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Abstract

Using the idea behind the recently proposed isogeny- and paring-based verifiable delay function
(VDF) by De Feo, Masson, Petit and Sanso, we construct an isogeny-based VDF without the use of
pairings. Our scheme is a hybrid of time-lock puzzles and (trapdoor) verifiable delay functions. We
explain how to realise the proposed VDF on elliptic curves with commutative endomorphism ring,
however this construction is not quantum secure. The more interesting, and potentially quantum-
secure, non-commutative case is left open.

1 Introduction

The idea of using cryptography to force an entity to invest a desired amount of time in some task was

first proposed by Timothy C. May [14], and put forward by Rivest, Shamir and Wagner [17]. Aiming at

enabling others to verify that the amount of time was indeed spent on completing the task, but without

re-doing the task, Boneh, Bonneau, Bünz and Fisch [3] proposed the notion of a “verifiable delay func-

tion” (VDF), which formalises some of the aspects in the earlier work of Lenstra and Wesolowski [13].

Informally, a VDF is a function f : X → Y that takes a prescribed time to compute, yet the correctness

of an input–output pair (x, y) can be quickly verified. Of particular importance is the sequentiality in

the function evaluation, that prevents any (substantial) advantage by parallel computations.

Wesolowski [22] and Pietrzak [16] independently proposed similar constructions that are based on

the sequentiality of exponentiation in the group Z∗N of an unknown order (e.g. for an RSA modulus N ).

These constructions are reviewed in [2], where the problem of construction a quantum-secure VDF is

left open (due to Shor’s quantum algorithm [19], the proposed constructions are not quantum secure).

To that end, De Feo, Masson, Petit and Sanso [10] explored the possibility of constructing a VDF from

elliptic curve isogenies. Their isogeny-based VDF relies on the sequentiality in the isogeny evaluation

(the need to visit all nodes in a given path on the isogeny graph), however their verification algorithm

is based on elliptic curve pairings, and thus the construction is not quantum secure (since breaking the

pairings allows one to easily compute elements that pass the verification test).

In this short note we build upon the previous construction and propose an isogeny-based trapdoor

VDF without the use of pairings. A trapdoor VDF is equipped with a trapdoor that allows evaluating
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the function efficiently, see [22]. The main idea behind this construction is to perform an unbalanced

key-exchange, where the evaluating party takes a long path on the isogeny graph while the verifying

party follows a short path. We consider a static-ephemeral key exchange, where the static key is public.

Our construction can be realised over elliptic curves with commutative endomorphism ring. Unfor-

tunately, in this case our proposed construction is quantum insecure. A quantum attack is not known

for the non-commutative supersingular case, however we do not offer a practical realisation of our

construction in this case. We present it as an open problem,1 which is the main aim in releasing this

note.

2 Verifiable delay functions

A verifiable delay function, as defined in [2], consists of three algorithms:

• Setup(λ, T ) → pp: an initial setup phase that takes a security parameter λ and a time bound T

and outputs public parameters pp.

• Eval(pp, x)→ (y, π): an evaluation procedure that takes x ∈ X and outputs y ∈ Y and a proof π.

• V erify(pp, x, y, π)→ {accpet, reject}: a verification procedure that outputs accept if y is the

correct evaluation of the VDF on x.

A detailed definition is given [3, Section 3], along with the requirement of correctness (verification

accepts on valid input–output pairs (x, y)), soundness (verification rejects on invalid pairs) and sequen-

tiality, mentioned above. A VDF may require an interactive engagement between the different parties,

either in the choice of the input x or in the verification procedure.

2.1 A VDF–time-lock-puzzle hybrid

We propose a construction that can be seen as a hybrid of (trapdoor) verifiable delay functions and

time-lock puzzles (formal definitions can be found in [1, Section 3.1]) and so we call it hybrid VDF2.

The protocol is interactive, where we explicitly add a challenge phase, in which a challenger chooses an

input x ∈ X , and obtains a hint (trapdoor) h that can be used by anyone to efficiently verify the correct

output of the function.3

The proposed construction deviates from the definition of VDF in the following ways:
1Thereby increasing the pool of open problems in isogeny-based cryptography [4].
2An alternative proper name is verifiable time-lock puzzles, however we believe that the VDF construction is better suited.
3We do not discuss concrete ways to generate the challenge. A verifiable method may be desired, as well as the ability to

re-generate the trapdoor (so it could be broadcasted) in case it kept secret [5].
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- The setup phase takes time linear in T , and thus may not be polynomial in the security parameter

λ (when T is super-polynomial in λ).

- In order to publicly verify the work, the hint should be broadcasted (after (y, π) is received).

In accordance with [1, Section 4], the first point may be thought of as one-time pre-processing phase.

The second point may resemble similar issues for time-lock puzzles. However, verification is not an

essential feature of time-lock puzzles – a trapdoor, if exists, is not even supposed to be remembered.

Secondly, in some proposals, once the puzzle has been solved, there is no more use in the public

parameters, and therefore one has to complete a new setup in order to create a new puzzle. In our

construction, revealing the trapdoor does not result in abandoning the parameters from the setup phase.

Hence, we use the trapdoor differently from the trapdoor VDF in [22].

3 A hybrid verifiable delay function

The following does not require deep understanding of isogeny-based cryptography, however familiarity

with the terminology may be helpful. Some facts can be found in [10, Section 4], and a good introduc-

tion to isogeny-based key exchange can be found in the survey by Smith [20].

Consider ordinary elliptic curves (as in Couveignes–Rostovtsev–Stolbunov key exchange [7, 18])

or supersingular that are defined over the prime field Fp (as in CSIDH [6]). The ideal class group cl(O),
which acts via isogenies on isomorphism classes of such curves, is commutative (here O is an order in

an imaginary quadratic field).

A Diffie–Hellman-style key exchange proceeds as follows: Alice and Bob select privately [a], [b] ∈
cl(O), respectively; they publish the curves [a]E and [b]E, respectively, for some agreed curve E;

acting on the other party’s curve by their own private key, both obtain the curve [a][b]E = [b][a]E.

The shared key can be taken to be the j-invariant of the shared curve or a coefficient in a canonical

representation.

Essentially, our construction revolves around the sequentiality of the function f : X → Y , where

X = Y is a set of representatives of elliptic curve isomorphism classes (e.g. j-invariants), and f is an

isogeny between elliptic curves, which for convenience we represent as a path on the isogeny graph.

We say that an isogeny is T -long if it takes at least time T to compute.

A hybrid trapdoor VDF can be obtained by setting up an elliptic curve E, a T -long isogeny [a] and

the curve [a]E. The challenger selects an isogeny [b] and publishes [b]E. The evaluation task is to

compute [a]([b]E), which can be verified easily by computing [b]([a]E). Note that only the challenger

possess [b], so once the task is declared completed, the challenger publishes [b] (either before or only

after verifying the validity of the work).

Formally, we have
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• Setup(λ, T ) outputs the public parameters pp: a prime p, an elliptic curve E/Fp, an ideal class

[a] for a T -long isogeny, and the curve [a]E.

• Challenge(pp, T ) produces a private ideal class [b] and its representation h, and the curve x :=

[b]E.4

• Eval(pp, x) computes [a]([b]E) and outputs the shared key y and an empty proof π.

• V erify(pp, x, y;h) computes, using the hint, [b]([a]E) and accepts if the shared key is y; other-

wise it rejects.

Correctness follows from the correctness of the key exchange procedure, and soundness holds because

the verification procedure only accepts on the correct value.

Realisation: The evaluation and verification procedures are clear, as they follow an already es-

tablished key exchange protocol. As we now explain, representation of the isogenies in the setup and

challenge phases also follows previous work. In CSIDH [6],

• We set p = 4`1 · · · `n − 1 for distinct small odd primes `j , the corresponding ideals [lj ] and a

supersingular curve E over Fp.

• Set [a] = [le11 . . . lenn ], for some values ej such that the isogeny computation, corresponding to [a],

is T -long (for example, [10] takes a path on a single cycle corresponds to a single `j).

• Set [b] = [l
e′1
1 · · · l

e′n
n ] for e′j randomly selected from some range {−m, . . . ,m}, computed such

that recovering all e′j from [b]E takes time at least T , and h = (e′1, . . . , e
′
n).

The case of ordinary elliptic curves is similar with small adjustments, see [9].

Security and sequentiality: since we use a similar evaluation function to [10], many of the security

arguments follow (see Section 6 there). Moreover, as also stated in the previous work, among the known

algorithms for isogeny computation, the most efficient ones require to visit all intermediate curves in

the isogeny path; working in parallel brings very little advantage for this task.

Of particular importance is the hardness of computing [a]E in shorter time than T , which is possible

in general (i.e. a smaller-degree isogeny exists). This requires to find a shorter path on the isogeny

graph – a problem that is considered to be hard on classical computers. However, there is a difference

between the ordinary and supersingular cases. Current methods to generate supersingular curves start

with special curves that make the isogeny path problem easy; thus in [10] the setup is required to run

by a trusted authority that does not reveal how the supersingular curve was constructed; see full details
4The time parameter T is an input to Challenge since the generation of [b] should guarantee that computing [b] from E

and [b]E takes time at least T .
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in [10, Section 6.2]. Ordinary curves seem to avoid this requirement, and in our construction they do

not suffer from the insecure instantiation mentioned at the end of [10, Section 6.2].

Note that computing [b] from E and [b]E is the “isogeny problem”, and that computing the shared

key without following the protocol is the “computational isogeny Diffie–Hellman problem”. Both these

problems are considered quantumly hard (and in fact are quantumly equivalent [11]).

Quantum computers would break the security of our function, as explained in the previous work:

using a variation of Shor’s algorithm, one can efficiently compute a shorter path on the isogeny graph

between E and [a]E (see also [8, Appendix C]). We remark that in our construction a shorter path can

be computed classically in subexponential time, see [9, Section 5.2] or [8, Appendix C] (thus T needs

to be smaller than the running time of this algorithm).

Remark 1. Our proposed construction can be turned into an incremental one, i.e. a single setup sup-

ports multiple hardness parameters T (see [3]). As remarked in [10], this can be done by including in

the public parameters several pit stops along the isogeny path of [a], marking a specific difficulty level.

This is highly desired in our construction, since the setup phase may take a long time to complete. Note

that the commutativity allows us to compute [a] in several different ways (unless it is a path on a single

cycle), thus in this case the order in which [a] is computed should be agreed on.

3.1 The non-commutative case – an open problem

SIDH [12] seems to naturally fit our construction, since there is an inherent lack of symmetry between

the two parties (see for example [20, Section 15]). Interestingly, Petit [15] already suggested to use

unbalanced SIDH for the static-ephemeral setting, similarly to our proposal, for the reason of protecting

the static key more strongly. He provides several attacks on unbalanced SIDH on special curves.

In SIDH, Alice defines her isogeny using the torsion groupE[Na] (Bob works over a different group

E[Nb]), for some prime power Na. Essentially, she selects a point in this group and sets the subgroup it

generates to be the kernel of her (unique) isogeny. Moreover, by generating the isogeny in this way, Bob

is able to compute the shared curve later in the protocol. However, the number of steps in the isogeny

path coming from this procedure is at most logNa. Since the static path in our construction should be

very long, it means that Na should be very large. This directly affects the size of the base field, hence

not suitable for our needs.

Alternatively, one could take a prime Na, where there are no intermediate steps along the path and

the amount of computations to complete the isogeny evaluation is proportional toO(Na). The downside

of this approach is that this isogeny computation (using Vélu’s formulas [21]) do enjoy parallelisation,

hence also not suitable for our needs. Lastly, the static key could in principle be created by a long

random walk, but we are not aware of any method that allows to complete a key share this way.

We leave this interesting case as an open problem.
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