
Degree 2 is Complete for the Round-Complexity of Malicious MPC

Benny Applebaum∗ Zvika Brakerski† Rotem Tsabary†

Abstract

We show, via a non-interactive reduction, that the existence of a secure multi-party com-
putation (MPC) protocol for degree-2 functions implies the existence of a protocol with the
same round complexity for general functions. Thus showing that when considering the round
complexity of MPC, it is sufficient to consider very simple functions.

Our completeness theorem applies in various settings: information theoretic and computa-
tional, fully malicious and malicious with various types of aborts. In fact, we give a master
theorem from which all individual settings follow as direct corollaries. Our basic transformation
does not require any additional assumptions and incurs communication and computation blow-
up which is polynomial in the number of players and in S, 2D, where S,D are the circuit size and
depth of the function to be computed. Using one-way functions as an additional assumption,
the exponential dependence on the depth can be removed.

As a consequence, we are able to push the envelope on the state of the art in various settings
of MPC, including the following cases.

• 3-round perfectly-secure protocol (with guaranteed output delivery) against an active ad-
versary that corrupts less than a quarter of the parties.

• 2-round statistically-secure protocol that achieves security with “selective abort” against
an active adversary that corrupts less than half of the parties.

• Assuming one-way functions, 2-round computationally-secure protocol that achieves secu-
rity with (standard) abort against an active adversary that corrupts less than half of the
parties. This gives a new and conceptually simpler proof to the recent result of Ananth et
al. (Crypto 2018).

Technically, our non-interactive reduction draws from the encoding method of Applebaum,
Brakerski and Tsabary (TCC 2018). We extend these methods to ones that can be meaningfully
analyzed even in the presence of malicious adversaries.

1 Introduction

A secure multi-party computation (MPC) allows a collection of n parties to jointly compute a
function f of their joint inputs without leaking additional information other than the output. The
focus of this work is on the so-called “malicious” setting, where security should be guaranteed
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even if an adversary, that controls up to t parties, actively deviates from the protocol instructions.
Security is usually formalized using the ideal vs. real paradigm, essentially translating an adversarial
behavior in the protocol (the real model) into an indistinguishable behavior in a model where f is
computed by a trusted party (the ideal model). Various flavors of this notion have been considered
in the literature, but since our results apply in multiple settings we wish to keep the discussion
general at this point and not commit to a specific ideal model (however, we do focus on the case
where there are private channels between the parties).

A significant resource to optimize when designing an MPC protocol is the round complexity, the
number of communication rounds that are required in order to complete the protocol (as usual, we
assume simultaneous message transmission in each round). Efforts to minimize round complexity
started as soon as MPC was introduced [Yao86] and are receiving a lot of attention recently as well
(e.g. [GS17, GS18, BL18, ACGJ18a] and many others). A prominent approach to reducing round
complexity is tied to reducing the algebraic degree of the function to be computed.1 This can be
traced back to the work of Beaver, Micali and Rogaway [BMR90, Rog91] and to the randomizing
polynomials approach of Ishai and Kushilevitz [IK00, IK02]. The latter work is based on the
following paradigm: Reduce the task of securely computing the function f to the task of securely
computing a different function h, such that h has low algebraic degree, and such that the output
of h can be decoded to produce the appropriate output for f . Once such reduction exists, with
adequate security guarantees (as we elaborate below), one can focus on providing a secure MPC
protocol for h, a task that usually gets easier as the degree of h drops.

In this context, it is most desirable to present a non-interactive reduction. Such a reduction
yields a function h together with a set of (possibly randomized) local preprocessing function `i, and
a method to decode the value h(`1, . . . , `n) to recover the output of f . In terms of security, one
has to show that the protocol where each party computes `i locally, sends the value to a trusted
realization of h (“an h oracle”), and then performs the decoding of the output locally, is a secure
MPC protocol for computing f , respective to a security model specified in the proof.

The resemblance of the h-oracle-aided protocol to the “ideal model” described above allows to
compose the reduction with a secure implementation of h, resulting in a secure realization of f .
Since the reduction is non-interactive, the round complexity of the resulting protocol is the same
as the round-complexity of (the low degree function) h.

Given this paradigm, it is natural to ask how low can the degree of h be while still allowing
a reduction from any arbitrary f . It is not hard to verify that a linear (i.e. degree 1) h cannot
be used to compute general functions. However, the randomizing polynomials approach seems to
only imply h of degree 3.2 Recently, Applebaum, Brakerski and Tsabary [ABT18], showed how
to reduce any function to degree-2, but their reduction was only secure in a semi-honest setting,
where the adversary is required to follow the protocol (i.e. to compute the functions `i correctly
using a properly sampled random tape). Nevertheless, the [ABT18] reduction allowed them to
improve the round complexity of semi-honest MPC with perfect security and with honest majority
to the optimum of 2 rounds. The question whether there is non-interactive reduction to a quadratic
function in the malicious setting, and the implications of such reduction on the round complexity
of malicious MPC, remained open and is addressed in this work.

1In this work we consider the algebraic degree over the binary field. This is the common setting, but one could
consider working over other fields as well.

2It is known that general functions cannot be represented by degree-2 perfectly-private randomizing polynomi-
als [IK00]. The existence of statistically-private degree-2 randomizing polynomials has been open for nearly two
decades.
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1.1 Our Results

We show that in various settings, a non-interactive reduction to a degree-2 function is possible.
This means that it is sufficient to design protocols for degree-2 functions in order to optimize round
complexity. We then design round-optimal protocols by constructing round-efficient protocols for
degree-2 functions in some of these settings. Our results are all derived using a single “master
theorem”, which we believe can serve as basis for deriving additional results in other settings as
well. We elaborate on these contributions below.

A Master Non-Interactive Reduction (Section 4). The technical heart of our result is a
generic non-interactive “master reduction” from any function f to a degree-2 function h. Method-
ologically, we show how to convert any protocol Π for computing f (irrespective of round com-
plexity) into a non-interactive h-oracle-aided protocol Π̂ (we denote this by Π̂h), while preserving
the security properties of Π. Specifically, we show that any adversarial strategy in the h-oracle-
aided protocol can be (perfectly) simulated by an adversary against the protocol Π. In terms of
the ideal/real paradigm, we show that for any Π̂h adversary there exists a Π adversary with an
identical real model view. We believe that this could be an instrumental tool in constructing and
analyzing MPC protocols, since it allows to translate arbitrary protocols to ones that make a single
oracle call to a fairly simple function.

We note that the conversion between Π and Π̂h incurs a communication and computation
overhead that is polynomial in (roughly) the total computational complexity of Π (i.e. the sum
of computational complexities of all parties participating in Π throughout the execution of the
protocol) and exponential in the depth of Π (roughly the longest computational path between an
input and an output in the protocol). Therefore, if communication and computational complexity
are of importance, we must be careful to only apply our theorem on fairly “shallow” protocols Π.

Our master theorem generalizes the “multi-party randomized encoding” (MPRE) approach of
[ABT18], both in terms of theorem statement and in terms of techniques. The notion of h-oracle-
aided protocol converges in the semi-honest setting to MPRE, but allows to handle malicious
adversarial behavior whereas MPRE is by default a “passive” notion. Our master theorem, while
building on the techniques of [ABT18], also implies their MPRE result as a special case since a
semi-honest Π̂h adversary translates to a semi-honest Π adversary.

A Completeness Theorem (Section 5). To illustrate the power of our master theorem, we
show a non-interactive reduction from the task of computing an arbitrary function f to the task of
computing degree-2 functions, in the context of full security (guaranteed output delivery):

• A perfectly secure reduction, assuming more than 2/3 of the parties are honest.

• A statistically secure reduction, assuming more than 1/2 of the parties are honest.

• A computationally secure reduction, assuming more than 1/2 of the parties are honest, and
assuming the existence of one-way functions (that are used in a black-box manner).

All of those reductions incur a communication and computation overhead. In all reductions this
overhead is polynomial in the number of parties and in the size of the circuit computing f , and
in the first two reductions (i.e. without making computational assumptions) it is also exponential
in the depth of f . We note that these results are optimal in terms of the size of the adversarial
coalition achievable in each of these settings.
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Optimal Round-Complexity Results (Sections 6, 7). Finally, we obtain new protocols with
low round complexity for general functions in various MPC settings. We believe that numerous
results can be derived using our techniques. For concreteness, we focus on achieving perfect ma-
licious security with optimal round complexity (i.e. 3 round). We then consider the setting of 2
round protocols, where malicious security is not achievable, and instead show statistical security
with selective aborts, and (assuming one way functions) computational security with aborts. To
this end, we devise round-efficient protocols for degree-2 functions with different malicious security
guarantees and derive the following corollaries.

• Fully Malicious Security in Three Rounds (Section 6). For all f , there exists a 3
round protocol which is secure against fully malicious adversarial coalitions containing less
than 1/4 fraction of the parties. For NC1 the protocol is perfectly secure and for arbitrary
polynomial-time functions the protocol has computational security with black-box access to
one-way functions.

In both cases the protocol provides full security (i.e. no abort). This is the optimal round
complexity, as Gennaro et al. [GIKR02] showed that full security cannot be achieved in less
than three rounds even when the adversary is allowed to corrupt at most 2 players. Prior to
our work, it was known that general 3-round MPC with perfect security can be achieved with
security threshold of t = αn for some small (unspecified) constant α � 1/4 [GIKR01]. Our
protocol shows that the threshold can be improved to n/4.

• Security with Aborts in Two Rounds (Section 7). For all f , there exists a 2 round pro-
tocol (not requiring broadcast) which is secure with selective aborts3 against any adversarial
coalition containing a minority of the parties. For NC1 the protocol is statistically secure and
for arbitrary polynomial-time functions the protocol has computational security with black-
box access to one-way functions. This improves over the result of Ishai et al. [IKP10], that
achieve, in the same setting, security against an adversary that corrupts less than 1/3-fraction
of the parties.

We further show that in the computational setting (for polynomial-size functions) the proto-
col can be modified to be secure with (unanimous) aborts4 at the expense of using a broadcast
channel. A result with similar parameters was already shown by Ananth et al. [ACGJ18a].
Recently [PR18] showed that selective abort is the best possible security for two-round proto-
cols that only use secure channels. Concurrently and independently from our work, Ananth et
al. [ACGJ18b] presented a two-round protocol achieving statistical security with (unanimous)
abort. Contrary to our work, they do not propose a general framework and do not achieve
our general degree-2 completeness theorem or our results in the fully malicious setting.

1.2 Technical Overview

We now provide a high level overview of our techniques.

3Security with selective aborts is a notion where in the ideal model the adversary can prevent some of the honest
parties of his choice from learning the output.

4Security with aborts is a notion where in the ideal model the adversary can prevent either all or none of the
honest parties from receiving the output (but cannot allow only some of them to receive it). We specify “unanimous
aborts” in places where there is a risk of confusion with the aforementioned notion of selective aborts.
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Our Master Theorem. Recall that we want to show how to encode an arbitrary protocol Π by
an oracle aided protocol Π̂ that uses a quadratic oracle h, while preserving the security properties
of Π. As mentioned above, our techniques extend those of [ABT18] to the malicious setting.

In [ABT18], the authors consider the boolean circuit induced by an execution of the protocol Π,
with wires corresponding to the internal values computed by all parties throughout the protocols,
and gates that represent either local computation performed by a certain party, or a transmission
of a value from one party to another. Their encoding constitutes of an information-theoretic point-
and-permute garbled circuit [BMR90, Rog91, IK02] for this induced circuit. The encoding of Π
is a protocol where the parties jointly compute this garbled circuit using their inputs and local
randomness.

The randomness required for computing the garbled circuit is distributed between the parties in
a clever way that ensures that the garbled circuit can be written as h(`1, . . . , `n) for a quadratic h
and for values `i that only depend on the local input and randomness of each party. This allows to
derive a protocol encoding theorem for the semi-honest setting, where parties in Π̂ simply compute
their local `i and send these values to the h oracle. Garbled circuit security ensures that any
adversarial coalition can only learn from the garbled circuit their respective views in an honest
execution of Π (assuming that the `i values were computed correctly).

However, the aforementioned approach relies on the values `i being computed honestly. In
contrast, a malicious adversary in this Π̂ can compute the `i values belonging to the parties under
its control arbitrarily, and thus a-priori we are not guaranteed that h(`1, . . . , `n) is even a garbled
circuit at all, not to mention that it does not reveal “forbidden” values to the adversary.

Our main insight is that if the garbled circuit and the manner of distributing randomness
between parties are properly defined, such a malicious modification must lead to h(`1, . . . , `n)
being a secure garbled circuit, but one that does not encode an honest execution of Π. Instead,
h(`1, . . . , `n) can encode an execution of Π where the parties under the adversary’s control may
deviate from the protocol. In other words, any cheating strategy in the compiled protocol Π̂ (i.e.
some adversarial modification of the values `i controlled by the adversary) translates into some
cheating strategy against Π with the same adversarial coalition. Hence, Π̂ inherits the security
properties of Π. More details follow.

Let us first be more specific about the “partition of work” between the local functions `i and
the quadratic function h. The local function `i takes the input of the ith party xi, and two types
of random tapes which we denote si,αi. The function performs some (deterministic) preprocessing
on αi, producing prei(αi), and outputs (xi, si,αi, prei(αi)). Our adversary is allowed to arbitrar-
ily modify all of these values, let us examine the effects of such modification on each of these
components.

• Changing the value xi is equivalent to selecting a different input for the ith party, which
cannot be avoided in any model of secure computation.

• The random string si is used by h as shares for wire keys of the garbled circuit. The exact
functionality does not matter for this outline, but the important thing is that h XORs these
values among all parties. Thus, choosing si maliciously does not buy the adversary any
leverage, since h only uses the aggregate value (⊕isi), which is uniform from the adversary’s
viewpoint (so long as there is at least one honest party).

• The random string αi is used to produce mask bits for the values of the wires in the garbled
circuit. Essentially, the evaluation of a point and permute garbled circuit results in producing,
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for each wire of the circuit that was garbled, the value of this wire XORed with a random mask
bit. Crucially, the string αi contains the mask bits for the wires of the circuit whose values
party i is allowed to see. (The definition of the induced circuit for a protocol guarantees that
there is a disjoint partitioning of wires between the parties). Hence, an adversarial choice αi
gives the adversary no leverage. Such behavior can only hurt the privacy of the adversary’s
own wires, and has no effect on the privacy of honest parties.

• The crux of the matter is prei(αi). The preprocessing prei is in fact what allows to reduce
the degree of h to 2. A malicious adversary can certainly damage these computed values and
indeed effect the resulting garbled circuit. What we show next is that the damage of such
malleability is controllable. To explain, we go into a little more detail about the functionality
of prei.

Recall that each gate in the circuit to be garbled represents either a local computation by a
party or communication from one party to another. The function prei only computes on bits
in αi that are associated with inputs of local computation gates. For each such gate prei(αi)
contains four evaluations of the gate function (say NAND, w.l.o.g), on the four possible
inputs in a specific permuted order, where the permutation is determined by respective αi
bits. Specifically, the permutation is obtained by taking the canonical sequence 00, 01, 10, 11,
and XOR-ing it with the respective mask bits of the input wires of that gate.

The adversary might plug in 4 arbitrary bits instead of the correct values to be computed
by prei, regardless of the actual values it chose for the mask bits αi, and possibly depending
on any other value that the adversary might have. The crucial part of our argument is to
notice that any change in the preprocessing can equivalently be described as a change in the
gate function, e.g. computing OR instead of NAND, but executing this gate on the correct
mask bits. Once this is established, we can take a step back and notice that in fact, all that
the adversary can do by corrupting its prei(αi) values is equivalent to changing the garbled
circuit from one that corresponds to an honest execution of the protocol Π, to an execution
of Π where the parties that are controlled by the adversary change the functionality of their
local computation gates!

We conclude that even if the `i values controlled by the adversary are maliciously corrupted,
h will still output a garbled circuit which corresponds to an execution of Π, possibly with some
parties behaving dishonestly (the parties corresponding to the corrupted `i values). The security
of this garbled circuit (which follows from the fact that the wire keys and the mask keys for honest
parties remain random, as we described above) guarantees that the parties in Π̂h learn the exact
same information as they do in an execution of Π with the respective adversary (we use a perfectly
secure garbled circuit which implies that the adversary’s views in the two cases are identical).5

Lastly, we note that an additional modification to the [ABT18] approach is required in order to
handle broadcast channel, i.e. the possibility of a party to send a message to all other parties, such
that parties are guaranteed that the same message was sent to all. This is a useful component that

5In fact, the adversary in Π is somewhat weaker than a full malicious adversary. First, the adversarial parties
are required to have the same circuit topology as honest parties, since only gate functionality changes and not the
interconnection of gates. Second, the adversary cannot adjust the behavior of party i under its control based on a
message received by a different party j under its control during the execution of the protocol. We find this property
quite interesting and potentially useful, although we do not need to exploit it to derive the consequences in the cases
analyzed in this paper.
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aids in the design of maliciously secure protocols, and is not needed in the semi-honest setting (since
parties there follow the protocol specifications, so if a party is instructed to send the same value
to all others, that is what it will do). If the underlying protocol Π is one that uses broadcast, this
needs to be enforced by the “induced circuit” for which a garbled circuit is computed. Fortunately
this is easy to handle by generalizing the point-to-point transmission gates into fan-out gates with a
single input and multiple outputs. The way such gates are garbled guarantees that it is impossible
to produce an execution where the outputs are inconsistent (i.e. where different parties receive
different values).

The Completeness Theorem. Applying the master theorem is, on the face of it, straightforward.
Instantiating Π with a protocol that is secure in the malicious setting, should immediately imply
the theorem statement, and indeed the fraction of honest parties required exactly matches that
of best known malicious MPC protocols with many rounds. However, there is one caveat that
requires careful consideration. The encoding theorem induces a blowup in the communication
and computational complexity of the protocol Π̂, which is related to the size of the (information
theoretic) garbled circuit of the circuit induced by Π. In particular, the size of the garbled circuit
scales exponentially with the depth. We want to argue that our reduction scales with the properties
of the target function f to be be computed. Thus, for example, using an underlying Π whose depth
is (say) n times the depth of f will incur an exponential cost in the parameters of the reduction.
We thus carefully analyze existing protocols so as to guarantee that there exists Π where the depth
of the induced circuit only relates linearly to the depth of the function f being evaluated.

One observation that proves very helpful is that there is no need to encode local postprocessing
that takes place after all the messages has been sent. That is, given a protocol Π it is sufficient
to apply our master theorem on a truncated protocol Π′ in which the parties send all messages as
in Π, but instead of performing the final postprocessing computation they just output their view
in the execution. This modification leads to a much shallower circuit for our encoding theorem
and at the same time allows to achieve the required functionality and security. Functionality is
maintained since the postprocessing in the final step can be done on the output of the garbled
circuit evaluation, rather than being included in the garbled circuit itself. See Section 5 for more
details.

Optimal Round-Complexity Results. As explained above, these are achieved by plugging in
secure protocols for evaluating degree-2 functions in various models. Such protocols are usually
not made explicit in the literature (as computing degree-2 functions was not a major goal until
this work). However, known techniques do seem to become monotonously more round-efficient as
the degree drops. We apply modifications on top of existing methods in order to reduce the round
complexity to the very optimum.

Three-Round Protocols with Full Security. In Section 6 we implement MPC with full security
for degree-2 functions f via the following template:

1. Each party shares each of its inputs between all the parties using a sub-protocol for Verifiable
Secret Sharing (VSS).

2. Each party locally computes the degree-2 functionality f over its shares and gets a share of
the outputs. To enable this computation, the underlying secret sharing scheme has to be
2-multiplicative over the binary field.

3. The parties broadcast the result (after some randomization) and apply a correction procedure
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for handling malformed shares.

The template can be instantiated with different ingredients (e.g., for the VSS and for the recovery
step). The security and round complexity of the resulting protocol depend on the corresponding
properties of the underlying building blocks.

We instantiate the above template with the standard polynomial-based Shamir secret sharing
scheme [Sha79]. Gennaro et al. [GIKR01] showed that the sharing phase of this secret sharing
scheme can be perfectly realized (with full security) in 2 rounds for our security threshold. This
VSS natively supports secrets that are taken from a medium-size field of size at least n + 1, and
we show how to modify it into a binary VSS.6 Eventually, we get a 2-round binary VSS with the
guarantee that at the end of the sharing phase, the honest parties hold shares that are consistent
with some binary secret, even if the dealer was malicious. We observe that for our security threshold,
after the third round (in which the parties broadcast their shares of the output), the honest parties
can recover the output via the standard Reed-Solomon decoding algorithm.

Two-Round Protocols with Selective Abort. Here we rely on two results from [IKP10]. In
their work, they consider a weaker notion of security, Privacy with Knowledge of Outputs (PKO)7,
and show that:

1. Any r-rounds protocol with PKO security for functions in NC1 (resp. polynomial-size func-
tions) induces a r-rounds protocol with selective abort security for functions in NC1 (resp.
polynomial-size functions).

2. Any degree-2 function can be efficiently computed in two rounds with statistical PKO security
for threshold n/2, without a broadcast channel.

To complete the proof, we show that our completeness theorem maintains PKO security. This
turns to be somewhat subtle since, as we observe, PKO security is not always preserved under
composition. (See Section 7.1 and Appendix B for details.)

Two-Round Protocols with Abort. Lastly we use a modification from [PC12] which shows
how a 2-round protocol with SSA security for polynomail-size functions can be converted to a
2-round protocol with SA security of similar complexity and security guarantees, at the expense
of using a broadcast channel and one way functions. The general reduction, however, involves a
reduction to a functionality f ′ that invokes the signing algorithm of a digital signature scheme.
When instantiated with an arbitrary signature scheme, computing f ′ results in a non black-box
use of a one-way function. We observe that the transformation of [PC12] requires only one-time
secure signatures, and therefore can be instantiated with Lamport’s one-time signatures (cf. [Gol04,
Chapter 6.4.1]), in which the one-way function is used only in the key-generation and verification
algorithms, but not in the signing algorithm. See Section 7.2 for details.

6In particular, we use an extension field of GF(2), and add a mechanism that forces the adversary to use binary
inputs. Implementing this mechanism without increasing the round complexity is somewhat challenging, and for this,
we rely on some specific properties of the [GIKR01] scheme. See Sections 6 and A for details.

7Intuitively, this means that the correctness of honest parties may be violated, but the adversary is required to
“know” the (possibly incorrect) outputs of the honest parties. Formally, in the ideal model, the ideal functionality
first delivers the outputs of the corrupted parties to the simulator, and then receives from the simulator an output
to deliver to each of the uncorrupted parties.
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2 Preliminaries

In this section, we define Boolean circuits, multi-party protocols, oracle-aided protocols and security
for multi-party computation. Briefly, we consider an active non-adaptive rushing adversary that
may be computationally unbounded or computationally bounded (depending in the context) and,
unless stated otherwise, assume a fully connected network with point-to-point private channels and
a broadcast.

2.1 Boolean Circuits

In this work, we consider Boolean circuits containing two types of gates:

• A (p-ary) fan-out gate, sometimes denoted as a transmission gate, that has a single input and
p outputs, its functionality is to copy its input to all outputs.

• A local gate has two input wires and one output wire. It computes some arbitrary function
G : {0, 1}2 → {0, 1} (that can vary from one gate to the next).

For purposes of analysis, we define the depth of a p-ary transmission gate to be dlog pe, and
the depth of a local gate to be 1. The depth of a circuit C is the computed by considering the
cumulative depth of gates along each path from an input wire to an output wire in C, and taking
the maximum among all paths. The size of a circuit, m, is the number of wires in the circuit
(including input and output wires). We assume a topological ordering of the wires in [m].

We say that two circuit C1, C2 are topologically equivalent (or have the same topology) if they
are identical, except perhaps in the functions G associated with local gates.

2.2 Functionalities and Protocols

It will be convenient to treat functionalities and protocols as finite (fixed length) objects. The
infinite versions of these objects will be defined and discussed laster in Section 2.3. We continue
with a formal definition.

Notation. For any set T ⊆ [n], we denote T = [n]/T where n, which denotes the number of
players, will be clear from the context. For any sequence x = (x1, . . . , xn) and any S ⊆ [n] let x[S]
denote the ordered set {xi}i∈S .

Definition 2.1 (multi-party functionality). An n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n is
a (possibly randomized) function that maps a sequence of n inputs x = (x1, . . . , xn) to a sequence
of n outputs y = (y1, . . . , yn). If f sends the same output to all parties then we denote its output
as a scalar, i.e. we use the shorthand f : ({0, 1}∗)n → {0, 1}∗ and y = f(x1, . . . , xn).

Next we define a multi-party protocol in a non-asymptotic setting.
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Definition 2.2 (multi-party protocol, oracles). An n-party, r-round protocol Π is a tuple of n · r
boolean circuits {Cj,i}j∈[r+1],i∈[n] that correspond to the computation that party i in the protocol
performs before the j-th communication round (or after the last round if j = r + 1). Each Ci,j
(except for j = 1 and j = r + 1, see below) takes n input strings, and outputs n output strings.
The i′-th output of Cj,i is the message sent from party i to party i′ at round j of the protocol. If
i = i′ then the respective output is the state of party i after the j-th round of communication. We
therefore require that for all i, i′, j the i′-th output of Cj,i has the same length as the i-th input
of Cj+1,i′. In the first round of communication C1,i only takes one input xi to be interpreted as
party i-th input for the protocol, and possibly an additional random tape. In the last round of
communication Cr+1,i only has one output which should be interpreted as the output of party i in
the protocol, sometimes denoted yi. We let Mi denote the collection of circuits associated with party
i, i.e. Mi = (C1,i, . . . , Cr+1,i) and thus denote Π = (M1, . . . ,Mn). The view of the party in the
protocol contains its input, randomness and all messages it received during the execution.

Let h be an n-party functionality. A protocol Π with oracle h, which we denote by Πh, is one
that allows to replace some of the communication rounds with calls to the functionality h (i.e. the
circuits respective to this round each produce one output that is sent to the oracle h as input, the
outputs of h is then fed as a single input to the next round circuit).

A protocol with broadcast is one with access to the broadcast functionality that on input x =
(x1, . . . , xn) outputs x to all parties. More generally, the framework in this paper can handle any
oracle functionality that delivers the same output (originating from a designated party) to a subset
of parties. We note that in circuit terminology this can be described as Cj,i producing an output
associated with sets of parties rather than a single party.

A non-interactive h-oracle-aided protocol is one that consists only of a single round of oracle
call, and no other communication between the parties.

Consistently with the above formal description, we often refer to Mi as an interactive circuit
that sends and receives messages (and maintains a state throughout the execution), until finally
producing an output after the r-th round of communication.

2.3 Correctness and Security of Protocols

Security of multi-party computations is analyzed via the real vs. ideal paradigm. The real model
captures the information that can be made accessible to the adversary in an actual execution of
the protocol, which includes an arbitrary function of the view of the corrupted parties, as well
as honest parties’ input and output (but not their internal state during the execution). The ideal
model considers a case where the target functionality is computed using oracle access. The protocol
is secure if the view of every real adversary can be simulated by an ideal adversary.

We first define the notion of an adversary, note that we slightly deviate from the standard
notation and explicitly include the description of the set of corrupted parties as a part of the
definition of the adversary. This will be useful for stating our results. We also note that the current
definition is syntactic and non-asymptotic and does not address the adversary’s having an efficient
implementation.

Definition 2.3 (adversaries, the real model, ideal model). An adversary (A, T ) for an n-party
protocol Π = (M1, . . . ,Mn) consists of an interactive circuit A (sometimes called the adversarial
strategy), and a set T ⊆ [n]. The parties in T (resp. T ) are the dishonest (resp. honest) parties.
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The execution of Π with input x under (T,A) is as follows. The input to A is the set of inputs
x[T ] (the inputs for the parties in T ). In each round, A first receives all messages sent to parties
in T from parties in T , and then outputs messages to be sent to the parties in T from the parties
in T (i.e. A is rushing). At the end of the protocol A produces outputs on behalf of all parties in
T . The parties in T execute according to their respective prescribed Mi algorithms.

A semi-honest adversary is one in which A executes according to the parties {Mi}i∈T , and
outputs some function of the views of {Mi}i∈T in the protocol as the outputs of the parties in T .

The ordered sequence of outputs of all parties in the execution above is called the output of
the real-model execution and denoted REALΠ,T,A(x). The ideal-model is defined by considering the
trivial non-interactive f -oracle-aided protocol Υf in which each party simply sends its input xi to
the f -oracle, gets the output yi from the oracle, and terminates with this output. For an adversary
(A, T ) and vector of inputs x we denote the output of the ideal-model execution by IDEALf,T,A(x).

In the ideal-model with selective abort (SSA), the f -oracle first delivers the outputs of the
corrupted parties to the adversary, which then can decide for each uncorrupted party whether this
party will receive its output or a special abort symbol. The ideal-model with abort (SA) is similar
to SSA except that when the adversary decides to abort, all of the honest parties receive a special
abort symbol.8

Asymptotic versions. A sequence of functionalities F = {fκ}κ∈N is efficiently generated if there
exists a polynomial time algorithm that on input 1κ outputs a circuit that computes the n(κ)-party
functionality fκ. A sequence of protocols Π = {Πκ} is efficiently generated if there exists a poly-
nomial time algorithm that takes 1κ as input and outputs all circuits Cj,i associated with Πκ. A
sequence of adversaries A = {Aκ} is (non-uniformly) efficient if there exists a polynomial p(·) such
that for every κ the size of the circuit Aκ is at most p(κ). We often abbreviate “efficient func-
tionality/protocol/algorithm” and not refer to the sequence explicitly. Throughout this work, we
will be concerned with constructing efficiently generated protocols for efficiently generated function
ensembles. In fact, our results (implicitly) give rise to a compiler that efficiently converts a finite
functionality into a finite protocol.

Definition 2.4 (correctness and security of protocols). Let f = {fκ} be an n(κ)-party functionality
and Π = {Πκ} a (possibly oracle-aided) n(κ)-party protocol. We say that Π t(κ)-securely computes
f if for every probabilistic non-uniform algorithm A = {Aκ} and every infinite sequence of sets {Tκ}
where Tκ ⊆ [n(κ)] is of cardinality at most t(κ), there exists a probabilistic non-uniform algorithm
B = {Bκ} and a polynomial p(·) so that the complexity of Bκ is at most p(|Aκ|), such that for every
infinite sequence of inputs {xκ}, the distribution ensembles (indexed by κ)

IDEALfκ,Tκ,Bκ(xκ) and REALΠκ,Tκ,Aκ(xκ)

are either identical (this is called perfect security), statistically close (this is called statistical se-
curity), or computationally indistinguishable (this is called computational security). In the latter
case, A is assumed to be asymptotically efficient.

Note that for an efficiently generated protocol it follows from the definition that the number of
parties n, and the input lengths are polynomial in the security parameter κ.

8The terminology of “security with abort” and “security with selective abort” is borrowed from [IKP10] and [PC12]
and it corresponds to the notions of “security with unanimous abort and no fairness” and “security with abort and
no fairness” from [GL02].
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Definition 2.5 (secure reductions, non-interactive reductions). If there exists a secure h-oracle-
aided protocol for computing f , we say that f is reducible to h. If the aforementioned oracle-aided
protocol is non-interactive (i.e. only consists of non-adaptive calls to h) we say that the reduction
is non-interactive.

Appropriate composition theorems, e.g., [Gol04, Thms. 7.3.3, 7.4.3], guarantee that the call to
h can be replaced by any secure protocol realizing g, without violating the security of the high-level
protocol for f . (In the case of computational security the reduction is required, of course, to be
efficient.)

3 Building Blocks

In this section we define building blocks that rely on previous works and will be used for our
master theorem in Section 4. Circuit representation of protocols is defined in Section 3.1, and our
presentation of point and permute garbled circuits follows in Section 3.2.

3.1 Circuit Representation of a Protocol

Recall that a protocol Π = (M1, . . . ,Mn), is a sequence of interactive circuits. It will be convenient
to collapse all these circuits to a single “circuit representation” of a protocol. (A similar abstraction
appears in [ABT18], but some of the details differ, e.g., the treatment of fan-out gates which are
needed for handling protocol that employ broadcast.)

Informally, we consider the computation of all parties throughout the protocol as parts of one
large computation. Each wire of the new circuit is associated with an index corresponding to the
party in the protocol that computes this value. This includes the local computations performed
by parties throughout the protocol, which are represented as gates whose inputs and outputs are
associated with the party who is performing the local computation, and also message transmissions
between parties, that are modeled as gates that simply copy their input to the output, where the
inputs are associated with the sender and outputs are associated with the receiver.

Our definition only considers circuits corresponding to deterministic protocols. This is both for
the sake of simplicity (since we can always consider parties’ randomness as a part of their input)
and since we will only apply this definition to deterministic protocols in our results.

Definition 3.1 (Circuit Representation of a Protocol). The circuit representation of a determin-
istic n-party protocol Π is a pair (C,P ), where C is a Boolean circuit of size m as defined in
Section 2.1, and P : [m]→ [n] is a mapping from the wires in C to the n parties.

Given a protocol Π = (M1, . . . ,Mn), the circuit C and the mapping P are defined as follows.

1. Recalling Definition 2.2, Π consists of a sequence of circuits Cj,i which represent the local com-
putation of party i before the j-th round of communication (and a final circuit Cr+1,i for the
local computation after the last round of communication), we call this the j-th computational
step of the protocol.

2. All input wires of sub-circuits that correspond to the first step in the protocol are defined
as input wires of C. All output wires of sub-circuits that correspond to the last step in the
protocol are defined as outputs wires of C.
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3. The input wires representing the input state of Cj,i are connected to the wires representing
the output state of Cj−1,i via a unary transmission gate. That is, the state of party i in the
beginning of computation step j is identical to its state in the end of computation step j − 1.

4. If party i expects a message in step j from party i′, then the respective output wire of Cj−1,i′

is connected to the respective input wire of Cj,i via a unary transmission gate. If party
i0 was supposed to send some value via broadcast to multiple parties i1, . . . , ip then a p-
ary transmission gates connects the respective output wire in Cj−1,i0 to the input wires in
Cj,i1 , . . . , Cj,ip.

5. Note that by the description above, the set of wires in C is exactly the union of wires of all
circuits Cj,i. The mapping P associates with party i the wires of circuits Cj,i, for all j.

We note that this description implies that for any local gate, all inputs and outputs have the same
association. We say that a local gate g belongs to player i if all g-adjacent wires are associated
with i.

The following is an observation that will be useful for our construction. Essentially it says that
if we switch some of the gates that belong to some party with different gates, then the resulting
circuit still represents a protocol.

Lemma 3.1. Let Π = (M1, . . . ,Mn) be a protocol, and let (C,P ) be its circuit representation. Let
T ⊆ [n] be some set and let H be a subset of the local gates of T such that every gate in H belongs
to a party i ∈ T . Consider a circuit C ′ topologically equivalent to C, which is identical to C except
on the gates in H. Then (C ′, P ) is a circuit representation of a protocol Π′ = (M ′1, . . . ,M

′
n) with

the same round complexity and message pattern as Π, and where M ′i = Mi for all i 6∈ T .

Proof. This follows almost by definition. Define the sub-circuits C ′j,i of C ′ according to their
isomorphic counterparts in C. Since only local gates belonging to parties in T are changed, it
follows that C ′j,i = Cj,i for all j and for all i 6∈ T . Now define the party M ′i for i ∈ T to have the
functionality that in computation step j it runs the cub-circuit C ′j,i on its state from the previous
step and incoming messages, to produce the next state and outgoing messages. By definition (C ′, P )
is the circuit representation of Π′.

3.2 Point and Permute Garbled Circuits

We present an information theoretic variant of the point-and-permute construction of [BMR90,
Rog91]. Our variant extends the information theoretic garble circuits of [IK02] to handle (p-ary)
transmission gates as in Definition 3.1. In addition, we slightly modify the encoding and decoding
procedures, Encode and Decode, as follows. The encoding procedure Encode is decomposed into
two parts, Permute and Encrypt, where Permute shuffles the truth tables of each gate based only on
the mask bits α (and is independent from the randomness s that is being used to generate the gate
keys) and the second part Encrypt (for “Table encryption”) generates the encrypted gate tables
(based on all the randomness and on the outcome of the first part). We also modify the decoding
procedure so that it outputs the masked bits of all wires of the circuits (instead of outputting only
the un-masked bits of the outputs). We begin with a detailed description of the encoding and
decoding procedures, and continue by analyzing their properties.
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3.2.1 The Construction

Randomness of the encoder. The encoder Encode(C,x; s,α) takes as input a circuit C with
local and transmission gates, with m wires in total, as well as an input x for C and random tape
consisting of two strings: a vector α = (αj)j∈[m] ∈ {0, 1}m of masks (one for each wire), and a
vector of “wire keys” s = (s0

j , s
1
j )j∈[m]. The keys of the j-th wire s0

j , s
1
j ∈ {0, 1}ωj are of length ωj

which is defined recursively. If j is an output wire then ωj = 0. If j is an input wire of local gate
whose output wire is k, then ωj = 2(ωk + 1). If j is an input wire of a p-ary transmission gate
whose output wires are k1, . . . , kp then ωj =

∑
i∈[p](ωki + 1). By our definition of depth, the total

length of s, denoted by ωC = 2 ·
∑

j∈[m] ωj , is polynomial in m and 2d where d is the depth of C.
Lastly, if j is an input wire for a local gate and s is one of its wire keys, we let s[0], s[1] denote the
first and second half of s respectively.

The encoding. We now turn to the encoding procedure, which is divided into two parts, first
we compute a sequence Γ by running a subroutine Γ = Permute(C,α) (note that this subroutine
depends only on α and not on any of the other input values). Then we apply Encrypt(C,x, s,α,Γ),
which outputs the final encoding. The procedures are described below.

• The procedure Permute(C,α) operates as follows. For every local gate g in C, with input
wires c, d ∈ [m], compute the (ordered) set

Γg :=
{
γβc,βdg := G(αc ⊕ βc, αd ⊕ βd)

}
βc,βd∈{0,1}

(1)

where G : {0, 1}2 → {0, 1} is the function that the gate g computes. Let Γ denote the
(ordered) set {Γg}g for all local gates in C, output Γ.

• The procedure Encrypt(C,x, s,α,Γ) operates as follows. For every gate g in C, construct its
gate table Qg:

– If g is a local gate, with incoming wires c, d and outgoing wire k, the gate table of g
consist of four values. For every βc, βd ∈ {0, 1}, compute Qβc,βdg by setting γ := γβc,βdg

and computing:

Qβc,βdg︸ ︷︷ ︸
“ciphertext”

:=
(
sγk‖γ ⊕ αk

)︸ ︷︷ ︸
“message”

⊕ sαc⊕βcc [βd] ⊕ sαd⊕βdd [βc] .

One can view Qβc,βdg as a one-time pad ciphertext, encrypted using the wire keys of the
input wires.

– Transmission gates are treated analogously. That is, if g is a transmission gate g with
incoming wire c and outgoing wires k1, . . . , kp, the table of g consists of two values. For
every βc ∈ {0, 1}, set γ = βc ⊕ αc and define

Qβcg :=
(

(sγk1‖γ ⊕ αk1)‖ . . . ‖(sγkp‖γ ⊕ αkp)
)
⊕ sαc⊕βcc .

Finally, the encoding includes the sequence Q containing all gate table values Qβc,βdg , Qβcg , as
well as a sequence σ containing the wire keys and masked values (s

xj
j , xj⊕αj) for every input

wire j.
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Decoding. The decoding procedure Decode(Q,σ) takes as input a sequence of gate tables, and
pairs (sj , v̂j) for the input wires. It outputs a sequence v̂j for all j ∈ [m] by traversing the gate
tables in topological order. (Here we slightly deviate from the standard convention in randomized
encoding literature that the decoder outputs the unmasked values of the output wires.) This is
done by traversing the circuit from the inputs to the outputs as follows. For input wires j the pair
v̂j , sj is given explicitly the input. For an internal wire that is an output wire of a local gate g

with incoming wires c, d, this is done by using the masked bits v̂c, v̂d to select the ciphertext Qv̂c,v̂dg

and then decrypting (i.e., XOR-ing) it with sc[v̂d] ⊕ sd[v̂c]. The recovered value is then denoted
(sk, v̂k). Transmission gates are treated similarly: use the masked bit v̂c of the input wire to select
the ciphertext Qv̂cg and then XOR it with sc to obtain (ski , v̂ki) for i = 1, . . . , p.

3.2.2 Useful Properties

We first state properties of Encrypt that will be important for our purposes.

Proposition 3.2. The function Encrypt has algebraic degree 2 when written as a polynomial over
the binary field in its inputs.

Proof. This property is straightforward from the definition, since the only non-linear components
in Encrypt are ones that require making a selection of the form sz, where z is some variable from α
or Γ (or a linear shift thereof), such a value can be expressed as s0 ⊕ z · (s0 ⊕ s1), i.e. a quadratic
function. (Note that all β values are fixed and known whenever they are used.)

The next proposition follows by definition.

Proposition 3.3. The function Encrypt is only dependent on the topology of C and not on the
functionality G of local gates.

The following propositions (3.4, 3.5) have been proven multiple times in the garbled circuit
literature (cf. [IK02]).

Proposition 3.4 (Efficiency). For all C,x, s,α, where C if of depth d and size m, the computa-
tional complexity of Encode(C,x; s,α) is a fixed polynomial in m, 2d.

For every circuit C and input x, we define for all j ∈ [m] the value vj as the value that the wire
takes when evaluating C on x (in particular for input wires, vj = xj).

Proposition 3.5 (Correctness). For all C,x, s,α, setting z = Encode(C,x; s,α), and then {v̂j}j∈[m] =
Decode(z), it holds that v̂j = vj ⊕ αj.

In Section 3.3 we will prove the following, somewhat non-standard, simulation property of
garbled circuit. (The case where W is taken to be set of output wires corresponds to the standard
simulation property of information-theoretic garbled circuits.)

Proposition 3.6. There exists a ppt simulator Sim that takes as an input a circuit C, a subset
of wires W , and for every wire j ∈ W a mask-bit/intermidiate-value pair (αj , vj) ∈ {0, 1} × {0, 1}
such that the following holds. For every C,W and {αj}j∈W and every input x the random variable

Sim(C,W, {αj , vj}j∈W ),
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where the value vj is the value induced on the j-th wire of C by the input x, is distributed identically
to the random variable

Encode(C,x; s,α),

where s is uniformly random and α = {αj}j∈W ∪ {αj}j /∈W for a uniformly random {αj}j /∈W .

Recall that the outcome Γ of Permute(C,α) is a vector that is indexed by the gates of C where
for each gate g the entry Γg is a four-bit string as defined in Eq. (1). The following key lemma shows
that a corruption of some entries of Γ corresponds to applying Permute to a corrupted version of
the circuit C with the same randomness α.

Lemma 3.7 (Corruption Lemma). For all C,α, let Γ = Permute(C,α), let H be a subset of the
gates of C, and let Γ′ be a vector for which Γ′g = Γg for all gates g /∈ H. Then there exists a circuit
C ′ which is obtained from C by (possibly) modifying only gates in H, such that Γ′ = Permute(C ′,α).
Moreover, C ′ can be efficiently computed based on C,H, {Γ′g}g∈H and based on the values of the
masked bits αi for all wires i that enter the gates in H.

Proof. We define C ′ by modifying the H gates of the circuit C as follows. For all g ∈ H, consider
Γ′g = {γ′β1,β2}β1,β2∈{0,1}. Let α1, α2 denote the α values corresponding to the input wires of g.
Define a new gate functionality G′g : {0, 1}2 → {0, 1} as

G′(β1, β2) = γ′(β1,β2)⊕(α1,α2) .

The property Γ′ = Permute(C ′,α) follows by definition.

3.3 Proof of Proposition 3.6

We begin with the following standard proposition that captures the privacy property of garbled
circuits. Note that our Encode procedure as defined above does not release any of the α values in
the clear.

Proposition 3.8 (Simulation). Let (C(1),x(1)), (C(2),x(2)) be such that C(1), C(2) are topologically
equivalent. Then for uniformly random s,α, the random variables Encode(C(1),x(1); s,α) and
Encode(C(2),x(2); s,α) are identically distributed.

The following claim will be useful for deriving Proposition 3.6 below.

Claim 3.9. Let (C(1),x(1),α(1)), (C(2),x(2),α(2)) be such that C(1), C(2) are topologically equiv-
alent, and such that v(2) ⊕ y(2) = v(2) ⊕ y(2). Then, considering a uniformly random s, the
distributions Encode(C(1),x(1); s,α(1)) and Encode(C(2),x(2); s,α(2)) are identical distributed.

Proof. Let y(1),y(2), s(1), s(2) be uniform and independent, and define, for i ∈ {1, 2}, random
variables ζ(i) = Encode(C(i),x(i); s(i),α(i)). Then by Proposition 3.8, the two random variables
are identically distributed: ζ(1) ≡ ζ(2). We recall that by the definition of Decode, there exists
a deterministic function d s.t. d(ζ(i)) = v(i) ⊕ y(i). As for any deterministic function, we have
(ζ(1), d(ζ(1))) ≡ (ζ(2), d(ζ(2))), i.e. (ζ(1),v(1) ⊕ y(1)) ≡ (ζ(2),v(2) ⊕ y(2)). This implies that for any
value of y∗ it holds that (ζ(1)|v(1) ⊕ y(1) = y∗) ≡ (ζ(2)|v(2) ⊕ y(2) = y∗). That is, the conditional
distributions are identical.

Now set y∗ = v(1)⊕y(1) = v(2)⊕y(2), and notice that the random variable (ζ(i)|v(i)⊕y(i) = y∗)
is distributed identically to Encode(C(i),x(i); s,α(i)). The claim follows.
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We can now prove Proposition 3.6.

Proof of Proposition 3.6. The simulator Sim(C,W, {αj , vj}j∈W ) considers a circuit C ′ topologically
equivalent to C, but such that the values on the wires W are always fixed to the respective vj
regardless of the input. This can be done by fixing some of the local gates to always output the
desired values. This is possible since in v[W ], for any fan-out gate, the input and all outputs take
the same value. The simulator then samples random values for α′[W ], and creates α′ by merging
them with the values α[W ]. Finally it samples a random s′ and outputs z′ ← Encode(C ′,0; s′,α′).

Consider now z ← Encode(C,x; s,α), where s is uniformly random and α = {αj}j∈W∪{αj}j /∈W
for a uniformly random {αj}j /∈W . Recall that C,C ′ are topologically equivalent, so have the same
set of wires, and let vj , v

′
j denote the values of wire j in the executions C(x) and C ′(0) respectively.

We note that α[W ] = α′[W ], and that by the definition of C ′ it holds that v[W ] = v′[W ]. Since
α[W ], α′[W ] are uniformly random, it must be the case that v ⊕ α and v′ ⊕ α′ are identically
distributed. Invoking Claim 3.9 concludes the proof.

4 Our Master Theorem

We show how to convert any protocol Π for computing a functionality f (irrespective of round
complexity) into a non-interactive h-oracle-aided protocol Π̂h, where h is a quadratic function and
while preserving the security properties of Π. A formal statement follows.

Theorem 4.1 (Master Theorem). For every n-party protocol Π there exists an n-party non inter-
active oracle-aided protocol Π̂h and an L = poly(2d, n,m), where d (resp. m) is the depth (resp.
size) of the circuit representation of Π (see Definition 3.1), with the following properties.

1. Efficiency. The communication and computational complexity of Π̂h is at most L times
larger than that of Π.

2. Quadratic Oracle. The oracle h is a quadratic function.

3. Simulation. For every strategy Â acting on Π̂h, there exists a strategy A of complexity at
most L times larger acting on Π, such that for all T ⊆ [n] and for all x = (x1, . . . , xn),
the distributions REALΠ,T,A(x) and REALΠ̂h,T,Â(x) are identical. Furthermore, if Â is semi-

honest (i.e. follows the protocol) then so is A.

Note that the simulation property also guarantees that the functionality of Π̂ is the same as
that of Π since the outputs of honest parties is included in the real model distribution.

Remark 4.1. It suffices to prove Theorem 4.1 only for deterministic protocols Π, since for a
randomized protocol we can always consider Π to be the induced deterministic protocol where the
parties’ coins are treated as part of their input. Since our theorem quantifies over all inputs x,
this will also capture the case where part of the input (corresponding to the random tapes of the
randomized protocol) is uniformly sampled.

Remark 4.2. Interestingly, we are able to prove the theorem using strategies A that are somewhat
weaker than the most general conceivable malicious strategy, in the following sense. The colluding
parties can only communicate before the execution of Π starts. That is, they cannot change their
strategy in intermediate rounds of Π according to messages that were received by other parties in
the collusion, however they share their initial views after seeing their inputs and before the first
round begins.
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In the remainder of the section we prove Theorem 4.1. We note that Lemma 3.1 and Lemma
3.7 are new observations made in this work and they constitute a fundamental part of this proof.

Proof. As explained in Remark 4.1, we may assume that Π is deterministic. Our protocol essentially
computes the point-and-permute encoding (Section 3.2) of the circuit representation of the protocol
Π (Definition 3.1). The oracle h will correspond to the procedure Encrypt, and the Γ values are to
be precomputed by the parties. Details follow.

Let (C,P ) be the circuit representation of Π, and consider the computation Encode(C,x; s,α).
The protocol Π̂h is a non-interactive oracle-aided protocol, i.e. it contains a pre-processing step
where each party locally computes a message to send to the oracle, followed by an oracle response
and local post-processing.

• Preprocessing. Each party i, on input xi, samples a uniform vector si ∈ {0, 1}ωC (see the
description of Encode in Section 3.2 for the definition of ωC), and uniform values αj for all
j for which P (j) = i (i.e. for all wires “belonging” to player i). Then for each local gate g
that belongs to player i, the party computes the values Γg as in Eq. (1) (note that since g
belongs to i, then i possesses all α values required for this computation). Finally, player i
sends `i = (xi, si,αi,Γi) to the oracle h.

• Oracle. The oracle h takes all messages `i = (xi, si,αi,Γi). It concatenates all xi into a
joint input x for C, unites all αi into a vector α containing a value for every wire, and unites
all Γi into a single Γ containing a set Γg for every local gate g. Finally, it XORs the si values
into a single string s = ⊕isi. Note that all of these are linear operations.

Finally it computes z = Encrypt(C,x, s,α,Γ) and sends (the same) z to all parties as response
to their query.

• Postprocessing. Upon receiving z, each party i applies Decode(z) to obtain the sequence
v̂j for all j ∈ [m]. Then, for any output wire j belonging to party i, it computes v̂j ⊕ αj to
obtain the output value (recall that for a wire j belonging to party i, the value αj was locally
generated by party i and is therefore available for postprocessing). Its output contains the
collection of values on these output wires.

Properties 1, 2 in the theorem follow immediately from the properties of the point-and-permute
encoding (Propositions 3.4 and 3.2). It remains to prove property 3.

Let (Â, T ) be an adversary for Π̂. Since Π̂ is non-interactive, then Â only gets to choose
the values `[T ] = {`i}i∈T based on the inputs x[T ], and then postprocess the oracle response z.
We can further simplify and consider w.l.o.g only adversaries Â that are deterministic (since our
simulation is perfect and therefore holds even conditioned on any random string) and do not perform
any postprocessing but instead just output z (since any postprocessing results in a deterministic
function of z, thus simulating z allows to simulate any such value).

Our Simulator. Our task is to produce an adversary (A, T ) for the original protocol Π with the
same real-model distribution as our (deterministic, no-postprocessing) Â. We assume throughout
that T 6= [n] (i.e. there exist honest parties) otherwise the result is trivial. The adversary A first
runs Â on x[T ] to obtain the values `[T ]. Let us denote by W all wires j s.t. P (j) ∈ T , i.e. all wires
that belong to parties controlled by the adversary (and W the complement set of wires), and by H
all local gates that are controlled by parties in T (and H the complement set of local gates). By
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parsing `[T ] appropriately, we derive the values x′[T ], α[W ] and Γ[H], namely all α and Γ values
associated with adversarially controlled parts of C. (Note that x′[T ] is not necessarily identical to
x[T ] since the adversary is allowed to “change its input”.)

By the Corruption Lemma (3.7) we can efficiently generate a circuit C ′ that is topologically
equivalent to C and only differs from it in local gates controlled by the adversary. By Lemma 3.1,
(C ′, P ) is a protocol representation of a protocol Π′ where all M ′i for i 6∈ T are the same as in Π,
but M ′i for i ∈ T might differ. The adversary A now sets each party i ∈ T to (honestly) execute the
protocol Π′ (i.e. the machine M ′i) using its respective input x′i. Since for honest parties Mi = M ′i , we
have that the parties jointly execute Π′ on input x′ = x[T ]∪x′[T ]. Notice that if Â is semi-honest
then Γ′ = Γ and thus C ′ = C, which, in turn, implies that Π′ = Π and therefore A is semi-honest
as well.

After the end of the execution of Π′, the parties under the adversary’s control do not return
their prescribed output in Π′. Instead, the adversary A collects the views of all parties under its
control, which correspond to the set of values v[W ], i.e. the values on the W wires of C ′ when
computed on x′ (however A does not know x[T ] or any of the values v[W ]). Lastly we apply the
simulator from Proposition 3.6, i.e. the adversary A executes Sim(C ′,W,α[W ],v[W ])→ z′ and sets
the outputs of all parties in T to be z′.

Proof of Simulation. It remains to show that indeed REALΠ̂h,T,Â(x) ≡ REALΠ,T,A(x). Let us fix

a value for x throughout the proof. Since we assume w.l.o.g that Â is deterministic, this also fixes
values for x′[T ], α[W ], Γ[H], and {si}i∈T . Recall that x′ = x[T ] ∪ x′[T ] (again a fixed value).

We start by noting that in REALΠ̂h,T,Â the parties in T all output the same value z, and in

REALΠ,T,A they all output the same z′. Letting y[T ] denote the output of T parties in REALΠ̂h,T,Â,

and y′[T ] denote the outputs of these parties in REALΠ,T,A, we conclude that our goal is to prove
that (y[T ], z) is distributed identically to (y′[T ], z′).

Consider the distribution (y[T ], z), and note that z = Encrypt(C,x′, s,α,Γ). The vector s is
random since it is XOR of all parties’ si and there exists at least one honest party that samples
its si uniformly. The vector α is the union of α[W ] and a uniformly sampled α[W ]. The vector
Γ, by Lemma 3.7, is equal to Permute(C ′,α). Since Encrypt only cares about the topology of its
input circuit (Proposition 3.3), then in fact

z = Encrypt(C,x′, s,α,Γ)

= Encrypt(C ′,x′, s,α,Γ)

= Encode(C ′,x′; s,α) ,

where the last inequality is because Encode by definition first generates Γ = Permute(C ′,α), and
then applies Encrypt.

Defining z in this way will allow us to show that the marginal distributions of y[T ] and y′[T ]
are both identical and in fact fixed (having fixed x, deterministic Â). To see this, first note that
by Proposition 3.5 (correctness of garbled circuit), y[T ] is determined by the values of the output
wires belonging to T parties in the evaluation of C ′ on x′. These values are determined by C ′,x′

regardless of randomness. Likewise, y′[T ] by definition is the output of the honest parties during
the execution of Π′ on x′, and since Π′ is represented by C ′, the output values are exactly the
output values of C ′. Lastly, z ≡ z′ since by Proposition 3.6

Encode(C ′,x′; s,α) ≡ Sim(C ′,W,α[W ],v[W ])
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where the randomness is taken over s, α[W ] and the coins of Sim. This finalizes the proof of the
theorem.

5 Completeness Theorems

In this section we prove that degree-2 functionalities are complete under non-interactive reductions.
We say that a protocol has a security loss of L if any viable real-world adversary A can be simulated
by an ideal-world adversary B whose complexity is at most L times larger than the complexity of
A. We prove the following theorem.

Theorem 5.1 (Completeness of quadratic functions). Let f be an n-party functionality computable
by a circuit of size S and depth D. Then there exists a non-interactive reduction from the task of
securely computing f to the task of computing a degree-2 functionality over F2. The reduction can
take any of the following forms:

1. Perfectly secure reduction with threshold of t =
⌈
n
3 − 1

⌉
and computational complexity and

security loss of poly(n, S, 2D).

2. Statistically secure reduction with threshold of t =
⌈
n
2 − 1

⌉
and computational complexity and

security loss of poly(n, S, 2D).

3. Assuming one-way functions, computationally secure reduction with threshold of t =
⌈
n
2 − 1

⌉
and computational complexity and security loss of poly(n, S). Furthermore, the reduction
makes a black-box use of the one-way function (as part of the preprocessing and postprocessing
phases).9

The protocols are employed over synchronous network with pairwise private channels and a
broadcast channel (which is our default setting). In all three settings, we require full security (in
particular, the adversary cannot abort the honest players). It is well known that in this case the best
achievable threshold is d(n/3)− 1e for perfect MPC (cf. [BGW88]) and d(n/2)− 1e for statistical,
or even computational, MPC [RB89]. Hence, the theorem achieves optimal security thresholds in
all three cases.

As usual in the context of constant-round information-theoretic MPC, our information-theoretic
protocols are efficient only for NC1 functionalities.10 Nevertheless, even for general functions, for
which our perfect and statistical reductions are inefficient, the result remains meaningful since the
protocols resist computationally unbounded adversaries.

5.1 Proof of Theorem 5.1

Proof outline. The proof of Theorem 5.1 is obtained in two steps. First, we reduce an arbitrary
Boolean computation f to a constant-degree computation f̂ over a medium-size finite field (Facts 5.2
and 5.3). Then, we show that, in each of the settings of Theorem 5.1, constant degree functionalities
can be computed by some low depth protocol Π. (This step is obtained by a careful implementation
of the classical protocols in each of this setting.) Finally, we plug Π into Theorem 4.1 and derive a
protocol Π̂h for f in the h-hybrid model for some degree-2 functionality h.

9In the computational setting, we let the circuit size S play the role of the security parameter, and assume that
n is at most polynomial in S.

10This can be slightly pushed to log-space computation via standard techniques.
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Fact 5.2 ([IKP10]). Let f be an n-party Boolean functionality computable by a circuit of size S
and depth D and let F be an arbitrary finite field. Then there exists a degree-3 functionality f̂ over
F so that f reduces to f̂ via a non-interactive perfectly secure reduction with security threshold of n.
The security loss and the computational complexity of the reduction (and of f̂) is poly(n, S, 2D, |F|).

Jumping ahead, since standard information-theoretic protocols operate natively over fields of
size larger than n, it will be convenient for us to instantiate Fact 5.2 with a field of size poly(n).

Sketch. For completeness we sketch the reduction of [IKP10]. (See Paskin’s thesis [PC12, Sec-
tion 3.5.3.4] for more details.) Define the arithmetic functionality f ′ which maps each input xi ∈ F
to x′i = x

|F|−1
i and then applies f on x′ = (x′1, . . . , x

′
n). Observe that f and f ′ agree on all

zero-one inputs. Moreover, the exponentiation makes sure that even if the adversary submits a
non-binary input xi ∈ F, the effective input x′i will be binary. As a result, it can be showed that f
non-interactively reduces to f ′ with perfect security for any threshold t.

Next, observe that f ′ can be computed by an arithmetic circuit over F of size poly(S, |F|)
and depth O(D + log |F|). The perfect randomized encodings of [IK02] allow us to reduce such
a functionality to a degree-3 functionality over F with complexity of poly(|F|, S, 2D) via a non-
interactive perfectly secure reduction with an optimal security threshold of n.

A computational variant of the above fact is implicit in the work of Damg̊ard and Ishai [DI05].

Fact 5.3 (implicit in [DI05]). Let f be an n-party Boolean functionality computable by a circuit of
size S. Then, assuming the existence of one-way functions, there exists a constant-degree function-
ality f̂ over F2 so that f reduces to f̂ via a non-interactive computationally secure reduction with
security threshold of

⌈
n
2 − 1

⌉
. The security loss and the computational complexity of the reduction

(and of f̂) is poly(n, S), and the reduction makes only a black-box use of one-way functions in the
preprocessing and postprocessing steps.

Next, we observe that classical protocols from the literature have low complexity when applied
to constant-degree functions.

Proposition 5.4. Let f be an n-party functionality computable by an arithmetic circuit of size S
with constant multiplicative degree over the field F = GF(2blogn+1c). Then, f has a perfectly secure
(resp., statistically secure) MPC protocol Π1 (resp., Π2) with security threshold of t =

⌈
n
3 − 1

⌉
(resp., t =

⌈
n
2 − 1

⌉
). The size of the circuit representation of Π1 and Π2 is poly(n, S) and the

depth is O(log(nS)).

Proof. The proof is obtained by employing classical protocols from the literature. For the perfect
case, we use the protocol of Ben-Or, Goldwasser and Wigderson [BGW88] (hereafter referred to
as BGW) as described in [AL17], and for the statistical case, we use the protocol of Damg̊ard
and Ishai [DI05, Appendix A] (hereafter referred to as DI) that builds on the work of Crammer
et al. [CDD+99]. We briefly explain how the protocols can be implemented with the desired
complexity.

Represent f as an constant-depth arithmetic circuit over F with addition gates of unbounded fan-
in and multiplication gates of fan-in two. Since both BGW and DI compute such an f in a constant
number of rounds, it suffices to show that the local computation in each round can be computed
by a Boolean circuit of size poly(n, S) and depth O(log(nS)). It can be verified that the local
computation in each round consists of two types of computations: (1) linear-algebraic computations
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(related to Shamir’s secret sharing); and (2) “control” computations (e.g., during the sharing and
reconstruction phases, players may raise “complaint” flags, count the number of such flags, and
check whether this number exceeds a given threshold). Computations of the second type can be
easily implemented by poly(n, S)-size circuits of depth O(log n) (the integers involved are always
poly(n)-bounded). We implement the linear-algebraic computations as follows. In both BGW and
DI, each party i is associated with a fixed public field element αi ∈ F. Since these elements do not
depend on the inputs, we can assume that all the first n powers of each αi are pre-computed and
are hardwired as part of the description of the protocol. Given these values, the linear-algebraic
computation of each party can be written as a constant degree multivariate polynomial over F with
poly(n, S)-many inputs (taken from the view of the party). Such polynomials can be computed
by a poly(n, S)-size Boolean circuit of depth O(log(nS)). (Indeed, since F is an extension field of
the binary field, addition over F can be trivially implemented by an NC0 Boolean circuit. Field
multiplication can be implemented by an AC0[⊕] circuit of size polylog(n) [HV06], and therefore
by a Boolean circuit of size polylog(n), depth log(polylog(n)) and bounded-fan gates.)

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Let f be an n-party functionality computable by a circuit of size S and depth
D. By Fact 5.2, f perfectly reduces to a degree-3 functionality f̂ over F = GF(2blogn+1c) via a
non-interactive reduction of computational complexity S′ = poly(n, S, 2D). Therefore, to prove the
theorem for the perfect and statistical cases, it suffices to show that f̂ non-interactively reduces to
a degree-2 functionality h with computational complexity of poly(S′). Indeed, by Proposition 5.4,
there exists a protocol Π that perfectly (resp., statistically) realizes f̂ with security threshold of
t1 =

⌈
n
3 − 1

⌉
(resp., t2 =

⌈
n
2 − 1

⌉
), computational complexity of poly(n, S′) and depth of d =

O(log(nS′)). By applying Theorem 4.1 to Π we get a degree-2 functionality h and an oracle-aided
protocol Π̂h with computational complexity poly(n, S′, 2d) = poly(n, S′). We prove that Π̂h realizes
f̂ with perfect security (resp., statistical security) and threshold of t1 (resp., t2).

Fix a subset T ⊂ [n] of size at most t1 (resp., t2) and let Â be a computationally unbounded
adversary against the protocol Π̂h that attacks the players in T . By Theorem 4.1, there exists an
adversary A that attacks T in Π such that for any input vector x, the random variables

REALΠ̂h,T,Â(x) and REALΠ,T,A(x)

are identically distributed. Additionally, by the security of Π1 (resp., Π2), for any such A there
exists an ideal-model adversary B attacking T such that for any input tuple x, the random variables

IDEALf̂ ,T,B(x) and REALΠ,T,A(x)

are identically distributed (resp., are statistically distributed). By the transitivity of statistical
distance, the claim follows.

We move on to prove the computational variant of the theorem. Let f be an n-party func-
tionality computable by a circuit of size S. By Fact 5.3, there is a non-interactive computation-
ally

⌈
n
2 − 1

⌉
-secure reduction from f to a constant degree functionality f̂ over F2 of complexity

poly(n, S). By the former analysis (Theorem 5.1 statistical setting), the functionality f̂ reduces
a degree-2 functionality h via a statistically secure non-interactive reduction with threshold of
t =

⌈
n
2 − 1

⌉
and computational complexity of poly(n, S). The theorem follows.
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6 Perfect Three-Round MPC

In this section we obtain a 3-round protocol with full security (i.e. no abort) for general functions.
Namely, we prove the following theorem.

Theorem 6.1 (Perfect 3-round MPC with threshold of quarter).

• Every NC1 functionality can be securely computed in 3 rounds with perfect security and thresh-
old of t =

⌈
n
4 − 1

⌉
.

• Given a black-box access to a one-way function, the above extends to arbitrary polynomial-time
functionalities at the expense of downgrading security to computational.

By item 1 and item 3 of Theorem 5.1, the design of such protocols reduces to the design of a
protocol with similar security properties for degree-2 functionalities. It therefore suffices to prove
the following proposition.

Proposition 6.2. Let f be an n-party functionality with complexity S and degree 2 (over the binary
field). Then f can be perfectly computed in 3 rounds with security threshold of t =

⌈
n
4 − 1

⌉
and

complexity of poly(n, S).

The proof of Proposition 6.2 appears in Section 6.1.

6.1 Proof of Proposition 6.2

VSS and friends. A key component in the proof is verifiable secret sharing (VSS) [CGMA85].
In such secret sharing schemes, even if the dealer acts maliciously while sharing the secret s, all
of the honest parties end up with shares that are consistent with some secret s′. We consider the
Shamir-based VSS for threshold t where n = 4t+1. The VSS will be implemented over an extension
field F of GF(2) of size at least n+ 1, e.g., F = GF(2blogn+1c). In particular, we will need 2-round
protocols that realize the following functionalities with perfect security and threshold of t.

• The functionality Shared in which a single designated party (denoted as the dealer) holds as
an input a degree d univariate polynomial P over F (whose zero coefficient s plays the role of
the secret) and all other parties have no input. The functionality delivers to the i-th party
the value s[i] = P (i).11 We refer to (s[1], . . . , s[n]) as a degree-d sharing of s. Note that
security guarantees that for any adversarial set T of cardinality at most t, after the execution
of Shared the outputs of honest parties, i.e. s[T ], lie on a single polynomial P ′ of degree d, and,
if the dealer is honest (i.e. not in T ) then P ′ = P . For every degree-bound d ≤ t, Gennaro et
al. [GIKR01] describe a 2-round n-party protocol that perfectly realizes Shared.

• The functionality Shared,0 which is defined similarly to Shared except that the free coefficient
of the dealer’s input polynomial P must be zero. This functionality will be employed with
degree d = 2t, and we can realize it in 2 rounds with perfect security and threshold t via the
following standard reduction to Sharet. The dealer decomposes her polynomial P (Z) into

t∑
j=1

ZjRj(Z) (2)

11As usual we assume that every i ∈ [n] is associated with some public distinct field element αi 6= 0 and, by abuse
of notation, we denote this element by i.
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where R1, . . . , Rt are degree t polynomial that are chosen uniformly at random subject to
the above constraint. Then the dealer shares each Rj via Sharet, and the i-th party gets
R1(i), . . . , Rt(i) and locally set his output to i1R1(i) + · · ·+ itRt(i).

• The functionality BinSharet which is defined similarly to Sharet except that the free coefficient
of the dealer’s input polynomial P must be zero or one. We realize this functionality in 2
rounds with perfect security and threshold t via a reduction to the Sharet protocol of Gennaro
et al. [GIKR01]. This reduction, described in Section A, is non-black-box and it relies on
some concrete properties of the protocol. (To the best of our knowledge this reduction has
not appeared in the literature.)

Given the above ingredients the protocol is quite straightforward. In particular, we rely on the
following two standard properties of polynomial-based secret sharing: (1) 2-multiplicative: If the
parties share the secrets (s1, . . . , sk) via a degree-d sharing then, for every degree-2 mapping f over
F, we can get a degree 2d-sharing of the secret f(s1, . . . , sk) by locally applying the degree-2 mapping
f to the shares of each party. (2) Noisy interpolation: Given N points (y1, . . . , yN ) ∈ FN with the
promise that there exists a degree-D polynomial P for which P (i) = yi for all but b(N −D)/2c
of i ∈ [N ], we can efficiently recover the polynomial P (and this polynomial is unique) via the
standard Reed-Solomon decoder.

The protocol. Let f be a degree-2 n-party functionality. We view f as a formal degree-2 polyno-
mial over F with 0-1 coefficients. For ease of notation, assume that each party holds a single input
xi, and that the functionality has a single output that is delivered to all parties. (The protocol can
be easily modified to handle the more general case.)

1. In parallel, every party i ∈ [n] that holds an input xi ∈ {0, 1} samples a random degree-t
polynomial Pi over F whose free coefficient is xi. The party invokes the 2-round protocol
that implements BinSharet as a dealer whose input is Pi. All parties receive the shares
(xi[1], . . . , xi[n]). In addition, every party i ∈ [n] chooses a random degree-2t polynomial Ri
whose free coefficient is zero and distribute it to all the parties using via Share2t,0.

2. Each party j computes f over its shares, i.e. f(x1[j], . . . , xn[j]) → y[j]. It then randomizes
the result by adding the value R1(j) + · · ·+Rn(j) and broadcasts the randomized share ỹ[i].

3. Each party interpolates a degree 2t polynomial Y which is consistent with at least n − t of
the points (ỹ[1], . . . , ỹ[n]), the party outputs the value Y (0).

Standard analysis (cf. [DI05, Section 2.2]) shows that the above protocol perfectly computes f
with threshold t.

7 Two-Round MPC with Abort

We move on to the case of two-round protocols. As already mentioned, even if a broadcast channel
is given we cannot hope for full security (or even fairness) when more than a single party is
corrupted [GIKR02]. We therefore consider two standard relaxations of security with abort. As
explained in Section 3, both notions are formalized by modifying the ideal-model in a way that
grants the adversary additional power. We repeat the definition for the convenience of the reader.

24



• Security with Selective Abort (SSA) allows the adversary to selectively abort some of the
honest parties (after the adversary learns his output). Formally, the ideal functionality first
delivers the outputs of the corrupted parties to the simulator, which then can decide for each
uncorrupted party whether this party will receive its output or a special abort symbol.

• Security with Abort (SA) allows the adversary to abort the honest parties even after the ad-
versary learns his output. This is formalized similarly to SSA except that when the adversary
decides to abort, all the honest parties receive a special abort symbol.

In the remainder of this section we prove the following theorems.

Theorem 7.1 (2-Round MPC with selective abort).

• Every NC1 functionality can be computed in 2 rounds with statistical security, selective abort
and security threshold of t =

⌈
n
2 − 1

⌉
. The protocol does not use a broadcast channel.

• Given a black-box access to a one-way function, the above extends to arbitrary polynomial-time
functionalities at the expense of downgrading security to computational.

Theorem 7.2 (Computational 2-Round MPC with abort). Given a black-box access to a one-
way function, every polynomial-time functionality can be computed in 2 rounds with computational
security, standard abort and security threshold of t =

⌈
n
2 − 1

⌉
.

Theorem 7.2 and the computational part in Theorem 7.1 both introduce 2-round protocols
with black-box access to one-way functions for polynomial-time functions and the same security
threshold. They differ, however, since the protocols in Theorem 7.2 guarantee the stronger security
notion (SA) at the expense of using a broadcast channel. (Indeed, the proof of Theorem 7.2 relies
on Item 2 in Theorem 7.1.). By [PR18], selective abort is the best possible security for 2-round
protocols that only use secure channels.

7.1 Proof of Theorem 7.1

As an intermediate step we consider a weaker security notion referred to as Privacy with Knowledge
of Outputs (PKO) (see Section 2.1 in [IKP10]). Intuitively, this means that the correctness of honest
parties may be violated, but the adversary is required to “know” the (possibly incorrect) outputs
of the honest parties. Formally, in the ideal model the ideal functionality first delivers the outputs
of the corrupted parties to the simulator, and then receives from the simulator an output to deliver
to each of the uncorrupted parties.

In [IKP10] (See Lemma 3.11 in [PC12]) it is shown that, given an n-party functionality f , one
can define a related public-output functionality f ′ (i.e., all of the parties receive the entire output)
of comparable complexity12, such that a PKO protocol Π′ for f ′ can be easily upgraded into an
SSA protocol Π for f while preserving the round complexity, the security threshold, and statistical
(resp., computational) indistinguishability.13 It therefore suffices to prove the following proposition.

Proposition 7.3 (2-Round MPC with PKO security).

12That is, if f is computable in NC1 then so is f ′ and if f is computable in polynomial-time so is f ′.
13The functionality f ′ essentially computes f along with n one-time perfectly secure MACs on the output of f ,

where the i-th MAC uses a private key chosen by the i-th party at random. The protocol Π is obtained by running
Π′ and letting the i-th party abort if the output is not consistent with her private MAC key.
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• Every NC1 public-output functionality can be computed in 2 rounds with statistical PKO
security and threshold of t =

⌈
n
2 − 1

⌉
. The protocol does not use a broadcast channel.

• Given a black-box access to a one-way function, the above extends to arbitrary polynomial-time
public-output functionalities at the expense of downgrading security to computational PKO.

Proof. The proof consists of two parts. We first use a special case of [IKP10] to show that degree-
2 functions can be computed in two rounds with statistical PKO security (see Proposition 7.4).
We then prove that our reductions from Theorem 5.1 (from general functionalities to degree-2
functionalities) preserve PKO security when the functionality to be reduced is public-output (see
Lemma 7.5).

We begin with the first part. In [IKP10] it is proved that degree-d functionalities can be
computed in two rounds with statistical PKO security and any threshold t < n/d. (See also
Lemma 3.7 of [PC12].) For the special case of d = 2, we get the following proposition.14

Proposition 7.4 ([IKP10]). Let f be an n-party functionality with complexity S and degree 2 over
the binary field. Then f can be statistically computed in 2 rounds with PKO security threshold of
t =

⌈
n
2 − 1

⌉
and complexity of poly(n, S). Moreover, the protocol relies only on private channels

and does not employ a broadcast channel.

We move on to analyze the effect of the degree reductions in Theorem 5.1 on PKO security.
Annoyingly, it turns out that reductions that preserve standard security do not necessarily preserve
PKO security. However, the following lemma shows that our reduction (Theorem 5.1) preserves
PKO security when it is applied to public-output functionalities. (The proof of the lemma and a
discussion on the composition problem for PKO security are deferred to Appendix B.)

Lemma 7.5. Let f be an n-party public-output functionality and consider the non-interactive re-
duction Πg in Theorem 5.1 from f to an n-party public-output functionality g, where the reduction
is with respect to some security threshold t and some indistinguishability notion ind (perfect, sta-
tistical, or computational). Then, if g is implemented by a protocol Φ with PKO ind-security and
threshold t, then the composed protocol ΠΦ realizes f with PKO ind-security and threshold t.

The statistical part (resp., computational part) of Proposition 7.3 now follows by applying
Lemma 7.5 to the statistical (resp., computational) part of Theorem 5.1, and combining it with
Proposition 7.4.

7.2 Proof of Theorem 7.2

We now show how to upgrade the security from SSA to SA (in which honest parties achieve
agreement) at the expense of using a broadcast channel. For this, we rely on a reduction from [PC12,
Remark 3.3] that is based on one-way functions. We further show that this can be done in a black-
box way.

Proof. Let f be an n-party polynomial-time computable functionality f . We assume that f delivers
a single output to all parties. This can be guaranteed without loss of generality via standard
reductions. Define a related public-output functionality f ′ that computes f along with n digital

14In fact, the special case of d = 2 is much easier than the more general case and it can be essentially handled via
semi-honest BGW; See [PC12, Section 3.5.3.1].
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signatures on the output of f , where the i-th signatures uses a private key ski ∈ Fκ2 provided by
the i-th party. That is,

f ′ ((x1, sk1), . . . , (xn, skn))→ (y, σ1, . . . , σn) (3)

where y = f(x1, . . . , xn) and σi = Sig(y, ski) for all i.
It is shown in [PC12] that a two-round SSA protocol Π′ for f ′ can be modified into a two-round

computationally-SA secure protocol Π for f with the same security threshold. We now briefly
describe this transformation; see [PC12] for more details.

1. Before the first round, each party i samples a pair of signature/verfication key (ski, vki).

2. The parties invoke Π′ on their inputs and signature keys (x1, sk1), . . . , (xn, skn). At the second
round the parties broadcast their verification keys vk1, . . . , vkn.

3. Given an output (y, σ1, . . . , σn) of Π′, each party verifies that each signature σi is consistent
with y and vki. If all these checks pass, the output is y, otherwise the party aborts.

The complexity of f ′ is polynomial whenever the function f and the signature scheme are
polynomial-time computable. Therefore, by Item 2 in Theorem 7.2, there exists a 2-round protocol
Π′ for f ′ with computational security, selective abort and security threshold of t =

⌈
n
2 − 1

⌉
that

makes a black-box use of one-way functions. Note, however, that f ′ makes a non-black-box use
of the signing algorithm, and thus an arbitrary instantiation of the signature scheme leads to a
non-black-box use of one-way functions. To address this issue, we observe that it suffices to use
a one-time digital signature like Lamport’s signatures (cf. [Gol04, Chapter 6.4.1]). Fortunately, in
this scheme the one-way function is used only in the key-generation and verification algorithms,
but not in the signing algorithm.

The protocol Π is therefore obtained as follows. Given a functionality f we consider the related
functionality f ′ as in (3) when instantiated with Lamport’s signatures. We then derive a protocol
Π′ for f ′ as induced by Theorem 7.2, and finally transform this protocol into a protocol Π via
the above transformation of [PC12]. The resulting protocol Π makes only a black-box use of the
underlying one-way function (during the local preprocessing and postprocessing phases and during
the invocation of Π′).
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A Two-Round VSS with Binary Shares

In this section we show how to implement the functionality BinShared that allows a dealer to
distribute a degree-d polynomial P whose free coefficient is either zero or one. Specifically, we
construct a two-round perfectly secure protocol with threshold of t where n = 4t+ 1 for BinSharet
based on the two-round protocol for Sharet of [GIKR01]. Roughly speaking, we let the dealer prove
that P (0)2 − P (0) = 0, which implies that P (0) is binary. Before presenting the actual details, let
us take a closer look at the VSS of [GIKR01, Figure 2] (hereafter referred to as GIKR protocol).

A.1 Useful properties of the GIKR implementation of Shared

After the first round of the Shared protocol, each party i holds a tentative share P̃ (i) ∈ F (together
with some additional information that will not be relevant to us). After the second round of the
Shared protocol, each party i outputs a final sharing s[i], and, in addition, all parties learn (the
same) “approval” bit b (that signals whether the dealer should be disqualified), and a set of players
B ⊆ [n] (denoted by C ∪ADD in [GIKR01]). These outputs satisfy the following properties:

1. If the dealer follows the protocol and distributes a degree-d polynomial P then the approval
bit is on (b = 1), the set B contains all honest players (and possibly other players as well),
and for every honest player i, the tentative share and the final share are both consistent with
the distributed polynomial P , i.e., P̃ (i) = s[i] = P (i).

2. If the dealer does not follow the protocol (e.g., uses an illegal input), it may be disqualified,
i.e., b = 0, in this case, the final shares of all honest parties are set to zero (i.e., take the
polynomial P to be the zero polynomial).

3. If the dealer is not disqualified (b = 1) then the following holds. The final shares s[i] of all
honest parties are consistent with some degree-d polynomial P . The set B contains at least
3t + 1 parties and all honest parties in B have their tentative shares consistent with their
final shares, i.e., P̃ (i) = s[i] = P (i) for every honest i ∈ B.
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Furthermore, our construction of Share2t,0 based on Sharet (as described in Eq. 2) satisfies the same
properties (with the additional guarantee that the free coefficient of the polynomial P is zero).
To see this, recall that the reduction invokes t parallel copies of Sharet, and therefore each such
call defines a set Bi and an approval bit bi. We define the set B outputted by Share2t,0 to be the
intersection of all Bi’s, and let the final approval bit b to be one if b1 = · · · = bt = 1 and |B| ≥ 3t+1.
If b = 0, the honest parties should set their final shares to zero. The reader can verify that this
transformation securely implements Share2t,0 while preserving properties 1–3.

A.2 Our protocol for BinSharet

Our protocol for BinSharet proceeds as follows:

1. The dealer holds a degree-t polynomial P with P (0) ∈ {0, 1} and distributes it by invoking
the first round of Sharet. In addition, the dealer invokes the first round of Share2t,0 with a
random degree-2t polynomial R whose free coefficient R(0) is zero. All other parties send
their first-round messages for Sharet and for Share2t,0.

2. After the first round, each party i holds the tentative shares P̃ (i) ∈ F and R̃(i) ∈ F. Party i
broadcasts the value

Q̃(i) = P̃ (i)2 − P̃ (i) + R̃(i).

In addition, all players send their second round messages of Sharet and Share2t,0.

3. After the second round, each party i gets the values (bP , BP , s[i]) and (bR, BR, r[i]) delivered
by the second round of the Sharet protocol and the second round of the Share2t,0 protocol.

(a) If the set B = BP ∩ BR is smaller than 3t + 1 or bP = 0 or bR = 0. The party sets
its final output to 0. (I.e., the dealer is disqualified and we treat her input as the zero
polynomial).

(b) Otherwise, check if at least 3t + 1 of the values (Q̃(i))i∈B are consistent with a degree-
2t polynomial Q. (This condition can be efficiently verified via the standard Reed-
Solomon decoder since the number of inconsistencies in B is at most |B| − (3t + 1) ≤
t < (|B| − 2t)/2. Moreover, if the condition is satisfied Q is unique.) If the check passes
and Q(0) = 0, the party outputs s[i] as it final share.

(c) Otherwise (if the check fails or Q(0) 6= 0), the i-th party sets its output to zero. (The
dealer is “disqualified”).

A.3 Analysis

We distinguish between two cases depending on whether the dealer is corrupted or not.

Dealer is uncorrupted. Consider an adversary A that corrupts a set T of t parties that does not
include the dealer. Let P be the input polynomial of the dealer. Let R be the degree-2t polynomial
(whose free coefficient is zero) which is distributed by the dealer via Share2t,0. Define the degree-2t
polynomial Q = P 2 − P + R and note that Q(0) = P 2(0) − P (0) + R(0) = P 2(0) − P (0) = 0
since P (0) ∈ {0, 1}. First we claim that the final output of each honest party i is P (i). Indeed,
by the security of Sharet and Share2t,0, the following hold: (1) Q̃(i) = Q(i) and s[i] = P (i) for
every honest party i; and (2) Condition 3a passes. In particular, all the honest parties are in B.
Consequently, at least 3t+ 1 of the values (Q̃(i))i∈B are consistent with the polynomial Q, and so
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each honest party i output s[i] = P (i). The “correctness” claim follows. Next, by the security of
Sharet and Share2t,0, it suffices to simulate the joint distribution of (Q(i))i∈[n] and (R(i))i∈T based
on (P (i))i∈T . The former can be simulated by choosing a random degree-2t polynomial whose free
coefficient is zero, and the latter can be computed by setting R(i) = Q(i)− P (i)2 + P (i) for every
i ∈ T .

Dealer is corrupted. Consider an adversary A that corrupts a set T of t parties that includes
the dealer. Since the honest parties hold no input, there is no privacy constraint and we only have
to prove the following “correctness” property: There exists a degree-t polynomial P with a 0-1
free-coefficient which is consistent with the final output s[i] of every honest party (i.e., s[i] = P (i)),
and, one can compute P based on the adversary’s view.

Assume that Conditions 3a and 3b are satisfied. (Otherwise, P is the zero polynomial.) By
the security of Sharet, there exists a degree-t polynomial P (that can be computed based on the
adversary’s view) which is consistent with the final output s[i] of every honest party i. It remains
to prove that P (0) ∈ {0, 1}.

Let B denote the set defined in Condition 3a. Let R denote the degree-2t polynomial with
R(0) = 0 that was distributed by Share2t,0, and recall that for every honest party i in B it holds that
P̃ (i) = P (i) and R̃(i) = R(i). Since Condition 3b is satisfied, there exists a degree-2t polynomial
Q whose free-coefficient is zero which is consistent with the vector Q̃ for a subset B′ ⊆ B of size
at least 3t + 1. Let G ⊂ B′ be the subset of all honest parties in B′. Then G is of size at least
|B′| − t ≥ 2t+ 1 and for every i ∈ G it holds that

Q(i) = Q̃(i) = P (i)2 − P (i) +R(i).

We conclude that the degree-2t polynomials Q and P 2 − P +R are identical. Therefore,

P (0)2 − P (0) = P (0)2 − P (0) +R(0) = Q(0) = 0

and so P (0) ∈ {0, 1}, as required. This completes the analysis of the protocol.

B Preserving PKO Security under Composition

We first observe that PKO-security is not always preserved under composition. To see this, consider
the following example. Let f be the n-party functionality that takes a bit xi from each of the first
n − 1 parties, and delivers the parity z = x1 ⊕ · · · ⊕ xn−1 to the first party. Let g be the n-party
functionality g that takes xi from parties 2 ≤ i ≤ n − 1 and returns y = x2 ⊕ · · · ⊕ xn−1 to the
first player. We can trivially implement f via a non-interactive reduction Π to the functionality g
by letting the first party output y ⊕ x1. The reduction Πg perfectly realizes f for any threshold t,
however, as we show next, the reduction does not preserve PKO security.

Suppose that g is treated as an oracle in the PKO ideal model, and consider an adversary A
that attacks the last party (that does not hold an input) and forces the oracle to deliver the value 0
to the first party. As a result, the first party outputs x1 in Πg. Such an attack cannot be emulated
against an ideal execution of f in the PKO model. Indeed, in an ideal PKO execution of f , an
adversary B that corrupts the last party can only set the output of the honest party to a value
that can be computed based on the view of B; however, this view is independent of x1.

Observe that the problem would vanish if the adversary could compute the mapping from the
g-output yto the final f -output z. Below, we identify a syntactic class of non-interactive reductions
that satisfy this condition and thus preserves PKO security.
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Theorem B.1. Suppose that an n-party public-output functionality f reduces to an n-party public-
output functionality g via a non-interactive reduction Πg with full security for some security thresh-
old t and some indistinguishability notion ind (perfect, statistical, or computational). Further,
assume that for each party i, the postprocessing in the reduction Πg is obtained by applying some
fixed (public) decoding function Deci to the (public) output of g, and XOR-ing the result with part
of the private random tape of the i-th party. Then, if g is implemented by a protocol Φ with PKO
ind-security and threshold t, then the composed protocol ΠΦ realizes f with PKO ind-security and
threshold t.

Lemma 7.5 follows from Theorem B.1 since the non-interactive reductions established in Theo-
rem 5.1 satisfy the syntactic requirement of Theorem B.1. (This syntax is inherited from the main
transformation of Theorem 4.1.)

Proof. Let f be an n-party public-output functionality and consider a non-interactive reduction Πg

from f to an n-party public-output functionality g that preserves ind-security with threshold t and
satisfies the properties stated in the theorem. Let Φ be a protocol for g with PKO ind-security and
threshold t and let ΠΦ be the composed protocol of Πg and Φ.

Consider a hybrid model of the execution of Πg, in which g is treated as an ideal “corrupted-
oracle” that proceeds in two phases. First it takes g-inputs from all parties, and delivers the output
z to the adversary; Then, the oracle receives from the adversary a set of outputs z′[T ] for the honest
parties T , and delivers z′[i] to the i-th honest party.

From the real model to the hybrid model. We first show that any adversary A in the real
model of ΠΦ can be simulated by an adversary B in the hybrid model of Πg. (This part of the
proof is fairly standard and it applies even to general non-interactive reductions.) Let A be a
(possibly randomized) adversary attacking a set of parties T in the execution of ΠΦ. Since Π is a
non-interactive reduction, the adversary A naturally induces an adversarial strategy A′ against Φ.
By the security of Φ, there exists an adversary B′ that simulates A′ in the PKO ideal model of g.

Define B in the hybrid model Πg as follows. On an input vector x it invokes A up to the
point before the inner execution of Φ begins. It then invokes B′ and derive the queries y′[T ] (that
B′ sends to the corrupted oracle in the PKO-ideal model of g). It forwards those queries to the
corrupted oracle in the hybrid model Πg. Upon receiving from the oracle the response z, it invokes
B′ again with the oracle response and derives the altered outputs of the honest parties z′[T ]. It
then continues the execution of the hybrid model Πg according to the strategy of A in ΠΦ after the
inner execution of Φ.

We claim that B simulates A well. To see that, first observe that the joint view of the adversary
and the honest parties are identical in both executions up to the point that the inner protocol is
invoked. Next, B invokes B′, which, by the security of Φ, successfully simulates A′ in the ideal
PKO model of g. Recalling that the ideal PKO model of g is identical to the corrupted g oracle in
the hybrid model of Πg, we conclude that the joint view of the adversary and the honest parties
are indistinguishable in both executions even after the call to the inner-protocol. Finally, the
same postprocessing is applied in both executions and so the joint views in both executions remain
indistinguishable.

From the hybrid model to the ideal model. We now show that any adversary A in the hybrid
model Πg can be simulated by an adversary B in the ideal PKO model of f . Let A be an adversary
attacking a set of parties T in an execution of Πg in this hybrid model. Without loss of generality,
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we assume that A is deterministic. Since Πg is non-interactive, we may assume that the execution
has the following form.

1. Given inputs x[T ] for the corrupted parties, the adversary A submits to the oracle g inputs
y[T ] on behalf of the players in T .

2. The corrupted-oracle g returns the output z = g(y[T ],y[T ]), where y[T ] is the input submit-
ted to g by the honest parties.

3. Since g is a corrupted-oracle, the adversary may choose to corrupt the output of the honest
parties. Formally, the adversary applies a corruption function to (x[T ], z) whose output is
z′[T ]. The oracle g then delivers to every honest party i ∈ T its (possibly corrupted value)
z′[i].

4. Without loss of generality, the adversary outputs his view x[T ], z.

5. The i-th honest party determines its output as Deci(z
′[i])⊕r[i], where r[i] is its random tape.

Consider a restricted version A′ of the adversary A that does not apply the corruption function.
In that case g is an “honest” oracle and so by the security of the reduction, there exists an adversary
B′ in the (standard) ideal model of f that simulates A′. Based on B′ we define an adversary B in
the PKO ideal model of f that simulates A:

1. The adversary B first invokes B′ to determine its queries to the corrupted f -oracle.

2. The f -oracle then sends back the (public) output y to B.

3. The adversary B transfers the oracle response y to B′, who then simulates the view of A′.
Up to this step the views of A and A′ are identically distributed.

4. To determine the output of the honest parties, B queries A with its simulated view and the
oracle response z, and gets back z′[T ]. It then instructs the corrupted-oracle of f to pass to
the i-th honest party the value y′[i] = Deci(z

′[i])⊕ Deci(z)⊕ y.

We now prove that for every input x, the distributions REALΠg ,T,A(x) and IDEALf,T,B(x) are ind-
indistinguishable, where the first is in the hybrid model and the second is in the PKO-ideal model.
To see this, first observe that in Step 3 the view of A′ (and thus A) is properly simulated with ind-
indistinguishability and treshold t, by the security of Πg. Next, observe that for all honest parties
i, the output y′[i] in IDEALf,T,B(x) and the output y[i] in REALΠg ,T,A(x) are both computed by
applying a deterministic function on the views of the adversary and on the i-th random tape r[i].
It is left to show that those values are in fact equivalent. By the correctness of the reduction, it is
guaranteed that for the honest output of the oracle, z, for all i it holds that Deci(z)⊕ r[i] = y and
therefore r[i] = Deci(z)⊕ y. Since y[i] = Deci(z

′[i])⊕ r[i] and y′[i] = Deci(z
′[i])⊕ Deci(z)⊕ y, the

result follows.
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