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Abstract

Attribute based systems enable anonymity while providing access control using attributes (e.g.,
student). Attribute based signatures (ABS) enable signing a message with an attribute rather
than an identity. In this work, we revisit multi-authority attribute based signatures (MA-ABS),
and elaborate on the limitations of the current MA-ABS schemes to provide a hard to achieve
(yet very useful) combination of features, i.e., decentralization, periodic usage limitation, dynamic
revocation of users and attributes, reliable threshold traceability, and authority hiding. In contrast
to previous work, we ensure that even the authorities are prevented from exposing the identity of
an ABS signer, and that only joint tracing by a threshold of multiple tracing authorities is allowed.
Moreover, in our solution, the authorities cannot sign on behalf of the users. In this context, first
we define a useful and practical attribute based signature scheme (versatile ABS or VABS) along
with the necessary operations and security games. Second, we provide the first VABS scheme in
a modular design such that one may utilize a subset of the features endowed by our VABS, while
omitting the unnecessary organizations for better efficiency. Third, we formally prove the security
of our VABS scheme based on standard assumptions, i.e., Strong RSA, DDH, and SDDHI, in the
random oracle model. Fourth, we implement our signature generation and verification algorithms
and show that they are practical (for a VABS with 20 attributes, Sign and Verify running times
are 1.5 and 0.7 sec, respectively, and the generated signature size is below 130 KB).

Keywords— attribute based signature, anonymous credentials, access control systems, threshold cryptog-
raphy.

1 Introduction
Anonymous credential schemes have been proposed for proving the ownership of an attribute, while preserving
the anonymity of the user [1, 2, 3, 4, 5, 6]. Although this type of schemes has been studied in cryptography
literature extensively, it is not designed for proving ownership of multiple attributes (or proving suitability for
an attribute policy), and they do not prevent two individuals from colluding by combining their individual
attributes. Group signature schemes are similarly designed for anonymously proving that the signer of a
message belongs to some group (e.g., sharing a particular attribute) [7, 8, 9, 10, 11, 12, 13, 14], but they
allow group managers to identify the signers. Ring signature schemes [15, 16, 17] also provide non-interactive
anonymous self-proving, however they require the signer of the message to know all the group members’ public
keys and use them in the signing algorithm. This results in computation costs on the order of the number of
members.

ABS. To overcome these problems attribute based signatures (ABS) [18, 19, 20, 21, 22, 23, 24, 25] are
developed for non-interactively proving satisfiability of a Boolean attribute policy. This occurs while signing a
message using the attribute tokens that the user has obtained from some attribute authority. The goal is to
disclose only suitability to the given attribute policy while protecting the privacy of the rest (e.g., identity of
the signer, her other attributes, her other generated signatures). An ABS should also protect against collusion
of users by combining their attributes, and defend against attempts to forge signatures without having the
required attribute tokens in the policy. ABS has many application areas including attribute based messaging
[26, 27], trust negotiation [28], and cloud access control [29]. Also, being non-interactive schemes, ABSs
may be suitable for blockchain applications, such as Monero1 that currently uses ring signatures [15, 16, 17]

1https://www.getmonero.org/
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[19]

[20] !

[21] ! !

[24] ! ! !

VABS !* ! ! ! ! ! ! !

Table (1) Comparison of our VABS with the existing MA-ABS schemes. ! denotes that the corre-
sponding scheme has this feature. By !*, we refer to the fact that our scheme is somewhat decentralized
(or scalable multi-authority) by allowing many identity providers (e.g., master authorities).

for anonymity. To compare an ABS with similar constructions (e.g., mesh signatures [30] and anonymous
credentials [31]), we refer to [18].

Multiple Authorities. Due to the lack of support for multiple attribute authorities in the initially
developed ABS schemes, a multi-authority ABS (MA-ABS) scheme was proposed [19]. However, this scheme
required a central master authority, so the decentralized ABS scheme of [20] was developed. Later, [21] proposed
the first decentralized traceable ABS scheme that allows a tracing authority to detect the identity of the signer
of an ABS. They also claim that their scheme allows “proving” that identity to a judge. Unfortunately, [21]
allows each attribute authority that a signer has interacted with to obtain the user’s secret token, and thus
forge a signature traceable to her. [24] elaborates on this issue, and provides “non-frameability” and “tracing
soundness” notions (the latter has been previously defined in the context of group signatures by [32]), as well
as a generic construction satisfying these notions. However, these proposals still allow any malicious tracing
authority to disclose the identity of the signer of any message (including honest signers).

In this paper, we confront some of the shortcomings of existing multi-authority and decentralized ABS
schemes (altogether we refer by MA-ABS schemes), and achieve the simultaneous existence of the following
properties:
• Periodic usage limitation. The ability to limit the number of verifying signatures of a user (per verifier)

in a given time period. Note this notion differs from the controllable linkability of [22, 25, 33], as the
former merely limits the number of signatures that gets verified by a verifier to a verifier-determined
bound, while the latter provides opportunity for linking between the signatures generated by the same
user. For the attribute based messaging scenario, where the ABS may be utilized for the authentication
of the sender [18], periodic usage limitation can provide spam filtering by limiting the number of messages
a user can send per time period. Another use is the k-times anonymous authentication [34] scenario.

• Threshold traceability. The requirement that a predefined number of tracing authorities should collab-
orate to output the identity of the signer of a signature. This is important to eliminate the possibility
of a corrupted tracing authority de-anonymizing a signer without a rightful purpose. This property is
useful for official case resolution in practice.

• Reliable traceability. This includes the inability to forge a person’s signature (even by the authorities) and
the ability of threshold-many honest tracing authorities to always find the original signer. Inability to
forge a person’s signature also supports our periodic usage limitation goal, since if a malicious party could
forge a signer’s signature, it would have consumed her rights to honestly generate verifying signatures.
Note that this notion also covers “traceability" of [21] and "non-frameability" of [24].

• Dynamic revocation of attributes. A useful property for dynamically revoking the attributes of signers
that no longer deserve them by the attribute authorities (e.g., if a student graduates, her student attribute
can be revoked).

• Dynamic revocation of users. The ability to dynamically detach detected malicious users or criminals
from the ability of generating verifiable ABSs by a specialized authority. Similarly, this may be employed,
when a user’s key is stolen or the user is deceased.

• Authority hiding. This feature is important for further anonymity of a signer by hiding the authorities
that she has interacted with, in particular, in applications where an attribute can be issued by multiple
authorities (e.g., if each school can provide a student attribute, just by learning the authority that
provided the attribute to the user, her privacy is partly invaded). Note that this is a non-trivial task in
public-key infrastructures.

We named our scheme successfully combines these novel, non-trivial, and seemingly conflicting aspects as
versatile ABS, or shortly VABS. Table 1 compares the features of existing MA-ABS schemes and our VABS.

1.1 Related Work
Anonymous credential schemes. Anonymous credential schemes [1, 2, 3, 4, 5, 6] are utilized for proving
attributes while keeping the anonymity. [1, 6] provide n-times unlinkability, which is useful for a VABS
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construction. Note that although by definition anonymous credential schemes are not expected to be non-
interactive, both [1] and [6] can be converted to a non-interactive version via Fiat-Shamir transformation [35].
Yet, we stress that anonymous credential schemes, including [1, 6], are neither made for preventing collusion
of attributes among users nor show a clear way of how to prevent it. In our solution, we build on top of [1]
and improve it on many aspects (in particular, by adding collusion resistance and traceability) to get a VABS
that satisfies our requirements. However, we could not use [6] for this purpose, due to the fact that it allows
the authorities to obtain the secret keys of the users (and hence sign on their behalf). The k-times anonymous
authentication scheme of [36] also provides a similar usage limiting functionality, yet it lacks an additional
revocation feature as in [1].

Attribute based signature (ABS) schemes. ABS schemes [18, 19, 20, 21, 22, 24, 23, 25, 33, 37] are
non-interactive signature solutions for anonymous attribute policy proving. The existing multi-authority and
decentralized ABS schemes of [19, 20, 21, 24] lack our mentioned goals for VABS as shown in Table 1.

Functional credential schemes. The functional credential scheme of [38] can be utilized for anonymously
proving conformity to an attribute policy to the third parties. Unfortunately, the number of authentication
attempts in this scheme cannot be bounded by a fixed value for limited use. Moreover, there seems to be no
effective way of multi-authority attribute issuing.

Group signatures. Group signature schemes [7, 8, 9, 10, 11, 12, 13, 14] are non-interactive constructions
for proving that the signer of a message belongs to some group (sharing a particular attribute). In particular,
revocable [13, 14], traceable [39], or distributed traceable [12], or fully dynamic model of [40] may seem useful
in construction of a VABS. On the other hand, again, the use of keys in those schemes cannot easily be bounded
by a fixed value.

Ring signatures. Ring signature schemes [15, 16, 17] also provide non-interactive anonymous self-proving.
However, they require the signer of the message to know all the group members’ public keys and use them in
the signing algorithm, resulting in computation on the order of the number of members.

1.2 Our Contributions
1. In Section 3, we provide the first VABS construction with modular design. The desired features can be

turned on/off to efficiently achieve the requirements of the planned application. Our security definitions
are novel by including the different authority architecture and allowing the proposed VABS operations;
yet they are inline with previous definitions on similar paradigms.

2. In Section 4, we implement our VABS scheme with and without traceability, and show the efficiency (i.e.,
for a VABS with up to 20 attributes, Sign and Verify operations take below 1.5 and 0.7 sec, respectively,
and the signature size is below 130 KB).

3. In the full version [41], we provide our formal definitions of the compo-
nents (GlobalSetup,TraceSetup, IdPJoin,AuthJoin,UserJoin,TraceIssue,AttrIssue, Sign,
Verify,UserRevoke,AttrRevoke,Trace) of a VABS scheme. In [41], we also provide our game based
security definitions for anonymity, tracing reliability, signature unforgeability, and soundness.

4. In the full version [41], we prove the security of our VABS based on Strong RSA (via reduction to the
security of the CL signatures [42]), DDH, and SDDHI [1] (via reduction to the pseudo random function
construction of [43]) assumptions in the random oracle model.

1.3 System Model
In our system, there are users, who can be signers or verifiers, and authorities.
We have three type of authorities: identity providers, attribute authorities, and tracing authorities, as explained
below.

We assume that each state (or region) has an identity provider (e.g., civil registry authority providing
national identity numbers), who is responsible for issuing/revoking global ids and ensuring that a user picks
her secret key randomly (to prevent attribute collusion among users).

Also, there exist φ tracing authorities in our model, θ of which can de-anonymize the signer of a given VABS.
This is provided to ensure lawful de-anonymization purposes, and to resist corruption of tracing authorities, as
long as the adversary corrupts at most θ− 1 of them. Note that we also require φ ≥ 2θ− 1, so the majority of
the tracing authorities are assumed to be honest. As long as this assumption holds, the majority can always
trace and output the correct signer of a VABS in lawful cases.

There are an arbitrary number of attribute authorities, each responsible for issuing various attributes to the
deserving parties. We only trust these authorities for proper attribute issuance and for non-disclosure of the
identities of the users that have interacted with them. Yet, in our solution, even with the information resulting
from those interactions, none of the identity providers or attribute authorities can de-anonymize a signer from
a given signature or can sign on behalf of a user. The only malicious actions that those authorities may take
are issuing tokens to the undeserving users and revealing the identity of the users that applied to them for
tokens (which are concerns in all such existing schemes, and are not related to our construction).
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Threat model. Regarding anonymity, we allow an adversary to fully corrupt all identity provides, all
attribute authorities, and θ− 1 tracing authorities, to control all users except for two, and to obtain arbitrary
number of VABSs on messages from any user that it chooses (even from the ones that are not under the
adversary’s control). We require the VABS scheme still to disallow an adversary from distinguishing the
signer of a VABS subject to the following restrictions. Both users should be out of the adversary’s control,
should satisfy the related attribute policy of the VABS, and should not have not signed more VABSs than the
limitation.

Regarding traceability, we allow the adversary to fully corrupt all identity providers, all attribute authori-
ties, θ − 1 tracing authorities except for those that can issue a particular attribute, and all users. We require
the VABS scheme still to disallow an adversary from generating a VABS that cannot be traced to its original
signer s by the tracing operation executed by θ tracing authorities.

Regarding unforgeability, we allow the adversary to fully corrupt all tracing authorities, all attribute au-
thorities except for those that can issue a particular attribute, and all users except for those that have the
attribute issued (still the adversary can ask for VABSs from these users). We require the VABS scheme still to
disallow an adversary from generating a VABS with an attribute policy chosen by the adversary that requires
that particular attribute for satisfiability and gets verified.

Regarding soundness (i.e., n-times usability), we allow the adversary to fully corrupt all identity providers,
all tracing authorities, all attribute authorities, and all users. We require the VABS scheme still to disallow an
adversary from generating more than the limitation number of VABSs for the same user s.

The full formal game-based definitions and formal reduction proofs exist in the full version [41].

1.4 Overview of Our Techniques
There exists some standard credential revocation techniques [44, 45] that can possibly be applied to the existing
ABS schemes [18, 19, 20, 21, 22, 24, 23, 25, 33] to obtain a VABS scheme. However, achieving all VABS
requirements with these schemes (in particular, usage limitation) is non-trivial. Besides, we mentioned the
short-comings of functional credential and group signature schemes in Section 1.1. Therefore, instead of these
constructions, we start with an n-times unlinkable anonymous credential scheme (i.e., [1]), and add the VABS
requirements. We highlight that [1] does not propose a clear way of preventing collusion of attributes among
users. By preventing collusion, we mean that a user with a student attribute and another user with a disability
attribute should not be able to collude and conform to a student with disability policy. In our solution, we
prevent such collusion while enabling multiple authorities. Moreover, although their scheme provides n-times
unlinkability and credential revocation, it does not provide traceability and user revocation, which we provide.
Therefore, we needed to improve [1] by many modifications, additions, and optimizations.

Techniques. When joining the system, the user interacts with an identity provider, and the user’s secret
key s is generated as the output. The user obtains a Camenisch-Lysyanskaya (CL) signature [42] on s and
a certificate including a commitment to s and the real user identity, from the id provider. This is the main
difference of our authority architecture from the existing multi-authority and decentralized ABS schemes [19,
20, 21]. Afterward, the user interacts with at least θ tracing authorities to obtain her tracing tokens as CL
signatures on s.

After the interaction with the tracing authorities, the user can then obtain a token for an attribute ω from
any qualified authority (e.g., "student" attribute from her school or ministry of education). The attribute token
is generated as a CL signature on s + H(ω), where H(·) is a hash function modeled as random oracle. This
prevents collusion among users for combining their attributes, and is one of our novelties over [1], in addition
to traceability and other properties.

The user can sign a message for a policy with Boolean AND/OR2 combinations of attributes by generating
a serial number S for the signature (obtained from the user’s secret s and the number J of times she has
generated signature in the current period), a commitment Cs to s, a commitment CJ to J , and a tracing tag
Φ (i.e., threshold encryption of gs1 where g1 is a group parameter), along with non-interactive zero-knowledge
proofs on the message for showing that S, Cs, CJ , and Φ are constructed correctly, J < n where n is the
number uses allowed in a time period, and the CL signatures for her attributes that she obtained from the
authorities are valid. Verification is done by checking all proofs and whether the serial number S is in the
database or not.

For tracing a user, given a valid VABS, θ honest tracing authorities can reveal gs1, and check the database
for the user’s real identity. Note that due to the assumption that (at most) θ − 1 tracing authorities can be
adversarial, to reach a consensus on the user’s identity, at least 2θ − 1 authorities should participate in the
tracing protocol. Our technique utilizes the threshold public key encryption (TPKE) scheme of [46]. Note that
we have chosen this TPKE scheme for efficiency, yet it may also be possible to build a similar construction via
other non-broadcast TPKE schemes (e.g., [47, 48, 49, 50, 51, 52]), as long as they allow efficient zero-knowledge

2In many cases, a NOT operation can easily be obtained via simple conversions (e.g., “Birth year NOT before 2000”,
could be converted to “Birth year after 1999”) or can be separately obtained as an attribute from an authority. We
highlight that existing decentralized schemes of [19, 20, 21] also do not have direct NOT operation support.
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proof of equality of an encrypted value to a committed value and efficient validation of correct construction of
a ciphertext by a third party. On the other hand, the broadcast TPKE schemes [53, 54] are not suitable due
to the fact that they require the signer to provide the public-secret key pairs to the tracing authorities herself,
which results in disclosure of her identity even by the verifier that needs to validate tracing transcripts.

2 Preliminaries
Notation. Throughout this paper,
• a� B : the value of a is picked from the set B uniformly at random,
• a← B : a is set as the output of a probabilistic polynomial time (PPT) B,
• a := b : the value of a is set as the value of b,
• A(a)→ b : a PPT A takes as input a and its output is called b.
• A{B1(b1), B2(b2)} → (c1), (c2) : A is a protocol executed between parties B1 with input b1 and B2 with

input b2. At the end, party B1 obtains output c1 and party B2 obtains output c2.
• a (i.e., a inside a sharp-cornered rectangle) : a is an optional step only for achieving the user/attribute

revocation feature.
• a (i.e., a inside a round-cornered rectangle) : a is an optional step only for achieving the reliable

traceability.
• λ denotes a security parameter, n denotes the number of uses allowed in a time period, and QRN denotes

the set of quadratic residues modulo N.
Zero-Knowledge Proofs. In our protocols, we utilize non-interactive zero knowledge proofs of knowledge

(NIZKPoK) obtained via the Fiat-Shamir transformation [35] of zero knowledge proof of knowledge (ZKPoK)
protocols. The Fiat-Shamir transformation of ZKPoK protocols can also be utilized to sign messages, in
which case we call them signatures of knowledge (SoK). For NIZKPoKs and SoKs, we utilize the notation of
Camenisch and Stadler [55]: NIZKPoK{(a, b) : C = gahb} denotes a NIZKPoK of private values a and b that
satisfy C = gahb against public C, g, h, and SoK[m]{(a, b) : C = gahb} denotes SoK of a and b that satisfy
C = gahb on public C, g, h and a public message m.

For OR proofs, we make use of zero-knowledge OR proofs realizable by the generic scheme of [56]. This
scheme provides an efficient method for proving knowledge of solutions for a-out-of-d problems, without re-
vealing the subset of the problems whose solutions are known. The other example ZKPoK schemes that can
be used in the realization of our constructions are [57] (for proving factorization of a strong RSA modulus),
[31] (for proving that some numbers are quadratic residues of a strong RSA modulus), [58] (for proving that a
committed value is in a given range), [42] (for proof of a CL signature), [59] (for proof of a discrete logarithm
and opening values of Pedersen commitments [60]).

Periodic n-Times Unlinkable Anonymous Credential Scheme of [1]. We now briefly describe the
n-times unlinkable anonymous credential scheme of [1] that we build upon. Let `q ∈ Θ(λ), `x, `time, and `cnt
be system parameters satisfying `q ≥ `x ≥ `time + `cnt + 2 and 2`cnt − 1 > n. The attribute issuer generates
a cyclic group 〈g〉 = G of prime order q such that 2`q−1 < q < 2`q . It also generates another generator h of
G and a cyclic group 〈g〉 = 〈h〉 = G of composite order p′q′ where g and h are quadratic residues modulo
N = (2p′ + 1)(2q′ + 1). Moreover, the issuer also generates a CL signature [42] key pair (p, s) within the group
G. It publishes its public key (g, h,g,h,G, p), and the zero-knowledge proof that N is a special RSA modulus
[57] and that 〈g〉 = 〈h〉 are quadratic residues modulo N [31]. To obtain a credential, a user first interacts with
the issuer, and they run the protocol below in a mutually authentic channel:

1. The user generates a key pair (s1, p1 := gs1).
2. The user picks s′2 � Zq and computes the Pedersen commitment Cs1+s′2 to s1 + s′2. [60]. She then sends

Cs1+s′2 to the issuer and proves that it is correctly formed via [59].
3. The issuer picks ρ� Zq and sends it to the user. Both parties compute Cs1+s′2+ρ := Cs1+s′2g

ρ. The user
sets s2 := s′2 + ρ.

4. The parties run the signature on a committed value protocol proposed in [42] using Cs1+s2 . At the end,
the user obtains a CL signature σ of the issuer on the user secret keys s1 and s2.

The user can then prove the issued credential anonymously to a verifier n-times in a given time period t
via the following protocol.

1. The verifier sends to the user a value R� Z∗q .
2. The user computes and sends to the verifier the serial number S = g1/(s1+t2

`cnt+J)) and the double
spending tag E = p1g

R/(s2+2`cnt+`time+t2`cnt+J)) where J is the number of times that the user has
authenticated her credential in the current time period t ≥ 1.

3. The user and the verifier run ZKPoK protocols for s1, s2, σ, and J such that 0 ≤ J < n,
S = g1/(s1+t2

`cnt+J)), E = p1g
R/(s2+2`cnt+`time+t2`cnt+J)), and σ verifies on the user secret s with

the issuer public key p.
Pseudo Random Functions (PRFs). In the PRF security game DistPRF, the challenger C gives to the

adversary A a unary security parameter 1λ and oracle access to either Fs(·) or f(·) (chosen fairly at random),
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where f is a random function and F is a PRF family. The adversary wins by guessing whether the oracle is
Fs(·) or f(·). We say F is a PRF family, if for all PPT adversaries A, for randomly chosen s, there exists a
negligible function n(·) such that

Pr[A wins DistPRF] ≤ 1/2 + n(λ)

Also, we call Fs(·) a PRF. Note that [1] shows that the function Fg,s(·) = g1/(s+·) is a PRF (where g is a
random generator of a generic group G of prime order q and s� Z∗q), if SDDHI assumption [1] holds in G. We
refer the reader to [1] for the further details.

Digital Signatures. A digital signature scheme consists of three algorithms: (1) DSKeyGen for public-
private key pair generation, (2) DSSign for generating a signature on a transcript with the private key, (3)
DSVerify for verifying a signature on a given transcript. The digital signatures satisfy the conventional ex-
istential unforgeability under adaptive chosen message attack (EU-ACMA) game for signatures described as
Sig-forge in [61].

3 Our Modular VABS
In this section, we present our VABS solution in a modular manner. In the protocol and algorithm descriptions,
parts that are inside sharp-cornered rectangles are utilized for user/attribute revocation, and parts that are
within round-cornered rectangles are employed for reliable threshold traceability. If these properties are not
required for the application, they can be omitted for further improving efficiency.

Global Setup. In GlobalSetup, a cyclic group 〈g〉 = G of prime order q such that 2`q−1 < q < 2`q is
generated, where `q ∈ Θ(λ). Another generator h of G is also generated in a distributed computation [62, 63]
so that logg h would be intractable. Essentially, each party i (a user or an authority) that wants to join the
generation process of h picks a random value xi ∈ Zq. It then publishes hi := gxi and NIZKPoK{(xi) : hi = gxi}
with authentication tags.3 At the end of the setup, all of the k parties involved compute h :=

∏
i∈{1,...,k} g

xi

and output the parameters (q,G, g, h).
Tracing Setup. In TraceSetup, first two generators g1 and g2 of the group G are generated in a distributed

fashion by all φ tracing authorities. Then, the authorities together generate the encryption public key tep :=
(p, q, g1, g2, c, d, h1) and their decryption secret key shares tesi (such that θ of them can decrypt a ciphertext)
as described in [46]. Each tracing authority i runs Algorithm 1 for CL signature key generation, sets its tracing
public key as tpi := (tep,g′′i ,h

′′
i , j′′i ,Oi) and secret key as tsi = (tesi, p

′′′
i , q

′′′
i ), and publishes tpi, NIZKPoKt,1,

and NIZKPoKt,2, showing correct generation of the values. Each honest authority checks the transcripts of
every other tracing authority, and signals an error in case of detection of any malicious behaviour.

Algorithm 1 CL signature key generation algorithm for the tracing authority i
input: a unary security parameter 1λ and global setup parameters params = (q,G, g, h).
output: a tracing authority CL public key (g′′i ,h

′′
i , j
′′
i ,Oi), its CL secret key (p′′′i , q′′′i ), and the related proofs (NIZKPoKt,1,

NIZKPoKt,2).

p′′′i , q′′′i � O(1λ) Sophie Germain primes; Oi := (2p′′′i + 1)(2q′′′i + 1); g′′i ,h
′′
i , j
′′
i � QROi

NIZKPoKt,1 :=NIZKPoK{(q′′i , p′′i ) : Oi = (2p′′′i + 1)(2q′′′i + 1)}
NIZKPoKt,2 :=NIZKPoK{g′′i ,h

′′
i , j
′′
i ∈ QROi

}

Authority Join. To join the system, each identity provider or attribute authority runs Algorithm 2.
The proofs of knowledge for NIZKPoK1 and NIZKPoK3 can be instantiated as in [57] for knowledge of strong
primes, while the ones for NIZKPoK2 and NIZKPoK4 can be instantiated as in [31] for showing that the
values are quadratic residues, respectively. Upon executing the algorithm, the authority publishes its public
keys iipi/aipi and irpi,0/arpi,0 together with the proofs NIZKPoK1, NIZKPoK2, NIZKPoK3, and NIZKPoK4,
while keeping its secret keys. For efficiency, each attribute authority only has a fixed-length public key, no
matter how many different attributes it can issue. Additionally, each identity provider runs the DSKeyGen
algorithm of a conventional digital signature scheme (DSKeyGen,DSSign,DSVerify) to obtain a public-private
key pair (pkid, skid) and publishes the public key.

User Join. To join the system, a user interacts with the identity provider in her state through an
authenticated channel, where they run the UserJoin protocol in Figure 1, i.e., an extended version of the
“Signature on a Committed Value” protocol of [42]. Note that we removed the Pedersen commitment input
from the original protocol of [42], as it runs on Fujisaki-Okomoto commitment [64] after proving the equality
of the committed values. At the end of the protocol, the user obtains a certificate cert, which is composed
of user identification information, the commitment Cs to her secret key, possibly expiration date and other
information, together with the signature of the identity provider on them. The user uses the certificate cert
given by the identity provider to obtain tokens using the same secret key from all attribute authorities. The

3The parties may be required to publish them on a public ledger, to maintain the consistency among parties and to
thwart equivocation attempts.

6



Algorithm 2 Our IdPJoin / AuthJoin algorithm for the identity provider / attribute authority i
input: a unary security parameter 1λ and global setup parameters params = (q,G, g, h).
output: an identity provider / attribute authority issuing public key iipi/aipi = (gi,hi, ji,Ni), its issuing secret
key iisi/aisi = (p′i, q′i), its initial revocation public key irpi,0/arpi,0 = (ui,0, g′i,h

′
i,Mi), its revocation secret key irsi/

arsi = (p′′i , q′′i ) , and the related proofs (NIZKPoK1, NIZKPoK2, NIZKPoK3 , NIZKPoK4 ).

p′i, q′i � O(1λ) Sophie Germain primes; Ni := (2p′i + 1)(2q′i + 1); gi,hi, ji � QRNi

p′′i , q′′i � O(1λ) Sophie Germain primes; Mi := (2p′′i + 1)(2q′′i + 1); ui,0, g′i,h
′
i � QRMi

NIZKPoK1 :=NIZKPoK{(q′i, p′i) : Ni = (2p′i + 1)(2q′i + 1)}
NIZKPoK2 :=NIZKPoK{gi,hi, ji ∈ QRNi

}
NIZKPoK3 :=NIZKPoK{(q′′i , p′′i ) : Mi = (2p′′i + 1)(2q′′i + 1)}
NIZKPoK4 :=NIZKPoK{u0,i, g′i,h

′
i ∈ QRMi

}

user also obtains σid as a CL signature on her secret key s, which is utilized each time she signs a message for
the purpose of limiting the number of signatures within a time period. In contrast to [1], in our solution, a
user has only one secret key s due to the removal of the double spending tag.

Tracing Issue. Upon running the protocol in Figure 1 with an identity provider, the user interacts with
at least θ tracing authorities, with each of which she runs the TraceIssue protocol given in Figure 2 to obtain
her tracing tokens σT,i, i.e., a CL signature on s. The tracing authorities together register the tuple (uid, gs1)
into the shared tracing database TDB of tracing authorities, which only permits update by the consensus of
θ tracing authorities. Note that there are generic ways (e.g., Byzantine Fault Tolerance [65]) of maintaining
such a consistent and consensus-based database as long as the majority of the authorities are honest (i.e., in
our case 2θ − 1 ≤ φ). We highlight that if an identity provider does not randomize a user secret key s via
picking s2 randomly and generating the CL signature on s1 + s2 as in honest execution of UserJoin, and let
two different users to have the same secret key s, then the tracing authorities can detect it in the last step of
their TraceIssue protocol execution.

Attribute Issue. To obtain the token for an attribute ω from an authority i, the user and the authority
run the protocol in Figure 3 through a secure and authenticated channel (i.e., an extended version of the
“Signature on a Committed Value” protocol of [42]), where H : {0, 1}∗ → Zq is modeled as a random oracle.
At a high level, the user obtains a CL signature on s + H(ω), after proving in zero knowledge that she holds
the identity s to tie her attributes to her identity blindly. We enforce randomization of the attributes by H(ω)
to prevent malicious collusion of users (see Lemma 3).4

Sign. We present our Sign algorithm with AND policy ω1 ∧ . . . ∧ ωk in Algorithm 3 without authority
hiding for simplicity, where `cnt is a sytem parameter such that `q − 2 ≥ `cnt > n + 1/2. We provide the
modifications for authority hiding at the end of this section. The algorithm outputs a serial number S for
the VABS, commitments CJ and Cs to the number J of generated signatures in the current time period and
the user’s secret key s, and a number of proofs for the correct construction of the signature and knowledge of
CL signatures on s plus the randomized attribute. The proof of knowledge schemes for SoK1 and SoK2 can
be realized using [59] and [58] by converting them into non-interactive signatures on m, thereby showing that
the signature was not produced more than n times in the current time period (also to be verified against a
database to ensure the serial number is used only once).

For SoK3, the signer computes the commitments Cs := gshρ1 , Cρ+r := gρ+rhρ2 , Cσ̃id := gσ̃idhρ3 , Cv :=
vgρ4 , Cρ4 := gρ4hρ5 , Cρ4σ̃id := gρ4σ̃idhρ6 , and C := (Cv)σ̃idhρ7 using σid = (ρ+r, σ̃id, v) and picking ρ1, . . . , ρ7
at random as in “Proof of Knowledge of a Signature" protocol of [42].5 She then generates zero-knowledge
OR proofs of all listed proofs in the mentioned proof scheme of [42] as SoKs on m. Moreover, she computes
the commitments and values listed in “Efficient Proof That a Committed Value Was Accumulated” protocol
in [66] to prove that the committed value in Cσ̃id is accumulated in the part ui,j+1 of irpi,j (i.e., the current
revocation public key of the authority i). For SoK3+1, . . . ,SoK3+k, the signer also follows the same method as
SoK3 by replacing s with s+H(ω) and id with ω. Thus, these SoKs enable the signer to prove that she has a
valid id from an id provider, and the required attributes from the attribute authorities, without disclosing her
identity.

The tracing tag Φ is the ciphertext obtained by encrypting gs1 with TPKE [46]. SoK4+k is generated
showing ρ3 values are the same in all of gρ3

1 , gρ3
2 , gs1h1

ρ3 as a SoK on m and cρ3dρ3κ. SoK5+k is composed of
the conventional proof of equality of committed values on m. Overall, these proofs show that the user provided
her own tracing tag as part of the VABS. SoK6+k, . . . , SoK5+k+θ are again generated by the same technique
as in the previous ones for the knowledge of CL signatures for identity and attribute tokens, showing that she
obtained at least θ CL signatures from tracing authorities on her same identity. Note that instead of encrypting
s, the signer encrypts gs1 within the tracing tag Φ, which has two advantages: secrecy of s and ease of SoK5+k.

For the Sign algorithm with OR policy, the subpolicies can be combined in a SoK using [56]. For example,

4Unlike the ABS schemes of [19, 20, 21], we employ a hash function for randomization, instead of trusting authorities
for that purpose. This is more realistic in scenarios where there exist multiple authorities and multiple attributes, and
each attribute is not known from the start but rather is dynamically established.

5The commitments provided here and listed in [42] are in the same order.
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if NIZKPoK does not verify 

 abort 

𝑠2      ℤ𝑞
∗ ;  𝖢𝑠1+𝑠2

≔ 𝖢𝑠1
𝐠𝑖
𝑠2 ;  𝜎𝑖𝑑       𝑂 1λ  prime number; 

𝑟      𝑂 1λ ; 𝑣 ≔ (𝖢𝑠1+𝑠2
𝐡𝑖

𝑟 𝐣𝑖)
1

𝜎𝑖𝑑 ;  

𝑐𝑒𝑟𝑡𝑖𝑛𝑓𝑜 ≔ (𝑢𝑖𝑑, 𝖢𝑠1+𝑠2
, … ); 𝐮𝑖 ,𝑗+1 = 𝐮𝑖 ,𝑗

𝜎𝑖𝑑  

𝑐𝑒𝑟𝑡 ≔  𝑐𝑒𝑟𝑡𝑖𝑛𝑓𝑜 , 𝜎 ← DSSign𝑠𝑘𝑖𝑑
(𝑐𝑒𝑟𝑡𝑖𝑛𝑓𝑜 ) ;    

User 

𝑠1 , 𝜌      ℤ𝑞
∗ ; 𝖢𝑠1

≔ 𝐠𝑖
𝑠1𝐡𝑖

𝜌
; 

NIZKPoK≔NIZKPoK{ 𝑠1 , 𝜌 : 𝖢𝑠1
=

𝐠𝑖
𝑠1𝐡𝑖

𝜌
} 

 

 

𝖢𝑠1
, NIZKPoK 

𝑖 (𝑖𝑖𝑠𝑖 , 𝑖𝑖𝑝𝑖 , 𝑝𝑘𝑖𝑑 , 𝑠𝑘𝑖𝑑 , 𝑖𝑟𝑝𝑖,𝑗 , 𝑝𝑎𝑟𝑎𝑚𝑠) Identity Provider(𝑖𝑖𝑝𝑖 , 𝑖𝑟𝑝𝑖,𝑗 , 𝑝𝑎𝑟𝑎𝑚𝑠) 

𝑠 ≔ 𝑠1 + 𝑠2;  𝜎𝑖𝑑 ≔  𝜌 + 𝑟, 𝜎𝑖𝑑 , 𝑣 ; 

𝑤 ≔ 𝐮𝑖 ,𝑗  

𝑠2, 𝜎𝑖𝑑 , 𝑟, 𝑣, 𝑐𝑒𝑟𝑡 

Figure (1) The UserJoin protocol between a new user and an identity provider.

User Tracing Authority

𝜎𝑇 , 𝑟, 𝑣 

𝖢s
′ , 𝑔1

𝑠 , 𝑐𝑒𝑟𝑡, NIZKPoK1, 

NIZKPoK2 NIZKPoK3 

(𝑠, 𝑐𝑒𝑟𝑡, 𝑡𝑝𝑖 , 𝑤, 𝑔𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 𝑖 (𝑡𝑠𝑖 , 𝑡𝑝𝑖 , 𝑝𝑘𝑖𝑑 , 𝑔𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 

𝜎𝑇,𝑖 ≔  𝜌′ + 𝑟, 𝜎𝑇 , 𝑣 ; 

if σ or any NIZKPoK do not verify 

 abort 

𝜎𝑇       𝑂 1λ  prime number; 𝑟      𝑂 1λ ; 𝑣 ≔

(𝖢𝑠
′ 𝐡𝑖

𝑟 𝐣𝑖)
1

𝜎𝑇 ; 

if 𝑔1
𝑠 is already in TDB 

 detect malicious identity provider 

else 

record (𝑢𝑖𝑑, 𝑔1
𝑠) into TDB 

 

𝜌′     ℤ𝑞
∗ ; 𝖢s

′ : = 𝐠𝑖
𝑠𝐡𝑖

𝜌′
; Parse 𝑐𝑒𝑟𝑡 to obtain 𝖢𝑠 = 𝖢s1+s2

 

NIZKPoK1≔NIZKPoK that 𝖢𝑠 and 𝖢s
′  are the commitments to the 

same value 

NIZKPoK2 ≔NIZKPoK that 𝖢s
′  is a commitment to exponent of 𝑔1

𝑠 

NIZKPoK3≔NIZKPoK of 𝑤 such that 𝑔𝑖𝑑 is accumulated in 𝑔𝑟𝑝  

 

 

 

Figure (2) The TraceIssue protocol between a user and a tracing authority.

to sign with a policy (ω1 ∧ ω2) ∨ (ω3 ∧ ω4), the subpolicies (ω1 ∧ ω2) and (ω3 ∧ ω4) can be combined with an
OR proof.

Note that our signing algorithm has some improvements over what would have been obtained if one had
just converted [1] to a non-interactive signature scheme. First, we provide a method for attribute authorities
to generate a signature on the same secret key of the user to eliminate collusion among the users. That is,
an authority issues an attribute ω to a party with secret key s by generating a CL signature on s + H(ω),
which makes it intractable for another party to use that CL signature with its secret key s′, since it requires
that s + H(ω) = s′ + H(ω′) where s 6= s′ and H is a random oracle. Second, regarding efficiency, we require
computation of the serial number S and the commitments CJ and Cs only once per signature, since they are
utilized in counting the number of signatures a person has generated (but not how many times a particular
one of her attributes is utilized), and the commitments Cs+H(ω) can be obtained efficiently utilizing Cs. Third,
our algorithm effectively combines the attribute proving with the threshold encryption scheme for traceability.
Fourth, due to the fact that we only require the more than n signing attempts to be detectable but not de-
anonymized (which is done differently during tracing), we removed the double spending tags of [1] for efficiency.

Algorithm 3 Our Sign algorithm with AND policy
input: a message m, a secret key s, an AND policy β = ω1 ∧ . . . ∧ ωk, a global id σid,
a non-revocation witness witness wid for σid , a set Σβ = (σω1 , . . . , σωk ) of the attribute tokens for β,

a set Wβ = (w1, . . . , wk) of non-revocation witness of those attributes , a set ΣT = (σT,1, . . . , σT,θ) of the tracing tokens ,

the issuing public key iip and the revocation public key irp of the provider of the σid, the issu-

ing public key set AIP and the revocation public key set ARP of the authorities that have issued Σβ ,

the tracing public key set TP of the tracing authorities that have issued ΣT , the current time period t ≥ 1, the number J
of ABSs generated by the signer in the current period, the allowed number n of the legitimate signatures by a user in a time
period, the signature and global setup parameters params = (q,G, g, h).
output: an ABS σ = (S,CJ ,Cs, Φ , SoK1, . . . , SoK3+k, SoK4+k, . . . , SoK5+k+θ ).

ρ1, ρ2, ρ3 � Zq ; S := g1/(s+t2`cnt+J); CJ := gJhρ1 ; Cs := gshρ2

Φ := (g
ρ3
1 , g

ρ3
2 , gs1h1

ρ3 , cρ3dρ3κ) where κ := H(g
ρ3
1 , g

ρ3
2 , gs1h1

ρ3 )

SoK1 :=SoK[m]{(J, ρ1) : J ∈ {0, . . . , n− 1} ∧ CJ = gJhρ1}
SoK2 :=SoK[m]{(α, γ) : S = gα ∧ g = (Csg

t2`cnt CJ )αhγ}
SoK3 :=SoK[m]{(s, ρ2, σid, wid ) : σid is a σCL on s committed in Cs verifiable with iip,

and wid is a witness that σ̃id is accumulated in irp }
for i = 1, . . . , k do

SoK3+i :=SoK[m]{(s, ρ2, σωi , wi ) : σωi is a σCL on s+H(ωi) committed in Cs+H(ωi)
=

Csg
H(ωi) verifiable with aipi ∈ AIP , and wi is a witness that σ̃ωi is accumulated in arpi ∈ ARP }

SoK4+k :=SoK[m] that Φ is constructed correctly
SoK5+k :=SoK[m] that Cs and gs1h

ρ3
1 are commitments to the same value

for i = 1, . . . , θ do
SoK5+k+i :=SoK[m]{(s, ρ2, σT,i) : σT,i is a σCL on s committed in Cs verifiable with tpi ∈ TP}
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if 𝜎 or any NIZKPoK do not verify 

 abort 

𝖢𝑠+𝐻(𝜔)
′ ≔ 𝖢𝑠

′ 𝐠𝑖
𝐻 𝜔 

; 𝜎𝜔       𝑂 1λ  prime number; 

𝑟      𝑂 1λ ; 𝑣 ≔ (𝖢𝑠+𝐻(𝜔)
′ 𝐡𝑖

𝑟 𝐣𝑖)
1

𝜎𝜔 ;  𝐮𝑖 ,𝑗+1 = 𝐮𝑖 ,𝑗
𝜎𝜔   

 

User Attribute Authority

𝜌′      ℤ𝑞
∗ ; 𝖢s

′ : = 𝐠𝑖
𝑠𝐡𝑖

𝜌
; parse 𝑐𝑒𝑟𝑡 to obtain 𝖢𝑠 = 𝖢s1+s2

  

NIZKPoK1≔NIZKPoK that 𝖢𝑠 and 𝖢s
′  are the 

commitments to the same value 

NIZKPoK2≔NIZKPoK of 𝑤𝑖𝑑  such that 𝜎𝑖𝑑  is 

accumulated in 𝑖𝑟𝑝  

 

 
𝜎𝜔 , 𝑟, 𝑣 

𝖢𝑠
′ , 𝑐𝑒𝑟𝑡, NIZKPoK1, NIZKPoK2 

(𝑠, 𝑐𝑒𝑟𝑡, 𝜔, 𝑎𝑖𝑝𝑖 , 𝑎𝑟𝑝𝑖,𝑐𝑢𝑟𝑟 , 𝑤𝑖𝑑 , 𝑖𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 𝑖 (𝑎𝑖𝑠𝑖 , 𝑎𝑖𝑝𝑖 , 𝜔, 𝑝𝑘𝑖𝑑 , 𝑎𝑟𝑝𝑖 ,𝑗 , 𝑖𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 

𝜎𝜔 ≔  𝜌′ + 𝑟, 𝜎𝜔 , 𝑣 ;  𝑤 ≔ 𝐮𝑖 ,𝑗  

Figure (3) The AttrIssue protocol between a user and an attribute authority.

Verify. Algorithm 4 shows our Verify algorithm for an AND policy. It essentially returns 1, if all the
SoKs in the signature verifies, and the serial number S is not utilized before (to ensure n-times limited use).
Otherwise, it returns 0.

Algorithm 4 Our Verify algorithm for AND policy
input: a messagem, an ABS µ, an AND policy β = ω1∧. . .∧ωk, the issuing public key iip and the revocation public key irp

of the provider of the σid, the issuing public key set AIP and the revocation public key set ARP of the authorities that

have issued Σβ , the tracing public key set TP of the tracing authorities that have issued ΣT , the current time period t, a
signature database SDBj , the allowed number n of the legitimate signatures by a user in a time period, and global setup
parameters params = (q,G, g, h).
output: a bit b and implicitly an updated signature database SDBj+1.

(S,CJ ,Cs, Φ , SoK1, . . . , SoK3+k, SoK4+k, . . . , SoK5+k+θ ) := µ

if S is a part of any signature in SDB then //check for other uses of S to ensure n times use
b := 0; SDBj+1 := SDBj ; abort

for i = 1, . . . , k do Cs+H(ωi)
:= Csg

H(ωi)

for i = 1, . . . , 3 + k do //check for n times use is completed in the first 3 iterations of this loop
if SoKi does not verify then b := 0; SDBj+1 := SDBj ; abort

for i = 4 + k, . . . , 5 + k + θ do
if SoKi does not verify then b := 0; SDBj+1 := SDBj ; abort

b := 1; SDBj+1 := SDBj ||µ

User Revoke. For UserRevoke, inline with [66], an identity provider i updates its current revocation public
key irpi,j = (ui,j ,g′i,h

′
i,Mi) as

irpi,j+1 = (ui,j+1,g′i,h
′
i,Mi) where ui,j+1 := u

σ̃−1
id

mod 4p′′i q′′i
i,j mod Mi

to revoke an issued σid using the related revocation handle σ̃id. Note that according to [66], after each issuing or
revocation, the identity provider may publish σ̃id, so that the other users can update their witnesses. Instead,
it is also possible to periodically issue or revoke users in a batch as

ψ :=

(∏
i∈revoked σ̃id,i∏
i∈issued σ̃id,i

)
mod 4p′′j q

′′
j ,

so that for a user k with gcd(ψ, σ̃id,k) = 1, she efficiently updates her witness by first computing a and b such
that a.σ̃id,k + b.ψ = 1 via the extended Euclidean algorithm, and then setting wid,j+1 := wbid,j .irp

a
i+1. This is

an optimization we propose over [66], of which details are given in Section 4. We note that this optimization
does not violate anonymity and signature unforgeability, since even if an attacker obtains σ̃id and wid of a user
the knowledge of these values are proven in zero-knowledge in Sign algorithm, and one cannot generate the
SoK3 without knowing (s, ρ2, σid).

Attribute Revoke. AttrRevoke algorithm is the same as UserRevoke, where the attribute revocation
handle σ̃ω is used instead of σ̃id, and the attribute revocation public key arp is used instead of irp.

Trace. In the Trace protocol, given a valid VABS with the tracing tag Φ, tracing authorities run the TPKE
decryption [46] as an authenticated Byzantine Fault Tolerance [67, 68] protocol, so that at the end the ones
that follow the protocol would come to a consensus6 in the decryption of Φ as gs1, and they find the associated
uid in TDB via searching gs1. In our case, we assume at most θ− 1 tracing authorities are malicious, resulting
in at least θ honest tracing authorities always coming to the consensus on the correct signer uid. We note that
“tracing soundness” of [24] is also ensured, since Φ can only be decrypted to a single value, assuming the θ
tracing authorities (out of at least 2θ − 1) joining the operation are honest.

6“Interactive proofs of validity of partial decryptions” method in [46] should be utilized for honest majority to obtain
the correct plaintext.
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Hiding Authorities. It is possible to enhance our Sign and Verify algorithms to achieve authority hiding
in applications where revealing the authorities can harm anonymity of the signers (e.g., by revealing the school
authority that issued the student attribute to the user).

To hide the identity provider, the signer includes in the input the issuing public key set IIP (instead of a
single iip) and the revocation public key set IRP (instead of a single irp) of all identity providers. She then

computes SoK3 as SoK3 :=SoK[m]{(s, ρ2, σid, wid) :
∨
|IIP |
j=1 (σid is a CL signature on the committed value

in Cs verifiable with iipj ∈ IIP , and wid is a witness that gĩd is accumulated in irpj ∈ IRP )} .
To hide the authority of an attribute token σωi , the signer includes in the input

the issuing public key set AIPωi (instead of the aip of the authority that issued σωi)
and the revocation public key set ARPωi (instead of the arp of the authority that issued σωi) of all
authorities that can issue ωi. She then computes SoK3+i as SoK3+i :=SoK[m]{(s, ρ2, σωi , wi) :∨|AIPωi |

j=1 (σωi is a CL signature on the committed value in Cs+H(ωi) = Csg
H(ωi) verifiable with

aipj ∈ AIPωi , and wi is a witness that σ̃ωi is accumulated in arpj ∈ ARPωi )}.
To hide the tracing authorities that she obtained the tracing tokens from, the signer includes

in the input the public key set TPφ of all tracing authorities (instead of TP ). She then replaces
SoK6+k . . . SoK5+k+θ with a single SoK6+k computed as SoK6+k :=SoK[m]{(s, ρ2,ΣT ) : ΣT is a set of
σCL signatures on s committed in Cs verifiable with θ elements of TPφ} .

All of these SoKs can be computed by the generic method provided in [56]. More concretely, to
hide an authority, the signer first generates all the commitments for the tokens that she has, as before,
and then simulates the other commitments for the tokens that she does not have. Then, she generates
all the SoKs on m as non-interactive OR proofs for her identity/attribute token or knowledge of θ out
of φ proofs for her tracing tokens. The corresponding Verify algorithm then checks the related SoKs
by taking as input all the authority public keys that are involved in signing. We note that although
authority hiding increases the running times of Sign and Verify and size of the generated VABS, it
preserves the efficiency of the rest of the operations in our scheme.

We provide the security proof of our VABS scheme in the full version [41].

4 Efficiency
Asymptotical Analysis. Observe that GlobalSetup and TraceSetup protocols take place only once.
Further, IdPJoin, AuthJoin, UserJoin, TraceIssue, AttrIssue, AttrRevoke, and Trace operations also take
place infrequently, and require a constant number of public key operations. Therefore, the main
concern for efficiency is on the more frequently used operations, Sign and Verify. Asymptotically, Sign
algorithm’s computational cost and the signature size is proportional to the number of attributes, and
hence is O(|IIP |+ |β|.|AIP |+φ) SoK costs. Similarly, Verify algorithm requires the verifier to execute
O(|IIP |+ |β|.|AIP |+φ) SoK verifications and search for the serial number in the database for a time
period.

Implementation Results. We implemented our scheme using the primitives implemented in the
C++ Cashlib cryptographic library7 [69]. Using our implementation, we conducted efficiency tests on
a computer with Intel Xeon CPU@2.00GHz-quadcore and 8GB RAM. The RSA and prime-order group
modulus lengths are set as 2048 bits, and SHA256 and DSA are used for instantiating the random
oracle and the digital signature algorithm, respectively. Also, we use the hash-and-sign paradigm.
Therefore, we conducted our tests on constant message size of 256 bits. We note that GlobalSetup
and TraceSetup executed locally, since in practice they will take place only once. Our tests were
repeated 10 times and we report average numbers. Figure 4 shows the results of our implementation
with respect to various attribute policy sizes (the number of attributes in the boolean AND policy)
with and without VABS traceability, respectively. We do not provide efficiency comparisons with the
previous MA-ABS schemes as their respective papers do not provide implementation resuts. Note that
IdPJoin and AuthJoin are only run once per authority. On average, our Sign algorithm implementation
takes 54.9 ms per attribute that needs to be proven on top of a 202.1 ms fixed cost, with traceability.
Also, on average, the length of the generated ABS is 4.6 kB per attribute on top of the 34.0 kB fixed
size, with traceability. Further, on average, our Verify algorithm requires 29.1 ms per attribute in
addition to the 116.9 ms fixed cost, with traceability. The additional costs of traceability are 39.1 ms

7https://github.com/brownie/cashlib
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(a) (a) Computation times of Sign and Verify (b) (b) VABS size

(c) (c) Computation times and bandwidth uses of GlobalSetup, TraceSetup, IdPJoin, AuthJoin, UserJoin, TraceIssue, and AttrIssue
algorithms/protocols

Figure (4) The implementation results of GlobalSetup, TraceSetup, IdPJoin, AuthJoin, UserJoin,
TraceIssue, AttrIssue, Sign and Verify algorithms/protocols of our VABS scheme for various attribute
policy sizes. The RSA and prime-order group modulus lengths are set as 2048 bits, and SHA256 and
DSA are used as the random oracle and the digital signature algorithm, respectively. In (a) and (b),
w. and w.o. denote “with” and “without”, respectively. The GlobalSetup and TraceSetup run locally.

on Sign, 8.3 kB on VABS size, and 32.9 ms on Verify, plus the costs for proving CL signature from
each tracing authority (the same as the additional costs of each attribute).

Bulk Update of Revocation Accumulators. Our optimization is due to the observation that
in “adding or deleting several values at once” recommended in [66], the costly operation needs to be
done only if gcd(ψ, σ̃id,k) 6= 1, which may occur in case ψ is a multiple of σ̃id,k since σ̃id,k is prime. Let
us approximate to the average frequency z of the costly operation to see the efficiency improvement.
Let Mj be Υ(λ) bits where Υ(·) is a polynomial, (for ease of calculation) ψ be randomly picked
from [0, 2Υ(λ)), and each σ̃id,k be a prime in the range [2, 2Υ(λ)). In this range there exists roughly
ϑ = 2Υ(λ)

/
ln 2Υ(λ) prime numbers, and the i-th prime number can be approximated as i ln i. Hence,

z ≈ 1

ϑ

(
2Υ(λ)

/
2

2Υ(λ)
+

ϑ∑
i=2

2Υ(λ)
/

(i ln i)

2Υ(λ)

)
<

1

ϑ

ϑ∑
i=1

1

i
<

lnϑ+ 1

ϑ
<

(Υ(λ) ln 2)2

2Υ(λ)
= n(λ)

where we have applied the Maclaurin-Cauchy test on the harmonic series. Thus, the check for
gcd(ψ, gĩdk) = 1 can be omitted by the users.
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A VABS Operations
GlobalSetup(1λ)→ params: This is an operation that takes place once in the setup phase of the scheme.
It takes as input a unary security parameter 1λ. It outputs global setup parameters params (which
is assumed to include 1λ for simplicity of the presentation). Note that depending on the application,
this can be run as an algorithm by a trusted party or as a multi-party protocol to avoid single point
of failures.

TraceSetup(params)→ ((tp1, ts1), . . . , (tpφ, tsφ)): This is an operation that takes place once in the
setup phase. It takes as input the global setup parameters params. It outputs the tracing key pair
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(tpi, tsi) for each tracing authority i, such that at least θ authorities are needed to trace the signer of
a given VABS.

IdPJoin(params) → (iis, iip, irs, irp0, skid, pkid): This is an algorithm that is executed by each
identity provider when it joins the system. The algorithm takes as input the global setup parameters
params. It outputs an identity provider issuing secret and public key pair (iis, iip), its revocation
secret key irs, its initial revocation public key irp0, and its digital signature key pair (skid, pkid).

AuthJoin(params) → (ais, aip, ars, arp0): This is an algorithm that is executed by each attribute
authority when it joins the system. The algorithm takes as input the global setup parameters params.
It outputs an authority issuing secret and public key pair (ais, aip), its revocation secret key ars, and
its initial revocation public key arp0.

UserJoin{User(iip, irpj , params), Identity provider(iis, iip, irpi, skid, pkid, params)} →
(s, σid, cert, wid), (irpi+1, σ̃id): This is a two-party protocol between a user and an identity
provider that takes place when the user joins the system. The identity provider starts by knowing the
global setup parameters params, its issuing secret and public key pair (iis, iip), its current revocation
public key irpi, and its digital signature key pair (skid, pkid), while the user knows the public values
iip, irpi, params. The protocol outputs to the user her secret key s, her global id σid, a certificate cert
that includes her personal user identity uid and some additional information (e.g., validity period),
and a witness wid for non-revocation, and to the identity provider its next revocation public key
irpj+1 and a revocation handle σ̃id for σid.

TraceIssue{User(s, cert, tp, w, irp, params),Tracing Authority(ts, tp, pkid, irp, params)} →
(σT ), (⊥): This is the tracing issue protocol that a user should run with each of θ tracing au-
thorities before being able generate traceable signatures. The tracing authority starts by knowing the
global setup parameters params, its tracing secret and public key pair (ts, tp), the identity provider’s
(i.e., the one that the user interacted with) digital signature public key pkid and the current revocation
public key irp, while the user knows her secret key s, her certificate cert, tp, the non-revocation
witness wid of her σid, and public values irp, params. The protocol outputs to the user her tracing
token σT .

AttrIssue{User(s, cert, ω, aip, arpj , wid, irp, params),Attribute Authority(ais,
aip, ω, pkid, arpj , irp, params)} → (σω, w), (arpj+1, σ̃ω): This is the attribute issuing operation
executed jointly by an attribute authority and a user. As inputs, the authority starts by knowing
the global setup parameters params, its issuing secret and public key pair (ais, aip), the attribute
ω to be given to the user, its current revocation public key arpj , the identity provider’s digital
signature public key pkid and its current revocation public key irp (i.e., the provider with whom the
user ran the UserJoin protocol), while the user knows a user secret key s, her user certificate cert,
ω, the non-revocation witness wid of her global id σid, and the public values aip, arpj , irp, params.
The protocol outputs to the user an attribute token σω and the non-revocation witness wω for the
attribute, and to the authority its next revocation public key arpj+1 and a revocation handle σ̃ω for
the issued attribute token.

Sign(m, s, β, σid, wid,Σβ ,Wβ ,ΣT , IIP, IRP,AIP,ARP, TPφ, t, J, n, params)→ µ: This is the sign-
ing algorithm that is executed by a user. It takes as input a message m, a secret key s, an attribute
policy β, a global id σid, a non-revocation witness wid for σid, an attribute token set Σβ that proves
that the owner of s conforms to the attribute policy β, a set Wβ of non-revocation witnesses of those
attributes, a set ΣT of the θ tracing tokens, the issuing public key set IIP and the revocation public
key set IRP of all identity providers, the issuing public key set AIP and the revocation public key set
ARP of all authorities that can issue the attributes in β, the tracing public key set TPφ of all tracing
authorities, the time period indicator t, a signature counter J , the allowed number n of the legitimate
signatures by a user in a time period, and the global setup parameters params. The output of the
algorithm is a VABS µ (including the tracing tag Φ) on m. At the end of each algorithm run, the user
increments the counter J for validity of her next signature.

Verify(m,µ, β, IIP, IRP,AIP,ARP, TPφ, t, SDBj , n, params) → (b, SDBj+1): This is the verifi-
cation algorithm that is executed by a verifier for a given signature. It takes as input a message m, a
VABS µ, an attribute policy β, the issuing public key set IIP and the revocation public key set IRP
of all identity providers, the issuing public key set AIP and the revocation public key set ARP of all
authorities that can issue the attributes in β, the tracing public key set TPφ of all tracing authorities,
the time period indicator t, the current signature database SDBj , the allowed number n of the legiti-
mate signatures by a user in a time period, and the global setup parameters params. The output of
the algorithm is a bit b. b is defined as 1, if the user’s global id is still valid (not revoked), the user
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has executed the TraceIssue operation with θ tracing authorities, signed attributes in µ conform to β
under AIP and has not been revoked in ARP , and there are no more than n− 1 signatures produced
with the same key that is used to sign m in the time period according to the SDBj . Otherwise, it is
defined as 0. If the algorithm output is 1, the signature database is updated by the addition of µ (i.e.,
SDBj+1 := SDBj ||µ). We usually make the database update output implicit.

UserRevoke(irs, irpj , σ̃id, params)→ irpj+1: This is the user revocation algorithm that is executed
by an identity provider for revoking a user from the system completely by making her global id invalid.
It takes as input the revocation secret key irs and the current revocation public key irpi, the user’s
revocation handle σ̃id, and the global setup parameters params. It outputs the new revocation public
key irpj+1.

AttrRevoke(ars, arpj , σ̃ω, params)→ arpj+1: This is the revocation algorithm that is executed by
an authority for revoking an attribute of a user. The inputs are the revocation secret key ars and the
current revocation public key arpj , the user’s revocation handle σ̃ω for the attribute ω, and the global
setup parameters params. It outputs the new revocation public key arpj+1.

Trace{for i = 1, . . . , 2θ − 1, Tracing Authorityi(µ, tsi, tpi, TDB, params)} → uid: This is the
tracing protocol that is executed by 2θ − 1 tracing authorities to reveal the signer of a VABS. Each
tracing authority i starts by knowing the global setup parameters params, a VABS µ, its own tracing
secret and public key pair (tsi, tpi), and the shared tracing database TDB. The protocol outputs to
each honest tracing authority the uid of the signer of µ.

B VABS Security Definitions
A VABS scheme Π = (GlobalSetup,TraceSetup, IdPJoin,AuthJoin,UserJoin,TraceIssue,AttrIssue,Sign,
Verify,UserRevoke,AttrRevoke,Trace) must satisfy anonymity, tracing reliability, signature unforgeabil-
ity, and soundness as security requirements. In all of our game-based definitions, given a VABS scheme
Π, a PPT adversary A, a challenger C, a unary security parameter 1λ, and a limit n for a time period
duration δ, the first 2 steps of the games are as follows:

1. C runs GlobalSetup and obtains the global setup parameters params. C then gives 1λ, n, δ, and
params to A. A is allowed to generate θ − 1 malicious tracing authorities, but is required to
give their public keys to C. C generates the rest of the tracing authorities so that φ− θ + 1 ≥ θ
of them honestly follow the protocol. All tracing authorities together run TraceSetup. If C can
detect any malicious behaviour by the tracing authorities under A’s control during this setup
phase, the game terminates and the game’s output is defined as 0. The time period counter t is
initialized as t := 1, and is started.

2. At any step in the games,
(a) A can generate polynomially-many identity provider and attribute authority keys, but is

required to give the public keys to C. A can also ask C to generate identity providers or
attribute authorities. Then, C would honestly generate them, and share their public keys
with A.

(b) A can generate polynomially-many users under its control or can ask C to generate honest
users, and has the ability to run for those users UserJoin with any identity provider or
AttrIssue with any attribute authority for any attribute ω. For all of the users generated,
A can request TraceIssue to be run. A can demand revocation of identity or any attribute
belonging to any of the generated users.

(c) A can adaptively request C to sign any message as any user under her control with any
attribute policy that the user satisfies.

(d) A can adaptively request jointly running the Trace protocol with tracing auhorities under
the control of C given any VABS as input.

(e) If A outputs any string to C other than what is explicitly expected from it in the protocol,
then C just ignores it.

Below we provide the individual security games. Our signature unforgeability and anonymity defi-
nitions are as strong as the ones of [21] (i.e., “strong full unforgeability” and “anonymity”), and the
differences are due to having a different authority architecture and adding the revocation feature.

Anonymity of a user is defined via the game VABSAnonymA,Π(λ):
3. C generates two secret keys s0 and s1. C runs UserJoin, TraceIssue, AttrIssue, and AttrRevoke for
s0 and s1 with authorities of A’s choice.
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4. A is given access to the signature oracles of both users: Sign(m̃, s0, β̃, σid,0,

wid,0, Σ̃β̃,0, W̃β̃,0,ΣT,0, IIP , IRP ,
˜AIP , ˜ARP, TPφ, t, J0, n, params) and

Sign(m̃, s1, β̃, σid,1, wid,1, Σ̃β̃,1, W̃β̃,1, Σ̃T,1, IIP , IRP ,
˜AIP , ˜ARP, TPφ, t, J1, n, params); where

(m̃, β̃) is chosen by A as part of its queries; σid,b, wid,b, and ΣT,b are the global id, its
non-revocation witness, and the tracing tokens for sb; IIP , IRP , and TPφ are issuing and
revocation public keys of identity providers and the public keys of the tracing authorities
(respectively); the value t is the current time, and 0 ≤ J0, J1 < n are the signature counters
(incremented with each signing within t and reset between time periods) for the corresponding
signing key. Other values with tilde sign are chosen by C as an honest signer would do.
Essentially, C sets ˜AIP and ˜ARP as the public keys of the authorities that can issue attributes
in β̃, Σ̃β̃,0 and W̃β̃,0 as the attribute tokens and non-revocation witnesses that are issued to s0

related to β̃, ˜AIP and ˜ARP as issuing and revocation public keys of all authorities known to C
that can issue the attributes in β̃. Each oracle stops responding to queries during a time period
when its counter J0/J1 reach n− 1.

5. A gives C an attribute policy β, and two messages m0 and m1 to C, when both J0 < n− 1 and
J1 < n− 1. If any of the counters is equal to n− 1, A loses. If there exists any missing attribute
tokens on s0 and s1 for conforming to β, C obtains them.

6. C picks a random bit b. C signs both messages as sb by running µ0 ←
Sign(m0, sb, β, σid,b, wid,b,Σβ,b,Wβ,b,ΣT,b, IIP , IRP ,AIP ,ARP, TPφ, t, Jb, n, params) and
µ1 ← Sign(m1, sb̄, β, σid,b̄, wid,b̄,Σβ,b̄,Wβ,b̄,ΣT,b̄, IIP , IRP ,AIP , ARP, TPφ, t, Jb̄, n, params),
where AIP and ARP are issuing and revocation public keys of all authorities known to C
that can issue the attributes in β, and Σβ and Wβ,b are the set of attribute tokens their
non-revocation witnesses for sb for proving β. The other values are set as before. C then gives
µ0 and µ1 to A.

7. A eventually returns a bit b′. The output of the game is defined as 1 (i.e., A wins), if b = b′ and
A has not asked any tracing authority under C’s control for participation in Trace of µ0 or µ1.
Otherwise, the output of the game is defined as 0 (i.e., A loses).

Definition 1 (Anonymity). A VABS scheme Π provides anonymity, if ∀n, δ ∈ poly(λ), PPT adversary
A, there exists a negligible function n(·) such that

Pr[VABSAnonymA,Π(λ) = 1] ≤ 1

2
+ n(λ)

Our reliable traceability definition ensures that tracing is done correctly as long as the ad-
versary controls at most θ − 1 tracing authorities. Our definition covers “traceability” of [21] and
“non-frameability” of [24], as long as θ tracing authorities are honest. Our notion implies “tracing
soundness” of [24] by requiring a single original signer per VABS that is deterministically traced. We
note that this is the first work that provides a compact tracing definition in the context of MA-ABS in
the presence of multiple tracing authorities, although in the context of group signatures “traceability”,
“non-frameability”, and “tracing soundness” definitions have been previously provided for distributed
tracing by [12].8 Consider the following game VABSTraceA,Π(λ):

3. The output of the game is defined as 1 (i.e., A wins), if for any VABS that verifies, at least
θ tracing authorities (therefore necessarily including honest ones) do not output the uid that
belongs to the original signer of the comprising VABS during any run of the Trace protocol.
Otherwise, the output of the game is defined as 0 (i.e., A loses).

Definition 2 (Reliable Traceability). A VABS scheme Π provides reliable traceability, if ∀n, δ ∈
poly(λ), for each PPT adversary A, there exists a negligible function n(·) such that

Pr[VABSTraceA,Π(λ) = 1] ≤ n(λ)

The signature unforgeability definition that we provide is similar to the unforgeability definition
of [18], and is even stronger than that by allowing the adversary to issue any attribute to a user while
the latter does not allow this. For our signature unforgeability definition, consider the following
signature unforgeability game VABSForgeA,Π(λ):

8Distributed tracing of [12] and our threshold tracing are different in that the former enforces all tracing authorities
to join the Trace operation, while the latter enables a settable threshold-many of them to execute Trace
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3. A is allowed to fully corrupt all φ tracing authorities.
4. A returns an attribute ω to C. ω must not be queried before as AttrIssue to the authorities under
C’s control for users under A’s control.

5. A is restricted in a way that if A queries to an authority oracle as AttrIssue with ω for users
under A’s control, ω is issued but is immediately revoked9.

6. A eventually generates a message m (not queried for signing to the users under C’s control for the
attribute policy β∧ω where β is any policy) and a VABS µ. The output of the game is defined as
1 (i.e., A wins), if Verify(m,µ, β ∧ ω, IIP, IRP,AIP,ARP, TPφ, t, SDB, n, params) = 1, where
IIP , IRP , AIP , ARP , and TPφ are the issuing and revocation public keys of all identity
providers, the issuing and revocation public keys of all attribute authorities that can issue the
attributes in β ∧ ω, and the public keys of all tracing authorities known to C. Otherwise, the
output of the game is defined as 0 (i.e., A loses). Note that this step enforces A to ask to C for
generation of at least one authority oracle to check for ω.

Definition 3 (Signature Unforgeability). A VABS scheme Π provides signature unforgeability, if
∀n, δ ∈ poly(λ), for each PPT adversary A, there exists a negligible function n(·) such that

Pr[VABSForgeA,Π(λ) = 1] ≤ n(λ)

The soundness definition that we provide is similar to the soundness definition of [1], but differs
slightly due to usage, i.e., ours limits the number of signatures by a party that is verified, while
the latter limits credential proofs per attribute. Formally, consider the following soundness game
VABSSoundA,Π(λ):

3. A is allowed to fully corrupt all φ tracing authorities.
4. The output of the game is defined as 1 (i.e., A wins), if A generates at least n+ 1 message and

VABS pairs within some time period for the same user s such that honest executions of the Verify
algorithm on at least n+ 1 of those pairs within the same time period output 1. Otherwise, the
output of the game is defined as 0 (i.e., A loses).

Definition 4 (Soundness). A VABS scheme Π provides soundness, if ∀n, δ ∈ poly(λ), for each PPT
adversary A, there exists a negligible function n(·) such that

Pr[VABSSoundA,Π(λ) = 1] ≤ n(λ)

C Security Proof of Our VABS
Theorem 1. If the Strong RSA assumption [1, 70] holds in the groups Z∗Ni and Z∗Mi

of each iden-
tity provider/attribute authority i and in the group Z∗Oi of each tracing authority i, the underlying
SoK schemes are secure (i.e., they satisfy completeness, soundness, and zero-knowledge properties of
zero-knowledge proofs of knowledge), Fg,s(x) = g1/s+x is a PRF with input x ∈ Z∗q , the digital sig-
nature scheme (DSKeyGen,DSSign,DSVerify) satisfies EU-ACMA [61], the TPKE scheme of [46] is
secure against chosen ciphertext attacks (CCA-secure), H(·) is modeled as random oracle, the trust
assumptions on the authorities hold, i.e., the identity providers/attribute authorities issue the tokens
only to deserving users and out of φ ≥ 2θ− 1 tracing authorities at most θ− 1 are malicious; then our
VABS scheme is secure (i.e., it satisfies anonymity, reliable traceability, signature unforgeability, and
soundness).

The security of the recommended SoK schemes and the pseudorandomness of the function Fg,s(x) =
g1/s+x are proven to be reducible to the Strong RSA assumption and the SDDHI assumption [1] holding
in 〈g〉. Further, the CCA-security of the TPKE scheme of [46] is reducible to the DDH assumption
holding in 〈g1〉. In what follows, we provide our full proof of Theorem 1.

Lemma 1. If the digital signature scheme (DSKeyGen,DSSign,DSVerify) satisfies EU-ACMA, the
underlying SoK schemes are zero-knowledge, and Fg,s(x) = g1/s+x is a pseudorandom function (PRF)
for x ∈ Z∗q , and the TPKE scheme of [46] is CCA-secure; then our VABS scheme achieves anonymity.

Proof. Assuming that the digital signature scheme (DSKeyGen,DSSign, DSVerify) satisfies EU-ACMA,
and the underlying SoK schemes are zero-knowledge, and the threshold encryption of [46] is CCA-
secure; we now reduce the anonymity of our VABS scheme to the pseudorandomness of Fg,s(x) =

9This is required to make sure that a user cannot use her revoked attributes
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g1/s+x. If a PPT adversary Â wins the anonymity game VABSAnonym with non-negligible advantage,
then we can utilize Â to construct a PPT algorithm B̂ that distinguishes Fg,s from a random function
f : Z∗q → 〈g〉 with non-negligible advantage. In the VABSAnonym game, Â and B̂ play the roles of A
and C, respectively. In the DistPRF game, B̂ plays the role of A against an honest challenger Ĉ. In
VABSAnonym, since we assume the security of the SoKs and the CCA-security of the TPKE scheme,
we give the control of the simulators for non-interactive proofs and the TPKE scheme to B̂; i.e., B̂
simulates SoKs for Â. Note that in the TPKE scheme of [46], B̂ can create a ciphertext by picking a
random group element for each of its four parts, and during the decryption, if B̂ knows a plaintext m,
using at least one authority under its control, it can simulate the partial decryption of that authority
so that overall the decryption outputs m.

1. In DistPRF, B̂ obtains 1λ, g, and q. Ĉ also gives to B̂ the oracle access to Fs(·) or f(·) (chosen
fairly at random).

2. In VABSAnonym, B̂ picks arbitrary h ∈ 〈g〉 and n, δ ∈ poly(λ), and gives to Â the values 1λ,
n, δ, and params = (q, 〈g〉, g, h). B̂ and Â then follow TraceSetup and publish the outputs as
described. The time counter t is initialized as 1, and is started (Step 1 of VABSAnonym).

3. In VABSAnonym, B̂ follows Step 2 of the game with Â in the exact same way as an honest C
would do.

4. In VABSAnonym, B̂ generates two user secret keys s0 and s1, and computes commitments to
these values using the authority public keys. B̂ gives to Â all the commitments to s0 and s1.
(Step 3 of VABSAnonym).

5. In VABSAnonym, a bit b is randomly picked by B̂ (normally an honest challenger picks this bit
in Step 6 of the game).

6. Â is given access to the Sign oracles for s0 and s1. However, the oracle outputs are ar-
ranged by B̂ as follows. If the Sign oracle for sb is queried with (m′, β̃′), B̂ queries the
oracle in DistPRF with t′2`cnt + Jb, obtains the oracle output S′, and then generates σ ←
(S′,CJb , ς

′, the simulation of Φ, the simulated SoKs on m′), where ς ′ � 〈g〉 is the commitment
simulation, and all the SoKs and the ciphertext Φ (so that it always traces to the signer) are
simulated. If Sign(·, sb̄, β̃, Σ̃Ω, ÃP , t, Jb̄) is queried with (m′, β̃′), B̂ itself picks S′ � 〈g〉 instead
of querying the oracle in DistPRF, and generates the other parts of the signature in the same
way as in sb. B̂ gives the oracle outputs to Â (Step 4 of VABSAnonym).

7. In VABSAnonym, Â generates β, m0 and m1, when both J0 < n− 1 and J1 < n− 1. Â generates
attribute tokens on s0 and s1 to prove that both users conform to β and gives those signatures
to B̂ (Step 5 of VABSAnonym).

8. In DistPRF, B̂ queries the oracle with t2`cnt + Jb, and obtains the oracle out-
put Sb. In VABSAnonym, B̂ sets σ0 := (Sb,CJb , ς1, the simulation of Φ, the simulated SoKs on
m0, A) and σ1 := (Sb̄,CJb̄ς2, the simulation of Φ, the simulated SoKs on m1, A) where Sb̄ � 〈g〉,
ς1, ς2 � 〈g〉 are commitment simulations, and all the SoKs are simulated (Step 6 of VABSAnonym).

9. In VABSAnonym, Â eventually outputs a bit b′ (Step 7 of VABSAnonym). If b = b′, in DistPRF,
B̂ outputs Fg,s. Otherwise, B̂ outputs f .

In both σ0 and σ1, the only values where Â can make the differentiation are Sb and Sb̄, since the Peder-
sen commitment scheme is information theoretically hiding, and SoKs and Φ are simulated. Moreover,
if the oracle in DistPRF is the random function f , then Sb and Sb̄ are also perfectly indistinguishable,
which implies that Â would not obtain non-negligible advantage from these values. If Â obtains non-
negligible advantage from these values, then the oracle is the pseudorandom function Fg,s. Let ε1 and
ε2 denote the advantages of the adversaries in VABSAnonym and DistPRF, respectively. Then, we have

Pr[Â wins VABSAnonym (i.e., b = b′)] =
1

2
+ ε1

Pr[B̂ outputs Fg,s| the oracle is Fg,s].Pr[B̂ outputs Fg,s| the oracle is f ] = ε2

Via the total probability law, we can write the first equality as

Pr[b = b′| the oracle is Fg,s].Pr[the oracle is Fg,s]+

Pr[b = b′| the oracle is f ].Pr[the oracle is f ] =
1

2
+ ε1

Also, since if b = b′, B̂ outputs Fg,s, and otherwise, it outputs f , we can convert the second equality as

Pr[b′ = b| the oracle is Fg,s]− Pr[b′ = b| the oracle is f ] = ε2
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Combining the above two resulting equations, we obtain

(Pr[b′ = b| the oracle is f ] + ε2).Pr[the oracle is Fg,s]+

Pr[b = b′| the oracle is f ].Pr[the oracle is f ] =
1

2
+ ε1

Substituting 1/2 for both Pr[the oracle is Fg,s] and Pr[ the oracle is f ],

1

2
· (Pr[b′ = b| the oracle is f ] + ε2) +

1

2
· Pr[b′ = b| the oracle is f ] =

1

2
+ ε1

Pr[b′ = b| the oracle is f ] +
1

2
ε2 =

1

2
+ ε1

If the oracle is f , Â can win VABSAnonym with exactly 1/2 probability, since its views for both b = 0
and b = 1 are statistically identical. Thus, 1

2ε2 = ε1 and if Â wins VABSAnonym with non-negligible
advantage ε1, then B̂’s advantage ε2 in DistPRF is also non-negligible. Since ε2 is negligible if the PRF
is indistinguishable from random, so must ε1 be, showing our VABS provides anonymity.

Lemma 2. If the digital signature scheme (DSKeyGen,DSSign,DSVerify) satisfies EU-ACMA, the
Strong RSA assumption holds in the group Z∗Oi of each tracing authority i, the TPKE scheme is CCA-
secure (due to DDH assumption holding in 〈g1〉), and the underlying SoK schemes are sound; then our
VABS scheme achieves reliable traceability.

Proof. Assuming that the digital signature scheme (DSKeyGen,DSSign, DSVerify) satisfies EU-ACMA
and all the underlying SoK schemes satisfies soundness and the DDH assumption holds in 〈g1〉, we
now reduce reliable traceability of our VABS scheme to the Strong RSA assumption that should hold
in all Z∗Oi of tracing authorities. If a PPT adversary Â wins the reliable traceability game VABSTrace

with non-negligible advantage, then we can utilize Â to construct a PPT algorithm B̂ that breaks
unforgeability of the CL signature of at least one authority with non-negligible advantage. Since [42]
already showed that their signature scheme is unforgeable under the Strong RSA assumption, B̂ can
be utilized to break the Strong RSA assumption in at least one tracing authority group. In the game
VABSTrace, Â and B̂ play the roles of A and C, respectively. In the CLSignForge game (described in
the proof of Lemma 4), B̂ plays the role of A against an honest challenger Ĉ. B̂ extracts SoKs of Â so
that if Â needs to generate SoK[m]{ξ : ξ satisfies ζ}, B̂ learns the witness ξ in addition to the message
m and condition ζ, and only checks whether ξ satisfies ζ.

1. In CLSignForge, B̂ obtains 1λ.
2. In VABSTrace, B̂ runs GlobalSetup on 1λ and obtains params = (q,G, g, h). Also, it picks

arbitrary n, δ ∈ poly(λ), and gives 1λ, n, δ, params to Â. B̂ and Â then follow TraceSetup and
publish the outputs as described. The time counter t is initialized as 1, and is started (Step 1 of
VABSTrace).

3. In VABSTrace, B̂ follows Step 2 of the game with Â in the exact same way as an honest C would
do, except for one of the tracing authorities (picked randomly by B̂) under B̂’s control. For that
authority only, B̂ acts as follows. In CLSignForge, B̂ obtains the public key p. B̂ gives p to Â as
the CL public key part of the public key of that authority (TPKE public key part is prepared as
in the honest way). If Â asks to involve the tracing authority with public key p in a TraceIssue
execution, then B̂ queries to the signing oracle in CLSignForge, receives the output and returns
it to Â. Otherwise, B̂ signs the message with the secret key of the queried authority itself.

4. In VABSTrace, Â eventually gives a VABS to B̂ (Step 3 of VABSTrace). If Â wins, B̂ extracts the
SoK6+k query for that VABS to obtain the CL signature σCL that Â utilized.

5. In CLSignForge, B̂ outputs σCL.
Clearly, the only way that Â wins VABSTrace is via forging a CL signature with non-negligible

probability. Since one of the generated signatures would correspond to the authority p with non-
negligible probability (i.e., at least 1/K where K ∈ poly(λ) is the number of the tracing authorities),
B̂ also wins CLSignForge with non-negligible probability.

Lemma 3. If the identity providers are honestly randomize the secret keys, and H(·) is modeled as
random oracle; then the probability that different users can combine their attribute tokens is negligible.
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Proof. In our scheme, users i and j with secret keys si and sj can combine their attribute tokens for
the attributes ωk and ωl, only in three different cases: (1) si = sj , (2) the equality si = sj + H(ωl)
holds for some si 6= sj and the user attribute authority is permitted to issue attribute ωl, and (3) the
equality si + H(ωk) = sj + H(ωl) holds for some si 6= sj and some ωk 6= ωl. Our scheme does not
allow any collusion in any other case, since CL signatures are only generated on these values and do
not permit combining. Therefore, it will be sufficient to show that the probability that there exists
two different users with secret keys si and sj , and two different attributes ωk and ωl, such that at least
one of the cases (1), (2), and (3) holds is negligible. Let Γ, Ψ, η and ϕ denote the set of the secret keys
s in the system, the set of attributes ω in the system, the number of elements of Γ, and the number
of elements of Ψ, respectively. Note that the number of users and attributes can be considered as
bounded by a polynomial poly(λ). If the identity providers are honest, and randomize the user secret
keys, each user key si, sj , and their difference si−sj is statistically identical to picking randomly from
Zq. Also, as H(·) is modeled as a random oracle, each randomized attribute H(ωk), H(ωl), and their
difference H(ωk) −H(ωl) is statistically identical to picking randomly from Zq. Since the number of
elements in Zq is q, for cases (1), (2), and (3), we calculate

Pr[∃si, sj ∈ Γ s.t. si = sj , i 6= j] = 1−
η∏
x=2

(
1− x− 1

q

)
= O(η2/q),

Pr[∃si, sj ∈ Γ,∃H(ω) ∈ Ψ s.t. si = sj +H(ω), i 6= j] ≤ 1−
(

1− ϕ

q

)2·(η2)
= O(η2ϕ/q),

Pr[∃si, sj ∈ Γ,∃H(ωk), H(ωl) ∈ Ψ s.t. si +H(ωk) = sj +H(ωl),

i 6= j, ωk 6= ωl] ≤ 1−
(

1−
(
ϕ
2

)
q − 1

)2·(η2)
= O(η2ϕ2/q).

From the above, we calculate the probability ε of at least one of the above three events occuring as
at most the addition of them, i.e., ε = O(η2/q)+O(η2ϕ/q)+O(η2ϕ2/q) = O(η2ϕ2/q). Since q ∈ Θ(2λ)
and η, ϕ ∈ poly(λ), we deduce that ε is a negligible function of λ.

Lemma 4. If the Strong RSA assumption [1, 70] holds in the groups Z∗Ni and Z∗Mi
of each identity

provider/attribute authority i, logg h is not deducible by any party (due to the DDH assumption in
〈g〉), the underlying SoK schemes are sound, and the underlying hash function H : {0, 1}∗ → Zq is
modeled as a random oracle; then our VABS scheme achieves signature unforgeability.

Proof. Assuming that logg h is not deducible by any party, and that all the underlying SoK schemes
satisfy soundness, and that H is modeled as a random oracle, we now reduce signature unforgeability
of our VABS scheme to the Strong RSA assumption that should hold in all Z∗Ni and Z∗Mi

of identity
providers and attribute authorities. We also assumue that non-revocation witnesses are unforgeable
due to the Strong RSA assumption [66]. If a PPT adversary Â wins the signature unforgeability game
VABSForge with non-negligible advantage, then we can utilize Â to construct a PPT algorithm B̂ that
breaks the unforgeability of CL signature of at least one authority non-negligible advantage. Since
forging CL signatures imply breaking the Strong RSA assumption as shown in [42], B̂ can trivally
be utilized for constructing a PPT algorithm that breaks the Strong RSA assumption in at least one
attribute authority group. In the game VABSForge, Â and B̂ play the roles of A and C, respectively. In
the CLSignForge game (the CL signature equivalent of the conventional EU-ACMA game for signatures
as described as Sig-forge in [61]), B̂ plays the role of A against an honest challenger Ĉ. Briefly, in
CLSignForge, given a security parameter λ, a CL public key p and access to the related CL signing
oracle, the adversary wins by computing a message m and a signature σCL on it that gets verified by
the public key p, subject to the restriction that m cannot be previously queried to the oracle.

We start by replacing H with a random oracle under control of B̂ and accessible by Â. Also, B̂
extracts SoKs of Â such that if Â needs to generate SoK[m]{ξ : ξ satisfies ζ}, it needs to give the input
a message m, the information ξ, and condition ζ to B̂, who only checks whether ξ satisfies ζ.

1. In CLSignForge, B̂ obtains 1λ.
2. In VABSForge, B̂ runs GlobalSetup on 1λ and obtains params = (q,G, g, h). Also, it picks

arbitrary n, δ ∈ poly(λ), and gives 1λ, n, δ, and params to Â. B̂ and Â then follow TraceSetup
and publish the outputs as described. The time counter t is initialized as 1, and is started (Step
1 of VABSForge).
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3. In VABSForge, B̂ follows Step 2 of the game with Â in the exact same way as an honest C would
do, except for one of the attribute authorities (picked randomly by B̂) that can issue ω under B̂’s
control generated after Â’s request. Note that according to the game definition Â must request
at least one attribute authority (see Step 5 of VABSForge) for verification of ω. For that authority
only, B̂ acts as the Steps 6 and 8 of this proof below. If there are multiple such authorities, B̂
picks one randomly reducing its chance only inverse polynomially.

4. Â is allowed to corrupt all φ tracing authorities (Step 3 of VABSForge.
5. In VABSForge, Â returns an attribute ω (that is not queried to the authorities under B̂’s control

for users under Â’s control (Step 4 of VABSForge).
6. In CLSignForge, B̂ obtains the public key p. B̂ gives to Â as one of the public keys of authorities

under B̂’s control (Step 5 of VABSForge).
7. In VABSForge, for each si queried for the attribute ω by Â that verifies in the checks of the

previous step, B̂ itself picks a random value %, sets it as the query output to the random oracle
for ω, and sets mi = si + %.

8. In VABSForge, if Â queries the authority oracle for p, then B̂ queries mi to the signing oracle in
CLSignForge, receives and gives the output to Â. Otherwise, B̂ signs the message with the secret
key of queried authority itself.

9. In VABSForge, Â eventually outputs (m,β ∧ ω, σ) to B̂ (Step 6 of VABSForge). If Â wins, B̂
extracts the SoK3+i query for the winning µ, where i is the index of ω. B̂ then parses the related
SoK query from Â and using the SoK extractor B̂ obtains the CL signature σCL that Â utilized.

10. In CLSignForge, B̂ outputs σCL.
As shown in [1], Â cannot achieve a forgery in commitments with non-negligible probability, since

it cannot deduce logg h. Also, since SoKs are sound, Â cannot prove with non-negligible probabil-
ity without knowing the CL signatures. Since the non-revocation witnesses are also assumed to be
unforgeable, the only way that Â wins VABSForge is via forging a CL signature. Since the gener-
ated signature would correspond to the authority p with non-negligible probability (i.e., at least 1/K
where K ∈ poly(λ) is the number of the authorities), B̂ also wins CLSignForge with non-negligible
probability.

Lemma 5. If Strong RSA assumption holds in the group Z∗Ni of each identity provider i, and the
underlying SoK schemes are sound, then our VABS scheme achieves soundness.

Proof Intuition. The soundness proof of [1] covers our soundness proof, since we achieve this property
by limiting the use of the user secret key s via S, Cs, CJ and three SoKs (SoK1, . . . ,SoK3) related
to these serial number and commitments. The serial number S, and commitments Cs and CJ are
structured exactly the same as in [1]. The minor difference is that instead of ZKPoK protocols of [1],
the user proves the knowledge of the same information via SoKs (which provides the same security
guarantees in the random oracle mode) on the signed messages.
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