
MonZ2ka: Fast Maliciously Secure Two Party
Computation on Z2k

?

Dario Catalano1, Mario Di Raimondo1, Dario Fiore2, and Irene Giacomelli3

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy
2 IMDEA Software Institute, Madrid, Spain

3 Protocol Labs, USA

Abstract. In this paper we present a new 2-party protocol for secure
computation over rings of the form Z2k . As many recent efficient MPC
protocols supporting dishonest majority, our protocol consists of a heav-
ier (input-independent) pre-processing phase and a very efficient online
stage. Our offline phase is similar to BeDOZa (Bendlin et al. Eurocrypt
2011) but employs Joye-Libert (JL, Eurocrypt 2013) as underlying ho-
momorphic cryptosystem and, notably, it can be proven secure without
resorting to the expensive sacrifice step. JL turns out to be particularly
well suited for the ring setting as it naturally supports Z2k as underlying
message space. Moreover, it enjoys several additional properties (such as
valid ciphertext-verifiability and efficiency) that make it a very good fit
for MPC in general. As a main technical contribution we show how to
take advantage of all these properties (and of more properties that we
introduce in this work, such as a ZK proof of correct multiplication) in
order to design a two-party protocol that is efficient, fast and easy to
implement in practice.
Our solution is particularly well suited for relatively large choices of k
(e.g. k = 128), but compares favorably with the state of the art solution
of SPDZ2k (Cramer et al. Crypto 2018) already for the practically very
relevant case of Z264 .

1 Introduction

Secure Multi-Party Computation (MPC) allows a set of mutually mistrusting
parties to jointly compute a function f of their inputs x1, . . . xn in such a way
that correctness and security are guaranteed. Correctness means that at the end
of the protocol the parties have computed f(x1, . . . , xn). Security means that, at
the end of the interaction, party Pi, holding xi, learns only (the i-th component
of) the output f(x1, . . . , xn) and nothing else. The interesting feature of MPC
is that security should be preserved even when there is an adversary A that
controls some of the participants and, for the case of malicious security, takes
full control of the corrupted parties, influencing their behaviors in arbitrary ways.
The security model for MPC (e.g., the Universal Composability framework [7])
formalizes this by stating that a protocol should be considered secure if its

? This is the full version of the extended abstract in PKC 2020 proceedings.

execution is essentially equivalent to an ideal protocol where the computation is
performed by a fully trusted third party.

In terms of applications, a particularly relevant case is the two party setting
or, more in general, the case where the adversary (maliciously) controls half
or more users. This scenario is notoriously hard to handle efficiently. Indeed,
it is well-known that fast information theoretic solutions are not possible and
expensive public key cryptography needs to be employed to achieve security.

In recent years, several works (e.g. [4,13]) noticed that one can improve ef-
ficiency by dividing the computation in two stages: an expensive offline stage
where public key cryptography is used in order to perform a pre-computation
independent of the inputs, and an online stage in which, once the inputs be-
come available, one performs the actual computation in a fast way, using only
information theoretic techniques. More in detail, in these works pre-computation
essentially consists in creating random triples of the form (a, b, ab). There are
two main approaches to create these triples: using fast, but bandwidth ineffi-
cient, oblivious transfer extensions (e.g. [18]), or using more compact, but less
computationally efficient, homomorphic encryption schemes.

When it comes to achieve security against malicious adversaries, the main
technique used by these protocols are unconditionally secure MACs. For instance,
in the celebrated SPDZ protocol [13,11] a MAC key is shared and used to au-
thenticate the random triples generated in the offline phase; this prevents players
from cheating when using this same material in the on-line phase. Since informa-
tion theoretically secure MACs are typically constructed over finite fields, most
existing solutions for dishonest majority MPC assume that the computation
takes the form of an arithmetic circuit over a finite field (such as Zp for prime
p). An exception is the recent work of Cramer et al. [9] (SPDZ2k) that proposes
an efficient protocol that supports operations modulo 2k. This choice comes par-
ticularly handy in practice: for instance, working modulo 2k (and specifically
264) closely matches modern CPU computations and allows protocol designers
to directly apply optimizations and tricks that are possible there and that are
often expensive to emulate modulo p. In order to handle operations in Z2k , the
key technical contribution of the Cramer et al. solution is a new information
theoretic MAC that allows to authenticate messages in this ring. In a nutshell,
they achieve this by choosing a random secret key in a sufficiently large space
Z2s and by performing all the computations in the larger ring Z2k+s so as to be
able to bound with 2−s the probability that an information theoretic adversary
can forge a valid MAC. The new MAC is then used to construct an online pro-
tocol a-la SPDZ where computation is done in the ring Z2k+s (i.e. the values
and the MACs are additively secret-shared in Z2k+s). The preprocessing stage,
on the other hand, is implemented via a MASCOT-like [18] protocol, whose
communication costs are roughly twice those of the original MASCOT.

Our Contribution. In this paper we propose MonZa4, a fast, two-party pro-
tocol for secure computation over the ring Z2k . Our solution uses the authen-

4 The name MonZa is inspired by the famous race track hosting the Formula One
Italian Grand Prix.

2

tication mechanism of [9], but we generate random triples using homomorphic
encryption. Specifically, we use the Joye-Libert [17,5] additively homomorphic
cryptosystem (JL from now on), that turns out to be very well suited for our
setting as it naturally supports Z2n (for flexible choices of n) as underlying mes-
sage space. This scheme is efficient both in terms of encryption/decryption costs
and in terms of bandwidth consumption (much more efficient than Paillier, for
instance). More crucially, the JL cryptosystem has three additional properties
that make it a perfect fit for multiparty computation. First, in JL all valid cipher-
texts are publicly and efficiently recognizable. Second, JL has circuit privacy (for
linear functionalities) in a very natural way. Third, one can generate different
instances of JL that share the same plaintext space. The first two properties are
particularly useful as they allow us to avoid the use of expensive zero-knowledge
proofs for proving ciphertexts validity; this is in contrast to solutions based
on lattice-based schemes where ciphertexts validity and circuit privacy require
cumbersome techniques (related to preventing the injection of “bad noise” by a
dishonest party). Moreover, since the scheme naturally works over Z2n we also
do not need zero-knowledge proofs to show that a plaintext lies in a certain range
(this would be needed if using Paillier, for instance).

In this paper we show how to take advantage of all the aforementioned prop-
erties of the JL cryptosystem (and even more properties that we add in this work
– see slightly below) in order to design an efficient 2PC protocol for computations
over the ring Z2k .

We fully implemented MonZa’s off-line phase5 and performed a collection of
experiments in order to evaluate, in terms of both bandwidth and computation,
the efficiency of our solution. Details are given in Section 5. Notably, our band-
width analysis shows that MonZa is particularly convenient for relatively large
choices of k (e.g. k = 64 or 128) in which case it compares favorably with the
state of the art solution of SPDZ2k [9]. The benchmarks confirm the practical
efficiency of our protocol.

An Overview of Our Techniques. In order to design an efficient (prepro-
cessing) 2PC protocol based on JL we cannot simply plug it as “yet another
additively-homomorphic encryption” in existing approaches.

If we consider SPDZ [13], one could in principle enhance JL to support one
homomorphic multiplication using the transformation of [8]; SPDZ however re-
quires parties to threshold-decrypt ciphertexts at the end of preprocessing, and
one drawback of JL is that it misses an efficient threshold decryption protocol6.

Another option is to plug JL into a BeDOZa-style protocol [4]. In addition
to the fact that BeDOZa works over a finite field while in our case we work in
a ring with non-invertible elements, a major challenge is that in BeDOZa each
party must execute a ZK protocol for correct multiplication, and such a protocol

5 We only focuses on the preprocessing stage since the online one is identical to [9].
6 Also, coming up with an efficient, constant-round, protocol for a threshold JL de-

cryption seems far from trivial due to the bit-by-bit extraction technique in the
algorithm.

3

is not available for JL. Moreover, due to the fact that not all elements of the
ring are invertible, one cannot use classical Sigma-protocol techniques to get it.

Finally, if one is concerned with avoiding proofs of correct multiplication,
the recent Overdrive protocol [19] (still working over finite fields) showed how to
avoid them if the linearly homomorphic encryption scheme satisfies a stronger
security notion called enhanced CPA. Very informally, this property states that
non-linear operations on ciphertexts are not possible. Somewhat surprisingly,
this route turns out to not be viable in the setting of Z2n . We formally prove
that no encryption scheme that is linearly homomorphic over plaintext space
Z2n can achieve enhanced CPA security. This essentially tells us that, in the Z2n

setting, proofs of correct multiplication are sort of unavoidable.

Our (preprocessing) protocol shares some similarities with both BeDOZa
[4] and Overdrive [19] in the sense that it employs an asymmetric Gilboa-like
[15] multiplication protocol: P1 has a key pair (sk, pk) and P2 has the public
key pk. To multiply their shares a1 and b2 the parties perform the following
simple protocol. P1 sends Encpk(a1) to P2. P2 chooses a random r ∈ Z2n and
sends C = Encpk(a1)b2Encpk(−r) = Encpk(a1b2 − r) back to P1. P1 decrypts the
received plaintext and sets it as its share of the product a1b2. P2’s share is just r.
Notice that both BeDoZa and Overdrive use this protocol in a symmetric way:
each player has a different key pair and to compute the shares of the product of
secret-shared values in the two-party setting the protocol is executed two times
(once for each mixed product). On the other hand, the design of the offline
phase of our MonZa protocol is asymmetric: we require only one key pair and
one party computes the intermediate ciphertexts of the form of C for both mixed
products, while the other party decrypts. Since generating a ciphertext C is much
less expensive than decrypting it (in JL), our MonZa protocol is well-suited for
applications in the server-client model, where one party has less computational
power than the other one.

Making the basic multiplication protocol described before secure against ma-
licious adversaries requires more work though. Intuitively, P2 has to show that he
performed the above operation correctly. In principle this can be done with a ZK
proof protocol where P2 sends a commitment Com(a2) and convinces P1 that C
satisfies the multiplicative relation C = Encpk(a1)a2Encpk(−r). A difficulty arises
from the fact that doing this with JL is tricky. Solving these challenges is one of
the main technical contributions of this paper.

To illustrate the problem let us consider the simpler case of proving knowledge
of a JL plaintext. Informally, JL can be seen as a generalization of the well known
Goldwasser-Micali cryptosystem [16]. The message space is M = Z2n , and the
public key is N, g, where N = pq is the product of two primes p = 2np′ + 1 and
q = 2q′ + 1 such that p′, q′ are also primes7, and g is an element of maximal
order in Z∗N and whose Jacobi symbol is 1. To encrypt m ∈ M one chooses a
random x ∈ Z∗N and sets C = gmx2

n

mod N . To prove knowledge of m one would
be tempted to use (an adapted version of) a standard, Schnorr-like, three move

7 We remark that the original scheme from [17] allows more flexibility in the choice of
p and q. For the sake of this discussion the choices above are good enough.

4

protocol. Very roughly this would go as follows. The prover starts by sending the
encryption R of a random message r and, upon receiving a challenge e ∈ {0, 1}n,
it sends z, y such that gzy2

n

= RCe mod N . Completeness and (honest) verifier
ZK are easy to argue, but the problems are in proving (special) soundness.
Indeed two accepting transcripts (for the same R) lead to an equation of the form
gz1−z2 ŷ2

n

= Ce1−e2 mod N from which we cannot always extract the message
since e1 − e2 might well be non invertible in Z2n .

We overcome this issue by defining a slightly different protocol and by doing
a careful analysis which shows that one can actually extract the least n − s
significant bits of the plaintext encrypted in C. More importantly, we extend
this technique to work in the more involved case of proving a multiplication
relation. Precisely, we propose an HVZK sigma-protocol for proving knowledge
of b, r mod 2n−s such that C = AbEncpk1

(r) and B = Encpk2
(b), where pk1 pk2

are public keys of two different JL instances with the same message space Z2n .
Our protocol for correct multiplication is quite efficient – the prover sends 7
elements of Z∗N and 2 values of n bits each – and this is partly due to the fact
that JL allows to naturally create two instantiations with the same message
space (this is for example not possible with Paillier’s encryption scheme). In
order to cope with the limitation of extracting fewer bits in our applications,
we show that we can instantiate JL with a larger message space Z2k+2s while
keeping the shares of our triples over Z2k+s .

As additional remark, we point out that our MonZa protocol departs from
previous work [4,13] also in the fact that it does not resort to the expensive
sacrifice step to guarantee security. Informally, many existing protocols check the
validity of each produced triple by “sacrificing” another triple where the same
multiplication relation is expected to hold. This techniques makes the resulting
protocols less efficient than one would like them to be as one needs to generate
twice as many triples than needed. By exploiting both the algebraic properties of
JL and the fact that our protocol is specifically tailored to the two party setting,
we manage to replace the sacrifice step with a simplified (and more efficient)
version of the HVZK sigma-protocol discussed above.

Other Related Work. There are several works about MPC protocol based
on secret-sharing, however only few of these focus on computation over the
rings [10]. For the ring Z2k besides the SPDZ2k protocol mentioned above, Share-
mind [6] is a well-known and efficient protocol based on replicated secret-sharing.
Sharemind works in the 3-party setting with honest-majority and it is passively
secure only. Recently, Araki et al. [2] improved the efficiency of Sharemind, while
[1,14] extended it to the case of active corruption. However, all these works are
restricted to the case of honest majority. Damgaard et al. [12] present a compiler
for achieving active security starting from a passively-secure MPC protocol that
can be used for ring-MPC protocols too. The compiler is perfectly secure, how-
ever the active security comes at the price of reducing the corruption threshold
(from t corrupted players to approximately

√
t).

In a concurrent and independent work, Orsini et al. [20] proposed a proto-
col, Overdrive2k, to perform secure MPC over Z2k from somewhat homomor-

5

phic encryption. Similarly to ours, their solution improves SPDZ2k in terms of
bandwidth consumption. In terms of techniques, Overdrive2k and MonZa are
rather different. At the heart of Overdrive2k is a new packing technique for the
BGV cryptosystem that works for Z2k ; also their protocol works in the general
multiparty setting (i.e., the number of participants is ≥ 2). Our solution, on the
other hand, is tailored to the two-party setting and builds on new zero-knowledge
techniques for the JL cryptosystem, and the overall protocol is arguably math-
ematically simpler.

Road Map. We start describing the notation, the cryptography primitives and
the security model used in this paper in Section 2. In particular, Section 2.5 re-
calls the information theoretic MAC defined in SPDZ2k and also used by MonZa.
Then, our MPC protocol is described in the following two sections: Section 3 de-
scribes the new offline phase that we design for MonZa (protocol ΠOffline), while
the online phase, which follows the SPDZ2k blueprint, is described in Supplemen-
tary Material A. Section 4 recalls the JL encryption scheme and presents the new
proof of correct multiplication for this encryption scheme (protocol ΠZKPoCM).
Finally, we conclude with an analysis of the efficiency of ΠOffline and ΠZKPoCM in
Section 5.

2 Preliminaries

2.1 Notation

Given a finite set D, sampling a uniformly random element from D is denoted
by r ← D. We denote by ZM the ring of the integers modulo M (where M ≥
2). We say that a function ε is negligible in n if for every positive polynomial
p there exists a constant c such that ε(n) < 1

p(n) when n > c. Two families

X = {Xn}n∈N and Y = {Yn}n∈N of random variables are said to be statistically
indistinguishable, denoted by X ≈s Y , if it holds that

∑
a | Pr[Xn = a] −

Pr[Yn = a] | is negligible in n. Two ensembles are said to be computationally
indistinguishable, denoted by X ≈c Y , if it holds that for any computationally
bounded (non-uniform probabilistic polynomial-time (PPT)) distinguisher D
| Pr[D(Xn) = 1]− Pr[D(Yn) = 1] | is negligible in n.

2.2 Linearly-Homomorphic Encryption for Messages in Z2n

To design our protocols, we use a public-key encryption scheme whose message
space is the ring Z2n and it has a linear homomomorphic property. More pre-
cisely, we assume that there exists a triple of algorithms (Gen,Enc,Dec) with the
following property:

Algorithms: Gen(1λ, n) is a randomized procedure that takes as input the se-
curity parameter λ and the message bit-length n, and outputs a matching
pair of secret and public keys (sk, pk). The public key defines a ciphertext
space C.

6

Enc is a randomized algorithm keyed by pk that takes as input values in
Z2n . We write Encpk(m, r) when we want to explicitly indicate that r is the
random value used in the procedure, otherwise we write Encpk(m).
Dec is a deterministic function keyed by sk. It holds that for any m ∈ Z2n ,
Pr[Decsk(Encpk(m)) = m] = 1 (the probability is taken over the random
coins of Gen and Enc).

Additive property : Let C be the set of all possible ciphertexts, then there ex-
ists an operation � on C such that for any a-tuple of ciphertexts c1 ←
Encpk(m1), . . . , ca ← Encpk(ma) (a positive integer), it holds that Pr[Decsk(c1�
· · · � ca) = m1 + · · · + ma mod 2n] = 1. We will use the notation c�a =
c� · · · � c (a times).

Lossy keys8: We also require the existence of a modified key generation al-

gorithm, G̃en, that on the same input λ, n generates a public key p̃k with
the following property. For any m ∈ Z2n , {Encp̃k(m)}λ ≈s {Encp̃k(0)}λ (i.e.,

Encp̃k(m) is statistically indistinguishable from an encryption of zero). More-

over, public keys produced by G̃en (called lossy keys) are computationally
indistinguishable from those produced by the standard key generation algo-
rithm.
Notice that semantic security follows from the indistinguishability of keys
and the indistinguishability of encryption under the lossy keys.

Circuit privacy for linear functions: Informally, this property states that ci-
phertexts obtained through homomorphic evaluations are statistically indis-
tinguishable from fresh encryptions of the resulting message. For simplicity,
in our work we assume that homomorphic operations (i.e., �) are determin-
istic, and we state circuit privacy slightly differently: for any a, b ∈ Z2n and
any ciphertext A ∈ Encpk(a), B ∈ Encpk(b) we have that A�B�Encpk(0) ≈s
Encpk(a+ b). An implication of this property (that we use in our protocols)
is that for any plaintexts α, β, γ ∈ Z2n and any C ∈ Encpk(γ), it holds
C�α � Encpk(β) ≈s Encpk(αγ + β).

Publicly Checkable Ciphertexts: we require that membership of a ciphertext in
the ciphertext space, i.e., C ∈ C, can be efficiently and publicly tested given
only the public key.

2.3 Commitments

Another building block we use in our constructions is an extractable commitment
scheme for messages in Z2n . That is, in the following we assume that there exists
a tuple of algorithms (cGen,Com) with the following properties:

Algorithms: The procedure cGen(1λ, n) takes as input the security parameter
λ and the message bit-length n. The output is the commitment key ck and
the extraction trapdoor information tX .

8 For a CPA-secure additive encryption scheme this property always holds: include
C = Encpk(b) in the public key with b = 0 for Gen and b = 1 for G̃en, and redefine
encryption as Encpk(m) = C�m � Encpk(0).

7

Com is a randomized algorithm keyed by ck that takes as input values in
Z2n . We write Comck(m, r) when we want to explicitly indicate that r is the
random value used in the procedure, otherwise we write Comck(m).

Computationally hiding and unconditionally binding : We require that (1) for
any m,m′ ∈ Z2n , Comck(m) ≈c Comck(m′), and (2) for any C in the com-
mitment space there exists at most one pair (m, r) such that it holds that
C = Comck(m, r).

Extractability : Finally, we require the existence of a PPT algorithm that allows
to compute m from a commitment C = Comck(m, r) and the trapdoor tX .

Finally, we also require the existence of lossy keys for the commitment scheme

too. That is, there exists a modified key-generation algorithm c̃Gen that gener-

ates lossy commitment keys (i.e., any Comc̃k(m), where c̃k← c̃Gen, is statistically
indistinguishable from a commitment to zero) that are computationally indistin-
guishable from those produced by the standard key generation algorithm. From
the above description it is rather clear that such a commitment scheme can be
instantiated using a public key encryption scheme with the lossy key property.
Indeed, in Section 4 we show that the Joye-Libert encryption scheme [17,5] satis-
fies the definition of additive encryption scheme given in Section 2.2 and can be
used to instantiate the commitment scheme with the properties required here.

In the following we will use the notation Encpk(m) (or Comck(m)) for a mes-
sage m ∈ Z2n′ also when the encryption (or commitment) scheme has message
space Z2n (with n ≥ n′). Indeed, we can think Z2n′ as a subset of Z2n .

2.4 Security Model

The protocols presented in this paper are for two parties, P1 and P2, and they
are proven secure in the Universal Composability (UC) model [7]. In particular,
our protocols will be proven secure against a malicious static adversary. In other
words, the adversary may deviate from the protocol in any arbitrary way and can
only corrupt parties before the protocol execution starts. Since it is not possible
to construct an UC-secure MPC protocol with dishonest majority without a set-
up assumption, in this paper we rely on the registered public-key model [3]. In
particular, we assume that there is a functionality FKeyGen (described in Figure 1)
that generates correct keys for both the additive encryption scheme and the
mixed commitment scheme.

Finally, for the sake of simpler protocol description, we will use a standard
coin tossing functionality FRand to generate public randomness. When activated
from all the parties with input (rand, u), the functionality FRand samples r ←
{0, 1}u and return it to all parties. FRand can be implemented using commitments
of random values in the random oracle model or additive encryption in the key-
register model.

2.5 Value-Representation in SPDZ2k

The SPDZ2k protocol [9] is an n-party MPC protocol in the preprocessing model
for computation over a ring. The backbone of this protocol is the representation

8

Functionality FKeyGen

Let (Gen,Enc,Dec) be additive encryption scheme and (cGen,Com) an extractable
commitment scheme. FKeyGen interacts with the parties P1 and P2 and the simulator
S, which can abort any time, and proceeds as follows.

– When activated on input (EncKeys, sid, λ, n) from both parties: if P1 is honest,
FKeyGen runs Gen(1λ, n) and generates a key-pair (sk, pk); if P1 is corrupted the
functionality gets r∗ from S and it runs Gen(1λ, n) using r∗ as random tape.
The functionality sends (sk, pk) to P1 and pk to P2.

– When activated on input (ComKey, sid, λ, n) from both parties: if P2 is honest,
FKeyGen runs cGen(1λ, n) and generates a commitment key ck; if P2 is corrupted
the functionality gets r′ from S and it runs cGen(1λ, n) using r′ as random
tape. The functionality sends ck to both parties.

Fig. 1. Functionality for the keys generation.

of values: each element is authenticated via an information-theoretic MAC and
both the value and the MAC are secret-shared among the parties. In this section
we recall the details of the SPDZ2k value-representation because our 2-party
protocol will use it.

The MAC scheme has two parameter: k, where Z2k is the ring in which the
inputs lie, and the security parameter s. The MAC key9 α is sampled uniformly
at random from Z2k+s and the MAC of a value x ∈ Z2k is defined as

m(x) = α · x̃ mod 2k+s

where x̃ ∈ Z2k+s such that x = x̃ mod 2k. Then the values x̃ and m(x) are
additively secret-shared among the parties. The key α is fixed and also additively
shared (i.e. α =

∑n
i=1 α

(i) mod 2k+s and α(i) ∈ Z2k+s held by player Pi). In
other words, the [·]-representation of a value x ∈ Z2k is given by:

[x] = {(x(i),m(i)(x))}i=1,...,n and

n∑
i=1

m(i)(x) = (

n∑
i=1

x(i)) · (
n∑
i=1

α(i)) mod 2k+s

where (x(i),m(i)(x)) ∈ (Z2k+s)
2 is known by player Pi.

Linear operations on shared and authenticated values are possible. In partic-
ular, we recall here the procedure AffineComb of [9]: the parties have u values
[x1], . . . , [xu], to compute the representation of y = c +

∑u
i=1 ci · xi mod 2k,

where c, c1, . . . , cu are public values, the parties proceed as follow:

1. Party P1 sets y(1) = c+
∑u
i=1 ci · x

(1)
i mod 2k+s;

2. Each party Pj with j 6= 1 sets y(j) =
∑u
i=1 ci · x

(j)
i mod 2k+s;

9 The last (most significant) k bits of the MAC key are not actually required to
be random, since the security of the MPC protocol follows from α mod 2s being
random. However, sampling α from Z2k+s simplifies the description of the protocols.

9

3. Each party Pj sets m(j)(y) = α(j) · c+
∑u
i=1 ci ·m(j)(xi) mod 2k+s;

In the following, we will say that parties compute [y] = c +
∑u
i=1 ci · [xi] to

indicate that this procedure is executed.

3 Offline Phase

Our 2-party MPC protocol is divided in two phases: an offline phase, which is
independent of both the input and the function, and an online phase, where the
actual computation takes place. In the offline phase, the parties generate corre-
lated randomness in the form of singles and triples. Then, in the on-line phase,
as in the SPDZ2k protocol, these values are consumed to create representation
of the inputs, and to multiply shared and authenticated values and to verify the
MACs (more details in Supplementary Material A).

The exact functionality FOffline that is implemented in the offline phase is
described in Figure 2. The correlated randomness generated by FOffline for honest
players has three forms: (1) authenticated single10 (j, [r]), where r is sampled
uniformly at random from Z2k+s , and r is expressed in the [·]-representation
using a trivial sharing: r(j) = r and the other share is zero (i.e., r is known
by Pj only), (2) shared and authenticated single [r], where again r is sampled
uniformly at random from Z2k+s and expressed using the [·]-representation, but
no party knows the value, and (3) shared and authenticated triple [a], [b], [c].
Here, a, b, c are all shared and authenticated singles over Z2k+s such that it
holds c = a · b mod 2k.

The idea behind the specification of the corruption is that the environment
is allowed to specify the share of a single for Pi corrupted (i = 1 or i = 2), and
the share of c in a triple and the share of the MACs for P2 corrupted. Then,
the data for the honest party is chosen consistently with the values given by the
environment to guarantee correctness of the MAC and the multiplication. Notice
that the environment has no power to choose some of the shares of a corrupted P1

(i.e., the share of c and of the MACs); this is to reflect the different roles that the
two parties have in our offline protocol and, in particular in the multiplication
sub-protocol (more detail in the following).

The basic building block we use to generate both a single and a triple is a
2-party multiplication protocol (i.e., a protocol to compute an additive shar-
ing of the product of two secret values). Indeed in the 2-party case, and due
to the nature of the MACs used in the [·]-representation, such multiplication
protocol is sufficient for computing both the product of secret-shared values
and to authenticate a secret-shared value. Similarly to other MPC protocols like
BeDOZa [4] and Overdrive [19], in order to implement the 2-party multiplica-
tion protocol we use an additive encryption scheme (Gen,Enc,Dec) as defined
in Section 2.2. The high-level idea is simple: assume that party P1 has a pair

10 The [·]-representation for a value x of k + s bits means that we additively share in
Z2k+s the value x and its MAC x · α mod 2k+s. However, only the first k bits of x
are authenticated.

10

Functionality FOffline

FOffline interacts with the parties P1 and P2 and the simulator S, which can abort
any time, and proceeds as follows.
For the sake of brevity, the description of functionality uses the following macro
(i.e., internal subroutine) that is executed to compute an additive secret-sharing of
the MAC of secret-shared values respect to a given global key α.

Auth(x(1), x(2)):

1. Let x = x(1) + x(2) mod 2k+s and m(x) = α · x mod 2k+s;
If P2 is corrupted, wait for m2 ∈ Z2k+s from S, otherwise sample m2 ←
Z2k+s at random. Define m1 = m(x)−m2 mod 2k+s.

2. Send m1 to P1, and send m2 to P2 if P2 honest.

Initialize: When activated on the first time on input (Init, sid, k, s) from all the
parties, the functionality stores k and s. Then, for j = 1, 2, FOffline waits for S
to send α(j) ∈ Z2k+s if Pj is corrupted, otherwise FOffline samples α(j) ← Z2k+s

and forwards it to Pj . The functionality stores α = α(1) + α(2) mod 2k+s.

In each other activation,

Single: On input (Single, Pj , sid, ssid) from all parties, the functionality does the
following.
1. FOffline waits for S to send r ∈ Z2k+s if Pj is corrupted, otherwise it samples

r ← Z2k+s and forwards it to Pj .
2. FOffline executes Auth(r, 0): P1 gets m(1)(r) and P2 gets m(2)(r). The values

(ssid, r,m(j)(r)) and (ssid, 0,m(i)(r)) are stored as local share of (j, [r]) by
Pj and the other player Pi.

On input (Single, sid, ssid) from all parties, the functionality does the following.
1. For j = 1, 2, FOffline waits for S to send r(j) ∈ Z2k+s if Pj is corrupted;

otherwise it samples r(j) ← Z2k+s and forwards it to Pj .
2. FOffline executes Auth(r(1), r(2)): for j = 1, 2, Pj gets m(j)(r) and stores

(ssid, r(j),m(j)(r)) as its local share of [r] .

Triple: On input (Triple, sid, ssid) from all parties, the functionality does the
following.
1. For j = 1, 2, FOffline waits for S to send a(j), b(j) ∈ Z2k+s if Pj is corrupted,

otherwise FOffline samples a(j), b(j) ← Z2k+s and forwards these to Pj . Let
a = a(1) + a(2) mod 2k+s, b = b(1) + b(2) mod 2k+s and c ∈ Z2k+s such that
c = a · b mod 2k.

2. If P2 is corrupted, wait for c(2) ∈ Z2k+s from S, otherwise sample c(2) ←
Z2k+s at random. Define c(1) = c−c(2) mod 2k+s. The functionality sends
c(1) to P1, and sends c(2) to P2 if P2 honest.

3. FOffline executes Auth(a(1), a(2)), Auth(b(1), b(2)) and Auth(c(1), c(2)): for
j = 1, 2, Pj gets m(j)(a), m(j)(b) and m(j)(c); party Pj stores
(ssidi, a

(j),m(j)(a)), (ssidi, b
(j),m(j)(b)) and (ssidi, c

(j),m(j)(c)) as its
share of ([a], [b], [c]).

Fig. 2. Functionality for the offline phase (preprocessing). It generates the shares of
the global MAC key, and it produces singles and triples.

11

(pk, sk) and input x(1), while party P2 knows only the public key pk and has in-
put x(2). To compute an additive sharing of x(1) ·x(2), P1 sends C1 = Encpk(x(1))
to P2, who samples y(2) uniformly at random from the message space and com-

putes C = C�x
(2)

1 � Encpk(y(2)). Now, P2 sends C to P1, who decrypts and get
y(1) = x(1) · x(2) + y(2). Passive security follows easily from the properties of the
underlying encryption scheme. To achieve active security, we need to assure that
P1 sends an actual encryption and that P2 computes C following the instruction
in the protocol. The first property is easy to guarantee because we assume that
the underlying encryption scheme has a publicly checkable ciphertext space. For
the other task, we use a Zero-Knowledge (ZK) proof.

More precisely in the description of protocol ΠOffline, we assume the exis-
tence of the sub-protocol ΠZKPoCM. This is a 3-move standard Σ-protocol where
the functionality FRand (Section 2.4) generates the challenge sent in the second
messages for both players. We assume that the keys for an additive encryption
scheme and an extractable commitment scheme have been generated correctly
by an invocation to FKeyGen. Both schemes have the same message space Z2k+2s .
The prover wants to convince the verifier that a given ciphertext C satisfy a
precise relation among a value it knows and another public ciphertext C1. That
is, the common input is two ciphertexts, C and C1, and a commitment C2,
the private input of the prover is m, r ∈ Z2k+s such that C2 = Comck(m̃) and
C = C�m1 � Encpk(r̃) where m̃ and r̃ are values in the (larger) message space
such that m = m̃ mod 2k+s and r = r̃ mod 2k+s . We give more details on this
and an instantiation of this sub-protocol in Section 4.1.

Protocol ΠOffline is described in Figure 3 and Figure 4. For the sake of brevity,
we use the sub-protocol Mult that captures the actively secure multiplication
protocol described before (assuming that the ciphertext C1 and the commitment
C2 were sent previously). Mult is used to compute both the MAC of a given value
and the product of shared values. For example, to implement (Single, P1) (i.e.,
to authenticate a value r known by P1), the parties need to compute the shares
of the product r · α(2) mod 2k+s (where α(2) is P2’s share of the global MAC
key). This is done by running the 2-party multiplication protocol Mult where C1

is an encryption of r done by P1 and C2 is a commitment to α(2) (Figure 3).

Analogously, to compute the mixed products for generating a triple (e.g.,
a(1) · b(2) mod 2k+s where a(i), b(j) are shares of singles) the parties execute Mult
two times (in the example, C1 is an encryption of a(1) and C2 is a commitment
to b(2)). Finally, the Mult sub-protocol is used again to authenticate the product
c (Figure 4). Notice that the sub-protocol Mult does not commit a party to
its output, therefore for the triple generation we need to add an extra check.
This guarantees that a party uses the correct value (i.e. its output from the
multiplication step) in the authentication step. Without this check a corrupted
party could authenticate a wrong share c̃(i) and this would create an insecure
triple (i.e., a triple where c = a · b + ∆ mod 2k+s and ∆ 6= 0 mod 2k known
by the corrupted party). We implement the check using again a ZK proof for

12

Protocol ΠOffline

The protocol is run by parties P1 and P2. (Gen,Enc,Dec) is an additive encryp-
tion scheme and (cGen,Com) is an extractable commitment scheme as defined in
Section 2. For both these schemes, the message space is in Z2k+2s .

In the steps of ΠOffline described in the following, we will use multiple times the
sub-protocol Mult described below.

Mult(x(1), C1, x
(2), C2):

Common input: the commitment C2 = Comck(x(2)) and the ciphertext C1 =
Encpk(x(1)); Input for P1: x(1) ∈ Z2k+s ; Input for P2: x(2) ∈ Z2k+s .

1. P2 samples r̃ ← Z2k+2s , sends D = C�x
(2)

1 � Encpk(r̃) to P1 and invokes
ΠZKPoCM playing the role of the prover with private input (x(2), r̃ mod 2k+s)
and public input (C1, D,C2);

2. If ΠZKPoCM doesn’t abort, P1 computes ỹ(1) = Decsk(D)
Output: for P1 the value y(1) = ỹ(1) mod 2k+s, for P2 the value y(2) = −r̃ mod
2k+s. Notice that y(1) + y(2) = x(1) · x(2) mod 2k+s.

Initialize:
1. For i = 1, 2, when activated on the first time on input (Init, sid, k, s), Pi

sends (EncKeys, sid, λ, k + 2s) and (ComKey, sid, λ, k + 2s) to FKeyGen; P1

gets sk, pk, ck and P2 gets pk, ck.
2. P1 samples α(1) ← Z2k+s and sends ∆1 = Encpk(α(1)) to P2;
3. P2 samples α(2) ← Z2k+s and sends ∆2 = Comck(α(2)) to P1.

In each other activation,

Single:
On input (Single, P1, sid, ssid), the parties do the following.
1. P1 samples r ← Z2k+s , sends R = Encpk(r) to P2;
2. P2 invokes Mult(r,R, α(2),∆2), P1 gets y(1) and P2 gets y(2);
3. P1 sets m(1)(r) = α(1) · r + y(1) mod 2k+s and stores (ssid, r,m(1)(r)) as

its share of (1, [r]), P2 stores (ssid, 0, y(2)) as its share of (1, [r]).

On input (Single, P2, sid, ssid), the parties do the following.
1. P2 samples r ← Z2k+s and sends R = Comck(r) to P1;
2. P1 invokes Mult(α(1),∆1, r, R), P1 gets y(1) and P2 gets y(2);
3. P2 sets m(2)(r) = α(2) · r + y(2) mod 2k+s and stores (ssid, r,m(2)(r)) as

its share of (2, [r]), P1 stores (ssid, 0, y(1)) as its share of (2, [r]).

On input (Single, sid, ssid), the parties do the following.
1. Run (Singles, P1) and (Singles, P2) and generate (1, [r(1)]) and (2, [r(2)]),

respectively;
2. Compute [r] = [r(1)] + [r(2)] and store it with index ssid.

Fig. 3. Protocol for preprocessing.

13

encrypted/committed values11. In particular, we use a modified (simpler) version
of ΠZKPoCM. This version, which we call ΠZKPoMCV, allows the prover to convince
the verifier that, given three ciphertexts (or commitments) A,B, C̃, the prover
knows b such that C̃ = A�b. We give more details on this and an instantiation
of this ZK proof in Section 4.2.

Protocol ΠOffline (continued)

Triple: On input (Triple, sid, ssid), the parties do the following.
1. The parties run two times the Single command and get their shares of [a]

and [b] (let A(1) = Encpk(a(1)), A(2) = Comck(a(2)) and B(1) = Encpk(b(1)),
B(2) = Comck(b(2)) be the intermediate values computed during the execu-
tion of the Single steps);

2. Multiplication:
– P2 invokes Mult(a(1), A(1), b(2), B(2)), Pi gets y(i) for i = 1, 2;

(let D = (A(1))�b
(2)

� Encpk(−y(2)) be the ciphertext computed and
sent by P2 in this Mult and let R = Comck(−y(2)) be the commit-
ment computed and send by P2 during the corresponding ΠZKPoCM, see
Section 4.1)

– P2 invokes Mult(b(1), B(1), a(2), A(2)), Pi gets z(i) for i = 1, 2;

(let D′ = (B(1))�a
(2)

� Encpk(−z(2)) be the ciphertext computed and
sent by P2 in this Mult and let R′ = Comck(−z(2)) be the commit-
ment computed and send by P2 during the corresponding ΠZKPoCM, see
Section 4.1)

– For j = 1, 2, Pj sets c(j) = a(j) · b(j) + y(j) + z(j) mod 2k+s.
3. Authentication:

– P1 computes C̃(1) = Encpk(a(1)b(1)) and P2 computes C̃(2) =
Comck(a(2)b(2)); for j = 1, 2, Pj sends C̃(j) to the other party and
invokes ΠZKPoMCV playing the role of the prover with public input
(A(j), B(j), C̃(j)). If the ZK proofs do not abort, P2 computes C(1) =
C̃(1) �D �D′ and P1 computes C(2) = C̃(2) �−1 R�−1 R′;

– P2 invokes Mult(c(1), C(1), α(2),∆2), Pi gets y(i) for i = 1, 2;
– P2 invokes Mult(α(1),∆1, c

(2), C(2)), Pi gets z(i) for i = 1, 2;
– For j = 1, 2, Pj sets m(j)(c) = c(j) · α(j) + y(j) + z(j) mod 2k+s and

store (c(j),m(j)(c)) as its share of [c] (c = a · b mod 2k+s);

Fig. 4. Triple generation in the preprocessing.

Theorem 1. Assume that the underlying encryption scheme and commitment
scheme satisfy the definitions in Section 2. Then, protocol ΠOffline implements
FOffline with computational security against any static active adversary in the
(FKeyGen,FRand)-hybrid model.
11 In order to use the same ZK-proof for both players we need to assume that the

commitment scheme has the same homomorphic property as the encryption scheme.
If the commitment scheme is instantiated using the encryption as observed in Section
2.3, the homomorphic property clearly holds.

14

Proof. We use the variant of the UC model where the environment Z plays
the role of both the distinguisher and the adversary. The environment always
chooses the input for the honest player and gets its output when the execution
is done. Moreover, in the protocol execution Z corrupts Pi (i = 1 or i = 2) and
takes control of its actions (i.e. Z decides the messages sent by Pi and reads
the message received by this party). We argue about UC security, defining a
simulator Si that interacts with Z and the functionality FOffline and simulates
the view of Z when attacking the protocol execution. The simulator Si has the
power of choosing the input that Pi sends to FOffline and getting its output.
In Figure 5 and Figure 6 we define S1 and S2, respectively. The simulator Si
behaves as an honest party P3−i running the protocol with the environment Z
controlling the corrupted party. Here we show that a poly-time environment Z
can not distinguish between the real view (i.e., the view in the execution of the
protocol) and an ideal view (i.e. the view in the interaction with the simulator).

Case i = 1 (P1 is corrupted). We will argue now that the existence of
a poly-time environment Z that distinguishes a real-view from an ideal one
contradicts the key-indistinguishability property of the underlying commitment
scheme. More in details, assume that there exists a Z that can distinguish be-
tween a real view and an ideal one with significant probability ε. We construct a
distinguisher D that given a commitment key ck∗ produces a view of the same
form as what Z sees and with the following property: D uniformly chooses a bit
b, if ck∗ is a standard key, then view is an ideal-view when b = 1 and view is an
real-view when b = 0; if ck∗ is lossy, then view generated when b = 0 and view
generated when b = 1 are statistically indistinguishable. The view produced by
D is given to Z that outputs a bit b′ (i.e., b′ = 0 means protocol execution
and b′ = 1 means simulated execution); if b′ = b, D outputs “standard key”,
otherwise it outputs “lossy key”. It is easy to see that D wins with probability
close to ε/2. We define D as follow.

On input ck∗, D generates (sk, pk) using Gen, initializes a local copy of Z,
sends ck∗ and (sk, pk) to Z and starts executing the protocol ΠOffline where Z
controls party P1 and D plays P2. The distinguisher D samples a bit b← {0, 1}.
If b = 1, D plays P2 running the same instruction written for the simulator S1.
D completes view choosing the outputs for P2 as FOffline would do. If b = 0, D
follows the instructions for an honest P2 in the protocol ΠOffline and P2’s outputs
in view are the values used in this execution. By construction, if ck∗ is a standard
key, then the view produced by D corresponds to a real-view if b = 0, and to an
ideal-view if b = 1. On the other hand, if ck∗ is a lossy key, then in any view each
commitment is statistically indistinguishable from a commitment to zero and the
messages produced as prover in ΠZKPoCM are statistically indistinguishable be-
cause they can be simulated by the ZK simulator (unconditional zero-knowledge
property, special case of Theorem 3). The same holds for ΠZKPoMCV (the mes-
sages produced as prover in ΠZKPoMCV are statistically indistinguishable because
of the unconditional zero-knowledge property, refer to Section 4.2). Moreover, in
any view each ciphertext of the form C = C�b1 �Encpk(r) is statistically indistin-
guishable to a fresh encryption of a random message (circuit privacy). Therefore

15

The simulator S1 is defined by the following instructions:

– Simulating the initialize command:
1. Simulation of the call to FKeyGen: S1 runs Gen(1λ, k + 2s), cGen(1λ, k + 2s)

and gets (sk, pk) and ck. S1 sends pk, sk, ck to Z.
2. S1 receives ∆′1 from Z, computes α′(1) = Decsk(∆′1) and sends (Init, α′(1))

to FOffline.
3. The simulator behaves as an honest P2 in the protocol ΠOffline: S1 samples

α′(2) ← Z2k+s and sends ∆′2 = Comck(α′(2)) to Z.

– Simulating the (Single, P1) command:
1. S1 receives R′ ∈ C from Z and computes r′ = Decsk(R′).
2. The simulator behaves as an honest P2 in the sub-protocol

Mult(r′, R′, α′(2),∆′2): S1 samples r̃′ ← Z2k+2s , computes C′ =

R′�α
′(2)
� Encpk(r̃′) and sends C′ to Z. Then the simulator behaves

as an honest prover in the protocol ΠZKPoCM with private input
(α′(2), r̃′ mod 2k+s) and common input C′, R′,∆′2 (the simulator also
simulates FRand). If there is no abort, the simulator sends r′ to FOffline.

– Simulating the (Single, P2) command:
1. The simulator behaves as an honest P2 in the protocol ΠOffline: S1 samples

r′ ← Z2k+s and sends R′ = Comck(r′) to Z.
2. The simulator behaves as an honest P2 in the sub-protocol

Mult(α′(1),∆′1, r
′, R′): S1 samples r̃′ ← Z2k+2s , computes C′ =

∆′�r
′

1 � Encpk(r̃′) and sends C′ to Z. Then the simulator behaves as an
honest prover in the protocol ΠZKPoCM with private input (r′, r̃′ mod 2k+s)
and common input C′, R′,∆′1.

– Simulating the Single command:
1. The same as before in (Single, P1) to extract (1, r′(1)) and emulating an

honest P2 in (Single, P2) to generate (2, r′(2)).

– Simulating the Triple command:
1. The same as in Single to extract a′(1) and b′(1), and emulating an honest

P2 to generate a′(2) and b′(2).
2. In any invocation of the sub-protocols Mult and ΠZKPoMCV, the simulator

behaves as an honest P2.
3. If the ZK-proofs do not fail, S1 sends a′(1) and b′(1) to FOffline.

Fig. 5. Simulator for a corrupted P1 in the ΠOffline protocol.

16

the view produced by D when b = 0 is statistically close to the one produced
when b = 1.

Case i = 2 (P2 is corrupted). The rationale is the same as in the previous
case: we show that a poly-time environment Z that distinguishes a real view
from an ideal one can be used to construct a distinguisher D that contradicts
the key-indistinguishability property of the underlying encryption scheme. We
define D as follow.

On input pk∗, D generates (ck, tX) using cGen, initializes a copy of Z, sends
pk∗ and ck to Z and starts executing the protocol ΠOffline where Z controls party
P2 and D plays P1. The distinguisher D samples a bit b ← {0, 1}. If b = 1, D
plays P1 running the same instruction written for the simulator S2 and completes
view choosing the outputs for P1 as FOffline would do. If b = 0, D follows the
instructions for an honest P1 in the protocol. However, in the Mult sub-protocol,
when D receives the ciphertext C, it can not decrypt because it does not have
the secret key. On the other hand, D is allowed to rewind its copy of Z and
therefore it can use the knowledge extractor of protocol ΠZKPoCM (Theorem 4).

For example, if the proof ΠZKPoCM is run to check C = Encpk(a)�b̃ � Encpk(−r̃),
D gets from the knowledge extractor b = b̃ mod 2k+s and r = r̃ mod 2k+s and it
can compute its share as y = a · b− r mod 2k+s, and then continues the protocol
as if it had decrypted. Again, by construction, if pk∗ is a standard key, then the
view produced by D corresponds (statistically) to a real-view if b = 0, and to
an ideal-view if b = 1. On the other hand, if pk∗ is a lossy key, the ciphertexts
contained in the two views are statistically indistinguishable by definition of
lossy key. And, as in case i = 1, the messages produced as prover in ΠZKPoMCV

(and contained in the two views) are statistically indistinguishable because of
the unconditional zero-knowledge property.

3.1 On the Impossibility of Enhanced-CPA Security in Z2n :
Comparing with Overdrive offline phase.

Recently Keller et al. [19] constructed an n-party MPC protocol in the prepro-
cessing model, where the online phase goes as the one in the SPDZ protocol,
while the offline is base on a 2-party multiplication protocol similar to the one
used in our paper. However, in [19] the ZK proof of correct multiplication is
replaced by a postponed check to verify the correctness of the output (similar
to the “SPDZ sacrifice”). The possibility of a selective failure attack that this
approach introduces is avoided assuming that the underlying encryption scheme
satisfies a stronger notion of security called enhanced CPA. This notion is recalled
in Supplementary Material B. Here we prove that, somewhat surprisingly, this
notion cannot be achieved by encryption schemes that are linearly homomorphic
over rings of the form Z2n . More precisely, we show that any encryption scheme
that is both linearly homomorphic and whose message space is Z2n cannot satisfy
enhanced CPA security.

17

The simulator S2 is defined by the following instructions:

– Simulating the initialize command:
1. Simulation of the call to FKeyGen: S2 runs Gen(1λ, k + 2s), cGen(1λ, k + 2s)

and it gets (sk, pk) and (ck, tX). S2 sends pk, ck to Z and stores the trapdoor
tX .

2. The simulator behaves as an honest P1 in the protocol ΠOffline: S2 samples
α′(1) ← Z2k+s , sends ∆′1 = Encpk(α′(1)) to Z.

3. S2 receives ∆′2 from Z, extracts α′(2) from ∆′2 using tX and sends
(Init, α′(2)) to FOffline.

– Simulating the (Single, P1) command:
1. The simulator behaves as an honest P1 in the protocol ΠOffline: S2 samples

r′ ← Z2k+s , sends R′ = Encpk(r′) to Z.
2. Simulation of the sub-protocol Mult(r′, R′, α′(2),∆′2): S2 receives C′ and

behaves as an honest verifier in the protocol ΠZKPoCM on public input
(R′,∆′2, C

′) (S2 simulates FRand too). If the proof is accepted, the simulator
computes y′(2) = r′ ·α′(2)−Decsk(C′) mod 2k+s and sends (Single, P2, y

′(2))
to FOffline.

– Simulating the (Single, P2) command:
1. S2 receives R′ from Z and extracts r′ from R′ using tX ;
2. Simulation of the sub-protocol Mult(α′(1),∆′1, r, R

′): S2 receives C′ and
behaves as an honest verifier in the protocol ΠZKPoCM on common input
(∆′1, R

′, C′). If the proof is accepted, S2 computes y′(2) = r′ · α′(1) −
Decsk(C′) mod 2k+s and sends (Single, P2, r

′, y′(2)) to FOffline.

– Simulating the Single command:
1. The same as before in (Single, P1) and (Single, P2) to extract

(2, r′(2),m(2)(r′)).

– Simulating the Triple command:
1. The same as in Single to extract (a′(2),m(2)(a′)) and (b′(2),m(2)(b′)).

In a similar way, the simulator extracts the environment’s shares
(c′(2),m(2)(c′)) from the ciphertexts received in the multiplication and the
authentication step.

2. In any invocation of the sub-protocol ΠZKPoMCV, the simulator behaves as
an honest P1.

3. If the ZK-proofs do not fail, S2 sends the extracted values to FOffline.

Fig. 6. Simulator for a corrupted P2 in the ΠOffline protocol.

18

Theorem 2. Let (Gen,Enc,Dec) be an additive encryption scheme whose mes-
sage space is Z2n (see Section 2.2), then the scheme cannot achieve enhanced
CPA security (see Supplementary Material B).

Proof. We prove the theorem by showing an efficient adversary A that success-
fully wins in the enhanced CPA-security game, with non negligible advantage. A
works as follows. It receives from the challenger both the public key pk and the
encryption C = Encpk(m) of a random message m ∈ Z2n . Using the homomor-
phic properties of the scheme, A computes a new ciphertext C ′ that encrypts
the original message “shifted” by n − 1 positions to the left. Notice that this
only amounts at (homomorphically) multiplying the plaintext by the constant

2n−1 (i.e., C ′ = C�2
n−1

= Encpk(2n−1 ·m)). A proceeds by querying the oracle
on input C ′: if the answer is yes A learns that the least significant bit (lsb) of
m is 0; otherwise it learns that it is 1. Now, when the challenger sends out the
test message m′, A checks if lsb(m′) 6=lsb(m) and outputs 1 if this is the case
(and 0 otherwise). It is easy to check that such an adversary manages to guess
the secret bit chosen by the challenger much better than at random (i.e. the
winning probability for A is 1/4).

4 Joye-Libert Cryptosystem and Companion Protocols

In this section we recall the Joye-Libert (JL) cryptosystem [17,5], we refer to the
original papers for details missing here.

Gen(1λ, n) : The algorithm starts by choosing two random λ-bit primes p, q,
satisfying the following constraints p ≡ 1 mod 2n and q ≡ 3 mod 4. For
simplicity, we let p = 2np′ + 1 and q = 2q′ + 1 where both p′ and q′ are
primes.12 Let g be a random generator of both Z∗p and Z∗q , N = pq, and
µ = p′. The public key is pk = (g, n,N) and the secret key is sk = µ.
The message space isM = {0, 1}n while the ciphertext space C is the subset
of Z∗N with Jacobi symbol 1. We note that membership in C can be efficiently
and publicly checked by computing the Jacobi symbol

(
C
N

)
of a purposed

ciphertext C.
Encpk(m) : Choose a random x ∈ Z∗N and output C = gmx2

n

mod N . With
a slight abuse of notation we write Encpk(m;x) to specify the randomness
used.

Decsk(C) : First, compute d = Cµ mod p and then retrieve m bit by bit, as
follows. Notice that d = (gµ)m mod p where gµ is an element of order 2n

in Z∗p. One can compute the least significant bit m0 of m = mn−1...m0 by

computing d2
n−1

mod p. Indeed, this is 1 if and only if m0 = 0. Knowing
mi−1...m0 one computes mi as follows: set mi = 0 if and only if(

d/(gµ(mi−1...m0))
)2n−i−1

= 1 mod p

12 It is not strictly necessary that p′ and q′ are both primes: nevertheless for security
each of them should contain a big enough prime factor.

19

If one is interested in retrieving only the lowest n′ < n bits of the message, the
above mechanism can simply stop at the n′-th step. We can use this optimization
in our application where n = k + 2s and one is supposed to decrypt and then
take the result mod 2k+s. It is worthy to note that the decryption cost is linear
in the message bit-size: for the considered settings it can be even faster than
a Paillier cryptosystem as confirmed by experiments in Section 5. As shown in
[17,5], the scheme is linearly homomorphic over Z2n .

Security. As shown in [17,5], the JL scheme is semantically secure under the
n-quadratic residuosity (n-QR) assumption (that is like the standard quadratic
residuosity for a p ≡ 1 mod 2n). Moreover, the security analysis shows that the
scheme has the nice property of lossy public keys that we require in our ap-
plications (see Section 2.2). The “lossy” key generation algorithm Gen consists
into sampling g as a 2n-residue, i.e., g ← h2

n

for a random h ∈ Z∗N . Indistin-
guishability of lossy keys from real ones is proven in [17,5]. Finally, observe that
for JL circuit privacy holds whenever one adds a fresh encryption of 0 after an
homomorphic computation (or equivalently, as used in our applications, the ho-
momorphic computation involves an addition of a freshly generated ciphertext).

JL as a commitment scheme. It is straightforward to see that the JL cryptosys-
tem is a perfectly binding and computationally hiding commitment scheme for
messages in Z2n : opening simply consists into revealing the randomness used to
generate a ciphertext. Such commitments are extractable using an X-trapdoor
that is the decryption key. Moreover, the lossy keys property immediately yields
that JL is also a “mixed” commitment. Indeed, when generating the public key in
lossy mode, commitments become computationally binding and perfectly hiding.

Here we show that in lossy mode, the commitment is also equivocable. This
result is of independent interest since we do not use equivocation in our protocols.

First, recall that a key in equivocation mode is a g = h2
n

for a random
h ∈ Z∗N that is stored as the equivocation trapdoor. Given h one can equivocate
a commitment to m with randomness r to an arbitrary m′ as follows. Let C =
gmr2

n

mod N = (hmr)2
n

mod N and let m′ = m + α over integers; we can
rewrite the previous equation as (hm+α−αr)2

n

mod N = gm
′
(h−αr)2

n

mod N
and thus setting r′ = h−αr mod N does the job.

Companion Protocols. In the next section we propose an HVZK protocol for
proving correct multiplication relations. Then we show a protocol for proving
(partial) knowledge of plaintexts of JL ciphertexts. This is not used in our 2PC
protocol but is of independent interest and is given in Supplementary Material C.

4.1 Zero-Knowledge Proof of Correct Multiplication

Here we propose an instantiation of the protocol ΠZKPoCM. For i = 1, 2, let
pki = (gi, n,Ni) be a JL public key (both working with the same message space)

20

and let Ci be the respective ciphertext spaces. In Figure 7 we describe a Σ-
protocol for the NP relation R′ ⊆ (Z2n−s)

2 × C21 × C2:

R′ ={((b, r), (A,C,B)) | ∃ (b̃, r̃) ∈ (Z2n)2, (xr, xb) ∈ Z∗N1
× Z∗N2

s.t.

B = Encpk2
(b̃, xb), C = A�b̃ � Encpk1

(r̃, xr), b = b̃ mod 2n−s, r = r̃ mod 2n−s}.

This proof system allows one to prove knowledge of the least n − s significant
bits of the messages b̃, r̃ used to define the ciphertext C.

Intuitively, the reason why we do not prove knowledge of the entire messages
is that, for technical reasons related to the fact that not all messages are in-
vertible, this is actually not possible. Interestingly enough, however, if we set
challenges to be integers of s bits, then we can recover all but the s most sig-
nificant bits. This means that if one carefully encrypts messages that are small
enough (e.g., all the s most significant bits are zero), then one can actually
recover the full message.

In what follows we prove that the protocol ΠZKPoCM guarantees correctness,
(honest verifier) zero knowledge and special soundness.

Completeness. This can be seen by inspection of the protocol.

Protocol ΠZKPoCM

Common input for prover and verifier: two JL public keys pki = (gi, n,Ni), for
i = 1, 2, and JL ciphertexts A,C ∈ C1 and B ∈ C2.
Private input for the prover: b̃, r̃ ∈ Z2n and (xr, xb) ∈ Z∗N1

× Z∗N2
such that B =

Encpk2(b̃, xb) and C = A�b̃ � Encpk1(r̃, xr).

1. P samples β ∈ Z∗N2
and computes R = Encpk2(r̃, β) = gr̃2β

2n mod N2.
Also it samples x, y ← Z2n and v ← Z∗N1

, γx, γy ← Z∗N2
and computes:

D = Axgy1v
2n mod N1, X = gx2γ

2n

x mod N2, Y = gy2γ
2n

y mod N2. It sends
R,D,X, Y to the verifier.

2. The verifier sends backa e← Z2s .
3. The prover computes zb = x + eb̃ mod 2n, zr = y + er̃ mod 2n and qb, qr such

that qb2
n = x + eb̃ − zb and qr2

n = y + er̃ − zr, computes δb = γxx
e
bg
qb
2 mod

N2, δr = γyβ
egqr2 mod N2, ω = Aqbxerg

qr
1 v mod N1, and sends to the verifier

zb, zr, δb, δr, ω.
4. The verifier accepts if and only if all the following checks pass

(a) DCe = AzbEncpk1(zr, ω)

(b) XBe = g
zb
2 δ

2n

b mod N2 = Encpk2(zb, δb)

(c) Y Re = gzr2 δ2
n

r mod N2 = Encpk2(zr, δr)
and if A,C,D ∈ C1 and B,R,X, Y ∈ C2 hold.

a For the sake of simplicity, FRand is used to generate the challenge e when ΠZKPoCM

is used as sub-protocol of ΠOffline.

Fig. 7. Proof of correct multiplication for JL-encryptions

21

Theorem 3 (Honest-Verifier Zero-Knowledge). If JL is a semantically se-
cure public key encryption, then the protocol in Figure 7 is honest-verifier zero-
knowledge. Furthermore, if in the protocol the public key pk2 is generated in lossy
mode, then honest-verifier zero-knowledge holds unconditionally.

Proof. First, we describe a simulator that works as follows. Given a challenge
e and JL ciphertexts A,B,C: sample zb, zr ← Z2n , R ← C2, δb, δr ← Z∗N2

,

ω ← Z∗N1
, and set D = Azbgzr1 ω

2nC−e mod N1, X = gzb2 δ
2n

b B−e mod N2 and

Y = gzr2 δ
2n

r R−e mod N2.
We claim that the simulated proof is computationally indistinguishable from

the real one under the assumption that JL is semantically secure. The only
(information-theoretic) difference between the real proof and the simulated one
is that in the simulation R is the encryption of a random message, not the same r̃
known by the honest prover. This however is not noticeable to a computationally-
bounded distinguisher. More formally, this can be argued by defining an hybrid
simulator that takes as input r̃ and computes the proof as the simulator above
with the only difference that R is a fresh encryption of r̃. The proofs created
by this hybrid simulator are computationally indistinguishable from the ones
created by the ZK simulator under the assumption that JL (over public key pk2)
is semantic secure. As a next step, one must argue that the proofs created by this
hybrid simulator and the ones of the honest prover are distributed identically.
This can be verified by inspection.

Finally, when pk2 is lossy, then we can skip the computational step of the
proof since, even if R is sampled randomly, by the lossy property is distributed
identically to a lossy encryption of r̃.

Theorem 4 (Special Soundness). The protocol in Figure 7 has special sound-
ness.

Proof. We prove that a prover cannot succeed in proving a wrong statement
unless with negligible probability. We prove this as follows.

Assume that, for the same values used in steps 1 and 2 of the protocol, a
prover manages to successfully answer for a non negligible fraction of challenges
e. This means that there exist e1, e2, e1 6= e2 (and wlog e1 > e2) such that

1. C∆e=e1−e2 = A∆zb=zb1−zb2Enc(∆zr = zr1 − zr2, ω/ω′)
2. B∆e = g∆zb2 (δb/δ

′
b)

2n mod N2

3. R∆e = g∆zr2 (δr/δ
′
r)

2n mod N2

We distinguish between 2 cases, depending on whether gcd(∆e, 2n) = 1 or not.

Case gcd(∆e, 2n) = 1. In this case one can easily extract a full b̃ ∈ Z2n as
b̃ = ∆zb/∆e mod 2n and r̃ ∈ Z2n as r̃ = ∆zr/∆e mod 2n.

Case gcd(∆e, 2n) 6= 1. In this case let gcd(∆e, 2n) = 2t for some t ≤ s (the
latter holds because e1, e2 ∈ Z2s). We can rewrite the three equations above
as follows
1. C2te′ = A∆zbEnc(∆zr, ω/ω

′)

22

2. B2te′ = g∆zb2 (δb/δ
′
b)

2n mod N2

3. R2te′ = g∆zr2 (δr/δ
′
r)

2n mod N2

From now on let us focus on the second equation above (the same argument
will trivially hold for the third equation). First let d be the inverse of e′ mod 2n.

Exponentiating both sides of the equation to d leads to the following B2t =

gd∆zb2

(
(δb/δ

′
b)
d
)2n

mod N2. Notice that since g2 is not a quadratic residue, the

integer d∆zb must be even. Let t′ be the largest integer such that 2t
′

divides
d∆zb, i.e., d∆zb = 2t

′
d′ for some odd number d′. Clearly t′ ≤ n. We can rewrite

the equation as

B2t = g2
t′d′

2

(
(δb/δ

′
b)
d
)2n

mod N2 (1)

We distinguish two cases: (a) t > t′ and (b) t ≤ t′.

Case (a) t > t′: If (1) holds and B2t−t
′

/(gd
′

2

(
(δb/δ

′
b)
d
)2n−t′

) mod N2 /∈
{−1, 1}, then we can immediately factor N2 since we found a nontrivial root
of unity. Given the factorization of N2 extracting b̃ from B is possible using
decryption. Otherwise, we have that

B2t−t
′

= u · gd
′

2

(
(δb/δ

′
b)
d
)2n−t′

mod N2 (2)

for u = 1 or u = −1. We show that neither of the cases can occur. If u = 1, the
equality (2) is not possible because d′ is odd and g2 is not a quadratic residue
by construction. If u = −1, (2) is not possible because in this group setting
(p ≡ 1 mod 2n and q ≡ 3 mod 4) −1 has Jabobi symbol −1 in Z∗N2

(see [5,
Theorem 1]) whereas all the other terms of the equation have Jacobi symbol 1.
This concludes case (a).

Case (b) t ≤ t′: Let b̃ ∈ Z2n be the integer encrypted in B. By the ho-

momorphic property of JL we have that B2t is a ciphertext that encrypts
2tb̃ mod 2n = 2t(b̃ mod 2n−t) = 2tbt.

From equation (1), we can write B2t as an encryption of 2t
′
d′. Combined

with the previous observation we have 2t(b̃ mod 2n−t) = 2t
′
d′ and using the fact

that t ≤ t′ we obtain that bt = b̃ mod 2n−t = 2t
′−td′ = d∆zb2

−t. This shows
that d∆zb2

−t ∈ Z2n−t is the (n − t)-bit portion of the message encrypted in
B. Finally, since t ≤ s we can set b = (d∆zb2

−t) mod 2n−s. This concludes the
proof about extractability of b.

By applying exactly the same argument above to R and the third verification
equation, we can extract r ∈ Z2n−s as r = (d∆zr2

−t) mod 2n−s.
Towards concluding the proof, let us recall that the relation requires

B = Encpk2
(b̃, xb), C = A�b̃ � Encpk1

(r̃, xr), b = b̃ mod 2n−s, r = r̃ mod 2n−s

We have already extracted b and r; in what follows we need to argue that they
satisfy the relation above. The check about B is already satisfied. So let us focus
on the remaining checks.

23

Let ã be the integer encrypted in A, namely let us write A = gã1x
2n

a . Similarly,
let c̃ ∈ Z2n be the integer encrypted in C. Then showing that the extracted values
satisfy the relation means to show that c̃ = ãb̃ + r̃ mod 2n such that the least
n − s significant bits of b̃, r̃ are b and r respectively. More formally, this means
to show that there is some qs such that c̃ can be written as asb+ r+ qs2

n−s, for
as = ã mod 2n−s. In other words, cs = c̃ mod 2n−s = asb+ r mod 2n−s.

Now let us consider the first equation. By the homomorphic property we have
that C2t is a ciphertext that encrypts c′ = 2tc̃ mod 2n = 2t(c̃ mod 2n−t) = 2tct.

From the first verification equation, exponentiating both sides of the equation

by d = e′−1 mod 2n, we get C2t = Ad∆zbgd∆zr1

(
(ω/ω′)d

)2n
mod N1 and using

the expression of A, we can rewrite the equation as

C2t = g
d(ã∆zb+∆zr)
1

(
xd∆zba (ω/ω′)d

)2n
mod N1

= g
ã(d∆zb)+(d∆zr)
1

(
xd∆zba (ω/ω′)d

)2n
mod N1

= gα̃1
(
gqα1 xd∆zba (ω/ω′)d

)2n
mod N1

where in the last equation we used ãd∆zb + d∆zr = α̃+ qα2n.

Thus we have that c′ = α. Notice that 2t divides both d∆zb and d∆zr (this
follows from the arguments used in the extractability of b and r), and thus by
definition of α̃, 2t | α̃. In particular, α̃2−t = ãd∆zb2

−t + d∆zr2
−t − qα2n−t.

Therefore, ct = c′2−t = α̃2−t = ãd∆zb2
−t + d∆zr2

−t − qα2n−t = ãbt + rt −
qα2n−t = atbt + rt + q2n−t.

If we take both sides mod 2n−s (recall that t ≤ s), we have that cs =
c̃ mod 2n−s = asb+ r mod 2n−s as it was to be proven.

4.2 Zero-Knowledge Proof of Correct Multiplication of Two
Committed (or Encrypted) Values

Here we propose an instantiation of the protocol ΠZKPoMCV that allows a prover
to show that she correctly performed multiplication of two committed (or en-
crypted) values. The protocol is given in Figure 8. Essentially, it considers a
special case of the relation supported by the protocol in the previous section in
which r = 0 and the ciphertexts are under the same public key. This specializa-
tion allows us to simplify and optimize the resulting protocol. Let pk = (g, n,N)
be a JL public key and C its corresponding ciphertext space13. Specifically, we
give a Σ-protocol for the NP relation R ⊆ (Z2n−s)× C3:

R ={(b, (A,C,B)) | ∃ b̃ ∈ Z2n , (xr, xb) ∈ (Z∗N)2 s.t.

B = Encpk(b̃, xb), C = A�b̃ � Encpk(0, xr), b = b̃ mod 2n−s}.

13 When ΠZKPoMCV is used in the offline phase of MonZ2ka, we have pk = pk1 if the P1

is the prover or pk = pk2 if P2 is the prover (pk1, pk2 are the keys used in ΠZKPoCM).

24

As in previous protocols in this paper, this proof system allows one to prove
knowledge of the least n− s significant bits of the message b̃ used to define the
ciphertext C.

Notice that correctness of the protocol ΠZKPoCM can be easily inferred by
inspection. Special soundness follows as a special case of Thm 4 (when ignoring
the third equation and setting r = 0). Honest verifier zero-knowledge also follows
as a special case of Thm 3. Interestingly, however, in this protocol ΠZKPoMCV the
zero knowledge property holds unconditionally. Recall that in the proof of Thm. 3
the only reason we needed to resort to the semantic security of JL was because
of the possible difference between the ciphertext R used by the prover and the
one sampled by the simulator. Since in our case there is no such a difference,
there is also no difference between the real proof and the simulated one.

Protocol ΠZKPoMCV

Common input for prover and verifier: A JL public key pk = (g, n,N), and JL
commitments (ciphertexts) A,B,C ∈ C.
Private input for the prover: b̃ ∈ Z2n and xb, xr ∈ Z∗N such that B = Encpk(b̃, xb)

and C = A�b̃ � Encpk(0, xr).

1. P samples x ← Z2n and v, γx ← Z∗N and computes: D = Axv2
n

mod N ,
X = gxγ2n

x mod N . It sends D,X to the verifier.
2. The verifier sends backa e← Z2s .
3. The prover computes zb = x+ eb̃ mod 2n and qb such that qb2

n = x+ eb̃− zb,
computes
δb = γxx

e
bg
qb mod N,ω = Aqbvxer mod N , and sends to the verifier zb, δb, ω.

4. The verifier accepts if and only if all the following checks pass
(a) DCe = AzbEncpk(0, ω)
(b) XBe = gzbδ2

n

b mod N = Encpk(zb, δb)
and if A,B,C,D,X ∈ C holds.

a Again, for the sake of simplicity, FRand is used to generate the challenge e when
ΠZKPoMCV is used as sub-protocol of ΠOffline.

Fig. 8. Modified (simpler) version of ΠZKPoCM.

5 Efficiency Analysis

Here we turn to estimate the efficiency of our preprocessing protocol with respect
to SPDZ2k in [9]; the online phase is essentially the same. Before entering into
the details of the evaluation, in the next section we discuss a variant of our
offline protocol that significantly reduces the overall bandwidth consumption at
the cost of (1) explicitly requiring the random oracle heuristic, and (2) increasing
the computational overhead of both players. Next, we analyze the efficiency of
both the base and optimized versions.

25

Optimization using random oracles. First, assume that P1 knows the secret
key corresponding to the encryption scheme (Gen,Enc,Dec) (as it already holds),
and that P2 is given the extraction trapdoor for the (extractable) commitment
(cGen,Com). Since valid JL ciphertexts – and commitments – are both easy
to recognize and easy to sample, the holder of the secret decryption key (resp.
extraction trapdoor) has an alternative way to generate a couple (m,Enc(m))
(resp. (m,Com(m)) with m random: it first samples a random ciphertext Enc(m)
(resp. commitment Com(m)), and then extracts m using the secret key14. It is
straightforward to see that these two sampling procedures (i.e., via encryption
or decryption) generate the same distribution.

The related security proofs would require minor changes to the simulators
S1,S2: for example, S1 in (Single, P1) would get R′ from FRand, instead of from
Z, and in (Single, P2) it would compute r′ from R′ (again received from FRand)
using the extraction trapdoor of the commitment, as the honest P2 would do.

This simple idea can be used to gain in communication complexity as fol-
lows. In protocol ΠOffline on input (Single, P1, sid, ssid), the parties can get a
common R = Encpk(r), without any communication, by simply setting R ←
H1(ω1, sid, ssid) where ω1 is some common auxiliary information and H1 is a
random oracle mapping into the ciphertext space of Encpk. Similarly, on input
(Single, P2, sid, ssid), the parties can get a common R = Comck(r) by setting
R ← H2(ω2, sid, ssid) (where, again, ω2 is some common auxiliary information
and H2 is a random oracle mapping into the commitment space of Comck).

Similarly, the communication complexity of ΠZKPoCM (see section 4.1) can be
reduced by generating X and Y using the random oracle in exactly the same
way. Moreover the resulting protocols remain secure with these modifications as,
all the quantities retain the same original distribution and, as proved in section
4.1, the (special) soundness of ΠZKPoCM holds unconditionally. The same holds
for ΠZKPoMCV (see section 4.2): the transmission of X (an encryption of random
value x) can be avoided.

Bandwidth usage. The bandwidth of our sub-protocols depends on few pa-
rameters: the size of the generic modulus used in the JL encryption/commitment
schemes denoted as |N |, the message bit-length k, the statistical security param-
eter s and the internal parameter n = k + 2s.

We analyze the elements exchanged between the parties. The sub-protocol
ΠZKPoCM in Figure 7 sends a total of 7 elements of size |N | and two of n bits. The
sub-protocol ΠZKPoMCV in Figure 8 sends four elements of size |N | and one of n
bits. The multiplication sub-protocol Mult in Figure 3 sends an element of size
|N | before an invocation of ΠZKPoCM. The sub-protocols (Single, Pi) in Figure 3
send an encryption/commitment (size |N |) followed by an instance of Mult; the
variant Single, used to generate a shared random value unknown to all parties,
runs (Single, P1) and (Single, P2). Finally, in Triple one invokes two times Single,
four times Mult, two times ΠZKPoCM and sends four encryptions/commitments

14 More precisely, in order for the above idea to be any useful in our protocols, we also
need to extract the randomness associated to the encryption/commitment. Luckily,
this happens to be the case when using JL as underlying building block.

26

Table 1. Bandwidth analysis of our sub-protocols

ΠZKPoCM ΠZKPoMCV Mult (Single, Pi) Single Triple

MonZ2ka base 7|N |+ 2n 4|N |+ n 8|N |+ 2n 9|N |+ 2n 18|N |+ 4n 78|N |+18n

MonZ2ka optim. 5|N |+ 2n 3|N |+ n 6|N |+ 2n 6|N |+ 2n 12|N |+ 4n 56|N |+18n

with size |N | bits15. We also consider the optimized version of our protocols
discussed in Section 5.

For a concrete comparison we consider some significant settings, varying the
available parameters, and comparing the results with data on SPDZ2k in [9].
For each considered computational security level S ∈ {80, 112, 128}, we select
a proper statistical security parameter s according to the message bit-length
k ∈ {32, 64, 128}. The size of the modulus N is selected according to recent
NIST recommendations16. The extended comparison is reported in Table 2 with
bold remarks on the best values per triple and single generation17. The global
costs to generate a triple and a single (input sharing) in SPDZ2k are computed
according to the formulas 2(k + 2s)(9s + 4k) and (s + 1)(k + 2s) reported in
Section 7 of [9]. For the input sharing step of our protocols we consider the cost
of (Single, Pi) as a random shared value known to Pi is later used to share a
secret input belonging to him as stated in Figure 11.

Implementation and computational benchmark. We implemented the off-
line phase of the base version of MonZ2ka18: it produces triples and singles that
could be used in the on-line phase of SPDZ2k . Our implementation is written in
language C and uses the GNU Multiprecision Library19 (GMP) for the MPI op-
erations. We used two servers equipped with an Intel Xeon 8124M CPU running
at 3.0 GHz: each server hosts a single thread running one of the two parties. We
simulated three typical deploying scenarios: two servers connected by a common
1 Gigabit Ethernet LAN with an average latency (intended as Round Trip Time
— RTT) of 0.5 ms and two servers hosted by two different data-centers con-
nected by a fast WAN with 17 ms of latency20 or by a very-limited WAN with
100 ms of latency and a bandwidth of 50 Mb/s.

The underlying JL encryption scheme has been implemented following the
specifications in [5] with few adjustments: adaptation of the decryption algorithm

15 Similarly to the analysis in [9], we ignore the negligible costs of FRand and of the
check of the openings in Triple as it can be performed in a batch when producing
many triples at once.

16 https://keylength.com
17 For sake of completeness, in the border case with S = 80, s = 40 and k = 128,

we considered a slightly larger modulus |N | = 1160 in order to satisfy the security
constraint k + 2s < 1

4
log2(N)− S on JL scheme from [5].

18 The source code of our project is publicly available at:
https://github.com/crypto-unict/monza-mpc

19 https://gmplib.org
20 We considered the actual ping delay between Amazon and Google data-centers.

27

https://keylength.com
https://github.com/crypto-unict/monza-mpc
https://gmplib.org

Table 2. Bandwidth comparison with SPDZ2k (costs in kbit)

SPDZ2k MonZ2ka base MonZ2ka optim.

S |N | k s triple input triple input triple input

32 32 79.87 3.17 81.60 9.41 59.07 6.34

80 1024 64 40 177.41 5.90 82.46 9.50 59.94 6.43

128 40 362.75 8.53 94.22 10.86 68.70 7.38

32 32 79.87 3.17 161.47 18.62 116.42 12.48

112 2048 64 56 267.52 10.03 162.91 18.78 117.86 12.64

128 56 487.68 13.68 164.06 18.91 119.01 12.77

32 32 79.87 3.17 241.34 27.84 173.76 18.62

128 3072 64 64 319.49 12.48 243.07 28.03 175.49 18.82

128 64 557.06 16.64 244.22 28.16 176.64 18.94

(S: comp. sec. level; N : JL-schemes modulus; k: message bit-length; s: stat. sec. level)

to support the partial extraction of the plaintext21 (as described in Section 4),
usage of some precomputed values derived by some components of the public and
secret keys (as described in Section 5.2 in [5]) and a faster encryption exploiting
some fixed base exponentiations.

For each protocol we measured the effective (wall clock) time required to get
the final output but also the CPU usage (in percent): indeed in a real implemen-
tation the CPU can become idle waiting for incoming values delayed by network
latency. Even a medium latency can degrade the final performance of an inter-
active protocol: in order to overcome this limit, we engineered the possibility to
run on a single CPU thread a batch of interlaced runs in order to piggyback the
passing network messages. As shown by our tests, this allows to get even on a
very slow WAN connection almost the same throughput rate of a LAN.

The experiments used the following parameters: message bit-length k = 64,
computational security level S = 112, statistical security level s = 56 and JL
modulus size |N | = 2048 bit. The benchmarks reported in Table 3 are obtained
as average on a batch of several runs with low standard deviation (1%). The
value in the column “average time” is intended as the average cost of a single
item of the batch.

Acknowledgements. The research of Dario Catalano and Mario Di Raimondo
has been partially supported by the Università degli Studi di Catania, “Piano
della Ricerca 2016/2018 — Linea di intervento 2”.

The research of Dario Fiore has been partially supported by the Spanish
Government under projects SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC

21 JL decryption can be surprisingly fast for small messages; as reference a Paillier
decryption, with identical parameters/machine/setting used in Table 3, has a cost
that range from 7864 µs to 4323 µs (if CRT is exploited). JL requires only 4054 µs.

28

Table 3. Benchmarks on MonZ2ka off-line protocol

triple input

latency batch av. time CPUP1 CPUP2 throug. av. time CPUP1 CPUP2 throug.

(ms) (items) (ms) (%) (%) (item/s) (ms) (%) (%) (item/s)

1 56.65 80% 32% 17.65 7.99 70% 24% 125.16

0.5 100 52.24 86% 35% 19.14 7.41 74% 26% 134.95

(LAN) 1000 52.36 85% 35% 19.10 7.43 74% 26% 134.59

1 253.68 18% 7% 3.94 40.37 14% 5% 24.77

17.0 1000 53.05 84% 34% 18.85 7.52 74% 25% 132.99

(WAN) 2000 52.34 85% 34% 19.11 7.42 74% 26% 134.77

1 1252.53 4% 2% 206.85 40.37 3% 1% 4.83

100.0 1000 58.34 77% 31% 17.14 8.25 67% 23% 121.21

(WAN) 4000 55.44 81% 33% 18.03 7.95 70% 24% 125.79

(ref. EUR2019-103816), and SECURITAS (ref. RED2018-102321-T), and by the
Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339).

References

1. Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel
Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In
2017 IEEE Symposium on Security and Privacy, pages 843–862. IEEE Computer
Society Press, May 2017.

2. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
High-throughput semi-honest secure three-party computation with an honest ma-
jority. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 16, pages 805–817. ACM Press, Octo-
ber 2016.

3. Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally
composable protocols with relaxed set-up assumptions. In 45th FOCS, pages 186–
195. IEEE Computer Society Press, October 2004.

4. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188. Springer, Hei-
delberg, May 2011.

5. Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benôıt Libert. Efficient
cryptosystems from 2k-th power residue symbols. Journal of Cryptology, 30(2):519–
549, April 2017.

6. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Sushil Jajodia and Javier López, editors, ES-
ORICS 2008, volume 5283 of LNCS, pages 192–206. Springer, Heidelberg, October
2008.

29

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

8. Dario Catalano and Dario Fiore. Using linearly-homomorphic encryption to evalu-
ate degree-2 functions on encrypted data. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel:, editors, ACM CCS 15, pages 1518–1529. ACM Press, October 2015.

9. Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping Xing.
SPD Z2k : Efficient MPC mod 2k for dishonest majority. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 769–798. Springer, Heidelberg, August 2018.

10. Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-
party computation over rings. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 596–613. Springer, Heidelberg, May 2003.

11. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or: Break-
ing the SPDZ limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer, Heidelberg, Septem-
ber 2013.

12. Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Yet another compiler for active
security or: Efficient MPC over arbitrary rings. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 799–829.
Springer, Heidelberg, August 2018.

13. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Heidelberg, August 2012.

14. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput
secure three-party computation for malicious adversaries and an honest majority.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 225–255. Springer, Heidelberg, April / May
2017.

15. Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 116–129. Springer, Heidelberg, August
1999.

16. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play
mental poker keeping secret all partial information. In 14th ACM STOC, pages
365–377. ACM Press, May 1982.

17. Marc Joye and Benôıt Libert. Efficient cryptosystems from 2k-th power
residue symbols. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 76–92. Springer, Heidelberg, May 2013.

18. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 16, pages 830–842. ACM Press, October 2016.

19. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great
again. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 158–189. Springer, Heidelberg, April / May
2018.

20. Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k: Effi-
cient secure mpc over z2k from somewhat homomorphic encryption. Cryptology
ePrint Archive, Report 2019/153, 2019.

30

Supplementary Material

A Online Phase

The online phase of our protocol is the same as the one in the SPDZ2k protocol
[9]: first the parties call the preprocessing functionality FOffline and then they
use the authenticated singles to transform their secret inputs in shared and au-
thenticated values. After this first step, the parties parse the circuit computing
the representation of the values in each wires; this is done using the AffineComb
procedure for the output of linear gates and the Beaver’s trick for the multiplica-
tion gates (a triple is used for each gates). When the representation of the circuit
output is computed, then the computation stops. At this point the parties verify
the MACs and, if the check succeeds, they output the result. This is shown in
Figure 11.

The SPDZ2k protocol gives procedures to open and check a single value and
a batch of values. In Figure 9, we recall these procedures where the shared and
authenticated singles from the preprocessing are consumed. The first procedure,
Open, simply reconstructs the value x from the shares in the [·]-representation.
Notice that each party truncates its share to the first k-bits before sending it to
the other party in order to avoid leakage (e.g., if x = y+z mod 2k, revealing the
shares of x in Z2k+s leaks whether the sum overflows 2k). The second procedure,
Open and check, reconstructs the value x and checks the MAC m(x). In order
to check the MAC, we need all the k + s bits of the shares of x. In this case,
to avoid the leakage of the last (most significant) s bits are randomized adding
to [x] the value 2k · [r] where [r] is a shared and authenticated single from the
preprocessing. Finally, the procedure Batch check allows to verify the MAC of u
previously opened values using one single instead of u singles.

Claim 1 in [9] shows that if the check in step 5 of the procedure Open and
check passes, then y = x mod 2k with probability 1− 2−s. While Theorem 1 in
[9] shows that if the Batch check procedure does not abort, then the output is
correct with probability 1−2−s+log(s+1). Given this analysis, proving that ΠOnline

implements FOnline in the FOffline-hybrid model is straightforward. We refer to [9]
for the details.

B Enhanced CPA security

In this section we recall the notion of enhanced cpa security as defined in [19] but
adapted to our notation. This involves a polynomially bounded and an adversary
interacting via the following experiment

1. The challenger samples (pk, sk)← Gen(1λ, n) and sends pk to the adversary.
2. The challenger sends C = Encpk(m) for a random message m.
3. For j ∈ poly(λ):

Open [x]:
1. Each party sends x̂(i) = x(i) mod 2k to the other party;
2. Each party computes x̂ = x̂(1) + x̂(2) mod 2k+s.

Open and check [x]:
1. Parties take the next unused single [r] and compute [y] = [x] + 2k · [r];
2. For i = 1, 2, Pi sends y(i) to the other party;
3. Each party computes y′ = y(1) + y(2) mod 2k+s;
4. For i = 1, 2, Pi commits to z(i) = m(i)(y)− α(i) · y′ mod 2k+s;
5. Each party opens the commitment and checks that z(1) + z(2) = 0

mod 2k+s;
6. If the check passes, then each player outputs y = y′ mod 2k.

Batch check [x1], . . . , [xu]:
Assume that the procedures Open[x1], . . . ,Open[xu] were run and the val-
ues x̂1, . . . , x̂u are now public;

1. The parties call FRand and get u public random values from Z2s : βi ← Z2s

for i = 1, . . . , u. Parties define y =
∑u
i=1 βi · xi mod 2k+s;

2. For j = 1, 2, Pj computes m(j)(y) =
∑u
i=1 βi ·m

(j)(xi) mod 2k+s;

3. For j = 1, 2, Pj computes p
(j)
i = x

(j)
i − x̂

(j)
i mod 2k+s for i = 1, . . . , u and

p(j) =
∑u
i=1 βi · p

(j)
i mod 2k+s;

4. For j = 1, 2, Pj takes the next unused single [r] and sends to the other
party the value p̃(j) = p(j) + r(j) mod 2k+s;

5. Each party computes p̃ = p̃(1) + p̃(2) mod 2k+s;
6. For j = 1, 2, Pj commits to z(j) = m(j)(y)− α(j) · (p̃− r(j) + y)−m(j)(r)

mod 2k+s

7. Each party opens the commitment and checks that z(1) + z(2) = 0
mod 2k+s;

8. If the check passes, then each player outputs x̂1 mod 2k, . . . , x̂u mod 2k.

Fig. 9. Procedures for opening values given by the [·]-representation.

32

Functionality FOnline

FOnline interacts with the parties P1 and P2 and the simulator S and proceeds as
follows.

Initialize: When activated on the first time on input (Init, sid, k, s) from all the
parties, the functionality stores k.

In each other activation:

Input: On input (Input, sid, ssid, Pj , x) from party Pj and (Input, sid, ssid, Pj)
from the other party, FOnline stores (sid, ssid, x mod 2k), where ssid is a fresh
identifier.

Add: On input (Add, sid, ssid1, ssid2, ssid3) from all parties, if (sid, ssidi, xi)
was stored for i = 1, 2 and ssid3 is a fresh identifier, then FOnline stores
(sid, ssid3, x1 + x2 mod 2k).

Multiply: On input (Mult, sid, ssid1, ssid2, ssid3) from all parties, if
(sid, ssidi, xi) was stored for i = 1, 2 and ssid3 is a fresh identifier,
then FOnline stores (sid, ssid3, x1 · x2 mod 2k).

Output: On input (Output, sid, ssid) from the honest party, if (sid, ssid, y) was
stored, the FOnline sends y to the simulator S and waits. If the simulator sends
Proceed to FOnline, then the functionality forwards y to all parties; if S sends
Abort, FOnline aborts.

Fig. 10. Functionality for the online phase.

(a) The adversary sends Cj to the challenger.
(b) The challenger checks if Decsk(Cj) = 0; if this is the case the challenger

sends OK to the adversary; else, the challenger sends FAIL to the ad-
versary and aborts.

4. The challenger samples b← {0, 1} and sends m to the adversary if b = 0, or
a random m′ otherwise.

5. The adversary sends b′ ∈ {0, 1} to the challenger and wins the game if b′ = b.

An encryption scheme is said to achieve enhanced-cpa security [19] if for all
polynomially bounded adversaries playing in the above experiment Pr[b′ = b] is
negligibly close to 1/2.

C Zero Knowledge Proof of Knowledge of a Plaintext

In this section we show an HVZK proof of plaintext knowledge for JL ciphertexts.
Although our 2PC protocol does not need this proof, we add this result to the
paper: it enriches the set of protocols available for this cryptosystem, which can
be of independent interest.

The protocol ΠZKPoPK (described in Figure 12) is a Σ-protocol for the NP
relation R:

R = {(m,C) | ∃ m̃ ∈ Z2n s.t. C = Encpk(m̃) ∧m = m̃ mod 2n−s} ⊆ Z2n−s × C.

33

Protocol ΠOnline

The protocol is run by parties P1 and P2 and is parametrized by an integer k,
bit-length of the input and the security parameter s.

Initialize: When activated for the first time, the parties initialize FOffline sending
(Init, sid, k, s) to the functionality. Party Pi gets α(i).
Then, the parties invoke the Singles and Triples commands of FOffline in order
to get a sufficient number of shared and authenticated random singles [r], au-
thenticated singles (r, [r]) and multiplication triples ([a], [b], [c]).

Then the steps below are performed in sequence according to the structure of the
circuit to compute.

Input: On input (Input, sid, ssid, Pj , x) with x ∈ Z2k , party Pj takes the next
unused authenticated single (j, [r]) from the set of the available ones and then
1. Pj sends to the other party ε = x− r mod 2k;
2. The parties compute [x] = [r] + ε and store the shares with the identifier

ssid.

Add: On input (Add, sid, ssid1, ssid2, ssid3), if the values [x1] and [x2] are stored
with identifiers ssid1 and ssid2 respectively, then the parties compute [x3] =
[x1] + [x2] (no interaction required) and store [x3] with identifier ssid3.

Multiply: On input (Mult, sid, ssid1, ssid2, ssid3), if the values [x1] and [x2] are
stored with identifiers ssid1 and ssid2 respectively, then the parties take the
next unused triple ([a], [b], [c]) and do the following:
1. Compute [ε] = [x1]− [a], [δ] = [x2]− [b] and then Open [ε], Open [δ];
2. Compute [x3] = [c] + ε · [b] + δ · [a] + ε · δ and store [x3] with identifier ssid3.

Output: On input (Output, sid, ssid) if a value with identifier ssid was stored,
then the parties do the following:
1. Batch check all the values that have been opened so far in the multiplication

steps;
2. If step 1 does not abort, parties Open and check [y].

Fig. 11. Protocol for the online phase in the FOffline-hybrid.

34

In the following we prove that the Σ-protocol ΠZKPoPK guarantees correctness,
(honest verifier) zero-knowledge and soundness.

Protocol ΠZKPoPK

Common input for prover and verifier: a JL public key pk = (g, n,N) and a JL
ciphertext C ∈ C.
Private input for the prover: a message m̃ ∈ Z2n and randomness x ∈ Z∗N such that
C = Encpk(m, r) = gmx2

n

mod N .

1. The prover samples r ← Z2n and ω ← Z∗N and sets R = grω2n mod N . The
prover sends R to the verifier.

2. The verifier sends back e← Z2s .
3. The prover computes z = r + me mod 2n, t such that t2n = r + me − z (the

latter is computed over the integers), and y = gtωxe mod N . The prover sends
z and Y to the verifier. The verifier accepts if and only if gzy2

n

= RCe mod N
and C,R ∈ C.

Fig. 12. (Honest-Verifier) ZK-proof of knowledge for a JL plaintext.

Completeness. Obvious by inspection.

Honest-Verifier Zero-Knowledge. Given e and C, the simulator simply chooses
z ← Z2n and y ← Z∗N randomly, and sets R = gzy2

n

C−e mod N.

Special Soundness. This is the trickiest part. The proof follows the same argu-
ment used in Section 4.1.

Assume that, for the same R the prover can successfully answer for a non
negligible fraction of challenges e. This means that there exist e1, e2, e1 6= e2
such that:

gz1y2
n

1 = RCe1 mod N and gz2y2
n

2 = RCe2 mod N

For simplicity and wlog let us assume that e1 > e2. From the above we get

Ce1−e2 = gz1−z2(y1/y2)2
n

mod N

If e1−e2 happens to be odd (i.e., invertible in Z2n) one can immediately extract
the plaintext as (z1 − z2)(e1 − e2)−1 mod 2n. If this is not the case we proceed
as follows. Let t1, t2 be integers such that 2t1 |(e1− e2) and 2t2 |(z1− z2). We can
rewrite the equation above as

C2t1β = g2
t2α(y1/y2)2

n

mod N

where α and β are odd. We distinguish between two cases: (a) t2 < t1 and (b)
t2 ≥ t1. We show that in both cases we can extract the message (mod 2)n−s.

35

Case (a) t2 < t1: If the above equation holds and C2t1−t2β/(gα(y1/y2)2
k−t2

) 6=
1,−1 mod N then we can easily factor N and from the factorization we can
decrypt and recover the full m̃. Otherwise we claim that neither of the cases in

which C2t1−t2β/(gα(y1/y2)2
k−t2

) is 1 or −1 is possible. The former because g is
not a quadratic residue, and the latter because all elements have Jacobi symbol
1 while −1 has Jacobi symbol −1 in Z∗N for our choice of p and q (see the special
soundness proof in Section 4.1 for more details). This concludes case (a).

Case (b) t2 ≥ t1: First notice that, being β odd it is invertible mod 2n. Let d
be its inverse. The equation above can be rewritten as

C2t1 = g2
t2dα

(
(y1/y2)d

)2n
mod N

This means that 2t2dα is the plaintext contained in C “shifted” by t1 < s
bits to the left. Such a shift makes us loose (at worst) the most significant
s bits of the plaintext, but leaves the remaining n − s bits unchanged. Thus
m = 2t2−t1dα mod 2n−s is the required message.

36

	MonZ2ka: Fast Maliciously Secure Two Party Computation on Z2k

