the intended
recipient for the messages in a two party sub-protocol, the messages are broadcast to all parties.

Delayed semi-malicious MPC (blue). Pi uses input x and randomness r to compute the messages msgk for
the bounded rewind secure four-round delayed semi malicious protocol Π.

Multiparty Conditional Disclosure of Secrets (red). As discussed earlier, the last message of Π is not sent in
the clear but instead sent inside a garbled circuit GC used to implement MCDS. We use a four-round oblivious
transfer protocol otk to allow the parties to obtain garbled circuit wire labels corresponding to their witnesses.
We defer the discussion on the witness for MCDS below.

Rewind Secure Extractable commitment (green). The same input and randomness used to compute mes-
sages for Π is committed via an extractable commitment recomk. This is done to enable the simulator to
extract the inputs and randomness of the adversary for simulation. As discussed earlier, we use a three round
extractable commitment that achieves bounded rewind security.

Promise ZK (purple). We use promise ZK in a non-black box manner in our protocol. Specifically, it consists
of a trapdoor generation phase tdk, and a bounded rewind secure witness indistinguishable proof rwik. As
discussed in our proofs of proofs strategy, we actually use two copies of the promise ZK (indexed by subscripts
a and b in the figure), but both of these copies will share a single instance of the trapdoor generation. At a
high level, both rwis prove that either the claim is true or “I committed to the trapdoor in the non-malleable
commitment” (see below). We also note that one of the rwi copies, specifically, the copy indexed with subscript
b is used as a witness for the MCDS mechanism.

Witness Indistinguishable Proof (orange). We also use a regular witness indistinguishable proof wi (without
any rewind security) to establish honest behavior of the parties in the last round of the protocol. This effectively
involves proving that either the last round message was computed honestly or “I committed to the trapdoor in
the non-malleable commitment” (see below).

Extractable commitment (brown). As discussed earlier, we use an extractable commitment ecom (without
rewind security) to implement our proofs of proofs strategy to enable simulation.

Non-malleability (dark blue). We bootstrap non-malleability in our protocol using non-malleable commit-
ments ncom in a similar manner to prior works [ACJ17, BGJ+18]. Specifically, in the honest execution of the
protocol, the parties simply commit to a random value r̃. We rely on specific properties of the ncom, which we
do not discuss here and refer the reader to the technical sections.

10

Finally, we note that our protocol design uses multiple sub-protocols with bounded rewind security. We do
not discuss how the bounds for the sub-protocols are set here, and instead defer this discussion to Section 5.

Complexity of the protocol description. One might wonder why our construction is so involved and whether
there is a simpler construction. This is an important question that needs to be addressed. Unfortunately, our
current understanding of the problem does not allow for a protocol that is easier to describe, but we believe that
our solution is less complex than the prior state-of-the-art solutions [BGJ+18, HHPV18].

2.4 Related Work

Round-Complexity of MPC. The round complexity of MPC has been extensively studied over the years in a
variety of models. Here, we provide a short survey of malicious-secure MPC protocols in the plain model. We
refer the reader to [BGJ+18] for a more comprehensive survey.

Beaver et al. [BMR90] initiated the study of constant round MPC in the honest majority setting. Several
follow-up works subsequently constructed constant round MPC against dishonest majority (which is the focus
of the present work) [KOS03, Pas04, PW10, Wee10, Goy11]. Garg et al. [GMPP16] established a lower
bound of four rounds for MPC. They constructed five and six round MPC protocols using indistinguishability
obfuscation and LWE, respectively, together with three-round robust non-malleable commitments.

The first four round MPC protocols were constructed by Ananth et al. [ACJ17] and Brakerski et al. [BHP17]
based on different sub-exponential-time hardness assumptions. [ACJ17] also constructed a five round MPC pro-
tocol based on polynomial-time hardness assumptions. Ciampi et al. constructed four-round protocols for mul-
tiparty coin-tossing [COSV17a] and two-party computation [COSV17b] from polynomial-time assumptions.
Benhamouda and Lin [BL18] gave a general transformation from any k-round OT with alternating messages to
k-round MPC, for k > 5. More recently, independent works of Badrinarayanan et al. [BGJ+18] and Halevi et
al. [HHPV18] constructed four round MPC protcols for general functionalities based on different polynomial-
time assumptions. Specifically, [BGJ+18] rely on DDH (or QR or N -th Residuosity), and [HHPV18] rely on
Zaps, affine-homomorphic encryption schemes and injective one-way functions (which can all be instantiated
from QR).

Conditional Disclosure of Secrets. The notion of CDS has also been extensively studied over the years in
a variety of models. The works most relevant to ours are [AIR01, BP12, AJ17, BKP19] that consider the
computational setting with two parties, a sender and a receiver. The sender holds an instance x (of an NP
language) and a message m, while the receiver holds x and the corresponding witness w. If the witness is
valid for x, then the receiver obtains m, whereas if the instance x is not in the language, m remains hidden.
The CDS protocols are presented in the two message setting, and can be thought of a lightweight alternative to
zero-knowledge.

Another line of work, initiated by [GIKM98] studies CDS in the information theoretic setting, where the
input x is divided among multiple senders that share common randomness (and a secret). Each sender is
constrained to sending a single message to the receiver, who can then reconstruct the secret only if some relation
R over x is satisfied. This setting has seen renewed interest, with recent works focusing on the communication
complexity (for example, see [GKW15]). Due to the necessity of a common random string and the corruption
model, this line of work is not relevant to our setting.

To the best of our knowledge, CDS in the multiparty setting was previously only considered in the work
of [IKP10], where they present two separate notions. The first notion is reminiscent of the original notion
in [GIKM98], which is a non-interactive protocol, where the parties that share a secret also share a common
random string. The second notion, bearing slight similarity to ours, does not require the parties with the input to
share randomness. But this second notion is only defined for a very special relation where the secret is revealed
only if all the parties with inputs, have the same input (i.e. the relation on x is that all the divisions of x are the

11

same). In this constrained setting, they in fact achieve information theoretic security in the dishonest majority
for adversaries that have some additional “structural” requirements.

This work is the result of a merge of the works [CO19] and [CGJ19], and subsumes both these works.

3 Preliminaries

3.1 Secure Multiparty Computation

We provide the definition of MPC against malicious adversaries as well as (delayed) semi-malicious adversaries.
Parts of this section have been taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs to pairs of outputs
(one for each party). We refer to such a process as a functionality. The security of a protocol is defined
with respect to a functionality f . In particular, let n denote the number of parties. A non-reactive n-party
functionality f is a (possibly randomized) mapping of n inputs to n outputs. A multiparty protocol with
security parameter λ for computing a non-reactive functionality f is a protocol running in time poly(λ) (λ) and
satisfying the following correctness requirement: if parties P1, . . . , Pn with inputs (x1, . . . , xn) respectively,
all run an honest execution of the protocol, then the joint distribution of the outputs y1, . . . , yn of the parties is
statistically close to f(x1, . . . , xn).

A reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , f`) computed in a
stateful fashion in a series of phases. Let xji denote the input of Pi in phase j, and let sj denote the state of
the computation after phase j. Computation of f proceeds by setting s0 equal to the empty string and then
computing (yj1, . . . , y

j
n, sj)← fj(s

j−1, xj1, . . . , x
j
n) for j ∈ [`], where yji denotes the output of Pi at the end of

phase j. A multi-party protocol computing f also runs in ` phases, at the beginning of which each party holds
an input and at the end of which each party obtains an output. (Note that parties may wait to decide on their
phase-j input until the beginning of that phase.) Parties maintain state throughout the entire execution. The
correctness requirement is that, in an honest execution of the protocol, the joint distribution of all the outputs
{yj1, . . . , y

j
n}`j=1 of all the phases is statistically close to the joint distribution of all the outputs of all the phases

in a computation of f on the same inputs used by the parties.

Defining Security. We assume that readers are familiar with standard simulation-based definitions of secure
multi-party computation in the standalone setting. We provide a self-contained definition for completeness and
refer to [Gol04] for a more complete description. The security of a protocol (with respect to a functionality
f) is defined by comparing the real-world execution of the protocol with an ideal-world evaluation of f by a
trusted party. More concretely, it is required that for every adversary A, which attacks the real execution of the
protocol, there exist an adversary Sim, also referred to as a simulator, which can achieve the same effect in the
ideal-world. Let’s denote −→x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed in the presence
of an adversary A. The honest parties follow the instructions of π. The adversary A takes as input the security
parameter k, the set I ⊂ [n] of corrupted parties, the inputs of the corrupted parties, and an auxiliary input z.
A sends all messages in place of corrupted parties and may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable REALπ,A(z),I(k,
−→x) whose value is

determined by the coin tosses of the adversary and the honest players. This random variable contains the output
of the adversary (which may be an arbitrary function of its view) as well as the outputs of the uncorrupted
parties. We let REALπ,A(z),I denote the distribution ensemble {REALπ,A(z),I(k,

−→x)}k∈N,〈−→x ,z〉∈{0,1}∗ .

The ideal execution – security with abort . In this second variant of the ideal model, fairness and output
delivery are no longer guaranteed. This is the standard relaxation used when a strict majority of honest parties
is not assumed. In this case, an ideal execution for a function f proceeds as follows:

12

– Send inputs to the trusted party: As before, the parties send their inputs to the trusted party, and we let
x′i denote the value sent by Pi. Once again, for a semi-honest adversary we require x′i = xi for all i ∈ I .

– Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) = (y1, . . . , yn)

and sends {yi}i∈I to the adversary.

– Adversary instructs trust party to abort or continue: This is formalized by having the adversary send
either a continue or abort message to the trusted party. (A semi-honest adversary never aborts.) In the
latter case, the trusted party sends to each uncorrupted party Pi its output value yi. In the former case,
the trusted party sends the special symbol ⊥ to each uncorrupted party.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values obtained
from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf⊥,A(z)(k,
−→x) as above,and

we let {IDEALf⊥,A(z),I(k,
−→x)}k∈N,〈−→x ,z〉∈{0,1}∗ where the subscript ”⊥” indicates that the adversary can abort

computation of f .
Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 1. Let k be the security parameter. Let f be an n-party randomized functionality, and π be an
n-party protocol for n ∈ N.

1. We say that π t-securely computes f in the presence of malicious (resp., semi-honest) adversaries if for
every PPT adversary (resp., semi-honest adversary) A there exists a PPT adversary (resp., semi-honest
adversary) Sim such that for any I ⊂ [n] with |I| ≤ t the following quantity is negligible:

|Pr[REALπ,A(z),I(k,
−→x) = 1]− Pr[IDEALf,A(z),I(k,

−→x) = 1]|

where −→x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

2. Similarly, π t-securely computes f with abort in the presence of malicious adversaries if for every PPT
adversary A there exists a polynomial time adversary Sim such that for any I ⊂ [n] with |I| ≤ t the
following quantity is negligible:

|Pr[REALπ,A(z),I(k,
−→x) = 1]− Pr[IDEALf⊥,A(z),I(k,

−→x) = 1]|.

Security Against (Delayed) Semi-Malicious Adversaries We also define security against semi-malicious
adversaries that are stronger than semi-honest adversaries. A semi-malicious adversary is modeled as an in-
teractive Turing machine (ITM) which, in addition to the standard tapes, has a special witness tape. In each
round of the protocol, whenever the adversary produces a new protocol message msg on behalf of some party
Pk, it must also write to its special witness tape some pair (x, r) of input x and randomness r that explains its
behavior. More specifically, all of the protocol messages sent by the adversary on behalf of Pk up to that point,
including the new message m, must exactly match the honest protocol specification for Pk when executed with
input x and randomness r. Note that the witnesses given in different rounds need not be consistent. Also, we
assume that the attacker is rushing and hence may choose the message m and the witness (x, r) in each round
adaptively, after seeing the protocol messages of the honest parties in that round (and all prior rounds). Lastly,
the adversary may also choose to abort the execution on behalf of Pk in any step of the interaction.

A delayed semi-malicious adversary [BL18] is similar to semi-malicious adversary, except that it only needs
to output the witness (i.e., a defense of honest behavior) in the second last round of the protocol. We refer the
reader to [BL18] for a more detailed discussion.

Definition 2. We say that a protocol π securely realizes f for (delayed) semi-malicious adversaries if it satisfies
Definition 1 when we only quantify over all (delayed) semi-malicious adversaries A.

13

3.2 Garbled Circuits

Definition 3 (Garbling Scheme). A garbling scheme for circuits is a tuple ofPPT algorithms GC := (Gen,Garble,Eval)
such that”

– ({labw,b}w∈inp,b∈{0,1}) ← Gen(1λ, inp): Garble takes the security parameter 1λ and length of input for
the circuit as input and outputs a set of input labels {labw,b}w∈inp,b∈{0,1}.

– C ← Garble(C, {labw,b}w∈inp,b∈{0,1}): Garble takes as input a circuit C : {0, 1}inp → {0, 1}out and a
set of input labels {labw,b}w∈inp,b∈{0,1} and outputs the garbled circuit C.

– y ← Eval(C, labx): Eval takes as input the garbled circuit C, input labels labx corresponding to the
input x ∈ {0, 1}inp and outputs y ∈ {0, 1}out.

This garbling scheme satisfies the following properties:

1. Correctness: For any circuit C and input x ∈ {0, 1}inp,

Pr[C(x) = Eval(C, labx)] = 1

where ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp) and C ← Garble(C, {labw,b}w∈inp,b∈{0,1}).

2. Selective Security: There exists a PPT simulator SimGC such that, for any PPT adversaryA, there exists
a negligible function µ(.) such that,

|Pr[ExperimentA,SimGC
(1λ, 0) = 1]− Pr[ExperimentA,SimGC

(1λ, 1) = 1]| ≤ µ(λ)

where the experiment ExperimentA,SimGC
(1λ, b) is defined as follows:

(a) The adversary A specifies the circuit C and an input x ∈ {0, 1}inp and gets C and l̂ab, which are
computed as follows:

– If b = 0:
– ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp)

– C ← Garble(C, {labw,b}w∈inp,b∈{0,1})
– If b = 1:

– (C, l̂ab)← SimGC(1λ, C(x))

(b) The adversary outputs a bit b′, which is the output of the experiment.

3.3 Extractable Commitment Scheme

We will use a variant of a simple challenge-response based extractable statistically-binding string commitment
scheme 〈C,R〉 that has been used in several prior works, most notably [PRS02, Ros04]. We note that in contrast
to [PRS02] where a multi-slot protocol was used, here (similar to [Ros04]), we only need a one-slot protocol.

Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive perfectly binding string com-
mitment scheme which requires the assumption of injective one-way functions for its construction. Let n denote
the security parameter. The commitment scheme 〈C,R〉 is described as follows.

COMMIT PHASE:

1. To commit to a string str, C chooses k = ω(log(n)) independent random pairs {α0
i , α

1
i }ki=1 of strings

such that ∀i ∈ [k], α0
i ⊕ α1

i = str; and commits to all of them to R using com. Let B ← com(str),
and A0

i ← com(α0
i), A1

i ← com(α1
i) for every i ∈ [k].

14

2. R sends k uniformly random bits v1, . . . , vn.

3. For every i ∈ [k], if vi = 0, C opens A0
i , otherwise it opens A1

i to R by sending the appropriate
decommitment information.

OPEN PHASE: C opens all the commitments by sending the decommitment information for each one of them.
For our construction, we require a modified extractor for the extractable commitment scheme. The standard

extractor returns the value str that was committed to in the scheme. Instead, we require that the extractor
return i, and the openings of A0

i and A1
i . This extractor can be constructed easily, akin to the standard extractor

for the extractable commitment scheme.
This completes the description of 〈C,R〉.
We say that commit phase between C ′ and R′ is well formed with respect to a value ˆstr if there exist

values {α̂0
i , α̂

1
i }ki=1 such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and

2. Commitments B, {A0
i , A

1
i }ki=1 can be decommitted to ˆstr, {α̂0

i , α̂
1
i }ki=1 respectively.

3. Let ᾱv11 , . . . , ᾱ
vk
k denote the secret shares revealed by C ′ in the commit phase. Then, for all i ∈ [k],

ᾱvii = α̂vii .

We now state the following simple lemma about extraction from commitments when they are well formed.

Lemma 1. There exists a PPT extractor algorithm Ext such that, given a set of 2 “well-formed” execution tran-
scripts of com where each transcript consists of the same first round sender message, the extractor successfully
extracts the value committed in each transcript, except with negligible probability.

It is easy to see that two random challenge strings will differ in at least a single position other than with
negligible probability. From the description of the protocol, if the commit phase was well formed, both com-
mitments at a single position suffice to extract the value. In the sequel, we refer to this as 2-extractable property
of the extractable commitment scheme.

3.4 Extractable Commitments with Bounded Rewinding Security

In this section, we describe an extractable commitment protocol that is additionally secure against a bounded
number of rewinds. Since we are interested in the three round protocol, we limit our discussion in this section
to this setting. A simple extractable commitment is a commitment protocol between a sender (with input x) and
a receiver which allows an extractor, with the ability to rewind the sender via the second and third round of the
protocol, to extract the sender’s committed value. Several constructions of three round extractable commitment
schemes are known in the literature (see, e.g., [PRS02, Ros04]).

When we additionally require bounded rewind security, we shall parameterize this bound byBrecom. Roughly
this means that the value committed by a sender in an execution of the commitment protocol remains hidden
even if a malicious receiver can rewind the sender back to the start of the second round of the protocol an a
priori bounded Brecom number of times. Extraction will then necessarily require strictly larger than Brecom

rewinds.
In the remainder of the section, we describe a construction of a three round extractable commitment protocol

with bounded rewind security RECom = (S,R). The construction is adapted from the construction presented
in [BGJ+18], and simplified for our setting since we do not require the stronger notion of “reusability”, as
defined in their work.

In our application, we set Brecom = 4; however, our construction also supports larger values of Brecom. For
technical reasons, we don’t define or prove Brecom-rewinding security property and reusability property for our
extractable commitment protocol. Instead, this is done inline in our four round MPC protocol.

15

Construction. Let Com denote a non-interactive perfectly binding commitment scheme based on injective
one-way functions. Let N and Brecom be positive integers such that N −Brecom− 1 ≥ N

2 + 1. For Brecom = 4,
it suffices to set N = 12. The three round extractable commitment protocol RECom is described in Figure 1.

Sender S has input x.

Commitment Phase:
1. Round 1: S does the following:

– Pick N random degree Brecom polynomials p1, . . . , pN over Zq , where q is a prime larger than 2λ.

– Compute recomS→R
1,` ← Com(p`; r`) using a random string r`, for every ` ∈ [N].

– Send recomS→R
1 = (recomS→R

1,1 , . . . , recomS→R
1,N) to R.

2. Round 2: R does the following:

– Pick random values z`←$Zq for every ` ∈ [N].

– Send recomR→S
2 = (z1, . . . , zN) to S.

3. Round 3: S does the following:

– Compute recomS→R
3,` ← (x⊕ p`(0), p`(z`)) for all ` ∈ [N].

– Send recomS→R
3 = (recomS→R

3,1 , . . . , recomS→R
3,N) to R.

Decommitment Phase:
1. S outputs p1, . . . , pN together with the randomness r1, . . . , rN used in the first round commitments.

2. R first verifies the following:

– For each ` ∈ [N], recomS→R
1,` = Com(p`; r`).

– Parse recomS→R
3,` = (α`, β`). Verify that β` = p`(z`).

– For each ` ∈ [N], compute x` = p`(0)⊕ α`. Verify that all the x` values are equal.

If any of the above verifications fail, R outputs ⊥. Otherwise, R outputs x.

Figure 1: Extractable Commitment Scheme recom.

Well-Formedness of recom Transcripts. We now define a “well-formedness” property of an execution tran-
script of RECom. Roughly, we say that a transcript (recomS→R

1 , recomR→S
2 , recomS→R

3) is well-formed w.r.t.
an input x and randomness r if:

– N − 1 out of the N tuples recomS→R
3,` = (α`, β`) (where ` ∈ [N]) are “honestly” computed using

randomness r =
(
{pi}Ni=1, {ri}Ni=1

)
in the sense that: each α` is a one-time pad of x w.r.t. the key p`(0)

where p` is a polynomial committed (using randomness r`) in the first round message recomS→R
1 , and

each β` is a correct evaluation of the polynomial p` over the “challenge” value z` contained in recomR→S
2 .

We now proceed to formally define the well-formedness property. For any set T , let T [i] denote the ith

element of T .

Definition 4 (Well-Formed Transcripts). An execution transcript (recomS→R
1 , recomR→S

2 , recomS→R
3) of recom

is said to be well-formed with respect to an input x and randomness r =
(
{pi}Ni=1, {ri}Ni=1

)
if there exists an

index set I of size N − 1 such that the following holds:

– For every j ∈ |I|, recomS→R
1,I[j] = Com(pI[j]; rI[j]) (AND)

– For every j ∈ |I|, recomS→R
3,I[j] = (x⊕ pI[j](0), pI[j](zI[j])), where recomR→S

2 = (z1, . . . , zN)

16

We remark that the above well-formedness property is “weak” in the sense that we only requireN−1 out of
the N tuples recomS→R

3,` = (α`, β`) to be honestly generated (instead of requiring that all N tuples are honestly
generated). This relaxation is crucial to establishing the Brecom-rewinding-security property for recom.

We now define an “admissibility” property for any input to the extractor.

Definition 5 (Admissible Inputs). An input set (recom1, {recomi
2, recomi

3}
Brecom+1
i=1) is said to be admissible if

for every i, j ∈ [Brecom + 1] s.t. i 6= j and every ` ∈ [N], we have that zi` 6= zj` , where recomt
2 = (zt1, . . . , z

t
N).

Extractor Extrecom. The extractor algorithm Extrecom is described in Figure 2.10

Lemma 2. There exists a PPT extractor algorithm Extrecom such that, given a set of (Brecom + 1) “well-
formed” and “admissible” execution transcripts of RECom where each transcript consists of the same first
round sender message, the extractor successfully extracts the value committed in each transcript, except with
negligible probability.

Input: An admissible set (recom1, {recomi
2, recomi

3}
Brecom+1
i=1) where ∀i, (recom1, recomi

2, recomi
3) is well-formed

w.r.t. some value xi.

1. For every i ∈ [Brecom + 1], parse recomi
2 = (zi1, . . . , z

i
N) and recomi

3 = (recomi
3,1, . . . , recomi

3,N+2).

2. For each ` ∈ [N]:

– Parse recomi
3,` = (αi`, β

i
`).

– Using polynomial interpolation, compute a degree Brecom polynomial p` over Zq such that on point zi`,
p`(zi`) = βi`.

– Compute xi` = (αi` ⊕ p`(0)).

3. For every i ∈ [Brecom], let xi be the value that equals a majority of the values in the set {xi1, . . . , xiN}. If no
such xi value exists, set xi = ⊥.

4. Output (x1, . . . , xBrecom).

Figure 2: Strategy of algorithm Extrecom.

Proof. We now analyze the extraction algorithm. Recall that for every i ∈ [Brecom + 1], the transcript
(recom1, recomi

2, recomi
3) is well-formed w.r.t. some value xi. By the definition of well-formedness, we have

that for every i, there exists at most one j ∈ [N] such that recomi
3,j was not computed correctly and consis-

tently with the other recomi
3,j′ . This means that overall, across all i ∈ [Brecom + 1] execution transcripts, there

exists at most (Brecom + 1) values of recomi
3,j that were not computed correctly. This implies that for at least

(N −Brecom − 1) values of j, the values recomi
3,j were computed correctly in all Brecom + 1 transcripts. This

means that for every i ∈ [Brecom + 1], (N − Brecom − 1) out of N values {ki1, . . . , kiN} computed by the
extractor are the same. Then, since N −Brecom − 1 ≥ N

2 + 1, we have that the extractor computes the correct
values ki and xi for every i ∈ [Brecom].

3.5 Trapdoor Generation Protocol with Bounded Rewind Security

In this section, taken largely verbatim from [BGJ+18], we discuss the syntax, definition and construction for a
Trapdoor Generation Protocol with Bounded Rewind Security.

10An admissible input set consisting of (Brecom + 1) “well-formed” execution transcripts of recom that share the same first round
sender message can be obtained from a malicious sender via an expected PPT rewinding procedure. The expected PPT simulator in our
application performs the necessary rewindings to obtain such transcripts and then feeds them to the extractor Extrecom.

17

In a Trapdoor Generation Protocol, without bounded rewind security, a sender S (a.k.a. trapdoor generator)
communicates with a receiver R. The protocol itself has no output, and the receiver has no input. The goal is
for the sender to establish a trapdoor upon completion. On the one hand, the trapdoor can be extracted via a
special extraction algorithm that has the ability to rewind the sender. On the other hand, no cheating receiver
should be able to recover the trapdoor.

Syntax. A trapdoor generation protocol TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt)
is a three round protocol between two parties - a sender (trapdoor generator) S and receiver R that proceeds as
below.

1. Round 1 - TDGen1(·):
S computes and sends tdS→R1 ← TDGen1(rS) using a random string rS .

2. Round 2 - TDGen2(·):
R computes and sends tdR→S2 ← TDGen2(tdS→R1 ; rR) using randomness rR.

3. Round 3 - TDGen3(·):
S computes and sends tdS→R3 ← TDGen3(tdR→S2 ; rS)

4. Output - TDOut(·)
The receiver R outputs TDOut(tdS→R1 , tdR→S2 , tdS→R3).

5. Trapdoor Validation Algorithm - TDValid(·):
Given input (t, tdS→R1), output a single bit 0 or 1 that determines whether the value t is a valid trapdoor
corresponding to the message td1 sent in the first round of the trapdoor generation protocol.

In what follows, for brevity, we set td1 to be tdS→R1 . Similarly we use td2 and td3 instead of tdR→S2 and
tdS→R3 , respectively. Note that the algorithm TDValid does not form a part of the interaction between the
trapdoor generator and the receiver. It is, in fact, a public algorithm that enables public verification of whether
a value t is a valid trapdoor for a first round message td1.

The protocol satisfies two properties: (i) Sender security, i.e., no cheating PPT receiver can learn a valid
trapdoor, and (ii) Extraction, i.e., there exists an expected PPT algorithm (a.k.a. extractor) that can extract a
trapdoor from an adversarial sender via rewinding.

Extraction. There exists a PPT extractor algorithm TDExt that, given a set of values11 (td1, {tdi2, tdi3}3i=1)
such that td1

2, td2
2, td3

2 are distinct and TDOut(td1, tdi2, tdi3) = 1 for all i ∈ [3], outputs a trapdoor t such that
TDValid(t, td1) = 1.

1-Rewinding Security. We define the notion of 1-rewinding security for a trapdoor generation protocol
TDGen. Intuitively, a Trapdoor Generation protocol is 1-rewind secure if it protects a sender against a (possi-
bly cheating) receiver that has the ability to rewind it once. Specifically, the receiver is allowed to query the
sender on two (possibly adaptive) different second round messages, thereby receiving two different third round
responses from the sender. It should be the case that the trapdoor still remains hidden to the receiver.

Consider the following experiment between a sender S and any (possibly cheating) receiver R∗.
Experiment E:

– R∗ interacts with S and completes one execution of the protocol TDGen. R∗ receives values (td1, td3)
in rounds 1 and 3 respectively.

– Then, R∗ rewinds S to the beginning of round 2.
11These values can be obtained from the malicious sender via an expected PPT rewinding procedure. The expected PPT simulator in

our applications performs the necessary rewindings and then feeds these values to the extractor TDExt.

18

– R∗ sends S a new second round message td∗2 and receives a message td∗3 in the third round.

– At the end of the experiment, R∗ outputs a value t∗.

Definition 6 (1-Rewinding Security). A trapdoor generation protocol TDGen = (TDGen1,TDGen2,
TDGen3,TDOut,TDValid) achieves 1-rewinding security if, for every non-uniform PPT receiver R∗ in the
above experiment E,

Pr
[
TDValid(t∗, td1) = 1

]
= negl(λ) ,

where the probability is over the random coins of S, and where t∗ is the output of R∗ in the experiment E, and
td1 is the message from S in round 1.

3.5.1 Construction

We now describe a three round trapdoor generation protocol based on one way functions. We first sketch the
simple construction before providing a formal description. In the first round, the sender samples a signing
key pair and sends the verification key to the receiver. The receiver queries a random message in the second
round, and the sender responds with the corresponding signature in the third. The trapdoor is defined to be 3
distinct (message,signature) pairs. It is easy to see that both extraction and 1-rewind security are satisfied for
this construction. Now, we formally describe the construction below.

Let S and R denote the sender and the receiver, respectively. Let λ denote the security parameter. Let
(Gen,Sign,Vf) be a signature scheme that is existentially unforgeable against chosen-message attacks. Such
schemes are known based on one-way functions [GMR88].

1. Round 1 - TDGen1(rS):
S does the following:

– Generate (sk, vk)← Gen(rS).

– Send tdS→R1 = vk to R.

2. Round 2 - TDGen2(tdS→R1):
R sends a random string m as the message tdR→S2 to S.

3. Round 3 - TDGen3(tdS→R1 , tdR→S2 ; rS):
S computes and sends tdS→R3 = Sign(sk,m; rm) where rm is randomly chosen.

4. Output: - TDOut(tdS→R1 , tdR→S2 , tdS→R3)
The receiver R outputs 1 if Vf(tdS→R1 ,m, tdS→R3) = 1.

5. Trapdoor Validation Algorithm - TDValid(t, td1):
Given input (t, td1), the algorithm does the following:

– Let t = {mi, σi}3i=1.

– Output 1 if m1,m2,m3 are distinct and Vf(td1,mi, σi) = 1 for all i ∈ [3].

Figure 3: Trapdoor Generation Protocol ΠTD.

Theorem 3. Assuming the existence of one way functions, the protocol ΠTD described in Figure 3 is a 1-
rewinding secure trapdoor generation protocol.

We refer the reader to [BGJ+18] for the proof.

Extractor TDExt(·). The extractor works as follows. It receives a verification key vk = td1, and a set of
values {mi, σi}3i=1 such that mi are all distinct and Vf(vk,mi, σi) = 1 for every i ∈ [3]. Then, TDExt outputs
t = {mi, σi}3i=1 as a valid trapdoor. Correctness of the extraction is easy to see by inspection.

19

3.6 Witness Indistinguishable Proofs with Bounded Rewinding Security

We start by defining delayed-input Interactive Arguments. Without exception, we will require our proof systems
to allow for the statement to be chosen after the start of the protocol.

Definition 7 (Delayed-Input Interactive Arguments). An n-round delayed-input interactive protocol (P,V) for
deciding a language L is an argument system for L that satisfies the following properties:

– Delayed-Input Completeness. For every security parameter λ ∈ N, and any (x,w) ∈ RL such that
|x| ≤ 2λ,

Pr[(P,V)(1λ, x, w) = 1] = 1− negl(λ) .

where the probability is over the randomness of P and V. Moreover, the prover’s algorithm initially takes
as input only 1λ, and the pair (x,w) is given to P only in the beginning of the n’th round.

– Delayed-Input Soundness. For any PPT cheating prover P∗ that chooses x∗ (adaptively) after the first
n− 1 messages, it holds that if x∗ /∈ L then

Pr[(P∗,V)(1λ, x∗) = 1] = negl(λ) .

where the probability is over the random coins of V .

The primitive we will use extensively in our construction is a witness indistinguishable argument.

Definition 8 (Witness Indistinguishability). A delayed-input interactive argument (P,V) for a language L
is said to be witness indistinguishable if for every PPT algorithm V∗ and every pair (w1, w2) such that
RL(x,w1) = 1 and RL(x,w2) = 1, the following are computationally indistinguishable.

viewV∗ (P(w1),V∗)(1λ, x) and viewV∗ (P(w1),V∗)(1λ, x)

where viewV∗ (P(w),V∗)(1λ, x) denotes the view of the verifier during the execution of the protocol.

Imported Theorem 1 ([LS91]). Assuming non-interactive commitments there exists 3 round delayed-input
witness indistinguishable proof systems.

As in prior works, we rely on the public coin nature of the protocol in [LS91].
We now consider the definition of a delayed input witness indistinguishable arguments (WI) to additionally

satisfy Brwi-bounded rewinding security, where the same statement is proven across all the rewinds. We refer
to such primitives as Brwi-bounded rewind secure WI.

The intuition for the definition is similar to that of the trapdoor generation protocol as described in the
previous section. Here, for the three round delayed-input witness indistinguishable argument we want witness
indistinguishability to be preserved as long as the verifier is restricted to rewinding the prover Brwi-1 times.
Specifically, the prover sends its first round message to the verifier, who then choses (i) a triple consisting of a
statement, and any two corresponding witnesses w0 and w1; (ii) Brwi-1 second round verifier messages for the
single first round prover message. The prover then completes the protocol, responding to each of the Brwi-1
verifier messages, using either witness w0 or w1 for every response.

Definition 9 (3-Round Delayed-Input WI with Non-Adaptive Fixed Statement Bounded Rewinding Security).
Fix a positive integer Brwi. A delayed-input 3-round interactive argument (as defined in Definition 7) for an NP
language L, with an NP relation RL is said to be WI with Non-Adaptive Fixed Statement Brwi-Rewinding
Security if for every non-uniform PPT interactive Turing Machine V ∗, it holds that {REALV

∗
0 (1λ)}λ and

{REALV
∗

1 (1λ)}λ are computationally indistinguishable, where for b ∈ {0, 1} the random variable REALV
∗

b (1λ)
is defined via the following experiment. In what follows we denote by P1 the prover’s algorithm in the first
round, and similarly we denote by P3 his algorithm in the third round. We now define it formally below.

Experiment REALV
∗

b (1λ):

20

1. Run P1(1λ) and denote its output by (rwi1, σ), where σ is its secret state, and rwi1 is the message to be
sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs (x,w0, w1) and a set of messages {rwii2}i∈[Brwi].

3. For each i ∈ [Brwi−1], run P3(σ, rwii2, x, w0), where P3 is the (honest) prover’s algorithm for generating
the third message of the WI protocol, and send its message P3 to V ∗. For i = Brwi, run P3(σ, rwii2, x, wb).

4. The output of the experiment is the output of V ∗.

The following theorem is proven in [GR19].

Theorem 4. Assuming non-interactive commitments, for every (polynomial) rewinding parameter B, there
exists a three round delayed-input witness-indistinguishable argument system with B-rewinding security.

3.7 Non-Malleable Commitments

In this section, we recall the definition of non-malleable commitments (NMCOM) and describe some additional
properties that are relevant to our use case. In particular, we define special non-malleable commitments that
capture the exact requirements that we need from a three round NMCOM for our application to MPC. We then
provide an instantiation of such special NMCOM via the scheme of Goyal et al. [GPR16].

We start by proving some background on how NMCOMs are used in many prior works for bootstrapping
non-malleability in a constant-round MPC protocol. We then briefly discuss the issue of “over-extraction” in
NMCOMs and how it guides some of our requirements from special NMCOMs.

Bootstrapping Non-Malleability via NMCOMs. As noted in many prior works, standard soundness guaran-
tees of ZK proofs do not suffice in the design of constant-round MPC protocols. In particular, since the proofs
given by various parties are executed in parallel, we need to ensure that the proofs given by adversarial parties
remain sound even when the honest party proofs are simulated [Sah99].

Many prior works use the following template to ensure the above property: the parties are required to send
a non-malleable commitment (NMCOM) to a random value, and then prove that either they are behaving “hon-
estly” or the NMCOM commits to a “trapdoor” string, which is determined via a separate “trapdoor generation”
sub-protocol. Such a use of NMCOM intuitively suffices to bootstrap non-malleability throughout the protocol.
Indeed, the main idea is that in order to ensure “simulation soundness” across the hybrids in the security proof,
it suffices to prove an invariant that the adversary never commits to the trapdoor in its NMCOM. If the NM-
COM scheme supports extraction of the committed value, then it is indeed possible to prove that the invariant
holds:

– First, the invariant is established in the real world, i.e., the first hybrid, by simply extracting the value
inside adversary’s NMCOM and invoking the security of the trapdoor generation protocol.

– In subsequent hybrids, we continue to argue that the invariant holds via one of the following two strate-
gies: (i) In all but one of the hybrids, we use the NMCOM extractor to argue that the value inside
adversary’s NMCOM does not change from the previous hybrid. (ii) In one specific hybrid – referred to
as the “NMCOM-hybrid” – where we switch the value inside the honest party NMCOM, we simply rely
on the non-malleability property of NMCOM to argue that the value committed by the adversary did not
change.

In the design of four-round MPC, due to aborting adversaries, it is imperative to use a three round NMCOM
to implement the above strategy. Towards this end, we rely upon the three round NMCOM scheme of Goyal et
al. [GPR16] in order to minimize the use of assumptions in our protocol. An important weakeness, however, of
their NMCOM scheme is that it suffers from “over-extraction”, namely, the extractor can output a valid (non-⊥)

21

value even if the adversary’s committed to ⊥ (i.e., its commitment was not valid). This, unfortunately, leads to
a failure in the implementation of the above strategy as the extractor could output the trapdoor even when the
adversary was committing to ⊥ in the NMCOM.

We crucially observe that a weak “split-state” extractor used inside the security proof of Goyal et al’s NM-
COM scheme satisfies useful properties that suffice for our application. Specifically, it guarantees the following
two properties: (1) If we switch the honest party commitment from m0 to m1, the value extracted from ad-
versary’s NMCOM does not change, (2) If the adversary sends a well-formed commitment to some value m,
then with noticeable probability, the output of the extractor is m. Using these properties, we can establish
simulation-soundness as follows. We first strengthen the above invariant to claim that a particular extractor,
when applied on the adversary’s NMCOM, does not output the trapdoor. Then, throughout the hybrids, we first
use the above extractor to argue that the value extracted from adversary’s NMCOM is not the trapdoor. Then,
using the second property, we can argue that the adversary must not be committing to the trapdoor.

3.7.1 Definitions

We start with the definition of non-malleable commitments by Pass and Rosen [PR05] and further refined by
Lin et al [LPV08] and Goyal [Goy11]. (All of these definitions build upon the original definition of Dwork et
al. [DDN91]).

In the real experiment, a man-in-the-middle adversary MIM interacts with a committer C in the left session,
and with a receiver R in the right session. Without loss of generality, we assume that each session has identities
or tags, and require non-malleability only when the tag for the left session is different from the tag for the right
session.

At the start of the experiment, the committer C receives an input val and MIM receives an auxiliary input z,
which might contain a priori information about val. Let MIM〈C,R〉(val, z) be a random variable that describes
the value ṽal committed by MIM in the right session, jointly with the view of MIM in the real experiment.

In the ideal experiment, a PPT simulator S directly interacts with MIM. Let Sim〈C,R〉(1
λ, z) denote the

random variable describing the value ṽal committed to by S and the output view of S.
In either of the two experiments, if the tags in the left and right interaction are equal, then the value ṽal

committed in the right interaction, is defined to be ⊥.

Definition 10 (Synchronous Non-malleable Commitments). A 3-round commitment scheme 〈C,R〉 is said to
be synchronous non-malleable if for every synchronizing12 PPT MIM, there exists a PPT simulator S such that
the following ensembles are computationally indistinguishable:

{MIM〈C,R〉(val, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗ and {Sim〈C,R〉(1
λ, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗

Non-malleability with Respect to Extraction. In this section we consider also a different notion of non-
malleability that we call non-malleability with respect to extraction. Consider the experiment in which the
adversary interacts with an honest committer C in the left session, and with an extractor ExtNMCom in the right
session which guarantees the extraction of the committed value only when the adversary computes a well-
formed commitment (if the commitment is ill-formed that it is not guaranteed that the extractor outputs ⊥).
Without loss of generality, we assume that each session has identities or tags, and require our non-malleability
property to hold only when the tag for the left session is different from the tag for the right session.

At the start of the experiment, the committer C receives an inputm andANMCom receives an auxiliary input
z, which might contain a priori information about m. Let MIMExt

〈C,ExtNMCom〉(m , z) be a random variable that

describes the value ṽal output by ExtNMCom jointly with the view of ANMCom in the real experiment.
12A synchronizing adversary is one that sends its message for every round before obtaining the honest party’s message for the next

round.

22

In either of the two experiments, if the tags in the left and right interaction are equal, then the value ṽal
committed in the right interaction, is defined to be ⊥.

Definition 11. A 3-round commitment scheme 〈C,R〉 is said to be non-malleable with respect to extraction if
for every synchronizing PPT ANMCom there exists an extractor ExtNMCom such that the following ensembles
are computationally indistinguishable:

{MIMExt
〈C,ExtNMCom〉(m0 , z)}λ∈N,m0∈{0,1}λ,z∈{0,1}∗ and {MIMExt

〈C,ExtNMCom〉(m1 , z)}λ∈N,m1∈{0,1}λ,z∈{0,1}∗

Delayed-input non-malleability. In a delayed-input non-malleable commitment scheme 〈C,R〉, the sender C
can specify the message to commit to in the last round of the protocol. Additionally, we require 〈C,R〉 to be
secure even against an adversary that picks val adaptively on the first round received from C. More formally,
consider the following two experiments.

1) C and R interact which MIM, and in the second last round MIM sends val to C. C then commits to val
by completing the last round of the protocol. Let MIM0

〈C,R〉(z) be a random variable that describes the value

ṽal committed by MIM in the right session, jointly with the view of MIM in the real experiment.
2) C and R interact which MIM, and in the second last round MIM sends val to C. C then picks a random

string r and commits to r by completing the last round of the protocol. Let MIM1
〈C,R〉(z) be a random variable

that describes the value ṽal committed by MIM in the right session, jointly with the view of MIM in the real
experiment.

Definition 12 (Delayed-Input Non-malleable Commitments). A 3-round commitment scheme 〈C,R〉 is said to
be delayed-input non-malleable if for every PPT MIM, there exists a PPT simulator S such that the following
ensembles are computationally indistinguishable:

{MIM0
〈C,R〉(z)}λ∈N,z∈{0,1}∗ and {MIM1

〈C,R〉(z)}λ∈N,z∈{0,1}∗

In [COSV16] the authors, in order to construct their non-malleable commitment scheme, need to implicitly
show how to transform a standard 3-round non-malleable commitment scheme 〈C,R〉 into a 3-delayed-input
non-malleable commitment scheme 〈C ′, R′〉. The idea is the following.

1. To compute the first round C ′ samples a random message m0 and runs C on input m0.

2. R′ simply runs R, obtains the second round and sends it to C ′

3. C ′, on input the message to be committed m computes m0 ⊕m = m1, run C to obtain the last message,
and send it thogeter with m1.

The opening of 〈C ′, R′〉 corresponds to the opening of 〈C,R〉, where R′ needs to compute the exclusive-or of
the opened message with m1 to reconstruct the committed message.

It should be easy to see that the above scheme is correct. The proof that the scheme is delayed-non malleable
follow form a simple reduction to the non-malleability of 〈C,R〉. We refer to Lemma 3 of [COSV16] for the
formal proof. We remark that in [COSV16] the authors do not make a stand-alone claim, but this is implicit in
their proof.

Special Non-Malleable Commitments. We are now ready to define the notion of non-malleability required
for our construction.

Definition 13 (Special Non-malleable Commitments). A three round commitment scheme 〈C,R〉 is said to be
special non-malleable if:

– 〈C,R〉 is synchronous non-malleable and non-malleable with respect to extraction.

23

– 〈C,R〉 is delayed-input.

– 〈C,R〉 satisfies last-message pseudorandomness, that is, for every non-uniform PPT receiverR∗, it holds
that {REALR

∗
0 (1λ)}λ and {REALR

∗
1 (1λ)}λ are computationally indistinguishable, where for b ∈ {0, 1},

the random variable REALR
∗

b (1λ) is defined via the following experiment.

1. Run C(1λ) and denote its output by (Com1, σ), where σ is its secret state, and Com1 is the message
to be sent to the receiver.

2. Run the receiver R∗(1λ,Com1), who outputs a message Com2.

3. If b = 0, run C(σ,Com2) and send its message Com3 to R∗. Otherwise, if b = 1, compute
Com3←$ {0, 1}m and send it to R∗. Here m = m(λ) denotes |Com3|.

4. The output of the experiment is the output of R∗.

Goyal et al. [GPR16] construct three-round special non-malleable commitments satisfying Definition 13
based on non-interactive commitments.

Imported Theorem 2 ([GPR16]). Assuming non-interactive commitments, there exists a three round non-
malleable commitment satisfying Definition 13.

For completeness, we propose a proof sketch of the above theorem.

3.7.2 Proof of Special Non-Malleable Commitments

Let (Com,Dec) be a non-interactive statistically binding commitment scheme, and (E,D) be a split-state non-
malleable code that splits the input into two codewords L and R. The scheme NMCom = (Sen,Rec) proposed
in [GPR16] can be described as follows.
Commitment phase. Let m be the message to be committed.

Sen→ Rec: Sen chooses (L,R)← Enc(m) where L is viewed as a field element in Zq; Sen also draws
r ← Zq at random, compute com, dec← Com(L||r) and sends com to Rec.

Rec→ Sen: Rec chooses a random α← Z?q and sends it to Sen.

Sen→ Rec: Sen sends a = rα+ L and R to Rec.

Decommitment phase To decommit, Sen sends dec to Rec.
Intuitively, Sen commits to a polynomial-based 2-out-of-2 secret sharing of L in the first round, and in the

third round sends R along with one share. We now give an intuition about why this commitment scheme is
special non-malleable. We refer the reader to [GPR16] for the formal proof.

Non-malleability against synchronizing PPT adversary. In [GPR16] the authors show how to use an ad-
versary ANMCom that breaks the non-malleability of (Sen,Rec) to construct two tampering functions (f, g)
that break the security of the underling split-state non-malleable code. The functions f and g share a partial
transcript consisting of the first two messages of an interaction of (Sen,Rec) with ANMCom and the value a.
Note that g contains a non-interactive commitment of L and this could be an issue given that the non-malleable
code is split-state (and therefore g should not contain information about L). However, this does not represent a
problem since L is committed and from the hiding of the non-interactive commitment L can be replaced with
another value without the adversary noticing that. The output of g simply consists of the value R̃ that is sent
from ANMCom to the receiver in the last round (more details on how g works are given later in this section).

The function f does not contain any information aboutR, but in this case the challenging part is to compute
its output since the left part (L̃) of the non-malleable code is committed. However, f can extract L̃ by rewinding
ANMCom. In more details, f on input L chooses a random value R$ and sends (a,R$) to ANMCom. Upon

24

receiving (ã$, R̃$) fromANMCom, f rewinds the adversary and sends a freshly generated second round β̃ on the
right and upon receiving β on the left f computes and sends (b, R) where b = (a−L)(β/α) +L. At this point
f receives (b̃, ·) on the right from the adversary and computes its output, which consists of the constant term on
the line spanned by {(ã$, α̃), (b̃, β̃)}.

We are now ready to complete the description of the function g. This function also shares the random value
R$ and therefore it can compute ã$. At this point g(R) rewinds ANMCom and sends (a,R) on the left and
receives (ã, R̃) on the right. If ã = ã$ then g(R) outputs R̃, otherwise it outputs ⊥.

Note that for (f, g) to succeed in extracting (L̃, R̃), it must be that the answer ã$ ANMCom provides when
given the random R$ is equal to the ã he provides given R. This will follow from and additional property that
the authors of [GPR16] require on the underling non-malleable code. Given this property the authors show that
the chance that ANMCom answers correctly (i.e., consistently with the linear map he committed to in the first
round) given R$ is about the same as the chance he answers correctly given R. So either both are incorrect with
high probability, in which case ANMCom is always committing to ⊥ and so cannot be mauling; or is it possible
to show that f and g extract the correct value.

Delayed-input property. As we have argued in Section 3.7.1 any three round non-malleable commitment
scheme can be turn into a delayed-input non-malleable commitment scheme. It is worth nothing that the trans-
formation preserves all the property of the original commitment scheme in this case.

Last-message pseudorandomness. This property comes immediately from the hiding of the non-interactive
commitment Com and from the fact that R is the right state of a split-state non-malleable code, which is also a
2-out-of-2 secret sharing (like any split-state non-malleable code).

Non-malleability with respect to extraction. To show that this property holds we first need to construct an
extractor ExtNMCom. ExtNMCom interacts with the the adversarial sender using random coins α acting as the
honest receiver in the right session. Let τ = (com, α, a,R, ˜com, α̃, ã, R̃) be the transcript of ANMCom’s view,
ExtNMCom extracts L̃ and R̃ in two steps.

– To extract L̃ ExtNMCom chooses a random valueR$ and sends (a,R$) toANMCom. Upon receiving ã$, R̃$

from ANMCom, f rewinds the adversary and sends a freshly generated second round β̃ on the right and
upon receiving β computes and sends (b, R) where b = (a− L)(β/α) + L. Upon receiving (b̃, ·) on the
right by the adversary, ExtNMCom computes L̃, which consists of the constant term on the line spanned
by {(ã$, α̃), (b̃, β̃)}.

– To extract R̃ ExtNMCom checks if ã = ã$. If it is the case then ExtNMCom outputs D(L̃, R̃), otherwise he
outputs ⊥.

In summary, ExtNMCom simply runs the extraction procedures described by the function f and g defined
in the non-malleability proof of [GPR16] (that we have also sketched above). We now note that an adversary
attacking the property of non-malleability with respect to extraction yields to an adversary for the non-malleable
code. The only difference with the non-malleability proof of [GPR16] is that we do not need to check whether
the extracted values actually corresponds to the committed value. That is, the adversary could compute an
ill-formed commitment that yields to the extraction of a message m 6= ⊥. We note, however, that if the
commitment is well formed then ExtNMCom outputs the actual committed value (we refer the reader to [GPR16,
Claim 8] for the formal proof).

4 Oblivious Transfer with Bounded Rewind Security

In this section we define, and then construct, a strengthening of regular oblivious transfer. We construct a
rewinding secure Oblivious Transfer (OT) assuming the existence of four round OT protocol. For an OT proto-

25

col to be rewind secure, we require security against an adversary who is allowed to re-execute the second and
third round of the protocol multiple times. But the first and fourth round are executed only once.

4.1 Definition

We start by formalizing the notion of a rewind secure oblivious transfer protocol.

Definition 14. A four round bounded rewind secure oblivious transfer (OT) is a tuple of polynomial time
interactive Turing machines OT = (OTS ,OTR) where (t, x) = (OTS(s0, s1; rS),OTR(b; rR)) is the pair
composed of the transcript t and the output of x after the interaction between the sender OTS with inputs
s0, s1 ∈ {0, 1} and randomness rS while receiver OTR has input b and randomness rR satisfying the following
properties:

– Correctness. For any selection bit b, for any messages s0, s1 ∈ {0, 1}, for any rS , rR ∈ {0, 1}τ it holds
that

Pr

[
sb = s : rS , rR←$ {0, 1}τ ; (t, x) = (OTS(s0, s1; rS),OTR(b; rR))

]
= 1

– Security against Malicious Sender with B rewinds. Here, we require indistinguishability security
against a malicious receiver where the receiver uses input b[k] in the k-th rewound execution of the second
and third round. Specifically, consider the experiment described below. ∀

{
b0[k], b1[k]

}
k∈[B]

∈ {0, 1}
where

Experiment Eσ:

1. Run OTR to obtain ot1 which is independent of its input. Send to A.

2. A then returns {ot2[j]}j∈[B] messages.

3. For each j ∈ [B], run OTR on (ot1, ot2[j], bσ[j]) and send the response to A.

4. The output of the experiment is the entire transcript.

We say that the scheme is secure against malicious senders with B rewinds if the experiments E0 and E1

are indistinguishable.

4.2 Construction

We describe below the protocol ΠR which achieves rewind security against malicious senders. The Sender S’s
input is s0, s1 ∈ {0, 1} while the receiver R’s input is b ∈ {0, 1}.

Components. We require the following two components:

– n ·BOT instances of a 4 round OT protocol which achieves indistinguishability security against malicious
senders.

– GC = (Garble,Eval) is a secure garbling scheme (see Section 3.2).

Protocol. The basic idea is to split the receiver input across multiple different OT executions such that during
any rewind, a different set of OTs will be selected to proceed with the execution thereby preserving the security
of the receiver’s input. The sender constructs a garbled circuit which is used to internally recombine the various
inputs shares and only return the appropriate output. The protocol is described below.

26

Round 1. (ΠR
1) : The receiver R computes the first round message of all the OTs. ∀i ∈ [n], k ∈ [BOT], oti,k1 :=

OT1

(
1λ; rR

)
and send

{
oti,k1

}
i∈[n],k∈[BOT]

to S. We refer to index i as the outer index, and k as the inner index.

Round 2. (ΠR
2) : The sender S responds to all of the OT messages. ∀i ∈ [n], k ∈ [BOT], compute oti,k2 :=

OT2

(
oti,k1 ; rS

)
and sends

{
oti,k2

}
i∈[n],k∈[BOT]

to R.

Round 3. (ΠR
3) : The receiver now selects only a single OT to continue for i. It then encodes its input b by computing

n additive shares and using each share as an input to a separate OT. Specifically, receiver R does the following:
– Compute n additive shares of b. Specifically, sample the first n− 1 shares at random ∀` ∈ [n− 1] b`←$ {0, 1}

and set the last share bn := b
⊕n−1

`=1 bj .

– Sample within each tuple, the index for which to continue the OT. ∀i ∈ [n], σi←$ [BOT] .

– Use input bi to compute the receiver message for oti,σi

3 . The other OTs are discontinued. Specifically, ∀i ∈ [n],

compute oti,σi

3 ← OT3

(
bi, oti,σi

1 , oti,σi

2 ; rR
)

and send
{

oti,σi

3 , σi

}
i∈[n]

to S.

Round 4. (ΠR
4) : The sender encodes its inputs (s0, s1) in a garbled circuit and uses the corresponding labels to

complete the OT protocol.

– Compute garbled circuit:
(
Cot, lab

)
:= Garble (Cot [s0, s1] ; rgc,i), where

Circuit Cot[s0, s1] on input b1, . . . , bn outputs sb where b :=
⊕n

i=1 bi.

– For i ∈ [n], compute oti,σi

4 := OT4

(
labi,0, labi,1, oti,σi

1 , oti,σi

2 , oti,σi

3 ; rS
)

and send
{

oti,σi

4

}
i∈[n]

to R.

Evaluation. (OTEval′) : The receiver R now evaluates the OT protocol to obtain labels needed to evaluate the output
of the garbled circuit.

– For i ∈ [n], compute l̂abi := OTEval
(
bi, oti,σi

1 , oti,σi

2 , oti,σi

3 , oti,σi

4 ; rR
)

– Output s′ := Eval

(
Cot,

{
l̂abi
}
i∈[n]

)

Security. We prove security of our constructed protocol below.

Lemma 3. Assuming receiver indistinguishability of OT against malicious senders, the receiver input in ΠR

remains indistinguishable under BOT-rewinds.

Proof. Suppose the BOT inputs used by the receiver are

b0[1], · · · , b0[BOT] and b1[1], · · · , b1[BOT]

in experiment 0 and 1 respectively, where b[j] is the receiver input in the j-th rewind. We want to show that an
adversarial rewinding sender’s view is indistinguishable in both experiments.

We do this by via a sequence of hybrids, where in hybrid ` we change the input of the `-th rewind. Consider
two adjacent hybrids, Hyb`−1 and Hyb` which use inputs

b1[1], · · · , b1[`− 1], b0[`], · · · , b0[BOT] and b1[1], · · · , b1[`− 1], b1[`], · · · , b0[BOT]

respectively.
Suppose there is an adversarial sender A that can distinguish Hyb`−1 and Hyb`, then we construct an

adversary AOT that breaks the indistinguishability security of OT. We now describe the working of AOT.

27

To rely on the security of OT, we need to find an instance of OT that is not rewound during the experiment.
Since the OT indices are sampled independently and uniformly, with non-negligible probability, any given outer
index i will have inner indices in each of the BOT rewinds to be distinct. The probability being non-negligible
follows from the fact that BOT is a constant.

We sample an outer index ĩ randomly from [n]. We will expose one of the OTs from this tuple to an external
OT receiver. To determine the index of the exposed OT, ∀i ∈ [n], ` ∈ [BOT], sample

σi[`]←$ [BOT].

Here we denote by σi[`], the inner index picked for the `-th rewind. If for ĩ,
{
σĩ[`]

}
`∈[BOT]

are not distinct,

we sample again. Thus, the OT we will expose externally is the one with outer index ĩ, and inner index σĩ[`].
Specifically, on receiving ot1 message from the external challenger set

ot̃
i,σĩ[`]
1 = ot1.

All other oti,k1 messages are computed honestly, using fresh randomness, by AOT. All first round messages
are sent to A.
A responds with

{
oti,k2 [j]

}
i∈[n],k∈[BOT],j∈[BOT]

where oti,k2 [j] corresponds to the sender message to be used

in the j-the thread.

From our assumption of distinct indices for outer index ĩ, ∀` 6= `′, σĩ[`] 6= σĩ[`
′]. This means that ot̃

i,σĩ[`]
2 is

only going to be picked once across rewinds. Thus ot̃
i,σĩ[`]
2 can be forwarded to the external challenger without

any fear of rewinding. But we also need to send it two challenge receiver bits, which we compute below.
For receiver inputs to the OT, we need to generate additive shares: ∀i ∈ [n− 1], `′ ∈ [BOT] \ {`}

bi[`
′]←$ {0, 1}

Now to complete the sharing, we need to set the last share bit appropriately. This is done as follows: ∀`′,

– if `′ < `,

bn[`′] := b1[`′]
n−1⊕
i=1

bi[`
′]

– if `′ < `,

bn[`′] := b0[`′]
n−1⊕
i=1

bi[`
′]

Now for `, we want the ĩ-th share to differ, but all others to be the same. With this in mind, sample
∀i ∈ [n] \

{̃
i
}

bi[`]←$ {0, 1}

We set two special shares below:

b∗,0 := b0[`]

n⊕
i=1
i 6=ĩ

bi[`] and b∗,1 := b1[`]

n⊕
i=1
i 6=ĩ

bi[`]

Now if we set the challenge to be (b∗,0, b∗,1) then depending on the receiver bit chosen by the external
challenger, we are either in hybrid Hyb`−1 and Hyb`.

28

Once we send the challenge, we get as response the 3round OT message corresponding to the choice bit
sampled by the challenger. The remaining OT messages can be answered internally using the shares computed.
The collected third round messages are now sent to A. Thus, if A can distinguish the two hybrids with non-
negligible probability, then AOT wins the challenge game with non-negligible probability. The only loss in
advantage comes from the probability of sampling BOT inner indices from the set [BOT] such that the indices
are all distinct. Since BOT is a constant, this still leaves the advantage to be non-negligible.

Remark 1. We note that while our construction is proved against malicious senders, for our application it
suffices to have the following two properties:

– bounded rewind security against semi malicious senders.

– standalone security against receivers.

Remark 2. While not relevant to the bounded rewind security of the scheme, we note that in our applications,
a malicious sender might compute the garbled circuit incorrectly. This stems from the fact that there will be
multiple participants evaluating the garbled circuit to compute the OT output. We will therefore have to prove
that the messages of the protocol were in fact computed correctly.

4.3 Four Round Delayed Input Multiparty Computation with Bounded Rewind Security

Looking ahead, for our main result, we will compile an underlying semi-malicious protocol to achieve malicious
security. In order to use the underlying semi-malicious protocol in a black-box manner, we will require the
protocol to satisfy bounded rewind security. We start with an intuitive definition which we follow by formalize
the intuition.

To start with, we consider a four round delayed input semi-malicious protocols satisfying the following
additional properties, where we denote by msgk the messages of all parties output in the k-th round by Π.

1. Property 1: msg1 and msg2 of Π contain only messages of OT instances.

2. Property 2: msg1 and msg2 of Π do not depend on the input. The input is used only in the computation
of msg3 and msg4.

3. Property 3: The simulator S simulates the honest parties’ messages msg1 and msg2 via S1 and S2 by
simply running the honest OT sender and receiver algorithms.

4. Property 4: msg3 can be divided into two parts: (i) components independent of the OT messages; and
(ii) OT messages.

Here we clarify what it means for a component of a message to be independent of OT messages. We say a
component of msg3 is independent of OT messages if its computation in the third round is independent of the
both the private and public state of OT.

The recent works of [GS18, BL18] construct two round semi-malicious protocols. Both protocols when
instantiated with a four round OT protocol, satisfy the above structure. This follows from the fact that when
their protocols are instantiated with a four round OT protocol, the non-OT components of their protocol are
executed only in round 3.

The bounded rewind security notion follows in similar vein to the bounded rewind secure primitives we
have previously defined. Note that the primary difference here stems from the fact that the protocol we consider
is in the simultaneous message model. We say that a protocol satisfying the above properties is bounded rewind
secure if the protocol remains secure in the presence of an that adversary is able to rewind the honest parties in
the second and third round of the execution. Specifically, an adversary is allowed to: (a) initially query B − 1

29

many distinct second round messages and receive third round messages in response; (b) in the last (B-th) query,
the adversary also includes inputs for the honest parties. The adversary should then be unable to distinguish
between the case that the protocol completes from the B-th query onward, where the last round was either
completed with honest inputs provided by the adversary, or simulated.

We consider the bounded rewind security of protocols satisfying the structure defined above, where only
the second and third rounds of the protocol can be rewound. For clarity of exposition, we will refer to protocols
satisfying the properties to be special four round delayed input semi-malicious MPC protocols.

Definition 15 (Bounded rewind secure special four round delayed input semi-malicious MPC). A special four
round delayed input semi-malicious MPC protocol is said to be secure against B rewinds against a semi ma-
licious adversary if the outputs of the experiments E0 and E1 are indistinguishable. The experiments are pa-
rameterized by the total number of parties n and the total number of corrupted parties t. We denote the set of
honest parties as H, and correspondingly the set of adversarial parties as H. Transk denotes the transcript of
the first k rounds, and by extension Transk,` is the transcript of the first k rounds on rewind `. The experiment
Eσ with σ ∈ {0, 1} is defined as follows.

1. Compute ∀i ∈ H, msg1,i := Π(ri) and send to A.

2. Receive
{

msg1,i

}
i∈H from A.

3. Compute ∀i ∈ H, msg2,i := Π(Trans1, ri) and send to A.

4. Receive
{

msg2,i,`

}
i∈H,`∈[B−1]

from A

5. Compute responses to the queries as follows. ∀` ∈ [B], compute third round messages as: ∀i ∈
H, msg3,i,` ← Π(0,Trans2,`, ri). Send

{
msg3,i,`

}
i∈H,`∈[B]

to A.

6. Receive
(
{xi}i∈[n] , {ri}i∈H

)
and

{
msg2,i

}
i∈H from the A.

7. Based on the value of σ, the the messages are computed as follows:

– if σ = 0, compute the third and fourth round messages of the last query using the inputs provided.
Specifically, compute ∀i ∈ H, msg3,i ← Π(xi,Trans2, ri), and send

{
msg3,i

}
i∈H to A. On

receiving,
{

msg3,i

}
i∈H, compute ∀i ∈ H, msg4,i ← Π(xi,Trans3, ri), and send to A.

– if σ = 1, simulate the third and fourth round messages of the last query. Specifically, compute{
msg3,i

}
i∈H ← S3

(
Trans2, {ri}i∈H

)
, and send

{
msg3,i

}
i∈H to A. On receiving,

{
msg3,i

}
i∈H,

compute
{

msg4,i

}
i∈H ← S4

(
Trans3, {xi}i∈H , {ri}i∈[n]

)
, and send to A.

8. The output of the experiment is the view of the adversary A.

Lemma 4. The semi malicious protocols of [GS18, BL18], when instantiated with our constructed 4 round
OT with bounded rewind security, satisfies the above definition. The rewind security parameter of the resultant
protocol is identical to that of the rewind secure parameter of the OT with bounded rewind security.

We refer the reader to Remark 1 for the sufficient properties from the underlying oblivious transfer (OT)
with bounded rewind security.

Proof sketch. We briefly describe why the resultant protocol is rewind secure. This primarily follows from
the structure of the protocols and the bounded rewind security of the OT scheme.

To argue security, consider augmenting the protocol to allow additional threads that execute only the second
and third round of the protocol multiple times. The adversary has control over what messages to send in each
of the threads. On these threads, the honest inputs used are always going to be 0, with fresh randomness

30

sampled for each thread. From the structure of the protocol, other than the OT, all components of the protocol
are oblivious to rewinds in the second and third round. This follows from the fact that the components have
messages no earlier than the third round.

Note that since fresh randomness is sampled to compute the third round of the protocol, this is akin to
restarting the components (other than OT) with fresh randomness. Thus, when we have to rely on the bounded
rewind security of OT, the other components of the third round can be computed without knowledge of the
private state of the OT challenger.

5 Four Round MPC

Building Blocks. We list below all the building blocks of our protocol.

– Trapdoor Generation Protocol: TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt) is
a three round Btd-rewind secure trapdoor generation protocol based on one-way functions (see Section
3.5). We set Btd to be 2.
In our MPC construction, we use a “multi-receiver” version of TDGen that works as follows: whenever
a sender party i sends its first round message td1, all of the other (n − 1) parties send a second round
receiver message td2,i. The sender now prepares td2 = (td2,1|| . . . ||td2,n−1), and then uses it to compute
td3. All the (n− 1) receivers individually verify the validity of td3.

– Delayed-Input WI Argument: WI = (WI1,WI2,WI3,WI4) is a three round delayed-input witness in-
distinguishable proof system (see Section 3.6), where WI4 is used to compute the decision of the verifier.

– Bounded-Rewind Secure WI Argument: RWI = (RWI1,RWI2,RWI3,RWI4) is a three round delayed-
input witness-indistinguishable proof with Brwia-rewind security (see Section 3.6). RWI4 is used to
compute the decision of the verifier. We will use two different instances of RWI that we will refer to
as RWIa and RWIb, where the subscripts a and b denote the different instances. We set their respective
rewind security parameters Brwia and Brwib to be some fixed polynomial.

– Special Non-malleable Commitment: NMCom = (NMCom1,NMCom2,NMCom3) is a three round
special non-malleable commitment scheme (see Section 3.7). Let ExtNMCom denote the extractor associ-
ated with NMCom.

– Bounded-Rewind Secure Extractable Commitment: RECom = (RECom1,RECom2,RECom3) is
the three round Brecom-rewind secure delayed-input extractable commitment based on non-interactive
commitments (see Section 3.4). We set rewinding security parameter Brecom to be 4. ExtRECom is the
extractor associated with RECom.

– Extractable Commitment: Ecom = (Ecom1,Ecom2,Ecom3,ExtEcom) is the three round delayed-input
extractable commitment scheme based on statistically binding commitment schemes (see Section 3.3).
They satisfy the 2-extraction property.

– Delayed Semi-Malicious MPC: Π is a four round BΠ-bounded rewind secure delayed input MPC pro-
tocol based on oblivious transfer (see Section 4.3). We set BΠ to be 9.

– Garbled Circuits: GC = (Garble,Eval) is a secure garbling scheme (see Section 3.2). We denote the
labels {labi,0, labi,1}i∈[L] by lab. We will often partition the labels of the garbled circuit to indicate the
party providing the input corresponding to the label indices, and denote this by lab|j for party j.

– Oblivious Transfer: OT = (OT1,OT2,OT3,OT4) is a four round oblivious transfer protocol. We
abuse notation slightly and use this as implementing parallel OT executions where the receiver’s input
is a string of length ` and the sender now has ` pairs of inputs. We require regular indistinguishability
security against a malicious sender. In addition, we require extraction of the receiver’s input bit.

31

Levels of rewind security. For primitives with bounded rewind security, we require

Brwia , Brwib , BΠ > Brecom > Btd

where they denote the total number of rewinds (including the main thread) that they are secure against. In
addition, we require all of them to be larger than the number of threads required to extract from NMCom and
Ecom. For the above primitives, we have Brwia = Brwib = poly(λ) (for some fixed polynomial), BΠ = 9,
Brecom = 4 and Btd = 2 thus satisfying our requirements.

Notation for Transcripts. We introduce a common notation that we shall use to denote partial transcripts of
an execution of different protocols that we use in our MPC construction. For any execution of protocol X , we
use TX [`] to denote the transcript of the first ` rounds.

NP languages. We define the NP languages used for the three different proof systems that we use in our
protocol. We denote statements and witnesses as st and w, respectively.

1. RWIa: We use RWIa for language La, which is characterized by the following relation Ra:

st :=
(
TΠ[2],

{
Tj

recom[3]
}
j∈[n]

, {msg`}`∈[3] ,Tncom[3], td1

)
w :=

(
inp, r,

{
rjrecom

}
j∈[n]

, t, rncom
)

Ra(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: all of the following conditions hold:

– ∀j, Tj
recom[3] is a well-formed transcript of RECom w.r.t. input (inp, r) and randomness rjrecom.

– for every ` ≤ 3, msg` is an honestly computed `th round message in the protocol Π w.r.t. input
inp, randomness r and the first (`− 1) round protocol transcript TΠ[`− 1].

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and randomness rncom (AND) t
is a valid trapdoor w.r.t. td1

2. RWIb: We use RWIb for language Lb, which is characterized by the following relation Rb:

st :=

({
Tj

rwia
[2], stja,T

j
ecom[3]

}
j∈[n]

,Tncom[3], td1

)
w :=

({
rjrwia ,w

j
a, rwij3,a, r

j
ecom

}
j∈[n]

, t, rncom

)
.

Rb(st,w) = 1 if either of the following conditions is satisfied:
(a) Honest: all of the following conditions hold:

– ∀j, Tj
ecom[3] is a well-formed transcript of Ecom w.r.t. input

{
rwik3,a

}
k∈[n]

and randomness

rjecom.
– ∀j, Tj

rwia
[2]||rwij3,a is an honestly computed transcript of RWIa for La with statement stja, wit-

ness wja and randomness rjrwia . a

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and randomness rncom (AND) t
is a valid trapdoor w.r.t. td1

aSince RWI is not publicly verifiable, the relation establishes that the RWI prover messages were computed honestly
w.r.t. the witness and randomness for the statement.

3. WI: We use WI for language Lc, which is characterized by the following relation Rc:

32

st :=

(
TΠ[3],

{
Tj

recom[3],Tj
rwi[2], stjb,T

j
ot[4]

}
j∈[n]

,C,Tncom[3], td1

)
w :=

(
inp, r,

{
rjrecom, r

j
ot, r

j
rwi

}
j∈[n]

,msg4, rgc, t, rncom

)
Rc(st,w) = 1 if either of the following conditions is satisfied:

(a) Honest: For every j, all of the following conditions hold:

– Tj
recom[3] is a well-formed transcript of RECom w.r.t. input (inp, r) and randomness rjrecom.

– msg4 is honestly computed round 4 message of Π w.r.t. inp, randomness r and transcript TΠ[3].

– (C, lab) is honest garbling of C that contains hardwired values msg4,
{
Tj

rwi[2], stjb, r
j
rwi

}
j∈[n]

,

using randomness rgc. (See Figure 4.)

– otj4 is honestly computed using lab|j , randomness rjot and transcript Tj
ot[3]. (Tj

ot[4] =

Tj
ot[3]‖otj4).

(b) Trapdoor: Tncom[3] is an honest transcript of NMCom w.r.t. input t and randomness rncom (AND) t
is a valid trapdoor w.r.t. td1

C

[
msg4,

{
Tj

rwib
[2], stjb, r

j
rwib

}
j∈[n]

]
Input: {rwij3,b}j∈[n]

– If for every j 6= i, RWI4
(

stjb,T
j
rwib

[2]‖rwij3,b; rjrwib

)
= 1, output msg4;

– Else, output ⊥.

Figure 4: Circuit C

5.1 The Protocol

In this section, we describe our four round MPC protocol between n players P1, · · · ,Pn. Let xi denote the
input of party Pi. At the start of the protocol, each party samples a sufficiently long random tape to use in the
various sub-protocols; let rX denote the randomness used in sub-protocol X .

Notational Conventions. We establish some conventions for simplifying notation in the protocol description.
We only indicate randomness as an explicit input for computing the first round message of a sub-protocol; for
subsequent computations, we assume it to be an implicit input. Similarly, we assume that any next-message of a
sub-protocol takes as input a partial transcript of the “previous” rounds, and do not write it explicitly. Whenever
necessary, we augment our notation with superscript i → j to indicate the a instance of an execution of a sub-
protocol between a “sender” i and “receiver” j (where sometimes, the sender is a prover and receiver is a
verifier). When the specific instance is clear from context, we shall drop the superscript. When we wish to refer
to multiple instances involving a party i, we will use the shorthand superscript i→ • or • → i, depending upon
whether i is the sender or the receiver. For example, Ti→•

X [`] will be a shorthand to indicate
{
Ti→j
X [`]

}
j∈[n]

.

We will sometimes use explanatory comments within the protocol description, denoted as //comment. Fi-
nally, we note that all messages in the protocol are broadcast; if any party aborts during the first three rounds of
the protocol, it broadcasts an abort in the subsequent round. We do not write this explicitly in the protocol, and
assume it to be implicit. We now proceed to describe the protocol.

33

Round 1: Pi computes and broadcasts the first round messages of the following protocols:
1. Delayed semi-malicious MPC Π: msg1,i ← Π1 (ri).

2. Sender message of TDGen: td1,i ← TDGen1 (rtd,i).

For every j 6= i:
3. Prover message of the three delayed-input WI argument systems

– WI: wii→j1 ←WI1(ri→jwi).

– RWIa: rwii→ja,1 ← RWI1(ri→jrwia
).

– RWIb: rwii→jb,1 ← RWI1(ri→jrwib
).

4. Sender message of the three delayed-input commitment schemes

– Ecom: ecomi→j
1 ← Ecom1(ri→jecom).

– RECom: recomi→j
1 ← RECom1(ri→jrecom).

– NMCom: ncomi→j
1 ← NMCom1(ri→jncom).

5. Receiver message of OT: otj→i1 ← OT1

(
rj→iot

)
.

Round 2: Pi computes and broadcasts the second round messages of the following protocols:
1. Delayed semi-malicious MPC Π: msg2,i ← Π2.

For every j 6= i:
2. Receiver message of TDGen: tdi→j2 ← TDGen2.

3. Verifier message of the three delayed-input WI argument systems

– WI: wij→i2 ←WI2

– RWIa: rwij→ia,2 ← RWI2

– RWIb: rwij→ib,2 ← RWI2

4. Receiver message of the three delayed-input commitment schemes

– Ecom: ecomj→i
2 ← Ecom2.

– RECom: recomj→i
2 ← RECom2.

– NMCom: ncomj→i
2 ← NMCom2.

5. Sender message of OT: oti→j2 ← OT2.

Round 3: Pi computes and broadcasts the third round messages of the following protocols:
1. Delayed semi-malicious Π: msg3,i ← Π3 (xi) using input xi. //First step where Pi is using its input.

2. TDGen: td3,i ← TDGen3.

For every j 6= i:
3. NMCom: ncomi→j

3 ← NMCom3(̃rj) to commit to a random r̃j .

4. RECom: recomi→j
3 ← RECom3(xi, ri) to commit to (xi, ri).

5. RWI: rwii→ja,3 ← RWI3
(
sti→ja ,wi→ja

)
to prove that Ra(sti→ja ,wi→ja) = 1, where

Statement sti→ja := (TΠ[2],Ti→•
recom[3], {msg`,i}`∈[3],T

i→j
ncom[3], td1,j)

“Honest” witness wi→ja := (xi, ri, r
i→•
recom)

6. Ecom: ecomi→j
3 ← Ecom3

(
rwii→•a,3

)
to commit to rwii→•a,3 .

7. RWIb: rwii→jb,3 ← RWI3(sti→jb ,wi→jb) to prove that Rb(sti→jb ,wi→jb) = 1, where

Statement sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],Ti→j
ncom[3], td1,j)

“Honest” witness wi→jb := (ri→•rwia ,w
i→•
a , rwii→•a,3 , r

i→•
ecom)

34

8. OT: Receiver message otj→i3 ← OT3(rwii→jb,3) using input rwii→jb,3 .

Round 4: Pi computes and broadcasts the following messages:
1. If ∃j 6= i such that TDValid(td1,j , td2,j , td3,j) 6= 1 , abort.

//where td2,j := (td1→j
2 || · · · ||tdn→j2).

2. Delayed semi-malicious MPC Π: Fourth round message msg4,i ← Π4.

3. Garbled Circuit: Ci, where (Ci, labi)← Garble(C[msg4,i,T
•→i
rwib

[2], st•→ib , r•→irwib
]; rgc,i).

Circuit C is defined in Figure 4.

For every j 6= i:
4. OT: Fourth round sender message oti→j4 ← OT4

(
labi|j

)
using input labi|j

//labi|j denotes labels corresponding to the input wires for Pj’s input.

5. OT: Receiver randomness rj→iot . //This is used by other parties to compute OT output.

6. WI: wii→j3 ←WI3
(
sti→jc ,wi→jc

)
, to prove that Rc(sti→jc ,wi→jc) = 1, where

Statement sti→jc := (TΠ[3],Ti→•
recom[3],T•→irwib [2], st•→ib ,Ti→•

ot [4],Ci,T
i→j
ncom[3], td1,j)

“Honest” witness wi→jc := (xi, ri, r
i→•
recom, r

i→•
ot , r•→irwib ,msg4,i, rgc,i)

Output Computation: Pi computes the following:

1. If ∃j 6= i, s.t. WI4(stj→ic ,Tj→i
wi [3]) 6= 1, output ⊥ and abort.

2. Compute OT outputs: ∀j 6= i,∀k 6= {i, j},
l̂abj|k ← OTEval(Tj→k

ot [4]; rj→kot)

3. Evaluate garbled circuits: ∀j 6= i, m̂sg4,j ← Eval(Cj , l̂abj), where l̂abj := (l̂abj|1 || · · · ||l̂abj|n).
If any evaluation returns ⊥, then output ⊥ and abort.

4. Output yi ← OUT(xi,TΠ[4]; ri), where TΠ[4] includes TΠ[3] and m̂sg4,j for every j.

Our main result is stated in the following theorem.

Theorem 5. Assuming the hiding property of oblivious transfer, the hiding property of extractable commitment,
the hiding property of extractable commitment with bounded rewind security, delayed semi malicious protocol
with bounded rewind security computing any function F , special non-malleable commitments, witness indis-
tinguishable proofs with bounded rewind security, security of garbled circuits, trapdoor generation protocol
with bounded rewind security, the presented protocol is a four round protocol for F secure against a malicious
dishonest majority.

Remark 3. All the above primitives can be based on one-way functions, non-interactive commitments and
oblivious trasnfer (OT). In a recent note by Lombardi and Schaeffer [LS19], they give a construction of a
perfectly binding non-interactive commitment based on perfectly correct key agreement. As they point out, such
key agreement schemes can be based on perfectly correct oblivious transfer [GKM+00]. This gives us both
a non-interactive commitment schemes, and one-way functions, based on perfectly correct oblivious transfer.
Thus it suffices to instantiate all our primitives using just oblivious transfer.

We thus have the following corollary.

Corollary 1. Assuming polynomially secure oblivious transfer, our constructed protocol is a four round multi-
party computation protocol for any function F .

The complete security analysis of the above protocol is presented in the Section 5.1.1. Below we first present a
high level description of the main ideas of the proof and how the bounded rewind-security parameters are set.

35

5.1.1 Overview of Security Proof

The discussion below is informal, and not a complete picture of the simulator and hybrids. Our intent is to
give an outline of the key hybrids and simulation steps to convey the main ideas. This will already highlight
the need for various levels of rewind security, one of the main challenges in proving security. There are lots of
other challenges that we do not discuss here, and similar to prior works, the full security analysis is much more
complex and we refer the reader to Section 5.1.1 for the analysis.

One particular challenge that we ignore is that of an aborting adversary, either implicitly or explicitly, in
the first three rounds of the protocol. The case of an explicitly aborting adversary is dealt with in a similar
manner to [BGJ+18, GK96a] by initially sampling a partial transcript, using dummy inputs, to determine if the
adversary aborts, and then re-sampling the transcript in case the adversary does not abort. For an implicitly
aborting adversary, the simulator (via extraction) can determine if the adversary aborted, but honest parties are
not aware of this in the first three rounds of the protocol. This case relies on the security of the multi-party
CDS (via OT and garbled circuits) to deal with the implicit aborts. Stepping around these challenges, the main
steps in the simulation involve (a) rewinding the adversary to extract the trapdoor and inputs; (b) completing the
witness indistinguishable arguments using the extracted trapdoor; (c) simulating the underlying protocol using
the output obtained from the ideal functionality.

Key Hybrid Components. We give below a high level overview of some key hybrids in keeping with our
simplified description of the simulator above. This will allow us to discuss our specific choices for the level of
rewinds.

– The first hybrid is identical to the real protocol execution. Each witness indistinguishable (WI) argument
in our protocol allows for a trapdoor witness, arising from the trapdoor generation protocol and the non-
malleable commitment (NMCom). We would like it to be the case that a simulator is able to derive the
trapdoor and produce a simulated transcript via the trapdoor witness, an adversary should not be in pos-
session of a trapdoor witness thereby forcing honest behavior if the witness indistinguishable argument
is accepting.

In order to argue that the adversary is not in possession of the trapdoor witness, we need to ensure the
following invariant: the adversary does not commit to the trapdoor inside of the NMCom.

In order to do so in this hybrid, we rely on the rewind security of the trapdoor generation protocol.
Specifically, we extract from the NMCom by rewinding the adversary once in the second and third round
(two total executions of the second and third round). If indeed the adversary was committing to the
trapdoor, the extraction is successful with some noticeable probability and thereby breaking the rewind
security of the trapdoor generation protocol. Note, as observed in [BGJ+18], to arrive at a contradiction
via reduction it is sufficient to extract with noticeable (as opposed to overwhelming) probability. This
explains why we require Btd ≥ 2.

For each change that we subsequently make through the various primitives, we will bootstrap the above
technique, and argue that this invariant continues to hold. Specifically, in order to arrive at a contradiction,
we will extract from the NMCom to break the security property of the corresponding primitive if the
invariant ceases to hold. This already gives us a flavor for primitives to be secure against (at least) two
rewinds needed for the extraction from the NMCom.

– In this hybrid, the simulator creates sufficient rewind execution threads in order to extract the adversary’s
input and the trapdoors needed to prove the WI using the trapdoor witness. These rewind threads have
the same first round messages as the “main” execution thread, but the second and third round messages
are computed in each rewind thread with fresh randomness. The rewind threads terminate on completion
of the third round of the protocol.

– In the previous hybrid, the simulator is still using the honest inputs in the rewind threads. In this hybrid
the rewind threads are switched from using the honest party’s inputs, to an honest execution with input

36

0. Note that these threads finish by the end of the third round.

While the changes made in this hybrid are done in a sequence of steps, and needs to be argued care-
fully, the sequence closely resembles the changes that will be made in the main execution thread below.
Therefore, we primarily focus on the hybrids pertaining to the main execution thread.

– In this hybrid, the simulator uses the trapdoors extracted from the rewind threads to commit to the trap-
door inside the NMCom on the main execution thread. In order to argue indistinguishability, we perform
a reduction to an external NMCom challenger. In order to generate the transcript internally, and complete
the reduction, we need to rewind the adversary to get the trapdoor and inputs. But this causes a problem
since the rewind threads might require responses to challenges that are meant for the external challenger.
Here, we rely on the fact that the third round of our instantiated NMCom has pseudorandom messages,
allowing us to respond to adversarial queries in the third round, that cannot be forwarded to the external
NMCom challenger. This prevents the need for bounded rewind security from the NMCom.

– In a sequence of sub-hybrids, the simulator uses the extracted trapdoor to complete both the bounded
rewind secure witness indistinguishable arguments using the trapdoor witness. As seen above, for the
reduction we will need to rewind the adversary to extract, thereby rewinding the external challenger.
Since we require extraction of the adversary’s inputs, the parameter for the bounded rewind secure witness
indistinguishable argument needs to satisfy Brwi > Brecom.

– In this hybrid, the simulator uses the extracted trapdoor to complete the witness indistinguishable argu-
ment. Since the third round of this protocol is completed in the fourth round of our compiled protocol,
rewinding the adversary to extract the trapdoor and input in the second and third round circumvents issues
discussed above. Therefore, we don’t require this primitive to be rewind secure.

– In this hybrid, the simulator switches to committing to 0 inside the rewind secure extractable commitment
(RECom). Unlike the previous cases, this is potentially circularity since the arguments above do not
directly extend. This is because it cannot be the case that the external challenger remains secure if we
rewind the adversary Brecom times to extract its input.

Instead, this is argued carefully where initially we argue that switching to a commitment of a “junk” value
in the third round of the RECom doesn’t affect our ability to extract from the adversary. This “junk”
commitment can be made without knowledge of any randomness of the specific RECom instance. To
argue this, we rely on the bounded rewind security of the extractable commitment, while still extracting
the trapdoor to complete the transcript. This gives us the requirement that Brecom > Btd. This then
allows for extraction of input in the reduction without violating rewinding circularity since, on the look
ahead threads to extract, we can commit to junk without affecting input extraction.

– In this hybrid, the simulator simulates the transcript of the underlying bounded rewind secure protocol
Π. Here too, we require extracting the inputs in order to send it to the ideal functionality. Therefore, we
require BΠ > Brecom.

6 Full Security Proof

We now present the complete security analysis of our constructed protocol. Consider a malicious non-uniform
PPT adversary A who corrupts t < n parties.

6.1 Overview of the Simulation

Before providing a formal description of the simulator, we provide a high level overview of the various steps in
our simulation strategy:

37

Step 1: Check Adversary Abort The first thing our simulator does is to determine if the adversary aborts in
the first three rounds of the protocol. If so, the adversary can simulate the first three rounds using input 0.
But there is a small subtlety here. By the end of the third round, none of the proofs are sent in the clear. It
is possible that the adversary is implicitly aborting by sending incorrect messages, and hence the proofs
will fail, but the honest parties are unaware of this.

Since they both constitute as aborts, we want to treat them identically. But in the latter case, we’re still
required to send the fourth round messages of the honest parties, since as mentioned earlier, they aren’t
aware of an implicit abort until the fourth round.

– if the adversary aborts in a manner that is identifiable by the honest parties, i.e. by not sending
the protocol message or an identifiable incorrect message (such as failed trapdoor validity), the
simulator just outputs an aborted transcript.

– if the adversary aborts implicitly, then we set all the garbled circuits to output ⊥.

This step is performed so as to ensure that if an adversary aborts with a disproportionately high probabil-
ity, we don’t have to bother attempting to simulate all the other components in the protocol. In the case
where there the adversary explicitly aborts, the simulation ends here.

Step 2: Rewinding If the adversary has not aborted, we need to produce a non aborting transcript. To enable
us to do so, we need to first extract relevant information. This is done by creating multiple “look-ahead”
threads that share a common first round prefix with the main thread. On the look ahead threads, we’re
using input 0, as in the previous step, to compute the first three rounds honestly (with respect to input 0).

These threads also help us estimate the probability that an adversary does not abort. With sufficiently
many look-ahead threads, we can extract all the relevant information.

Step 3: Input and Trapdoor Extraction With sufficiently many look-ahead threads from the rewinding step
above, we can extract all the relevant information.

Step 4: Abort Probability Estimation Depending on the number of threads created to in the rewinding step
to have sufficiently many threads to extract, we can estimate the probability of abort.

Step 5: Re-sampling Main Thread Now that we have extracted the trapdoor information and input, we need
to sample the “main thread”, which corresponds to the actual view of the adversary. Note we are at
this point because the adversary didn’t abort, and thus to avoid skewing the distribution of aborting
transcripts, we must force a non-aborting transcript on to the adversary. We use the earlier estimate of the
non-aborting probability of the adversary to repeatedly try to force the transcript. By a careful analysis,
this step will succeed other than with negligible probability.

Step 6: Query the Ideal Functionality Given that we have managed to force a non-aborting transcript, corre-
sponding to the first three rounds, on the adversary, we need to simulate the last round of the protocol.
This is done by first querying the ideal functionality using the extracted inputs.

Step 7: Extract Proofs from OT It is still possible that the adversary has put in non-accepting proofs as the
OT receiver input even though it did not implicitly abort. We want to rely on the “opaqueness” of the
garbled circuits in such a situation. To do so, we must extract from the oblivious transfer to determine
which circuits to set to output ⊥.

Step 8: Finishing the Main Thread Given the output received from the ideal functionality, and knowledge of
whether the adversary implicitly aborted, or sent incorrect proofs in the OT, we simulate the last round
of the protocol and appropriately compute the garbled circuits.

While the above suffices for a high level overview of our strategy, the proof is quite delicate involving the
security levels of the various primitives.

38

6.2 Simulator Sim

We provide a full description of the simulator Sim below. We note that Sim also performs simple checks akin
to the protocol description in order to send an abort message if it receives one. For simplicity, we have not
explicitly stated these checks in the below description. Also, as in our protocol description, we shall assume
that the protocols have partial state and we do not specify the state as input when we make a protocol call.

Step 1 - Check Adversary Abort: In this step, Sim checks if the adversary aborts prior to the completion of
the third round. This can be via either an implicit or explicit abort.

1. Round 1:
Compute the first round message of all honest parties of the underlying protocol Π,

– {msg1,i}Pi∈H ← S1

(
1λ; rS

)
whereH denotes the set of honest parties. Recall that this is done as just the honest execution of the first round
on behalf of the honest players Pi using randomness rS := {ri}Pi∈H. This is sent toA along with the messages
computed below.
For each honest party Pi, Sim follows the honest party protocol in the first round of the following protocols and
sends the messages to A:

(a) Sender message of TDGen: td1,i ← TDGen1 (rtd,i).

For every j 6= i:

(b) Prover message of the three delayed-input WI argument systems
– WI: wii→j1 ←WI1(ri→jwi).
– RWIa: rwii→ja,1 ← RWI1(ri→jrwia

).

– RWIb: rwii→jb,1 ← RWI1(ri→jrwib
).

(c) Sender message of the three delayed-input commitment schemes
– Ecom: ecomi→j

1 ← Ecom1(ri→jecom).
– RECom: recomi→j

1 ← RECom1(ri→jrecom).
– NMCom: ncomi→j

1 ← NMCom1(ri→jncom).

(d) Receiver message of OT: otj→i1 ← OT1

(
rj→iot

)
.

2. Round 2:
For the second round, Sim follows the honest strategy since the inputs of the honest parties are not required up
until the third round of the protocol. Compute the second round message of all honest parties of the delayed
semi-malicious Π:

– {msg2,i}Pi∈H ← S2

using the transcript obtained so far. Recall that this is done as just the honest execution of the second round on
behalf of the honest players Pi using the randomness sampled as a part of the first round.
For each honest party Pi, Sim follows the honest party protocol in the second round of the following protocols
and sends the messages to A:

For every j 6= i:

(e) Receiver message of TDGen: tdi→j2 ← TDGen2.
(f) Verifier message of the three delayed-input WI argument systems

– WI: wij→i2 ←WI2
– RWIa: rwij→ia,2 ← RWI2

– RWIb: rwij→ib,2 ← RWI2

39

(g) Receiver message of the three delayed-input commitment schemes
– Ecom: ecomj→i

2 ← Ecom2.
– RECom: recomj→i

2 ← RECom2.
– NMCom: ncomj→i

2 ← NMCom2.

(h) Sender message of OT: oti→j2 ← OT2.

3. Round 3:
For the third round, Sim will set 0 to be the input each honest party.
For each honest party Pi, Sim follows the honest party protocol in the third round of the following protocols,
using input 0, and sends the messages to A:

(a) Compute the third round message of the delayed semi-malicious Π:
– msg3,i ← Π3 (0,)

using input 0, randomness ri and the transcript obtained so far. Recall that we are able to do this since the
“simulation” of the first two rounds of the underlying protocol were honest computations.

(b) TDGen: td3,i ← TDGen3.

For every j 6= i:

(c) NMCom: ncomi→j
3 ← NMCom3(̃rj) to commit to a random r̃j .

(d) RECom: recomi→j
3 ← RECom3(0, ri) to commit to (0, ri).

(e) RWI: rwii→ja,3 ← RWI3
(
sti→ja ,wi→ja

)
to prove that Ra(sti→ja ,wi→ja) = 1, where

Statement sti→ja := (TΠ[2],Ti→•
recom[3], {msg`,i}`∈[3],T

i→j
ncom[3], td1,j)

“Honest” witness wi→ja := (0, ri, r
i→•
recom)

(f) Ecom: ecomi→j
3 ← Ecom3

(
rwii→•a,3

)
to commit to rwii→•a,3 .

(g) RWIb: rwii→jb,3 ← RWI3(sti→jb ,wi→jb) to prove that Rb(sti→jb ,wi→jb) = 1, where

Statement sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],Ti→j
ncom[3], td1,j)

“Honest” witness wi→jb := (ri→•rwia ,w
i→•
a , rwii→•a,3 , r

i→•
ecom)

(h) OT: Receiver message otj→i3 ← OT3(rwii→jb,3) using input rwii→jb,3 .

4. Check Abort Condition:
Sim now checks whether A explicitly aborted in the third round. This happens if A doesn’t send its third round
messages, or if every honest party aborts when the trapdoor condition does not verify. Check if ∃Pj ∈ A,
such that TDOut (td1,j , td2,j , td3,j) 6= 1. If so, the Sim outputs the partial view generated so far and stops.
Otherwise, we say that “Check Abort” succeeded and we proceed.

5. Check Implicit Abort:
We run a look ahead threads to extract from Ecom the RWI proofs for La from each malicious party Pj . We
then check if all the extracted RWI proofs verify. This ensures that on the given thread, the malicious parties
exhibit honest behavior. If for even a single malicious party Pj the proofs don’t verify, then we take evasive
action as mentioned in Step 1.5 below.

Remark 4. We use a specific property of Extecom, namely that since it’s input delayed, the commitment in the
first round is to a mask mask and the input delayed property is achieved by masking the input with mask. In
fact, mask is statistically determined by the first round of Ecom. Thus, to extract from multiple instances of the
input-delayed extractable commitment with a single shared first message that potentially commit to different
inputs, it suffices to extract mask in a single instance and using mask to unmask, and thus retrieve, other inputs.
Since the mask is extracted via decommittment information, it’s easy to verify that the extracted value mask is

40

indeed correct.

Step 1.5 - Evasive Action for Implicit Abort: We run this step only if there is an implicit abort. Since we
cannot do an explicit abort on behalf of the honest parties, we want to continue the main thread from Step 1
but garble the C⊥ circuit13 in the fourth round, since we are sure that adversary will not be able to evaluate
the garbled circuit to produce any other output. But in order to do this, we will need to extract the trapdoor to
prove the WI statement for Lc claiming that the garbled circuit was computed honestly. We can do this because
the adversary did not cause an explicit abort, and the extracted trapdoor can be publicly checked. But recall
that this trapdoor must be committed inside the ncom to use the “trapdoor witness” for Lc. To do so, we must
re-sample the main thread making a change only in the third round to commit to the trapdoor, while at the same
time ensuring that the resultant thread still causes an implicit abort. To do so, we follow a similar analysis
as that of [GK96a]. Since some of these steps are similar to the case where there are no aborts, we defer the
description to the relevant steps indicating whether we are in the case of an implicit abort or no abort.

Step 2 - Rewinding: Since the adversary has not aborted explicitly, we will need to start simulation the under-
lying protocol to produce an appropriate transcript. As the first step, the simulator will rewind A.

1. Sim now rewinds A to the end of round 1 and freezes the main thread at this point. Then, Sim creates a set of
T (to be determined later) look-ahead threads, where on each thread, only rounds 2 and 3 of the protocol are
executed in the following manner:

(a) Round 2:
In every look-ahead thread, for each honest party Pi and for each j 6= i, Sim executes the same strategy
as in round 2 of step 1, using fresh randomness each time(for each primitive).

(b) Round 3:
In every look-ahead thread, for each honest party Pi and for each j 6= i, Sim executes the same strategy
as in round 3 of step 1, using fresh randomness each time.

2. No abort case:

(a) For each look-ahead thread, define a thread to be GOOD with respect to Pi∗ if for all malicious parties
Pj :

– Pj does send its third round messages.
– TDOut (td1,j , td2,j , td3,j) = 1 where td2,j is as computed in round 3.
– The extracted RWI proofs for La are all accepting where Pj is the prover, and Pi∗ is the verifier. We

use mask obtained in Step 1 to do the extractions by simply unmasking the commitment in Ecom.
(b) The number of threads T created is such that at least (12 · λ) GOOD threads exists. That is, Sim keeps

running till it obtains (12 · λ) GOOD threads.

3. Implicit abort case:

(a) For each look-ahead thread, define a thread to be IMPLICIT if
– every malicious party Pj does send its third round messages.
– for every malicious party Pj , TDOut (td1,j , td2,j , td3,j) = 1 where td2,j is as computed in round 3.
– For some malicious party Pj , the extracted RWI proofs for La where Pj is the prover are all accept-

ing. We use mask obtained in Step 1 to do the extractions by simply unmasking the commitment in
Ecom.

(b) The number of threads TIMPLICIT created is such that at least (12 · λ) IMPLICIT threads exists. That is,
Sim keeps running till it obtains (12 · λ) IMPLICIT threads.

Remark 5. We want to re-emphasize that only one of the two above cases are executed.

13Circuit that outputs ⊥ independent of input.

41

Step 3 - Input and Trapdoor Extraction: Now, Sim extracts all relevant information. Note that all the rel-
evant information can be extracted from sufficient number of GOOD threads with respect to a single honest
party for the case of no abort. For the case of implicit abort, we extract only the trapdoor.

Sim does the following for the no abort case:

1. Select 5 threads that are GOOD with respect to some honest party Pi∗ . In each GOOD thread, we know ∃ honest
party Pi such that for all malicious parties Pj , the adversary does not cause Pi to abort. Since (12 ·λ) > (5 ·n)a,
there must exist one honest party Pi∗ corresponding to a set of 5 GOOD threads.

2. Trapdoor Extraction: For every corrupted party Pj , extract a trapdoor tj by running the trapdoor extractor
TDExt on input the transcript of the trapdoor generation protocol with Pj playing the role of the trapdoor
generator from any 3 GOOD threads. Specifically, compute

tj ← TDExt
(

td1, {tdk2 , tdk3}k∈[3]

)
where

(
td1, tdk2 , tdk3

)
denotes the transcript of the trapdoor generation protocol with Pj as the sender of the

k-th GOOD thread.

3. Input Extraction: For every corrupted party Pj , extract the mask for the input and randomness pair (xj , rj)
by running the extractor ExtRECom on input the transcript of the extractable commitment protocol between Pj
and Pi∗ from the 5 GOOD threads picked above. That is, compute

maskj→i
∗
← ExtRECom

(
recomj→i∗

1 , {recomj→i∗
2,k , recomj→i∗

3,k }k∈[5]

)
where recomj→i∗

1 , recomj→i∗
2,k , recomj→i∗

3,k denotes the transcript of the extractable commitment protocol be-
tween Pj and Pi∗ on the k-th GOOD thread.

4. Proof Extraction: Since we’ve already extracted the proofs in Step 1, by Remark 4 we can extract the proofs
in each thread without having to rewind, by just unmasking with the extracted mask from Step 1.

5. Output ⊥extract if any of steps 2 or 3 fail.

Sim does the following for the implicit abort case:

1. Trapdoor Extraction: For every corrupted party Pj , extract a trapdoor tj by running the trapdoor extractor
TDExt on input the transcript of the trapdoor generation protocol with Pj playing the role of the trapdoor
generator from any 3 IMPLICIT threads. Specifically, compute

tj ← TDExt
(

td1, {tdk2 , tdk3}k∈[3]

)
where

(
td1, tdk2 , tdk3

)
denotes the transcript of the trapdoor generation protocol with Pj as the sender of the

k-th IMPLICIT thread.

2. Proof Extraction: Since we’ve already extracted the proofs in Step 1, by Remark 4 we can extract the proofs
in each thread without having to rewind, by just unmasking with the extracted mask from Step 1.

3. Output ⊥extract if step 2 fails.

awithout loss of generality, assume the number of parties n = λ

Step 4 - Abort Probability Estimation: Sim estimate below the probability with which A either does not
abort, or implicitly aborts.

If Implicit abort case,
Set ε′ = 12·λ

TIMPLICIT
as the probability that the adversary implicitly abort.

If no abort case,
Set ε′ = 12·λ

T as the probability that the adversary doesn’t abort.

42

Step 5 - Re-sampling the Main Thread: Using the information extracted, Sim samples the main thread. It
also needs to force this transcript, and uses the estimate obtained earlier to upper bound the number of attempts
to do try this.

Sim sets a counter to value 0. Now Sim attempts to force the following transcript in the main thread until it accepts, or
the counter reaches the cut-off point.

1. Round 2 :
Run exactly as done in Step 1.

2. Round 3 :
There are some key differences from the threads generated in the previous steps:

– The non-malleable commitment from an honest party Pi to a malicious party Pj now contains the ex-
tracted trapdoor tj .

– The witness indistinguishable proofs use the “trapdoor witness”.
– If implicit abort case: The third round of the MPC is generated by using inputs 0.
– If no abort case: The third round of the MPC is generated by the simulator for the underlying protocol.

In more detail, Sim computes the third round of the delayed semi-malicious protocol Π for all the honest parties:

– if implicit abort case, for each honest player Pi, msg3,i ← Π3 (0)

– if no abort case, {msg3,i}Pi∈H ← S3 using the transcript obtained so far.

For each honest party Pi, Sim computes the following, and sends the messages to A:

(a) TDGen: td3,i ← TDGen3.

For every j 6= i:

(b) NMCom: ncomi→j
3 ← NMCom3(tj) to commit to extracted trapdoor tj .

(c) RECom: recomi→j
3 ← RECom3(0) to commit to 0.

(d) RWI: rwii→ja,3 ← RWI3
(
sti→ja ,wi→ja

)
to prove that Ra(sti→ja ,wi→ja) = 1, where

Statement sti→ja := (TΠ[2],Ti→•
recom[3], {msg`,i}`∈[3],T

i→j
ncom[3], td1,j)

“Trapdoor” witness wi→ja :=
(
tj , r

i→j
ncom

)
(e) Ecom: ecomi→j

3 ← Ecom3

(
rwii→•a,3

)
to commit to rwii→•a,3 .

(f) RWIb: rwii→jb,3 ← RWI3(sti→jb ,wi→jb) to prove that Rb(sti→jb ,wi→jb) = 1, where

Statement sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],Ti→j
ncom[3], td1,j)

“Trapdoor” witness wi→jb :=
(
tj , r

i→j
ncom

)
(g) OT: Receiver message otj→i3 ← OT3(rwii→jb,3) using input rwii→jb,3 .

3. Abort Condition:

(a) implicit abort case: if the adversary doesn’t send its third round message; or ∃Pj ∈ A, such that
TDOut (td1,j , td2,j , td3,j) = 1 increment counter by 1.
no abort case: if the adversary doesn’t send its third round message; or ∃Pj ∈ A, such that
TDOut (td1,j , td2,j , td3,j) = 1 or the extracted proofs for La from Pj do not accept, increment counter
by 1.

(b) If Sim’s running time is 2λ. Abort.
(c) If the counter value was not increased, we can proceed to Step 7.

(d) Else, if the counter value is less that λ
2

ε′ rewind back to the beginning of round 2 in Step 6 and re-sample
the main thread with fresh randomness. Otherwise, Abort indicating failure.

43

Step 6 - Query the Ideal Functionality: The following is done only in the no abort case.

1. Sim queries the ideal functionality with the set of values {xj} where xj is the input of adversarial party Pj that
was extracted in the previous step using mask obtained through extraction by rewinding. This is done in this
manner since the adversary may use a different input in each thread, and we want to use the input it uses on the
main thread. Since the adversary commits to its input only on completion of the third round on the main thread.

2. Sim receives output y from the ideal functionality.

Step 7 - Extract proofs from OT: In order to determine whether we need to put in simulated messages into
garbled circuits in the fourth round, we extract from all OT receiver messages in parallel by running sufficiently
many look-ahead threads. Note that this is different from an implicit abort since if there is no implicit abort, it is
guaranteed that the adversary behaved honestly in the underlying protocol. It is still possible that it doesn’t put
the correct proof inside of the OT receiver messages. We just need to ensure that the relevant garbled circuits
then become “opaque”. Let us denote this event as opaque, when there is at least one malicious party who’s
extracted proof is not accepting.

Step 8 - Finishing the Main Thread: Sim now finishes off the main thread by computing the last round of the
protocol.

1. Round 4:
If no abort case, compute the simulated fourth round message of the delayed semi-malicious protocol Π:
{msg4,i}Pi∈H ← S4

(
y, {xj , rj}Pj∈A

)
. Note that S4 will not be called if there is an implicit or explicit abort.

For each honest party Pi, Sim computes the following, and sends the messages to A:

(a) Garbled Circuit taking into account the extracted RWI proof for Lb: Ci, where
– if implicit abort or opaque case, then

(
Ci, labi

)
← Garble (C⊥; rgc,i)

– else if no abort case, (Ci, labi)← Garble(C[msg4,i,T
•→i
rwib

[2], st•→ib , r•→irwib
]; rgc,i)

For every j 6= i:

(b) OT: Fourth round sender message oti→j4 ← OT4

(
labi|j

)
using input labi|j .

(c) OT: Receiver randomness rj→iot .
(d) WI: wii→j3 ←WI3

(
sti→jc ,wi→jc

)
, to prove that Rc(sti→jc ,wi→jc) = 1, where

Statement sti→jc := (TΠ[3],Ti→•
recom[3],T•→irwib [2], st•→ib ,Ti→•

ot [4],Ci,T
i→j
ncom[3], td1,j)

“Trapdoor” witness wi→jc :=
(
tj , r

i→j
ncom

)
2. Output Computation:

If no abort:

– For each honest party Pi, Sim does the following in the main thread,:

(a) If ∃j 6= i, s.t. WI4(stj→ic ,Tj→i
wi [3]) 6= 1, abort.

If there is no abort, instruct the ideal functionality to deliver output to the honest parties.

Remark 6. We note that if any round, a subprotocol outputs⊥, Pi broadcast⊥, sets output to be⊥ and aborts.
If Pi receives a ⊥ from another party, it sets its output to be ⊥ and aborts.

Running Time of the Simulator: The simulator runs in expected time polynomial in λ. The analysis follows
identically from that of [BGJ+18]. The only steps that the simulator can run in exponential time are:

44

1. Step 2, where Sim rewinds till it gets 12 · λ implicitly-aborting/non-aborting transcripts. If ε denotes
the probability with which Sim goes into Step 2 (i.e. implicit abort or did not abort in Step 1), then the
expected total number of threads created are 12·λ

ε , where each thread takes only poly(λ) time.

2. Step 5, where Sim resamples the main thread. If the probability estimate is correct, then it is easy to see
that this step requires the creation of at most λ

2

ε (see [BGJ+18] for details) threads. This step might take
time 2λ, but that only happens with probability 1

2λ
.

This gives a total expected running time of

poly(λ) + poly(λ) · ε
(

12 · λ
ε

+

(
1− 1

2λ

)
λ2

ε
+ 2λ

(
1

2λ

))
≤ poly(λ)

6.2.1 Hybrids

Assume by contradiction that there is an adversary A that distinguishes the real and ideal worlds with some
non-negligible probability µ. µ will be used to set certain parameters in the hybrids.

HybREAL: Real World: The hybrid is the same as the real world execution. We consider a simulator SimHyb

that plays the role of the honest parties.

Hyb0: Determining Abort in the 3rd Round and Extraction: In this hybrid, SimHyb makes the following
changes:

1. SimHyb executes the first 3 rounds of the protocol using the honest parties’ strategy. If the adversary
causes an abort, SimHyb outputs only the view of the adversary and stops.

2. If the “Check Abort” step succeeds, SimHyb checks if there is an implicit abort by extracting the RWI
proofs.

3. If there is either an implicit abort or no abort, SimHyb rewinds back to after the completion of round 1 of
the protocol and freezes the main thread. SimHyb creates a set of 5·n·λ

µ look ahead threads as described in
Step 2 of Sim. Which is to say that in all the threads, SimHyb uses the honest parties’ inputs and follows
the protocol. The look ahead threads are identical to the main thread.

4. If there is an implicit abort, the SimHyb now extracts the trapdoors and proofs from the created look-
ahead threads. Specifically, it runs the “Input and Trapdoor Extraction” phase described in step 3 of the
description of Sim using the first 3 look-ahead threads that are IMPLICIT.

5. If there is no abort, the SimHyb now extracts the input, trapdoors and proofs from the created look-
ahead threads. Specifically, it runs the “Input and Trapdoor Extraction” phase described in step 3 of the
description of Sim using the first 5 look-ahead threads that are GOOD with respect to some honest party
Pi∗ .

6. SimHyb outputs ⊥extract if either of the above two steps fails.

7. SimHyb continues the execution of the main thread it had previously frozen. It does this as in the honest
execution of HybREAL. If the adversary causes an abort, SimHyb rewinds to the end of round 1 and
re-samples the main thread honestly. This process is repeated at most λµ times.

Since µ is noticeable, we are guaranteed that SimHyb will run in polynomial in this hybrid, and subsequent
hybrids, when performing this check.

Hyb1: Using input 0 in the Aborting Step: In this hybrid, SimHyb does the “Check Abort” step using the input
0 instead of the real honest party inputs. If the adversary does cause an abort, then SimHyb just outputs the view
of the adversary and stops. Else, it proceeds as in Hyb0. This is done using a sequence of sub-hybrids. We only
describe changes made in each sub-hybrid, with the remaining execution identical to the previous hybrid.

45

Hyb1,0: Change OT receiver input to 0: In this sub-hybrid, SimHyb only modifies the third round to
replace the OT receiver input for all honest parties with 0. In Hyb0, the receiver input to the OT was the
third message of the RWI proof for Lb.

Hyb1,1: Change Ecom input to 0: In this sub-hybrid, SimHyb only modifies the third round to replace
the Ecom input for all honest parties with 0. In Hyb1,0, the input to Ecom was the third message of the
RWI proof for La.

Hyb1,2: Change RECom input to 0: In this sub-hybrid, SimHyb only modifies the third round to replace
the RECom input for all honest parties with (0, ri). In Hyb1,1, the input to Ecom for an honest party Pi
was its input and randomness (xi, ri) for the underlying protocol Π.

Hyb1,3: Change Π input to 0: In this sub-hybrid, SimHyb only modifies the third round to replace the Π
input for all honest parties with 0. In Hyb1,2, the input to Π for an honest party Pi in the third round was
xi.

Hyb1,4: Change Ecom input to RWI: In this sub-hybrid, SimHyb only modifies the third round to replace
the Ecom input for all honest parties with the correctly computed third message of the RWI proof for La
using input 0. In Hyb1,3, the input to Ecom was 0.

Hyb1,5: Change OT receiver input to RWI: In this sub-hybrid, SimHyb only modifies the third round
to replace the OT receiver input for all honest parties with the correctly computed third message of the
RWI proof for Lb using. In Hyb0, the receiver input to the OT was 0.

Note that Hyb1,5 ≡ Hyb1

Note that if the adversary aborts in the first three rounds, then we can skip the remaining hybrids.

Hyb2: Using input 0 in the look-ahead threads: In this hybrid, SimHyb modifies each look-ahead thread to
follow the protocol but replacing the honest player inputs with 0. This is done in a sequence of hybrids, where
in each sequence we only modify a single look ahead thread. Since the number of threads are T , we do the
following:

∀k ∈ [T] the following changes are made only to the k-th thread:

Hyb2,k,0: Change NMCom on k-th thread: In this sub-hybrid, SimHyb only modifies the third round
of the k-th thread to commit in the NMCom to the trapdoor. In Hyb1, NMCom was a commitment to a
random value. Specifically, for every honest party Pi and every party Pj , SimHyb modifies the third round
NMCom message to be ncomi→j

3 ← NMCom3(tj) where tj is a valid trapdoor extracted from the other
look-ahead threads as in Hyb1.

Hyb2,k,1: Switch RWI proofs for Lb on the k-th thread: In this sub-hybrid, SimHyb only modifies the
third round of the k-th thread to switch to the “trapdoor witness” in the RWI proofs for Lb. Specifically,
for every honest party Pi and every party Pj , SimHyb computes rwii→jb,3 ← RWI3(sti→jb ,wi→j

b), where

Statement sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],Ti→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
b :=

(
tj , r

i→j
ncom

)
Hyb2,k,2: Switch RWI proofs for La on the k-th thread: In this sub-hybrid, SimHyb only modifies the
third round of the k-th thread to switch to the “trapdoor witness” in the RWI proofs for La. Specifically,

46

for every honest party Pi and every party Pj , SimHyb computes rwii→ja,3 ← RWI3
(

sti→ja ,wi→j
a

)
, where

Statement sti→ja := (TΠ[2],Ti→•
recom[3], {msg`,i}`∈[3],T

i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
a :=

(
tj , r

i→j
ncom

)
Hyb2,k,3: Change RECom input to 0 on the k-th thread: In this sub-hybrid, SimHyb only modifies the
third round of the k-th thread to replace the RECom input for all honest parties with (0, ri). In Hyb2,k,2,
the input to Ecom for an honest party Pi was its input and randomness (xi, ri) for the underlying protocol
Π. This is done by a sequence of sub-hybrids given below.

Hyb2,k,3,0: Change Com sender’s message on main thread: In this hybrid, SimHyb changes the
Com commitment inside the RECom in the first round of the protocol. Specifically, for every
honest party Pi and malicious party Pj and for all ` ∈ [N], compute recom1,` ← Com(0). This is
done since all the look ahead threads share the same first round messages with the main thread.

Hyb2,k,3,1: Change polynomial in third round: In this hybrid, SimHyb picks a new polynomial q
to change the RECom third round messages. Specifically, for every honest party Pi and malicious
party Pj do the following:

– for every ` ∈ [N], pick a new degree 4 polynomial q` such that (xi ⊕ p`(0)) = (0⊕ q`(0)).
– compute recom3,` as (0⊕ q`(0), q`(z`)).

Hyb2,k,3,2: Commit to new polynomial: In this hybrid, SimHyb changes the Com commitment
inside the RECom in the first round of the protocol. Specifically, for every honest party Pi and
malicious party Pj and for all ` ∈ [N], compute recom1,` ← Com(q`).

Note that Hyb2,k,3,2 ≡ Hyb2,k,3

Hyb2,k,4: Change Π input to 0 on the k-th thread: In this sub-hybrid, SimHyb only modifies the third
round of the k-th thread to replace the Π input for all honest parties with 0. In Hyb2,3, the input to Π for
an honest party Pi in the third round was xi.

Hyb2,k,5: Switch RWI proofs for La on the k-th thread: In this sub-hybrid, SimHyb only modifies the
third round of the k-th thread to switch back to the “honest witness” in the RWI proofs for La. Specif-
ically, for every honest party Pi and every party Pj , SimHyb computes rwii→ja,3 ← RWI3

(
sti→ja ,wi→j

a

)
,

where

Statement sti→ja := (TΠ[2],Ti→•
recom[3], {msg`,i}`∈[3],T

i→j
ncom[3], td1,j)

“Honest” witness wi→j
a := (0, ri, r

i→•
recom)

Hyb2,k,6: Switch RWI proofs for Lb on the k-th thread: In this sub-hybrid, SimHyb only modifies the
third round of the k-th thread to switch back to the “honest witness” in the RWI proofs for Lb. Specif-
ically, for every honest party Pi and every party Pj , SimHyb computes rwii→jb,3 ← RWI3(sti→jb ,wi→j

b) to

prove that Rb(sti→jb ,wi→j
b) = 1, where

Statement sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],Ti→j
ncom[3], td1,j)

“Honest” witness wi→j
b := (ri→•rwia ,w

i→•
a , rwii→•a,3 , r

i→•
ecom)

47

Hyb2,k,7: Change NMCom on k-th thread: In this sub-hybrid, SimHyb only modifies the third round of
the k-th thread to commit in the NMCom to a random value. Specifically, for every honest party Pi and
every party Pj , SimHyb modifies the third round NMCom message to be ncomi→j

3 ← NMCom3 (̃rj) .
Note that Hyb2,T,7 ≡ Hyb2

Hyb3: Change NMCom on main thread: In this hybrid, SimHyb only modifies the third round of the main
thread to commit in the NMCom to the trapdoor. In Hyb2, NMCom was a commitment to a random value.
Specifically, for every honest party Pi and every party Pj , SimHyb modifies the third round NMCom message
to be ncomi→j

3 ← NMCom3 (tj) where tj is a valid trapdoor extracted from the look-ahead threads as in Hyb2.

Hyb4: Switch RWI proofs for Lb on the main thread: In this hybrid, SimHyb only modifies the third round
of the main thread to switch to the “trapdoor witness” in the RWI proofs for Lb. Specifically, for every honest
party Pi and every party Pj , SimHyb computes rwii→jb,3 ← RWI3(sti→jb ,wi→j

b), where

Statement sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],Ti→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
b :=

(
tj , r

i→j
ncom

)
Hyb5: Switch RWI proofs for La on the main thread: In this hybrid, SimHyb only modifies the third round
of the main thread to switch to the “trapdoor witness” in the RWI proofs for La. Specifically, for every honest
party Pi and every party Pj , SimHyb computes rwii→ja,3 ← RWI3

(
sti→ja ,wi→j

a

)
, where

Statement sti→ja := (TΠ[2],Ti→•
recom[3], {msg`,i}`∈[3],T

i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
a :=

(
tj , r

i→j
ncom

)
Hyb6: Switch WI proofs for Lc on the main thread: In this hybrid, SimHyb only modifies the fourth round of
the main thread to switch to the “trapdoor witness” in the WI proofs for Lc. Specifically, for every honest party
Pi and every party Pj , SimHyb computes wii→j3 ← WI3

(
sti→jc ,wi→j

c

)
, to prove that Rc(sti→jc ,wi→j

c) = 1,
where

Statement sti→jc := (TΠ[3],Ti→•
recom[3],T•→irwib

[2], st•→ib ,Ti→•
ot [4],Ci,T

i→j
ncom[3], td1,j)

“Trapdoor” witness wi→j
c :=

(
tj , r

i→j
ncom

)
Hyb7: Change RECom input to 0 on the main thread: In this hybrid, SimHyb only modifies the third round
of the main thread to replace the RECom input for all honest parties with 0. In Hyb6, the input to RECom for
an honest party Pi was its input and randomness (xi, ri) for the underlying protocol Π.

Hyb8: Simulate Π on main thread: In this hybrid SimHyb only modifies the transcript of the underlying
protocol Π.

Specifically, if there is an implicit abort SimHyb does the following:
1. Compute the third round message of each honest party using input 0.
Else, if there is no abort SimHyb does the following:

1. Due to the fact that the first two simulated rounds of Π are honest computations, we do not make any
changes to the first two rounds but refer to the collective first round honest inputs as the output of S1 with
randomness rS := {ri}Pi∈H. Likewise for the second round messages.

48

2. Compute the third round messages of all honest parties in the delayed semi-malicious protocol Π:
{msg3,i}Pi∈H ← S3 using the transcript obtained so far and randomness defined above.

3. Compute the third round messages of all honest parties in the underlying protocol Π:
{msg4,i}Pi∈H ← S4

(
y, {xj , rj}Pj /∈H

)
.

Hyb9: Extract Proofs from OT: In this hybrid SimHyb only creates sufficiently many look ahead threads to
extract the proofs for Lb that are used as receiver inputs to the OT. If there is proof from a malicious party that
does not accept, we denote this event as opaque.

Hyb10: Change GC on main thread: In this hybrid SimHyb only modifies the garbled circuits of honest parties
Pi if there is an implicit abort in Step 1. Specifically, if there is an implicit abort, the garbled circuit for each
honest party Pi is computed as: (

Ci, labi
)
← Garble (C⊥)

where C⊥ is the circuit with the same topology as C but always outputs ⊥. We note that even in the case of an
implicit abort, we are able to extract the trapdoor, but not necessarily the witness.

For every honest party Pi,
– if implicit abort or opaque case, then

(
Ci, labi

)
← Garble (C⊥; rgc,i)

– else if no abort case, (Ci, labi)← Garble(C[msg4,i,T
•→i
rwib

[2], st•→ib , r•→irwib
]; rgc,i)

Remark 7. We note that if there is an implicit abort, all honest parties will have a ⊥ encoded in the circuit.

HybIDEAL: Run the actual probability estimation: In this hybrid, the number of look-ahead threads is in-
creased from 5·n·λ

µ to as many as needed to estimate the probability of the adversary not aborting − ε′.
Additionally, at this point, SimHyb doesn’t re-sample the main thread λ

µ times. Instead, SimHyb resamples

the main thread for min
(

2λ, λ
2

ε′

)
times as in the ideal world. This hybrid corresponds exactly to the ideal

world.

6.2.2 Indistinguishability of Hybrids

We will maintain the following invariant across the hybrids.

Definition 16 (Invariant). Consider any malicious party Pj and any honest party Pi. td1,i denotes the first
message of the trapdoor generation protocol with Pi as the trapdoor generator. Tj→i

ncom[3] denotes the messages
of the non-malleable commitment with Pj as the committer and Pi is the receiver.

This event E occurs if ∃i, j such that
– ExtNMCom outputs ti from the non-malleable commitment Tj→i

ncom[3] (AND)

– TDValid(td1,i, ti) = 1

That is, the event E occurs if the extractor for the non-malleable commitment outputs a valid trapdoor ti (cor-
responding to the trapdoor generation protocol where Pi was the trapdoor generator) from the non-malleable
commitment from player Pj to Pi.

The invariant is
Pr
[
Event E occurs

]
≤ negl(λ)

Claim 1. Assuming the “1-rewinding security” of the trapdoor generation protocol TDGen and the existence
of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the invariant holds in HybREAL.

49

Proof. This is proven by contradiction. Assume that the invariant doesn’t hold in HybREAL. Then there exists an
adversary A such that for some honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-
negligible probability. We will use this adversary to create an adversary ATDGen that breaks the “1-rewinding
security” of the trapdoor generation protocol TDGen with non-negligible probability.

We now describe the working of ATDGen which interacts with the challenger CTDGen. ATDGen picks ran-
domly, an honest party Pi, and a random malicious party Pj . All messages other than the trapdoor messages
are computed in the same manner as SimHyb. The trapdoor messages for Pi are exposed to the external chal-
lenger. Specifically, in round 1, set td1,i = td1 where td1 is received from CTDGen. On receiving all the values
td1→i

2 , · · · , tdn→i2 , including the value tdj→i2 from A in round 2, ATDGen sets td2,i :=
(
td1→i

2 || · · · ||td1→i
2

)
and this is the value forwarded to CTDGen as the second round response. Set td3,i = td3 where td3 is received
from CTDGen, and compute the rest of the third round messages for A. At this point, ATDGen rewinds A back
to the beginning of round 2 to enable extraction from the NMCom. Specifically, ATDGen creates a look ahead
thread that runs only the second and third round. As in the main thread, the trapdoor messages are received
from CTDGen. Recall that the “1-rewinding” property of the trapdoor generation protocol allows for a second
td2 query to CTDGen.

Now ATDGen runs the extractor ExtNMCom of the non-malleable commitment scheme using the message in
both the threads that correspond to the non-malleable commitment from malicious party Pj to honest party Pi.
Let the output of ExtNMCom be t∗. ATDGen outputs t∗ as a valid trapdoor to CTDGen.

By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗’s commitment to Pi,
outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds to hon-
est party Pi and malicious party Pj picked randomly by ATDGen. Therefore, with non-negligible probability
ε
n2 , ATDGen outputs t∗ as a valid trapdoor to CTDGen which breaks the 1-rewinding security of the trapdoor
generation protocol TDGen. Thus, it must be the case that the invariant holds in HybREAL.

Remark 8. We note that if the invariant holds, it must be the case that no adversary can commit to a valid
trapdoor with a non-negligible probability. This in turn implies accepting witness indistinguishable proofs
cannot use a “trapdoor witness” other than with negligible probability.

Claim 2. The invariant holds in Hyb0.

Proof. Since there is no difference in the main thread in the first 3 rounds between HybREAL and Hyb0, the
invariant continues to hold.

Claim 3. Hyb0 is indistinguishable from HybREAL except with probability at most µ4 + negl(λ).

Proof. This is argued in two cases depending on the probability with which the adversary abort.

Case 1: Pr[not abort] ≥ µ
4 :

Suppose the adversary doesn’t cause an abort with probability greater that µ4 . Let us analyze the proba-
bility with which ⊥extract is output by SimHyb. For simplicity, we present the argument only for the case
there is no abort. The argument for implicit abort is identical.

By the Chernoff bound, in Hyb0, except with negligible probability, in the set of 5·n·λ
µ threads, there

will be at least 5 GOOD threads with respect to some honest party Pi∗ . Now all that’s left to argue is that
ExtRECom and TDExt fail to extract with negligible probability.

From the definition of RECom, algorithm ExtRECom is successful except with negligible probability
if given as input

(
recom1, {recomk

2, recomk
3}k∈[5]

)
such that

(
recom1, recomk

2, recomk
3

)
constitute “well-

formed” and “admissible” rewinding secure extractable commitment messages. “Admissibility” follows
trivially since SimHyb picks random challenges z for the extractable commitment. From the above claim,
we’ve proved that the invariant holds in Hyb0, and thus from the soundness of RWI and WI, in each
GOOD thread with respect to some honest party Pi∗ , the following holds: for every malicious Pj and

50

every honest Pi, T
j→i
recom[3] is a “well formed” transcript of RECom. Thus ExtRECom fails only with

negligible probability.
From the definition of TDGen, algorithm TDExt is successful except with negligible probability if

given as input
(
td1, {tdk2, tdk3}k∈[3]

)
where td1 is the first message of the protocol TDGen and tdk2, tdk3

denote the second and third round message of the k-th execution of TDGen using the same first round
message. Since there are 5 GOOD threads, we can extract every malicious party’s trapdoor except with
negligible probability.

Finally, from the Chernoff bound, in the set of λ
µ re-sampled main threads, there will be at least one

completed execution. Thus, the adversary’s view in HybREAL and Hyb0 is indistinguishable.

Case 2: Pr[not abort] < µ
4 :

Suppose the adversary doesn’t cause an abort with probability smaller than µ
4 . Then, in both hybrids,

SimHyb aborts at the end of the “Check Abort” step except with probability µ
4 . Thus, in this case, the

adversary’s view in HybREAL and Hyb0 is indistinguishable except with probability at most µ4 + negl(λ).

Remark 9. To avoid cluttering of the proof, we will assume the argument that if both adjacent hybrids have
fewer than 5 GOOD (or 3 IMPLICIT) look-ahead threads with respect to all parties, the two hybrids are
identical.

Unless otherwise stated, we shall present the indistinguishability arguments for the no abort case since this
case requires additional steps. The implicit abort case arguments follow identically. We will indicate and argue
the two cases separately when they are different.

Claim 4. The invariant holds in Hyb1,0.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,0 and Hyb0, the
invariant continues to hold.

Claim 5. Assuming the hiding property of OT against malicious senders, Hyb1,0 is indistinguishable from
Hyb0.

Proof. The only difference between the two hybrids is when the “Check Abort” step doesn’t succeed. In that
case, in Hyb0, SimHyb uses as input to OT the third round message for the RWI proof for Lb, while in Hyb1,0,
SimHyb uses input 0 for the third round of OT. This is in fact done by a sequence of hybrids, wherein only a
single instance of the honest party’s input to the OT is changed. There are< n2 instances where an honest party
is the receiver, and thus at most n2 intermediate hybrids. Suppose there is an adversary D that can distinguish
between any two adjacent hybrids, we will create an adversary AOT that breaks the hiding of the OT scheme.
Recall that this is only in the setting that “Check Abort” doesn’t succeed and hence the fourth round messages
of the honest party are not sent.

We now describe the working of AOT which interacts with the challenger COT. Let the change in these
adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages other than those of the chosen

OT are computed as in the same manner as SimHyb. First, set otĵ→î1 := ot1 where ot1 is sent by COT. On

receiving/computing14 message otĵ→î1 , send this along with (rwîi→ĵb,3 , 0) to COT. Where rwîi→ĵb,3 is computed as
in the previous hybrid by SimHyb. COT then chooses as input one of the two values at random and sends ot3.

AOT sets otĵ→î3 := ot3. The view generated is then given to the adversary D, wherein depending on the choice
of COT, the view corresponds to one of the two adjacent hybrids. The output from D is set to be the output of
AOT.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability ε. There-
fore, with the same probability ε AOT can break the hiding property of OT. Thus, it must be the case that ε

14Since the OT sender in question may in fact be an honest party.

51

is negligible. Since there are at most n2 intermediate hybrids, the two end hybrids, Hyb1,0 and Hyb0, remain
indistinguishable except with negligible probability.

Claim 6. The invariant holds in Hyb1,1.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,1 and Hyb1,0, the
invariant continues to hold.

Claim 7. Assuming the hiding property of Ecom, Hyb1,1 is indistinguishable from Hyb1,0.

Proof. The proof works in the same way as the proof in the previous claim. The only difference between the
two hybrids is when the “Check Abort” step doesn’t succeed. In that case, in Hyb1,0, SimHyb uses as input to
Ecom the third round message for the RWI proof for La, while in Hyb1,1, SimHyb uses input 0 for the third
round of Ecom. This is in fact done by a sequence of hybrids, wherein only a single instance of the honest
party’s input to the Ecom is changed. There are < n2 instances where an honest party is the committer, and
thus at most n2 intermediate hybrids. Suppose there is an adversary D that can distinguish between any two
adjacent hybrids, we will create an adversary AEcom that breaks the hiding of the Ecom scheme.

We now describe the working of AEcom which interacts with the challenger CEcom. Let the change in these
adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages other than those of the chosen

Ecom are computed as in the same manner as SimHyb. First, set ecomî→ĵ
1 := recom1 where ecom1 is sent by

Crecom. On receiving/computing message ecomî→ĵ
1 , send this along with (rwîi→ĵa,3 , 0) to CEcom. Where rwii→jb,3

is computed as in the previous hybrid by SimHyb. CEcom then commits to one of the two values at random and

sends recom3. AEcom sets ecomî→ĵ
3 := ecom3. The view generated is then given to the adversary D, wherein

depending on the choice of CEcom, the view corresponds to one of the two adjacent hybrids. The output from D
is set to be the output of AEcom.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability ε. There-
fore, with the same probability εAEcom can break the hiding property of Ecom. Thus, it must be the case that ε
is negligible. Since there are at most n2 intermediate hybrids, the two end hybrids, Hyb1,1 and Hyb1,0, remain
indistinguishable except with negligible probability.

Claim 8. The invariant holds in Hyb1,2.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,2 and Hyb1,1, the
invariant continues to hold.

Claim 9. Assuming the hiding property of RECom, Hyb1,2 is indistinguishable from Hyb1,1.

Proof. The only difference between the two hybrids is when the “Check Abort” step doesn’t succeed. In that
case, in Hyb1,1, SimHyb uses as input to RECom (x̂i, r̂i), while in Hyb1,2, SimHyb uses input 0 for the third round
of RECom. This is in fact done by a sequence of hybrids, wherein only a single instance of the honest party’s
input to the RECom is changed. There are < n2 instances where an honest party is the committer, and thus at
most n2 intermediate hybrids. Suppose there is an adversary D that can distinguish between any two adjacent
hybrids, we will create an adversary ARECom that breaks the hiding of the RECom scheme.

We now describe the working of ARECom which interacts with the challenger CRECom. Let the change in
these adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages other than those of the chosen

RECom are computed as in the same manner as SimHyb. First, set recomî→ĵ
1 := recom1 where recom1 is sent

by Crecom. On receiving/computing message recomî→ĵ
1 , send this along with

(
(x̂i, r̂i), 0

)
to CRECom. Where

(x̂i, r̂i) is the input and randomness of Pî computed as in the previous hybrid by SimHyb. CRECom then commits

to one of the two values at random and sends recom3. ARECom sets recomî→ĵ
3 := recom3. The view generated

52

is then given to the adversary D, wherein depending on the choice of CRECom, the view corresponds to one of
the two adjacent hybrids. The output from D is set to be the output of ARECom.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability ε. There-
fore, with the same probability ε, ARECom can break the hiding property of RECom. Thus, it must be the case
that ε is negligible. Since there are at most n2 intermediate hybrids, the two end hybrids, Hyb1,2 and Hyb1,1,
remain indistinguishable except with negligible probability.

Claim 10. The invariant holds in Hyb1,3.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,3 and Hyb1,2, the
invariant continues to hold.

Claim 11. Assuming the privacy of Π, Hyb1,3 is indistinguishable from Hyb1,2.

Proof. The only difference between the two hybrids is when the “Check Abort” step doesn’t succeed. In that
case, in Hyb1,2, SimHyb uses as input to the third round of Π 15 (xi, ri) for all honest parties Pi, while in Hyb1,3,
SimHyb uses as input to the third round of Π (0, r̂i) for all honest parties Pi. This is in fact done by a sequence
of hybrids, wherein only a single instance of the honest party’s input to the Π is changed. There are< n parties,
and thus at most n2 intermediate hybrids. Suppose there is an adversary D that can distinguish between any
two adjacent hybrids, we will create an adversary AΠ that breaks the indistinguishability of Π.

We now describe the working ofAΠ which interacts with the challenger CΠ. Let the change in these adjacent
hybrids be made for an honest party Pi. All messages other than those of the chosen Π are computed as in the
same manner as SimHyb. First, set msg1,i := msg1 where msg1 is sent by Crecom. On receiving and computing
message msg1,j for all other parties Pj , send this to CΠ. Set msg2,i := msg2 where msg2 is sent by Crecom. On
receiving and computing message msg2,j for all other parties Pj , send this to CΠ along with ((xi, ri), (0, ri)).
Where (xi, ri) is the input and randomness of Pi computed as in the previous hybrid by SimHyb. CΠ then uses
one of the two values at random and sends msg3. AΠ sets msg3,i := msg3. The view generated is then given
to the adversary D, wherein depending on the choice of CΠ, the view corresponds to one of the two adjacent
hybrids. The output from D is set to be the output of AΠ.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability ε. There-
fore, with the same probability ε AΠ can break the input indistinguishability property of Π. Thus, it must be
the case that ε is negligible. Since there are at most n intermediate hybrids, the two end hybrids, Hyb1,3 and
Hyb1,2, remain indistinguishable except with negligible probability.

Claim 12. The invariant holds in Hyb1,4.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,4 and Hyb1,3, the
invariant continues to hold.

Claim 13. Assuming the hiding property of Ecom, Hyb1,4 is indistinguishable from Hyb1,3.

Proof. This proof follows identically as in Claim 7.

Claim 14. The invariant holds in Hyb1,5.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,5 and Hyb1,4, the
invariant continues to hold.

Claim 15. Assuming the hiding property of OT against malicious senders, Hyb1,5 is indistinguishable from
Hyb1,4.

Proof. This proof follows identically as in Claim 5.
15This is the first round of Π that uses the input.

53

Note that Hyb1,5 ≡ Hyb1. This gives us that Hyb1 and Hyb0 are indistinguishable other than with negligible
probability.

We now prove claims for all k ∈ [T], where we set Hyb2,0,7 ≡ Hyb1

We note that we will argue that the invariant holds even in the look ahead thread that we are making
changes in. Initially, since all the look ahead threads are identical to the main thread, by claim 1 we know that
the invariant holds in each of them. The invariant is useful since we will argue that if the invariant holds true,
the probability of the extracted RWI accepting cannot change with noticeable probability. From the soundness
of RWI we are guarantees that, with the change, we are still successfully extracting from the adversary with the
same probability.

Claim 16. Assuming NMCom is a secure non-malleable commitment scheme with non-malleability with respect
to extraction, the invariant holds in Hyb2,k,0.

Proof. We know that the invariant holds Hyb2,k−1,7. The only difference between Hyb2,k−1,7 and Hyb2,k,0 is
that the simulator commits to the trapdoor in the k-th look ahead thread. Assume, for the sake of contradiction,
that the invariant doesn’t hold in Hyb2,k,0. Then there exists an adversaryA such that for some honest party Pi∗
and malicious party Pj∗ , A causes event E to occur with non-negligible probability. We will use this adversary
to create an adversary ANMCom that breaks the security of the non-malleable commitment scheme NMCom
with non-negligible probability. Specifically, we will break the property of non-malleability with respect to
extraction.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom picks
randomly an honest party Pi and a random malicious party Pj . All messages other than the chosen NMCom
messages are computed in the same manner as SimHyb. The NMCom messages from Pi to Pj are exposed
to the external challenger. Specifically, in round 1, set ncomi→j

1 := ncomL
1 where ncomL

1 is received from
CNMCom for the left execution. On receiving ncomj→i

1 from A, ANMCom forwards this to CNMCom as its first
round message on the right hand side.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the protocol

alone. In each look-ahead thread, ANMCom computes ncomi→j
3 as a commitment to ⊥. From the definition

of the NMCom scheme, from the pseudorandomness property, ANMCom can do this even without knowing the
randomness used to generate ncomi→j

1 .16 These 5 threads are all GOOD with respect to some party H with
noticeable probability. With the 5 threads, ANMCom can successfully run the input and trapdoor extraction
phase.

On the k-th thread ANMCom receives ncomR
2 from CNMCom as the second round message on the right side

which it sets as the value ncomj→i
2 . On receiving ncomi→j

2 in the k-th thread, ANMCom sends this to CNMCom

as its second round message on the left side along with the pair of values (̃r, tj) where tj was obtained during
the extraction phase, and r̃ is a random value.
ANMCom receives a third round message ncomL

3 which is either a commitment to ⊥ or tj . This is sent to A
as the value ncomi→j

3 in the k-th thread.
We note that ANMCom acts as an interface for the ExtNMCom, rewinding A as necessary.
By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗’s commitment to Pi,

outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds to honest
party Pi and malicious party Pj picked randomly by ANMCom. Therefore, with non-negligible probability ε

n2 ,
ExtNMCom outputs t∗ as a valid trapdoor. Since the invariant holds in Hyb2,k−1,7, if ExtNMCom outputs t∗, it
must be the case that we are in Hyb2,k,0 with non-negligible probability. That is, when ExtNMCom outputs a valid
trapdoor, it must correspond to ANMCom receiving a commitment to 0. This breaks the security of NMCom,
which is a contradiction. Thus the invariant must also hold for Hyb2,k,0.

16While in the real execution, these are to random value (instead of ⊥) by the hiding property these are indistinguishable.

54

Claim 17. Assuming hiding of NMCom, Hyb2,k−1,7 is indistinguishable from Hyb2,k,0

Proof. Since we are only making changes in a look-ahead thread, all we need to do is argue that the extraction
continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one hybrid but not the
other. The only difference between Hyb2,k−1,7 and Hyb2,k,0 is that the simulator commits to the trapdoor in the
k-th look ahead thread.

Since we have already established that the invariant holds in each look-ahead thread independently, we want
to use the fact that the probability that the RWI proof for La is accepting cannot change with non-negligible
probability if the invariant is true. If this were the case, the probability SimHyb outputs ⊥extract will not change
in the extraction phase of the two hybrids, since La proves honest behavior of the first 3 rounds of the protocol.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such that
for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom such that the
probability of accept in the two cases differs by a non-negligible probability. We will use this adversary to
create an adversary ANMCom that breaks the hiding of the non-malleable commitment scheme NMCom with
non-negligible probability.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom picks
randomly an honest party Pi and a random malicious party Pj . All messages other than the chosen NMCom
messages are computed in the same manner as SimHyb. The NMCom messages from Pi to Pj are exposed to the
external challenger. Specifically, in round 1, set ncomi→j

1 := ncom1 where ncom1 is received from CNMCom.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the protocol

alone. In each look-ahead thread, ANMCom computes ncomi→j
3 as a commitment to ⊥. From the definition of

the NMCom scheme, ANMCom can do this even without knowing the randomness used to generate ncomi→j
1 .

These 5 threads are all GOOD with respect to some party H with noticeable probability. With the 5 threads,
ANMCom can successfully run the input and trapdoor extraction phase.

On receiving ncomi→j
1 , ANMCom forwards it to CNMCom along with pair of values (̃r, tj) where tj was

obtained during the extraction phase, and r̃ is a random value.
ANMCom receives a third round message ncomL

3 which is either a commitment to r̃ or tj . This is sent to A
as the value ncomi→j

3 on the k-th thread. On receiving the third round messages from A, from 2 GOOD look
ahead threads with respect to Pi, extract rwij→ia,3 from Ecom17. From the definition of Ecom, the extracted value
can be verified to be correctly extracted. ANMCom now checks if

RWI4
(

stj→ia ,Tj→i
rwia

[3]; rj→irwi,a

)
= 1.

If so, it guesses that the commitment was to r̃. Otherwise, it guesses that the commitment was to tj . Let us
define Trap as the event that the commitment was to the trapdoor and Trap as the even that the commitment
was to ⊥. From the challenge game, we know Pr [Trap] = Pr

[
Trap

]
= 1

2

17The extraction in fact does not require further rewinds since mask already extracted in the “Check Abort” phase. But for simplicity,
we ignore this point for now.

55

Pr [guess correct] = Pr
[
guess correct

∣∣∣ Trap
]
· Pr [Trap] + Pr

[
guess correct

∣∣∣ Trap
]
· Pr

[
Trap

]
= Pr

[
guess correct

∣∣∣ Trap
]
· 1

2
+ Pr

[
guess correct

∣∣∣ Trap
]
· 1

2

=
1

2
·
(

Pr
[
RWI proof accepts

∣∣∣ Trap
]

+ Pr
[
RWI proof rejects

∣∣∣ Trap
])

=
1

2
·
(

Pr
[
RWI proof accepts

∣∣∣ Trap
]

+ 1− Pr
[
RWI proof accepts

∣∣∣ Trap
])

=
1

2
+

1

2
·
(

Pr
[
RWI proof accepts

∣∣∣ Trap
]
− Pr

[
RWI proof accepts

∣∣∣ Trap
])

By our assumption, the adversary Pj∗’s acceptance probability of the RWI proof for La to Pi∗ differs non-
negligible probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds to
honest party Pi and malicious party Pj picked randomly by ANMCom. Therefore, Pj’s acceptance probability
of the RWI proof for La to Pi differs non-negligible probability ε

n2 . Now, the extractor ExtEcom is successful
with some non-negligible probability ε′. Therefore, with non-negligible advantage ε·ε′

2·n2 , ANMCom wins the
challenge game with CNMCom which breaks the hiding property of NMCom. Thus, ε must be negligible, and
thus the views are indistinguishable.

Claim 18. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of an
extractor ExtNMCom, the invariant holds in Hyb2,k,1.

Proof. We know that the invariant holds Hyb2,k,0. The only difference between Hyb2,k,0 and Hyb2,k,1 is that
the simulator switches the witness in the RWI for Lb. Assume, for the sake of contradiction, that the invariant
doesn’t hold in Hyb2,k,1. Then there exists an adversary A such that for some honest party Pi∗ and malicious
party Pj∗ , A causes event E to occur with non-negligible probability. We will use this adversary to create an
adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible probability.

We now describe the working of ARWI which interacts with the challenger CRWI. ARWI picks randomly
an honest party Pi and a random malicious party Pj . All messages other than the chosen RWI messages
are computed in the same manner as SimHyb. The RWI messages from Pi to Pj are exposed to the external
challenger. Specifically, in round 1, set rwii→jb,1 := rwi1 where rwi1 is received from CRWI.

After receiving rwii→jb,2 fromA,ARWI creates a set of 5 look-ahead threads, in each of which, it runs rounds

2 and 3 of the protocol alone. In each look-ahead thread, ARWI on receiving rwii→jb,1 forwards it to CRWI as its
second round message. For each thread, ARWI also sends the statement

sti→jb := (Ti→•
rwia [2], sti→•a ,Ti→•

ecom[3],Ti→j
ncom[3], td1,j)

where the other values are generated as in Hyb2,k,0.

In the main thread,ARWI also sends the pair of witnesses (ri→•rwia
,wi→•

a , rwii→•a,3 , r
i→•
ecom) and

(
tj , r

i→j
ncom

)
where

tj is obtained in the input extraction phase, and wi→k
a is computed as defined. For each thread, ARWI receives

rwi3 which is set as rwii→jb,3 .
Recall that RWI is secure even in the presence of 6 total threads. Now ARWI runs the extractor ExtNMCom

of the non-malleable commitment scheme using the message in both the threads that correspond to the non-
malleable commitment from malicious party Pj to honest party Pi. Let the output of ExtNMCom be t∗. ARWI

checks if TDValid(t∗, td1,i) = 1. If so, it outputs 1 to indicate Hyb2,k,1 and 0 otherwise. Let us denote this
output by b̃, and let the challenge bit be b. Then,

56

Pr
[
b̃ = b

]
= Pr

[
b̃ = 0

∣∣∣ b = 0
]
· Pr [b = 0] + Pr

[
b̃ = 1

∣∣∣ b = 1
]
· Pr [b = 1]

= Pr
[
b̃ = 0

∣∣∣ b = 0
]
· 1

2
+ Pr

[
b̃ = 1

∣∣∣ b = 1
]
· 1

2

=
1

2
·
(

1− Pr
[
b̃ = 1

∣∣∣ b = 0
]

+ Pr
[
b̃ = 1

∣∣∣ b = 1
])

=
1

2
+

1

2
·
(

Pr
[
b̃ = 1

∣∣∣ b = 1
]
− Pr

[
b̃ = 1

∣∣∣ b = 0
])

=
1

2
+

1

2
·
(

Pr
[
EXT

∣∣∣ b = 1
]
− Pr

[
EXT

∣∣∣ b = 0
])

where EXT denotes the even that the extractor outputs a valid trapdoor. By our assumption, the invariant
doesn’t hold. Thus ExtNMCom, on adversary Pj∗’s commitment to Pi, outputs a valid trapdoor ti∗ for the
trapdoor generation messages of the honest party Pi∗ with non-negligible probability ε. With probability at
least 1

n2 , where n is the total number of players, this corresponds to honest party Pi and malicious party Pj
picked randomly by ARWI. Therefore, with non-negligible probability ε

n2 , ExtNMCom outputs t∗ as a valid
trapdoor. Since the invariant holds in Hyb2,k,0, if ExtNMCom outputs t∗, it must be the case that we are in
Hyb2,k,1 with non-negligible probability. That is, when ExtNMCom outputs a valid trapdoor, it must correspond
toARWI receiving a proof using the trapdoor witness. This breaks the security of RWI, which is a contradiction.
Thus the invariant must also hold for Hyb2,k,1.

Claim 19. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,0 is indistinguishable
from Hyb2,k,1

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the extraction
continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one hybrid and not the
other. The only difference between Hyb2,k,0 and Hyb2,k,1 is that the simulator switches the witness in the RWI
for Lb.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such that for
some honest party Pi∗ and malicious party Pj∗ ,A commits RWI proofs for Lb in Ecom such that the probability
of accept in the two cases in non-negligible. We will use this adversary to create an adversaryARWI that breaks
the bounded rewinding security of RWI with non-negligible probability.

The proof is similar to that of Claim 17 and Claim 18. We note that we use the fact that RWI is secure even
in the presence of the 2 total threads used for extracting from Ecom.

Claim 20. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of an
extractor ExtNMCom, the invariant holds in Hyb2,k,2.

Proof. We know that the invariant holds Hyb2,k,1. The only difference between Hyb2,k,1 and Hyb2,k,2 is that
the simulator switches the witness in the RWI for La. Assume, for the sake of contradiction, that the invariant
doesn’t hold in Hyb2,k,2. Then there exists an adversary A such that for some honest party Pi∗ and malicious
party Pj∗ , A causes event E to occur with non-negligible probability. We will use this adversary to create an
adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible probability. The rest
of the proof is similar to that of Claim 18.

Claim 21. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,1 is indistinguishable
from Hyb2,k,2

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the extraction
continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one hybrid and not the

57

other. The only difference between Hyb2,k,1 and Hyb2,k,2 is that the simulator switches the witness in the RWI
for La.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such that for
some honest party Pi∗ and malicious party Pj∗ ,A commits RWI proofs for La in Ecom such that the probability
of accept in the two cases in non-negligible. We will use this adversary to create an adversaryARWI that breaks
the bounded rewinding security of RWI with non-negligible probability.

The proof is similar to that of Claim 17 and Claim 18.

Claim 22. Assuming that Com is a secure commitment scheme, and the existence of an extractor ExtNMCom,
the invariant holds in Hyb2,k,3.

Proof. We prove this by a sequence of sub-claims.

Sub-Claim 23. Assuming that Com is a secure commitment scheme, and the existence of an extractor
ExtNMCom, the invariant holds in Hyb2,k,3,0.

Proof. We know that the invariant holds Hyb2,k,2. The only difference between Hyb2,k,2 and Hyb2,k,3,0

is that the simulator switches the commitment in Com from polynomials p to 0. This is in fact done
by a sequence of hybrids where only a single Com is changed at a time. For simplicity, we proceed
with the assumption that in this hybrid, only a single commitment was changed. Assume, for the sake
of contradiction, that the invariant doesn’t hold in Hyb2,k,3. Then there exists an adversary A such
that for some honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-negligible
probability. We will use this adversary to create an adversary ACom that breaks the hiding property of
Com with non-negligible probability.

We now describe the working of ACom which interacts with the challenger CEcom. ACom picks ran-
domly an honest party Pi and a random malicious party Pj . All messages other than the chosen Com
messages are computed in the same manner as SimHyb. The Com messages from Pi to Pj are exposed to
the external challenger. Specifically,ACom sends two challenges (p`, 0) to C. And sets recomi→j

1,` := com
where com is received from CCom. Depending on the challenge used by CCom, we are either in Hyb2,k,2

or Hyb2,k,3,0.
ACom creates sufficiently many look ahead threads where it runs rounds 2 and 3 of the protocol alone.

Now ACom runs the extractor ExtNMCom of the non-malleable commitment scheme using the message
in both the threads that correspond to the non-malleable commitment from malicious party Pj to honest
party Pi. Let the output of ExtNMCom be t∗. ACom checks if TDValid(t∗, td1,i) = 1. If so, it outputs 1 to
indicate Hyb2,k,3 and 0 otherwise.

By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗’s commitment
to Pi, outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with
non-negligible probability ε. With probability at least 1

n2 , where n is the total number of players, this
corresponds to honest party Pi and malicious party Pj picked randomly by ACom. Therefore, with non-
negligible probability ε

n2 , ExtNMCom outputs t∗ as a valid trapdoor. Since the invariant holds in Hyb2,k,2,
if ExtNMCom outputs t∗, it must be the case that we’re in Hyb2,k,3 with non-negligible probability. That
is, when ExtNMCom outputs a valid trapdoor, it must correspond to ACom receiving input 0. This breaks
the security of Com, which is a contradiction. Thus the invariant must also hold for Hyb2,k,3.

Sub-Claim 24. The invariant holds in Hyb2,k,3,1.

Proof. The change from is statistical Hyb2,k,3,0 when there are fewer than Brecom rewinds when extracting
from the NMCom. This follows from the fact that the degree of the polynomial is set to be Brecom, and
thus statistically undetermined by the number of rewinds ≤ Brecom. By our setting of parameters, we
know that number of rewinds ≤ Brecom. Thus The invariant holds in Hyb2,k,3,1.

58

Sub-Claim 25. Assuming that Com is a secure commitment scheme, and the existence of an extractor
ExtNMCom, the invariant holds in Hyb2,k,3,2.

Proof. The proof follows identically as in Sub-Claim 23.

Thus we have that the invariant holds for Hyb2,k,3.

Claim 26. Assuming that Com is a secure commitment scheme, Hyb2,k,2 is indistinguishable from Hyb2,k,3

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the extraction
continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one hybrid and not the
other. The only difference between Hyb2,k,2 and Hyb2,k,3 is that the simulator switches commitment in RECom
to 0.

The proof is similar to that of Claim 17 and Claim 22.

Claim 27. Assuming that Π is a rewinding secure protocol for the first three rounds, and the existence of an
extractor ExtNMCom, the invariant holds in Hyb2,k,4.

Proof. We know that the invariant holds Hyb2,k,3. The only difference between Hyb2,k,3 and Hyb2,k,4 is that the
simulator switches the input in Π from (x, r) to 0 for each honest party Pî. This is in fact done by a sequence of
hybrids where only a single party’s input is changed at a time. For simplicity, we proceed with the assumption
that in this hybrid, only a single party’s input was changed. Assume, for the sake of contradiction, that the
invariant doesn’t hold in Hyb2,k,4. Then there exists an adversary A such that for some honest party Pi∗ and
malicious party Pj∗ , A causes event E to occur with non-negligible probability. We will use this adversary
to create an adversary AΠ that breaks the bounded rewinding security of the first three round of Π with non-
negligible probability.

We now describe the working of AΠ which interacts with the challenger CΠ. AΠ picks randomly an honest
party Pi and a random malicious party Pj . All messages other than the chosen Π messages for Pî are computed
in the same manner as SimHyb. The Π messages for Pî are exposed to the external challenger. Specifically, in
round 1, set msg1,̂i

:= msg1 where msg1 is received from CΠ.
After generating/receiving TΠ[1] from A, AΠ creates a set of 5 look-ahead threads, in each of which, it

runs rounds 2 and 3 of the protocol alone. In each look-ahead thread, AΠ on computing TΠ[2] forwards it to
CΠ.

In the main thread (k-th look-ahead thread), AΠ also sends the pair of inputs (xi, ri) and 0. For the look-
ahead threads for extraction, AΠ sends the input (xi, ri). For each thread, AΠ receives msg3 which is set as
msg3,̂i. Depending on the input used by CΠ, we are either in Hyb2,k,3 or Hyb2,k,4.

Recall that Π is secure even in the presence of 3 total threads. Now AΠ runs the extractor ExtNMCom of the
non-malleable commitment scheme using the message in both the threads that correspond to the non-malleable
commitment from malicious party Pj to honest party Pi. Let the output of ExtNMCom be t∗. AΠ checks if
TDValid(t∗, td1,i) = 1. If so, it outputs 1 to indicate Hyb2,k,4 and 0 otherwise.

By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗’s commitment to Pi,
outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds to hon-
est party Pi and malicious party Pj picked randomly by AΠ. Therefore, with non-negligible probability ε

n2 ,
ExtNMCom outputs t∗ as a valid trapdoor. Since the invariant holds in Hyb2,k,3, if ExtNMCom outputs t∗, it must
be the case that we’re in Hyb2,k,4 with non-negligible probability. That is, when ExtNMCom outputs a valid
trapdoor, it must correspond to AΠ receiving the messages using input 0. This breaks the security of Π, which
is a contradiction. Thus the invariant must also hold for Hyb2,k,4.

59

Claim 28. Assuming that Π is a rewinding secure protocol for the first three rounds, Hyb2,k,3 is indistinguish-
able from Hyb2,k,4

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the extraction
continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one hybrid and not the
other. The only difference between Hyb2,k,3 and Hyb2,k,4 is that the simulator switches input to 0.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such that for
some honest party Pi∗ and malicious party Pj∗ ,A commits RWI proofs for La in Ecom such that the probability
of accept in the two cases in non-negligible. We will use this adversary to create an adversary AΠ that breaks
the bounded rewinding security of Π with non-negligible probability.

The proof is similar to that of Claim 17 and Claim 27.

Claim 29. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of an
extractor ExtNMCom, the invariant holds in Hyb2,k,5.

Proof. Proof is identical to that of Claim 20.

Claim 30. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,4 is indistinguishable
from Hyb2,k,5

Proof. Proof is identical to that of Claim 21.

Claim 31. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence of an
extractor ExtNMCom, the invariant holds in Hyb2,k,6.

Proof. Proof is identical to that of Claim 18.

Claim 32. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,5 is indistinguishable
from Hyb2,k,6

Proof. Proof is identical to that of Claim 19.

Claim 33. Assuming NMCom is a secure non-malleable commitment scheme with respect to extraction, the
invariant holds in Hyb2,k,7.

Proof. Proof is identical to that of Claim 16.

Claim 34. Assuming NMCom is a secure non-malleable commitment scheme, Hyb2,k,6 is indistinguishable
from Hyb2,k,7

Proof. Proof is identical to that of Claim 17.

Claim 35. Assuming NMCom is a secure non-malleable commitment scheme with respect to extraction, the
invariant holds in Hyb3.

Proof. Proof is identical to that of Claim 16.

Claim 36. Assuming NMCom is a secure non-malleable commitment scheme, Hyb3 is indistinguishable from
Hyb2

60

Proof. The only difference between Hyb3 and Hyb2 is that the simulator commits to the trapdoor in the main
look ahead thread.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there exists an adversary
D such that D can distinguish between Hyb3 and Hyb2 with non-negligible advantage. We will use this adver-
sary to create an adversary ANMCom that breaks the hiding of the non-malleable commitment scheme NMCom
with non-negligible probability.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom picks
randomly an honest party Pi and a random malicious party Pj . All messages other than the chosen NMCom
messages are computed in the same manner as SimHyb. The NMCom messages from Pi to Pj are exposed to the
external challenger. Specifically, in round 1, set ncomi→j

1 := ncom1 where ncom1 is received from CNMCom.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the protocol

alone. In each look-ahead thread, ANMCom computes ncomi→j
3 as a commitment to ⊥. From the definition of

the NMCom scheme, ANMCom can do this even without knowing the randomness used to generate ncomi→j
1 .

These 5 threads are all GOOD with respect to some party H with noticeable probability. With the 5 threads,
ANMCom can successfully run the input and trapdoor extraction phase.

On receiving ncomi→j
1 , ANMCom forwards it to CNMCom along with pair of values (̃r, tj) where tj was

obtained during the extraction phase, and r̃ is a random value.
ANMCom receives a third round message ncomL

3 which is either a commitment to ⊥ or tj . This is sent to A
as the value ncomi→j

3 on the main thread. The rest of the messages are obtained in the same manner as SimHyb.
Depending on which value was committed we are either in Hyb3 or Hyb2. On completion of the execution, the
view is input to D and the output returned is the output of ANMCom

By our assumption, D can distinguish between the two hybrids with noticeable probability ε. Therefore,
with non-negligible advantage ε

n2 , ANMCom wins the challenge game with CNMCom which breaks the hiding
property of NMCom. Thus, ε must be negligible, and thus the views are indistinguishable.

Claim 37. Assuming the bounded rewinding witness indistinguishability RWI, the invariant holds in Hyb4.

Proof. Proof is identical to that of Claim 18.

Claim 38. Assuming the bounded rewinding witness indistinguishability RWI, Hyb4 is indistinguishable from
Hyb3

Proof. The only difference between Hyb4 and Hyb3 is that the simulator switches the witness in the RWI for
Lb.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D can distinguish
between Hyb4 and Hyb3 with non-negligible advantage. We will use this adversary to create an adversaryARWI

that breaks the bounded rewinding security of RWI with non-negligible probability.
The proof is similar to that of Claim 36 and Claim 37.

Claim 39. Assuming the bounded rewinding witness indistinguishability RWI, the invariant holds in Hyb5.

Proof. Proof is identical to that of Claim 20.

Claim 40. Assuming the bounded rewinding witness indistinguishability RWI, Hyb5 is indistinguishable from
Hyb4

Proof. The only difference between Hyb5 and Hyb4 is that the simulator switches the witness in the RWI for
La.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D can distinguish
between Hyb5 and Hyb4 with non-negligible advantage. We will use this adversary to create an adversaryARWI

that breaks the bounded rewinding security of RWI with non-negligible probability.
The proof is similar to that of Claim 36 and Claim 37.

61

Claim 41. The invariant holds in Hyb6.

Proof. The claim is trivially true since the change is made only in the fourth round.

Claim 42. Assuming the witness indistinguishability WI, Hyb6 is indistinguishable from Hyb5

Proof. The only difference between Hyb6 and Hyb5 is that the simulator switches the witness in the WI for Lc.
Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D can distinguish

between Hyb6 and Hyb5 with non-negligible advantage. We will use this adversary to create an adversary AWI

that breaks the witness indistinguishability of WI with non-negligible probability.
The proof is similar to that of Claim 36 and Claim 37. We point out that since only the second round of WI

overlaps with the rewinding rounds, we don’t need the external challenger to handle rewinds since the responses
on the look-ahead threads, that are run only till the end of third round, are discarded.

Claim 43. Assuming the rewinding security of RECom, Hyb7 is indistinguishable from Hyb6

Proof. This is proved via a sequence of hybrids given below.
This is done by a sequence of hybrids mentioned below. We note that we separate the look-ahead threads

into two separate types: (i) to extract trapdoor, (ii) to extract input. In our hybrids, we shall only make changes
to type (ii) threads.

Roughly, we first argue that if we switch to committing to “junk” in the RECom in any thread, the invariant
continues to hold in that thread. For this, we will rely on the bounded rewind security of RECom. This ensures
that on such threads, the adversary’s input does not also switch to “junk” on these threads. We then use these
threads as look-ahead threads to extract the adversary’s inputs. These threads can be completed without having
to forward messages to an external challenger since we can respond to committing to “junk“, which can be
done without knowledge of the randomness for that instance of RECom. This avoids a potential circularity with
regards to extracting from the RECom while maintaining the hiding property of honestly evaluated RECom.

Hyb7,0: Change main thread RECom to random: In this hybrid, SimHyb modifies the third round of
the main thread to send “junk” responses. Specifically, for every honest party Pi and malicious party Pj
do the following:

– for every ` ∈ [N], pick a new degree 4 polynomial q`.
– compute recom3,` as (0⊕ q`(0), q`(z`)).
Given that we changed our RECom to random, we want to claim that the adversary’s input has not

also become random.

Claim 44. Assuming the security of Com and the existence of ExtNMCom, the invariant holds in Hyb7,0.

Proof. We prove that the invariant holds in the look-ahead threads that we make the changes in. We know
that the invariant holds Hyb6. The only difference between Hyb6 and Hyb7,0 is that the simulator uses
random polynomials to compute the third round messages of RECom on the main thread. An alternate
way to think of this is that either the polynomials used inside Com and that used to compute the third
round of RECom are the same, or they’re independently sample random polynomials. Thus we think
of the change as SimHyb switching the commitment in Com from polynomials p to q while using p to
compute the third round of RECom. This is in fact done by a sequence of hybrids where only a single
Com is changed at a time. For simplicity, we proceed with the assumption that in this hybrid, only a
single commitment was changed. Assume, for the sake of contradiction, that the invariant doesn’t hold in
Hyb7,0. Then there exists an adversaryA such that for some honest party Pi∗ and malicious party Pj∗ ,A
causes event E to occur with non-negligible probability. We will use this adversary to create an adversary
ACom that breaks the hiding property of Com with non-negligible probability.

We now describe the working of ACom which interacts with the challenger CCom. ACom picks ran-
domly an honest party Pi and a random malicious party Pj . All messages other than the chosen Com mes-
sages are computed in the same manner as SimHyb. The Com messages from Pi to Pj are exposed to the

62

external challenger. Specifically, ACom sends two challenges (p`, q`) to C. And sets recomi→j
1,` := com

where com is received from CCom. Depending on the challenge used by CCom, we are either in Hyb6 or
Hyb7,0.
ACom creates 2 look ahead threads where it runs rounds 2 and 3 of the protocol alone. Now ACom

runs the extractor ExtNMCom of the non-malleable commitment scheme using the message in both the
threads that correspond to the non-malleable commitment from malicious party Pj to honest party Pi.
Let the output of ExtNMCom be t∗. ACom checks if TDValid(t∗, td1,i) = 1. If so, it outputs 1 to indicate
Hyb7,2 and 0 otherwise.

By our assumption, the invariant doesn’t hold. Thus ExtNMCom, on adversary Pj∗’s commitment
to Pi, outputs a valid trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with
non-negligible probability ε. With probability at least 1

n2 , where n is the total number of players, this
corresponds to honest party Pi and malicious party Pj picked randomly by ACom. Therefore, with non-
negligible probability ε

n2 , ExtNMCom outputs t∗ as a valid trapdoor. Since the invariant holds in Hyb6,
if ExtNMCom outputs t∗, it must be the case that we’re in Hyb7,0 with non-negligible probability. That
is, when ExtNMCom outputs a valid trapdoor, it must correspond to ACom receiving the challenge using
input q. This breaks the security of Com, which is a contradiction. Thus the invariant must also hold for
Hyb7,0.

This works because as long as the number of threads created to extract from NMCom is less than
Brecom, which is in fact true, since otherwise, the “random” polynomial no longer appears random. It
should be noted that we don’t need to extract the adversary’s input for the reduction, and thus no use of
creating any Type (ii) threads.

Claim 45. Assuming the security of Com, Hyb7,0 is indistinguishable from Hyb6

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
adversary doesn’t switch to “junk” commitments when we make the change. The only difference between
Hyb6 and Hyb7,0 is that the simulator uses random polynomials to compute the third round messages of
RECom look-ahead threads.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A such that
for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom such that the
probability of accept in the two cases in non-negligible. We will use this adversary to create an adversary
ACom that breaks the security of Com with non-negligible probability.

The proof is similar to that of Claim 17 and Claim 44.

Hyb7,1: Create Type (ii) look-ahead thread: In this hybrid, SimHyb creates Type (ii) threads that are
identical to the main thread. These will be used to extract the adversary’s input. We create as many
needed for the extraction of the adversary’s input.

Claim 46. Assuming the security of Com and the existence of ExtNMCom, the invariant holds in Hyb7,1.

Proof. This trivially follows from the fact that invariant holds in Hyb7,0 are identical to the main thread.

Claim 47. Assuming the security of Com, Hyb7,1 is indistinguishable from Hyb6

Proof. This follows as in the proof of Claim 45.

Hyb7,2: Change main thread RECom to 0: In this hybrid, SimHyb modifies the third round of the main
thread to commit to 0. Specifically, for every honest party Pi and malicious party Pj do the following:

63

– compute recom3,` as (0⊕ p`(0), p`(z`)).
where p` are the polynomials committed to in the first round.

Claim 48. Assuming the security of Com and the existence of ExtNMCom, the invariant holds in Hyb7,2.

Proof. The proof follows as in 44.

Claim 49. Assuming the security of Com, Hyb7,2 is indistinguishable from Hyb6

Proof. The proof follows as in 45

Note that Hyb7,2 ≡ Hyb7

Thus Hyb7 is indistinguishable from Hyb6.

Claim 50. Assuming that Π is a secure protocol instantiated with rewinding secure ROT, hiding of OT against
malicious senders, hiding of Ecom, bounded rewind witness indistinguishability of RWI, Hyb8 is indistinguish-
able from Hyb7

Proof. This is proved via a sequence of hybrids. The reasoning behind this sub-division is that if we directly
make changes to the protocol on the main thread, a subtle issue shows up during reduction. Namely, the look
ahead threads currently employ an honest strategy using the inputs 0 for the underlying MPC. Additionally, they
use the same first round message as the main thread. Although, no proof is sent in the clear, honest behavior is
proven via the commitment and the OT receiver message on these look ahead thread, which requires knowledge
of the randomness used for the underlying MPC. This is problematic during a reduction to the security of the
underlying MPC. We will utilize the fact that our proofs are not sent in the clear to get around this issue.

Recall that we separate out the look ahead threads based on their purpose. Type (i) look-ahead threads are
used to extract the trapdoor, while the type (ii) look-ahead threads are used to extract the inputs.

Hyb8,0: Change type (i) threads Ecom to 0: In this hybrid, SimHyb modifies the third round of the type
(i) threads to commit to 0 instead of commitment to RWI third round messages corresponding to La.

Claim 51. Assuming the hiding of Ecom, Hyb8,0 is indistinguishable from Hyb7

Proof. Since we’re making changes only to type (i) threads used to extract trapdoor, we need to ensure
we’re still able to extract the trapdoor with this change. This can be done without having to rewind to the
extract the trapdoor. On receiving the third round of the adversary’s message on these threads, we can use
TDOut to check if the trapdoor messages sent by the adversary satisfy validity. If there is a noticeable
change in the validity condition being satisfied, we can break the hiding property of Ecom.

Assume there exists an adversary D that results in the trapdoor validity check being passed in Hyb8,0

and Hyb7 with non-negligible difference. We will use this to create an adversary AEcom to break the
hiding property of Ecom with non-negligible probability. Note that we make changes to these threads
one at a time.
AEcom picks randomly an honest party Pi and a random malicious party Pj . All messages in the main

and look ahead threads other than the Ecom messages from Pi to Pj on the changed look ahead thread
are identical. The Ecom messages from Pi to Pj are exposed to the external challenger. The first two
rounds are forwarded to and from the adversary. Then, AEcom sends to the challenger the pair of values
(0, rwii→ja,3)

AEcom receives a third round message ecom3 which is either a commitment to 0 or rwii→ja,3 . This
is sent to A as the third round message. The rest of the messages are obtained in the same manner as
SimHyb. Depending on which value was committed we are either in Hyb8,0 or Hyb7. On completion of
the execution, check the validity condition of the trapdoor messages sent using TDOut. If the validity
check passes, output 0 (to indicate we’re in Hyb7), else output 1.

64

By our assumption, D results in non-negligible difference in the validity condition being verified it
the two hybrids with noticeable probability difference ε. Therefore, with non-negligible advantage ε

n2 ,
AEcom wins the challenge game with CEcom which breaks the hiding property of Ecom. Thus, ε must be
negligible, and thus we continue to extract the trapdoor.

Since we continue to extract trapdoor, Hyb8,0 is indistinguishable from Hyb7.

Note that we don’t need to argue invariant here to argue indistinguishability since the look ahead
threads we extract inputs from are unchanged.
Hyb8,1: Change Type (i) threads receiver input to 0 in OT: In this hybrid, SimHyb modifies the third
round of the type (i) threads to use receiver input 0 in OT instead of the third round messages of RWI
corresponding to Lb.

Claim 52. Assuming the hiding of OT against malicious senders, Hyb8,1 is indistinguishable from Hyb8,0

Proof. The proofs follows identically as in Claim 51. The only difference being the now the OT mes-
sages are exposed to the external challenger. Since we’re still able to extract the trapdoor, Hyb8,1 is
indistinguishable from Hyb8,0.

We now make changes to look ahead threads of Type (ii)
Hyb8,2: Switch RWI proofs for La on Type (ii) threads: In this hybrid, SimHyb modifies the third round
of the type (ii) threads to switch to the “trapdoor witness” in the RWI proofs for La. This is done a single
thread at a time.

We need to ensure that we still continue extracting the inputs of the adversary. This is done by proving
the invariant holds in each of the threads when we make this change.

Claim 53. Assuming bounded rewind witness indistinguishability of RWI, and the existence of an extrac-
tor ExtNMCom the invariant holds in Hyb8,2 .

Proof. The proof follows identically as in Claim 18.

Claim 54. Assuming bounded rewind witness indistinguishability of RWI, Hyb8,2 is indistinguishable
from Hyb8,1.

Proof. The proof follows identically as in Claim 19.

Hyb8,3: Switch RWI proofs for Lb on Type (ii) threads: In this hybrid, SimHyb modifies the third round
of the type (ii) threads to switch to the “trapdoor witness” in the RWI proofs for Lb. This is done a single
thread at a time.

Claim 55. Assuming bounded rewind witness indistinguishability of RWI, and the existence of an extrac-
tor ExtNMCom the invariant holds in Hyb8,3 .

Proof. The proof follows identically as in Claim 18.

Claim 56. Assuming bounded rewind witness indistinguishability of RWI, Hyb8,3 is indistinguishable
from Hyb8,2.

Proof. The proof follows identically as in Claim 19.

65

Hyb8,4: Switch RWI proofs for Lb on Type (ii) threads: In this hybrid, SimHyb modifies the third round
of the type (ii) threads to switch to the “trapdoor witness” in the RWI proofs for Lb. This is done a single
thread at a time.
Hyb8,5: Simulate Π on main thread: In this hybrid, SimHyb modifies the transcript of the underlying
protocol Π. For a complete description of the changes, refer to the description of Hyb8.

Claim 57. Assuming that Π is a secure protocol instantiated with rewinding secure ROT, the invariant
holds in Hyb8,5.

Proof. Here, since the invariant only depends on the first three rounds, we need to prove that the invariant
holds conditioned on the view of the first three rounds. The proof is similar to Claim 27.

Claim 58. Assuming that Π is a secure protocol instantiated with rewinding secure ROT, Hyb8,5 is
indistinguishable from Hyb8,4.

Proof. The only difference between Hyb8,5 and Hyb8,4 is how the transcript of the underlying protocol
Π is computed.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there exists
an adversary D such that D can distinguish between Hyb8,5 and Hyb8,4 with non-negligible advantage.
We will use this adversary to create an adversary AΠ that breaks the indistinguishability of Π when
instantiated with bounded rewinding secure ROT with non-negligible probability. Essentially, we rely on
the fact that if the ROT is rewinding secure, then the transcript of Π for an honest and simulated transcript
are indistinguishable.

We now describe the working ofAΠ which interacts with the challenger CΠ. All messages other than
the Π messages are computed in the same manner as SimHyb. The Π messages from are exposed to the
external challenger. Specifically, in round 1, set {msg1,i}Pi∈H := −−→msg1 where−−→msg1 is received from CΠ.
Send to CΠ {msg1,i}Pi /∈H that is sent by A. The response from CΠ, −−→msg2 is parsed as {msg2,i}Pi∈H :=
−−→msg2.
AΠ then creates a set of 3 type (i) look-ahead threads, in each of which, it runs rounds 2 and 3 of

the protocol alone. This is done to extract the trapdoor. This doesn’t require generating proofs on these
look-ahead threads. Now, with the extracted trapdoor, AΠ then creates a set of 5 type (ii) look-ahead
threads, in each of which, it runs rounds 2 and 3 of the protocol alone. In each look-ahead thread, AΠ

forwards the {msg2,i}Pi /∈H sent by A in each look-ahead thread to CΠ. These are simply ROT messages
and will be responded to by CΠ. The response is likewise forwarded toA. These 5 threads are all GOOD
with respect to some party H with noticeable probability. With the 5 threads, AΠ can successfully run
the extraction phase. Note that in these threads, AΠ can use the “trapdoor witness” extracted using the
type (i) threads.

On completion of the extraction phase, prior to the third round on the main thread, AΠ sends to CΠ

all parties inputs ({xi, ri}i∈[n], y) to CΠ. CΠ then either responds with the simulated last message or the
honest execution for the rest of the transcript. The rest of the messages are obtained in the same manner as
SimHyb. Depending on the choice of CΠ we are either in Hyb8 or Hyb7. On completion of the execution,
the view is input to D and the output returned is the output of AΠ

By our assumption, D can distinguish between the two hybrids with non-negligible probability ε.
Therefore, with non-negligible advantage ε, AΠ wins the challenge game with CΠ which breaks the
security of Π when rewinding security of ROT is maintained. Thus, ε must be negligible, and thus the
views are indistinguishable.

Remark 10. For the case of the implicit abort, in the above sub-hybrid we replace the Π messages of
honest parties to be computed honestly using input 0. The arguments then follow identically as above
and Claims 27 and 28.

66

Now we undo the changes made to the look ahead threads. The proofs follow identically as argued
above, and are skipped.
Hyb8,6: Switch RWI proofs for Lb on Type (ii) threads: In this hybrid, SimHyb modifies the third round
of the type (ii) threads to switch back to the “real witness” in the RWI proofs for Lb. This is done a single
thread at a time.
Hyb8,7: Change Type (i) threads receiver input to RWI message in OT: In this hybrid, SimHyb mod-
ifies the third round of the type (i) threads to use receiver input to be the third round message of RWI,
corresponding to Lb, in OT, instead of 0.
Hyb8,8: Change Type (i) threads Ecom to RWI message: In this hybrid, SimHyb modifies the third
round of the type (i) threads to commit to RWI third round messages corresponding to La instead of the
commitment to 0.

Note that Hyb8,8 ≡ Hyb8

Claim 59. The invariant holds in Hyb9.

Proof. The claim is trivially true since there are no changes to the main thread.

Claim 60. Hyb9 is indistinguishable from Hyb8 except with negligible probability.

Proof. Except with negligible probability, the extraction from OT succeeds, and therefore the simulator does
not abort.

Claim 61. The invariant holds in Hyb10.

Proof. The claim is trivially true since the change is made only in the fourth round.

Claim 62. Assuming the security of GC and sender’s OT messages, Hyb10 is indistinguishable from Hyb9

Proof. This is established by the creating the following sub-hybrids.

Hyb10,0: Change OT sender’s message on main thread: In this hybrid, SimHyb changes how the
sender OT is computed. We extract from ot to obtain the adversary’s receiver message. Use the receiver
value extracted from the ot to change the sender OT to include only a single label of the garbled circuit.
Specifically, ∀j 6= i, compute

oti→j4 ← OT4((labi,v|j , labi,v|j)).

where v is the extracted receiver string from oti→j3 .

Claim 63. Assuming the security of sender’s OT messages, Hyb10,0 is indistinguishable from Hyb9

Proof. The only difference between Hyb10,0 and Hyb9 is that the simulator SimHyb switches the sender
OT input to using the same label twice Pi if it receives a non-accepting RWI proof for La.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there exists an
adversary D such that D can distinguish between Hyb10,0 and Hyb9 with non-negligible advantage. We
will use this adversary to create an adversary AOT that breaks the sender’s security in OT with non-
negligible probability.

We now describe the working of AOT which interacts with the challenger COT. AOT picks randomly
an honest party Pi and a random malicious party Pj . All messages other than the chosen OT messages
are computed in the same manner as SimHyb. The OT messages from Pi to Pj are exposed to the external
challenger. Specifically, in round 1, send to COT the first round OT message oti→j1 sent by A. Receive
ot2 and set oti→j2 := ot2.

67

AOT creates sufficiently many look-ahead threads, in each of which, it runs rounds 2 and 3 of the pro-
tocol alone. In each look-ahead thread,AOT re-sends the same oti→j2 message in the second round. Only
oti→j3 on the main thread is forwarded to COT. With the the look ahead threads threads, AOT can suc-

cessfully run the extraction phase to extract the OT receiver bit from Pj to be v. Send
(

labi,0|j , labi,1|j

)
and

(
labi,v|j , labi,v|j

)
to COT as challenges. Note that we don’t need rewind security here since the

look ahead threads are only executed up to the third round. And for the alternating message OT, a new
adversarial receiver message doesn’t have to be answered on the look ahead threads.

The rest of the messages are obtained in the same manner as SimHyb. Depending on pair was used
as sender input we are either in Hyb10,0 or Hyb9. On completion of the execution, the view is input to D
and the output returned is the output of AOT

By our assumption, D can distinguish between the two hybrids with noticeable probability ε. There-
fore, with non-negligible advantage ε

n2 ,AOT wins the challenge game with COT which breaks the sender
security of OT. Thus, ε must be negligible, and thus the views are indistinguishable.

Hyb10,1: Simulate garbled circuit: In this hybrid, SimHyb computes a garbled circuit to output ⊥ if
either in implicit abort or opaque case. Specifically, in this case,(

Ci, l̃abi
)
← Garble (C⊥)

Claim 64. Assuming the security of GC, Hyb10,1 is indistinguishable from Hyb10,0

Proof. The only difference between Hyb10,1 and Hyb10,0 is that the simulator SimHyb switches the gar-
bled circuit to a circuit for each relevant Pi. Note that this is a functionally equivalent circuit given the
condition we choose to switch. Namely, either there is an implicit abort, or that Pi receives a wrong RWI
proof via OT. The changes are made through a sequence of sub-hybrids, where in each sub-hybrid only
a single circuit is switched.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there exists an
adversaryD such thatD can distinguish between Hyb10,1 and Hyb10,0 with non-negligible advantage. We
will use this adversary to create an adversaryAGC that breaks GC security with non-negligible probability.

We now describe the working of AGC which interacts with the challenger CGC. All messages other
than the garbled circuit are computed in the same manner as SimHyb. The GC messages from Pi are
exposed to the external challenger. Specifically, in round four, it sends as challenges to CGC, (C⊥, v)
and (C[msg4,i,T

•→i
rwib

[2], st•→ib , r•→irwib
], v) where v is the concatenation of all extracted/generated receiver

values for all parties other than Pi. CGC then returns a garbled circuit C and labels corresponding to the
input v, l̂ab. These are set as Ci := C and l̂abi := l̂ab. The rest of the messages are obtained in the same
manner as SimHyb. Depending on challenge bit used by CGC we are either in Hyb10,1 or Hyb10,0. On
completion of the execution, the view is input to D and the output returned is the output of AGC.

By our assumption, D can distinguish between the two hybrids with noticeable probability ε. There-
fore, with non-negligible advantage, AGC wins the challenge game with CGC which breaks the security
of GC. Thus, ε must be negligible, and thus the views are indistinguishable.18

Hyb10,2: Change OT sender’s message on main thread: In this hybrid, SimHyb changes how the sender
OT is computed.

Change the sender OT to include back to include both labels of the garbled circuit. Specifically,
∀j 6= i, compute

oti→j4 ← OT4((labi,0|j , labi,1|j)).
18For ease of proof, we use the indistinguishability definition instead of the simulation definition as given in the prelims. This is

easily rectified by having another intermediate hybrid where the simulated garbled circuit it used.

68

Claim 65. Assuming the security of sender’s OT messages, Hyb10,2 is indistinguishable from Hyb9

Proof. The proof follows identically as in Claim 63.

Note that Hyb10,2 ≡ Hyb10.

Claim 66. The invariant holds in HybIDEAL.

Proof. The claim is trivially true since the main thread remains unchanged.

Claim 67. Hyb10 is indistinguishable from HybIDEAL except with probability at most µ4 + negl(λ).

Proof. This is argued in two cases depending on the probability with which the adversary abort.

Case 1: Pr[not abort] ≥ µ
4 :

Suppose the adversary doesn’t cause an abort with probability greater that µ4 . Let us analyze the proba-
bility with which ⊥extract is output by SimHyb. By the Chernoff bound, in Hyb11, except with negligible
probability, in the set of 5·n·λ

µ threads, there will be at least 5 GOOD threads with respect to some honest
party Pi∗ . Also in HybIDEAL, SimHyb will run an expected polynomial number of threads to get 12λ
(which is greater than 5 · n) GOOD threads. Thus the extractions will be successful in except with
negligible probability.

Therefore the only difference between HybREAL and Hyb11 is that in Hyb11, after extraction, SimHyb

samples the main thread λ
µ times while in HybREAL, SimHyb first estimates the probability of not aborting

to be ε′ and then re-samples the main thread min
(

2λ, λ
2

ε′

)
times. The rest of the proof follows in a very

similar manner to the proof of claim 5.8 in [Lin16]. That is, we show that if “Check Abort” step succeeds,
the simulator in HybIDEAL fails only with negligible probability using the claim in [Lin16]. Also, by a
Markov argument, we know that Hyb11, if the “Check Abort” step succeeds, the simulation successfully
forces the output and hence, this completes the proof.

Case 2: Pr[not abort] < µ
4 :

Suppose the adversary doesn’t cause an abort with probability smaller than µ
4 . Then, in both hybrids,

SimHyb aborts at the end of the “Check Abort” step except with probability µ
4 . Thus, in this case, the

adversary’s view in HybIDEAL and Hyb11 is indistinguishable except with probability at most µ4 +negl(λ).

We now calculate the probability that the adversary can distinguish between HybREAL and HybIDEAL.
Except in two cases, every pair of hybrids are indistinguishable except with negligible probability. In the

two special cases, the hybrids are indistinguishable except with probability µ
4 + negl(λ). Thus, HybREAL and

HybIDEAL are indistinguishable except with probability µ
2 +negl(λ). This contradicts our assumption that there

must be an adversary A that can distinguish the REAL and IDEAL executions with probability at least µ.

7 Acknowledgments

We would like to thank Alex Lombardi and Luke Schaeffer for pointing out to us that any OT with perfect
completeness implies non-interactive commitment schemes, and, for suggesting to us to revise our theorem
statements to reflect this observation.

Vipul Goyal is supported in part by the NSF award 1916939, a gift from Ripple, a JP Morgan Faculty Fellow-
ship, a PNC center for financial services innovation award, and a Cylab seed funding award.

69

Arka Rai Choudhuri and Abhishek Jain are supported in part by DARPA/ARL Safeware Grant W911NF-15-C-
0213, and NSF CNS-1814919. Arka Rai Choudhuri is also supported by NSF Grant CNS-1908181.

Rafail Ostrovsky is supported in part by NSF-BSF Grant 1619348, DARPA/SPAWAR N66001-15-C-4065,
ODNI/IARPA 2019-1902070008 US-Israel BSF grant 2012366, JP Morgan Faculty Award, Google Faculty
Research Award, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Re-
search Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corpora-
tion Research Award. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official views or policies, either expressed or implied, of the Depart-
ment of Defense, DARPA, ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Michele Ciampi was partially supported by H2020 project PRIVILEDGE #780477.

References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to round-optimal
secure multiparty computation. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 468–499. Springer, Heidelberg, August 2017.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital
goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 119–135.
Springer, Heidelberg, May 2001.

[AJ17] Prabhanjan Ananth and Abhishek Jain. On secure two-party computation in three rounds. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 612–644.
Springer, Heidelberg, November 2017.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana,
and Amit Sahai. Promise zero knowledge and its applications to round optimal MPC. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 459–487. Springer, Heidelberg, August 2018.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation
without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 645–677. Springer, Heidelberg, November 2017.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the black-box
barrier. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1091–1102. ACM
Press, June 2019.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivi-
ous transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532. Springer, Heidelberg,
April / May 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

70

[BP12] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In Ronald
Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 190–208. Springer, Heidelberg, March
2012.

[CGJ19] Arka Rai Choudhuri, Vipul Goyal, and Abhishek Jain. Founding secure computation on
blockchains. Cryptology ePrint Archive, Report 2019/253, 2019. https://eprint.iacr.
org/2019/253.

[CO19] Michele Ciampi and Rafail Ostrovsky. Four-round secure multiparty computation from general
assumptions. Cryptology ePrint Archive, Report 2019/214, 2019. https://eprint.iacr.
org/2019/214.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-
malleable commitments (and more) in 3 rounds. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 270–299. Springer, Heidelberg, August
2016.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 711–742. Springer, Heidelberg,
November 2017.

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal secure
two-party computation from trapdoor permutations. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 678–710. Springer, Heidelberg, November 2017.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended abstract).
In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS, pages 283–293. IEEE
Computer Society Press, November 2000.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applica-
tions. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
467–476. ACM Press, June 2013.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private
information retrieval schemes. In 30th ACM STOC, pages 151–160. ACM Press, May 1998.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems
for NP. Journal of Cryptology, 9(3):167–190, June 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems.
SIAM J. Comput., 25(1):169–192, 1996.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan. The
relationship between public key encryption and oblivious transfer. In 41st FOCS, pages 325–335.
IEEE Computer Society Press, November 2000.

[GKW15] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In Rosario Gennaro and Matthew J. B. Rob-
shaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 485–502. Springer, Heidel-
berg, August 2015.

71

https://eprint.iacr.org/2019/253
https://eprint.iacr.org/2019/253
https://eprint.iacr.org/2019/214
https://eprint.iacr.org/2019/214

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact
round complexity of secure computation. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 448–476. Springer, Heidelberg, May
2016.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A complete-
ness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages
218–229. ACM Press, May 1987.

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 171–185. Springer, Heidelberg, August 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In Lance Fortnow
and Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–704. ACM Press, June 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments. In
Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages 1128–1141. ACM Press,
June 2016.

[GR19] Vipul Goyal and Silas Richelson. Non-malleable commitments using Goldreich-Levin list de-
coding. In David Zuckerman, editor, 60th FOCS, pages 686–699. IEEE Computer Society Press,
November 2019.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from mini-
mal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II,
volume 10821 of LNCS, pages 468–499. Springer, Heidelberg, April / May 2018.

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubra-
maniam. Round-optimal secure multi-party computation. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 488–520. Springer,
Heidelberg, August 2018.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with minimal
interaction. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 577–594. Springer,
Heidelberg, August 2010.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591.
Springer, Heidelberg, August 2008.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum. Distinguisher-
dependent simulation in two rounds and its applications. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 158–189. Springer, Heidelberg,
August 2017.

72

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM
Press, May 1988.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354. Springer, Heidelberg,
August 2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party computation
with a dishonest majority. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
578–595. Springer, Heidelberg, May 2003.

[Lin16] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryptology
ePrint Archive, Report 2016/046, 2016. http://eprint.iacr.org/2016/046.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent non-malleable
commitments from any one-way function. In Ran Canetti, editor, TCC 2008, volume 4948 of
LNCS, pages 571–588. Springer, Heidelberg, March 2008.

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In
Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages 353–
365. Springer, Heidelberg, August 1991.

[LS19] Alex Lombardi and Luke Schaeffer. A note on key agreement and non-interactive commitments.
Cryptology ePrint Archive, Report 2019/279, 2019. https://eprint.iacr.org/2019/
279.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In
László Babai, editor, 36th ACM STOC, pages 232–241. ACM Press, June 2004.

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th FOCS, pages
563–572. IEEE Computer Society Press, October 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with logarithmic
round-complexity. In 43rd FOCS, pages 366–375. IEEE Computer Society Press, November
2002.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-exponential
one-way functions. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
638–655. Springer, Heidelberg, May / June 2010.

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 191–202. Springer, Heidelberg, February 2004.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In 40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplification.
In 51st FOCS, pages 531–540. IEEE Computer Society Press, October 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162–167. IEEE Computer Society Press, October 1986.

73

http://eprint.iacr.org/2016/046
https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2019/279

A Bidirectional to Alternating message model

In [GMPP16] the authors prove that there does not exist a 3-round protocol in the bidirectional message model
for tossing ω(log λ) coins which can be proven secure via blackbox simulation. To prove this theorem, the au-
thors show how to reschedule a 3-round protocol in the bidirectional message into a 4-round non-simultaneous
protocol thus contradicting the impossibility of [KO04]. In this section we extend the proof approach used
in [GMPP16] to show the following. Let Π↔ = (A↔, B↔) be a k-round two-party protocol (2PC) that se-
curely computes the function f in the bidirectional message model. f takes the inputs of the parties A↔ and
B↔, that we denote with xA↔ and xB↔ respectively, and outputs yA↔ and yB↔ , where yA↔ corresponds to
the output of A↔ and yB↔ corresponds to the output of B↔. We show how to obtain a k-round 2PC protocol
Π� = (A,B) in the alternating message model, in which at least one party gets the output.

Theorem 6. Any k-round two party protocol (2PC) Π↔ that securely computes f in the bidirectional message
model, proven secure via blackbox simulation, can be turned into a k-round two party protocol in the alternating
message model, in which at least one party gets the output of f .

Proof. We show how to obtain a k-round 2PC protocol Π� = (A,B), in the alternating message model, that
securely computes f in which only one party gets the output. Without loss of generality, we assume that only
the party B gets the output. We denote with mA

i the message that the party A↔ sends in the i-th round of Π↔,
and with mB

i the message that the party B↔ in the i-th round of Π↔ with 1 ≤ i ≤ k.
In Π� the party A computes its messages by internally running A↔, and the same does B with B↔. We

provide an high level description of Π� in Fig 5. The main observation that makes possible to reschedule the
messages of Π↔ in the alternating message model is that the message that B↔ sends to A↔ in the last round of
Π↔ can be removed given that A does not need to compute the output. Moreover, the security of Π↔ is proved
by considering a rushing adversary. This means that a message that an honest party sends in the round i-th of
Π↔ has to be independent from the message that the other party sends in the i-th round. We propose a more
formal description of Π� in Fig. 6.

mB
1mA

1

mB
2

mB
i

mB

k

mA
2

mA
i

mA

k

mB
i+1mA

i+1

mB
1

mA
1

mA
i−1

mA
2

mA
i

mA

k−1 mA

k

b
b
b

b
b
b

b
b
b

b
b
b

mB
i+1mB

i

A↔ B↔ A B

Rescheduled

Figure 5: High level description of the rescheduled messages.

We start by considering the case in which B is corrupted (we denote a corrupted party P with P ?). Then
we need to build an expected PPT simulator S� that satisfies the Definition 1. Since Π↔ is secure, then there
exists a simulator S↔ in the ideal world for any corrupt B↔? executing the simultaneous message exchange
protocol Π↔. Our simulator S� is constructed using S↔ and works as follows.

1. S�, upon receiving mB
1 from B?, forwards mB

1 to S↔. S↔ outputs (mA
1 ,m

A
2) (note that the inner

simulator must be able to produce mA
2 even before seeing the second message mB

2 of party B↔? given
that the B↔? is rushing). Moreover, S� acts as a proxy between S↔ and the ideal functionality and
whenever S↔ asks to rewind the adversary, S� rewinds B?

74

Round-1: B runs Π↔ on behalf of B↔ thus obtaining the mB
1 and sends it to A

Round-i with 1 < i < k, i mod 2 = 0: A runs Π↔ on behalf of A↔ to compute the messages
(mA

i−1,m
A
i) and sends them to B .

Round-i with 1 < i < k, i mod 2 6= 0: B runs Π↔ on behalf of B↔ to compute the messages
(mB

i−1,m
B
i) and sends them to A.

Round-k: A runs Π↔ on behalf of A↔ to compute the messages (mA
k−1,m

A
k) and sends them to

B.

Figure 6: Π� description.

2. Upon receiving the message mi = (m,m′) from B? in the i-th round, with 1 < i < k− 1, S�, sends m
to S↔, receives mA

i−1 and sends also m′ to S↔. S↔ now outputs mA
i which S� sends to B?.

3. Upon receiving the message mk−1 = (m,m′) from B? in the k-th round, S� sends m to S↔, receives
mA
k−1 and sends also m′ to S↔. S↔ now outputs mA

k and S� sends (mk−1,mk) to B?. In the end S�
sends an abort message to S↔ (to indicate that the adversary has not sent the last message) and outputs
what S↔ outputs.

It should be easy to see that S� emulates correctly B↔? and hence S� represents a good adversary for the
ideal world. The proof for the case in which A is corrupted is similar, with the difference that the last message
output by the inner simulator S↔ is not forwarded to A?.

75

	Introduction
	Our Results

	Technical Overview
	Enforcing Honest Behavior
	Rewinding Related Challenges
	Protocol Design Summary
	Related Work

	Preliminaries
	Secure Multiparty Computation
	Garbled Circuits
	Extractable Commitment Scheme
	Extractable Commitments with Bounded Rewinding Security
	Trapdoor Generation Protocol with Bounded Rewind Security
	Construction

	Witness Indistinguishable Proofs with Bounded Rewinding Security
	Non-Malleable Commitments
	Definitions
	Proof of Special Non-Malleable Commitments

	Oblivious Transfer with Bounded Rewind Security
	Definition
	Construction
	Four Round Delayed Input Multiparty Computation with Bounded Rewind Security

	Four Round MPC
	The Protocol
	Overview of Security Proof

	Full Security Proof
	Overview of the Simulation
	Simulator Sim
	Hybrids
	Indistinguishability of Hybrids

	Acknowledgments
	Bidirectional to Alternating message model

