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Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342 Lyon Cedex 07, France
{alice.pellet mary,guillaume.hanrot,damien.stehle}@ens-lyon.fr

Abstract. We describe an algorithm to solve the approximate Shortest
Vector Problem for lattices corresponding to ideals of the ring of inte-
gers of an arbitrary number field K. This algorithm has a pre-processing
phase, whose run-time is exponential in log |∆| with ∆ the discriminant
of K. Importantly, this pre-processing phase depends only on K. The
pre-processing phase outputs an advice, whose bit-size is no more than
the run-time of the query phase. Given this advice, the query phase of
the algorithm takes as input any ideal I of the ring of integers, and
outputs an element of I which is at most exp(Õ((log |∆|)α+1/n)) times
longer than a shortest non-zero element of I (with respect to the Eu-
clidean norm of its canonical embedding). This query phase runs in

time and space exp(Õ((log |∆|)max(2/3,1−2α))) in the classical setting,

and exp(Õ((log |∆|)1−2α)) in the quantum setting. The parameter α can
be chosen arbitrarily in [0, 1/2]. Both correctness and cost analyses rely
on heuristic assumptions, whose validity is consistent with experiments.
The algorithm builds upon the algorithms from Cramer al. [EURO-
CRYPT 2016] and Cramer et al. [EUROCRYPT 2017]. It relies on the
framework from Buchmann [Séminaire de théorie des nombres 1990],
which allows to merge them and to extend their applicability from prime-
power cyclotomic fields to all number fields. The cost improvements are
obtained by allowing precomputations that depend on the field only.

1 Introduction

The Learning With Errors problem (LWE) introduced by Regev in [Reg05] has
proved invaluable towards designing cryptographic primitives. However, as its
instance bit-sizes grow at least quadratically with the security parameter to be
well-defined, LWE often results in primitives that are not very efficient. In order
to improve the efficiency, Stehlé, Steinfeld, Tanaka and Xagawa [SSTX09] intro-
duced the search Ideal-LWE problem which involves polynomials modulo Xn+1
for n a power of two, and Lyubashevsky, Peikert and Regev [LPR10] exhibited
the relationship to power-of-two cyclotomic fields, gave a reduction from the lat-
ter search problem to a decision variant, and tackled more general rings. This is
now referred to as Ring-LWE, and leads to more efficient cryptographic construc-
tions. To support the conjecture that Ring-LWE is computationally intractable,
the authors of [SSTX09,LPR10] gave polynomial-time quantum reductions from



the approximate Shortest Vector Problem (approx-SVP) restricted to ideal lat-
tices to Ring-LWE. Approx-SVP consists in finding a non-zero vector of an
input lattice, whose norm is within a prescribed factor from the lattice mini-
mum. Ideal lattices are lattices corresponding to ideals of the ring of integers
of a number field, for example a power-of-two cyclotomic field in the situation
above. When considering a lattice problem for such an ideal, the ideal is implic-
itly viewed as a lattice via the canonical embedding. A third quantum reduction
from approx-SVP for ideal lattices to Ring-LWE was proposed by Peikert, Regev
and Stephens-Davidowitz [PRS17]. It has the advantage of working for all num-
ber fields.

As is always the case, the value of these reductions highly depends on the
intractability of the starting problem, i.e., approx-SVP for ideal lattices: approx-
SVP for ideal lattices could even turn out to be computationally easy to solve,
hence making these reductions vacuous. We stress that even if this were the
case, that would not necessarily mean that there exists an efficient algorithm for
Ring-LWE. In this work, we investigate the intractability of ideal approx-SVP
for arbitrary number fields.

For arbitrary lattices, the best known trade-off between the run-time and
the approximation factor is given by Schnorr’s hierarchy of reduction algo-
rithms [Sch87], whose most popular variant is the BKZ algorithm [SE94].

For any real number α ∈ [0, 1] and any lattice L of dimension n given by an
arbitrary basis, it allows one to compute a vector of L \ {0} which is no more

than 2Õ(nα) times longer than a shortest one, in time 2Õ(n1−α) (assuming the
bit-size of the input basis in polynomial in n). This trade-off is drawn in blue
in Figure 1.1.1 In the case of ideal lattices in a cyclotomic ring of prime-power
conductor (i.e., the ring of integers of Q(ζm) where m is a prime power and ζm
is a complex primitive m-th root of unity), it has been shown that it is possible
to obtain a better trade-off than the BKZ algorithm, in the quantum computa-
tion setting. For principal ideal lattices, i.e., ideals that can be generated by a
single element, the algorithmic blueprint, described in [CGS14, Ber14], consists
in first using class group computations to find a generator of the ideal, and then
use the so-called log-unit lattice to shorten the latter generator (we note that
using the log-unit lattice for this purpose was already suggested in [RBV04]).
A quantum polynomial-time algorithm for the first step was provided by Biasse
and Song [BS16], building upon the work of [EHKS14]. The second step was
carefully analyzed by Cramer, Ducas, Peikert and Regev [CDPR16], resulting
in a quantum polynomial-time algorithm for approx-SVP restricted to principal

ideal lattices, with a 2Õ(
√
n) approximation factor. (See [HWB17] for a gener-

alization to cyclotomics with degree of the form pαqβ , with p and q prime.)
This line of works was extended by Cramer, Ducas and Wesolowski [CDW17] to
any (not necessarily principal) ideal lattice of a cyclotomic ring of prime-power
conductor. Put together, these results give us the trade-off between approxima-
tion factor and run-time drawn in red dashes in Figure 1.1. This is better than

the BKZ algorithm when the approximation factor is larger than 2Õ(
√
n). How-

1 This figure, like all similar ones in this work, is in (logn log2)-scale for both axes.
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ever, for smaller approximation factors, Schnorr’s hierarchy remains the record
holder. One could also hope to improve the trade-off for classical computing,
by replacing the quantum principal ideal solver of [BS16] by the classical one
of Biasse, Espitau, Fouque, Gélin and Kirchner [BEF+17]. However, this classi-

cal principal ideal solver runs in sub-exponential time 2Õ(
√
n), hence combining

it with [CDPR16, CDW17] results in a classical approx-SVP algorithm for a

2Õ(
√
n) approximation factor in time 2Õ(

√
n). Up to the Õ(·) terms, this is ex-

actly the trade-off obtained using Schnorr’s hierarchy. Recently, Ducas, Plançon

and Wesolowski [DPW19] experimentally analysed the Õ(·) term of the 2Õ(
√
n)

approximation factor of the [CDPR16,CDW17] algorithm. This allows them to
determine for which dimension n this quantum algorithm outperforms BKZ.

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Fig. 1.1. Prior time/approximation
trade-offs for ideal approx-SVP in cyclo-
tomic fields of prime-power conductor.

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Fig. 1.2. New trade-offs for ideal approx-
SVP in the same fields (with a pre-

processing of cost exp(Õ(n))).

Contributions. We extend the techniques from [CDPR16,CDW17] to all num-
ber fields and improve the trade-off above by allowing the algorithm to perform
some pre-computations on the number field.

It is a classical fact due to Minkowski [Min67, pp. 261–264] that there exists
an absolute constant c > 1 such that for all number field K of degree n ≥ 2
and discriminant ∆, we have |∆| > cn. In the sequel, we shall thus state all our
upper bounds in terms of log |∆| ≥ Ω(n). Actually, to fix the ideas, one may

consider log |∆| = Õ(n), which is the case for cyclotomic fields.
Let us consider a number field K of degree n and discriminant ∆. We assume

a basis of the ring of integers R of K is given. Our algorithm performs some pre-

processing on K, in exponential time 2Õ(log |∆|). Once this pre-processing phase
is completed and for any α ∈ [0, 1/2], the algorithm can, given any ideal lattice I

of R, output a 2Õ((log |∆|)α+1/n) approximation of a shortest non-zero vector of I

in time 2Õ((log |∆|)1−2α) + Tc-g(K). Here Tc-g(K) denotes the time needed to
perform class group related computations in K: computing relations between
elements of the class group and computing the units of R. Using the results
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of [BS16,BEF+17,BF14], we can replace Tc-g(K) by poly(log |∆|) for a quantum

computer, and, for a classical computer, by 2Õ((log |∆|)1/2) if K is a cyclotomic

field of prime-power conductor and by 2Õ((log |∆|)2/3) for an arbitrary field K.
The three algorithms rely on the Generalized Riemann Hypothesis (GRH) and
the two sub-exponential algorithms in the classical setting also require additional
heuristic assumptions. The correctness and cost analyses of our algorithm rely
on these heuristic assumptions, and others. Our contribution is formalized in the
theorem below, which is the main result of this article.

Theorem 1.1 (Heuristic, see Theorems 3.4 and 5.1). Let α ∈ [0, 1/2]
and K be a number field of degree n and discriminant ∆. Assume that a basis
of the ring of integers R of K is known. Under some conjectures and heuristics,
there exist two algorithms Apre-proc and Aquery such that

• Algorithm Apre-proc takes as input the ring R, runs in time 2Õ(log |∆|) and

outputs a hint w of bit-size 2Õ((log |∆|)1−2α);
• Algorithm Aquery takes as inputs any ideal I of R (whose algebraic norm has

bit-size bounded by 2poly(log |∆|)) and the hint w output by Apre-proc, runs

in time 2Õ((log |∆|)1−2α) + Tc-g(K), and outputs an element x ∈ I such that

0 < ‖x‖2 ≤ 2Õ((log |∆|)α+1/n) · λ1(I).

The hint output by the pre-processing phase has a bit-size that is bounded
by the run-time of the query phase. By considering larger hints, the run-time of
the query phase could be drastically improved. We give more details below, at
the end of the high-level description of the algorithm.

Considering only the query cost, this result is of interest when log |∆| ≤
Õ(n4/3) for quantum computations and log |∆| ≤ Õ(n12/11) for classical com-
putations. Indeed, in the other cases, the time/quality trade-offs obtained by
our algorithm are worse than the ones obtained using Schnorr’s hierarchy of
algorithms. By letting α vary in [0, 1/2] and considering cyclotomic fields of
prime-power conductor, we obtain the trade-offs represented in Figure 1.2. For a
discussion for more general values of log |∆|, we refer to Section 5. Going back to
cyclotomic fields of prime-power conductor, these new trade-offs improve upon
the prior ones, both for quantum and classical computers. Note that in Fig-
ure 1.2, we only plot the time needed for the query phase of the algorithm,
but there is a pre-processing phase of exponential time performed before. Also,
the new algorithm is no better than Schnorr’s hierarchy in the classical set-
ting when the run-time is sufficiently small. Hence, in Figure 1.2, we plotted the
trade-offs obtained using Schnorr’s hierarchy when they are better than the ones
obtained with the new algorithm. The query phase of the new algorithm gives
a quantum acceleration for approx-SVP for ideal lattices in cyclotomic fields of

prime-power conductor, for all approximation factors 2Õ(nα) with α ∈ (0, 1). This
extends [CDW17], which obtained such a quantum acceleration for α ∈ [1/2, 1).
The query phase of the new algorithm also gives a classical acceleration for these
fields, but only for α ∈ (0, 1/2).
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Technical overview. Our algorithm is inspired by the algorithms in [CDPR16,
CDW17]. Given an ideal I as input, they first allow to find a principal ideal J
contained in I (using [CDW17]), and then, they allow to compute a short gen-
erator of this ideal J (using [CDPR16]). This short generator is a somehow

small element of I. This approach provides a 2Õ(
√
n) approximation factor for

approx-SVP in I. However, it can be shown that we cannot improve this ap-
proximation factor using these techniques, even if we increase the run-time of
the algorithm. The reason is that, given an arbitrary principal ideal J , it may

be that its shortest generator is 2Õ(
√
n) times longer than its shortest non-zero

vector.

We modify the strategy above, as follows. Given any ideal I, we try to find
a ‘good’ principal ideal J contained in I, where we say that a principal ideal is
‘good’ if its shortest generator is not much larger than its shortest non-zero vec-
tor. The precise definition of ‘not much larger’ will depend on the approximation
factor we want to achieve for our approx-SVP instance. Because the Euclidean
norm of the shortest non-zero vector of J (broadly) increases with its algebraic
norm, we also require that the algebraic norm of J is not much larger than the
one of I (note that this was already needed in [CDPR16,CDW17]). To find this
‘good’ principal ideal J , the main idea of our algorithm is to express the problem
as a Closest Vector Problem (CVP) instance in a lattice L depending only on
the number field K.

This lattice L is similar to the one appearing in sub-exponential algorithms
for computing the class group (see for instance [HM89,Buc88]). More precisely,
we first select a set B = {p1, . . . , pr} of prime ideals of polynomially bounded
algebraic norms, generating the class group. We then compute a generating set of
the B-units, i.e., the set of elements u ∈ K for which there exists (e1, . . . , er) ∈ Zr
such that 〈u〉 =

∏
i p
ei
i . The lattice L is obtained by considering the integer linear

combinations of vectors of the form (Log u, e1, . . . , er)
T , where 〈u〉 =

∏
i p
ei
i and

Log is the map applying the logarithm function to the canonical embedding,
coefficient-wise. This lattice L only depends on the field K and can then be
pre-computed and pre-processed.

Given any ideal I, the query phase of our algorithm computes a target vector t
from I, and then solves a CVP instance in L with this target vector t. First,
we decompose the ideal I in the class group as a product of the ideals of B.
Concretely, we compute g ∈ K and (v1, . . . , vr) ∈ Zr such that I =

∏
i p
vi
i · 〈g〉.

This principal ideal 〈g〉 is a candidate for our principal ideal J contained in I
(assume for the moment that the vi’s are non-positive, so that 〈g〉 is indeed
contained in I). However, as is, we have no guarantee that 〈g〉 has a short
generator. We also have no guarantee that its algebraic norm is not much larger
than the one of I (i.e., that the vi’s are small). Hence, our objective is to multiply
the principal ideal 〈g〉 by other principal ideals, until we have a good candidate
for J . To do so, we define the vector t = (−Log g, v1, . . . , vr)

T . Observe that 〈g〉
would be a good candidate for J if this vector was short (and with vi ≤ 0 for
all i). Indeed, this would mean that g is a short generator of 〈g〉 (because Log g
is short), and that 〈g〉 = I ·

∏
i p
−vi
i is a small multiple of I (because the pi’s
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have polynomially bounded norms, and the vi’s are small; the non-positivity of
the vi’s is used to ensure that the ideal

∏
i p
−vi
i is integral). Also, we can see

that adding a vector of L to t amounts to multiply the principal ideal 〈g〉 by
another principal ideal (corresponding to the vector of L we are adding). Hence,
we can find a good candidate J (together with a short generator of J) by solving
a CVP instance in L with target t.

Finally, we need to solve CVP in the lattice L. We do not know any basis
for L which would enable us to solve CVP in it efficiently (as opposed to the
lattices considered in [CDPR16, CDW17]). However, the lattice L is fixed for a
given number field, hence we can pre-process it. For this, we use a CVP with
pre-processing (CVPP) algorithm due to Laarhoven [Laa16]. This leads to the
time/approximation trade-offs given in Theorem 1.1. In [Laa16], significant effort
is spent towards minimizing the constant factors in the exponents. These have
recently been improved in [DLW19]. In this work, we neglect these factors for
the sake of simplicity, but these would clearly matter in practice.

Laarhoven’s CVPP algorithm is such that the bit-size of the output of the
pre-processing phase is no larger than the run-time of the query phase2 (hence,
it is also the case for our algorithm). If we do not require this, we could have
the following very simple and efficient algorithm for CVPP. First, it computes a
short basis Bsh of the lattice. Then, it partitions the fundamental parallelepiped
associated to Bsh into exponentially many small boxes, such that given any point
of the parallelepiped, it is easy to determine to which box it belongs. Then, for
each of these boxes, the pre-processing algorithm would compute a closest point
of the lattice. The output of the pre-processing phase would then be the small
basis Bsh and the set of all boxes together with their closest lattice point. Finally,
given any vector in the real span of the lattice, the query algorithm would reduce
it modulo Bsh to obtain a vector in the fundamental parallelepiped, and then
determine the box of this reduced vector and its associated lattice vector. All
this can be done efficiently (assuming we can efficiently access the database)
and provides a small factor approximation for CVP, at the expense of a huge
database.

Overall, the correctness and cost analyses of our algorithm rely on several
heuristic assumptions. Many of them come from previous works [Laa16,BEF+17,
BF14] and were already analysed. We introduce three new heuristic assumptions:
Heuristics 4, 5 and 6 in Section 4. We discuss them by providing some mathe-
matical justifications and some experimental results corroborating them. Con-
currently to this work, Stephens-Davidowitz [Ste19] obtained a provable variant
of the CVPP trade-offs from [Laa16,DLW19] that we use. Relying on it would al-
low us to make do with Heuristic 1, which was inherited from [Laa16,DLW19], at
the expense of replacing Heuristic 4 by a similar one on the smoothing parameter
of the lattice under scope (rather than its covering radius).

2 Laarhoven also describes a variant of his algorithm in which he uses locality-sensitive
hashing to reduce the run-time of the query phase below the bit-size of the advice,
but we are not considering this variant here.
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Impact. The query phase of the new algorithm can be interpreted as a non-
uniform algorithm, as it solves approx-SVP for ideals of K, using a hint de-
pending on K only. As the time needed to compute that hint (i.e., the run-time
of Apre-proc) is exponential, the concrete impact is limited. Nevertheless, our
result should rather be interpreted as a strong indication that ideal approx-
SVP is most likely a weaker problem than approx-SVP for arbitrary lattices: for
unstructured lattices, there is no known non-uniform algorithm outperforming
Schnorr’s hierarchy.

Few cryptographic constructions have their security impacted by faster ideal
approx-SVP solvers. A notable example is Gentry’s fully homomorphic encryp-
tion scheme [Gen09], which was later superseded by faster homomorphic schemes
relying on better understood hardness assumptions (see, e.g., [BV11b,BV11a]).
Another important example is the Garg, Gentry and Halevi candidate construc-
tion of cryptographic multilinear map [GGH13] and its extensions. Because of
the large pre-processing time, our algorithm does not provide a concrete attack
on those schemes.

More importantly, our result strongly suggests that approx-SVP for ideals
of the ring of integers R of a number field K may be weaker than Ring-LWE,
for a vast family of number fields. Up to some limited parameter losses, Ring-
LWE and approx-SVP for R-modules over K (with ranks ≥ 2) reduce to one
another [LS15, AD17]. Therefore, a separation between approx-SVP for ideals
and Ring-LWE is essentially the same as a separation between approx-SVP for
ideals and approx-SVP for R-modules over K.

Open problems. Throughout the article, we keep track of all the different sub-
algorithms that compose our approx-SVP solver. The exact formulation of the
total cost of the algorithm, as a function of the costs of the sub-algorithms, is
given in Theorem 3.4. When instantiated with the run-times of the currently
known algorithms for the different sub-tasks, we obtain the values given in The-
orem 1.1. However, the formula with all the sub-algorithms allows to see whether
an improvement of the run-time of one of them leads to an improvement of the
overall cost of the approx-SVP solver. In particular, for the specific choice of
cyclotomic fields of prime-power conductor:

• Improving the approx-CVP solver would lead to an improvement of the slope

of the curves in Figure 1.2, for approximation factors smaller than 2Õ(
√
n).

In a different direction, removing the pre-processing step needed for this
approx-CVP solver would remove the pre-processing of the overall approx-
SVP algorithm.

• Designing a classical algorithm that performs class group related computa-

tions in time less than 2Õ(
√
n) would allow to further extend the (classical)

segment of Figure 1.2 with slope −1/2, until it reaches the cost needed
to solve these class group related problems. For example, Biasse described
in [Bia17] an algorithm to solve the principal ideal problem in cyclotomic
fields of prime-power conductor, with pre-processing. After pre-computations
depending on the field only, this algorithm finds a generator of a principal

ideal in time less than 2Õ(
√
n) if the ideal has algebraic norm ≤ 2Õ(n1.5).
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Finally, one could wonder whether it is possible to find significantly faster
approx-SVP algorithms for specific families of number fields and/or restricted
families of ideals. For instance, the Bauch et al. algorithm from [BBV+17] and
the follow-up algorithm of Biasse and van Vredendaal [BV18] allow to efficiently
solve class group related problems in real multiquadratic number fields in the
classical setting. This means that in these number fields, the classical version of
our algorithm is as efficient as the quantum one (there is no threshold for the
query phase in the classical setting). However, the algorithm still requires an
exponential pre-processing phase for the approx-CVP solver.

Roadmap. In Section 2, we recall some necessary background on lattices and
number fields. Then, in Section 3, we explain how to transform an approx-SVP
instance in any ideal into an approx-CVP instance in some lattice depending only
on the number field. We detail in Section 4 some properties of the lattice in which
we want to solve approx-CVP, and we give the trade-offs obtained when using
Laarhoven’s algorithm. Finally, in Section 5, we instantiate our main theorem
with the best run-times currently known for solving approx-CVPP and class
group related problems.

Supplementary material. The code that was used to perform the experiments
is available on the webpage of the first author.

2 Preliminaries

We let Z,Q,R and C respectively denote the sets of integer, rational, real and
complex numbers. For a positive real number x, we let log x denote its binary
logarithm. For two functions f(n) and g(n), we write f(n) = Õ(g(n)) if there
exists some constant c > 0 such that f(n) = O(g(n) · | log g(n)|c). We abuse

notations by defining Õ(nα) = O(nα poly(log n)) even if α = 0 (this will simplify
some statements). For a vector v ∈ Rn, we let vi denote the i-th coordinate of v.
We write ‖v‖1 =

∑
i |vi|, ‖v‖2 =

√∑
i v

2
i and ‖v‖∞ = maxi |vi|. We recall the

following inequalities between these three different norms.

‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1, (2.1)

‖v‖2 ≤
√
n · ‖v‖∞, ‖v‖1 ≤

√
n · ‖v‖2. (2.2)

Note that only the `2-norm is invariant under orthonormal transformations.

2.1 Lattice problems

For a lattice L and i ∈ {1, 2,∞}, we let λ
(i)
1 (L) denote the norm of a shortest

non-zero vector of L for the `i-norm. Similarly, for k ≥ 1, we let λ
(i)
k (L) denote

the smallest real number such that there exist k linearly independent vectors

of L whose `i-norms are no greater than λ
(i)
k (L). We let Span(L) denote the

real vector space spanned by the vectors of L. For a point t ∈ Span(L), we let

dist(i)(t, L) = infv∈L ‖t − v‖i be the minimal distance between t and any point
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of L. We define the covering radius of L as µ(i)(L) = supt∈Span(L) dist(i)(t, L).
The determinant (or volume) det(L) of a full-rank lattice L is the absolute value
of the determinant of any of its bases.

Lemma 2.1 (Minkowski’s inequality). For any full-rank lattice L of dimen-

sion n, we have λ
(∞)
1 (L) ≤ det(L)1/n. This implies that λ

(2)
1 (L) ≤

√
n·det(L)1/n.

We will consider the following algorithmic problems involving lattices.

Definition 2.2 (Approximate Shortest Vector Problem (approx-SVP)).
Given a lattice L and i ∈ {1, 2,∞}, the approximate Shortest Vector Problem in
norm `i, with approximation factor γ ≥ 1, is to find a vector v ∈ L \ {0} such

that ‖v‖i ≤ γ · λ(i)1 (L).

Definition 2.3 (Approximate Closest Vector Problem (approx-CVP)).
Given a lattice L, i ∈ {1, 2,∞} and a target t ∈ Span(L), the approximate
Closest Vector Problem in norm `i, with approximation factor γ ≥ 1, is to find
a vector v ∈ L such that ‖v − t‖i ≤ γ · dist(i)(t, L).
In this article, we will be essentially interested in a variant of approx-CVP, in
which we ask that ‖v − t‖i ≤ β for some β, independently of dist(i)(t, L) (i.e.,
the distance of the found vector is bounded in absolute terms, independently of
whether the target is close to the lattice or not). We call this variant approx-
CVP’. For i ∈ {1, 2,∞}, we let TCVP(i, L, β) denote the worst-case run-time
of the best known algorithm that solves approx-CVP’ for the `i-norm, in the
lattice L, with a bound β.

Definition 2.4 (Approx-CVP with Pre-processing (approx-CVPP)).
This problem is the same as approx-CVP, except that the algorithm can perform
some pre-processing on the lattice L before it gets the target vector t. Approx-
CVPP’ is defined analogously. We will then consider the pre-processing time
(performed when knowing only L) and the query time (performed once we get
the target t). For i ∈ {1, 2,∞}, we let T pre-proc

CVP (i, L, β) (resp. T query
CVP (i, L, β))

denote the worst-case run-time of the pre-processing phase (resp. query phase)
of the best algorithm that solves approx-CVPP’ for the `i-norm, in the lattice L,
with a bound β.

In the following, we will always be interested in the approximate versions of
these problems, so we will sometimes omit the ‘approx’ prefix.

In [Laa16], Laarhoven gives a heuristic algorithm for solving approx-CVPP.
The following result is not explicitly stated in [Laa16] (only the two extreme
values are given), but the computations can be readily adapted.

Theorem 2.5 ( [Laa16, Corollaries 2 and 3]). Let α ∈ [0, 1/2]. Then, under
Heuristic 1 below, there exists an algorithm that takes as pre-processing input an
n-dimensional lattice L (given by a basis whose bit-size is polynomial in n) and
as query input any vector t ∈ Span(L) (with bit-size that is polynomial in n) and

outputs a vector v ∈ L with ‖t− v‖2 ≤ O(nα) · dist(2)(t, L), with pre-processing

time 2O(n)and query time poly(n) · 2O(n1−2α) (the memory needed during the

query phase is also bounded by poly(n) · 2O(n1−2α)).
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The heuristic assumption used in Laarhoven’s algorithm states that the lat-
tice L is somehow dense and behaves randomly.

Heuristic 1. There exists a constant c > 0 such that the ball of radius c·λ(2)1 (L)
(in `2-norm) contains at least 2n points of L. Moreover, once renormalized, these
points ‘behave’ as uniformly and independently distributed points on the unit
sphere.

We can weaken this heuristic assumption by taking c = poly(log n), in which

case the approximation factor in Laarhoven’s algorithm becomes Õ(nα) (the
pre-processing and query costs remain the same).

We will use this algorithm to heuristically solve approx-CVPP’ in Euclidean
norm for α ∈ [0, 1/2], achieving T pre-proc

CVP (2, L,O(nα) · µ(2)(L)) = 2O(n) and

T query
CVP (2, L,O(nα) · µ(2)(L)) = 2Õ(n1−2α).

2.2 Number fields and ideals

We let K denote any number field of degree n and R be its ring of integers (i.e.,
elements of K which are roots of a monic polynomial with integer coefficients).
The ring R is a free Z-module of rank n. Let σ1, . . . , σn be the n distinct embed-
dings from K to C ordered such that for i ∈ {1, . . . , r1} we have σi : K → R and
for i ∈ {r1 + 1, . . . , r2} we have σi = σi+r2 . We have r1 real embeddings and r2
pairs of complex conjugate embeddings, with r1 and r2 satisfying r1 + 2r2 = n.
We let ∆ denote the discriminant of K, i.e., ∆ = [det(σi(bj))i,j ]

2 for b1, . . . , bn
any basis of the Z-module R. Recall from Section 1 that Minkowski’s bound
gives us the following inequality:

log |∆| ≥ Ω(n). (2.3)

In the following, most of the costs will be expressed in term of log |∆|.
We let R× denote the group of units of R, that is R× = {u ∈ R | ∃v ∈

R, uv = 1}. Dirichlet’s unit theorem states that R× is isomorphic to the Carte-
sian product of a finite cyclic group (formed by the roots of unity contained
in K) with the additive group Zr1+r2−1.

We associate to an element x ∈ K the vector (σ1(x), . . . , σr1(x),Re(σri+1(x)),
Im(σr1+1(x)), . . . ,Re(σr1+r2(x)), Im(σr1+r2(x)))T ∈ Rn, which we will call the
canonical embedding of x. In the following, we will only consider the canonical
embedding for the elements of K and R. We will abuse notation by considering
that the elements of K and R are real vectors of the above form. Using this
representation, the ring R becomes an n-dimensional lattice of Rn. The volume
of the lattice R is given by det(R) = 2−r2

√
|∆|.

A fractional ideal I of K is a subset of K which is stable by addition, and by
multiplication with any element of R, and such that dI ⊆ R for some d ∈ Z\{0}.
An ideal I is said to be integral if it is contained in R. A non-zero fractional ideal
I ⊆ R can be seen as a full-rank lattice in Rn, via the canonical embedding. For
an element g ∈ K, we write 〈g〉 = gR, the smallest fractional ideal containing g.
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Such an ideal is said to be principal. An integral ideal I ⊆ R is said to be prime if
the ring R/I is an integral domain. The product of two fractional ideals I and J
is defined by I · J = {x1y1 + · · ·+ xryr | r ≥ 0, x1, . . . , xr ∈ I, y1, . . . , yr ∈ J}.

The algebraic norm N (I) of a non-zero fractional ideal I ⊆ R is the deter-
minant of I when seen as a lattice in Rn (via the canonical embedding), divided
by det(R) = 2−r2

√
|∆| (and N (〈0〉) is defined as 0). If I is integral, this is also

equal to |R/I|. The algebraic norm of a prime ideal is a power of a prime number.
For two fractional ideals I and J , the algebraic norm of their product satisfies
N (I · J) = N (I) · N (J). The algebraic norm of an element r ∈ R is defined by
N (r) =

∏n
i=1 σi(r). For any element r ∈ R, we have that N (〈r〉) = |N (r)|, so in

particular N (r) ∈ Z.
Let I be a non-zero fractional ideal seen as a lattice. By definition of the norm

of I and Minkowski’s inequality, we know that λ
(∞)
1 (I) ≤ N (I)1/n · |∆|1/(2n).

We also have the following lower bound

λ
(∞)
1 (I) ≥ N (I)1/n. (2.4)

This lower bound comes from the fact that if x ∈ I is such that ‖x‖∞ = λ
(∞)
1 (I),

then we have |N (x)| =
∏
i |σi(x)| ≥ N (I) (because 〈x〉 is a sub-lattice of I). This

implies that at least one of the |σi(x)|’s is no smaller than N (I)1/n, hence the

inequality. When log |∆| = Õ(n), these two inequalities imply that λ
(∞)
1 (I) is

essentially N (I)1/n, up to a 2poly(logn) factor. When |∆| increases, so does the
gap between the two bounds.

2.3 The class group

We let IK denote the set of non-zero fractional ideals of K and PK ⊆ IK denote
the subset of non-zero principal fractional ideals. One can prove that for every
non-zero fractional ideal I, there is a fractional ideal I−1 such that I · I−1 = R.
This gives IK a group structure, for which PK is a subgroup.

The class group of K is defined as the quotient ClK = IK/PK . For any
non-zero ideal I of K, we let [I] denote the equivalence class of I in the class
group. In particular, we have PK = [R]. The class group is a finite abelian group
and its cardinality hK is called the class number. We have the following bound:

log hK = Õ(log |∆|). (2.5)

This can be derived from the proof of Equation (2.3), this proof being based on
the fact that any class of the class group contains an integral ideal whose norm

is bounded as 2Õ(log |∆|). We also justify it later using Equation (2.6) (which is
significantly stronger).

We know, thanks to a result of Bach [Bac90] that the class group can be
generated by ideals of polynomially bounded norms.

Theorem 2.6 (Theorem 4 of [Bac90]). Under the GRH, the class group of
a number field of discriminant ∆ is generated by the prime ideals of algebraic
norms ≤ 12 log2 |∆|.

11



Moreover, computing all prime ideals of norms ≤ 12 log2 |∆| can be done
in time polynomial in log |∆|. Indeed, these prime ideals can be obtained by
factoring all ideals 〈p〉 where p ∈ Z is a prime no greater than 12 log2∆. Fur-
ther, factoring such an ideal can be done in polynomial time (either using the
Kummer-Dedekind theorem if p does not divide the index of Z[θ]/R, where θ is
an algebraic integer such that K = Q(θ), or using an algorithm due to Buch-
mann and Lenstra if p divides |Z[θ]/R|, see [Coh13, Section 4.8.2] for the former
and [Coh13, Section 6.2] for the latter).

We will use the following lemma.

Lemma 2.7. Let B be any finite set of fractional ideals that generates the class
group ClK . Then we can extract a subset B′ of B, of cardinality at most log hK ,
which also generates the class group. Moreover, this can be done efficiently if
we are given the relations between the elements of B, in the form of a basis of
ker(fB) where fB : (e1, . . . er) ∈ Zr 7→

∏
i[p

ei
i ] ∈ ClK , with B = {p1, . . . , pr}.

We did not find this exact lemma in previous work, so we give a proof of it for
the sake of completeness (even if the technique used to prove it is far from new).

Proof. We know that ker(fB) is a lattice of volume hK contained in Zr (it
is stable by addition and subtraction, and |Zr/ ker(fB)| = |ClK | = hK). Let
RB ∈ Zr×r be a basis of this lattice, with column vectors. From this basis, we
can efficiently compute the Hermite Normal Form (HNF) of the lattice, which we
will write HB. This basis matrix is triangular, and each column corresponds to a
relation between the elements of B (each row corresponds to an ideal of B). So
we can remove from the set B any ideal whose row in HB has a 1 on the diagonal.
Indeed, if row i has a 1 on the diagonal, this means that we have a relation of
the form [pi ·

∏
j>i pj

ej ] = [R]. Hence the ideal class [pi] is in the group generated
by {[pj ]}j>i, and so it is not needed to generate the class group. But we know that
det(HB) = det(ker(fB)) = hK is the product of the diagonal elements (which
are integers). So we have at most log hK ideals with diagonal entries different
from 1. Hence, after removing from B all ideals whose corresponding row in HB

has a 1 on the diagonal, we obtain a set B′ of cardinality at most log hK and
which still generates the class group. This proof is an efficient algorithm if we
are given an initial basis RB, because we only need to compute an HNF basis,
which can be done in time polynomial in the size of the input matrix. ut

Theorem 2.6 states that the class group can be generated by integral ideals
of polynomially bounded norms, but this does not give us the existence of many
small-norm integral ideals. For instance, if the class group is trivial (i.e., all ideals
are principal), then it is generated by [R]. More generally, the class group could
be generated by a very small number of ideals. In the following, we will need the
existence of Ω̃(log |∆|) distinct integral ideals of polynomially bounded norms.

Theorem 2.8 (Theorem 8.7.4 of [BS96]). Assume the GRH. Let πK(x) be
the number of prime integral ideals of K of norm ≤ x. Then there exists an
absolute constant C (independent of K and x) such that

|πK(x)− li(x)| ≤ C ·
√
x (n log x+ log |∆|) ,
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where li(x) =
∫ x
2

dt
ln t ∼

x
ln x (and ln refers to the natural logarithm).

Instantiating this theorem with x = (log |∆|)κ for some constant κ > 4, we
obtain the following corollary. The bounds in this corollary can be improved,
but they suffice for our needs.

Corollary 2.9. Assume the GRH. Let κ > 4. For log |∆| sufficiently large, there
are ≥ (log |∆|)κ−2 distinct prime integral ideals of norm smaller than (log |∆|)κ.

Proof. We apply Theorem 2.8 with x = (log |∆|)κ. As li(x) ∼ x
ln x , we have that

li(x) ≥ (log |∆|)κ−1 holds for log |∆| sufficiently large. Recall that log |∆| > cn
for some (explicit) constant c. Hence, the right hand side of the inequality of
Theorem 2.8 can be bounded as

C ·
√
x (n log x+ log |∆|) ≤ C(κ/c+ 1) · (log |∆|)κ/2+1 · log log |∆|.

But, as we chose κ such that κ − 1 > κ/2 + 1, we have, for log |∆| sufficiently
large:

(log |∆|)κ−1 − C(κ/c+ 1) · (log |∆|)κ/2+1 · log log |∆| ≥ (log |∆|)κ−2,

hence proving the corollary. ut

We use Theorem 2.6, Corollary 2.9 and Lemma 2.7, to obtain the following.

Corollary 2.10. Assume the GRH. Then, for log |∆| sufficiently large and for
any integer r ≥ log hK , there exists a set B = {p1, . . . , pr} of prime integral
ideals generating the class group, with N (pi) = poly(log |∆|, r) for all i.

Proof. Combining Theorem 2.6 and Lemma 2.7, we know that there exists a
set B of cardinality at most r, generating the class group and containing only
prime ideals of norms ≤ 12 log2 |∆|. We can then add prime ideals to this set B,
until its cardinality reaches r. Thanks to Corollary 2.9, we know that there are
enough prime ideals of norm smaller than poly(log |∆|, r) (for some fixed poly)
to increase the cardinality of B up to r. ut

2.4 The log-unit lattice

We define Log x = (log |σ1(x)|, . . . , log |σn(x)|)T ∈ Rn, for any x ∈ K \ {0}.
Observe that this is not the usual definition of the logarithmic embedding.
The function Log is often defined either as (log |σ1(x)|, . . . , log |σr1+r2(x)|)T ∈
Rr1+r2 [Sam13, Section 4.4] or as (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1(x)|,
2 log |σr1+r2(x)|)T ∈ Rr1+r2 [Coh13, Definition 4.9.6]. Indeed, for i > r1 +r2, the
log |σi(x)|’s are redundant because |σi(x)| = |σi−r2(x)|. However, in our case, it
will be more convenient to work with the logarithms of all the embeddings.

Let E = {x ∈ Rn : xi = xi+r2 ,∀r1 < i ≤ r2}. We have Log(K \ {0}) ⊆ E.
We let H be the hyperplane of Rn defined by H = {x ∈ Rn :

∑n
i=1 xi = 0}

and 1 be the vector, orthogonal to H, defined as 1 = (1, . . . , 1)T ∈ Rn. We
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write πH : Rn → H the orthogonal projection on H, parallel to 1. We define
Λ = {Log u, u ∈ R×}, which is a lattice of dimension r1 + r2 − 1 contained
in H ∩ E (thanks to Dirichlet’s unit theorem), called the log-unit lattice. We
have the following upper bound:

det(Λ) · hK ≤ 2O(log |∆|+n log log |∆|) = 2Õ(log |∆|). (2.6)

This upper bound comes from the relation between det(Λ), hK and the
residue of the zeta-function ζK at s = 1 (see [Lou00]). The latter is known
considering Λ defined by the logarithmic embedding (log |σ1(x)|, . . . , log |σr1(x)|,
2 log |σr1+1(x)|, 2 log |σr1+r2(x)|)T ∈ Rr1+r2 . However, it can be seen that if one

multiplies our lattice Λ by a matrix with blocks of the form

(
1 1
−1 1

)
(in order

to add and subtract log |σi(x)| and log |σi+r2(x)| for r1 < i ≤ r2), one obtains
the log-unit lattice defined by the logarithmic embedding considered in [Lou00].
As multiplying by such a matrix increases the determinant by a factor 2r2 , In-
equality (2.6) remains valid in our setup.

This bound, combined with a lower bound on det(Λ) also gives Equation (2.5).
Indeed, using a result of Zimmert [Zim80], we have that det(Λ) > 0.02 · 2−r2
(handling again our unusual definition of Λ).

For any x ∈ K, there exists a unique vector h ∈ H ∩ E and a unique
real number a such that Log x = h + a1. In the following, we recall relation-
ships between (h, a) and x. These results are standard (e.g., they are used freely
in [CDPR16, Section 6]).

Lemma 2.11. Let r ∈ K. Then we have Log r = h + log |N (r)|
n 1, for some

h ∈ H ∩ E.

For the sake of completeness, and because we are using an unusual definition
of Log, we give a proof of this result below.

Proof. Write Log r = h + a1 for some h ∈ H ∩ E and a > 0. First, as 1
is orthogonal to H, we have that 〈1,Log r〉 = 〈1, a1〉 = a · n. But using the
definition of Log r, we also have that

〈1,Log r〉 =
∑
i

log |σi(r)| = log |N (r)|,

where we used the fact that N (r) =
∏
i σi(r). This completes the proof. ut

The following lemma gives a bound on the Euclidean norm of an element
r ∈ R in terms of its decomposition Log r = h+ a1.

Lemma 2.12. For any r ∈ K, if Log r = h + a1 with h ∈ H ∩ E and a ∈ R,
then we have ‖r‖∞ ≤ 2a · 2‖h‖∞ . In particular, this implies that

‖r‖2 ≤
√
n · 2a · 2‖h‖2 =

√
n · |N (r)|1/n · 2‖h‖2 .

Proof. The second inequality follows from the first one by using Equations (2.1)
and (2.2) (and Lemma 2.11 for the equality). For the first inequality, recall that
by definition of Log, we have that (Log r)i = log |σi(r)| = hi + a for all i. So, by
definition of ‖r‖∞ = maxi |σi(r)|, we have ‖r‖∞ = maxi 2hi+a ≤ 2a · 2‖h‖∞ . ut
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2.5 Algorithmic problems related to class group computations

Let B = {p1, . . . , pr} be a set of prime integral ideals generating the class group,
obtained for example using Corollary 2.10.

We will be interested in computing the lattice of all the relations between
the ideals of B, i.e., the kernel of the map

fB : e = (e1, . . . , er) ∈ Zr 7→ [
∏
i

peii ] ∈ ClK .

Recall that ker(fB) is a full-rank sub-lattice of Zr of volume |Zr/ ker(fB)| =
|ClK | = hK . Let NB = maxiN (pi). We let Trel(NB, r) denote the time needed
to compute a basis of ker(fB), together with generators of the corresponding
principal ideals, given as input the set B. We write Tdecomp(N,NB, r) for the
time needed, given B and a fractional ideal I of norm N (I) = N , to find a
vector e ∈ Zr and an element g ∈ K such that I =

∏
i p
ei
i · 〈g〉. Note that this

decomposition always exists but might not be unique (we only require that B
generates the class group). Finally, we let Tlog-unit be the time needed to compute
a basis of the log-unit lattice of K.

The three problems above are usually solved by computing S-units3 for a
well-chosen set S. This is why, in the following, the same cost bounds hold for
the three of them.

In the quantum setting, Biasse and Song [BS16] showed that these three
problems can be solved in polynomial time for any number field (under GRH).
More precisely, they showed that

• Trel(NB, r) = poly(log |∆|, r, logNB);
• Tdecomp(N,NB, r) = poly(log |∆|, logNnum, logNdenom, r, logNB);
• Tlog-unit = poly(log |∆|);

where Nnum and Ndenom refer to the numerator and denominator of N (i.e.,
N = Nnum/Ndenom ∈ Q with Nnum, Ndenom in Z>0 and coprime).

In the classical setting, these three problems can be solved heuristically in
sub-exponential time (under GRH). The first sub-exponential algorithm for all
number fields (and which allows n to tend to infinity with log |∆|) is due to
Biasse and Fieker [BF14]:

• Trel(NB, r) = poly(r, logNB) · 2Õ((log |∆|)2/3);

• Tdecomp(N,NB, r) = poly(logNnum, logNdenom, r, logNB) · 2Õ((log |∆|)2/3);

• Tlog-unit = 2Õ((log |∆|)2/3).

Biasse and Fieker actually claim 2O((log |∆|)2/3+ε) run-times. Tracing back the
source of this ε leads to Biasse’s [Bia14, Proposition 3.1]. A careful reading of the
proof of the latter shows that the (log |∆|)ε term is actually a power of log log |∆|,
3 Given a set S = {p1, . . . , pr} of prime integral ideals, the S-units are the elements
α ∈ K such that there exist e1, . . . , er ∈ Z with

∏
i p
ei
i = 〈α〉.
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hence, in our notations, it is absorbed by the Õ notation. In addition to the
GRH, the algorithm of Biasse and Fieker requires two heuristic assumptions,
referred to as Heuristic 1 and Heuristic 3 in [BF14]. We recall these two heuristic
assumptions below (see [BF14] for more details).

Heuristic 2 ( [BF14, Heuristic 1]). The probability P (x, y) that an integral
ideal of R produced by the Biasse-Fieker [BF14] algorithm, of norm bounded
by x, can be factored as a product of prime ideals of norms bounded by y
satisfies

P (x, y) ≥ e−(1+ox→∞(1))·u log u for u =
log x

log y
.

Heuristic 3 ( [BF14, Heuristic 3]). Given a set of r elements generating
the class group, the algorithm only needs to find rO(1) relations between these
elements to generate the full lattice of relations, with probability close to 1.

Smaller cost bounds are known for specific families of number fields. For

prime-power cyclotomic fields, the 2Õ((log |∆|)2/3) bounds can be replaced by

2Õ((log |∆|)1/2) [BEF+17]. This algorithm is again heuristic and relies on the same
assumptions as [BF14]. For real multiquadratic number fields, efficient classical
algorithms allow to solve these three problems [BBV+17,BV18]. Finally, we note
that the exponent 2/3 was recently lowered to 3/5 in [Gel17] and can even be
decreased further in some cases.

3 From Ideal SVP to CVP in a Fixed Lattice

The main idea of our algorithm is, given an input ideal I, to find a principal ideal
〈g〉 ⊆ I with a short generator g. This is very similar to [CDW17], where the
authors find a 2O(

√
n) approximation of a shortest non-zero vector of the ideal I

by computing a principal ideal contained in I and then finding a short generator
of this principal ideal. The limitation of this approach is that, if we consider any
principal ideal contained in I, we cannot hope to find a better approximation
than the 2O(

√
n) approximation obtained above in the worst case. This is due

to the fact that in some principal ideals (including for prime-power cyclotomic
fields), the shortest generator can be 2O(

√
n) times longer than a shortest non-zero

element of the ideal (see [CDPR16]). Instead of looking for any principal ideal
contained in I, we consider only those with a ‘good’ generator (i.e., a generator
which is also a very short element of the corresponding principal ideal).

In order to find such an ideal, we merge the two steps of [CDPR16,CDW17]
(consisting in first finding a principal multiple of I and then computing a small
generator of the principal ideal), by introducing a lattice L that is very similar
to the one used for class group computations. This lattice only depends on the
number field (and not on the ideal I). We describe it in the next subsection. We
then show how to express the problem of finding a principal multiple of I with
a small generator as a CVP instance for this fixed lattice.
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3.1 Definition of the lattice L

In this subsection, we define the lattice L which we will use in order to transform
our ideal-SVP instance into a CVPP’ instance. We also give an algorithm to
compute a basis of L and analyze its run-time. The lattice L we are considering
is not new. It was already used in previous sub-exponential algorithms computing
the class group of a number field [HM89,Buc88,BF14,BEF+17,Gel17]. However,
these algorithms usually choose a sub-exponential set of ideals, hence resulting
in a lattice L of sub-exponential dimension. Our lattice L will have a dimension
which is polynomial in log |∆|.

In the following, we fix some integer r such that log hK ≤ r and r ≤
poly(log |∆|) (looking forward, the integer r will be related to the dimension
of the lattice in which we will solve CVPP’, so it would be undesirable to set it
too large). Let us also fix a set of prime integral ideals B = {p1, . . . , pr} as given
by Corollary 2.10. We consider the lattice L of dimension ν := r + r1 + r2 − 1,
generated by the columns of the following matrix:

c ·BΛ

0

c · h̃g1 , . . . , c · h̃gr

v1 v2 · · · vr

BL :=

r

r

ν

r1 + r2 − 1

r1 + r2 − 1

where:

• the scaling parameter c > 0 is to be chosen later;
• the matrix BΛ = (fH∩E(b1), . . . , fH∩E(br1+r2−1)) is a basis of fH∩E(Λ),

where Λ is the log-unit lattice and fH∩E : H ∩ E ⊂ Rn → Rr1+r2−1 is an
isometry;4

• the matrix consisting of the vectors vi = (v1i, . . . , vri)
T is a basis of ker(fB)

(in particular, the ideals
∏
j p

vji
j are principal for all i);

• the column vectors h̃gi are of the form fH∩E(πH(Log gi)) for gi ∈ K a
generator of the fractional principal ideal associated with the relation vi,
i.e., we have

∏
j p

vji
j = 〈gi〉.

4 As Λ is not full rank in Rn, we change the ambient space such that fH∩E(Λ) becomes
full rank in H ∩ E = Rr1+r2−1. Note however that the `2-norm is preserved by this
transformation (this is not the case for the `1 and `∞ norms).
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We will explain how to construct L below. This lattice enjoys the following
property, which will be used later.

Lemma 3.1. Let w be a vector of L and parse it as w = (h, v)T with h of
dimension r1 + r2 − 1 and v = (v1, . . . , vr) of dimension r. Then there exists an
element g ∈ K \ {0} such that h = c · fH∩E(πH(Log g)) and

∏
j p

vj
j = 〈g〉.

Proof. We first observe that the result holds for the vectors of the basis BL. For
the r vectors on the right of BL, this holds by construction. For the r1 + r2 − 1
vectors on the left, we have that

∏
j p

0
j = R = 〈u〉 for any unit u ∈ R. So by

definition of BΛ, the property of Lemma 3.1 also holds for the r1 + r2 − 1 first
vectors of BL.

To complete the proof, it suffices to observe that the property of Lemma 3.1
is preserved by addition (if g1 corresponds to a vector w1 and g2 corresponds to
a vector w2, then g1g2 corresponds to the vector v1 + v2) and by multiplication
by −1 (if g corresponds to a vector w, then g−1 corresponds to the vector −w).
All these elements g are invertible as they are obtained by multiplying and
inverting non-zero elements of K. ut

3.2 Computation of the lattice L

The lattice L described above only depends on the number field we are working
on. A basis of it can then be computed in a pre-processing phase, before the
knowledge of the ideal in which we want to find a short non-zero vector. In this
subsection, we give an algorithm to compute the lattice L and we show that
this algorithm can be performed in time at most exponential in log |∆|. As we
shall see, this will even be sub-exponential in log |∆|. The costly part of the
pre-processing phase will be the pre-processing used for the CVPP algorithm.

Algorithm 3.1 Computes a basis BL as described above

Input: A number field K and an integer r = poly(log |∆|) such that log hK ≤ r.
Output: The basis BL described in Section 3.1.
1: Compute the set B′ of all prime ideals of algebraic norm ≤ 12 log2 |∆|.
2: Compute all the relations between the elements of B′ and the log-unit lattice Λ.
3: Use the relations to extract a set B′′ ⊆ B′ generating the class group with
|B′′| ≤ log hK .

4: Compute the set P of all prime ideals of norms smaller than some poly(log |∆|)
(choose the bound so that |P| > r).

5: Create a set B by adding to B′′ ideals taken uniformly in P, until the cardinality
of B reaches r.

6: Compute a basis of ker(fB) and generators gi of the fractional principal ideals
corresponding to the relations computed.

7: Create the matrix BL from these r relations, the corresponding gi and the log-unit
lattice Λ computed at Step 2.

8: return BL.
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Lemma 3.2. Assume GRH. Then Algorithm 3.1 outputs a matrix BL as de-
scribed above, in time at most

Tlog-unit + 2 · Trel(poly(log |∆|),poly(log |∆|)) + poly(log |∆|).

Proof. We analyze the cost of each step of the algorithm, and provide some
details for the correctness when needed.

Step 1. We have already seen in Section 2 that computing all prime ideals of
norm ≤ 12 log2 |∆| can be performed in time polynomial in log |∆|. There are
poly(log |∆|) such ideals.

Step 2. Computing all the relations between the elements of B′ and the log-unit
lattice Λ can be performed in time at most Trel(poly(log |∆|),poly(log |∆|)) +
Tlog-unit. The relations between the elements of B′ are represented as an in-
vertible matrix (whose columns span the kernel of the function fB′ defined in
Section 2.5).

Step 3. Extracting a generating set B′′ from B′ of cardinality at most log hK
can be done using Lemma 2.7. Because we already have the matrix of relations
between the elements of B′ (and because the size of this matrix is polynomial
in log |∆|), this can be done in polynomial time (as stated in the lemma).

Step 4. As in Step 1, this can be done in polynomial time, because the bound
on the norms of the ideals is polynomial. We obtain a set P whose cardinality
is polynomial in log |∆|.

Step 5. Picking uniform elements in a set of polynomial size can be done ef-
ficiently, so this step can be performed in polynomial time (recall that r =
poly(log |∆|)). Note that in the previous step, we had that the cardinality of B′

was at most log hK ≤ r, so we can indeed add ideals to it to reach a set of
cardinality r.

Step 6. As in Step 2, computing the kernel of fB can be done in time at most
Trel(poly(log |∆|),poly(log |∆|). Together with the relations, we also get genera-
tors of the corresponding principal ideals.

Step 7. Finally, to compute the matrix BL, we just need to compute the functions
πH and fH∩E on the gi’s computed in Step 6. We then put it together with the
matrix of relations computed in Step 6 and the log-unit lattice computed in
Step 2. This can be done in polynomial time. ut

3.3 From SVP in ideal lattices to CVP in L

We now explain how to transform the problem of finding a short non-zero vector
in a fractional ideal I of R, into solving a CVP instance with respect to the lat-
tice L described in Section 3.1. As explained above, the main idea is to multiply
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the ideal I by ideals of the set B, until we obtain a ‘good’ principal ideal (i.e.,
with a short generator). In terms of lattice operations in L, our initial lattice I
will give us a target vector in the real vector space spanned by L. Multiplying it
by ideals of B will be the same as adding to the target a vector of the lattice L.
Finally, checking whether the resulting ideal is a good principal ideal can be
done by checking whether the obtained vector is short. Overall, we are indeed
solving a CVP instance in L. We first describe the algorithm, and then prove its
correctness and bound its cost.

Algorithm 3.2 Solves ideal SVP using an oracle to solve CVP in L

Input: A non-zero fractional ideal I ⊆ R (given by some basis), the basis BL defined
above and some parameter β = β(n) > 0.

Output: A somehow short non-zero element in I.
1: Compute v1, . . . , vr ∈ Z and g ∈ K such that I =

∏
j p

vj
j · 〈g〉.

2: Let t = (−c · fH∩E(hg), v1 + β, . . . , vr + β)T , where hg = πH(Log g).
3: Compute w ∈ L such that ‖t− w‖∞ ≤ β (see Section 4).
4: Let g′ ∈ K be the element associated to w as in Lemma 3.1.
5: return g · g′.

Theorem 3.3. Let us fix c = n1.5/r. Let β = β(n) > 0. Then, for any non-zero
fractional ideal I of R, Algorithm 3.2 runs in time at most

Tdecomp(N (I),poly(log |∆|),poly(log |∆|)) + TCVP(∞, L, β) + poly(log |∆|)

and outputs a non-zero element x ∈ I such that ‖x‖2 ≤ 2O(
β·r·log log |∆|

n ) ·N (I)1/n.

Observe that in the statement of the run-time, the term TCVP(∞, L, β) will
be infinite if β is smaller than µ(∞)(L) (no algorithm can find a point of L at
distance at most β given any target input). In this case, the run-time of our
algorithm might also be infinite (i.e. the algorithm fails).

Proof. Correctness. Let us define the fractional ideal J = 〈g · g′〉. This will
be our ‘good’ principal ideal, i.e., a principal ideal with a small generator, and
contained in I. Let us first prove that J is a multiple of I. By Lemma 3.1, we

have w = (c · fH∩E(πH(Log g′)), v′1, . . . , v
′
r)
T with 〈g′〉 =

∏
j p

v′j
j . We can then

write

J = I ·
∏
j

p
−vj
j · 〈g′〉 by definition of g and the vj ’s

= I ·
∏
j

p
−vj
j ·

∏
j

p
v′j
j by Lemma 3.1

= I ·
∏
j

p
v′j−vj
j .
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Further, we know that ‖t − w‖∞ ≤ β, and hence we have vj ≤ v′j ≤ vj + 2β

for all j. In particular, we have that v′j − vj ≥ 0 and so the ideal
∏
j p

v′j−vj
j is

an integral ideal. We conclude that J is contained in I, and in particular g · g′
is indeed an element of I. Also, because g′ 6= 0 (see Lemma 3.1) and g 6= 0 (we
chose I to be non-zero), then g · g′ is a non-zero element of I.

Let us now show that g · g′ is short. We will do so by using Lemma 2.12. Let
Log g = hg + ag1 and Log g′ = hg′ + ag′1 with hg and hg′ ∈ H ∩ E (note that
because g, g′ ∈ K, we do not necessarily have ag, ag′ > 0). We then have that
Log(gg′) = (hg+hg′)+(ag+ag′)1. By Lemma 2.12, we know that ‖gg′‖2 ≤

√
n ·

|N (gg′)|1/n ·2‖hg+hg′‖2 . Therefore, it suffices to bound the two terms |N (gg′)|1/n
and ‖hg + hg′‖2.

Let us start by |N (gg′)|1/n. By multiplicativity of the algebraic norm, we

have that |N (gg′)|1/n = N (J)1/n = N (I)1/n ·
∏
j N (pj)

v′j−vj
n . We have chosen

the ideals pj with polynomially bounded algebraic norms, and we have seen that

0 ≤ v′j − vj ≤ 2β. Thus, we obtain that N (pj)
v′j−vj
n = 2O(

β log log |∆|
n ). By taking

the product of the r ideals pj , we obtain

|N (gg′)|1/n = N (I)1/n · 2O(
β·r·log log |∆|

n ).

We now consider the term ‖hg + hg′‖2. Recall that ‖w − t‖∞ ≤ β, so in
particular, if we consider only the first r1 + r2 − 1 coefficients of the vectors, we
have that ‖c · fH∩E(hg′) + c · fH∩E(hg)‖∞ ≤ β. And if we consider the `2-norm,
we obtain ‖fH∩E(hg′) + fH∩E(hg)‖2 ≤

√
nβ/c. Using the fact that the `2-norm

is invariant by fH∩E , we conclude that ‖hg′ + hg‖2 ≤
√
nβ/c.

Finally, combining the two upper bounds above and replacing c by n1.5/r,
we obtain that

‖gg′‖2 ≤
√
n · 2O(

β·r·log log |∆|
n ) · N (I)1/n.

Cost. Step 1 can be performed in time Tdecomp(N (I),poly(log |∆|),poly(log |∆|)).
Step 2 can be performed in polynomial time. Step 3 uses a CVP solver and can
be done in time TCVP(∞, L, β). Finally, Step 4 only consists in recovering g′

from the vector w, it can be done in polynomial time. Note that for this last
step, if we only have the vector w, then we know πH(Log g′), but it might not be
possible to recover g′ from it. On the other hand, the lower part of the vector w
also gives us the ideal 〈g′〉, but then computing g′ from it would be costly. In
order to perform this step in polynomial time, when creating the matrix BL we
keep in memory the elements gi corresponding to the different columns. Then,
when we obtain w, we only have to write it as a linear combination of the vectors
of BL and we can recover g′ as a product of the gi’s. This can also be done in
polynomial time. ut

Combining Algorithm 3.2 with the pre-processing phase (i.e., computing BL
with Algorithm 3.1 and pre-processing it for approx-CVPP’), we obtain the
following theorem.
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Theorem 3.4. Let K be any number field of dimension n and discriminant ∆.
Let α ∈ [0, 1], r = poly(log |∆|) be such that log hK ≤ r, and ν := r+r1 +r2−1.
Then, under GRH, there exist two algorithms Apre-proc and Aquery such that

• Algorithm Apre-proc takes as inputs the field K and a basis of its ring of
integers R, runs in time

T pre-proc
CVP (∞, L, να)+Tlog-unit+2·Trel(poly(log |∆|),poly(log |∆|))+poly(log |∆|)

and outputs a hint w of bit-size at most T query
CVP (∞, L, να);

• Algorithm Aquery takes as inputs the hint w output by Apre-proc and any
fractional ideal I of R such that the numerator and denominator of N (I)
have bit-sizes bounded by poly(log |∆|); it runs in time

Tdecomp(N (I),poly(log |∆|),poly(log |∆|))+T query
CVP (∞, L, να)+poly(log |∆|)

and outputs a non-zero element x ∈ I such that

‖x‖2 ≤ 2O(
να·r·log log |∆|

n ) · λ(2)1 (I).

The lattice L is as defined in Section 3.1 and only depends on the field K. The
memory consumption of both algorithms is bounded by their run-times.

Note that we used the fact that λ
(2)
1 (I) ≥ λ

(∞)
1 (I) ≥ N (I)1/n (see Inequal-

ity (2.4)) to replace the N (I)1/n term in Theorem 3.3 by λ
(2)
1 (I).

4 Solving CVP’ with Pre-processing

In this section, we describe a possible way of solving approx-CVP’ in the lattice L
defined previously. Even if our lattice L has some structure, it does not seem easy
to solve approx-CVP’ in it (not necessarily easier than solving the approx-SVP
instance directly for the initial lattice I). However, the lattice L only depends
on the field K and not on the ideal I. Hence, in this section, we focus on solving
approx-CVP’ with pre-processing on the lattice (to which we refer as CVPP’).
Combining it with the result of Section 3, this will provide an algorithm to solve
approx-SVP in ideals, with pre-processing on the field K.

4.1 Properties of the lattice L

Recall that our lattice L is given by the basis matrix BL =

(
c ·BΛ AB

0 RB

)
∈

Rν×ν , where we let AB denote the top-right block of BL consisting of the vec-
tors c · h̃gi , and RB be the bottom-right block of BL containing the relations of
the elements of B. Recall that RB is a basis of the kernel of fB : (e1, . . . , er) ∈
Zr 7→ [

∏
j p

ej
j ] ∈ ClK . Hence we have det(RB) = |Zr/ ker(fB)| = hK .
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Equation (2.6) gives that det(Λ) · hK ≤ 2O(log |∆|+n log log |∆|). Hence, we
have that det(L) = cr1+r2−1 · 2O(log |∆|+n log log |∆|). We chose c = n1.5/r in
Theorem 3.3. We then obtain the following upper bound on det(L):

det(L) =

(
n1.5

r

)r1+r2−1
· 2O(log |∆|+n log log |∆|) = 2O(log |∆|+n log log |∆|).

We still have some freedom for the choice of the parameter r (and hence the
dimension ν = r + r1 + r2 − 1 of the lattice L), as long as log hK ≤ r. We will
choose it sufficiently large to ensure that the root determinant of L is at most
constant. On the other hand, the dimension of L should be as small as possible
as it impacts the cost of the CVP computations. We fix

r = max(log hK , log |∆|+ n log log |∆|).

This choice of r satisfies r ≥ log hK and det(L)1/ν ≤ O(1). Note that as log hK =

Õ(log |∆|) (see Equation (2.5)), we have r ≤ Õ(log |∆|).
In the following, we view the lattice L as random, where the randomness

comes from the choice of the set B (the initial set B′′ in Algorithm 3.1 is fixed,
but then we add to it random prime ideals of polynomially bounded norms to
create the set B). If the created lattice L does not satisfy the conditions we
want, we can try another lattice by sampling a new set B. As we chose r so that

det(L)1/ν = O(1), we know by Minkowski’s inequality that λ
(∞)
1 (L) = O(1).

Then, because L is somehow random, we also expect that all successive minima

λ
(∞)
i (L) and the covering radius in infinity norm are constant. Hence, we expect

to be able to take β as small as O(1) in Algorithm 3.2. We summarize this
assumption below.

Heuristic 4. With good probability over the choice of B, the `∞-norm covering
radius of L satisfies µ(∞)(L) = O(1) (and hence µ(2)(L) = O(

√
ν)).

This heuristic calls for a few comments. First, it is better analyzed as two
separate conjectures, one on the log-unit lattice, the other one on the class group
lattice. Concerning the latter, assume that the class number is a prime p. Then
we can choose p1 to be a generator of the class group, and the relation matrix
is of the form 

p a1 a2 . . . ar
0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 . . . 1

 ,

where the ai’s in [0, p − 1] characterize the elements of the ideal class group.
In our setting where each pi (for i ≥ 2) is picked randomly among small prime
ideals, we can thus reasonably assume that the ai’s are uniformly distributed
in [0, p − 1]. Hence, for (ei)2≤i≤r ∈ [−B,B]r−1 for some constant B ≥ 1, we
can expect that one among the (2B + 1)r−1 = pc (with c > 1) fractional ideals
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∏
i≥2 p

ei
i is in a class [p1]a for some a = O(1), which implies that the `∞-norm

covering radius is O(1).
The general case is analogous to this first intuition. Let B = {p1, . . . , ps,

ps+1, . . . , pr} with {p1, . . . , ps} the prime ideals coming from the set B′′ (hence
fixed) and {ps+1, . . . , pr} the ideals uniformly chosen among prime ideals of norm
bounded by some polynomial. Because the set B′′ generates the class group, we
can find a basis of L of the following form, by taking the HNF matrix for the
bottom-right part of BL.

c ·BΛ

0

c · h̃g1 , . . . , c · h̃gr

vs+1 · · · vrB′
L := RB′′

1
. . .

1

r

r

s

r1 + r2 − 1

r1 + r2 − 1

In this matrix, the block matrices BΛ and RB′′ are fixed, as well as the vec-
tors h̃gi for i in {1, . . . , s}. However, the vectors vi and h̃gi for s < i ≤ r depend
on our choices of {ps+1, . . . , pr}. The vectors of Zs/RB′′ are in bijection with
the elements of the ideal class group (because B′′ generates the class group).
So if we assume that the class of a uniform prime ideal of norm polynomially
bounded is uniform in the class group, then we would have that the vectors vi
of the matrix above are uniform in Zs/RB′′ . In a similar way, we will assume

that the vectors h̃gi are somehow uniform in Rr1+r2−1/Λ (recall that they corre-
spond to the projection over H of Log gi for gi a generator of the principal ideal
associated with the lower part of the vector). Let us now explain why, given any
target vector t ∈ Rν , we expect to find a vector v ∈ L at distance O(1) from t.

Write t = (c · h̃, v, w)T with h̃ of dimension r1 + r2 − 1, v of dimension s and w
of dimension r − s. We can assume, without loss of generality, that |wi| < 1/2
for all i (using the last r− s columns of B′L to reduce t if needed). By taking the
subset sums of the last r − s columns of B′L, we obtain 2r−s vectors of L of the

form t′ = (c · h̃′, v′, w′)T , with w′ ∈ {0, 1}r−s. Because we assumed that the vi
and h̃gi for s < i ≤ r were somehow uniform modulo RB′′ and Λ respectively, we

also expect the vectors h̃′ and v′ created above to be somehow uniform modulo
RB′′ and Λ. Recall that we chose r so that (det(cΛ) · det(RB′′))

1/r = O(1),
hence the volume of cΛ and RB′′ satisfies det(cΛ) · det(RB′′) ≤ 2O(r). We can
then assume that we have 2r−s > det(cΛ) · det(RB′′) (if needed, we can multi-
ply r by a constant factor, which will not change the asymptotics). This means

that we expect to find one of the 2r−s vector t′ = (c · h̃′, v′, w′)T satisfying

24



‖(c · h̃, v)− (c · h̃′, v′)‖∞ = O(1). And because |wi| < 1/2 and w′i ∈ {0, 1} we also
have ‖t− t′‖∞ = O(1).

We experimentally computed the lattice L for some cyclotomic fields (using
Algorithm 3.1). For each lattice L, we then computed an empirical covering
radius. To do so, we picked 21 random target vectors ti in the real span of the
lattice. These vectors were sampled from a continuous Gaussian distribution
with standard deviation σ = 100. We then solved the CVP instances in L for
these target vectors ti and let vi be a closest vector in L (for the `2-norm). We
defined µ̃(2)(L) to be maxi ‖ti − vi‖2 and µ̃(∞)(L) to be maxi ‖ti − vi‖∞.5 The
approximated values of µ(2)(L) and µ(∞)(L) are given in Table 4.1. We observe
that, while µ̃(2)(L) increases with the dimension (we expect that it increases
as
√
ν), the approximate covering radius in `∞-norm µ̃(∞)(L) seems to remain

constant around 1. These experimental results are consistent with Heuristic 4.
The code is available as supplementary material.

Conductor of K Dimension of L µ̃(2)(L) µ̃(∞)(L)

18 9 1.13 0.755

16 16 1.50 0.899

36 28 1.79 0.795

40 41 2.15 0.893

48 42 2.19 0.840

32 44 2.26 0.794

27 49 2.36 0.901

66 54 2.47 0.989

44 57 2.53 0.815

70 67 2.72 1.03

84 68 2.74 1.27

90 68 2.71 0.814

78 70 2.81 0.882

72 73 2.90 1.00

Fig. 4.1. Approximate covering radii in `2 and `∞ norms for the lattice L, for cyclo-
tomic number fields of different conductors.

4.2 Using Laarhoven’s algorithm

We now consider Laarhoven’s algorithm, which solves approx-CVPP in Eu-
clidean norm (we only found algorithms for CVPP with Euclidean norm in
the literature, and not for infinity norm). Recall from Section 2 that, for a ν-

5 As we solved CVP in L for the `2-norm, the quantity µ(∞)(L) may be over-estimated,
but this should not be over-estimated by too much. Further, as we want an upper
bound on µ(∞)(L), this is not an issue.
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dimensional lattice L, Laarhoven’s (heuristic) algorithm gives, for any α ∈ [0, 1/2]:

T pre-proc
CVP (2, L,O(να) · µ(2)(L)) = 2O(ν),

T query
CVP (2, L,O(να) · µ(2)(L)) = 2Õ(ν1−2α).

As we have assumed (Heuristic 4) that µ(2)(L) = O(
√
ν) with good probability

over the choice of L, this implies that Laarhoven’s algorithm achieves

T pre-proc
CVP (2, L,O(ν1/2+α)) = 2O(ν) and T query

CVP (2, L,O(ν1/2+α)) = 2Õ(ν1−2α).

We now have an algorithm that, given any input t ∈ Span(L), outputs a
vector v ∈ L such that ‖t − v‖2 ≤ O(ν1/2+α), while we would like to have
‖t − v‖∞ ≤ O(να). But when we take a random vector of Euclidean norm
bounded by O(ν1/2+α), we expect that with good probability, its coefficients
are somehow balanced. Hence we expect its infinity norm to be approximately√
ν times smaller than its Euclidean norm. This is the meaning of the following

heuristic assumptions.
First, because we want the output of Laarhoven’s algorithm to be some-

how random, we argue that we can randomize the input vector of the CVPP
algorithm.

Heuristic 5. We assume that in our algorithm, the target vector t given as
input to Laarhoven’s algorithm behaves like a random vector sampled uniformly
in Span(L)/L.

This assumption that t is distributed uniformly in Span(L)/L may be justified
by the fact that, in Algorithm 3.2, we can somehow randomize our target vector t
by multiplying our initial fractional ideal I by an integral ideal of small algebraic
norm (statistically independent of the pi’s chosen for B).

Heuristic 6. With non-negligible probability over the input target vector t, dis-
tributed uniformly in Span(L)/L, the vector v output by Laarhoven’s algorithm

satisfies ‖t− v‖∞ ≤ Õ(‖t− v‖2/
√
ν).

In order to motivate Heuristic 6, we recall that if a vector is drawn uniformly
at random on a sphere, then its `∞-norm is smaller than its `2-norm by a factor
O(log n/

√
n), with good probability.

Lemma 4.1. Let x be sampled uniformly on the unit sphere Sn−1 in Rn. Then

Pr(‖x‖∞ ≥
√
8 lnn√
n

) ≤ O( 1√
lnn

).

Proof. Sampling x uniformly in Sn−1 is the same as sampling y from a cen-
tered spherical (continuous) Gaussian distribution of parameter 1 and then nor-

malizing it by setting x = y
‖y‖2 . So we have ‖x‖∞ = ‖y‖∞

‖y‖2 , and it is suffi-

cient to find an upper bound on ‖y‖∞ and a lower bound on ‖y‖2. We know
that for a centered spherical Gaussian distribution of parameter 1, we have
Pr(‖y‖∞ > 2 lnn) = Pr(∃i : |yi| > 2 lnn) ≤ 1

2
√
2π lnn

. Moreover, we also have

that Pr(‖y‖2 <
√
n/2) ≤ e−n/8 (see for instante [LM00, Lemma 1]). By the

union bound, we finally obtain that Pr(‖y‖∞/‖y‖2 >
√
8 lnn√
n

) ≤ O( 1√
lnn

). ut
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Note that the proof also shows that for a continuous Gaussian vector y of
dimension n, ‖y‖∞/‖y‖2 = O(log n/

√
n) with good probability. We also have

experimental results corroborating Heuristic 6. We implemented our algorithm
in Magma, both the generation of the lattice L and the CVP phase using
Laarhoven’s algorithm (the code is available as supplementary material). We
tested our implementation for different cyclotomic fields. The maximum conduc-
tor achieved was 90. The maximum dimension of the lattice L that we achieved
was 73, for a cyclotomic field of conductor 72. For these cyclotomic fields, we
computed the lattice L. Then, we sampled target vectors t in the real span of L,
using a Gaussian distribution of parameter σ = 100, and we ran Laarhoven’s

CVP algorithm to obtain a vector v ∈ L. We then computed the ratios ‖t−v‖2‖t−v‖∞ ,

which we expect to be around O(
√
ν/ log ν). Because we are working in small

dimensions, the log ν term has a non-negligible impact. So, instead of plotting

log( ‖t−v‖2‖t−v‖∞ ) as a function of log ν, we compared our ratios with the ones we

would have obtained if the vectors were Gaussian vectors. On Figure 4.2, the

blue dots represent the logarithms of the ratios ‖t−v‖2‖t−v‖∞ obtained when choosing

a random Gaussian vector t as input of our algorithm. For every fixed conductor,
we have several vertically aligned points, because we tried Laarhoven’s algorithm
for different approximation factors (i.e., different choices of α). The green ‘+’
are obtained by computing log(‖x‖2/‖x‖∞) for some Gaussian vectors of di-
mension ν. The red crosses are obtained by taking the median point of a large
number of green ‘+’ (not all of them are plotted on the figure).

We observe that the ratios obtained with our algorithm are well aligned with
the red crosses. Moreover, even if we have some variance within the blue dots,
it is comparable to the variance observed within the green ‘+’. So Heuristic 6
seems consistent with our empirical experiments (recall that Gaussian vectors
provably satisfy Heuristic 6 with good probability).

We conclude that, under Heuristics 4, 5 and 6, and Heuristic 1 present
in [Laa16], for any α ∈ [0, 1/2], Laarhoven’s algorithm solves approx-CVPP’
with

T pre-proc
CVP (∞, L, να) = 2O(ν) and T query

CVP (∞, L, να) = 2Õ(ν1−2α). (4.1)

5 Summary

We now instantiate Theorem 3.4 with ν = Õ(log∆) and the values given in
Section 2 and in Equation (4.1) for Tlog-unit, Tdecomp, Trel, T

pre-proc
CVP and T query

CVP .

Theorem 5.1. Let K be any number field of dimension n and discriminant ∆.
Let α ∈ [0, 1/2]. Then, under GRH and Heuristics 1-6,there exist two algorithms
Apre-proc and Aquery such that
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Fig. 4.2. Comparison of log(‖x‖2/‖x‖∞) as a function of log ν for x a Gaussian vec-
tor or x = t − v with t a random target and v the approx-CVP solution output by
Laarhoven’s algorithm (on our lattice L, in selected cyclotomic fields).

• Algorithm Apre-proc takes as inputs the field K and a basis of its integer

ring R, runs in time 2Õ(log |∆|) and outputs a hint w of bit-size at most

2Õ((log |∆|)1−2α),
• Algorithm Aquery takes as inputs the hint w output by Apre-proc and any frac-

tional ideal I of R such that the numerator and denominator of N (I) have

bit-sizes bounded by poly(log |∆|). It runs in classical time 2Õ((log |∆|)max(2/3,1−2α))

or in quantum time 2Õ((log |∆|)1−2α) and outputs an element x ∈ I such that

0 < ‖x‖2 ≤ 2Õ(
(log |∆|)α+1

n ) · λ(2)1 (I).

The memory consumption of both algorithms is bounded by their run-times.

In the case where log |∆| = Õ(n), we can replace log |∆| by n in all the

equations of Theorem 5.1, and we obtain an element x which is a 2Õ(nα) ap-
proximation of a shortest non-zero vector of I (see Figure 5.2). On the other
hand, if log |∆| becomes significantly larger than n, then both the run-time and
the approximation factor degrade. The cost of the pre-computation phase also
becomes larger than 2O(n). However, the query phase still improves upon the
BKZ algorithm, for some choices of α, as long as log |∆| = Õ(n12/11) in the

classical setting or log |∆| = Õ(n4/3) in the quantum setting (see Figure 5.3). In
Figures 5.1, 5.2 and 5.3, we plot the ratios between time and approximation fac-
tor for the BKZ algorithm and the query phase of our algorithm, in the different
regimes log |∆| = Õ(n) and log |∆| = Õ(n1+ε) for some ε > 0.
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Time

Approximation
factor

classical
and quantum

2Õ(n)poly

2Õ(n)

poly

Fig. 5.1. Prior time/approximation
trade-offs for approx-SVP in ideal lat-
tices in any number field of degree n
(using the BKZ algorithm).

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n2/3)

poly

Fig. 5.2. New trade-offs for ideal lat-
tices in number fields satisfying log |∆| =
Õ(n) (with a pre-processing of cost

exp(Õ(n))).

Time

Approximation
factor

quantum

classical

11+7ε
6

1+3ε
2

1 + 3ε

1

2(1+ε)
3

Fig. 5.3. New trade-offs for ideal lattices in number fields satisfying log |∆| = Õ(n1+ε)

for some ε > 0 (with a pre-processing of cost exp(Õ(n1+ε))).
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In the case of prime-power cyclotomic fields, we know that log |∆| = Õ(n).
Moreover, there is a heuristic algorithm of Biasse et al. [BEF+17] satisfying

Trel, Tdecomp, Tlog-unit ≈ 2Õ(n1/2). Hence, we obtain the trade-offs shown in Fig-
ure 1.2 (in the introduction) when applying our algorithm to prime-power cy-
clotomic fields. Recall that in this special case, we already had an improvement
upon the BKZ algorithm in the quantum setting, using the results of [CDPR16]
and [CDW17], see Figure 1.1.

Acknowledgments. We thank Léo Ducas for his suggestion to use Laarhoven’s
CVPP algorithm. We thank Oded Regev and Noah Stephens-Davidowitz for
illustrating the importance of limiting the witness size by the run-time of the
query phase, by pointing out the faster algorithm with exponential-size witness
described in the introduction. We also thank Dan Bernstein, Elena Kirshanova
and Alexandre Wallet for helpful discussions.

This work was supported in part by BPI-France in the context of the na-
tional project RISQ (P141580), by the European Union PROMETHEUS project
(Horizon 2020 Research and Innovation Program, grant 780701) and by the ERC
Starting Grant ERC-2013-StG-335086-LATTAC.

References

AD17. Martin R. Albrecht and Amit Deo. Large modulus ring-LWE ≥ module-
LWE. In ASIACRYPT 2017, pp. 267–296. Springer, 2017.

Bac90. Eric Bach. Explicit bounds for primality testing and related problems. Math-
ematics of Computation, 55(191):355–380, 1990.

BBV+17. Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange, and Chris-
tine van Vredendaal. Short generators without quantum computers: the case
of multiquadratics. In Eurocrypt, pp. 27–59. Springer, 2017.

BEF+17. Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, Alexandre
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