
MArBled Circuits:

Mixing Arithmetic and Boolean Circuits with Active

Security?

Dragos Rotaru1,2 and Tim Wood1,2

1 University of Bristol, Bristol, UK
2 imec-COSIC KU Leuven, Leuven, Belgium

dragos.rotaru@esat.kuleuven.be,t.wood@kuleuven.be

Abstract. Most modern actively-secure multiparty computation (MPC) protocols involve generating
random data that is secret-shared and authenticated, and using it to evaluate arithmetic or Boolean
circuits in different ways. In this work we present a generic method for converting authenticated secret-
shared data between different fields, and show how to use it to evaluate so-called “mixed” circuits with
active security and in the full-threshold setting. A mixed circuit is one in which parties switch between
different subprotocols dynamically as computation proceeds, the idea being that some protocols are
more efficient for evaluating arithmetic circuits, and others for Boolean circuits.
One use case of our switching mechanism is for converting between secret-sharing-based MPC and
garbled circuits (GCs). The former is more suited to the evaluation of arithmetic circuits and can easily
be used to emulate arithmetic over the integers, whereas the latter is better for Boolean circuits and
has constant round complexity. Much work already exists in the two-party semi-honest setting, but the
n-party dishonest majority case was hitherto neglected.
We call the actively-secure mixed arithmetic/Boolean circuit a marbled circuit3. Our implementation
showed that mixing protocols in this way allows us to evaluate a linear Support Vector Machine with
400 times fewer AND gates than a solution using GC alone albeit with twice the preprocessing required
using only SPDZ (Damg̊ard et al., CRYPTO ’12), and thus our solution offers a tradeoff between online
and preprocessing complexity. When evaluating over a WAN network, our online phase is 10 times faster
than the plain SPDZ protocol.

1 Introduction

One of the major modern uses of cryptography is for mutually-distrustful parties to compute
a function on their combined secret inputs so that all parties learn the output and no party
learns anything more about other parties’ inputs than what can be deduced from their own
input and the output alone. This is known as secure multiparty computation (MPC) and
has recently been shown to be very efficient for evaluating general Boolean [NNOB12,DZ13]
and arithmetic [DPSZ12,DKL+13,KOS16,KPR18] circuits.

Many real-world use cases of computing on private data involve some form of statistical
analysis, requiring evaluation of arithmetic formulae. Perhaps the most common method of
computing arithmetic circuits on private data involves secret-sharing (SS), in which secret
inputs are split up into several pieces and distributed amongst a set of parties, which then

? This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced
Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contract No. N66001-15-C-4070, and by the FWO under an Odysseus project GOH9718N.

3 See paper marbling.

perform computations on these shares (sometimes requiring communication), and recombine
them at the end for the result. However, MPC over a finite field or a ring is used to emu-
late arithmetic over the integers, and consequently, operations such as comparisons between
secrets (i.e. <,>,=), which we refer to generally as “bit-wise” operations, are an important
feature of MPC protocols: one of the shortcomings of MPC based on secret-sharing is that
these natural but more complicated procedures require special preprocessing and several
rounds of communication.

One way to mitigate these costs would be to use garbled circuits (GCs) instead of secret-
sharing for circuits involving lots of non-linear operations, since this method has lower round
complexity than SS-based MPC solutions (in fact, they can be done in constant rounds).
Recent work has shown that multiparty Boolean circuit garbling with active security in
the dishonest majority setting can be made very efficient [WRK17,HSS17,KY18]. However,
performing general arithmetic computations in Boolean circuits can be expensive since the
arithmetic operations must be accompanied by reduction modulo a prime inside the cir-
cuit. Moreover, efficient constructions of multiparty constant-round protocols for arithmetic
circuits remain elusive. Indeed, the best-known optimisations for arithmetic circuits such
as using a primorial modulus [BMR16] are expensive even for passive security in the two-
party setting. The only work of which the authors are aware in the multiparty setting is the
passively-secure honest-majority work by Ben-Efraim [Ben18].

So-called mixed protocols are those in which parties switch between secret-sharing (SS)
and a garbled circuit (GC) mid-way through a computation, thus enjoying the efficiency
of the basic addition and multiplication operations in any field using the former and the
low-round complexity of GCs for more complex subroutines using the latter. One can think
of mixed protocols as allowing parties to choose the most efficient field in which to evaluate
different parts of a circuit.

There has been a lot of work on developing mixed protocols in the two-party passive
security setting, for example [HKS+10, KSS13, KSS14, BDK+18]. One such work was the
protocol of Demmler et al. [DSZ15] known as ABY, that gave a method for converting
between arithmetic, Boolean, and Yao sharings. For small subcircuits, converting arithmetic
shares to Boolean shares (of the bit decomposition) of the same secret – i.e. without any
garbling – was shown to give efficiency gains over performing the same circuits in with
arithmetic shares; for large subcircuits, using garbling allows reducing online costs. Mohassel
and Rindal [MR18] constructed a three-party protocol known as ABY3 for mixing these three
types of sharing in the malicious setting assuming at most one corruption.

For mixed protocols to be efficient, clearly the cost of switching between secret-sharing
and garbling, performing the operation, and switching back must be more efficient than the
method that does not require switching, perhaps achieved by relegating some computation
to the offline phase.

1.1 Our Contribution

The main challenge for active security is that it is essential to retain authentication of
secrets through the conversion. In this work, we give a simple actively-secure procedure for

2

transforming data that is secret-shared and authenticated in different ways. The motivation
is to allow mixed protocols in the dishonest majority setting with active security, with only
black-box use of the linear secret sharing scheme (LSSS) and GC subprotocols. The idea
behind specifically designing a transformation procedure instead of a whole MPC protocol
is that any circuit that makes considerable use of both arithmetic operations and bit-wise
computations is likely to be most efficient when using state-of-the-art SS-based MPC and
circuit garbling protocols, assuming the transformation procedure is cheap enough. Our
implementation shows that this is achievable with concrete efficiency, and that there is some
tradeoff between preprocessing costs and circuit evaluation costs. In the following discussion,
we will focus on specific goal of switching between secret-sharing schemes and GCs.

Let Fq denote the finite field of order q. One of the key observations that allows our
generic transformation to be realised is that for many recent protocols in both the SS-based
and GC-based MPC paradigms, the starting point is essentially always to create a black-
box actively-secure SS-based MPC functionality and to use it either directly to evaluate
arithmetic circuits if the field is Fp, or to generate garbled circuits with active security if the
field is F2. At the highest level, the idea of our protocol is to allow data embedded in Fp to
be efficiently transformed into data embedded in F2 with authentication. It is then easy to
show that garbled circuits can be used to evaluate on authenticated elements of Fp, as will
be demonstrated in this work.

The most obvious way of providing inputs that are secret-shared into a garbled circuit
is relatively straightforward: for a given secret, parties can simply input each bit in the bit-
decomposition of their share into the GC, and the sum mod p can be computed inside the
circuit. The primary technical challenge for a conversion procedure with active security is to
maintain authentication through the transition from secret-shared inputs and secret inputs
inside the GC, and vice versa. The näıve way of obtaining authentication is for parties to
bit-decompose the shares of the data that provides authentication validating inside the GC:
for example, if information-theoretic MACs are used on secrets, parties input their shares of
the MACs and the MAC key(s). Final circuit outputs can be sets of bits that represent the
bit-decomposition of in Fp, and can be privately opened to different parties. This method
requires garbling several additions and multiplications inside the circuit to check the MACs
and would require O(n · κ · log |F|) bits per party to be sent to switch inputs in the online
phase, where n is the number of parties, κ is the computational security parameter, and F
is the MPC field, since each party needs to broadcast a GC key for each bit of the input.
The advantage of this solution, despite these challenges, is that it requires no additional
preprocessing, nor adaptations to the garbling procedure.

Contrasting this approach, our solution makes use of special preprocessing to speed up the
conversion. This results in reducing the circuit size by approximately 100, 000 AND gates per
conversion for a field with a 128-bit prime modulus (assuming Montgomery multiplication
is used). In this work we show how to convert between secret-shared data in Fp, where p is
a large prime and is the MPC modulus, and GCs in F2k through the use of “double-shared”
authenticated bits which we dub daBits, following the nomenclature set out by [NNOB12].
These doubly-shared secrets are values in {0, 1} shared and authenticated both in Fp and

3

F2k , where by 0 and 1 we mean the additive and multiplicative identity, respectively, in each
field. In brief, the conversion of a SS input x into a GC involves constructing a random secret
r in Fp using daBits, opening x− r in MPC, bit decomposing this public value (requiring no
communication) and using these as signal bits for the GC, and then in the circuit adding r
and computing this modulo p, which is possible since the bit decomposition of r is doubly-
shared. This keeps the authentication check outside of the circuit instead requiring that the
check happens correctly on the opened value x− r. Going the other way around, the output
of the circuit is a set of public signal bits whose masking bits are chosen to be daBits. To get
the output, parties XOR the public signal bits with the Fp shares of the corresponding daBit
masks, which can be done locally. These shares can then be used to reconstruct elements of
Fp (or remain as bits if desired).

The only use of doubly-shared masks is at the two boundaries (input and output) between
a garbled circuit and secret-sharing; all secrets used in evaluating arithmetic circuits (i.e.
using standard SS-based MPC) are authenticated shares in Fp only; all wire masks “inside”
the circuit (that is, for all wires that are not input or output wires) are authenticated shares
of bits in F2k only. The online communication cost of our solution is that of each party
broadcasting a single field element and then broadcasting log |F| key shares per input, for a
circuit of any depth. Thus the cost is O(κ log |F|) per party, per field input to the circuit. The
offline cost grows quadratically in n as generating daBits requires every party to communicate
with every other party.

We emphasise that while we focus on allowing conversion between SS and GCs, the
conversion is generic in the sense that it is merely a method of converting data embedded
into one field into data embedded in another field, with authentication attached. For example,
once the bits of x− r are public and the bit decomposition of r is known in F2k , parties can
execute an SS-based MPC protocol on these bits directly, without going through garbled
circuits. Thus our work is also compatible with converting classic SPDZ shares in Fp with
the recent protocol SPDZ2k of Cramer et al. [CDE+18].

We remark that several of the multiparty arithmetic garbling techniques of [Ben18] require
the use of “multifield shared bits”, which precisely correspond to our daBits (albeit in an
unauthenticated honest-majority setting), and consequently we suggest that our idea of
generating daBits may lead to more efficient actively-secure multiparty garbling of arithmetic
circuits.

Related work. Recent work [KSS13, KSS10] deals with conversion between homomor-
phic encryption (HE) and GC for two parties. In their two-party case, the conversion works
by having P1 encrypt a blinded version of its input x − r using the public key of P2. Since
the second party can decrypt the ciphertext, the share of x held by P2 is x− r and the share
of P1 is r. They also provide some techniques to convert an additive sharing in a ring to a
GC sharing in the malicious case (P2 only). Unfortunately their solution is insecure in the
case of a malicious P1 without adding some extra zero knowledge proofs. Moreover, it is
unclear how to extend their work to convert from an n-party authenticated LSSS sharing of
x to an n-party sharing inside a GC with a dishonest majority.

4

Active security beyond bounded inputs While essentially all of the basic actively-secure MPC
protocols enable the evaluation of additions and multiplications, for more complicated non-
linear functions the only solutions that exist are those that require additional assumptions
on the input data. For example, comparison requires bit decomposition, which itself requires
that all secrets be bounded by some constant. Since the bits of each input are directly inserted
into the circuit, we can avoid this additional assumption. We refer the reader to [DFK+06]
or the documentation for the SCALE/MAMBA project [AKO+18, §10 Advanced Protocols]
for an overview of implementations of other functions in MPC.

2 Preliminaries

In this section we explain the basics of MPC as required to understand the sequel. In our
protocol, one instance of MPC is used to perform the secret-sharing-based MPC over a
prime field, and another instance is used to perform another form of MPC – typically, circuit
garbling – over a large field of characteristic 2.

2.1 General

We denote the number of parties by n, and the set of indices of parties corrupted by the
adversary by A. We write [j] to denote the set {1, . . . , j}. We write F to denote a field,
and Fq to denote the finite field of order q. The arithmetic circuit will be computed in the
field Fp where p is a large prime, and the keys and masks for the garbled circuit in F2k . By
log(·) we always mean the base-2 logarithm, log2(·). We denote by sec and κ the statistical
and computational security parameters, respectively. We say that a function ν : N → R is
negligible if for every polynomial f ∈ Z[X] there exists N ∈ N such that |ν(X)| < |1/f(X)|
for all X > N . If an event X happens with probability 1 − ν(sec) where ν is a negligible

function then we say that X happens with overwhelming probability in sec. We write x
$← S

to mean that x is sampled uniformly from the set S, and use x ← y to mean that x is
assigned the value y. We will sometimes denote by, for example, (a − b)j the jth bit in the
binary expansion of the integer a− b.

2.2 Security

UC Framework We prove our protocols secure in the universal composability (UC) framework
of Canetti [Can01]. Protocols proved secure in this model are secure even when executed
alongside arbitrarily many other protocols, concurrently, sequentially or both. We assume
the reader’s familiarity with this framework. In Figure 1 we give a functionality FRand for
obtaining unbiased random data that we need for our protocol. A protocol realising FRand,
and other UC functionalities, are given in Appendix B .

5

Functionality FRand

Random subset On input (RSubset, X, t) where X is a set satisfying |X| ≥ t, sample

S
$← {A ⊆ X : |A| = t} and send S to all parties.

Random buckets On input (RBucket, X, t) where X is a set and t ∈ N such that
|X|/t ∈ N, set n← |X|/t and then for each i = 1, . . . , n do the following:

1. Sample Xi
$← {A ⊆ X : |A| = t}.

2. Set X ← X \Xi.
Finally, send (Xi)

n
i=1 to all parties.

Fig. 1. Functionality FRand

We assume an active, static adversary corrupting at most n− 1 out of n parties. Adver-
saries corrupting at most all parties but one are called “full-threshold”. An active adversary
may deviate arbitrarily from the protocol description, and a static adversary is permitted to
choose which parties to corrupt only at the beginning of the protocol, and cannot corrupt
more parties later on. Our protocol allows corrupt parties to cause the protocol to abort
before honest parties receive output, but if the adversary cheats then the honest parties will
not accept an incorrect output. This is known as “security-with-abort” in the literature.
While this work focuses on the full-threshold setting, since FMPC is used as a black box, the
access structure of our protocol is solely dependent on the access structure admitted by the
instantiation(s) of FMPC - for a complete definition of FMPC which is sometimes denoted as
FABB or FAMPC in the literature check [BDOZ11,SW19].

Communication We assume point-to-point secure channels, and synchronous communica-
tion. Additionally, we assume a broadcast channel, which can be instantiated in the random
oracle model over point-to-point secure channels, for example as described in [DPSZ12, App.
A.3]. A round of communication is a period of time in which parties perform computation
and then send and receive messages. Messages sent in a round cannot depend on messages
received during the current round, but messages may depend on messages sent in previous
rounds. So-called constant-round protocols require O(1) rounds for the entire protocol.

2.3 Garbled Circuits

Essentially all modern dishonest-majority multiparty Boolean circuit garbling protocols, for
example [HSS17,WRK17,HOSS18], use some form of secret-sharing based MPC to generate
a multiparty garbled circuit, thus following the basic idea of SPDZ-BMR [LPSY15] of using
MPC to ensure correctness of the garbling in the classic multiparty garbling protocol by
Beaver et al. [BMR90]. The specific garbling protocol is not important for this work: our
solution makes use of the garbling subprotocols in a black-box way. For this reason, the
explanation of MPC, with authentication for active security, is given below; the explanation
of the garbling subprotocols is left to Appendix A. The important parts of the garbling eval-
uation are providing inputs from Fp into a generic multiparty garbled circuit, and extracting
Fp outputs from it, which is dealt with in Section 4.2.

6

2.4 MPC

Our protocol makes use of MPC as a black box, for which the generic functionality is outlined
in Figure 3 as part of the functionality FPrep. The functionality FMPC over a field F is realised
using protocols with statistical security sec if |F| = Ω(2sec) and computational security κ
depending on the computational primitives being used. We will describe MPC as executed in
the SPDZ family of protocols [DPSZ12,DKL+13,KOS16,KPR18,CDE+18]. These protocols
are in the preprocessing model in which circuit evaluation is split into a preprocessing (or
offline) phase in which input-independent data is generated, that is then “used up” in an
online phase which uses the actual circuit inputs. The reason for doing this is that the
preprocessed data is expensive to generate, but the online evaluation is cheap as a result.

Note that MPC as used in garbling often offers “less” than full circuit evaluation as
described here: for example, [HSS17] defined a protocol ΠBit×String that allows bits to be
multiplied by bitstrings but is not concerned with multiplication of general field elements
in F2k . However, what follows is enough to understand the main techniques required for
SS-based multiparty garbling.

Secret-sharing A secret x ∈ F is said to be additively shared, denoted by [[x]], if a dealer

samples a set {xi}n−1
i=1

$← F, fixes xn ← x−
∑n−1

i=1 x
i, and for all i ∈ [n] sends xi to party Pi.

Any set of n−1 shares is indistinguishable from a set of n−1 uniformly-sampled shares, and
the sum of all n shares is the secret x. This secret-sharing is linear: the sum of corresponding
shares of two secrets is a sharing of the sum of the two secrets, so no communication is
required for linear functions. A secret x shared in this way is denoted by [[x]] = (xi)ni=1.

MPC protocols based on secret-sharing involve secret-sharing all the secret inputs, per-
forming computations on the shares, and recombining at the end to obtain the final result.

Addition of secrets Addition of secrets is denoted as follows:

[[a]] + [[b]]← [[a+ b]] = (ai + bi)ni=1

Thus any linear function on secret-shared data can be evaluated without communication.

Multiplication of secrets Using a technique due to Beaver [Bea92], multiplication of secrets
in the online phase can be computed as a linear operation if the parties have access to
so-called Beaver triples – triples of secret-shared values ([[a]], [[b]], [[a · b]]), where a and b are
uniformly random and unknown to the parties. To multiply [[x]] and [[y]], the parties compute
[[x− a]]← [[x]]− [[a]] and [[y − b]]← [[y]]− [[b]] locally and open them (i.e. they broadcast their
shares of [[x− a]] and [[y − b]] so all parties learn x − a and y − b), and then compute the
product as

[[x · y]]← [[a · b]] + (x− a) · [[b]] + (y − b) · [[a]] + (x− a) · (y − b).

Since a and b are unknown to any party, x − a and y − b reveal nothing about x and y.
We refer to protocols that generate Beaver triples as SPDZ-like. The main cost of SPDZ-
like protocols comes from generating these Beaver triples. The two main ways of doing this

7

are either using somewhat homomorphic encryption (SHE) [DPSZ12, DKL+13, KPR18] or
oblivious transfer (OT) [KOS16,CDE+18].

Authentication Since both addition and multiplication involve only linear operations, com-
putations on shares in the online phase only need to be protected against additive errors
– that is, a corrupt party Pi changing its share from xi to xi + ε. To protect against such
errors, linear information-theoretic MACs are used. Since these MACs are linear, parties can
maintain MACs on every secret throughout the whole circuit evaluation; then they can run
an amortised check of their correctness once at the end of the protocol execution. Though
we are not concerned with the specifics of authentication as used in SS-based GC or general
MPC in this work, it is helpful to understand how secrets can be authenticated in different
ways, and so a brief description of two prevalent forms follows.

SPDZ-style MACs. A secret a ∈ F is shared amongst the parties by additively sharing
the secret a in F along with a linear MAC γ(a) defined as γ(a) ← α · a, where α ∈ F is a
global MAC key, which is also additively shared. By “global” we mean that every MAC in the
protocol uses this MAC key, rather than each party holding their own key and authenticating
every share held by every other party. Note that the parties can trivially obtain a MAC on
a public value a by computing [[γ(a)]]← (αi · a)ni=1.

Now if p is O(2sec) then to introduce an error ε on the sharing requires modifying the
corresponding MAC by ε · α – i.e. the adversary must guess the MAC key. We refer the
reader to [DKL+13] for details on the MAC checking procedure.

BDOZ-style MACs. A different type of MAC, sometimes called pairwise, used by Bendlin
et al. [BDOZ11]. A bit c ∈ F2 is shared as c =

⊕n
i=1 c

i where for each share ci ∈ F2 (held by
Pi), for each j 6= i, parties Pi and Pj hold a MAC as follows: Pi holds M i

j [c] ∈ F2k and Pj
holds Kj

i [c] ∈ F2k such that Kj
i [c] ⊕M i

j [c] = ∆j · ci, where ∆j is the MAC key held by Pj
and ci a random bit held by Pi. This MAC scheme is used in the garbling protocols due to
Hazay et al. and Wang et al. [HSS17,WRK17].

Sharing Notation Below we give the precise meaning of the notation [[a]]p and [[c]]2k . One
can think of using SPDZ-style MACs for Fp and BDOZ-style MACs for F2k , as described
below, but the protocols for conversion are oblivious to the precise method of authentication
so these choices are essentially arbitrary. The third type of sharing is the notation that will
be used for our special preprocessing called daBits.

LSSS Sharing [[a]]p = (ai, γp(a)i, αi)ni=1

GC Sharing [[c]]2k = (ci, (Kj
i [c])j 6=i, (M

i
j [c])j 6=i, ∆

i)ni=1.

Sharing in both [[b]]p,2k = ([[b]]p, [[b]]2k) where b ∈ {0, 1}.

8

The sharing [[b]]p,2k is considered correct if the bit is the same in both fields (either 0 or
1). Creating these bits while guaranteeing active security is one of the contributions of this
work.

Conditions on the secret-sharing field Let l = blog pc. Throughout, we assume the MPC is
over Fp where p is some large prime, but we require that one must be able to generate uni-
formly random field elements by sampling bits uniformly at random {[[rj]]p}l−1

j=0 and summing

them to get [[r]]p ←
∑l−1

j=0 2j · [[rj]]p. For this to hold in Fp, we require that p−2l

p
= O(2−sec).

Roughly speaking this says that p is slightly larger than a power of 2. (By symmetry of this
argument we can require that p be close to a power of 2.) It follows from Lemma 2.1 that
the statistical distance between the uniform distribution over Fp and the same over {0, 1}l
is negligible.

Lemma 2.1. Let l = blog pc, let P be the probability mass function for the uniform distribu-
tion P over [0, p)∩Z and let Q be the probability mass function for the uniform distribution Q
over [0, 2l)∩Z. Then the statistical distance between distributions is negligible in the security

parameter if p−2l

p
= O(2−sec).

Proof. By definition of statistical distance,

∆(P ,Q) =
1

2
·
p−1∑
x=0

|P (x)−Q(x)| = 1

2
·

2l−1∑
x=0

∣∣∣∣1p − 1

2l

∣∣∣∣+
1

2
·
p−1∑
x=2l

∣∣∣∣1p − 0

∣∣∣∣
=

1

2
· 2l · p− 2l

p · 2l
+

1

2
· p− 2l) · 1

p
=
p− 2l

p
= O(2−sec).

Notation The functionalities sometimes refer to identifiers for variables such as id, where
the value inside is Val[id]. We will use [[x]] to denote the variable identifier id for the value x,
so Val[[[x]]] = x, and saying that the parties have [[x]] does not imply they know the secret
x. This intentional collision of notation for authenticated secrets is to demonstrate that
the realisation of the dictionary Val occurs via the secret sharing with MACs. To save on
overloaded notation, we will occasionally write [[z]]← [[x]]+ [[y]] to mean that parties send the
command (Add, [[x]], [[y]], [[z]]) to some functionality, and similarly for multiplication. Where
not explicitly specified, new identifiers are taken from a counter which the parties initialise
to 0 at the start of the protocol.

Note on XOR In our context, we will require heavy use of the (generalised) XOR operation.
This can be defined in any field as the function

f : Fp × Fp → Fp
(x, y) 7→ x+ y − 2 · x · y, (1)

which coincides with the usual XOR function for fields of characteristic 2. In SS-based MPC,
addition requires no communication, so computing XOR in F2k is for free; the cost in Fp
(p > 2) is one multiplication, which requires preprocessed data and some communication.
This operation turns out to be the main cost associated with our offline phase (see Table 2).

9

SPDZ[Z2k]SPDZ[Fk2]

SPDZ[Fp]

[HSS17, WRK17],
TinyOT family

BMR[Fk
2]

[K
Y

1
8
]

[HSS17]

[D
E

F
+

1
9
]

Fig. 2. Share conversions for dishonest majority protocols. Dashed lines use our daBits as an inner subroutine.

3 Generality of daBits

In Diagram 2 we show how our daBit generation bridges different MPC protocols for dis-
honest majority. Our inspiration is drawn from Keller and Yanai [KY18] which can convert
between SPDZ-BMR and SPDZ over Fk2 by setting the global difference used in the free-XOR
as the global MAC-key in SPDZ[Fk2]. Their main idea is to sample a secret random bit au-
thenticated in Fk2 and use that random bit to do a share conversion. This lends nicely because
the authentication key has the same representation in both engines whereas we need more
involved techniques (eg: use cut and choose) to generate such a preprocessed authenticated
random bit between SPDZ[Fp] and SPDZ-BMR (or BMR[Fk

2]).

A note on rings and fields. Our protocol uses actively-secure MPC as black box, so there is
no reason the MPC cannot take place over any ring Z/mZ where m is possibly composite,
as long as m is (close to) a power of 2. The security of our procedure for generating daBits
can tolerate zero-divisors in the ring, so computation may, for example, take place over the
ring Z/2lZ for any l, for which actively-secure FMPC can be realised using [CDE+18].

BMR and TinyOT. This is done by converting the pairwise MAC to a global one and it
is explained in several papers [HSS17,WRK17]. Going from a global MAC to a pairwise one
is slightly more difficult but could be achieved using daBits or a similar consistency check
by Damg̊ard et al. [DEF+19] to go from a bit share in SPDZ[Z2k] to a TinyOT sharing.

TinyOT and SPDZ2k. Recently Damg̊ard et al. [DEF+19] introduced a method of
switching back and forth between SPDZ[Z2k] to TinyOT. They use a lightweight batch-
check to ensure input consistency in both engines. Although they show how to switch a
random bit [[b]]2k ∈ Z2k to [[b]]2 ∈ Fk2 their subroutines can be used to convert a full input
[[x]]2k ∈ Z2k by bit-decomposing it and then translate each bit into the TinyOT family of
protocols.

SPDZ2k and SPDZ. One can use daBits to convert from a SPDZ[Fp] share to a
SPDZ[Z2k] share. The high level idea of converting between a field and a ring is to generate
the same correlated randomness [[r]]p ∈ Fp and [[r]]2k ∈ Z2k by bit-composing the daBits.
Then the conversion from [[x]]p to [[x]]2k becomes trivial: parties open [[x]]p − [[r]]p, assign this
to a public y then perform the reduction modulo p in SPDZ[Z2k] using the public constant

10

y i.e. [[x]]2k ← (y + [[r]]2k) mod p. This procedure can be adapted to allow conversions from
SPDZ[Z2k] to SPDZ[Fp]: parties open [[x]]2k − [[r]]2k in Z2k then add the randomness back
in Fp and truncate the result modulo Z2k . A similar idea can be applied to convert from
SPDZ[Fp] to SPDZ[Fk2] with the exception that in the last step parties now truncate their
shares modulo Fk2.

SPDZ and TinyOT family. This conversion can be done again with daBits and works
in the same way we describe it in our paper for SPDZ[Fp] and BMR[Fk

2]. Recently Aly et
al. [AOR+19] improve and fully integrate the conversion between SPDZ and WRK/HSS
garbling into SCALE-MAMBA. Their protocol improvements come from a slightly modified
check of Damg̊ard et al. [DEF+19] with a twist in how parties extract the least significant
bit of a SPDZ share by tweaking their shares locally in the two-party case. They achieve an
amortized cost of just one Fp triple per daBit.

SPDZ and BMR. This is the focus of our paper: parties generate multiple daBits [[b]]p,2k
to form correlated randomness shared in both fields: [[r]]p,2k ← 2i[[bi]]p,2k . Afterwards they
open their masked SPDZ[Fp] shares with [[r]]p and remove the randomness inside BMR using
[[r]]2k . In the next section we describe how to produce this preprocessed material called daBits
between SPDZ[Fp] and SPDZ-BMR[Fk2] which is BMR and where the secret bit multiplications
for the garbling are done using MASCOT [KOS16,KY18]. We now describe the protocol in
producing these daBits.

4 Protocol

The idea behind creating a mixed protocol is to use one instance of FMPC over Fp to perform
addition and multiplication in the field, and one instance of FMPC over F2k is used to perform
the garbling, and to allow conversion between the two. Thus the goal is the functionality
FPrep, which is given in Figures 3 and 4.

Note that since the keys for the PRF live in the field F2k in the garbling protocol, the
instance of FMPC must be over a field with k = O(κ) for computational security. Indeed,
we emphasise that in our protocol k is not directly related to log p. Once the garbling is
completed, the full MPC engine in F2k is no longer required: the parties only maintain the
Fp instance of FMPC and retain the garbled circuits in memory, and will additionally need
to make sure they can still perform the procedure Check in FMPC on values opened in the
evaluation of the GC.

Recall from the introduction that the high-level idea of our protocol is to open a secret-
shared value, locally bit-decompose it, and use these bits as input bits to the garbled circuit.
Once the parties have these, they reveal corresponding secret pseudorandom function keys for
circuit evaluation, and the rest of the protocol (including retrieving outputs in secret-shared
form) is local.

11

Functionality FPrep

Instances of FMPC

Independent copies of FMPC are identified via session identifiers sid; FPrep maintains one
dictionary Valsid for each instance. Entries cannot be changed, for simplicity. If a party
provides an input with an sid which has not been initialised, output reject to all parties
and awaits another message.

Initialise On input (Initialise,F, sid) from all parties, if sid is a new session identifer then
initialise a database of secrets Valsid indexed by a set Valsid.Keys and store the field as
Valsid.Field← F. Set the internal flag Abortsid to false.

Input On input (Input, i, id, x, sid) from Pi and (Input, i, id,⊥, sid) from all other parties,
if id 6∈ Valsid.Keys then insert it and set Valsid[id]← x. Then call the procedure Wait.

Add On input (Add, idx, idy, id, sid), if idx, idy ∈ Valsid.Keys then set Valsid[id] ←
Valsid[idx] + Valsid[idy].

Multiply On input (Multiply, idx, idy, id, sid), if idx, idy ∈ Valsid.Keys then set Valsid[id]←
Valsid[idx] · Valsid[idy]. Then call the procedure Wait.

Random element On input (RElt, id, sid), if id 6∈ Valsid.Keys then set Valsid[id]
$←

Valsid.Field. Then call the procedure Wait.

Random bit On input (RBit, id, sid), if id 6∈ Valsid.Keys then set Valsid[id]
$← {0, 1}. Then

call the procedure Wait.
Open On input (Open, i, id, sid) from all parties, if id ∈ Valsid.Keys,

– if i = 0 then send Valsid[id] to the adversary and run the procedure Wait. If the
message was (OK, sid), await an error ε from the adversary. Send Valsid[id] + ε to
all honest parties and if ε 6= 0, set the internal flag Abortsid to true.

– if i ∈ A, then send Valsid[id] to the adversary and then run Wait.
– if i ∈ [n] \ A, then call the procedure Wait, and if not already halted then await

an error ε from the adversary. Send Valsid[id] + ε to Pi and if ε 6= 0 then set the
internal flag Abortsid to true.

Check On input (Check, sid) from all parties, run the procedure Wait. If not already
halted and the internal flag Abortsid is set to true, then send the message (Abort, sid)
to the adversary and honest parties and ignore all further messages to FMPC with this
sid; otherwise send the message (OK, sid) and continue.

Internal procedure:
Wait Await a message (OK, sid) or (Abort, sid) from the adversary; if the message is

(OK, sid) then continue; otherwise, send the message (Abort, sid) to all honest parties
and ignore all further messages to FMPC with this sid.

(continued...)

Fig. 3. Functionality FPrep

12

Functionality FPrep (continued)

Additional commands

daBits On receiving (daBits, id1, . . . , id`, sid1, sid2), from all parties where idi 6∈ Val.Keys
for all i ∈ [`], await a message OK or Abort from the adversary. If the message

is OK, then sample {bj}j∈[`]
$← {0, 1} and for each j ∈ [`], set Valsid1 [idj] ← bj and

Valsid2 [idj]← bj and insert the set {idi}i∈[`] into Valsid1 .Keys and Valsid2 .Keys; otherwise
send the messages (Abort, sid1) and (Abort, sid2) to all honest parties and the adversary
and ignore all further messages to FMPC with session identifier sid1 or sid2.

Fig. 4. Functionality FPrep (continued)

4.1 Generating daBits using Bucketing

Any technique for generating daBits require some form of checking procedure to ensure
consistency between the two fields. Checking consistency often means checking random linear
combinations of secrets produce the same result in both cases. Unfortunately, in our case such
comparisons are meaningless since the fields have different characteristic and it seems hard
to find a mapping between the two fields which allows to compare random values in Fp with
values in F2k . We can, however, check XORs of bits, which in Fp involves multiplication. (See
Equation 1 in Section 2.) It is therefore necessary to use a protocol that minimises (as far
as possible) the number of multiplications. Consequently, techniques using oblivious transfer
(OT) such as [WRK17] to generated authenticated bits require a lot of XORs for checking
correctness, so are undesirable for generating daBits.

Our chosen solution uses FMPC as a black box. In order to generate the same bit in both
fields, each party samples a bit and calls the Fp and F2k instances of FMPC with this same
input and then the parties compute the n-party XOR. To ensure all parties provided the
same inputs in both fields, cut-and-choose and bucketing procedures are required, though
since the number of bits necessary to generate is a multiple of log p · sec and we can batch-
produce daBits, the parameters are modest (for sec = 40 five XORs in FpMPC per daBit are
enough).

We use similar cut-and-choose and bucketing checks to those described by Frederiksen
et al. [FKOS15, App. F.3], in which “triple-like” secrets can be efficiently checked. The idea
behind these checks is the following. One first opens a random subset of secrets so that with
some probability all unopened bits are correct. This ensures that the adversary cannot cheat
on too many of the daBits. One then puts the secrets into buckets, and then in each bucket
designates one secret as the one to output, uses all other secrets in the bucket to check the
last, and discards all but the designated secret. For a single bucket, the check will only pass
(by construction) if either all secrets are correct or all are incorrect. Thus the adversary is
forced to corrupt whole multiples of the bucket size and hope they are grouped together
in the same bucket. Fortunately, (we will show that) there is no leakage on the bits since
the parameters required for the parts of the protocol described above already preclude it.
The protocol is described in Figures 5 and 6; we prove that this protocol securely realises

13

the functionality FPrep in Figures 3 and 4 in the FMPC-hybrid model. To do this, we require
Proposition 4.1.

Protocol ΠdaBits+MPC

This protocol is in the FMPC-hybrid model.

Initialise
1. Call an instance, FpMPC, of FMPC with input (Initialise,Fp, 0).

2. Call an instance, F2k

MPC, of FMPC with input (Initialise,F2k , 1).
Calls to FMPC Dealt with by FpMPC or F2k

MPC, as appropriate.
daBits To generate ` bits, do the following:

1. Generate daBits
(a) Let m← CB` where C > 1 and B > 1 are chosen so that CB ·

(
B`
B

)
> 2sec.

(b) For each i ∈ [n],

i. Party Pi samples a bit string (bi1, . . . , b
i
m)

$← {0, 1}m.
ii. Call FpMPC where Pi has input (Input, i, idbij , b

i
1, 0)mj=1 and Pj (j 6= i) has

input (Input, i, idbij ,⊥, 0)mi=1.

iii. Call F2k

MPC where Pi has input (Input, i, idbij , b
i
1, 1)mj=1 and Pj (j 6= i) has

input (Input, i, idbij ,⊥, 1)mi=1.

2. Cut and Choose
(a) Call FRand with input (RSubset, [CB`], (C − 1)B`) to obtain a set S.
(b) Call FpMPC with inputs (Open, 0, idbij , 0)j∈S for all i ∈ [n].

(c) Call F2k

MPC with inputs (Open, 0, idbij , 1)j∈S for all i ∈ [n].

(d) If any party sees daBits which are not in {0, 1} or not the same in both fields,
they send the message Abort to all parties and halt.

3. Combine For all j ∈ S, do the following:
(a) Set [[bj]]p ← [[b1

j]]p and then for i from 2 to n compute
i. [[bj]]p ← [[bj]]p + [[bij]]p − 2 · [[bj]]p · [[bij]]p

(b) Compute [[bj]]2k ←
⊕n

i=1[[bij]]2k .

(continued...)

Fig. 5. Protocol ΠdaBits+MPC

14

Protocol ΠdaBits+MPC

4. Consistency Check
(a) Call FRand with input (RBucket, [B`], B) and use the returned sets (Si)

`
i=1 to

put the B` daBits into ` buckets of size B.
(b) For each bucket Si,

i. Relabel the bits in this bucket as b1, . . . , bB.
ii. For j = 2 to B, compute [[cj]]p ← [[b1]]p + [[bj]]p− 2 · [[b1]]p · [[bj]]p and [[cj]]2k ←

[[b1]]2k ⊕ [[bj]]2k .
iii. Call FpMPC with inputs (Open, 0, idcj , 0)Bj=2.

iv. Call F2k

MPC with inputs (Open, 0, idcj , 1)Bj=2.
v. If any party sees daBits which are not in {0, 1} or not the same in both

fields, they send the message Abort to all parties and halt.
vi. Set [[bi]]p,2k ← [[b1]]p,2k .

(c) Call FpMPC with input (Check, 0).

(d) Call F2k

MPC with input (Check, 1).
(e) If the checks pass without aborting, output {[[bi]]p,2k}`i=1 and discard all other

bits.

Fig. 6. Protocol ΠdaBits+MPC (continued)

Proposition 4.1. For a given ` > 0, choose B > 1 and C > 1 so that C−B ·
(
B`
B

)−1
< 2−sec.

Then the probability that one or more of the ` daBits output after Consistency Check by
ΠdaBits+MPC in Figure 6 is different in each field is at most 2−sec.

Proof. Using FpMPC and F2k

MPC as black boxes ensures the adversary can only possibly cheat
in the input stage. We will argue that:
1. If both sets of inputs from corrupt parties to FpMPC and F2k

MPC are bits (rather than other
field elements), then the bits are consistent in the two different fields with overwhelming
probability.

2. The inputs in F2k are bits with overwhelming probability.
3. The inputs in Fp are bits with overwhelming probability.
We will conclude that the daBits are bits in the two fields, and are consistent.

1. Let c be the number of inconsistent daBits generated by a given corrupt party. If
c > B` then every set of size (C − 1)B` contains an incorrect daBit so the honest parties
will always detect this in Cut and Choose and abort. Since (C − 1)B` out of CB` daBits
are opened, on average the probability that a daBit is not opened is 1− (C − 1)/C = C−1,
and so if c < B` then we have:

Pr[None of the c corrupted daBits is opened] = C−c. (2)

At this point, if the protocol has not yet aborted, then there are B` daBits remaining of
which exactly c are corrupt.

Suppose a daBit [[b]]p,2k takes the value b̃ in Fp and b̂ in F2k . If the bucketing check passes

then for every other daBit [[b′]]p,2k in the bucket it holds that b̃⊕ b̃′ = b̂⊕ b̂′, so b̃′ = (b̂⊕ b̂′)⊕ b̃,

15

and so b̃ = b̂⊕1 if and only if b̃′ = b̂′⊕1. (Recall that we are assuming the inputs are certainly
bits at this stage.) In other words, within a single bucket, the check passes if and only if
either all daBits are inconsistent, or if none of them are. Thus the probability Consistency
Check passes without aborting is the probability that all corrupted daBits are placed into
the same buckets. Moreover, this implies that if the number of corrupted daBits, c, is not a
multiple of the bucket size, this stage never passes, so we write c = Bt for some t > 0. Then
we have:

Pr[All corrupted daBits are placed in the same buckets] =(
Bt
B

)
·
(
B(t−1)
B

)
· · ·
(
B
B

)
·
(
B`−Bt
B

)
·
(
B`−Bt−B

B

)
· · ·
(
B
B

)(
B`
B

)
·
(
B`−B
B

)
· · ·
(
B
B

)
=

(Bt)!

B!t
· (B`−Bt)!

B!`−t
· B!`

(B`)!
=

(
B`

Bt

)−1

. (3)

Since the randomness for Cut and Choose and Check Correctness is independent, the
event that both checks pass after the adversary corrupts c daBits is the product of the
probabilities. To upper-bound the adversary’s chance of winning, we compute the probability
by maximising over t: thus we need C and B so that

max
t

{
C−Bt ·

(
B`

Bt

)−1
}
< 2−sec (4)

The maximum occurs when t is small, and t ≥ 1 otherwise no cheating occurred; thus since

the proposition stipulates that C−B ·
(
B`
B

)−1
< 2−sec, the daBits are consistent in both fields,

if they are indeed bits in both fields.

2. Next, we will argue that the check in Cut and Choose ensures that the inputs given
to F2k

MPC are indeed bits. It follows from Equation 2 that the step Cut and Choose aborts
with probability C−c if any element of either field is not a bit, as well as if the element in
the two fields does not match. Moreover, in Consistency Check, in order for the check to
pass in F2k for a given bucket, the secrets’ higher-order bits must be the same for all shares
so that the XOR is always zero when the pairwise XORs are opened. Thus the probability
that this happens is the same as the probability above in Equation 4 since again this can
only happen when the adversary is not detected in Cut and Choose, that he cheats in
some multiple of B daBits, and that these cheating bits are placed in the same buckets in
Consistency Check.

3. We now show that all of the the Fp components are bits. To do this, we will show that
if the Fp component of a daBit is not a bit, then the bucket check passes only if all other
daBits in the bucket are also not bits in Fp.

If the protocol has not aborted, then in every bucket B, for every 2 ≤ j ≤ B, it holds
that

b1 + bj − 2 · b1 · bj = cj (5)

16

where cj ∈ {0, 1} are determined by the XOR in F2k . Note that since cj =
⊕n

i=1 b
1
i ⊕
⊕n

i=1 b
j
i

and at least one bji is generated by an honest party, this value is uniform and unknown to
the adversary when he chooses his inputs at the beginning.

Suppose b1 ∈ Fp \ {0, 1}. If b1 = 2−1 ∈ Fp then by Equation 5 we have b1 = cj; but cj is a
bit, so the “XOR” is not the same in both fields and the protocol will abort. Thus we may
assume b1 6= 2−1 and so we can rewrite the equation above as

bj =
b1 − cj

2 · b1 − 1
. (6)

Now if bj is a bit then it satisfies bj(bj − 1) = 0, and so

0 =

(
b1 − cj

2 · b1 − 1

)
·
(

b1 − cj

2 · b1 − 1
− 1

)
= −(b1 − cj)(b1 − (1− cj))

(2 · b1 − 1)2

so b1 = cj or b1 = 1 − cj; thus b1 ∈ {0, 1}, which is a contradiction. Thus we have shown
that if b1 is not a bit then bj is not a bit for every other bj in this bucket. Moreover, for each
j = 2, . . . , B, there are two distinct values bj ∈ Fp \ {0, 1} solving Equation 6 corresponding
to the two possible values of cj ∈ {0, 1}, which means that if the bucket check passes then
the adversary must also have guessed the bits {cj}Bj=1, which he can do with probability
2−B since they are constructed using at least one honest party’s input. Thus the chance of

cheating without detection in this way is at most 2−Bt · C−Bt ·
(
B`
Bt

)−1
.

Thus we have shown that the probability that b1 ∈ Fp \ {0, 1} is given as output for the
Fp component is at most the probability that the adversary corrupts a multiple of B daBits,
that these daBits are placed in the same buckets, and that the adversary correctly guesses
c bits from honest parties (in the construction of the bits {bj}j∈[B]) so that the appropriate
equations hold in the corrupted buckets. Indeed, needing to guess the bits ahead of time only
reduces the adversary’s chance of winning from the same probability in the F2k case.

We conclude that the daBits are bits in both fields and are the same in both fields except
with probability at most 2−sec. ut

Theorem 4.1. The protocol ΠdaBits+MPC securely realises FPrep in the (FMPC,FRand)-hybrid
model against an active adversary corrupting up to n− 1 out of n parties.

Proof. To prove security in the UC framework we must show that to any environment Z,
for any adversary A there exists a simulator S such that the execution of an idealised
version of the protocol run by a trusted third party F with the simulator is indistinguishable
from a real execution of the protocol Π between the honest parties and the adversary.
The environment specifies the code run by the adversary as well as the inputs of all parties,
honest and dishonest. Additionally, the environment sees all outputs of all parties; it does not
see the intermediate interactions in subroutines of the honest parties’ executions, otherwise
distinguishing would be trivial as honest parties either perform Π or interact with F. In
the (FMPC,FRand)-hybrid model, the adversary is allowed to make oracle queries to these
functionalities and S must generate the responses.

17

Note the functionality does not have access to the random tapes honest parties as this
would make distinguishing between worlds trivial: it would be impossible for the simulator
to emulate honest parties to the real-world adversary indistinguishably since for any random
tape sampled by the simulator, the environment would always be able to execute the protocol
internally, using its knowledge of the random tapes of honest parties to execute the entire
protocol deterministically, and compare it to the output of the simulator.

Following standard practice, and as described in [Can00, §4.2.2], we define a simulator
which interacts with the adversary A as a black box. This allows us to make the claim that
the simulator works regardless of the code run by the adversary and hence prove the claim.

Suppose the adversary corrupts t < n parties in total, indexed by a set A. We define a
sequence of hybrid worlds (Hybrid h)n−th=0 and show that each is indistinguishable from the
previous. Hybrid h is defined as:

Hybrid h The simulator has the actual input of n− t−h honest parties and must simulate
the remaining h honest parties towards the adversary.

The simulator is described in Figure 7.

Simulator ShPrep

The simulator is (vacuously) parameterised by h, which means the simulator knows the
actual inputs of n − t − h honest parties, and must simulate for the remaining h. We
denote the adversary by A.

Initialise On receiving the call to FMPC with inputs (Initialise,Fp, 0) and
(Initialise,F2k , 1), initialise corresponding internal copies.

Calls to FpMPC All calls for producing preprocessing, other than what is described below,
sent from A to FpMPC should be forwarded to FPrep. All response messages from FPrep

are sent directly to A.
Calls to F2k

MPC All calls for producing preprocessing, other than what is described below,
sent from the A to F2k

MPC should be forwarded to FPrep. All response messages from
FPrep are sent directly to A.

For the following procedures, send the calls to the internal copies of FpMPC, F2k

MPC and
FRand as described in the protocol.

[Start] Call FPrep with input (daBits, id1, . . . , id`, 0, 1).
Generate daBits Run Generate daBits from ΠdaBits+MPC with A, sampling inputs

for all honest parties.
Cut and Choose Run Cut and Choose from ΠdaBits+MPC with A.
Combine Run Combine from ΠdaBits+MPC with A.
Check Correctness Run Check Correctness from ΠdaBits+MPC with A.
[Finish] If the protocol aborted, send Abort to FPrep, and otherwise send OK.

Fig. 7. Simulator ShPrep

18

Claim. The FMPC,FRand-hybrid world is indistinguishable from Hybrid 0.

Proof. Correctness of the simulation holds as follows. The simulator emulates FpMPC, F2k

MPC

and FRand, so all calls made to these oracles are dealt with as in an execution of the proto-
col. Indeed, for all calls to FMPC in either field which are outside of the daBits generation
procedure, the commands are forwarded to FPrep and relayed back to A, and since FPrep

has the same interface as FMPC by definition, there is no difference between the worlds. As
for the daBit generation, when the adversary makes calls to provide (random) inputs and
then perform Cut and Choose, the simulator does not forward the messages through to
FPrep since all bits used in the protocol except the final output bits are discarded. Instead
the command (daBits, id1, . . . , id`, 0, 1) is sent to FPrep and the simulator executes the daBit
routines honestly with the adversary, making random choices for honest parties by sampling
in the same way as in the protocol.

Now we argue indistinguishability between executions: we must show that for any algo-
rithm A specified by the environment Z, it holds that

Exec(Z,AFMPC,FRand , ΠdaBits+MPC) ∼ Exec(Z,S0
Prep,FPrep)

where ∼ denotes statistical indistinguishability of distributions, and the randomness of these
distributions is taken over the random tapes of honest parties and the adversary and simu-
lator.

First, note that the oracles FMPC and FRand are executed honestly by S0
Prep so the contri-

bution to the distributions is the same in both executions.
Second, since the inputs of honest parties are sampled during the protocol, they are not

specified or known by the environment. However, if the adversary performs a selective-failure
attack, then the environment may learn information. A selective failure attack is where the
environment can learn some information if the protocol does not detect cheating behaviour.
For example, if the environment guesses an entire bucket of bits and chooses inputs for the
adversary’s input so that the bucket check would pass based on these guesses, then if the
protocol does not abort then the environment learns that its guesses were correct. Then
if the final output bit is not the XOR of all parties’ inputs then the execution must have
happened in Hybrid 0 since in this world the output depends on the random tape of FPrep

and is independent of the adversary’s and honest parties’ random tapes, contrasting the
output in the FMPC,FRand-hybrid world in which the final output is an XOR of bits on these
tapes (which were guessed by the environment). Since this happens with probability 1

2
, in

expected 2 executions, the environment can distinguish. However, by Proposition 4.1, the
environment can only mount a selective failure attack with success with probability at most
2−sec by the choice of parameters.

Thus the only way to distinguish between worlds is if the transcript leaks information
on the honest parties’ inputs. In Check Correctness, XORs are computed in both fields
and the result is opened; however, this reveals no information on the final daBit outputs
as the linear dependence between the secret and the public values is broken by discarding
all secrets in each bucket except the designated (i.e. first) bit. We conclude that the overall
distributions of the two executions are statistically indistinguishable in sec. �

19

Claim. Hybrid h is indistinguishable from Hybrid h+ 1 for h = 0, . . . , n− t− 1.

Proof. There is no difference between these worlds since honest parties’ (random) inputs are
sampled the same way in both cases. �

Since FMPC is secure up to t = n− 1, the result follows. ut

4.2 Garbling and Switching

In this section we give a high-level description of how our approach can be used to provide
input to a garbled circuit from secret-shared data, and convert garbled-circuit outputs into
sharings of secrets in Fp.

In Figure 8 we show pictographically what happens at the barrier between secret-sharing
and garbling, though note we have shown a circuit output that will be reconstructed to
an element of Fp: the circuit output can be any string of bits. As was discussed in the
preliminaries, many recent garbling protocols use specialised secret-sharing MPC protocols.
On this basis, it is straightforward to see that from FPrep the parties can both perform secret-
sharing-based MPC over a large prime finite field and can garble circuits. A concrete example
of this is given in Figures 16, 17, 18 and 19, which modifies the SPDZ-BMR protocol [LPSY15]
to allow for our conversion.

(x− r)0 ⊕ 0

(x− r)1 ⊕ 0

...
(x− r)k−1 ⊕ 0 +

r
m

o
d
p

(y − s)0 ⊕ 0

(y − s)1 ⊕ 0

...
(y − s)k−1 ⊕ 0 +

s
m

o
d
p

C

M
a
sk

co
n
v
er

si
o
n

[[z0]]p

[[z1]]p
...
[[zk−1]]p

Fig. 8. Overview

From SS to GC In brief, the parties input a secret-shared [[x]]p by computing [[x− r]]p
and opening it to reveal x − r where r =

∑blog pc−1
j=0 2j · [[rj]]p is constructed from daBits

{[[rj]]p,2k}
blog pc−1
j=0 , and FMPC is called with input (Check, 0) either at this point or later on,

and then these public values are taken to be input bits to the garbled circuit. To correct
the offset r, the circuit (x − r) + r mod p is computed inside the garbled circuit. This is
possible since the bits of r can be hard-wired into the circuit using the F2k sharings of its
bit-decomposition.

Note that typically for a party to provide input bit b on wire w in a garbled circuit, the
parties reveal the secret-shared wire mask [[λw]]2k to this party, which broadcasts Λw ← b⊕λw,
called the associated signal bit ; then the parties communicate further to reveal keys required
for ciphertext decryptions, which is how the circuit is evaluated. This mask thus hides the
actual input (and is removed inside the garbled circuit). Since the inputs here are the bits

20

of the public value x − r, there is no need mask inputs here, and thus it suffices to set all
the corresponding wire mask bits to be 0.

From GC to SS In standard BMR-style garbling protocols, the outputs of the circuit are a
set of public signal bits. These are equal to the actual Boolean outputs XORed with circuit
output wire masks, which are initially secret-shared, concealing the actual outputs. Typically
in multi-party circuit garbling, the wire masks for output wires are revealed immediately after
the garbling stage so that all parties can learn the final outputs without communication after
locally evaluating the garbled circuit. When garbling circuits using SS-based techniques, and
aiming for computation in which parties can continue to operate on private outputs of a GC,
a simple way of obtaining shared output is for the parties not to reveal the secret-shared wire
masks for output wires after garbling and instead, after evaluating, to compute the XOR of
the secret-shared mask with the public signal bit, in MPC.

In other words, for output wire w they obtain a sharing of the secret output bit b by
computing

[[b]]2k ← Λw ⊕ [[λw]]2k .

In our case, we want the shared output of the circuit to be in Fp, and to do this it suffices
for the masks on circuit output wires to be daBits (instead of random bits shared only in
F2k as would be done normally) and for the parties to compute (locally)

[[b]]p ← Λw + [[λw]]p − 2 · Λw · [[λw]]p.

To avoid interfering with the description of the garbling subprotocol, we can define an ad-
ditional layer to the circuit after the output layer which converts output wires with masks
only in F2k to output wires with masks as daBits, without changing the real values on the
wire. To do this, for every output wire w, let [[λw]]2k be the associated secret-shared wire
mask. Then,

– In the garbling stage take a new daBit [[λw′]]p,2k ,
1. Set [[Λw0]]2k ← [[λw]]2k ⊕ [[λw′]]2k .
2. Call FPrep with input (Open, 0, idΛw0

, 1) to obtain Λw0 .
– In the evaluation stage, upon obtaining Λw,

1. Compute Λw′ ← Λw ⊕ Λw0 .
2. Compute the final (Fp-secret-shared) output as [[b]]p ← Λw′ + [[λw′]]p − 2 · Λw′ · [[λw′]]p.

Observe that Λw0 ≡ λw0 so this procedure is just adding a layer of XOR gates where the
masking bits are daBits and the other input wire is always 0 (so the gate evaluation doesn’t
change the real wire value). Note that since the signal bits for XOR gates are determined
from input signal bits and not the output key, there is no need to generate an output key
for wire w0. For correctness, observe that

(w, [[λw]]2k , Λw, kw,Λw)

(w0, [[λw0]]2k , Λw0 ,⊥)
(w′, [[λw′]]p,2k , Λw′ ,⊥)

Fig. 9. Circuit output wires

21

Λw′ ⊕ λw′ = (Λw ⊕ Λw0)⊕ (λw ⊕ λw0)

= ((b⊕ λw)⊕ (0⊕ λw0))⊕ (λw ⊕ λw0)

= b.

Correctness of the actual garbling was outlined in Section 2. The proof of Theorem C.1
is deferred to the appendices as it is straightforward, following from the security of SPDZ-
BMR [LPSY15] and the fact that the additional input and output procedures perfectly hide
the actual circuit inputs and outputs.

5 Implementation

We have implemented daBit generation and the conversion between arithmetic shares and
garbled circuits. Our code is developed on top of the MP-SPDZ framework [Ana19] and
experiments were run on computers with an identical configuration of i7-7700K CPU and
32GB RAM connected via a 1Gb/s LAN connection with an average round-trip ping time
of 0.3ms. The FpMPC functionality is implemented using LowGear, one of the two variants

of Overdrive [KPR18], a SPDZ-like protocol; the F2k

MPC functionality is implemented using
MASCOT [KOS16] to realise the protocol of [KY18], a variant of SPDZ-BMR multiparty
circuit garbling [LPSY15]. In our experiments, F2k is always taken with k = κ = 128 since
this is the security of PRF keys used in SPDZ-BMR. The daBits are always generated with
κ = 128 and the same statistical security sec as the protocol for FMPC.

Primes. We require that p be close to a power of 2 so that x − r is indistinguishable from
a uniform element of the field, as discussed in Section 2. Since we use LowGear in our
implementation, for a technical reason we also require that p be congruent to 1 mod N
where N = 32768. (This is the amount of packing in the ciphertexts.) Consequently, using
LowGear means we always lose 15 = log 32768 bits of statistical security if p > 65537 since
then the k-bit prime must be of the form 2k−1+t·215+1 for some t where 1 ≤ t ≤ 2k−16−1. We
stress that the loss of 15 bits (out of log p) statistical security can be mitigated by executing
the conversion only after a check of r < p inside the GC. In this way we guarantee that r is a
truly random element modulo p. If we settle for bounded inputs log |x| < log p− sec then the

check can be skipped as x− r is close to uniform with distance 2−sec where r =
∑log |x|+sec

i=0 ri.

Cut and choose optimisation. One key observation that enables reduction of the preprocess-
ing overhead in F2k is that parties only need to input bits (instead of full F2k field elements)
into FMPC during ΠdaBits+MPC. For a party to input a secret x in MASCOT, the parties create
a random authenticated mask r and open it to the party, and the party then broadcasts x+r.
Since the inputs are just bits, it suffices for the random masks also to be bits. Generating au-
thenticated bits using MASCOT is extremely cheap and comes with a small communication
overhead (see Table 2).

More efficient packing for MAC Check. Instead of a set of k secret bits being opened as full
F2k field elements (0, . . . , 0, b1), . . . , (0, . . . , 0, bt) ∈ Fk2 ∼= F2k , we can save on all the redundant

22

0’s being sent by sending a single field element (bk, . . . , b1) ∈ F2k . This optimisation reduces
by a factor 2 the amount of data sent for the online phase of daBit generation.

Complexity analysis. In LowGear (Overdrive) and MASCOT the authors avoided reporting
any benchmarks for random bit masks in F2k or random input masks in Fp since they
focused on the entire triple generation protocol. Fortunately their code is open source and
easy to modify so we micro-benchmarked their protocols in order to get concrete costs for
the procedure Input for FpMPC and F2k

MPC. For example, in the two-party case, to provide a
bit as input bit costs overall 0.384kb with MASCOT in F2k , whereas for LowGear, providing
bits as input costs the same as any arbitrary field element in Fp, requiring 2.048kb. Hence,
with the current state of protocols, inputs are cheap in a binary field whereas triples are
cheap in a prime field.

2 3 4 5

102

103

104

Number of parties

T
o
ta

l
co

m
m

(k
b
)

LowGear Fp Triple

MASCOT F2k Triple

daBit

Fig. 10. Total communication costs for all parties per preprocessed element.

Bucketing parameters. Recall that our goal is to minimise the total amount of communication
and time spent by parties generating each daBit. By examining the input and triple costs
for LowGear and MASCOT (see Table 6 in Appendix E)the optimal communication for
statistical security sec = 64 and p ≈ 2128 was found to occur when generating l = 8192
daBits per loop, a cut-and-choose parameter C = 5 and a bucket size B = 4. Then we ran
the daBit generation along with LowGear and MASCOT for multiple parties on the same
computers configuration to get the total communication cost in order to see how the costs
scale with the number of parties. Results are given in Figure 10. While MASCOT triples are
not used during the daBit production, we believe that comparing the cost of a daBit to the
best triple generation in F2k helps to give a rough idea of how expensive a single daBit is.

To see how efficiency scales when the statistical security parameter sec is increased, we
record the fewest numbers of calls to FMPC, optimising for total (actual) communication cost
in Table 1. Since the numbers are dependent on integers (number of parties, size of buckets,
and cut and choose parameter), several of the numbers in the table give far better security
than the minimum stated. Note that since we optimise for the total communication cost
and not for the smallest Cut and Choose and Bucketing parameters that achieve each
level of security, in the cost for sec = 64 the number of calls to FMPC.Input is larger than

23

sec > 40 sec > 64 sec > 80

daBits 128 1024 8192 128 1024 8192 128 1024 8192

Calls to F{p,2
k}

MPC .Input 40 16 12 42 40 40 36 28 24

Calls to FpMPC.Multiply 7 7 5 13 9 7 17 13 11

Achieved sec 40 47 44 67 64 64 82 84 90

Table 1. Two parties pre-processing costs per daBit while varying the number of daBits per batch and statistical
security. Parameters minimize for total communication given by LowGear and MASCOT.

for sec = 80. The bucket size, correlated with the number of calls to FMPC.Multiply, is
therefore is smaller than for sec = 80.

sec log p k
Comm. (kb)

Total (kb)
Time (ms)

Total(ms)

FpMPC F2k

MPC daBitgen FpMPC F2k

MPC daBitgen

40 128 128 76.60 2.30 6.94 85.84 0.159 0.004 0.004 0.167

64 128 128 146.47 7.68 9.39 163.54 0.303 0.015 0.010 0.328

80 128 128 192.95 4.60 7.32 204.88 0.485 0.009 0.008 0.502

Table 2. 1Gb/s LAN experiments for two-party daBit generation per party. For all cases, the daBit batch has length
8192.

5.1 Switch between SPDZ (Fp) to SPDZ-BMR (F2k)

To reduce the amount of garbling when converting an additive share to a GC one, we assume
the Fp input to the garbled circuit is bounded by p/2sec. In this way then a uniform r in Fp
is 2sec times larger than a so x−r is statistically-indistinguishable from a uniform element of
Fp; consequently, one need only garble x+ r and not x+ r mod p, which makes the circuit
marginally smaller – 379 AND gates for a 128 bit prime rather than ≈ 1000 AND gates for
an addition mod p circuit.

In Table 3 we split the conversion into two phases: the total cost of generating 127 daBits
for doing a full conversion (including the preprocessing triples from LowGear) and the online
phase of SPDZ-BMR.

Comparison to semi-honest conversion. Keeping the same security parameters and com-
puters configuration as [RWT+18,DSZ15], when benchmarked with sec = 40, the online phase
to convert 1000 field elements of size 32 bits takes 193ms. Our solution benefits from merging
multiple conversions at once due to the SIMD nature of operations and that we can perform
a single MAC-Check to compute the signal bits for the GC. Note that our conversion from
an arithmetic SPDZ share to a SPDZ-BMR GC share takes about 14 times more than the
semi-honest arithmetic to an Yao GC conversion in ABY or Chameleon [RWT+18,DSZ15].

24

Conversion
daBit (total) SPDZ-BMR

Comm. (kbits) Time (ms) ANDs Online (ms)

SPDZ 7→ GC 20769 39.751 379 0.106

GC 7→ SPDZ 10303 19.719 0 0.005

Table 3. Two parties 1Gb/s LAN experiments converting a 63 bit field element with 64 statistical security. BMR
online phase times are amortized over 1000 executions in parallel (single-threaded).

5.2 Multiple class Support Vector Machine

A support vector machine (SVM) is a machine learning algorithm that uses training data
to compute a matrix A and a vector b such that for a so-called feature vector x of a new
input, the index of the largest component of the vector A ·x+b is defined to be its class. We
decided to benchmark this circuit using actively-secure circuit marbling as it is clear that
there is an operation best suited to arithmetic circuits (namely, [[A]] · [[x]] + [[b]]) and another
better for a Boolean circuit (namely, argmax, which computes the index of the vector’s largest
component).

We have benchmarked the online phase of a multi-class Linear SVM with 102 classes and
128 features over a simulated WAN network (using the Linux tc command) with a round-
trip ping time of 100ms and 50Mb/s bandwidth with two parties. The SVM structure is the
same used by Makri et al. [MRSV19] to classify the Caltech-101 dataset which contains 102
different categories of images such as aeroplanes, dolphins, helicopters and others [FFFP04].
In this dataset, x ∈ F128

p , A ∈ F102×128
p and b ∈ F102

p , and it requires 102 conversions from
Fp to Fk2 – one for each SVM label. The particular SVM used by Makri et al. has bounded
inputs x where log |x| ≤ 25, a field size log p = 128 and statistical security sec = 64.

We have implemented a special instruction in MP-SPDZ which loads a secret integer
modulo p (a SPDZ share) into the SPDZ-BMR machine. To merge all modulo p instructions
of SPDZ shares into SPDZ-BMR to form an universal Virtual Machine requires some extra
engineering effort: this is why we chose to micro-benchmark in Table 4 the different stages
of the online phase: doing [[y]]p ← [[A]]p · [[x]]p + [[b]]p with SPDZ, then the instruction con-

verting [[y]]p = ([[y1]]p, . . . , [[y102]]p) to ({[[(y1)j]]2k}log p−1
j=0 , . . . , {[[(y102)j]]2k}log p−1

j=0), ending with
the evaluation stage of SPDZ-BMR on

argmax((([[(y1)j]]2k)
log p−1
j=0 , . . . , ([[(y102)j]]2k)

log p−1
j=0)).

We name this construction Marbled-SPDZ.
Online cost. The online phase (Table 4) using Marbled-SPDZ is more than 10 times

faster than SPDZ-BMR and about 10 times faster than SPDZ.
Preprocessing cost. The preprocessing effort for the garbling (in AND gates) is reduced

by a factor of almost 400 times using our construction. We chose to express the preprocessing
costs of Table 4 in terms of AND gates, random triples and bits mainly for the reason that
SPDZ-BMR requires much more work for an AND gate than WRK. Based on the concrete

25

preprocessing costs we have in Table 4 we give estimations on the communication where
the preprocessing of the garbling is done via WRK: performing an SVM evaluation using i)
WRK alone would require 6.6GB sent per party (3.8kb per AND gate), ii) SPDZ alone (with
LowGear) would require 54MB per party (15kb per triple/random bit), iii) Marbled-SPDZ
would take 160MB per party.

Nevertheless, the main cost in Marbled SPDZ is the daBit generation (119 MB) which is
more than 70% of the preprocessing effort. If one chooses sec = 40 then we need five triples
per daBit and 65 daBits per conversion which amounts to only 112.3MB for the entire SVM
evaluation (twice the cost of plain SPDZ). A detailed cost can be found in Table 5.

Protocol
Online cost Preprocessing cost

Comm.
rounds

Time (ms) Total (ms) Fp triples Fp bits AND gates

SPDZ 54 2661 2661 19015 9797 -

SPDZ-BMR 0 2786 2786 - - 14088217

Marbled-
SPDZ

SPDZ 1 133

271.73

13056 0 -

Conversion 2 137 63546 0 27030

SPDZ-BMR 0 1.73 - - 8383

Table 4. Two-party linear SVM: single-threaded (non-amortised) online phase costs and preprocessing costs with
sec = 64.

Circuit type Sub-Protocol
Preprocessing protocol (comm.)

Total

LowGear WRK (indep.) WRK (dep.)

SPDZ 54 MB - - 54 MB

GC - 4917 MB 1768 MB 6685 MB{ SPDZ 24.48 MB - -
112.3 MBMarbled daBit convert 71.13 MB 9.43 MB 3.39 MB

GC - 2.92 MB 1.05 MB

Table 5. Two-party linear SVM communication cost for preprocessing in MBytes and statistical security sec = 40.

Acknowledgements

We would like to thank COED at COSIC at KU Leuven, and Emmanuela Orsini, Nigel Smart
and Younes Talibi in particular, as well as Marcel Keller and Peter Scholl, for providing their
enlightening insight and suggestions. Special thanks goes to Marcel Keller who helped with

26

the understanding of SPDZ-BMR code in the MP-SPDZ framework. We would also like to
thank the anonyomous reviewers for their helpful suggestions on how to improve the paper.

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT,
by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare
Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, and by the
FWO under an Odysseus project GOH9718N.

References

[ABF+18] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,
Kazuma Ohara, and Hikaru Tsuchida. Generalizing the spdz compiler for other
protocols. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 880–895. ACM, 2018.

[AKO+18] A Aly, M Keller, E Orsini, D Rotaru, P Scholl, N Smart, and T Wood.
Scale-mamba v1.3 : Documentation, 2018. https://homes.esat.kuleuven.be/

~nsmart/SCALE/.
[Ana19] N1 Analytics. MP-SPDZ, 2019. https://github.com/n1analytics/MP-SPDZ.
[AOR+19] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim

Wood. Zaphod: Efficiently combining lsss and garbled circuits in scale. Cryptol-
ogy ePrint Archive, Report 2019/974, 2019. https://eprint.iacr.org/2019/

974.
[BDK+18] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and

Thomas Schneider. HyCC: Compilation of hybrid protocols for practical secure
computation. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018, pages 847–861. ACM Press, October 2018.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188. Springer, Hei-
delberg, May 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–432.
Springer, Heidelberg, August 1992.

[Ben18] Aner Ben-Efraim. On multiparty garbling of arithmetic circuits. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274
of LNCS, pages 3–33. Springer, Heidelberg, December 2018.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. Cryptology ePrint Archive, Report 2011/277,
2011. http://eprint.iacr.org/2011/277.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM
Press, May 1990.

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://github.com/n1analytics/MP-SPDZ
https://eprint.iacr.org/2019/974
https://eprint.iacr.org/2019/974
http://eprint.iacr.org/2011/277

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages
565–577. ACM Press, October 2016.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.
iacr.org/2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CDE+18] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping
Xing. SPD Z2k : Efficient MPC mod 2k for dishonest majority. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 769–798. Springer, Heidelberg, August 2018.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On
the security of the “free-XOR” technique. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 39–53. Springer, Heidelberg, March 2012.

[DEF+19] Ivan Damg̊ard, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl,
and Nikolaj Volgushev. New primitives for actively-secure mpc over rings with
applications to private machine learninga. 2019.

[DFK+06] Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In Theory of Cryptography Conference,
pages 285–304. Springer, 2006.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. Practical covertly secure mpc for dishonest majority–or: breaking
the spdz limits. In European Symposium on Research in Computer Security, pages
1–18. Springer, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Advances in Cryptology–
CRYPTO 2012, pages 643–662. Springer, 2012.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework
for efficient mixed-protocol secure two-party computation. In NDSS 2015. The
Internet Society, February 2015.

[DZ13] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation of
boolean circuits using preprocessing. In Theory of Cryptography, pages 621–641.
Springer, 2013.

[FFFP04] Li Fei-Fei, R Fergus, and P Perona. Learning Generative Visual Models from Few
Training Examples: An Incremental Bayesian Approach Tested on 101 Object
Categories. In CVPR, pages 178–178. IEEE, 2004.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl.
A unified approach to MPC with preprocessing using OT. In Tetsu Iwata and

28

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067

Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS,
pages 711–735. Springer, Heidelberg, November / December 2015.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. TASTY: tool for automating secure two-party computations.
In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM
CCS 2010, pages 451–462. ACM Press, October 2010.

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.
TinyKeys: A new approach to efficient multi-party computation. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 3–33. Springer, Heidelberg, August 2018.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant
round MPC combining BMR and oblivious transfer. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS,
pages 598–628. Springer, Heidelberg, December 2017.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious
arithmetic secure computation with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages
830–842. ACM, 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ
great again. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 158–189. Springer, Hei-
delberg, April / May 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In International Colloquium on Automata, Languages,
and Programming, pages 486–498. Springer, 2008.

[KSS10] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. From dust
to dawn: Practically efficient two-party secure function evaluation protocols and
their modular design. IACR Cryptology ePrint Archive, 2010:79, 2010.

[KSS13] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. A system-
atic approach to practically efficient general two-party secure function evaluation
protocols and their modular design. Journal of Computer Security, 21(2):283–
315, 2013.

[KSS14] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. Automatic pro-
tocol selection in secure two-party computations. In Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay, editors, ACNS 14, volume 8479 of LNCS, pages
566–584. Springer, Heidelberg, June 2014.

[KY18] Marcel Keller and Avishay Yanai. Efficient maliciously secure multiparty com-
putation for RAM. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 91–124. Springer, Heidel-
berg, April / May 2018.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient
constant round multi-party computation combining BMR and SPDZ. In Rosario

29

Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 319–338. Springer, Heidelberg, August 2015.

[MR18] Payman Mohassel and Peter Rindal. Aby 3: a mixed protocol framework for
machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 35–52. ACM, 2018.

[MRSV19] Eleftheria Makri, Dragos Rotaru, Nigel P Smart, and Frederik Vercauteren. Epic:
efficient private image classification (or: learning from the masters). In Cryptog-
raphers’ Track at the RSA Conference, pages 473–492. Springer, 2019.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-
shank Burra. A new approach to practical active-secure two-party computation.
In Advances in Cryptology–CRYPTO 2012, pages 681–700. Springer, 2012.

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning applications. In Jong Kim,
Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim,
editors, ASIACCS 18, pages 707–721. ACM Press, April 2018.

[SW19] Nigel P Smart and Tim Wood. Error detection in monotone span programs with
application to communication-efficient multi-party computation. In Cryptogra-
phers’ Track at the RSA Conference, pages 210–229. Springer, 2019.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multi-
party computation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 39–56. ACM Press, Octo-
ber / November 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th FOCS, pages 162–167. IEEE Computer Society Press, October
1986.

A Garbling

SPDZ-BMR Garbling Lindell et al. [LPSY15] gave generic multiparty method, known as
SPDZ-BMR, for garbling in a constant number of rounds with malicious security where the
preprocessed material is obtained from SPDZ [DPSZ12]. Their method is (roughly) to execute
the classic [BMR90] multiparty garbling protocol using SPDZ to generate all the necessary
secrets and to compute the ciphertexts. While the circuits are Boolean, the wires masks are
arithmetic shares in Fp of binary values and the wire keys random elements of Fp secret-
shared amongst the parties. Importantly, it was shown that it was not necessary for parties
to provide zero-knowledge proofs that the evaluations of the pseudorandom function (PRF)
used for encryption was done honestly, as the evaluators would abort with overwhelming
probability in κ if parties cheated in this way.

The FreeXOR garbling technique [KS08] is an optimisation of Yao’s original garbling
[Yao86, Oral presentation] that requires no data to be sent between the garbler and evaluator
for an XOR gate, and crucially relies on the fact that the keys are elements of a field of
characteristic 2. Towards the goal of a multiparty garbling protocol with FreeXOR, one

30

might hope to perform SPDZ-BMR over F2k . One of the reasons this was not considered for
SDPZ-BMR was (presumably) that the SPDZ offline phase was much faster for large prime
fields than extension fields. Indeed, the most efficient variant of SPDZ used BGV [BGV11]
as the SHE scheme, which meant that while the offline phase could parallelise through
ciphertext packing, for large extension fields – and in particular for finite extensions of F2 –
the amount of available packing was limited. However, shortly after this Keller et al. [KOS16]
showed how to use oblivious transfer (OT) to perform the offline phase even more efficiently.
This solution was shown to be more efficent than using SHE for extension fields. Despite
recent work [KPR18] showing that SHE solutions outperform OT solutions for large prime
fields, [KOS16] remains faster over extension fields. Subsequently, Keller and Yanai [KY18]
showed how to apply FreeXOR in the multiparty setting using SPDZ-BMR-style garbling
where the SPDZ shares are in F2k instead of Fp.

Meanwhile, Hazay et al. [HSS17] also showed how to obtain FreeXOR in the multiparty
setting, again over F2k , but take a different approach from SPDZ-BMR: they do not make use
of a a full-blown MPC functionality and instead produce an unauthenticated garbled circuit
– it is merely additively shared, whereas in SPDZ-BMR and [KY18], the garbled circuit is
authenticated with MACs. Active security comes from the fact that an incorrectly-garbled
circuit will only cause the parties to abort when evaluating it. This approach requires only
a single (authenticated) F2 multiplication per AND gate.

We use the multiparty Boolean circuit garbling protocol [KY18] for our implementation.
The [KY18] protocol is less efficient than [HSS17] and [WRK17], but the implementation
[Ana19] is easier to integrate with the SPDZ compiler to be able to switch between different
online phases of an MPC program [ABF+18]. Despite this we have good reason to believe
that the generation of the specialised preprocessing required in our solution dovetails with
most if not all of these alternative these garbling schemes as the only requirements are the
following:

– Parties should be able to authenticate their own secret inputs (in fact, secret bits suffices),
for whatever authentication method is used in the protocol.

– Parties should be able to compute the XOR of authenticated bits.

Unfortunately, the authentication is usually abstracted away garbling functionalities so we
cannot make straightforward claims about using garbling in a black-box way.

Encryption Before we describe the garbling, we first briefly describe the encryption scheme
used in the protocol. The formalism of the security of using FreeXOR in the multiparty
context was not given in [KY18] so we provide an overview here based on [HSS17]. In the
garbling protocol, messages are encrypted by computing the XOR of the message with a
pseudorandom one-time-pad generated by a PRF under keys held by multiple parties. The
SPDZ-BMR technique of encryption requires a PRF which is a pseudorandom function under
multiple keys [LPSY15, Defn 1] (see Definition D.1 in Appendix D). In order to use the
FreeXOR technique, a stronger assumption is needed: circular 2-correlation robust. Detailed
analysis of a similar assumption for hash functions was given by [CKKZ12], and Hazay et
al. [HSS17] gave a variant for PRFs, of which we now give an outline.

31

To make the definition, we define the following oracles. Sample R
$← {0, 1}κ and let |C|

denote the number of gates in the circuit. For a PRF F : {0, 1}κ×{0, 1}κ×{0, 1}log |C|+logn →
{0, 1}κ, define two oracles which take inputs from the set {0, 1}κ×{0, 1}κ×[|C|]×[n]×{0, 1}3:
– Oracle CircR: on input (k1, k2, g, j, b1, b2, b3), return Fk1⊕b1·R,k2⊕b2·R(g||j))⊕ b3 ·R.
– Oracle RO: on input (k1, k2, g, j, b1, b2, b3), if the message has been queried before, output

whatever was given last time; otherwise, sample a random string k3
$← {0, 1}κ and output

k3.

Definition A.1 (See [HSS17, Defn 2.3]). A PRF F is called circular 2-correlation robust
if for any non-uniform polynomial-time distinguisher D making legal queries (see below) to
its oracle, there exists a negligible function ν such that∣∣∣Pr[R

$← {0, 1}κ;DCircR(·)(1κ) = 1]− Pr[DRO(·)(1κ) = 1]
∣∣∣ ≤ ν(κ).

“Legal queries” are defined as any query except the following:
– (k1, k2, g, j, 0, 0, b3) (otherwise the distinguisher can distinguish trivially as it learns Fk1,k2(g||j)

and it can compute this on its own).
– The query (k1, k2, g, j, b1, b2, 1 − b3) if the query (k1, k2, g, j, b1, b2, b3) has already been

made (otherwise the global difference is leaked).
The encryption of a message m ∈ {0, 1}κ under keys ku ← k1

u|| · · · ||knu and kv ← k1
v|| · · · ||knv

and nonce r, where Pi holds they keys kiu, k
i
v ∈ {0, 1}κ, is defined as

Encku,kv(m; r)←

(
n⊕
j=1

Fkju,k
j
v
(r)

)
⊕m.

For clarity, we will write the formula explicitly in the circuit garbling rather than abstract
to the encryption notation.

Garbling Protocol The high-level view is as follows. Let g : {0, 1}2 → {0, 1} denote the
gate g. In circuit garbling, first the garbler samples a a “zero key” and a “one key” for every
wire in the circuit. A wire connection exiting one gate and entering another is considered
one wire, as are all circuit input and output wires. Then, each Boolean fan-in-two gate with
input wires u, v and output wire w is converted to a set of 4 ciphertexts in the following
way: for each (α, β) ∈ {0, 1}2 the garbler encrypts the key kw,g(α,β) under the pair of input
keys ku,α and kv,β. The garbler converts all gates to quadruples of ciphertexts. Note that
this can be done in parallel for all gates. To evaluate the circuit, the evaluator is given the
circuit input wire keys corresponding to his inputs (obliviously), and using these can decrypt
one ciphertext in each quadruple (gate) to obtain the final output. Other measures, as we
describe below, are required to hide information about intermediate wire values as the circuit
is being garbled, but this is the basic outline.

In BMR garbling, every party acts as both garbler and evaluator. Each party generates a
circuit for which it knows all the wire keys, but where each ciphertext is encrypted under all
parties’ corresponding wire keys. This means that every party must evaluate all n circuits

32

in parallel to decrypt each subsequent gate and so learn all n succeeding keys. The idea of
SPDZ-BMR garbling is to use MPC to compute the ciphertexts. The full protocol, modified
for our purposes and incorporating FreeXOR, is provided in Figures 16, 17, 18 and 19, but
we give an overview of correctness here. The functionality FMPC is part of FPrep in Figure 3.
The parties first call FMPC with input (Initialise,F2k , 1) where 1 is a session identifier.

Global difference Once at the beginning of the protocol, for each i ∈ [n] the parties call
FMPC with input (RElt, [[Ri]]2k , 1) and then (Open, i, [[Ri]]2k , 1) so that Pi obtains a random
Ri ∈ F2k , called its “global difference”. These are used later for defining keys in a special
way.

Wire Masks For each wire in the circuit, the parties call FMPC with input (RBit, [[λw]]2k , 1).
These are known as the masking or permutation bits and are used to permute the four
ciphertexts in each gate, which is necessary to hide intermediate wire values (which leak
information on the circuit inputs). Instead of evaluating g(α, β) on the actual inputs ρ and
σ, evaluators hold “signal bits” Λu ← ρ⊕λu and Λv ← σ⊕λv and compute Λw ← g̃(Λu, Λv)
where g̃ is defined as (α, β) 7→ g(α ⊕ λu, β ⊕ λv)⊕ λw where λw is the mask for the output
wire4.

Garbling
– For an AND gate g with input wires u and v and output wire w, for each i ∈ [n] the

parties call FMPC with input (RElt, [[kiu,0]]2k , 1) to obtain a random field element and open
it to party Pi. The one key kiu,1 is set to be kiu,0 ⊕ Ri by Pi and the parties compute
[[kiu,1]]2k ← [[kiu,0]]2k ⊕ [[Ri]]2k . The parties do the same for v and w. It is possible to garble
with random one keys as described in the overview above, but this global difference
allows more efficient garbling and evaluation as outlined below with no loss to security.
Then each party evaluates the PRF on the four combinations of their own input keys
{(kiu,α, k

i
v,β) : α, β ∈ {0, 1}} and calls FMPC with input(

Input, i, [[F g,i,j
α,β]]2k , Fkiu,α,k

i
v,β

(g||j), 1
)

which form 4n authenticated (pseudorandom one-time-pad) encryption keys, indexed by
α, β ∈ {0, 1} and j ∈ [n]. In MPC, the parties then compute, for all (α, β) ∈ {0, 1}2 and
all j ∈ [n], the ciphertext

[[g̃jα,β]]2k ←

(
n⊕
i=1

[[
F g,i,j
α,β

]]
2k

)
⊕ [[kjw,0]]2k ⊕ [[Rj]]2k · (([[λu]]2k ⊕ α) · ([[λv]]2k ⊕ β)⊕ [[λw]]2k) .

In other words, for each j ∈ [n] the parties compute an encryption in MPC of wire key
kjw,0 ⊕ Rj · ((λu ⊕ α) · (λv ⊕ β)⊕ λw) under all four possible pairs of input keys of every
other party. Note that the jth set of four ciphertexts are permuted by the same masks
for every j.

4 This is equivalent to randomly permuting the four ciphertexts (indexed by {1, 2, 3, 4}) by the (secret) permutation
((13)(24))λu((12)(34))λv .

33

– For an XOR gate, the parties set kjw,0 ← kju,0 ⊕ kjv,0 for all j and the output mask as
λw ← λu ⊕ λv.

After all the garbling is performed, all the ciphertexts (currently held in the MPC engine)
are opened.

Input For a party Pi to provide an input x ∈ {0, 1} on wire w, the parties open [[λw]]2k to Pi
and then Pi broadcasts Λw ← x ⊕ λw, known as a signal bit. For all j ∈ [n], Pj broadcasts
kjw,Λw .

Evaluation After the n keys and signal bits, one for each input wire, are obtained, the parties
do the following.

– For an AND gate, for every j ∈ [n], each party computes the n succeeding wire keys as

kjw,· ← g̃jΛu,Λv ⊕
n⊕
i=1

Fkiu,Λu ,k
i
v,Λv

(g||j)

= kjw,0 ⊕Rj · ((λu ⊕ Λu) · (λv ⊕ Λv)⊕ λw)

Then each Pi compares kiw,· to the two keys kiw,0 and kiw,1 that it owns in order to determine
the signal bit Λw. By the security of the PRF (as argued in SPDZ-BMR), the ciphertexts
corresponding to the other keys cannot be decrypted. Observe that since Λu = x ⊕ λu
and Λv = y ⊕ λv where x and y are the actual inputs, the resulting keys (for j ∈ [n] are
kjw,0 ⊕Rj · (x · y ⊕ λw), which are exactly kjw,Λw where Λw = x · y ⊕ λw.

– For an XOR gate, every party computes the n output signal bit as Λw ← Λu ⊕ Λv and
sets the keys as kjw,Λw ← ku,Λu ⊕ kv,Λv . Observe that

Λw ← Λu ⊕ Λv = (x⊕ λu)⊕ (y ⊕ λv) = (x⊕ y)⊕ (λu ⊕ λv) = (x⊕ y)⊕ λw

by the way the masks are constructed; similarly,

kjw,Λw ← kju,Λu ⊕ kjv,Λv = (kju,0⊕Rj ·Λu)⊕ (kjv,0⊕Rj ·Λv) = kjw,0⊕Rj · (Λu⊕Λv) = kjw,Λw .

Output In the usual BMR protocol, immediately after garbling, the parties open the masks
for output wires. This enables all parties to view the output bits. We will assume the parties
simply hold the final output in secret-shared form, which they can do simply by not opening
the output masks, and by computing (locally) the XOR of the public signal bit with the
output mask. I.e. an output bit is shared as

[[b]]2k ← [[λw]]2k ⊕ Λw.

In Section 4.2 we describe the modifications necessary to this standard garbling technique
to provide inputs from get outputs to Fp.

34

B Various Functionalities and Protocols

In Figures 11, 12, 13 and 14 we give some of the standard functionalities and protocols
securely realising them in the UC framework. We omit the proofs as they are standard.

Protocol ΠRand

This protocol is in the FCommit-hybrid model. Let RShuffle(seed, s) denote any determin-
istic algorithm that takes a random seed seed and a vector s and outputs a permutation
of components of s. Recall κ is the computational security parameter.

Initialise Parties agree on a session identifier sid and call FCommit with input
(Initialise, {0, 1}κ, sid).

Seed This is a subroutine. Parties do the following:

1. For each i ∈ [n], Pi samples seedi
$← {0, 1}κ.

2. For each i ∈ [n], Pi sends the message (Commit, i, seedi, sid) to FCommit and all
other parties send (Commit, i,⊥, sid); all parties receive idseedi in response.

3. All parties call (Open, i, idseedi , sid) to obtain {seedi}i∈[n].
4. Pi sets seed←

⊕n
i=1 seedi.

Random subset To compute a random subset of size t of a set X, parties run Seed to
obtain a seed seed for a PRG and then do the following:
1. Let X = {xi}|X|i=1. Parties set the vector s = (s1, . . . , s|X|) ← (1, . . . , 1, 0, . . . , 0) ∈
{0, 1}|X|, where the first t bits are set to 1 and the remaining bits set to 0.

2. Each Pi locally computes s′ = (s′1, . . . , s
′
|X|) ← RShuffle(seed, s) and outputs the

set S ← {xi : s′i = 1}.
Random buckets To put a set of items indexed by a set X into buckets of size t where

t divides |X|, parties run Seed to obtain a seed seed for a PRG and then do the
following:
1. Let X = {xi}|X|i=1. Each Pi locally computes s′ ← RShuffle(seed, s) where s← (i)

|S|
i=1.

2. For each i = 1 to |S|/t, let Si ← {xs′j : (i− 1) · t < j ≤ i · t}.

Fig. 11. Protocol ΠRand

35

Functionality FCommit

The functionality keeps track of the current session using a session identifier sid. If a
party provides an input with sid different from what was sent in Initialise, the func-
tionality outputs Reject to all parties and awaits another message. Recall that κ is the
computational security parameter.

Initialise On input (Initialise, X, sid) from all parties where X is a set, initialise a dic-
tionary of values Val with identifiers Val.Keys.

Commit On input (Commit, i, x, sid) from Pi, or the adversary if Pi is corrupt, and

(Commit, i,⊥, sid) from all other parties, where x ∈ X, choose new identifier idx
$←

{0, 1}κ, add idx to Val.Keys, set Val[idx]← x, and send idx to all parties.
Open On input (Open, i, idx, sid) from all parties where idx ∈ Val.Keys, if Pi is corrupt

then await a message OK or Reject from the adversary. If the message is OK or Pi is
honest then send Val[idx] to all parties and otherwise halt.

Fig. 12. Functionality FCommit

Protocol ΠCommit

This protocol is in the FRO-hybrid model (ROM). Recall that κ is the computational
security parameter. We write a||b to mean a concatenated with b.

Initialise The parties agree on a session identifier sid and call FRO with input
(Initialise, {0, 1}κ, sid).

Commit For Pi to commit to x, the parties do the following:

1. Pi samples r
$← {0, 1}κ

2. Pi calls FRO with input (Query, x||r, sid), receives hx in response and broadcasts it.
3. All other parties store hx locally.

Open For Pi to open the commitment to x, the parties do the following:
1. Pi broadcasts x and r.
2. Pj calls FRO with input (Query, x||r, sid) and checks that the response is equal to
hx received during commitment.

Fig. 13. Protocol ΠCommit

36

Functionality FRO

The functionality keeps track of the current session using a session identifier sid. If a party
provides an input with sid different from what was sent in Initialise, the functionality
outputs Reject to all parties and awaits another message.

Initialise On input (Initialise, X, sid) from all parties, initialise a dictionary of values Val.
Random Element On input (Query, q, sid) from party Pi where q ∈ {0, 1}∗, if Val[q]

has not yet been defined, uniformly sample Val[q]
$← X and send Val[q] to Pi.

Fig. 14. Functionality FRO

C Switching Protocol for SPDZ-BMR

Theorem C.1. ΠABB+BMR securely realises FCABB in the FPrep-hybrid model.

Proof. We define a simulator in Figure 15. Note that the only secrets to which the simulator
is not privy are the secret inputs of honest parties. Everything else in the protocol involves
calls to FPrep which is locally emulated by the simulator.

We define the hybrids in the same way as in the proof of Theorem 4.1. Suppose the
adversary corrupts t < n parties in total, indexed by a set A. We define a sequence of hybrid
worlds (Hybrid h)n−th=0 and show that each is indistinguishable from the previous. Hybrid h
is defined as:

Hybrid h The simulator has the actual input of n− t−h honest parties and must simulate
the remaining h honest parties towards the adversary.

The simulator is described in Figure 15, parameterised by h.

37

Simulator SABB+BMR

Let HR denote the indexing set of the h honest parties whose inputs are known to
ShABB+BMR. Initialise and run an internal copy of FPrep with the adversary, answering
every query by executing the code of FPrep. For simplicity of relaying messages between
A and FCABB, we assume sid = 0 for FCABB as well as the Fp instance of FPrep.

Initialise Initialise a local copy of FPrep and await the inputs (Initialise,Fp, 0) and
Initialise,F2k , 1) from A.

ABB For calls to FPrep with sid = 0:
Input On input (Input, i, id, 0), forward the message to FCABB.
Add On input (Add, idx, idy, id, 0), forward the message to FCABB.
Multiply On input (Multiply, idx, idy, id, 0), forward the message to FCABB.
Output 1. Await a message (Check, 0) from A to FPrep and then await a message

(OK, 0) or (Abort, 0) from A, and if it is (Abort, 0) then ignore all further calls
to FPrep with sid = 0 and otherwise continue.

2. On input (Open, 0, id,0) to FPrep, send the message (Output, id,0) to FCABB and
relay the response x to A.

3. Await a reply x+ ε from A and the call by A to FPrep with input (Check, 0).
4. Await another message (OK, 0) or (Abort, 0) from A. If ε = 0 and the message

was (OK, 0) then send OK to FCABB, and otherwise send Abort to FCABB and
(Abort, 0) to A and ignore all further calls to FPrep with sid = 0 and otherwise
continue.

Initialise garbling Run Initialise from ΠABB+BMR with A.
Input layer Run Input layer from ΠABB+BMR with A.
Garble Run ΠGarble

ABB+BMR with A.
Output layer Run Output layer from ΠABB+BMR with A.
Open Run Open from ΠABB+BMR with A.
Evaluate Suppose a circuit input x is from an honest party’s input.

1. Send the message (EvaluateCircuit, C, id1, . . . , idt, id, 0) to FCABB.
2. Await the call (Open, 0, [[a− r]]) from A. Then:

– If a is an input dependent on honest parties’ inputs known to ShABB+BMR, retrieve
the bits of the mask r from memory and compute and send x ← a− r to the
adversary.

– If a is dependent on one or more honest parties’ inputs then sample x← r′
$←

Fp and send it to A.
3. Await a response x+ ε and if ε 6= 0 then send (Abort, 0) to A and Abort to FCABB

and terminate; otherwise, continue.
4. Await the calls to FPrep with input (Open, 0, [[kuj ,xj]]2k , 1)

dlog pe−1
j=0 from A, where uj

is the wire for the jth input bit xj of x, and respond honestly.
5. The simulator computes what honest parties would compute in the circuit eval-

uation. If an honest party would have aborted then the simulator sends Abort to
FCABB, and otherwise sends OK and continues.

Fig. 15. Simulator ShABB+BMR
38

Claim. The FPrep-hybrid world is indistinguishable from Hybrid 0.

Proof. For the emulation of FPrep with sid = 0, the simulation is perfect.

For the emulation of FPrep with sid = 1, there are no private inputs of honest parties to
the garbling, so it only remains to show that the transcript during evaluation reveals nothing
about the (honest) parties’ inputs.

In this hybrid, the simulator has access to all honest parties’ inputs, so the simulator
follows the protocol exactly in Evaluate, so the worlds are indistinguishable. �

Claim. Hybrid h is indistinguishable from Hybrid h+ 1 for h = 0, . . . , n− t− 1.

Proof. For the emulation of FPrep with sid = 0 and for the garbling the simulation is still
perfect since honest parties’ inputs are not required.

Indeed, the only call to Input is when when the parties call FPrep during Garble for the
PRF evaluations. The simulator can perform the PRF evaluations locally since the keys and
global differences for honest parties are obtained from the emulation of FPrep.

The only part of the circuit evaluation that may depend on honest parties’ inputs is
in Evaluate. Since the secret masks [[r]]p are constructed from uniformly-sampled bits, by

Lemma 2.1 the distribution of the uniformly sample r′
$← Fp is statistically close to the

distribution of a− r mod p where a is the input of an honest party and r
$← {0, 1}blog pc.

Now since the masking bits are sampled uniformly during the garbling and are unknown to
the adversary (or environment), and the circuit can only be evaluated once, the intermediate
wire values and the final bit (masked) outputs reveal nothing about the initial inputs to the
circuit. Indeed, after evaluating the circuit the parties just have an identifier corresponding
to the circuit output, which reveals no information on the underlying value by definition of
the functionality. Thus the environment cannot use the evaluation to distinguish between
the circuit evaluated on the actual value a − r and the circuit evaluated on the sampled
value random r′, even though the parties will obtain an “incorrect” output identifier with
high probability. The simulator easily deals with this by obtaining the output from FCABB

and sending this to A, ensuring that if the evaluation of the garbled circuit did caused an
honest party to abort then the interaction with A and FCABB also abort. �

Since FPrep is secure for t = n− 1, the result follows. ut

39

Protocol ΠABB+BMR

This protocol is secure in the FPrep-hybrid model.

Initialise The parties call FPrep with inputs (Initialise,Fp, 0) and (Initialise,F2k , 1).

Arithmetic

Input For Pi to provide input x ∈ Fp, Pi calls FPrep with input (Input, i, [[x]]p, x, 0) and all
other parties call FPrep with input (Input, Pi, [[x]]p,⊥, 0), where [[x]]p is a fresh identifier.

Add To add secrets x and y, parties call FPrep with input (Add, [[x]]p, [[y]]p, [[z]]p, 0) where
[[z]]p is a new identifier.

Multiply To multiply secrets x and y, parties call FPrep with input
(Add, [[x]]p, [[y]]p, [[z]]p, 0) where [[z]]p is a new identifier.

Output To receive output with identifier id, parties do the following:
1. The parties call FPrep with input (Check, 0).
2. The parties call FPrep with input (Open, 0, id,0).
3. The parties call FPrep with input (Check, 0).

Circuit (All of the following procedures are performed, in order.)

Initialise garbling To garble a Boolean circuit C with identifiers W for wires, GAND

for AND gates and GXOR for XOR gates, the parties do the following:
1. The parties call FPrep with input (daBits, {[[λw]]p,2k}w∈Wo , 0, 1) where Wo denotes

the set indexing circuit output wires.
2. For each i ∈ [n], the parties call FPrep with input (RElt, [[Ri]]2k , 1) and then call
FPrep with input (Open, i, [[Ri]]2k , 1) to reveal Ri to Pi.

Input layer Let the number of Fp inputs to the circuit be t. The parties do the following:

1. Call FPrep with input (daBits, ({[[ri,j]]p,2k}
blog pc−1
j=0)ti=1, 0, 1).

2. Set [[ri]]p ←
∑blog pc−1

j=0 2j[[ri,j]]p.
3. For i = 1, . . . , t, create the circuit ADDMOD(xi, yi, p) and prepend these circuits

to the circuit C to be garbled, augmenting GAND and GXOR as appropriate. See
Section 4.2 for details.

4. For each input wire w ∈ W , for each i ∈ [n],
(a) Call FPrep with input (RElt, [[kiw,0]]2k , 1).
(b) Call FPrep with input (Open, i, [[kiw,0]]2k , 1) to reveal kiw,0 to Pi.
(c) Pi sets the one key as kiw,1 ← kiw,0⊕Ri and the parties set [[kiw,1]]2k ← [[kiw,0]]2k⊕

[[Ri]]2k .
5. For every input wire w corresponding to an input xi,j of ADDMOD(xi, yi, p), set
λwi,j ← 0.

6. For every input wire w corresponding to an input yi,j of ADDMOD(xi, yi, p), call
FPrep with input (RBit, [[λw]]2k , 1) followed by (Open, 0, [[ri,j]]2k ⊕ [[λwi,j]]2k , 1) and
store this as Λwi,j . Then for every l ∈ [n], Pl sends klwi,j ,Λwi,j to all other parties.

Garble Refer to ΠGarble
ABB+BMR in Figure 18.

(continued...)

Fig. 16. Protocol ΠABB+BMR
40

Protocol ΠABB+BMR (continued)

Output layer For every wire w that is an (external, circuit) output wire, the parties
do the following
1. Retrieve a daBit [[λw′]]p,2k from memory, generated in Initialise.
2. Compute [[λw0]]2k ← [[λw]]2k ⊕ [[λw′]]2k .
3. Call FPrep with input (Open, 0, [[λw0]]2k , 1); all parties store this locally in memory

as the value Λw0 .
Open To open the circuit, the parties do the following:

1. For all i ∈ [n], call FPrep with input (Open, 0, [[g̃jα,β]]2k , 1) for all g ∈ GAND, for all
j ∈ [n], for all (α, β) ∈ {0, 1}2. If the functionality returns ⊥, the parties abort,
and otherwise the parties (locally) output ((g̃j0,0, g̃

j
0,1, g̃

j
1,0, g̃

j
1,1)nj=1)g∈G and the

input mask identifiers [[r1]]p, . . . , [[rt]]p.
2. Call FPrep with input (Check, 1).

Evaluate Refer to ΠEval
ABB+BMR in Figure 19.

Fig. 17. Protocol ΠABB+BMR (continued)

41

Subprotocol ΠGarble
ABB+BMR

Garble Traversing the circuit in topological order, for every gate g ∈ G with (internal)
input wires u and v and (internal) output wire w,
– If g is an XOR gate, i.e. g ∈ GXOR,

1. The parties set [[λw]]2k ← [[λu]]2k ⊕ [[λv]]2k .
2. For each i ∈ [n], Pi computes kiw,0 ← kiu,0 ⊕ kiv,0 and kiw,1 ← kiw,0 ⊕ Ri and all

parties set [[kiw,0]]2k ← [[kiu,0]]2k ⊕ [[kiv,0]]2k and [[kiw,1]]2k ← [[kiw,0]]2k ⊕ [[Ri]]2k .
– If g is an AND gate, i.e. g ∈ GAND,

1. The parties call FPrep with input (RBit, [[λw]]2k , 1).
2. For each i ∈ [n],

(a) Call FPrep with input (RElt, [[kiw,0]]2k , 1).
(b) Call FPrep with input (Open, i, [[kiw,0]]2k , 1) to reveal kiw,0 to Pi.
(c) Pi sets the one key as kiw,1 ← kiw,0 ⊕ Ri and all parties set [[kiw,1]]2k ←

[[kiw,0]]2k ⊕ [[Ri]]2k .
(d) For all four distinct values of (α, β) ∈ {0, 1}2, and for every j ∈ [n], Pi calls

FPrep with input
(

Input, i, [[F g,i,j
α,β]]2k , Fkiu,α,k

i
v,β

(g||j), 1
)

and the other parties

with input
(
Input, i, [[F g,i,j

α,β]]2k ,⊥, 1
)
.

3. For all j ∈ [n] and all (α, β) ∈ {0, 1}2, the parties compute

[[g̃jα,β]]2k ←
(⊕n

i=1

[[
F g,i,j
α,β

]]
2k

)
⊕ [[kjw,0]]2k

⊕ [[Rj]]2k · (([[λu]]2k ⊕ α) · ([[λv]]2k ⊕ β)⊕ [[λw]]2k)

Fig. 18. Subprotocol ΠGarble
ABB+BMR

42

Subprotocol ΠEval
ABB+BMR

Evaluate The parties, holding the output ((g̃i0,0, g̃
i
0,1, g̃

i
1,0, g̃

i
1,1)ni=1)g∈G of FGarble+

BMR , eval-
uate in the following way, traversing the circuit in topological order:
1. For each input {[[ai]]p}i∈[t], the parties do the following:

(a) Retrieve from memory the secret mask [[ri]]p produced in Input layer.
(b) Compute the secret [[xi]]p ← [[ai]]p − [[ri]]p.
(c) Call FPrep with input (Open, [[xi]]p, 0).

(d) Denote the corresponding input wires by {wi,j}blog pc−1
j=0 . Bit-decompose the pub-

lic value xi and let the bits be {xi,j}blog pc−1
j=0 .

(e) For each j = 0, . . . , blog pc− 1, retrieve from memory the wire mask λwi,j from
Input layer for xi,j and set Λwi,j ← xi,j ⊕ λwi,j .

(f) For each l ∈ [n], Pl sends {klwi,j ,Λwi,j }
blog pc−1
j=0 to all other parties.

2. For every g ∈ G,
(a) If g is an XOR gate,

i. Party Pi computes Λw ← Λu ⊕ Λv.
ii. Party Pi computes all n output keys indexed by j ∈ [n], as kjw,Λw ← kju,Λu ⊕

kjv,Λv .
(b) If g is an AND gate,

i. Each party computes the n keys indexed by j ∈ [n] as

kjw,Λw ← g̃jΛu,Λv ⊕

(
n⊕
i=1

Fkiu,Λu ,k
i
v,Λv

(g||j)

)

and compares its keys kiw,0 and kiw,1 to the ith key obtained to determine
the global signal bit Λw.

3. For every external output wire w,
(a) Retrieve from memory the corresponding public signal bit Λw0 produced in

Output layer.
(b) Locally compute Λw′ ← Λw0 ⊕ Λw.
(c) Locally compute the secret output as

[[bw]]p ← Λw′ + [[λw′]]p − 2 · Λw′ · [[λw′]]p.

4. Send the message (Check, 1) to FPrep.

Fig. 19. Subprotocol ΠEval
ABB+BMR

D SPDZ-BMR PRF Assumption

The non-existence of circular 2-correlation robust PRFs required for using the multiparty
FreeXOR technique would force garbling protocols to garble XOR gates in the same way

43

as AND gates, providing PRFs under the (supposed) weaker assumption of pseudorandom
function under multiple keys exist. These are defined as follows:

Definition D.1. Let F : {0, 1}κ×{0, 1}κ → {0, 1}κ be an efficient, length-preserving, keyed
function. We say that F is a pseudorandom function under multiple keys if for all polynomial
time distinguishers D there exists a negligible function ν such that:∣∣∣Pr[DFk̄(·)(1sec) = 1]− Pr[Df̄(·)(1sec) = 1]

∣∣∣ ≤ ν(κ).

where Fk̄ denotes the tuple (Fk1 , . . . , Fkn) of the pseudorandom function F keyed using k1, . . . , kn
and f̄ denotes the tuple (f1, . . . , fn) of random functions {fi : {0, 1}κ → {0, 1}κ}ni=1.

Lindell et al. proved that the SPDZ-BMR technique is secure under this assumption on
the PRF.

E MASCOT and LowGear

Here we provide more data on the communcation complexity of these two protocols bench-
marked for fields Fp and F2k where k = 128, log p > 128, and statistical security sec = 64.

Parties MASCOT F2k LowGear Fp

Input (bit) Triple Input Triple

2 0.384 360.44 2.048 30.146
3 1.024 1081.32 5.888 89.67
4 1.92 2162.64 11.520 178.572
5 3.072 3604.4 18.94 296.85

Table 6. Communication costs (kbits) for fields with different characteristic.

44

	MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security
	References

