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Abstract

In this work we continue the study on the round complexity of secure multi-party compu-
tation with black-box simulation in the simultaneous broadcast model where all the parties get
the output.

In Eurocrypt 2016 Garg at al. show that four rounds are necessary to obtain a secure
multi-party computation protocol for any function in the plain model. Many different works
have tried to show that, relying on standard assumptions, four rounds are also sufficient for
MPC. In Crypto 2017 Ananth et al. and in TCC 2017 Brakerski at al. propose a four-round
protocol based on quasi-polynomial time number theoretic assumptions. In Crypto 2018 the two
independent works of Badrinarayanan et al. and Halevi at al. show how reach the four-round
barrier relying on number theoretic polynomial-time assumptions.

In this work we propose a compiler that takes as input a three-round sub-exponentially secure
oblivious transfer protocol, and outputs a four-round MPC protocol. Our compiler is also based
on sub-exponentially secure two-round witness indistinguishable proof (zap). We also show how
to obtain three-round OT assuming sub-exponentially secure trapdoor permutations and zap.
As a corollary we obtain the first four-round MPC protocol that relies on general assumptions.

1 Introduction

Obtaining round-optimal secure computation [Yao82, GMW87] has been a long standing open prob-
lem. In [KOS03], Katz et al. obtained a constant-round secure multi-party computation (MPC) pro-
tocol using sub-exponential hardness assumptions. This result was then improved by Pass in [Pas04]
that showed how to get bounded-concurrent secure MPC for any functionality with standard as-
sumptions. Further results of Goyal [Goy11] and Goyal et al. [GLOV12] relied on better assumptions
but with a round complexity still far from optimal.

In Eurocrypt ’16 Garg et al. [GMPP16] makes an important jump ahead towards fully under-
standing the round complexity of secure MPC computation showing the 4 rounds are necessary to
compute any two-party functionality where both the parties get the output. In Crypto ’17 Ananth
et al. [ACJ17] and a concurrent and independent work in TCC ’17 of Brakerski at al. [BHP17], pro-
pose the first 4-round MPC protocol for any functionality assuming number theoretic assumption
w.r.t. superpolynomial-time adversaries. In Eurocrypt ’18, Benhamouda et al. [BL18] show how
to promote any k-round OT protocol to a k-round MPC secure protocol using interactive garbled



#Rounds Assumptions
[ACJ17] 5 DDH
[ACJ17] 4 OWP+Sub-exp DDH
[BHP17] 4 Sub-exp LWE
[BL18] 5 5-round OT
[BGJ+18] 4 DDH or QR or Nth-Residuosity
[HHPV18] 4 LWE or DDH or QR or DCR
This work 4 Sub-exp TDP

Table 1: Comparison with existent works

circuit (a similar technique is proposed in [GS18]).1 The very recent works of Badrinarayanan et
al. [BGJ+18] and Halevi et. al. [HHPV18] presented at Crypto ’18 propose a 4-round protocol that
is secure under the DDH assumption (and other number theoretic assumptions, see Tab. 1 for more
details). However, all the works leave open the following question:

Open Question: is there a 4-round secure MPC protocol under general assumptions?

1.1 Our Contributions

This paper answers to the above question introducing a compiler that takes as input a sub-
exponentially secure 3-round oblivious transfer (OT) protocol and outputs a 4-round MPC secure
protocol. Our compiler relies on the only additional assumption that sub-exponentially secure zap
and one-way functions (OWFs) exist, which in turns implies that our 4-round MPC protocol can
be constructed from sub-exponentially secure certified trapdoor permutations (TDPs) (see [DN00]
for more details on the minimal assumptions required to obtain zap). The 3-round OT required
for our construction needs to enjoy only a relaxed form of security called delayed-semi-malicious
security. That is, the security of the protocol holds only if the adversary can output a defense
in the second round that proves his honest behaviour. A defense is represented by a randomness
and an input that proves that the messages computed by the adversary are consistent with the
protocol description. As an additional contribution of this work, we show how to obtain 3-round
OT that is secure against malicious adversaries (and also against delayed-semi-malicious adversary)
assuming that sub-exponentially secure trapdoor permutations and zap exist. More precisely, we
prove that our OT protocol is private. That is, a malicious receiver cannot figure out if the sender
has used the input (l0, l1) or (lb, lb) where b corresponds to the input bit of the receiver. Similarly,
a malicious sender should not be able to distinguish whether the receiver uses the bit 0 or the bit
1. By combining this result with our MPC compiler we obtain the first 4-round MPC protocol
from sub-exponentially secure trapdoor permutations2. Moreover, the work of Hazay et al. [HV16]
proposes a 3-round private OT protocol assuming that claw-free trapdoor permutations exist. This
yields a 4-round maliciously secure MPC protocol that is provable secure under the assumption that
sub-exponentially secure claw-free trapdoor permutations and zap exist. In summary, in this work
we prove three main theorems:

1The OT required by the construction proposed in [BL18] has to enjoy only a mild form of security instead of the
standard simulation based security. More details follow.

2We note that zap can be instantiated from certified trapdoor permutations.
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Theorem 1 (informal). If sub-exponentially secure trapdoor permutations and zap exist then
there is a 3-round private OT protocol.

Theorem 2 (informal). If sub-exponentially secure trapdoor permutations and zap exist then
there is a 4-round MPC protocol.

Theorem 3 (informal). If sub-exponentially secure claw-free trapdoor permutations and zap
exist then there is a 4-round MPC protocol.

1.2 Our Techniques

In this section we provide intuitions and high level description of our techniques.

1.2.1 Round-optimal MPC.

Our starting point is the main result of [BL18] that presents a compiler that transforms a k-
round semi-malicious OT protocol into a k-round delayed-semi-malicious (DSM) MPC protocol. A
delayed-semi-malicious MPC protocol is a secure MPC protocol in which the security holds only if
the adversary outputs in the second last round a valid defense that explains the messages he has
computed. In [BL18] it is also showed how to obtain a 5-round secure MPC protocol starting from
a 4-round delayed-semi-malicious one. The 5-round MPC protocol proposed by Benhamouda at al.
works as follows. Each party runs a 4-round delayed-input non-malleable zero-knowledge argument
NMZK in parallel with the first three rounds of a DSM MPC protocol MPCDSM thus proving that
the first three rounds of MPCDSM are correctly computed (MPCDSM starts in the second round).
Moreover, an additional execution of NMZK is run from the second to the fifth round to prove that
also the fourth round of MPCDSM is well formed. This approach yields to a 5-round protocol (each
execution of NMZK requires 4-rounds, and the two execution are shifted by one round). In order to
reduce the round complexity of the protocol, we get rid of the first execution of NMZK, and prove the
correctness of the second round of MPCDSM using a two-round resettable witness-indistinguishable
proof referred as zap in [DN00]. Moreover, we require the parties to commit to a valid defense using
a three-round non-malleable commitment NMCOM3. In summary, our protocol works as follows.
In the first three rounds each party: 1) commits to a valid defense using NMCOM, 2) commits to a
random values alway using NMCOM, 3) runs the first two rounds of MPCDSM and 4) proves using
zap that either the first non-malleable commitment contains a valid defense for the messages of
MPCDSM, or that a trapdoor is committed in the second non-malleable commitment. In these first
three rounds each party also starts executing a NMZK that is used to prove that the last message
of MPCDSM (which is sent in the fourth round) is well formed. Always in the first three rounds a
special witness-indistinguishable proof of knowledge (WIPoK) WIPoK is run in which each party
proves the knowledge of a secret information (which will be used as a trapdoor by the simulator).
In the last round only the fourth round of NMZK and the third round of MPCDSM are sent (see
Fig. 3 for the high level description of the protocol).

In the security proof we can show that even though the simulator is committing to a trapdoor
(which is extracted by rewinding WIPoK) using the second flow of NMCOM, the adversary cannot do
the same due to the non-malleability of NMCOM and NMZK. From the soundness of zap this implies
that the adversary is committing to a valid defense in the first flow of NMCOM, which means that the

3For our construction we need to use a non-malleable commitment that is only one-one. Even though this
seems to be counterintuitive since we are considering a multi-party computation protocol, we show that one-one
non-malleability is enough for our purpose.
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simulator can extract the defense from the non-malleable commitment by rewinding NMCOM from
the third to the second message. We note that we require the non-malleable commitment scheme
to be only honest-extractable. That is, the extractor outputs the actual committed value only if
the committer is behaving honestly. We observe that the adversary is forced to behave correctly
due to the soundness of the zap. However, the security proof we just sketched has a subtlety. The
simulator needs to obtain the trapdoor to be committed in the second flow of NMCOM during the
first three rounds of the protocol. Since the first chance that the simulator has to extract such
a trapdoor is by rewinding from the third to the second round of WIPoK and since he needs to
complete the zap proof in the third round using a valid witness, then the simulator needs another
witness to run the zap. Indeed, the first time that the simulator interacts with the adversary he does
not know the trapdoor and therefore he cannot commit to it using the non-malleable commitment.
To circumvent this limitation we let the simulator interact with the adversary using the honest
witness for the zap (the defence for MPCDSM). That is, the simulator takes a random input x′ and a
randomness ρ to run the first two rounds of MPCDSM. Then, he commits to (x′, ρ) using NMCOM,
and uses the knowledge of (x′, ρ) and of the decommitment information of NMCOM to execute the
zap. This strategy is used in the look-ahead threads in order to extract the trapdoor from WIPoK.
Once the trapdoor is extracted, the simulator goes back to the second round, and: 1) simulates the
messages of MPCDSM, 2) commits to the trapdoor using NMCOM and 3) runs the zap using the
knowledge of the trapdoor. After that, the simulator sends the last round of NMZK and MPCDSM

thus concluding the interaction with the adversary. A similar technique is used in [HHPV18] where
the rewinds made to extract the trapdoor are called premature rewinds. Given how delicate such
part of the proof is, we propose a generalisation of this proof technique which can be seen as an
additional contribution of this work (see Sec. 4 for more details).

1.2.2 Three-round oblivious transfer.

We start by considering the classical semi-honest 3-round OT protocol Πsh from trapdoor permu-
tations. Let (l0, l1) be the input of the sender and b be the input of the receiver. In the first round
of Πsh the sender samples two trapdoor permutations (f0, f1) (with fd : {0, 1}λ → {0, 1}λ with for
d = 0, 1) with the corresponding trapdoors and sends (f0, f1) to the receiver. The receiver takes a
random value x and computes fb(x)← Xb. Then she takes another random value X1−b and sends
(X0, X1) to the sender. Using the trapdoors, the sender computes Wd = f−1(Xd)⊕ ld for d = 0, 1
and sends (W0,W1) to the receiver. The receiver then computes lb = x ⊕Wb. Clearly, in the case
that the receiver is malicious there is nothing that prevents him to get both l0 and l1. We modify
Πsh in order to be resilient against a malicious receiver. In our protocol, in addition to (f0, f1),
the sender sends also a random string A ∈ {0, 1}λ and the first round of zap. The receiver then
takes a random value x and computes fb(x) ← Yb (as in Πsh). Then she picks k ← {0, 1}λk with
λk = λ/c for a constant c ≥ 2, and computes X1−b = PRG(k) ⊕ A, where PRG is a one-to-one
pseudo-random generator PRG : {0, 1}λk → {0, 1}λ. The receiver then sends (X0, X1) and com-
pletes the zap proving that either X0 = PRG(k)⊕A or X1 = PRG(k)⊕A. The sender checks that
the zap verifies, computes Wd = f−1(Xd) ⊕ ld for d = 0, 1 and sends (W0,W1) to the receiver (as
in Πsh). The security against a malicious sender comes almost immediately from the security of
the PRG and the witness-indistinguishability of zap. Intuitively, the security against a malicious
receiver comes from the fact that the adversary, in order to obtain also l1−b, should find a value k
such that PRG(k)⊕A corresponds to a value X1−b that he knows how to invert. Note that we are
giving the adversary the power to decide (to some extent) what X1−b should be. However, since the
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length of k is shorter (by a constant factor) than the length of A, the adversary can choose X1−b
from a set that is exponentially smaller than the domain of the trapdoor permutation. For the
proof to work we need to assume the trapdoor permutation to be sub-exponentially secure. That is,
we require that no probabilistic polynomial-time adversary can invert trapdoor permutation with
probability larger than 2−λ.4

2 Definitions and Tools

Preliminaries. We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of a and b). For a finite
set Q, x← Q denotes a sampling of x from Q with uniform distribution. We use the abbreviation
PPT that stands for probabilistic polynomial time. We use poly(·) to indicate a generic polynomial
function.

Let A and B be two interactive probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the
distribution of B’s output after running on private input β with A using private input α, both
running on common input γ. Typically, one of the two algorithms receives 1λ as input. A tran-
script of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an execution where A receives
a private input α, B receives a private input β and both A and B receive a common input γ.
Moreover, we will refer to the view of A (resp. B) as the messages it received during the execution
of 〈A(α), B(β)〉(γ), along with its randomness and its input. We say that the transcript τ of an
execution b = 〈P(z),V〉(x) is accepting if b = 1. We say that a protocol (A,B) is public coin if
B sends to A random bits only. When it is necessary to refer to the randomness r used by and
algorithm A we use the following notation: A(·; r).

2.1 Standard Definitions

Definition 1 (Trapdoor permutation). Let F be a triple of PPT algorithms (Gen,Eval, Invert)
such that if Gen(1λ) outputs a pair (f, td), then Eval(f, ·) is a permutation over {0, 1}λ and Invert
(f, td, ·) is its inverse. F is a trapdoor permutation such that for all PPT adversaries A:

Prob
[

(f, td)← Gen(1λ); y ← {0, 1}λ, x← A(f, y) : Eval(f, x) = y
]
≤ ν(λ).

For convenience, we drop (f, td) from the notation, and write f(·), f−1(·) to denote algorithms
Eval(f, ·), Invert(f, td, ·) respectively, when f , td are clear from the context. Following [KO04,
GMPP16] we assume that F satisfies (a weak variant of) “certifiability”: namely, given some f it
is possible to decide in polynomial time whether Eval(f, ·) is a permutation over {0, 1}λ. Let hc be
the hardcore bit function for λ bits for the family F . λ hardcore bits are obtained from a single-bit
hardcore function h and f ∈ F as follows: hc(z) = h(z)||h(f(z))|| . . . ||h(fλ−1(z)). Informally, hc(z)
looks pseudorandom given fλ(z)5.

4In our scheme we actually use the hardcore bit function of f and rely on the assumptions that no polynomial-time
adversary can distinguish a random string from the output of the hardcore bit function with probability greater than
1
2

+ 2−λ.
5 fλ(z) means the λ-th iteration of applying f on z.
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2.2 (Delayed-Input) Proof/Argument Systems

Definition 2 (Proof/argument system). A pair of PPT interactive algorithms Π = (P,V) constitute
a proof system (resp., an argument system) for an NP-language L, if the following conditions hold:
Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Prob [ 〈P(w),V〉(x) = 1 ] = 1.
Soundness: For every interactive (resp., PPT interactive) algorithm P?, there exists a negligible

function ν such that for every x /∈ L and every z:
Prob [ 〈P?(z),V〉(x) = 1 ] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input completeness
if P needs x and w only to compute the last round and V needs x only to compute the output. Before
that, P and V run having as input only the size of x. The notion of delayed-input completeness was
defined in [CPS+16]. For a protocol that enjoys delayed-input completeness we consider also the
notion of adaptive-input arguments/proof system. That is, the soundness holds against a stronger
adversary P∗ that can choose the statement to be proved in the last round of the interaction with
V. Analogously we also consider the notion of adaptive-input arguments/proof of knowledge (see
App. A for more details).

Definition 3 (Special Honest Verifier Zero-knowledge (Special HVZK)). A 3-round proof system
Π = (P,V) is Special HVZK if there exists a PPT simulator algorithm Sim that for any x ∈ L,
security parameter λ and second round c works as follow: (a, z) ← Sim(1λ, x, c). Furthermore,
the distribution of the output of Sim is computationally indistinguishable from the distribution of a
transcript obtained when V sends c as challenge and P runs on common input x and any w such
that (x,w) ∈ RelL.

In our MPC construction we use the three-round public-coin Special HVZK proof system pro-
posed in [Blu86] which can be instantiated from one-to-one OWFs.

Definition 4 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is Witness
Indistinguishable (WI) for a relation Rel if, for every malicious PPT verifier V?, there exists a
negligible function ν such that for all x,w,w′ such that (x,w) ∈ Rel and (x,w′) ∈ Rel it holds that:∣∣∣Prob [ 〈P(w),V?〉(x) = 1 ]− Prob

[
〈P(w′),V?〉(x) = 1

] ∣∣∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural adaptive-input variants,
where the adversarial verifier can select the statement and the witnesses adaptively, before the prover
plays the last round.

As a WI argument system we make use of ZAP. ZAPs are two-round witness indistinguishable
delayed-input proof systems [DN00]. As noted in [DN00] by using pseudo-random functions, ZAPs
are also resettably-witness-indistinguishable. In [DN00] it is showed how to obtain ZAP from
multiple certified trapdoor permutations.

2.3 Non-Malleable Commitment Schemes

A commitment scheme involves two players: sender and receiver. Informally, it consists of two
phases, a commitment phase and a decommitment phase. In the commitment phase the sender,
with a secret input m, interacts with the receiver. In the end of this interaction we say that a
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commitment of the message m has been computed. Moreover the receiver still does not know
what m is (i.e. m is hidden) and at the same time the sender can subsequently (i.e., during the
decommitment phase) open this commitment only tom (see Def. 19 in App. A for a formal definition
of commitment scheme).

In order to define a non-malleable commitment we follow [LPV08, LPV09]. Let Π = (Sen,Rec)
be a statistically binding commitment scheme. And let λ be the security parameter. Consider a
MiM adversary A that, on auxiliary input z participates in a left and a right session. In the left
sessions the MiM adversary A interacts with Sen receiving commitment to value m using an identity
id of its choice. In the right session A interacts with Rec attempting to commit to a related value
m̃ again using identity of its choice ĩd. If the right commitment is invalid, or undefined, its value is
set to ⊥. Furthermore, if ĩd = id then m̃ is also set to ⊥ (i.e., a commitment where the adversary
uses the same identity of the honest senders is considered invalid). Let mimA,mΠ (z) denote a random
variable that describes the values m̃ and the view of A in the above experiment.

Definition 5 (One-one non-malleable commitment scheme [LPV08, LPV09]). A commitment scheme
is non-malleable with respect to commitment if, for every PPT MiM adversary A, for every
m0 ∈ {0, 1}poly(λ) and m1 ∈ {0, 1}poly(λ) the following holds

{mimA,m0

Π (z)}z∈{0,1}? ≈ {mimA,m1

Π (z)}z∈{0,1}? .

We say that a commitment is valid or well formed if it admits a decommitment to a message
m 6= ⊥. When the identity is selected by the sender then the above id-based definitions guarantee
non-malleability without ids as long as the MiM does not behave like a proxy (an unavoidable
attack). Indeed the sender can pick as id the public key of a strong signature scheme signing the
transcript. The MiM will have to use a different id or to break the signature scheme. To not
overburden the notation we sometimes omit the ids in the formal description of our protocols. In
this work we also consider the notion of many-one NM commitment scheme in which A participates
in one right session and polynomially-many left sessions. Following [LP11] we say that a MiM is
synchronous if it “aligns" the left and the right sessions; that is, whenever it receives message i on
the left, it directly sends message i on the right, and vice versa.

Definition 6 (Synchronous NM commitments). A NM commitment scheme Π is synchronous if its
security holds only against synchronous MiM.

Using the approach proposed in the security proof of Proposition 1 provided in [LPV08], it
is possible to claim that a synchronous (one-one) non-malleable commitment is also synchronous
many-one non-malleable.

2.3.1 3-Round Honest-Extractable Commitment Schemes.

Informally, a 3-round commitment scheme is honest-extractable if there exists an efficient extractor
that having black-box access to any efficient honest sender that successfully performs the commit-
ment phase, outputs the only committed string that can be successfully decommitted. We give now
a definition that follows the one of [PW09].

Definition 7 (Honest-Extractable Commitment Scheme). A perfectly (resp. statistically) binding
commitment scheme ExCS = (ExSen,ExRec) is an honest-extractable commitment scheme if there
exists an expected PPT extractor ExtCom that given oracle access to any honest sender ExSen,
outputs a pair (τ,m) such that the following two properties hold:
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- Simulatability: τ is identically distributed to the view of ExSen (when interacting with an
honest ExRec) in the commitment phase.

- Extractability: the probability that there exists a decommitment of τ to a message m′, where
m′ 6= m is 0 (resp. negligible).

2.3.2 Special non-malleable commitment scheme.

For our propose we use a 3-round special non-malleable commitment scheme. That is, a commitment
scheme that 1) is one-one synchronous non-malleable, 2) is honest-extractable, 3) has the property of
last-message pseudorandomness, 4) is delayed-input and 5) has reusable decommitment information.
We now give more details of these properties and on how they can be achieved.

The property of last-message pseudorandomness is defined in [BGJ+18, Definition 4]. Informally
this property states that a malicious receiver cannot distinguish between a well formed commitment
of a messagem, and a commitment where only the first two rounds are well formed and the third is a
random string. The authors of [BGJ+18] states that the property of last-message pseudorandomness
is enjoyed by the scheme proposed in [GPR16]. The non-malleable commitment Π provided in
Figure 2 of [GPR16] enjoys non-malleability against synchronous adversary (as proved in Theorem
1 of [GPR16]), and can be instantiated in three rounds using one-to-one OWFs). Also, as stated
in Section 5 of [GPR16], given a commitment computed by the sender of Π one can rewind the
sender in order to obtain a new accepting transcript with the same first round (resp., first two
rounds if we consider the instantiation that relies on OWFs) in order to extract a decommitment
information d. Moreover, if the sender is honest, then it is possible to use d to extract the actual
message committed by the sender (we remark that we do not require any form of extractability
against malicious senders). A delayed-input commitment scheme is a commitment scheme that
retains its security (binding, hiding and non-malleability) even if the adversary can decide one of
the challenge messages in the last round. In [COSV16] it is showed that any commitment scheme
can be made delayed-input. The property of reusable decommitment information ensures that, when
the sender is honest, the decommitment information d for a commitment τ extracted by rewinding
the sender (ad discussed above) can be re-used to extract the message committed in τ ′ where τ and
τ ′ share the same first round. It is easy to see that this property is enjoyed by the construction
proposed in [GPR16]. We refer the reader to App. B for the description of the scheme proposed
in [GPR16] and more details on the properties on honest-extractability and reusable decommitment
information.

Corollary 1. The synchronous 3-round non-malleable commitment scheme proposed in [GPR16] is
a special non-malleable commitment scheme.

2.4 Delayed-Input Non-Malleable Zero Knowledge

Here we follow [COSV17]. The definition of [COSV17] allows the adversary to explicitly select the
statement, and as such the adversary provides also the witness for the prover. The simulated game
however will filter out the witness so that the simulator will receive only the instance. This approach
strictly follows the one of [SCO+01] where adaptive-input selection is explicitly allowed and managed
in a similar way. As final remark, this definition will require the existence of a black-box simulator
since a non-black-box simulator could retrieve from the code of the adversary the witness for the
adaptively generated statement. The non-black-box simulator could then run the honest prover
procedure, therefore canceling completely the security flavor of the simulation paradigm.
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Let Π = (P,V) be a delayed-input interactive argument system for a NP-language L with
witness relation RelL. Consider a PPT MiM adversary A that is simultaneously participating in
one left session and poly(λ) right sessions. Before the execution starts, P,V and A receive as
a common input the security parameter in unary 1λ. Additionally A receives as auxiliary input
z ∈ {0, 1}?. In the left session A verifies the validity of the prove given by P with respect to the
statement x (chosen adaptively in the last round of Π). In the right sessions A proves the validity
of the statements x̃1, . . . , x̃poly(λ)

6 (chosen adaptively in the last round of Π) to the honest verifiers
V1, . . . ,Vpoly(λ).

More precisely in the left session A, before the last round of Π is executed, adaptively selects
the statement x to be proved and the witness w, s.t. (x,w) ∈ RelL, and sends them to P.

Let ViewA(1λ, z) denote a random variable that describes the view of A in the above experiment.

Definition 8 (Delayed-input NMZK). A delayed-input argument system Π = (P,V) for an NP-
language L with witness relation RelL is delayed-input non-malleable zero knowledge (NMZK) if for
any MiM adversary A that participates in one left session and poly(λ) right sessions, there exists a
expected PPT machine S(1λ, z) such that:

1. Let (View, w1, . . . , wpoly(λ)) denote the output of S(1λ, z), for some z ∈ {0, 1}?. The prob-
ability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}? and {ViewA(1λ, z)}λ∈N,z∈{0,1}? are computationally
indistinguishable over λ, where S1(1λ, z) denotes the first output of S(1λ, z).
2. For every i ∈ {1, . . . , poly(λ)}, if the i-th right session is accepting w.r.t. some statement xi
and A does not acts as a proxy (by simply sending back and forward the massages of the left
session), then wi is s.t. (xi, wi) ∈ RelL.

The above definition of NMZK allows the adversary to select statements adaptively in the last
round both in left and in the right sessions. Therefore any argument system that is NMZK according
to the above definition enjoys also adaptive-input argument of knowledge. Such a delayed-input
NMZK argument system can be instantiated from one-to-one OWFs as showed in [COSV17]. In this
work we assume that the simulator-extractor works by internally rewinding the adversary from the
third to the second round and from the fourth to the third round in order to extract the witnesses
for the theorems proved by the adversary. The simulator for the scheme proposed in [COSV17]
follows this strategy.

2.5 Oblivious Transfer

In this section we consider the definition for OT in presence of malicious sender and receiver shown
in [HV16]. In the definitions presented below, we denote the honest sender and receiver algorithms
by S and R respectively. Recall that the oblivious transfer functionality is specified by the function
FOT : ((l0, l1), b) 7→ (−, lb) that takes as input (l0, l1) from the sender, a bit b from the receiver,
and outputs lb to the receiver. We say that a protocol Π = (S,R) realizes the OT functionality if
the protocol computes FOT correctly. As in [HV16], we focus on the case of a three-round protocol
where the sender sends the first message. Furthermore, our definition will restrict the honest sender’s
algorithm to be described by a pair of algorithms S = (S1, S2) where S1 on input 1λ outputs the
first message ms

1 of the OT protocol and state σ and S2 on input (σ,mr, (l0, l1)) generates the third
message of the OT protocol where mr is the response from the receiver and (l0, l1) is the sender’s
input.

6We denote (here and in the rest of the paper) by δ̃ a value associated with the right session where δ is the
corresponding value in the left session.
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Definition 9 (Sender’s privacy [HV16]). A protocol Π that realizes the FOT is private with respect to
a malicious receiver if for any PPT adversary R? and PPT distinguisher D there exists a negligible
function ν(·) such that for all λ, except with probability ν(λ) over ((ms

1,m
r), σ, rR), where rR is the

randomness used by R?, there exists a bit b, such that for any strings (l0, l1) and auxiliary input z,

|Pr{ms
2 ← S2(σ,mr, (l0, l1)) : D(1λ, z, rR, (m

s
1,m

s
2)) = 1}−

Pr{xb ← lb;x1−b ← {0, 1}λ;ms
2 ← S2(σ,mr, (x0, x1)) :

D(1λ, z, rR, (m
s
1,m

s
2)) = 1}| ≤ ν(λ)

Let 〈S?(1λ), R(b)〉(1λ) denote the random variable describing the corrupted sender’s output
when interacting with R that is invoked on inputs b.

Definition 10 (Receiver’s privacy [HV16]). A protocol Π that realizes the FOT is private with
respect to a malicious sender if for any PPT adversary S? corrupting S the following holds

{V iewS? [〈S?(1λ), R(1λ, 0)〉]} ≈ {V iewS? [〈S?(1λ), R(1λ, 1)〉]}

We say that an OT protocol is private if it is both sender and receiver private.

2.6 MPC Definitions

In this section we give the definition of malicious secure MPC and delayed-semi-malicious MPC
following [BL18]. We consider the MPC protocols where at each round `, each party Pi broadcasts
a message msg`i to all the other parties simultaneously.

Definition 11 (MPC protocol [BL18]). Let n be a positive integer, m a polynomial in the security
parameter, and f an n party-functionality. An m-round MPC protocol MPC for f is a tuple of
deterministic polynomial-time algorithms MPC = (Next1, . . . ,Nextm,Output):

• Next message: msg`i = Nexti(1
λ, xi, ρi, msg

<`) is the message broadcasted by party pi ∈ P
in round ` ∈ [m], on input xi ∈ {0, 1}λ, on random tape ρi ← {0, 1}λ, after receiving the
messages msg<` = {msg`′j }j∈[n],`′<`, where msg`

′
l is the message broadcasted by party pj on

round `′ ∈ [`− 1].

• Output: yi = Output(1λ, x1, ρi, msg) is the output of a party pi for i = 1, . . . , n, on input
xi ∈ {0, 1}λ, on random tape ρi ∈ {0, 1}λ, after receiving the messages msg = {msg`j}j∈[n],`∈[m].

We now recall the notion of security against malicious adversary. We focus on the case with
static corruptions and security with abortion. We also recall that we assume that parties have access
to a simultaneous broadcast channel. We first define the notions of ideal execution IdealI,Sim(1λ, x)
against a simulator Sim simulating malicious parties {Pi}i∈I and of real execution RealI,A(1λ, x)
against an adversary A playing the roles of malicious parties {Pi}i∈I . Simulator Sim are defined
as non-uniform expected poly-time interactive Turing machines while adversaries A are defined as
non-uniform poly-time interactive Turing machines.

Ideal Execution. IdealI,Sim(1λ, x) is defined by playing the following game with the simulator
Sim:

1. The simulator is given I and xI .

10



2. The simulator chooses a vector x′I = {x′i}i∈I . We set x′i = xi for i ∈ I, where I = [N ] − I
corresponds to the set of honest parties. As usual, x′ = {x′i}i∈[n].
3. The simulator is given fI(x′).
4. The simulator can then decide to abort or proceed. If it aborts, we set yI = (⊥, . . . ,⊥),
otherwise, we set yI = fI(x

′).
5. IdealI,Sim(1λ, x) is defined as (yI , z) where z is the output of the simulator in the end of the
ideal execution.

Real Execution. RealI,A(1λ, x) is defined by running the MPC protocol where the adversary
A controls the malicious parties {Pi}i∈I while the honest parties {Pi}i∈I follow the protocol. It is
then defined as the pair (yI , z), where yI is the vector of outputs of the honest parties while z is
the output of the adversary. The adversary can be rushing: in each round, it can wait for all the
messages from the honest parties before sending its own messages.

Definition 12 (Maliciously Secure MPC). Let n be a positive integer. Let f be an n-party function-
ality. Let Π be an MPC protocol for f . Then Π is secure against malicious adversaries if for any
non-uniform poly-time interactive turing machine A, there exists a non-uniform expected-poly-time
interactive turing machine Sim = {Simλ}λ∈N such that:

{IdealI,Sim(1λ, x)}λ,I,x ≈ {RealI,A(1λ, x)}λ,I,x

2.7 Delayed-Semi-Malicious

In [HIK+11] the authors introduce the notion of defensible private protocol which requires that no
adversary participating in the protocol can violate the privacy of an honest party while providing
a valid defense. A defense is represented by an input and a random tape that demonstrate that
the actions of the adversary are consistent with the description of the protocol. In this work we
consider the variant of defensible security defined in [BL18] called delayed-semi-malicious security.
This requires the adversary to provide a valid defense in the second last round of the protocol,
and only in the case that the adversary provides a valid defense the security of the protocol holds.
We consider simulation-based security against these adversaries with a universal simulator that can
simulate the view of the adversaries by interacting them as black-box in a straight-line way in the
same spirit of [BL18]. More formally, we define RealDSM

I,A(1λ, x) as RealI,A(1λ, x) except that if at
some round ` > m − 2 the adversary outputs an invalid defense, then the honest parties all abort
(do not send any more messages) and output ⊥. The ideal world is defined identically as the ideal
world for malicious-secure MPC, except that the simulator Sim, on input (1λ, I) interacts with the
adversary A (as a black bock) in a straight line manner, and receives a defense that A outputs after
round m− 1. We denote with IdealI,Sim↔A(1λ, x) the output of the honest players and Sim.

Definition 13 (Delayed-Semi-Malicious MPC [BL18]). Let n be a positive integer. Let f be an n-
party functionality. Let Π be an MPC protocol for f . Then Π is delayed-semi-maliciously secure if
there exists a non-uniform expected-poly-time interactive Turing machine Sim, such that, for every
non-uniform poly-time interactive Turing machine A:

{IdealI,Sim↔A(1λ, x)}λ,I,x ≈ {RealDSM
I,A(1λ, x)}λ,I,x

In [BL18] it is showed how promote a k-round private OT protocol to a delayed-semi-malicious
protocol for any k > 1.7

7In [BL18] the authors actually prove a stronger statement showing how to obtain a delayed-semi-malicious MPC
protocol from an OT protocol that is secure under an even weaker notion than the one considered in this work.
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Theorem 1 (Sec. 9.2 of [BL18]). Assuming that a k-round private oblivious transfer exists then it
is possible to obtain a k-round delayed-semi-malicious MPC protocol for any k > 1.

3 Private Oblivious Transfer: Our Construction

In this section we show how to construct our private 3-round OT assuming sub-exponentially secure
TDPs and zap. For our construction we use the following tools.

1. A one-to-one pseudorandom generator PRG : {0, 1}λk → {0, 1}λ.

2. A two-round resettable witness-indistinguishable proof system ZAP = (Pzap,Vzap) for the
following NP-language

LPRG = {(A,X0, X1) : ∃k with b ∈ {0, 1} s.t. Xb = PRG(k)⊕A}

3. A trapdoor permutation F = (Gen,Eval, Invert) with the hardcore bit function hc(·). We
require that no PPT adversary can distinguish the output of hc(·) from a random value with
probability larger than 1

2 + 1

2λ̂
where λ̂ = λ/c′ for some constant c′.

In Fig. 1 we provide the formal description of our 3-round private OT ΠOT = (S,R). We let λ
be the security parameter and define λk = λ̂/c for some constant c ≥ 2.

R(b) S(l0, l1)

(f0, f
−1
0 )← Gen(1λ)

(f1, f
−1
1 )← Gen(1λ)

A← {0, 1}λ
zap1 ← Vzap(1λ)

A, f0, f1, zap1

←−−−−−−−−−−−−−−−−
x← {0, 1}λ, Xb = fλb (x);
k ← {0, 1}λk ,X1−b = PRG(k)⊕A;
stm := (A,X0, X1);
zap2 ← Pzap(stm, k). X0, X1, zap2

−−−−−−−−−−−−−−−−→
If Vzap(zap1, zap2, stm) = 0
then abort else
W0 = l0 ⊕ hc(f−λ0 (X0))

W1 = l1 ⊕ hc(f−λ1 (X1))
W0,W1

←−−−−−−−−−−−−−−−−
Output lb = Wb ⊕ hc(x)

Figure 1: Formal description of our private OT protocol ΠOT .
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Theorem 2. If sub-exponentially secure one-way trapdoor permutations exist then ΠOT is a private
oblivious transfert protocol.

Proof. We first prove that ΠOT is secure against malicious receiver and then we prove its security
against malicious sender.

Privacy against a malicious receiver. By contradiction there exist: a malicious receiver R?,
a PPT distinguisher D, a non-negligible probability pot a tuple (l0, l1) and z1 such that with non-
negligible probability pot over ((ms

1,mr), σ, rR) it holds for b = 0 and b = 1 that

|Prob
[
ms

2 ← S2(σ,mr, (l0, l1)) : D(1λ, z, rR, (m
s
1,m

s
2)) = 1

]
−

Prob
[
l?b ← lb; l

?
1−b ← {0, 1}λ;ms

2 ← S2(σ,mr, (l
?
0, l

?
1)) : D(1λ, z, rR, (m

s
1,m

s
2)) = 1

]
| ≥ pot.

Given the above, we construct and adversary A that distinguishes between the h = hc(x) and a
random string of λ bits having as input y = fλ(x). This adversary works as follows.

1. A, upon receiving the challenge (f, y, h) picks k ← {0, 1}λk sets f0 = f,A = PRG(k)⊕ y.

2. A then computes (f1, f
−1
1 )← Gen(1λ), zap1 ← Vzap(1λ) and sends (A, f0, f1, zap1) to R?

3. If X0 6= y, or in the case that R? aborts then A outputs a random bit. Otherwise, he computes
W0 = l0 ⊕ h, W1 = l1 ⊕ hc(f−λ1 (X1)) and sends (W0,W1) to R?.

4. A outputs what R? outputs.

We observe that in the case that the bit used by R? does not correspond to 1, then A breaks
the security of the TDP with probability 1/2. If the bit used by R? is 1 and X0 = y, then:

– if h is a random string then the output of A corresponds to the output of R? when S uses as
input (l?0, l1) for some random l?0,

– if h = hc(x) then to the output of A corresponds to the output of R? when S uses (l0, l1).

Let us now see formally what is the advantage of A in breaking the security of F . Without loss
of generality, we assume that when R? uses the bit 1 as input the probability that X0 = y is at least
p1 = λk

−1. Note that we can assume that X0 = y is at least p1 since the key k and the challenge
y are randomly chosen and the PRG that we are using is one-to-one. Let p0 = 1 − p1. From the
argument given above, the probability that A has of breaking the security of the TDP is

p0
4

+
p1
2

(
1

2
+ pot) =

p0 + p1
2

+
p1pot

2
=

1

2
+

pot
2λk+1

pot>
1

2λk−1

>
1

2
+

1

22λk
λk=λ̂/c

=
1

2
+

1

2
2λ̂
c

which for c ≥ 2 contradicts the security of F given that we have chosen a one-trapdoor permutation
that cannot be broken with probability larger than 1

2 + 1

2λ̂
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Privacy against a malicious receiver. By contradiction there exists a PPT adversary S? such
that the following two ensemble are distinguishable.

{V iewS? [〈S?(1λ), R(1λ, 0)〉]} {V iewS? [〈S?(1λ), R(1λ, 1)〉]}

The proof goes trough hybrid arguments starting from the execution in which the receiver uses
the bit 1 as input. We gradually modify this execution until the input of the honest receiver becomes
0. We denote by {V iewS? [Hi]} the output view of S? in the hybrid experiment Hi.

-H1 is identical to the experiment in which the honest receiver interacts with S? using 1 as
input.

-H2 differs fromH1 in the wayX1 is computed. In this caseX1 = PRG(k′)⊕A with k′ ← {0, 1}λk .
We observe that in H1 X1 was a uniformly distributed value in {0, 1}λ, given that x is randomly
chosen by the receiver and that X1 = fλ1 (x). The indistinguishability between the two hybrid
experiments comes immediately from the security of the PRG.

-H3 differs from H2 in the witness used to compute the ZAP proof. More precisely, in H2 the
witness corresponds to the the input of the PRG k such that X0 = PRG(k)⊕A whereas the witness
used in H3 corresponds to the key k′ such that X1 = PRG(k′)⊕A. The indistinguishability between
the two hybrid experiments comes from the WI property of ZAP.

-H4 is equal to H3 with the difference that X1 = fλ1 (x) with x← {0, 1}λ. The indistinguishabil-
ity between H4 and H3 comes from the security of the PRG for the same arguments used to prove
that H1 and H2 are indistinguishable. We observe that a reduction to the security of the PRG
is possible because the witness used to compute the ZAP proof involves only k′ that is such that
X1 = PRG(k′) ⊕ A. The proof ends with the observation that H4 corresponds to the execution in
which R interacts with S? using 0 as input, thus reaching a contradiction.

4 Proof via Look-Ahead Rewinds

In this section we generalize a proof technique that is required in the security proof of our MPC
protocol proposed in the Sec. 5. Consider the scenario in which the adversary A interacts with two
PPT interactive Turing machines (ITM) Ext and B using only four rounds for the communication.
The adversary A interacts during the first three rounds with a PPT extractor Ext using some secret
information sk which is fully specified in the third round. The extractor Ext rewinds the adversary
from the third to the second round in order to extract sk from A and in the end of the extraction
process Ext goes back to the main thread and outputs the outcome of the extraction.

In addition, from the second to the fourth round A interacts also with a PPT ITM B(y) (where
y is the input used by B). The Fig. 2 depicts the message-flow that we have just described. Note
that since the messages of Ext interleave with B, then the first two messages of B are rewound during
the extraction process.

We denote with ExpA,Ext,B(y, z) the random variable consisting of the view of A(z) in an ex-
ecution when communicating with B(y) in the latest three rounds and with Ext in the first three
rounds as we have just described.

We now consider the execution in which during the look-ahead rewinds, B uses the input y0,
but post rewinds she uses the extracted value y1 = sk. We denote with ExpA,Ext,B

Rew (y1, z) the random
variable consisting of the view of A(z) in such an execution.
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We prove that if for every two sequences {y0λ}λ∈N, {y1λ}λ∈N with y0λ ∈ {0, 1}λ, y1λ ∈ {0, 1}λ, such
that for all PPT ITM adversary Ã it holds that

{〈B(y0λ), Ã〉(1λ)}λ∈N ≈ {〈B(y1λ), Ã〉(1λ)}λ∈N (1)

then it also holds that, for every PPT A,

{ExpA,Ext,B(y0λ, z)}λ∈N ≈ {ExpA,Ext,B
Rew (y1λ, z)}λ∈N

Roughly, we want to prove that, even in the case that the first and the second round of B are
rewound (in order to extract some secret from the adversary that runs also B) the adversary cannot
distinguish between when B runs using y0 and when B uses an input extracted via the look-ahead
rewinds (y1 = sk) under the condition that {〈B(y0λ), Ã〉(1λ)}λ∈N ≈ {〈B(y1λ = sk), Ã〉(1λ)}λ∈N.

We note that the proof technique that we are describing here is similar to the one used [HHPV18].
Here we propose a generalization of their technique in order to show that, when the messages of
multiple interactive protocols interleave in a specific way, then the look-ahead rewinds do not hurt
the security reduction to a primitive (B in our case) involved in the protocol.

A

Ext

B(y)

m1
a

m2
a

m3
a(sk)

m1

b(y)

m2

b(y)

m3

b(y)

Figure 2: The ITMs communicate via a simultaneous message channel. The first two messages of
B interleave with the latest two messages of Ext.

Assume now by contradiction that the claim we are proving is false, then we show how to
construct an adversary Ã that contradicts the fact that {〈B(y0λ), Ã〉(1λ)}λ∈N ≈ {〈B(y1λ), Ã〉(1λ)λ∈N.
Ã works as follows. We assume that the security of B can be described as a classical game between
a challenger and an attacker, where the challenger takes as input y0 and y1, picks b ∈ {0, 1} and
uses yb to run B with the adversaryÃ. The adversary Ã executes the following steps.

1. Interact with A by running Ext and B(y0) during the look-ahead rewinds.

2. When Ext finishes the extraction then go back to the main thread and act as a proxy between
the the external challenger of B and A for the messages of B until the second round (the third
round of the entire protocol).

3. Output what A outputs.

One crucial observation is that the look-ahead rewinds have no impact on the reduction since
the challenger is not even involved during those rewinds. The proof ends with the observation that
if the challenger has used y0 then the output of the experiment corresponds to ExpA,Ext,B(y0, z), to
ExpA,Ext,B

Rew (sk, z) otherwise.
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5 Round Optimal MPC from Generic Assumptions

In this section we propose a 4-round MPC protocol ΠMPC. Our construction makes use of the
following tools:
– 3-round delayed-semi-malicious MPC MPCDSM = (Next1, . . . ,Next3,Output)
– A one-way permutation f : {0, 1}λ 7→ {0, 1}λ (see App. A for a formal definition of OWP).
– A non-interactive statistically binding commitment scheme NICOM = (Com,Dec)
– A 3-round special non-malleable commitment scheme NMCOM = (Sen,Rec) with honest-extractor

ExtNM.
– Let m`

i be the message broadcast by Pi in round ` of MPCDSM and msg<` = {msg`′i }i∈[n],`′<` be
the messages broadcasted by all the parties in the first ` − 1 rounds of MPCDSM, then we
use a resettable two-round witness-indistinguishable proof systems ZAP = (Pzap,Vzap) for the
following NP-language

Li→jZAP ={(
msg< 2 , msg2i , (nmi→j

0,1 , nmj→i
0,2 , nmi→j

0,3 ), (nmi→j
1,1 , nmj→i

1,2 , nmi→j
1,3 ), Y i→j

0 , Y i→j
1

)
:

∃(decnm, y) s.t. (Y i→j
b = f(y) with b ∈ {0, 1} AND

Rec(nmi→j
1,1 , nmj→i

1,2 , nmi→j
1,3 , decnm, y) = 1)

OR (Rec(nmi→j
0,1 , nmj→i

0,2 , nmi→j
0,3 , decnm, y) = 1 AND

∀` ≤ 2 m`
i = Next`(1

λ, y, msg< ` ))
}
.

Informally, in our scheme ZAP is used by the party Pi to prove to the party Pj that either
a transcript for a special non-malleable commitment scheme contains y such that y = f(Y j→i

b )

where Y j→i
b was chosen by Pj , or that a the the first two rounds of the DSM MPC protocol

MPCDSM are computed honestly and that the defence for MPCDSM is committed using a special
non-malleable commitment scheme.

– A Σ-protocol BLL = (PL,VL) for the NP-language L = {Y : ∃ y s.t. Y = f(y)} with Special
HVZK simulator SimL. We uses two instantiations of BLL in order to construct the protocol
ΠOR for the OR of two statements following the approach proposed in [COSV17] (see Sec. A.2
for an overview of this technique). ΠOR is a proof of knowledge for the NP-language LOR =
{(Y0, Y1) : ∃ y s.t. f(y) = Y0 OR f(y) = Y1} 8. Informally, by running ΠOR, one can prove
the knowledge of either the preimage of Y0 or Y1 given that f is a OWP.

– A 4-round delayed-input synchronous many-many NMZK AoK NMZK = (PZK,VZK) for the
following NP-language

Li→jNMZK =
{(
msg< 3 , msg3i , (nmi→j

1 , nmj→i
2 , nmi→j

3 ), com
)

:

∃(decnm, y, x, dec) s.t. Rec(nmi→j
1 , nmj→i

2 , nmi→j
3 , decnm, (ρ, x)) = 1

AND ∀` ≤ 3 m`
i = Next`(1

λ, (ρ, x), msg< ` ) AND Dec(com, x, dec) = 1
}
.

Informally, by running NMZK one can prove that a valid defence for all the messages of
8We use ΠOR in a non-black box way, but for ease of exposition sometimes we will refer to entire protocol ΠOR in

order to invoke the proof of knowledge property enjoyed by ΠOR.
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MPCDSM is committed via a special non-malleable commitment scheme and the the input used
for to run MPCDSM is committed using a non-interactive commitment scheme.

5.1 Informal Description

In Fig. 3 we propose an informal description of our protocol. The Figure depicts the messages flow
the goes from one party Pi to a party Pj . The overall structure of our protocol can be summarized as
as follows. Each party commits to his input in the first round using a non-interactive commitment
scheme. The parties engage an DSM MPC protocol MPCDSM in the latest three rounds of the
protocol and prove that MPCDSM has been execute correctly. That is, each party Pi proves that
the second round of MPCDSM is well formed by committing to its randomness and input (which
represent a defence for MPCDSM) using a special non-malleable commitment scheme, and by proving
via ZAP that this commitment actually contains a valid defence. To ensure that also the third round
of MPCDSM is well formed (and that the defence is consistent with the value committed in the first
round) the parties engage a delayed-input NMZK Argument. In addition, in the first three rounds
Pj engages a WIPoK with Pi to prove the knowledge a value y such that Yb = f(y). Moreover,
a special non-malleable commitment of a random string is sent from Pi to Pj . The aim of those
two components is to help the simulator. Indeed, the simulator will extract y from the WIPoK and
will commit to it using the special non-malleable commitment scheme. Then the simulator will use
the knowledge of y and the knowledge of the decommitment information as a witness for the ZAP.
We note that the simulator, in order to extract y, needs to rewind the adversary from the third to
the second round. This means that before the rewinds he has to use a valid witness for the ZAP
without knowing y. Our simulator during the look-ahead rewinding threads will use a valid defence
for MPCDSM with a random input (i.e., a value that is inconsistent with what is committed in the
first round via the non-interactive commitment scheme). After the extraction, Sim rewinds up to
the second round, commits to the trapdoor, uses the simulator MPCDSM and complete the zap proof
using the knowledge of the trapdoor (and the knowledge of the the decommitment information of
the special non-malleable commitment used to commit to the trapdoor).

5.2 Formal Description of ΠMPC

Let P = {P1, . . . , Pn} be the set of parties. We describe the messages that Pi computes and sends
to Pj in any rounds of ΠMPC for all i, j ∈ {1, . . . , n} with i 6= j and Pi, Pj ∈ P. We denote a message
x that goes from Pi to Pj with xi→j and denote with msg< i all the messages of MPCDSM that have
been sent by all the parties up to the (i− 1)-th round of MPCDSM.

Protocol ΠMPC. Common input: security parameter λ, instances length: `ZAP, `NMZK. Private
input of party Pi: xi

Round 1. For all j ∈ {1, . . . , n} \ {i} Pi executes the following steps.
1. Compute yi→j0 ← {0, 1}λ, Y i→j

0 ← f(yi→j0 ) and pick Y i→j
1 ← {0, 1}λ.

2. Compute ai→j0 ← PL(1λ, Y i→j
0 , yi→j0 ).

3. Pick ci→j1 ← {0, 1}λ and compute (ai→j1 , zi→j1 )← SimL(1λ, Y i→j
1 , c1).

4. Pick r ← {0, 1}λ and run Sen on input 1λ and r thus obtaining (nmi→j
0,1 , dnm0) (where dnm0

represents the decommitment information).
5. Pick r′ ← {0, 1}λ and run Sen on input 1λ and r′ thus obtaining (nmi→j

1,1 , dnm1).
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Pi(xi) Pj(xj)

mpc1(x, ρ)

mpc2(x, ρ)

mpc3(x, ρ)

nm0,1

nm0,2

nm0,3(x, ρ)

nmzk1

nmzk2

nmzk3

nmzk4

nm1,1

nm1,2

nm1,3(r)

zap1

zap2

a0, a1

c

z0, z1

com(x), Y0, Y1

– (mpc1,mpc2,mpc3) represents the transcript of a DSM MPC protocol obtained using x as
input and ρ as the randomness.

– (nm0,1, nm0,2, nm0,3) is the transcript of the special non-malleable commitment scheme
that commits to the input and the randomness used to compute the messages of the
DSM MPC protocol.

– (nm1,1, nm1,2, nm1,3) is the transcript of the special non-malleable commitment scheme
that it is used to commit to a random message r. The simulator will commit to the
pre-image of either Y0 or Y1 and use the knowledge of that pre-image, together with the
decommitment information of the non-malleable commitment, as a witness for ZAP.

– (zap1, zap2) are the two rounds of the zap proof the proves either that (nm0,1, nm0,2, nm0,3)
contains (x, ρ), where (x, ρ) denotes the input and the randomness used to compute the
messages of the DSM MPC protocol, or that (nm1,1, nm1,2, nm1,3) contains a pre-image
of Yb with b ∈ {0, 1}.

– com is a non-interactive commitment of the input and (Y0, Y1) are two elements taken from
the domain of a one-way permutation.

– (a0, a1, c0, c1, z0, z1) is the transcript generated from an execution of the WIPoK ΠOR in
which POR proves the knowledge of either the pre-image Y0 or Y1.

– (nmzk1, nmzk2, nmzk3, nmzk4) in the transcript generated from an execution of the delayed-
input synchronous many-many NMZK NMZK in which PNMZK proves that: 1) The
defense of the DSMMPC protocol (ρ, x) is committed in one of the special non-malleable
commitment, 2) all the messages of DSM MPC are computed correctly; 3) com contains
a commitment of x which is compatible with the defense of the DSM MPC protocol.

Figure 3: The flow of messages that goes from the party Pi to a party Pj in ΠMPC.

6. Compute (com, dec)← Com(1λ, xi)
7. Run VZK on input 1λ thus obtaining nmzki→j1

8. Send (Y i→j
0 , Y i→j

1 , ai→j0 , ai→j1 , nmi→j
0,1 , nmi→j

1,1 , com
i→j , nmzki→j1 ) to Pj .

Round 2. On input {Y j→i
0 , Y j→i

0 , aj→i0 , aj→i1 , nmj→i
0,1 , nmj→i

1,1 , com
j→i, nmzkj→i1 }j∈{1,...,n}\{i}, for all

j ∈ {1, . . . , n} \ {i} Pi executes the following steps.
1. Pick ci→j ← {0, 1}λ.
2. Run Rec on input nmj→i

0,1 thus obtaining nmi→j
0,2 .

3. Run Rec on input nmj→i
1,1 thus obtaining nmi→j

1,2 .
4. Pick ρi→j ← {0, 1}λ and compute msg1i ← Next1(1

λ, x; ρi→j).
5. Run Pzap on input 1λ thus obtaining zapi→j1 .

18



6. Run PZK on input (1λ, nmzkj→i1 ) thus obtaining nmzki→j2 .
7. Send (ci→j , nmi→j

0,2 , nmi→j
1,2 , msg

1
i , zapi→j1 , nmzki→j2 ) to Pj .

Round 3. On input {cj→i, nmj→i
0,2 , nmj→i

1,2 , zapj→i1 , nmzkj→i2 }j∈{1,...,n}\{i}, msg< 2 , for all j ∈ {1, . . . , n}\
{i} Pi executes the following steps.

1. Commit to (xi, ρ
i→j) by running Sen on input ((xi, ρ

i→j), nmi→j
0,1 , nmj→i

0,2 , dnmi→j
0 ) thus obtain-

ing nmi→j
0,3 (we recall that the special non-malleable commitment scheme is delayed-input).

2. Pick ri→j ← {0, 1}λ and commit to it by running Sen on input (ri→j , nmi→j
1,1 , nmj→i

1,2 , dnmi→j
1 )

thus obtaining nmi→j
1,3 .

3. Set xi→jZAP =
(
msg<3, (nmi→j

0,1 , nmj→i
0,2 , nmi→j

0,3 ), (nmi→j
1,1 , nmj→i

1,2 , nmi→j
1,3 ), Y i→j

0 , Y i→j
1

)
and wZAP =

(dnm0, xi, ρ) and run Pzap in input (xi→jZAP, wZAP, zapj→i1 ) thus obtaining zapi→j2 .
4. Compute ci→j0 = cj→i ⊕ ci→j1 and zi→j0 ← PL(Y i→j

0 , yi→j0 , cj→i0 ).
5. Compute msg2i = Nexti(1

λ, xi, ρi, msg
< 2 )

6. Run VZK on input nmzkj→i2 thus obtaining nmzki→j3 .
7. Send (nmi→j

0,3 , nmi→j
1,3 , zapi→j2 , (zi→j0 , ci→j0 ), (zi→j1 , ci→j1 ), msg2i , nmzki→j3 ) to Pj

Round 4. On input {nmj→i
0,3 , nmj→i

1,3 , (zapj→i2 , xj→iZAP), (zj→i0 , cj→i0 ), (zj→i1 , cj→i1 ), nmzkj→i3 }j∈{1,...,n}\{i}, msg< 3

for all j ∈ {1, . . . , n} \ {i} Pi executes the following steps.
1. Check that the following conditions are satisfied:

- xj→iZAP is constructed accordingly to the protocol description;
- ci→j = cj→i0 ⊕ cj→i1 ;
- VL(aj→i0 , cj→i0 , zj→i0 , Y j→i

0 ) = 1;
- VL(aj→i1 , cj→i1 , zj→i1 , Y j→i

1 ) = 1;
- Vzap(zapi→j1 , zapj→i2 , xj→iZAP) = 1.

2. Compute msg3i = Nexti(1
λ, xi, ρi, msg

< 3 ).
3. Set xi→jNMZK =

(
msg< 3 , msg3i , (nmi→j

0,1 , nmj→i
0,2 , nmi→j

0,3 ), com
)
and wNMZK = (dnmi→j

0 , xi, ρ
i→j , dec)

and run PZK on input (xi→jNMZK, wNMZK, nmzkj→i3 ) thus obtaining nmzki→j4 .
4. Send (msg3i , x

i→j
NMZK,NMZKi→j

4 ) to Pj .
Output computation. On input {xj→iNMZK,NMZKj→i

4 )}j∈{1,...,n}\{i}, msg< 4 , for all j ∈ {1, . . . , n} \
{i} Pi checks if the following conditions are satisfied:

1. xj→iNMZK is constructed according to the protocol description;
2. VZK on input (NMZKj→i

4 , xj→iNMZK) outputs 1.
If the above conditions are satisfied then Pi compute yi = Output(1λ, x1, ρi, msg

< 4 ) and output
yi.

Our simulator: high level description. Before formally prove the security of our protocol, we
give more details on how the simulator SimMPC works (we refer the reader to Fig. 4 for the formal
description of SimMPC). SimMPC works in two phases. In the first phase SimMPC runs internally
the adversary A up to the third round by running the simulator for NMZK and by computing all
the other messages of ΠMPC as the honest parties would do. That is, SimMPC runs MPCDSM using
a random input x, commits to the defense of MPCDSM and proves via ZAP that the defence is
committed via the special non-malleable commitment scheme. SimMPC now run the extractor of the
special non-malleable commitment scheme and the PoK extractor of ΠOR thus rewinding from the
third to the second round.
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In the end of the extraction process the PoK extractor outputs the trapdoors (which correspond
to the inverses of the OWPs pre-images sent from the parties controlled from the adversary), and the
extractor of the special non-malleable commitment scheme outputs the decommitment information
d. SimMPC now rewinds A up to the second round, and interacts with A using the simulator SimDSM

of MPCDSM. Moreover, in order to compute an accepting proof for the ZAP, SimMPC commits to the
trapdoor via the special non-malleable commitment scheme and use the knowledge of the trapdoor
(and of the decommitment information) as a witness for the ZAP. We recall that SimDSM, in order
to compute the last round, requires a valid defence. This defence is extracted using d due to the
fact that the decommitment information d can be reused since the first round of NMCOM is the
same both in the main and in the look-ahead threads. The crucial part of the proof is to show that
SimMPC is able to extract a valid defence from the non-malleable commitment that is only honest-
extractable. Moreover, in the proof it is important to show that the adversarial parties behave
honestly with respect to the messages of MPCDSM also after the rewinds.

Theorem 3. If NMCOM is a special non-malleable commitment scheme, MPCDSM is a 3-round
delayed-semi-malicious MPC protocol, f is a OWP and ZAP exits and the security of NMCOM
MPCDSM and ZAP holds against sub-exponential time adversaries then ΠMPC is 4-round maliciously
secure MPC protocol.

Proof. To prove our theorem we need to show a non-uniform expected-poly-time simulator SimMPC =
{SimMPCλ}λ∈N such that:

{IdealI,SimMPC
(1λ, x)}λ,I,x ≈ {RealI,A(1λ, x)}λ,I,x

We propose the description of SimMPC in Fig. 4. Our proof proceeds via hybrid arguments.
Without loss of generality, in the proof we assume that there is only one honest party Pi. We divide
the proof in two parts, in the first we consider an adversary that completes the first three round of
the protocol with non-negligible probability, in the second we consider an adversary that completes
the third round with negligible probability only.
A completes the third round with non-negligible probability.

-H0. This hybrid experiment corresponds to the standard execution of ΠMPC where Pi interacts
with the malicious party according to the description of ΠMPC. We assume that H0 ends successfully
(Pi does not abort) with non-negligible probability (otherwise the theorem is trivially proven). We
denote with NOTRAPHi the event in which the adversary provides a well-formed non-malleable
commitment of y such that Y i→j

b for some j ∈ {1, . . . , n} − {i} and b ∈ {0, 1} in the hybrid
experiment Hi. We want to prove the following lemma

Lemma 1. Prob [ NOTRAPH0 ] < ν(λ)

Proof. Suppose by contradiction that the lemma does not hold. This means that there exists j
such that (nmj→i

1,1 , nmi→j
1,2 , nmj→i

1,3 ) is a well formed non-malleable commitment of a value y with
Y i→j
b = f(y) and b ∈ {0, 1}. Since NMCOM is honest extractable and the commitment is well

formed, it is possible to extract y via rewinds. We now observe that if Y i→j
1 = f(y) we can break

the one-way property of f because y is never used by the honest party. That is, ai→j0 is computed
using the witness y0 s.t. Y0 = f(y0). However, if Y0 = f(y) then the reduction is not immediate
since y is actually used in the hybrid experiment. In order to reach a contradiction, we consider
the intermediate hybrid experiment Hy10 in which the witness used in ΠOR is y1 s.t. Y i→j

1 = f(y1).
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If we now rewind the adversary and the value extracted from the non-malleable commitment is
y such that Y0 = f(y) then a reduction that breaks the one-wayness of f can be done. In any
other case we can construct a reduction that breaks the Special HVZK of BL. First, we observe
that we cannot simply rely on the WI property of ΠOR since the rewinds required to extract from
the special non-malleable commitment scheme could rewind the third and the second messages of
ΠOR thus interfering with the reduction. For this reason we now consider ΠOR in a non-black-box
way and consider an additional intermediate hybrid experiment Hy0,y10 . Hy0,y10 follows the same
steps of H0 except that the honest prover procedure (PL), instead of the Special HVZK simulator
(SimL), is used to compute the prover’s messages ai→j1 , zi→j1 of the transcript τ1 = (ai→j1 , ci→j1 , zi→j1 )

w.r.t. the instance Y i→j
1 . Suppose now by contradiction that the value extracted from the special

non-malleable commitment scheme is y such that Y i→j
0 6= f(y) , then we can show a malicious

verifier V? that distinguishes between a transcript τ1 = (a1, c1, z1) computed using SimL and one
computed using the honest prover procedure. In more details, let CSHVZK be the challenger of the
Special HVZK. V? picks c1 ← {0, 1}λ and sends c1 to CSHVZK. Upon receiving a1, z1 from CSHVZK V?
interacts with the adversary according to H0 (Hy0,y10 ) except for the messages of τ1 where V? acts
as a proxy between CSHVZK and A. At the end of the execution V? runs the extractor of the special
non-malleable commitment scheme thus obtaining ỹ. Therefore, we have reached a contradiction.
We observe that if CSHVZK sends a simulated transcript then ỹ = y0 otherwise ỹ 6= y0.

There is a subtlety in the above reduction. V? runs the extractor for the special non-malleable
commitment scheme that rewinds from the third to the second round. This means that V? has
to be able to complete during the rewinds the third round while receiving different challenges
c1, . . . , cpoly(λ) w.r.t. ΠOR. Since we are splitting the challenge c, V? can just keep fixed the value
c1 reusing the same z1 (sent by CSHVZK) and computing an answer to a0 using the knowledge
of y0 s.t. Y i→j

0 = f(y0). We note now that Hy10 proceeds exactly as Hy0,y10 except that the
Special HVZK simulator (SimL), instead of honest procedure (PL), is used to compute the prover’s
messages ai→j0 , zi→j0 of the transcript τ i→j0 = (ai→j0 , ci→j0 , zi→j0 ) w.r.t. the instance y0. From the same
arguments proposed above, we can prove that the value extracted from the special non-malleable
commitment scheme is y0 s.t. Y i→j

0 = f(y0) also in Hy10 . We note that this is sufficient to reach a
contradiction since y0 is not used in the hybrid experiment. That is, the adversary can be used to
break the security of the OWP.

Another property that we need to show to hold in this (and in the next hybrid experiments)
is that the adversary behaves correctly. More formally, we require that if Pj does not abort, then
xj→iNMZK is a true statement for all j ∈ {1, . . . , n} − {i}. We denote the event in which there exists
j ∈ {1, . . . , n} − {i} such that Pj does not abort with non-negligible probability but xj→iNMZK is a
false statement in the hybrid Hi with FALSEXHi . Due to the soundness of NMZK we can claim that
Prob [ FALSEXH0 ] < ν(λ).

–H1 is equal to H0 with the difference that the simulator of NMZK is run instead of the honest
prover procedure. The indistinguishability between H0 and H1 comes immediately from the Zero-
knowledge of NMZK. Moreover, from the many-many non-malleability of NMZK we can claim that
the adversary is still proving true theorems, that is Prob [ FALSEXH1 ] < ν(λ). We observe that
Prob [ NOTRAPH1 ] < ν(λ) since otherwise a reduction that breaks the Zero-Knowledge of NMZK
can be made9.

9Note that we are assuming that the simulator of NMZK rewinds from the third to the second round, and from
the fourth to the third. This means that the extraction from the special non-malleable commitment scheme can be
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–H2 is equal to H1 with the difference that it rewinds the adversary from the third to the second
round in order to get the witness used by the adversary in ΠOR. H1 and H2 are statistically indis-
tinguishable due to the PoK property of ΠOR, moreover Prob [ FALSEXH2 ] < ν(λ) holds otherwise
a reduction to the PoK property of ΠOR can be made. The reduction would construct a malicious
prover for ΠOR by running internally the adversary for ΠMPC and by starting an interaction with the
challenger of PoK. In the end of the interaction between the challenger and the malicious prover,
the reduction can check the output of the simulator-extractor of NMZK to verify whether xj→iNMZK is
a true statement10.

–H3 is equal to H2 with the difference that each extracted value yj→i, such that Y j→i
b =

f(yj→i) for b ∈ {0, 1}, is committed via the special non-malleable commitment scheme for all
j ∈ {1, . . . , n} \ {i}. That is, the look-ahead rewinding threads are used to extract the trapdoor
yj→i using the PoK extractor of ΠOR. Then yj→i is committed in (nmi→j

1,1 , nmj→i
1,2 , nmi→j

1,3 ). We note
that the in H3 the value committed inside the special non-malleable commitment can be changed
when the look-ahead thread are over due to the delayed-input property of NMCOM. H3 and H2 are
indistinguishable due properties of hiding and last-message pseudorandomness enjoyed NMCOM
(the property last-message pseudorandomness is necessary to avoid rewinding issues during the
reduction, more details will follow). In order to prove that Prob [ NOTRAPH3 ] < ν(λ) we can
rely on the property of NMCOM to be many-one synchronous non-malleable. We observe that
one-one non-malleability is sufficient since, if there is one session in which the adversary commits
to the trapdoor, then we can isolate that session and construct the reduction to the non-malleable
commitment (a similar technique is used in [COSV16]). Note that in the reduction to the non-
malleability, as well as in the reduction to the hiding of NMCOM, it is required to rewind the
adversary from the third to the second round due to the look-ahead rewinding threads. However,
this does not represent a problem since, during the rewinds, the reduction can compute the replies
to the second round of NMCOM sent by the adversary by its own due to the property of last-message
pseudorandomness. Moreover, also in this case we can rely on the simulator-extractor of NMZK to
ensure that Prob [ FALSEXH3 ] < ν(λ).

–H4 is equal to H3 with the difference that the witness used in ZAP in the main thread (after
the look-ahead rewinds) is now represented by (dnmi→j

1 , yj→i) such that Y j→i
b = f(yj→i) and

Rec(nmi→j
0,1 , nmj→i

0,2 , nmi→j
0,3 , (dnmi→j

1 , yj→i)) = 1 for all j ∈ {1, . . . , n} − {i} (we recall that yj→ib is
the value extracted by running the PoK extractor for ΠOR). Due to the WI property of ZAP we
have that the two hybrid experiments are indistinguishable. In more details, during the look-ahead
threads the reduction computes the ZAP proof using the same witness used inH3 (which corresponds
to a valid defense for MPCDSM committed via the other special non-malleable commitment). When
the extraction via look-ahead rewinds is over, the reduction acts as a proxy for the messages of ZAP
between the ZAP challenger and A. When the interaction with the challenger is over the reduction
rewinds A again to check that he is still not committing to the trapdoor. We note that these
rewinds do not affect the reduction due to the resettability of ZAP. The argument given above are
also sufficient to claim that Prob [ NOTRAPH4 ] < ν(λ). As for the previous hybrid experiment, we
rely on the simulator-extractor of NMZK to ensure that Prob [ FALSEXH4 ] < ν(λ).

–H5 is equal to H4 with the difference that the j−th flow, for j ∈ {1, . . . , n} − {i}, of NMCOM

done concurrently with the rewinds made by the simulator of NMCOM.
10We note that the simulator of NMZK of [COSV17], in order to extract the witness for the theorem proved by the

adversary just needs to rewind from the fourth to the third round, which does not affect the reduction to the PoK
property of ΠOR.
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(nmi→j
0,1 , nmj→i

0,2 , nmi→j
0,3 ) does not contain a valid defense for MPCDSM anymore in the main-thread.

The indistinguishability between H4 and H3 comes from the hiding of NMCOM. We can prove that
Prob [ NOTRAPH5 ] < ν(λ) for the same arguments used above. Indeed if this does not hold, then
a reduction to the security of the many-one non-malleability of NMCOM can be made. Note that in
this case many-one non-malleability is sufficient since we have proved that in Prob [ NOTRAPH4 ] <
ν(λ). Therefore, if there is just one session in which the adversary commits correctly to the trapdoor
then a reduction can be made. We also observe that due to the soundness of ZAP, and because
Prob [ NOTRAPH4 ] < ν(λ), then the adversary is still committing to a valid defense for MPCDSM in
(nmj→i

0,1 , nmi→j
0,2 , nmj→i

0,3 ) for all j ∈ {1, . . . , n} − {i} in the main-thread. As for the previous hybrid,
we rely on the simulator-extractor of NMZK to ensure that Prob [ FALSEXH5 ] < ν(λ).

-H6 is equal to H5 with the difference that the value committed in com is a random value. The
indistinguishability between the hybrid experiments and the fact that Prob [ NOTRAPH5 ] < ν(λ)
come from the hiding of the commitment scheme (Com,Dec). We observe that, since Prob [ NOTRAPH6 ] <
ν(λ), then (nmj→i

0,1 , nmi→j
0,2 , nmj→i

0,3 ) contains a valid a defense for MPCDSM for all j ∈ {1, . . . , n}−{i}.
Therefore, due to the honest-extractability of NMCOM and the soundness of ZAP, the defense for
MPCDSM can be extracted by rewinding the special non-malleable commitments that are sent from
the adversary in the main-thread. We can also claim that Prob [ FALSEXH6 ] < ν(λ) because of the
same arguments showed above.

–H7 is equal to H6 with the difference that during the look-ahead rewinding threads MPCDSM

is run using a random input (like H6) and in the main-thread the simulator of MPCDSM is run. We
note that the simulator of MPCDSM can be feed with a valid defense in the main-thread since this
defense can be extracted from the non-malleable commitments received from the adversarial parties
using the reusable decommitment information obtained during the look-ahead thread.

The indistinguishability between the two hybrid experiments comes from the security of MPCDSM.
More precisely, This part of the proof uses the same arguments proposed in Sec. 4. Indeed, in our
case B is represented by MPCDSM and Ext is represented by: 1) the extractor that extracts from
(nmj→i

0,1 , nmi→j
0,2 , nmj→i

0,3 ) a defense for MPCDSM and 2) the extractor for ΠOR that extracts the in-
verses of the OWPs images sent from A. The proof ends with the observation that this hybrid
experiment corresponds to the simulator SimMPC showed in Fig. 4.
A completes the third round with negligible probability. To complete this part of the proof
is sufficient to prove the following lemma.

Lemma 2. For any choice of x′
I
, y′

I
where x′

I
= {x′i}i∈I , y′I = {y′i}i∈I and x′I 6= y′I (we recall that

I corresponds to the set of honest parties), the following two ensembles are indistinguishable

{RealI,A(1λ, x)}λ,I ≈ {RealI,A(1λ, y)}λ,I .

To prove the lemma, we can follow the same steps of the first part of the proof with the
difference that in each hybrid experiments instead of extracting the trapdoor by rewinding the
adversary from the third to the second round, the trapdoor is extracted by inverting Y j→i running
in sub-exponential time for all j ∈ I and i ∈ I.

From Theorems 1, 2 and 3 we obtain the following corollary.

Corollary 2. If sub-exponentially secure one-way trapdoor permutations exist, then ΠMPC is secure
4-round maliciously secure MPC protocol.
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Moreover, from Theorem 1, [HV16, Theorem 6.2] and Theorem 3 we can also claim the following.

Corollary 3. If sub-exponentially secure claw-free trapdoor permutations exist, then ΠMPC is secure
4-round maliciously secure MPC protocol.
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We assume that all but one the parties are corrupted. Let Pi be the only honest party, then
SimMPC runs internally the corrupted parties P \ {Pi} controlled by the adversary A and acts
as follows.
From the 1-th to the 3-rd round.

1. Pick x′ ← {0, 1}λ, compute (com, dec)← Com(1λ, x′) and send com to all the parties.
2. Run SimZK on input 1λ.
3. Pick x, ρ← {0, 1}λ and run MPCDSM in the second and the third round.
4. Commit to (x, ρ) to all the corrupted parties using NMCOM. That is, in the end of
the three rounds each malicious party Pj obtains a transcript (nmi→j

0,1 , nmj→i
0,2 , nmi→j

0,3 ) for
NMCOM that represents the commitment to (x, ρ).

5. Pick rj ← {0, 1}λ and commits to it to the corrupted Pj using NMCOM for all j ∈
{1, . . . , n} \ {i}. That is, in the end of the three rounds each malicious party Pj obtains
a transcript (nmi→j

1,1 , nmj→i
1,2 , nmi→j

1,3 ) for NMCOM that represents the commitment to rj .
6. Engage a ZAP proof with each Pj in the second and the third round using as a witness
(dnmi→j

0 ρ, x).
7. Act as the receiver of NMCOM for all the non-malleable commitments received from
the adversary.

8. Act as the ZAP verifier to check if all the proofs received in the third round from the
adversarial parties are accepting. If there is at least one non-accepting proof then abort.

Look-ahead rewinding threads.
1. Run the extractor ExtNM to obtain the reusable decommitment information dj of
(nmj→i

0,1 , nmi→j
0,2 , nmj→i

0,3 ) for all j ∈ {1, . . . , n} \ {i}.
2. Run the PoK extractor of ΠOR thus obtaining yj→i such that f(yj→i) = Y j→i

bj→i
with

bj→i ∈ {0, 1} for all j ∈ {1, . . . , n} \ {i}.
Main-thread execution. Rewind A up to the second round and do the following.

1. Continue the execution of SimZK.
2. Change the committed message of the first flaw of NMCOM from (x′, ρ′) to a random
value r′ ← {0, 1}λ.a

3. Change the message committed to Pj via the second flaw of NMCOM to yj→i for all
j ∈ {1, . . . , n} \ {i}b.

4. Compute the j-th ZAP proof using as a witness (dnmi→j
1 , yj→i) for all j ∈ {1, . . . , n} \

{i}
5. Upon receiving the third round from the adversary, let (nmj→i

0,1 , ñmi→j
0,2 , ñmj→i

0,3 ) be the
transcript for NMCOM obtained by interacting the the adversarial party Pj . Extract
the committed value (xj , ρj) using the reusable decommitment information dj obtained
during the look-ahead threads and check that (xj , ρj) is a valid defense. If it is not then
abort, otherwise continue with the following steps.

6. Run the simulator SimDSM for the delayed-semi-malicious MPC protocol using as input
the defence extracted from the corrupted parties (xj , ρj) for all j ∈ {1, . . . , n} \ {i}c.

Output 4. Output what the A outputs.
aWe recall that NMCOM is delayed-input and so the committed message can be decided in the third round

of the commitment phase.
bIn the case that A aborts, SimMPC rewinds the adversary and sends a new (pseudorandom) third round of

NMCOM to A.
cNote that SimDSM need the defence only to compute the last round.

Figure 4: The simulator SimMPC.
25



6 Acknowledgments

We thank Arka Rai Choudhuri, Vipul Goyal and Abhishek Jain for useful discussions on multi-
party computation. The second author is supported in part by NSF-BSF grant 1619348, DARPA
SafeWare subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-1C-4065, US-Israel BSF
grant 2012366, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty
Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. The views expressed are those of the authors and do not
reflect position of the Department of Defense or the U.S. Government. This research was also
partially supported by H2020 project PRIVILEDGE #780477.

26



References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part I, pages 468–499, 2017.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita
Khurana, and Amit Sahai. Promise zero knowledge and its applications to round optimal
MPC. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 459–487. Springer, 2018.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure compu-
tation without setup. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography
- 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15,
2017, Proceedings, Part I, volume 10677 of Lecture Notes in Computer Science, pages
645–677. Springer, 2017.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes
in Computer Science, pages 500–532. Springer, 2018.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In In Proceedings of
the International Congress of Mathematicians, page 444âĂŞ451, 1986.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Yvo Desmedt, editor, Advances
in Cryptology - CRYPTO ’94, 14th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1994, Proceedings, volume 839 of Lecture Notes
in Computer Science, pages 174–187. Springer, 1994.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-
malleable commitments (and more) in 3 rounds. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part III, volume 9816 of Lecture Notes in Computer Science, pages 270–299. Springer,
2016. Full version http://eprint.iacr.org/2016/566.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input
non-malleable zero knowledge and multi-party coin tossing in four rounds. In Yael Kalai
and Leonid Reyzin, editors, Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, volume
10677 of Lecture Notes in Computer Science, pages 711–742. Springer, 2017. Full version
http://eprint.iacr.org/2017/931.

27

http://eprint.iacr.org/2016/566
http://eprint.iacr.org/2017/931


[CPS+16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Online/offline OR composition of sigma protocols. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes
in Computer Science, pages 63–92. Springer, 2016. Full version http://eprint.iacr.
org/2016/175.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual Sympo-
sium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 283–293, 2000.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-
malleable commitments: A black-box approach. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-
23, 2012, pages 51–60, 2012.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Com-
puter Science, pages 448–476. Springer, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred V. Aho, editor,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 218–229. ACM, 1987.

[GMY06] Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge proto-
cols using signatures. Journal of Cryptology, 19(2):169–209, 2006.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 695–704, 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 1128–1141,
2016. Full version: Cryptology ePrint Archive, Report 2015/1178.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science,
pages 468–499. Springer, 2018.

28

http://eprint.iacr.org/2016/175
http://eprint.iacr.org/2016/175


[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkita-
subramaniam. Round-optimal secure multi-party computation. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages 488–
520. Springer, 2018.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-
box constructions of protocols for secure computation. SIAM J. Comput., 40(2):225–266,
2011.

[HV16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. What security can we
achieve within 4 rounds? In Vassilis Zikas and Roberto De Prisco, editors, Security and
Cryptography for Networks - 10th International Conference, SCN 2016, Amalfi, Italy,
August 31 - September 2, 2016, Proceedings, volume 9841 of Lecture Notes in Computer
Science, pages 486–505. Springer, 2016. Full version: https://eprint.iacr.org/2015/
797.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In
Advances in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConfer-
ence, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, pages 335–354,
2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith. Round efficiency of multi-party
computation with a dishonest majority. In Eli Biham, editor, Advances in Cryptol-
ogy - EUROCRYPT 2003, International Conference on the Theory and Applications of
Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656
of Lecture Notes in Computer Science, pages 578–595. Springer, 2003.

[Lin10] Yehuda Lindell. Foundations of cryptography 89-856. http://u.cs.biu.ac.il/
~lindell/89-856/complete-89-856.pdf, 2010.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-
way function. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June
2011, pages 705–714. ACM, 2011.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In Ran Canetti, editor, Theory
of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA,
March 19-21, 2008., volume 4948 of Lecture Notes in Computer Science, pages 571–588.
Springer, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for concurrent security: universal composability from stand-alone non-
malleability. In Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing,STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 179–188, 2009.

29

https://eprint.iacr.org/2015/797
https://eprint.iacr.org/2015/797
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf


[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest ma-
jority. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 232–241. ACM, 2004.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In Theory of Cryptography, 6th Theory of Cryptography Conference,
TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 403–418,
2009.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 566–598. Springer, 2001.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 160–164. IEEE Computer Society, 1982.

30



A Standard Definitions

Definition 14 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be
ensembles, where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We
say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y ,
if for every PPT distinguisher D there exists a negligible function ν such that for sufficiently large
λ ∈ N, ∣∣∣Prob [ t← Xλ : D(1λ, t) = 1

]
− Prob

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ,
it is possible to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 14 with the only difference that the
distinguisher D is unbounded. In this case use X ≡s Y to denote that two ensembles are statistically
indistinguishable.

Definition 15 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}? is called one way if
the following two conditions hold:

• there exists a deterministic polynomial-time algorithm that on input y in the domain of f
outputs f(y);

• for every PPT algorithm A there exists a negligible function ν, such that for every auxiliary
input z ∈ {0, 1}poly(λ):

Prob
[
y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

We say that a OWF f is a 1-to-1 OWF if f(x) 6= f(y) ∀(x, y) ∈ {0, 1}?.
We say, also, that a OWF f is a one-way permutation (OWP) if f is a permutation.

Definition 16 (Proof of Knowledge [LP11]). A protocol Π = (P,V) that enjoys completeness is a
proof of knowledge (PoK) for the relation RelL if there exists a probabilistic expected polynomial-time
machine E, called the extractor, such that for every algorithm P?, there exists a negligible function
ν, every statement x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input z ∈ {0, 1}?,

Prob [ 〈P?r (z),V〉(x) = 1 ] ≤ Prob
[
w ← EP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK) if the above condition
holds w.r.t. any PPT P?.

In our security proofs we make use of the following observation. An interactive protocol Π that
enjoys the property of completeness and PoK (AoK) is a proof (an argument) system. Indeed sup-
pose by contradiction that is not. By the definition of PoK (AoK) it is possible to extract the witness
for every theorem x ∈ {0, 1}λ proved by P?r with probability greater than Prob [ 〈P?r (z),V〉(x) = 1 ];
contradiction.

In this paper we also consider the adaptive-input PoK/AoK property for all the protocols that
enjoy delayed-input completeness. Adaptive-input PoK/AoK ensures that the PoK/AoK property
still holds when a malicious prover can choose the statement adaptively at the last round.

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol played between a
prover P and a verifier V on common input x and private input w of P s.t. (x,w) ∈ RelL. In a
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3-round protocol the first message a and the third message z are sent by P and the second messages
c is played by V. At the end of the protocol V decides to accept or reject based on the data that he
has seen, i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge length the number
of bit of c.

Definition 17 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for a relation RelL is a
Σ-Protocol if the following properties hold:

• Completeness: if (P,V) follow the protocol on input x and private input w to P s.t. (x,w) ∈
RelL, V always accepts.

• Special soundness: if there exists a polynomial time algorithm such that, for any pair of ac-
cepting transcripts on input x, (a, c1, z1), (a, c2, z2) where c1 6= c2, outputs witness w such that
(x,w) ∈ RelL.

• Special Honest Verifier Zero-knowledge (Special HVZK): there exists a PPT simulator algo-
rithm Sim that for any x ∈ L, security parameter λ and any challenge c works as follow:
(a, z) ← Sim(1λ, x, c). Furthermore, the distribution of the output of Sim is computationally
indistinguishable from the distribution of a transcript obtained when V sends c as challenge
and P runs on common input x and any w such that (x,w) ∈ RelL

11.

Definition 18. A delayed-input 3-round protocol Π = (P,V) for relation RelL enjoys adaptive-input
special soundness if there exists a polynomial time algorithm such that, for any pair of accepting
transcripts (a, c1, z1) for input x1 and (a, c2, z2) for input x2 with c1 6= c2, outputs witnesses w1 and
w2 such that (x1, w1) ∈ RelL and (x2, w2) ∈ RelL.

A.1 Commitment Schemes

Definition 19 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme CS =
(Sen,Rec) is a two-phase protocol between two PPT interactive algorithms, a sender Sen and a
receiver Rec. In the commitment phase Sen on input a message m interacts with Rec to produce a
commitment com, and the private output d of Sen.

In the decommitment phase, Sen sends to Rec a decommitment information (m, d) such that Rec
accepts m as the decommitment of com.

Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the following
properties hold:
Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of an
execution of CS = (Sen,Rec) where Sen runs on input a message m. Let d be the private
output of Sen in this phase.
• Decommitment phase12. Rec on input m and d accepts m as decommitment of com.

Statistical (resp. Computational) Hiding([Lin10]): for any adversary (resp. PPT ad-
versary) A and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment
ExpHidingbA,CS(λ):

11Note that we require that the two transcripts are computationally indistinguishable as in [GMY06], instead of
following [CDS94] that requires the perfect indistinguishability between the two transcripts.

12In this paper we consider only non-interactive commitment and decommitment phase.
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• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same
length.

• Sen on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. PPT adversary) A, there exist a negligible function ν, s.t.:∣∣∣Prob [ ExpHiding0A,CS(λ) = 1
]
− Prob

[
ExpHiding1A,CS(λ) = 1

] ∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during
the commitment phase by a possibly malicious unbounded (resp. malicious PPT) sender Sen?

there exists a negligible function ν such that Sen?, with probability at most ν(λ), outputs two
decommitments (m0, d0) and (m1, d1), with m0 6= m1, such that Rec accepts both decommit-
ments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.
When a commitment scheme (Com,Dec) is non-interactive, to not overburden the notation, we use
the following notation.
– Commitment phase. (com, dec)← Com(m) denotes that com is the commitment of the message

m and dec represents the corresponding decommitment information.
– Decommitment phase. Dec(com, dec,m) = 1.

A.2 A special WIPoK ΠOR.

In order to construct our MPC protocol we rely the special WIPoK ΠOR proposed in [COSV17].
This WIPoK has the property to be nicely composable with other protocols in parallel. In a
nutshell, ΠOR takes two instantiations of the three-move Special HVZK PoK (like as in Blum’s
protocol [Blu86]) and composes them via the OR composition proposed in [CDS94] thus obtaining
a WIPoK. Using this WIPoK a reduction can be successfully completed even when there are rewinds
due to another protocols played in parallel. Since in our protocol/proof we make non-black-box use
of this primitive, we provide the description of ΠOR verbatim from [COSV17].

ΠOR uses the compiler proposed in [CDS94] to combine two three-move Special HVZK PoKs
Σ0,Σ1 into a WIPoK for the NP-language L0 OR L1. Let (x0, x1) be the compound statement to
be proved, with x0 ∈ L0 and x1 ∈ L1, and let wb be the witness for xb. The compiler proposed
in [CDS94] executes Σ0 and Σ1 (respectively for L0 and L1) in parallel, but after receiving the
challenge c from the verifier, the prover can use as challenges for Σ0 and Σ1 every pair (c0, c1) s.t.
c0 ⊕ c1 = c. Therefore the prover could choose in advance one of the challenge to be used (e.g.,
c1−b), and compute the other one by setting cb = c⊕ c1−b. In this way the transcript for Σ1−b can
be computed using the Special HVZK simulator while the transcript for Σb is computed using the
witness wb. Thus the prover has the “freedom" of picking one out of two challenges before seeing
c, but still being able to complete the executions of both Σ0 and Σ1 for every c. This “freedom"
is sufficient to switch from the use of w0 to the use of w1 (in order to prove WI) even when it is
required to answer to additional (and different) challenges c1, . . . , cpoly(λ) (i.e., when some rewinds
occur). Indeed it is possible to switch the witness used (from w0 to w1) in two steps relying first
on the Special HVZK of Σ1, and then on the Special HVZK of Σ0. More precisely, we consider the
hybrid experiment Hw0 as the experiment where in ΠOR the witness w0 is used (analogously we
define Hw1). We now consider Hw0,w1 that differs from Hw0 because both the witnesses w0 and w1
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are used. We prove that Hw0 and Hw0,w1 are indistinguishable due to the Special HVZK of Σ1 even
though ΠOR is rewound polynomially many times. The reduction works as follows. A challenge c1
is chosen before the protocol ΠOR starts and the Special HVZK challenger is invoked thus obtaining
(a1, z1). The transcript for Σ0 is computed by the reduction using the witness w0 in order to answer
to the challenge ci0 = ci ⊕ c1 for i = 1, . . . , poly(λ). We recall the we are in a setting where ΠOR

could be rewound, and therefore the reduction needs to answer to multiple challenges. We observe
that the reduction to the Special HVZK is not disturbed by these rewinds because c1 can be kept
fixed. The same arguments can be used to prove that Hw0,w1 is computationally indistinguishable
from Hw1 .

B The synchronous one-one non-malleable commitment scheme of [GPR16]

Let (Com,Dec) be a non-interactive statistically binding commitment scheme, and (E,D) be an
encoding algorithm that splits the input into two codewords L and R13. The scheme NMCOM =
(Sen,Rec) proposed in [GPR16] can be described as follows.
Commitment phase. Let m be the message to be committed.

Sen → Rec: Sen chooses (L,R) ← E(m) where L is viewed as a field element in Zq; Sen also
draws r ← Zq at random, compute com, dec← Com(L||r) and send com to Rec.

Rec→ Sen: Rec chooses a random α← Z?q and sends it to Sen.
Sen→ Rec: Sen sends a = rα+ L and R to Rec.

Decommitment phase To decommit, Sen sends dec to Rec.
Intuitively, Sen commits to a polynomial-based 2-out-of-2 secret sharing of L in the first round,

and in the third round sends R along with one share.

Honest-extractability and reusable decommitment information. As discussed in Sec 2.3
this commitment scheme is honest-extractable. Indeed, once that a complete transcript has been
received, it is possible to rewind Sen from the third to the second round using different second mes-
sages thus obtaining L. More precisely, let τ = (com, α, (a,R)) be an honestly generated transcript.
Once that another honest transcript is obtained L can be extracted (via interpolation), and the
committed message can be retrieved by running D on input (L,R). We note that the extracted
information can be reused to retrieve the message committed in another transcript of NMCOM that
shares the same first round. For example, one can infer that the message committed in the (honestly
generated) transcript τ̃ = (com, α̃, (ã, R̃)) is D(L, R̃) = m̃.

13L and R are codewords of a non-malleable code. In this discussion we can consider (E,D) just as an encoding-
decoding algorithm.
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