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Abstract. We present the first treatment of non-interactive publicly-verifiable timestamping
schemes in the Universal Composability framework. Similar to a simple construction by
Mahmoody et al., we use non-parallelizable computational work that relates to elapsed time
to avoid previous impossibility results on non-interactive timestamping. We extend these
ideas to the UC-framework and show how to model verifiable delay functions (VDF) related
to a global clock, and non-interactive timestamping, in the UC-framework. Furthermore,
we present new constructions that are substantial improvements over Mahmoody et al.’s
construction, such that any forged timestamps by the adversary are now limited to within a
certain time-window that depends only on its ratio to compute VDFs more quickly and the
time-window of corruption. Finally, we discuss natural applications for our construction in
decentralized protocols.
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1 Introduction

In the digital domain, giving evidence that a certain amount of time has passed is more challenging
than in the physical world. Exploring how to reliably create digital timestamps has been an active
research area for the last thirty years. The first paper to deal with digital timestamping by Haber
and Stornetta [HS91] presented two different solutions that avoid having to fully trust a third
party to validate timestamps. Their first solution uses a hashchain: a sequence of documents linked
through a collision-resistant hash function. The second solution relies on a pseudorandom function
to choose a set of validators for a timestamp, which also allows to identify misbehaving actors.
Both solutions require interaction with distributed validators, as a different hashchain can be easily
generated by an adversarial party.

Modifications and extensions of these protocols have been proposed, most notably substituting
the individual records in a hashchain with a Merkle tree (or similar) [BHS93, BLS00]. These
timestamping systems require many parties to maintain records and their timestamps, as well as
the availability to answer validation queries. Other protocols require less space but stronger trust
assumptions on the set of validators [BDM93].

While timestamping evokes the idea of fixing an event in a specific point in clocktime, in practice
most timestamping schemes are relative; they provide only an ordering. A significant limitation of
such ordering systems is that it is impossible to directly compare the timestamps to events outside
the protocol. Clock-based timestamping generally requires stronger trust assumptions, as the notion
of clocktime in a computational setting is problematic.

One of the goals of this paper is to provide the first treatment of non-interactive timestamping
in the universal composability framework. In the classical literature, almost every timestamping
service requires interaction with a group of validators and provides security guarantees only for
relative timestamping. Non-interactive timestamping has been explored before in [MSTS04], where
the authors present a generic impossibility result, as an adversarial prover would simply need to
simulate the execution of an honest prover to generate a fake timestamp. They sidestep this result
by working in the bounded-storage model where they construct a secure protocol. Another approach
to sidestep this result is to relate computational work to elapsed time.



For instance, there are constructions that use the Bitcoin blockchain [Nak08] for timestamping
in the absolute sense and not only relatively [CE12] 3. Haber and Stornetta’s hashchain protocol
served as a fundamental building block for the Bitcoin blockchain. Nakamoto’s blockchain consists
of a hashchain where new elements of the chain, or blocks, are added if and only if they are solutions
to a cryptographic puzzle known as a Proof-of-Work (PoW). The work required to create a new
block ensures that the blockchain cannot be easily rewritten, especially for block created a long
time ago [GKL15]. The protocol is tuned to create a block every ten minutes in average, meaning
that one can roughly associate each block to a ten minute slot. There are other constructions that
utilize the blockchain to provide timestamping [GMG15, SV17], which simply treat it as a trusted
party and do not formally prove security.

Constructions that use PoW-based blockchain’s computational work to encode time are interest-
ing for timestamping purposes, but these require enormous computational resources which come
with cost and sustainability concerns4. The main argument for this computational cost is its direct
relation to the blockchain’s security: an adversary must hold the majority of the computational
power to significantly rewrite the blockchain. The adversary is still computationally restricted in how
deep it can rewrite blocks in a certain amount of time, i.e. on average after time T the adversary can
only successfully rewrite blocks in the network up to T · α/1−α time deep, where α is the adversary’s
fraction of the total hashing power. Even under total adversarial control, the blockchain cannot be
arbitrarily rewritten. We are interested in replicating this resilience to adversarial corruption for
timestamps without incurring the costs and complications of proof-of-work blockchains.

Due to the above issues, we specifically study constructions that use inherently sequential or
non-parallelizable functions which have a long history in cryptography. Originally conceived for
timed-release encryption [RSW96], these functions have been used as way to achieve pseudonymous
[KMS14] or deniable authentication [Wes18] and to create non-malleable commitments [LPS17].
Lately, there has been interest in generating verifiable proofs of sequential computation to represent
time for distributed protocols. One can distinguish between two similar but slightly different types
of primitives: proof-of-sequential-work (PoSW) and verifiable delay functions (VDF).

In [MMV11], the authors present the concept of a proof of sequential work (PoSW) in order
to verify that a number of computational steps have happened since something existed. The gap
between computation and verification of PoSWs is exponential, which is fundamental for their
practical use. However, by the nature of the problems the proofs are non-unique and grow with
the length of the computation (size of the graph) in order to maintain security, even for the more
efficient follow-up [MMV13]. Another construction based on graph pebbling [CP18] links the size
of the proof only with the expected security parameter. However, for a reasonable security level,
the proofs are still very large (in the order of 200kB).

Verifiable delay functions, that are similar to PoSW but have unique proofs, such as the sloth
construction from [LW15]. Unfortunately sloth’s verification gap is linear at best. Since then,
functions having an exponential gap were first presented and characterized in [BBBF18], although
the proposals presented there were somewhat vulnerable to parallelization. Newer constructions
based on modular exponentiation [Pie18, Wes18] are more resilient to parallelization. The main
difference between the last two proposals is the proof size and the efficiency in computing a proof.
Such slow functions have been postulated before in order to generate publicly verifiable randomness
[LW15, PW16].

1.1 Our contributions

We study non-interactive cryptographic timestamping based on verifiable delay functions in the
universal-composability framework and using the random-oracle model. This is the first treatment
of non-interactive timestamping in the UC model. In contrast to interactive timestamping, the
time of proof-generation and time of proof-verification may lie far apart. Since proofs do not
magically adjust over time, it is easy to see that there is a fundamental limitation of non-interactive
timestamping that only allows relative timestamping, namely proving the record’s age at the time
of proof-generation.

3 Although with certain limitations as this is not its primary purpose http://culubas.blogspot.nl/

2011/05/timejacking-bitcoin_802.html
4 https://digiconomist.net/bitcoin-energy-consumption
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Towards our goals, we first explore the modelling of parties’ ability to compute VDFs at a
certain rate with respect to some global clock. This is non-trivial since the UC-framework is based
on a simple scheduling mechanism for all parties (machines) where only one party is active at a
time. Based on this setting we define an ideal timestamping functionality Fαts that maintains a
timestamped record of bitstrings, which can be queried to generate a non-interactive proof for the
record’s age at the time of proof-generation. We parametrize the adversary’s power to compute VDFs
faster as a time-diluting factor α, and the adversary can corrupt the timestamping functionality at
any time. Our ideal functionality continues to perform its goal even after adversarial corruption,
as the adversary is only allowed to forge proofs under certain constraints. Specifically, when the
adversary corrupted the functionality time T ago, the adversary can for any record (of age TrueAge)
only craft forged timestamps of age less than α ·min(T,TrueAge). And in particular this implies
that it cannot create any forged timestamps with age larger than T · α, and that it cannot exploit
honest VDF computations to create forged timestamps. This is a substantially stronger security
guarantee than provided by Mahmoody et al.’s construction [MMV13], where for any record of any
age the adversary can craft forged timestamps that are at most α times older than the record’s
true age. Note that in Section 4 we provide a treatment of Mahmoody et al.’s construction in the
UC-framework for easy comparison with our work.

We then first present a simple construction to demonstrate the basic techniques, However this
construction is rather inefficient in practice as it requires individual continuous VDF computations
for each record entry. Next we present a more efficient construction that combines our first
construction with the hashchain technique in the original timestamping mechanism from [HS91].
For both constructions, the prover provides a non-interactive proof to a verifier in order to attest
the age of a bitstring. The ability to create forged proofs depends solely on the period of corruption
and the adversaries’ ability to compute VDFs in less time, which can only be achieved through
a faster VDF core, as VDFs are designed to be resistant to parallelization. We show that both
constructions securely implement the timestamping functionality in the random-oracle model and
universal-composability framework against an adversary that can compute verifiable delay functions
faster than the prover by the time-diluting factor α.

Finally, in Section 7, we discuss the impact and potential applications of our construction.

2 Model and Definitions

We construct our protocol in the universal-composability framework [Can18] where two PPT
algorithms Z and A interact with parties executing a protocol. We assume a hybrid model where
parties have access to a global clock, random oracles, an unforgeable signature scheme and the
FγVDF functionality that represents our verifiable delay function.

Time. Representing time in the UC framework is a non-trivial issue, as the framework is funda-
mentally synchronous. In general, the ordering of events is dictated by the passing of messages,
where only one machine (party) is active at a time, which does not correspond to the usual concepts
of time and concurrent computing. However, the UC framework remains sufficiently general to
represent distributed computations at any granularities (see [Can18]):

Indeed, by setting individual activations of ITMs to represent the appropriate granularity
of “atomic sequential operations”, it is possible to represent distributed computations at any
desired level of abstraction or detail - from the granularity of physical interrupts in actual
CPUs, to virtualized processes in a multi-process virtual system, to abstract processes that do
not necessarily correspond to specific physical computations.

We represent time through a global read-only functionality clock that any party can access.
When queried, this functionality outputs a (strictly monotonously increasing) time receipt of
constant length θ stating the current time. For instance, clock may increase by one for every
step of the active machine. We do not specify exactly how clock increases, but any monotously
increasing function is sufficient for our purposes as we show in the modeling of VDFs. This leaves
our model sufficiently general and allows close representations of real-world clocks and distributed
computing. As an abuse of notation, we perform operations over time receipts, where the result of
these operations is a natural number.
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Public-key signatures. We assume a EU-CMA signature scheme with security parameter κ. For
consistency, we represent the computations related to this scheme as interaction with a signature
oracle Σ in the following way:

– Each participant has a public/secret key pair (pk, sk) known to Σ.
– On query Σ.sign(sk,msg):

A signature sig ∈ {0, 1}κ is generated and the tuple (sk,msg, sig) is saved into memory. Return
sig.

– On query Σ.verify(pk,msg, sig):
If (sk,msg, sig) is in the memory of Σ and (pk, sk) is a valid keypair, return accept. Otherwise,
return reject.

We assume the probability that any PPT adversary forges a signature without knowledge of the
corresponding secret key is negligible in κ.

3 Verifiable Delay Functions

Informally, verifiable delay functions are functions that require inherently sequential computation
and can be efficiently verified. The computation of these proofs is not inherently sequential and
should not take too long to compute compared to the function evaluation. For simplification, we
treats both outputs as one, assuming that the proof construction is effectively immediate. VDFs
have unique proofs, so we can still assert than our construction is still a function.

More formally, we consider a verifiable delay function to be a triple of algorithms (VDF.gen,
VDF.verify,VDF.extend) with security parameter µ and parameters g, v ∈ N as defined below.

VDF.gen(x, s) is a slow cryptographic algorithm that for an input x ∈ {0, 1}∗ and strength s ∈ N
computes an output (s, p) ∈ {0, 1}µ × N in s · g parallel time steps.

VDF.verify(x, s, p) is a fast cryptographic algorithm that for inputs x ∈ {0, 1}∗, p ∈ {0, 1}µ, and
s ∈ N outputs accept if (s, p) = VDF.gen(x, s), and reject otherwise, in at most s · v time steps.

We use a canonical unambiguous encoding of integers s ∈ N as bitstrings, so (s, p) has a natural
description as a bitstring s||p ∈ {0, 1}∗.

Our construction differs from the definitions in the literature in a couple of ways. The output of
the VDF contains not only the final result of the computation but also a proof that allows for faster
verification. We treat both outputs as one, which we can do as VDFs have unique proofs. This
point of view assumes that computation of these proofs is effectively immediate. This approach
is also outlined in [Wes18], which states that the computation of the proof can be considered as
part of the overall computation, without noticeably affecting the computation time (as generally
the proof generation can be parallelized). We have taken this road, as treating the output as two
separate entities introduces uninteresting complications.

Another difference lies on what we consider an execution of the VDF. As seen in [LW15], VDFs
can be chained together for better efficiency. All constructions assume that the number of sequential
executions is a fixed parameter, which we call strength. Instead of that, we assume that the function
is iterated indefinitely until the party decides to stop it, receiving the number of iterations s in the
output.

If we consider a VDF to be the sequential composition of a function, given an output it is
possible to start executing the VDF from that output, as a continuation of the original execution.
Therefore, we assume an additional algorithm VDF.extend that allows continuing an existing VDF
output:

VDF.extend is a slow cryptographic algorithm that for inputs x ∈ {0, 1}∗, (s, p) = VDF.gen(x, s)
and s∗ ∈ N returns the output (p∗, s + s∗), where (p∗, s + s∗) = VDF.gen(x, s + s∗), in s∗ · g
parallel time steps.

We use this mechanism to model the capability of running VDFs a variable number of iterations
that is decided a posteriori.

Moreover, we use the ability to ‘extend’ VDF outputs to capture the adversaries capability
to query the running VDF computations of any just-corrupted party and then continue VDF
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computations with its own faster VDF-rate. Note that if we do not assume that proof computation
is immediate, extending a VDF through this mechanism would require wasting time computing the
proof more than once. We use this algorithm to allow the adversary to act in a realistic manner
within the UC framework, honest parties have no need for it. Because our assumption benefits only
the adversary in this case, the security oproperties are not affected by allowing VDF extension.

We require perfect correctness: VDF.verify(x,VDF.gen(x, s)) = accept for all x ∈ {0, 1}∗ and
s ∈ N. The VDF is called sound if no efficient adversary given an input x with sufficient min-entropy
can compute values (s, p) in less than s · g parallel time steps for which VDF.verify(x, s, p) = accept
with non-negligible probability. The usability of the VDF is the factor g/v by which verification is
faster than generation of the proof.

To deal with VDFs and real-world time, we consider for each party its VDF-rate γ which
represents the largest number of iterations of the VDF that that party can compute in a time unit
given its computational resources. For our results to be meaningful, the honest prover must compute
the VDF efficiently enough such that the advantage the adversary might get, represented by α, is
not too large. While we cannot ensure the physical reality of this assumption, the impossibility
of parallelization greatly limits this possible advantage, in contrast to generic (parallelizable)
computation. Studies in specialized hardware for [Wes18] have already started5, rendering our
assumption even closer to reality.

3.1 Candidate constructions

A candidate construction that satisfies our notion of a VDF is the sloth construction by Lenstra
and Wesolowski [LW15] that iterates modular-square-root and (keyed)-binary-permutation func-
tions. Unfortunately, this construction only has a logarithmic usability. Wesolowski’s subsequent
construction [Wes18] is the closest to our characterization. It is especially useful as the output
consists of only two field elements. This succinctness of the proof is particularly interesting for our
work, minimizing overheads in the produced timestamps.

While our constructions use verifiable delay functions, in essence they could be substituted by
proofs of sequential work like the ones presented in [CP18, MMV13], although this would require
slightly changing our VDF, as the outputs must be treated differently due to non-uniqueness of the
proof. A more practical problem is that the security level of these constructions depend on the size
of the proof, which consists of node labels. In contrast, most VDFs allow for constant-size proofs.
Furthermore, timed-release cryptography primitives [RSW96] cannot be used for our purpose, even
if the principle is similar to the preceding functions. The reason is that timed-release cryptography
allows for a puzzle and a solution to be sampled at the same time, hence the generating party
already knows the solution and does not have to solve the puzzle.

3.2 Modelling Time and Verifiable Delay Functions

The primary goal of our construction is to generate non-interactive proofs that a certain amount
of time has passed since a message was recorded by the prover. To that end, we directly link
each party’s VDF rate to the global clock, which we have modeled as a read-only global oracle
that returns monotously increasing time receipts. Throughout our construction, we simulate the
execution of our VDF through the oracle functionality presented in Figure 1.

Our VDF is represented a random oracle VDF that cannot be directly queried by participants.
Instead, they only interact with it through a functionality FγVDF. The FγVDF oracle simulates the
execution of the VDF across the passage of time. Participants can query this functionality to start a
computation and again to output the result. Depending on the amount of time passed between these
two events and the rate γ, participants get a proof of a certain strength. The strength represents
the number of sequential iterations that were computed. By adding the notion of rate, we can
compare the execution of the same function in different hardware and the implications this has
for the timestamping protocol. In particular, the ability of the adversary to compute VDFs more
efficiently than an honest party.

In addition, participants are able to input any string to the functionality, so if this is not the
case for the particular VDF construction then we assume that a full-domain hash is applied to any

5 https://medium.com/@chia_network/chia-vdf-competition-guide-5382e1f4bd39
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Oracle FγVDF

The functionality is parametrized by a computation rate γ > 0. Let VDF : {0, 1}∗ × N→ {0, 1}µ be a
global random oracle each oracle instance has access to. The oracle also has access to the global clock
clock. Let Q := ∅ be the (initially empty) query log.

– On input (start, x):
Update Q← Q ∪ {(x, clock())}.

– On input (output, x) at time to = clock():
Let ts ← mint{(x, t) ∈ Q}, return ⊥ if there is no such ts;
Let s := (to − ts) · γ; /* the strength of the resulting proof */

Let p := VDF(x, s);
Return (s, p)

– On input (verify, x, p, s):
If VDF(x, s) = p then return accept, else return reject.

– On input (extend, x, p, s):
/* Continue computation from a given existing function output */

If VDF(x, s) 6= p return ⊥.
Else update Q← Q ∪ {(x, clock()− s/γ)}.

Fig. 1: The functionality FγVDF is the only way to query the random oracle VDF.

inputs. In the case of the verifier, its own VDF-rate is not important in which case we just refer to
F∗VDF.

This functionality replicates the desirable properties of a verifiable delay function. Correctness
and soundness are achieved by default. Every valid proof is accepted (VDF(x, s) = p) and an
adversary is able to guess valid proofs by performing verify queries, which it can only successfully
do with negligible probability in µ.

Note that these VDF oracles are only active when it responds to a query, but the returned
outputs remain solely dependent on the difference between time receipts of the start and end of the
VDF computation. This ensures that regardless of the UC-framework synchronous modeling where
only one machine is active at a time, our VDF oracle faithfully models VDF computations linked
to the passage of the clock.

Our construction of FγVDF is not only relevant for timestamping but something similar could be
used to represent timed-release cryptography. Our approach fulfills the expected properties of the
passage of time, effectively creating a relationship between sequential computation and clock time.
Universal composability is framework that acts in a very high level of abstraction. Our construction
allows us to use it to express timestamping and computational limitations, which the framework
was not designed to handle. This approach might be of independent interest as it allows us to talk
about physical properties of computation, as long as you accept that FγVDF accurately reflects the
real-world properties of a VDF.

4 A trivial timestamping scheme from VDFs

In this section we present a trivial construction based on the one found in [MMV13], using verifiable
delay functions instead of proofs of sequential work. The purpose of this construction is primarily
didactic, as it can only realize a weaker functionality Fαtriv, justifying the design choices made for
the protocol presented in Section 5. This section also allows the reader to become familiar with the
proof structures in the remainder of this paper.

The functionality models a very pessimistic view, namely that the prover is always corrupted
and it gives the adversary tremendous power, since for every stamp query, it is the adversary that
generates the claimed age a and proof string u. Nevertheless, he cannot make the functionality
accept (c, a, u) as valid, unless the claimed age a ≤ areal · α is bounded by the time-dilution factor
α multiplied by the real record’s age at the time when the proof was generated.
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Timestamping functionality Fαtriv

The functionality is parametrized with an adversarial time-dilution factor α ≥ 1. It answers queries from
the environment Z and interacts with an adversary Aid. It maintains two internal lists:R ⊂ {0, 1}∗×R+

for (record,time)-tuples and C ⊂ {0, 1}∗ × R+ × {0, 1}∗ × {0, 1} for (record,age,proof,valid)-tuples.

– On input (record, c), c ∈ {0, 1}∗:
If Aid is not sender then send (record, c) to Aid;
If 6 ∃t : (c, t) ∈ R then set R ← R∪ (c, clock).

– Procedure checkstamp(c, a, u, v):
/* Claimed age a older than α times real age is not allowed. */

If {(c′, t′) ∈ R | c′ = c ∧ a ≤ (clock− t′) · α} = ∅ then v ← 0.
/* Once (in)valid is always (in)valid. */

If ∃(c, a, u, v̂) ∈ C then v ← v̂.
Let C ← C ∪ (c, a, u, v).

– On input (stamp, c), c ∈ {0, 1}∗:
/* Let the adversary produce a claimed age and proof string */

Query (c, a, u, v)← Aid(stamp, c);
Call checkstamp(c, a, u, v);
Return (c, a, u).

– On input (stamped, c, a, u, v):
/* The adversary produced a stamp for a record unasked */

Call checkstamp(c, a, u, v).
– On input (verify, c, a, u), c ∈ {0, 1}∗, a ∈ R, p ∈ {0, 1}∗:

If (c, a, u, 1) ∈ C then return accept.
Let C ← C ∪ (c, a, u, 0);
Return reject.

Fig. 2: Simple timestamping functionality

Simple VDF prover Pγtriv

Given parameter VDF rate γ. It answers queries
from the environment Z and interacts with its
oracle FγVDF:

– On input (record, c), c ∈ {0, 1}∗:
Query FγVDF(start, c).

– On input (stamp, c), c ∈ {0, 1}∗:
Query u← FγVDF(output, c);
If u = ⊥ then return (c, 0,⊥);
/* Here u ∈ N+ × {0, 1}µ */

Let (s, p) = u, a = s/γ;
Return (c, a, u);

(a) Simple VDF prover

Simple VDF verifier Vγtriv

Given parameter VDF rate γ. It answers queries
from the environment Z and interacts with its
oracle F∗VDF:

– On input (verify, c, a, u),
c ∈ {0, 1}∗, a ∈ R+, u ∈ {0, 1}∗:
If u 6= (s, p) ∈ N+ × {0, 1}µ then

return reject;
If a 6= s/γ then return reject;
Return F∗VDF(verify, c, s, p).

(b) Simple VDF verifier

Fig. 3: Simple timestamping prover and verifier using VDFs
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4.1 Security proof

The ideal functionality assumes an always corrupted prover, so our real world consists of an arbitrary
PPT adversary A (instead of Pγtriv) and the honest verifier Vγtriv. We assume a PPT environment Z
that either interacts with the ideal world Ideal(Fαtriv,Aid) consisting of the ideal functionality and
an ideal adversary (cf. Figure 4a), or interacts with the real world Real(Vγtriv,A) (cf. Figure 4b),
and that at the end outputs a guessing bit.

The below theorem states that we can bound the advantage of Z to distinguish between the real

world and ideal world for a certain instantiation of the ideal adversary Aid by a simulator SA,F
γ·α
VDF

triv ,
which has black-box access to the PPT real adversary A (and may observe its oracle calls).

Theorem 4.1. Let µ ∈ N+ be the security parameter. For any real-world PPT adversary A with
oracle access to Fγ·αVDF, there exists a black-box PPT simulator Aid such that for any PPT environment
Z there exists a negligible function negl(µ) such that the the probability that Z can distinguish
between the ideal world with Fαtriv and Aid and the real world with A and Vγtriv (cf. Figure 3b,4b) is
negligible: ∣∣∣Pr[ZIdeal(Fαtriv,Aid) = 1]− Pr[ZReal(Vγtriv,A) = 1]

∣∣∣ ≤ negl(µ) .

Z Fαtriv Aid

(record, c) (record, c)

(stamp, c) (stamp, c)

(c, a, u, v)(c, a, u)

(record, c)

(stamped, c, a, u, v)

(verify, c, a, u)

accept/reject

output ∈ {0, 1} Ideal(Fαtriv,Aid)

(a) Ideal-world experiment ZIdeal(Fαtriv,Aid)

Z

A

Vγtriv

Fγ·αVDF

F∗VDF

(record, c)

(stamp, c)

(c, a, u)

(start, c)

(output, c)

(c, s, p)

(verify, c, a, u)

accept/reject

(verify, c, s, p)

accept/reject

output ∈ {0, 1}
Real(Vγtriv,A)

(b) Real-world experiment ZReal(Vγtriv,A)

Fig. 4: Environment Z in ideal- and real-world experiment for simple timestamping

Proof. Let the ideal-world simulator Aid := SA,F
γ·α
VDF

triv be defined as in Figure 5. We consider all
related execution transcripts in the ideal and real world

(Πideal, Πreal)← Exec(ZIdeal(Fαtriv,S
A,Fγ·α

VDF
triv ),ZReal(Vγtriv,A)),

where Z and A receive the same input and use the same random coin toss outcomes. If these
executions are identical from the viewpoint of Z, then Z will output the same bit. It follows that
to prove the theorem we only have to bound the probability that these views are not identical:∣∣∣∣Pr[ZIdeal(Fαtriv,S

A,Fγ·α
VDF

triv ) = 1]− Pr[ZReal(Vγtriv,A) = 1]

∣∣∣∣ ≤ Pr[ViewZ(Πideal) 6= ViewZ(Πreal)].

One can verify that in the ideal world all record and stamp queries by Z and their answers by A
are perfectly forwarded by the functionality and the simulator without changing content or timing.
Hence the only way for Z’s view to be different is when a verify query results in a different outcome
between the ideal world and real world. We now bound the probability that this event occurs.

Given some related pair (Πideal, Πreal) of execution transcripts, let
(tbad,Z, (verify, c, a, u)) ∈ Πideal ∩ Πreal be the first query for which the answer oi in the ideal
world differs from the output or 6= oi in the real world. Let qverify, and qVDF be the maximum of the
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Simulator SA,F
γ·α
VDF

triv

Given any real-world PPT A, the simulator SA,F
γ·α
VDF

triv runs the verifier Vγtriv, the A and their VDF
functionalities F∗VDF and Fγ·αVDF in a black box manner. It sees all VDF queries they make, but faithfully
and immediately forwards all queries and responses unmodified. The simulator acts as follows:

– On input (record, c), c ∈ {0, 1}∗:
Send (record, c) to A.

– On input (stamp, c), c ∈ {0, 1}∗:
/* Let the adversary produce a claimed age and proof string */

Query (c, a, u)← A(stamp, c);
/* Check validity of the proof */

If Vγtriv(verify, c, a, u) = accept then v ← 1 else v ← 0;
Return (c, a, u, v);

– When A outputs query (start, c) to Fγ·αVDF:
Send (record, c) to Fαtriv;

– When A receives (s, p) for query (output, c) from Fγ·αVDF:
Send (stamped, c, s/γ, (s, p), 1) to Fαtriv;

Fig. 5: Simulator

amount of verify and VDF queries, respectively, made in Πreal or Πideal. Below we only consider
what happened up to time tbad and disregard anything afterwards.

Assume oi = accept, this is only possible if SA,F
γ·α
VDF

triv has output (c, a, u, 1) (as answer to a stamp
query or as a stamped query). That can only happen when Vγtriv(verify, c, a, u) = accept and thus
that or = accept, which is a contradiction. It follows that oi = reject and or = accept and u = (s, p)
for some s and p.

Next consider the case when SA,F
γ·α
VDF

triv never outputted (stamped, c, a, u, 1) in Πideal. This implies
that the real adversary never received (s, p) ← Fγ·αVDF(output, c), where (s, p) = u. Note that the
value VDF(c, s) can only be directly queried through a F∗VDF(output, c) query, which thus did not
happen. The only other way to learn that p = VDF(c, s) is indirectly through a F∗VDF(verify, c, s, p) ∈
{accept, reject} query. Since VDF is a random oracle of bitlength µ, this event occurs with probability
upper-bounded by qverify · 2−µ.

What remains is when oi = reject, or = accept and SA,F
γ·α
VDF

triv has outputted (stamped, c, a, u, 1).
Then since oi = reject it must be caused by one of the two rules in Procedure checkstamp of the
ideal functionality (cf. Figure 2) resulting in v = 0 for (c, a, u):

1. The case that the claimed age a is older than the real age ar times α:
Assume that A received (s, p)← Fγ·αVDF(output, c), at which point the simulator immediately
makes a (stamped, c, s/γ, (s, p), 1) query to the functionality. By the definition of Fγ·αVDF,
the adversary A must have queried Fγ·αVDF(start, c) exactly the amount of time s/γA before
that, at which time the simulator made a (record, c) query to the functionality. Thus,
ar = s/(γ · α) and a = s/γ = ar · α, which is a contradiction.
It follows that A guessed the value p = VDF(c, s), the probability of this event is upper-
bounded by 2−µ · qVDF.

2. The case that (c, a, (s, p), 0) ∈ C:
This implies that the environment Z correctly guessed p = VDF(c, s) in a (verify, c, a, (s, p))
query made earlier. Since VDF is a random oracle with bitlength µ, this event happens
with probability upper-bounded by qverify · 2−µ.

We conclude that

Pr[ViewZ(Πideal) 6= ViewZ(Πreal)] ≤ 2−µ · (2 · qverify + qVDF),

where qverify and qVDF are polynomially upper-bounded by µ. It follows that the right hand side is
negligible in µ, which proves the theorem. ut
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Timestamping functionality Fαts

The functionality is parametrized with an adversarial time-diluting factor α ≥ 1. It answers queries
from the environment Z and interacts with an adversary Aid.
Let Tcorr ←∞ denote the time of corruption. It maintains two internal lists: R ⊂ {0, 1}∗ × {0, 1}θ for
(record,time)-tuples and C ⊂ {0, 1}∗ × {0, 1}θ × {0, 1}∗ × {0, 1} for (record,age,proof,valid)-tuples.

– On input corrupt by Aid at time t = clock():
If Tcorr =∞ then set Tcorr ← t.

– On input (record, c), c ∈ {0, 1}∗ at time t = clock():
Send (record, c) to Aid;
Set R← R∪ (c, t).

– Procedure checkstamp(c, a, u, v):
Let t̂ = min{t | (c, t) ∈ R} ∪ {∞}.
If a > (clock()− t̂): /* Claimed age a incorrect given record? */

If a > α ·min(clock()− Tcorr, clock()− t̂) then v ← 0;
If ∃(c, a, u, v̂) ∈ C then v ← v̂; /* For consistency. */

Let C ← C ∪ (c, a, u, v).
– On input (stamp, c), c ∈ {0, 1}∗:

Query (c, a, u, v)← Aid(stamp, c); /* Aid produces proof strings */

Call checkstamp(c, a, u, v);
Return (c, a, u).

– On input (verify, c, a, u), c ∈ {0, 1}∗, a ∈ R, p ∈ {0, 1}∗:
If ¬∃v̂ : (c, a, u, v̂) ∈ C then

Query v ← Aid(cnewstamp, c, a, u).
Call checkstamp(c, a, u, v);

If (c, a, u, 1) ∈ C then return accept;
Else return reject.

Fig. 6: Timestamping functionality Fαts

4.2 Issues

The above simple construction using VDFs has several important flaws that we try to mitigate in
this work.

– The functionality is in always corrupted state and α-time-dilution is always possible, since the
real adversary can always construct a valid timestamp triple (c, a, u) with α-time-dilution and
then pass this triple to the environment to verify.
We solve this problem by using digital signatures to prevent the adversary from constructing
valid timestamp triples with α-time-dilution unless it has corrupted the prover. Note that once
it has corrupted the prover, the use of digital signatures still allows time-dilution for all prior
records.
We can actually limit the adversary from producing valid time-diluted timestamp proofs with
claimed age only at most Acorr · α, where Acorr is the amount of time passed since corruption.
It follows that all valid timestamp proofs with greater claimed age cannot be time-diluted.
We achieve this property by adding both the time and the signature on the FγVDF.start input,
making any time-diluted age claim invalid with respect to the recording time.

– The construction is very inefficient as it requires any honest prover to run a separate VDF
computation per record. We get rid of this problem in our final construction that uses a
blockchain structure and requires only one VDF computation at all times for an honest prover.

5 A UC non-interactive timestamping functionality

In this section change our protocol to realize a timestamping functionality that fulfills stronger
security guarantees than Fαtriv.

Our protocol differs to the construction in [MMV13] in a simple manner. Given an existing
timestamp, an adversary with a faster VDF rate could work over the existing timestamp to make
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it seem older than it is. We prevent this by adding a time receipt to the timestamp, which forces
the adversary to start computing a new timestamp and prevents them from taking advantage of
the honestly computed work. We present a timestamping functionality Fαts defined in Figure 6 (see
also Figure 8a) which generates proofs for age, i.e., for the amount of elapsed time between the
recording of the message and the generation of the proof.

Such a proof of age is not the same as a proof of the actual time when the message was recorded.
For any generated proof the proven age is fixed and will stay the same while time continues to
progress. It is possible to verify that a message was recorded around a particular time by querying a
new proof and immediately verifying it. What our protocol does not do is prevent an attacker from
post-dating a record, that is, pretending it was first recorded later than it was. In our functionality
we assume the adversary has access to better (computational) resources than the honest player and
can use these resources to dilute the proven age by at most a time-dilution factor α ≥ 1. We then
show that we can efficiently and securely instantiate this functionality with the use of VDFs.

The functionality accepts four inputs, including a corruption input corrupt after which the
adversary is allowed to input new records and amnipulate timestamps. The functionality receives
records through the record query and saves when this happened. It generates a timestamp whenever
it recieves a stamp input with the appropriate record. The adversary can choose how the timestamp
looks like but can only modify the age if they have corrupted the functionality. Even then, they are
limited by the checkstamp procedure, which checks whether the presented age of the timestamp is
correct. If the functionality is not corrupted, it simply checks whether the age in the timestamp
does not exceed the time elapsed since the record was originally queried. When the functionality
is corrupted, the adversary can stretch a timestamp by a factor α but only if enough time has
elapsed since corruption. That is, an adversary can only modify a timestamp if they have been
in control of the functionality for at least the age of the timestamp divided by α. The procedure
additionally checks whether the triple of record, timestamp and age has been registered before.
Then, the triple is registered with a validitity bit v which states whether the timestamp is valid.
The verify query simply checks whether a triple is in the list of generated timestamps and outputs
the associated validity bit. if the timestamp is not saved but is within acceptable parameters, it
queries the adversary whether it is a valid timestamp or not and outputs the adversary’s answer.

This functionality starts uncorrupted (time of corruption Tcorr = ∞ is set to infinity) and
produces timestamps that are faithful to the record. It allows a corruption message (setting
Tcorr ← clock()) after which the adversary is allowed to exploit its time-dilution factor α in
timestamps. However, any produced accepted timestamp that is unfaithful is not only bounded by
α times the real age, but in certain cases, the bound is even stricter, preventing the creation of
timestamps of a certain age within a period α · (clock()− Tcorr). This implies that any accepted
timestamp produced by the adversary with claimed age older than α · (clock()− Tcorr) is faithful.
This is a stronger result than the one found in Section 4.

The functionality also allows the adversary to submit records and stamps so that the functionality
can potentially accept stamps for some message c for which the environment never called (record, c)
nor (stamp, c). This case is possible because the environment and adversary can freely communicate,
but even if they could not, they could use record and stamp queries as a covert channel. Nevertheless,
note that valid stamps always have to fulfill the basic requirements from the functionality: the real
age areal and claimed age a satisfy a ≤ areal · α. The functionality is simplified since it does not
distinguish between the public record query from the environment and the private one from the
adversary. This distinction is not necessary because it is the adversary who decides how to respond
to the public stamp queries.

5.1 Instantiation with VDFs

We can instantiate this functionality with an honest prover Pγts (cf. Figure 7a) and an honest verifier
Vγts (cf. Figure 7b). Note that actual proofs are of the form (t, σ, s, p) ∈ {0, 1}θ×{0, 1}κ×N+×{0, 1}µ,
we assume an efficient unambiguous encoding to bitstring {0, 1}∗ is fixed.

The role of the prover Pγts is to start the execution of FγVDF with the input included in the record
query whenever they receive one. The input to the VDF also includes a time receipt of the current
time as well as a signature. When they receive a stamp input, they query for an output from the
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VDF-based prover Pγts

Let µ and κ be the security parameters of VDF and Σ, respectively, and γ the VDF-rate of Pγts’s oracle
oracle FγVDF. Let (pkP , skP)← Σ.keygen(), publish public key pkP . Let R = ∅, then Pγts proceeds as
follows:

– On input (record, c), c ∈ {0, 1}∗:
If ∃(t′, c, σ′) ∈ R then return;
Let t = clock(), σ = Σ.sign(t||c, skP);
Set R← R∪ {(t, c, σ)};
Query FγVDF(start, t||c||σ);

– On input (stamp, c), c ∈ {0, 1}∗:
Let t, σ such that (t, c, σ) ∈ R,
Else return (0, c,⊥);
Query (s, p)← FγVDF(output, c||t||σ);
Let u = (t, σ, s, p) and a = s/γ;
Return (c, a, u);

– On input (corrupt) from A:
Send skP to A.
For each (t, c, σ) ∈ R:
Query (s, p)← FγVDF(output, c||t||σ);
Send (t, c, σ, s, p) to A;

Transfer control to A;

(a) VDF-based prover

VDF-based verifier Vγts

Given parameter VDF rates γ and γ0, and pkP . It answers queries from the environment Z and
interacts with its oracle F∗VDF:

– On input (verify, c, a, u),
c ∈ {0, 1}∗, a ∈ {0, 1}θ, u ∈ {0, 1}∗:
If u 6= (t, σ, s, p) with t ∈ {0, 1}θ, σ ∈ {0, 1}κ, s ∈ N+, p ∈ {0, 1}µ then return reject;
If Σ.verify(t||c, σ, pkP) = reject then return reject;
If not s/γ = a ≤ (clock()− t) then return reject.
Return F∗VDF.verify(c, s, p).

(b) VDF-based verifier

Fig. 7: Timestamping prover and verifier

corresponding VDF computation and forwars the output of the VDF, which will be the timestamp
that Vγts verifies.

As we are simply creating proofs of age, time receipts might seem superfluous. However, they
prevent a trivial attack of stretching a previously seen timestamp proof, as the time receipt forces
a maximum possible age for the record. Digital signatures, on the other hand, allow us to model
the corruption of the stamper. Furthermore they also imply the unpredictability of VDF inputs, a
deeper discussion on this design choice can be found in Section 7.

5.2 Security proof

We assume a PPT environment Z that either interacts with the ideal world Ideal(Fαts,Aid) with
the ideal functionality and an ideal adversary (cf. Figure 4a), or interacts with the real world
Real(Pγts,V

γ
ts,A) (cf. Figure 4b), and that at the end outputs a guessing bit.

The below theorem states that we can bound the advantage of Z to distinguish between the
real world and ideal world for a certain instantiation of the ideal adversary Aid by a similator SAts ,
which has black-box access to the PPT real adversary A (and may observe its oracle calls).
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Z Fαts Aid

(record, c) (record, c)

(stamp, c) (stamp, c)

(c, a, u, v)(c, a, u)

(record, c)

(cnewstamp, c, a, u)

v

(corrupt)

(verify, c, a, u)

accept/reject

output ∈ {0, 1} Ideal(Fαts,Aid)

(a) Ideal world ZIdeal(Fαts,Aid)

Z

Pγts

Vγts

A

F∗VDF

FγVDF

Fγ·αVDF

(record, c)

(stamp, c)

(c, a, u)

(verify, c, a, u)

accept/reject

(corrupt)

skP , {(c, t, σ, s, p)}

full control

output ∈ {0, 1}
Real(Pγts,V

γ
ts,A)

(b) Real world ZReal(Pγts,V
γ
ts,A)

Fig. 8: Ideal and Real world

Theorem 5.1. Given security parameter µ ∈ N+, there exists a PPT simulator SAts such that for
any PPT adversary A with oracle access to Fγ·αVDF and any PPT environment Z the advantage that
Z can distinguish between the ideal world with Fαts and Aid := SAts (cf. Figure 8a, 6, 9) and the real
world with Pγts, V

γ
ts, and A (cf. Figure 8b, 7a, 7b), is bounded as follows:∣∣∣Pr[ZIdeal(Fαts ,S

A
ts ) = 1]− Pr[ZReal(Pγts ,V

γ
ts ,A) = 1]

∣∣∣ ≤ negl(µ, κ),

where negl(µ) is a negligible function in µ.

Proof. Let SAts be as defined in Figure 9. Effectively what SAts does is forward the queries to a
simulated prover running the protocol and back. The only thing of note is that it can check whether
a prioof is invalid, in which case it tells the functionality to save it as an invalid statement. We
consider all related execution transcripts in the ideal and real world

(Πideal, Πreal)← Exec(ZIdeal(Fαts,S
A
ts ),ZReal(Pγts,V

γ
ts,A)),

where all parties including Z and A receive the same starting input tape and randomness tape. If
these executions are identical from the viewpoint of Z, then Z will output the same bit. It follows
that to prove the theorem we only have to bound the probability that the two views of Z are not
identical: ∣∣∣Pr[ZIdeal(Fαts,S

A
ts ) = 1]− Pr[ZReal(Pγts,V

γ
ts,A) = 1]

∣∣∣
≤ Pr[View(Z, Πideal) 6= View(Z, Πreal)].

Note that in the ideal world all record and stamp queries by Z and their answers by Pγts
(potentially under control of A) are perfectly forwarded by the functionality and the simulator.
Hence the only way for Z’s view to be different is when a verify query by Z results in a different
outcome between the ideal world and real world. We now bound the probability that this event
occurs.

Given some related pair (Πideal, Πreal) of execution transcripts, consider the first query for
which the answer differs between the ideal world and real world. Let (tbad,Z, (verify, c, a, u)) ∈
Πideal ∩Πreal be this first query by Z, where tbad is the clocktime of the query, and for which the
answer oi in the ideal world differs from the output or 6= oi in the real world. Let qverify, and qVDF

be the maximum of the amount of verify and VDF queries, respectively, made in Πreal or Πideal.
Below we only consider what happened up to time tbad and disregard anything afterwards.

Assume oi = accept, this is only possible if SAts has output (c, a, u, 1) (as answer to a stamp
query or as a cnewstamp query). That can only happen when Vγts.(verify, c, a, u) = accept and thus
that or = accept, which is a contradiction. It follows that oi = reject and or = accept and u is of
the form (t, σ, s, p) ∈ {0, 1}θ × {0, 1}κ × N+ × {0, 1}µ, where:

Σ.verify(c||t, σ, pkP) = accept, p = VDF(c||t||σ, s), s/γ = a, a ≤ (tbad − t).

Next consider the case when SAts never outputted 0 after a (cnewstamp, c, a, u) query in Πideal.
This implies that the real adversary never received (s, p) ← Fγ·αVDF(output, c||t||σ), otherwise SAts
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Simulator SAts

Given any real world PPT A, the simulator SAts runs the A in a black box manner, the honest prover
Pγts and the verifier Vγts. It maintains a list of (record,age,proof)-triples R. It sees all VDF queries they
make, but faithfully and immediately forwards all queries and responses. The simulator acts as follows:

– On input (record, c), c ∈ {0, 1}∗:
Send (record, c) to Pγts. /* potentially under A control */

– On input (stamp, c), c ∈ {0, 1}∗:
/* Query proof from Pγts (potentially under A control). */

Query (c, a, u)← Pγts(stamp, c);
/* Check validity of the proof */

If Vγts.verify(c, a, u) = accept then v ← 1 else v ← 0;
Return (c, a, u, v);

– When A outputs query corrupt to Pγtl:
Send corrupt to Fαts;

– When A outputs query (start, c||t||σ) to Fγ·αVDF:
If Σ.verify(c||t, σ, pkP) = accept then send (record, c) to Fαts;

– When A receives (s, p) for query (output, c||t||σ) from Fγ·αVDF:
If Vγts.verify(c||t||σ, s/γ, u) = accept then v ← 1 else v ← 0;
Let R← R ∪ (c, s/γ, (t, σ, s, p), v);

– On input (cnewstamp, c, a, u), c ∈ {0, 1}∗:
If (c, a, u, v) ∈ R then return v else return 0.

Fig. 9: Simulator

would hav recorded the triple in R. Note that the value VDF(c||t||σ, s) can only be directly queried
through a Fγ∗VDF(output, c||t||σ) query, which thus did not happen. The only other way to learn
that p = VDF(c||t||σ, s) is indirectly through a Fγ∗VDF(verify, c||t||σ, s, p) ∈ {accept, reject} query.
Since VDF is a random oracle of bitlength µ, this event occurs with probability upper-bounded by
qverify · 2−µ.

What remains is when oi = reject, or = accept and SAts has outputted 1 to a (cnewstamp, c, a, u)
query. Then since oi = reject it must be caused by one of the rules in Procedure checkstamp of the
ideal functionality (cf. Figure 6) resulting in v = 0 for (c, a, u):

1. The case that the claimed age a is older than α times the real age ar:
Assume that A received (s, p)← Fγ·αVDF(output, c||t||σ), at which point the simulator imme-
diately makes a (, c, s/γ, (t, σ, s, p), 1) to R. By the definition of Fγ·αVDF, the adversary A must
have queried Fγ·αVDF(start, c||t||σ) exactly the amount of time s/γA before that, at which
time the simulator made a (record, c) query to the functionality. Thus, ar = s/(γ · α) and
a = s/γ = ar · α, which is a contradiction.
It follows that A guessed the value p = VDF(c, s), the probability of this event is upper-
bounded by 2−µ · qVDF.

2. If claimed age a is older than α times the time acorr since corruption:
Assume that A received (s, p) ← Fγ·αVDF(output, c||t||σ). By the definition of Fγ·αVDF, the
adversary A must have queried Fγ·αVDF(start, c||t||σ) exactly the amount of time s/(γ · α)
before that, which is before corruption. The adversary cannot yet legitimately query
σ = Σ.sign(skP , c||t), and σ = Σ.sign(skP , c||t) also has not appeared legitimaly before
(otherwise oi = accept). It follows that the probability of this signature forging event is
negligible in κ.
Otherwise A never received (s, p)← Fγ·αVDF(output, c||t||σ) and successfully guessed p. This
event is upper-bounded by 2−µ · qVDF.

3. The case that (c, a, (t, σ, s, p), 0) ∈ P:
The environment Z correctly guessed p = VDF(c||t||σ, s) in a (verify, c, a, (t, σ, s, p)) query
made earlier. This event happens with probability upper-bounded by qverify · 2−µ.

We conclude that
Pr[View(Z, Πideal) 6= View(Z, Πreal)]
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is bounded by the finite sum of the above probabilities that are all negligible in µ and κ, which
proves the theorem. ut

We have shown that our protocol can realize our ideal functionality and therefore allows us to
create secure timestamps based on our VDF.

6 A more efficient timestamping scheme

The protocol we constructed in the previous section securely realizes our timestamping functionality.
However, the construction is not practical as it does not scale. Each new timestamp requires
running another independent instance of the VDF. In particular, if any prover wants to continue
producing timestamps for a certain record entry then it must continue to compute that VDF
instance indefinitely. In order to sidestep this issue, we turn to one of the constructions in Haber
and Stornetta’s seminal timestamping paper: the hashchain.

A hashchain is exactly what its name suggests, a chain of records linked together through
cryptographic hashes. Each record is hashed in conjunction with the hash of the previous record to
create a chain. With the right choice of hash function, we can ensure that each element can only
be created after all the preceding ones are known. It is natural to combine this concept with our
VDF-based timestamps to be able to generate timestamps while computing only a single instance of
our VDF at each moment in time. The price we pay for this benefit is longer proof strings, as they
have to consist of a chain of hashes and VDFs. On the other hand, this allows for faster verification,
as it is possible to verify each VDF in parallel. Our construction enhances the original hashchain
from [HS91], as it now provides more than a simple ordering.

In order to construct our new protocol, we need to introduce a couple of additional concepts. Our
timestamps consist of sequences of VDF-proofs that are linked to each other through cryptographic
hash functions, modelled as random-oracle sequences as originally presented in [CP18]. We enhance
these constructions by adding VDFs to the sequences, maintaining the property that dictates
that such sequences can only be built in a sequential manner, allowing us to preserve the security
guarantees from our previous construction.

First, we define these sequences and show what properties we require from them and how they
can be enhanced. Then, we define the data structure used by the prover to save (and generate)
their timestamps, which consist of so-called blocks chained through hash functions.

Sequences. We denote a sequence of l elements from a set X as S = 〈xi | xi ∈ X〉l, where the
elements of the sequence are indexed by i ∈ {0, . . . , l − 1}. When it is more practical or clear from
context, we may denote a sequence as S = 〈x0 . . . , xl−1〉l or simply 〈xi〉l. We also avoid writing the
subscript l when the length of the sequence is not relevant. When we wish to append an element x
at the end of a sequence S we write 〈S, x〉.

Cryptographic hash function. Let H : {0, 1}∗ → {0, 1}λ be a collision-resistant cryptographic hash
function, which we model as a random oracle.

Merkle Trees. Merkle trees are balanced binary trees, where the ordered leaf nodes are each labeled
with a bitstring, and where each non-leaf node has two child nodes and is labeled by the hash of its
children’s labels. The root hash of a Merkle tree equals the label of the root node. Merkle trees
allow for short set membership proofs of length O(log(N)) for a set of size N . For convenience we
define some interface functions that deal with Merkle trees in a canonical deterministic way.

MT.root(T ) computes the root hash h of the Merkle Tree for some ordered finite sequence T =
〈xi | xi ∈ {0, 1}∗〉 of bit strings and outputs h ∈ {0, 1}λ.

MT.path(T, v) outputs the Merkle path described as a sequence of strings 〈xi | xi ∈ {0, 1}λ〉l
where x0 = v, xl−1 = MT.root(T ), xi ∈ {0, 1}λ and either xi+1 = H(xi||H(xi−1)) or xi+1 =
H(H(xi−1)||xi) for all i > 0.

MT.verify(P ) given an input sequence P = 〈xi | xi ∈ {0, 1}λ〉l outputs accept if P is a valid Merkle
path. It outputs reject otherwise.
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With a slight abuse of notation we also use MT.root(T ) recursively, i.e., if one of the elements S
of T is not a bitstring but a set or sequence, we use MT.root(S) as the bitstring representing S.
For example, if T = (a, b, S) with bitstrings a, b ∈ {0, 1}∗ and a set of bitstrings S = {c, d, e}, then
MT.root(T ) = MT.root((a, b,MT.root(S))). This similarly extends to MT.path(T, v), e.g., where
v ∈ S in the previous example.

Later in this section, we define the concept of a block, which we assume to have a canonical
representation as a Merkle tree T .

6.1 Random Oracle Sequences

We analyze recursive calls to the random oracle H and to the random oracle VDF underlying all
oracles F∗VDF and analyze the cumulative strength of the verifiable delay functions that are found in
the sequence. We have adapted the following lemmas from [CP18] to this setting.

Lemma 6.1 (Random Oracles are Collision-Resistant). Consider any adversary AH given
access to a random function H : {0, 1}∗ → {0, 1}n. If A makes at most q queries, the probability it
makes two colliding queries H(x) = H(y) with x 6= y is at most q

2
/2n+1.

The above lemma applies independently both to H and VDF, since we assume that their output
spaces are disjoint as λ 6= µ.

A note on notation: here we consider the output p of the random oracle VDF(x, s), instead of
output (s, p) for query FγVDF(output, x) that includes s in the output.

Definition 6.2 (H2-sequence). Given functions H : {0, 1}∗ → {0, 1}λ and VDF : {0, 1}∗ × N→
{0, 1}µ, an H2-sequence of length l is defined as a sequence S = 〈(si, xi) | si ∈ N∪{⊥}, xi ∈ {0, 1}∗〉l,
where the following holds for each 0 ≤ i < l: if si = ⊥ then H(xi) is contained in xi+1 as continuous
substring6; otherwise si ∈ N and VDF(si, xi) is contained in xi+1 as a continuous substring. We
let IVDF be the index set of all elements (si, xi) ∈ S such that si 6= ⊥ and call it the VDF-index
set of S and we call S[IVDF] = 〈(si, xi) ∈ S | i ∈ IVDF〉 the VDF-subsequence of S. We refer to
str(S) =

∑
i∈IVDF

si as the strength of the H2-sequence S.

It is simple to verify that any Merkle path MT.path(T, v) = 〈x0, . . . , xl−1〉 induces an H2-
sequence of the form 〈(⊥, x′0), (⊥, x′1), . . . , (⊥, x′l−2), (⊥, xl−1)〉 of length l, where xi is a substring
of x′i for 0 ≤ i < l − 1. With an abuse of notation, we refer to Merkle path MT.path(T, v) as the
induced H2-sequence of that path whenever it is relevant.

Definition 6.3 (linking H2-sequences). We define linking H2-sequence S2 = 〈(s2, x2), .̂ . .〉 to
H2-sequence S1 = 〈.̃ . .(s0, x0), (s1, x1)〉 where x1 is a continuous substring of x2 to result in the
H2-sequence S1 ./ S2 = 〈.̃ . ., (s0, x0), (s2, x2), .̂ . .〉.

Note that the result of the query (s0, x0) is a continuous substring of x1, and thus also a continuous
substring of x2, it follows that 〈.̃ . .(s0, x0), (s2, x2)〉 is a valid H2-sequence and by concatenating
the rest of S2 it follows that S is a valid H2-sequence.

Lemma 6.4 (Random Oracles are sequential). Consider any adversary A(H,VDF) which is
given a bitstring x0 of sufficient min-entropy and access to two random functions H : {0, 1}∗ →
{0, 1}λ and VDF : {0, 1}∗ × N→ {0, 1}µ that it can query. If A makes at most q1 queries of total
length Q1 bits to H and at most q2 queries of total length Q2 to VDF, then the probability that it
outputs an H2-sequence (〈(s0, x0), (̇sl−1, xl−1)〉l without making the queries (s0, x0), . . . , (sl−1, xl−1)
to respectively H and VDF sequentially is at most

2 ·
(
q1 · 2−λ + q2 · 2−µ

)
·

(
Q1 +Q2 +

l∑
i=0

|xi|

)
.

6 That is, xi+1 = a||H(xi)||b for some a, b ∈ {0, 1}∗
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Proof. Constructing an H2-sequence without making the queries (s0, x0), . . . , (sl−1, xl−1) sequen-
tially can happen when there is a cycle such that the adversary can repeat previous queries without
making them again. I.e., there exist 0 ≤ i ≤ j < l such that H(xj) (when sj = ⊥) or VDF(sj , xj)
(otherwise) is contained in xi. This event can only arise when the output of a query is a substring
of the input of a previous query. Using that outputs of H and VDF are uniform randomly selected,
the probability of a cycle is upper bounded by qH(QH +QVDF)2−λ + qVDF(QH +QVDF)2−µ.

If there are no cycles then at least one query did not happen or did not happen after its dependent
query. This event can only arise when an output y of a query to H or VDF would be a continuous
substring of some bitstring (one of the queried inputs or one of the xj), whether or not the adversary
actually made the query. As outputs of H and VDF are uniform randomly selected, the probability of
this event is upper bounded by qH(QH +QVDF +

∑l
i=0 |xi|)2−λ + qVDF(QH +QVDF +

∑l
i=0 |xi|)2−µ.

The claimed bound follows from a union bound over these two events. ut

Thus when an adversary outputs an H2-sequence of strength L where 2 · (qH2−λ + qVDF2−µ) ·
(QH +QVDF +

∑l
i=0 |xi|) is negligibly small, we can assume that it made all queries sequentially. (In

practice this is certainly the case for output lengths λ and µ of 256 bits and larger.) In particular,
if the adversary can query VDF(x, s) only through FγVDF with a rate of γ then each query VDF(x, s)
takes time s/γ time. It follows that the adversary used at least L/γ time to construct the H2-sequence.

Note that our construction differs from the one in [CP18] as we aggregate all the calls to VDF
into one element of the sequence. We do this in order to distinguish the calls to different random
oracles and more directly show the numbers of executions of VDF. We effectively treat calls to H as
“free” with regards to time although the cost of executing them might be relevant incertain contexts.

Using H2-sequences is not enough to create timestamps for the same reasons discussed in
Section 5. An adversary wishing to stretch a timestamp can truncate the chain at any point and
then append another sequence with a higher strength. This allows an adversary with access to
Fγ·αVDF to easily create an α-diluted proof, while taking advantage of the work already encoded in
the sequence. A first step to prevent this attack is by adding time receipts to the sequences We
embed unchangeable time receipts into H2-sequences which we then call H2T -sequences. These
time receipts are enforced by each VDF in the sense that altering the time receipt requires redoing
the VDF.

Definition 6.5 (H2T -sequence). Let S = 〈(si, xi)〉l be an H2-sequence of length l with IVDF the
VDF-index set of S and I−1VDF = {i− 1 | i ∈ IVDF, si−1 = ⊥}. We call S an H2T -sequence if the
following properties hold:

1. For i ∈ I−1VDF ∪ IVDF: xi = ti||ri where ti ∈ {0, 1}θ is a time receipt.
2. For all i, j ∈ I−1VDF ∪ IVDF: if i < j then ti ≤ tj.
3. For all i, j ∈ IVDF: if i < j then ti < tj.

We say S has ε delay if for all i ∈ IVDF, if i − 1 ∈ I−1VDF then we have that ti − ti−1 ≤ ε. If
I 6= ∅ then we call the first element of S[I−1VDF] the root of S (root(S)) and the time receipt tmin

in root(S) the root time of S and we call age(S) = tmax − tmin the age of the sequence, where
tmax = max{ti | i ∈ IVDF} is the last time receipt.

Due to the inherent sequentiality of the H2T -sequences, it is natural to assume that time elapses
between the output of one VDF and the input of the next VDF. This leads us to have two different
time receipts, the ones representing the time of a VDF output (IVDF) and the ones representing the
time of input (I−1VDF). To extract meaningful timestamping, we require this delay to be bounded by
ε, which we assume to be negligibly small in relation to the time elapsed during the execution of
the VDF.

In order to verify whether these sequences create timestamps with the expected properties, we
construct a verification procedure and a sequence-forging game. The verification procedure checks
structural correctness of H2T -sequences and estimates the VDF-rate with respect to the claimed
root time of S.

Definition 6.6 (H2T -verification). Given a sequence S = 〈(si, xi)〉l, VDF-rate γ and interrupt-
time ε, we define the following H2T -verification algorithm h2tsverify(S, γ, ε) given access to F∗VDF:
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– Check whether S is a valid H2-sequence i.e. for all i < l, either xi+1 = a||H(xi)||b and si+1 = ⊥
or xi+1 = a||VDF(xi, si+1)||b and si+1 6= ⊥ for some a, b ∈ {0, 1}∗7.

– Verify that for all i ∈ I−1VDF ∪ IVDF we have that xi = ti||yi with ti ∈ {0, 1}θ;
– For all i ∈ I−1VDF: ti+1 − ti ≤ si/γ, i.e. every VDF proof has sufficient strength;
– Let IVDF = {i0, . . . , ik} then for all 0 < j ≤ k: t(ij−1) − ti(j−1)

≤ ε, i.e. between VDF proofs
there is a time gap at most ε.

If any of these checks fail, output reject. Otherwise, output accept.

It is not enough to check the average strength of the sequence over the total age. This verification
would allow for timestamp stretching, when one particular VDF instance was computed with a
considerably faster rate.

The following game captures the challenge to compute an H2T -sequence that can be claimed τ
older than it really is while still keeping rate γ.

Definition 6.7 (Sequence-forging game). For τ > 0, positive VDF-rate γ > 0, and adversarial
time-dilution factor α ≥ 1, we define the sequence-forging game with respect to a H2T -verifier
V as follows.

Consider an adversary A with access to oracles Fγ·αVDF and H. At time t0 the adversary gets access
to an oracle O and queries it for a random bitstring c0 ∈ {0, 1}λ, the adversary can make additional
queries c1, . . . to O later on, but not before time t0. The adversary constructs an H2T -sequence
S = 〈(xi, si)〉l with root time t0 − τ and where c0 is a continuous substring of x0. It sends S to a
verifier V at time t1 and wins if V outputs accept.

Here, the oracle O is used to enforce that the adversary can only legitimately start computing S
from time t0, which may seem slightly unnatural. In the case of timestamping, similar oracles are
used to represent the situation when the thing to be timestamped is unpredictable (such as an
invention). Interestingly, this oracle can also be interpreted as a signing oracle, where gaining access
to the oracle represents the corruption of an honest party and gaining access to the secret key.

In this game, the adversary has access to Fγ·αVDF before t0, so they are allowed to precompute
a polynomial amount of H2T -sequences. However, for any of these sequences to be useful to
A when constructing a block, they have to be able to link the output of O to these sequences,
which can only be done through random oracle collisions. The H2T -sequence S that needs to be
constructed requires root time t0− τ , which must be the time receipt in the first element in S[I−1VDF]:
(⊥, t0−τ ||xk). By construction of H2T -sequences, there must be a random oracle (H) chain between
c0 to xk, which implies that precomputation of a sequence with the correct root time is no use.
More importantly, the time receipts ensure that having access to a H2T -sequence starting with
c0 of the requisite strength but with root time after t0 − τ can also not be taken advantage of to
create a correct H2T -sequence.

The following lemma lower-bounds the running time it takes an adversary with rate γA to
compute an H2T -sequence with claimed root time τ older than the “real” root time, while still
keeping minimum average rate γ, with non-negligible success probability.

Lemma 6.8 (Unforgeable H2T -sequences). If t1 − t0 < τ · γ
γA−γ then the adversary wins the

sequence-forging game with probability at most

2 · (q1 · 2−λ + q2 · 2−µ) · (Q1 +Q2 + |S|),

where A made q1 queries of total bitlength Q1 to H and q2 queries of total bitlength Q2 to FγAVDF.

Proof. In the elapsed time e := t1 − t0 after corruption, the adversary can sequentially compute an
H2T -sequence of strength at most e ·γA. The required minimum average rate of γ over age T = e+τ
requires a minimum strength of L = T · γ. It follows that the adversary can sequentially compute

7 In the second case, the verifier must make a (verify, xi, y, s) query, as they must not compute the VDF
themselves. This requires a particular structure for the entries in S[IVDF] in order to know what to choose
as y. Because these are H2T -sequences, we assume that a ∈ {0, 1}θ and b is the empty string. The verifier
prunes the first θ bits from the beginning of xi+1 and takes the remaining string as the y to be be input
in the verify query.
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the H2T -sequence with probability 1 if and only if e · γA ≥ T · γ or equivalently t1 − t0 ≥ τ · γ
γA−γ .

However, if t1 − t0 < τ · γ
γA−γ then the adversary cannot compute the H2T -sequence sequentially

and by Lemma 6.4 succeeds with probability at most 2 · (q1 · 2−λ + q2 · 2−µ) · (Q1 +Q2 + |S|). ut

While an adversary can still simply construct an H2T -sequence from scratch, it can no longer
stretch an already exisiting one as the time receipts cannot be modified without recomputing the
VDFs.

As we saw in Section 5, in order to correctly realize the timestamping functionality the adversary
must not be able to precompute the VDFs. In order to prevent precomputation, we use a secure
digital signature scheme. At the same time, our proofs for the unforgeability of the H2T -sequences
require the content of the first element of the sequence to come from an unpredictable oracle.
These two ideas can be combined by assuming that this oracle generates a signature for the rest of
the content and can only be accessed by the adversary by corrupting the original stamper. This
reasoning leads us to our next construction, where the signatures are added as part of the sequence.
We now define H2TS-sequences which are simply H2T -sequences where every VDF input is signed.

Definition 6.9 (H2TS-sequence). Let pk be a public key for a signature scheme Σ and S =
〈(si, xi)〉l be an H2T -sequence of length l with IVDF the VDF-index set of S and I−1VDF = {i− 1 | i ∈
IVDF}. We call S an H2TS-sequence for pk if for i ∈ I−1VDF: xi = ti||ri||σi where ti ∈ {0, 1}θ is a
time receipt and σi ∈ {0, 1}κ is such that Σ.verify(pk, ti||ri, σi) = accept.

6.2 Constructing the Sequences

While the aforementioned sequences provide the security properties that we expect our timestamps
to have, our protocol utilizes different tools. Our prover maintains a list of blocks, each containing
the VDF proof and the record to be timestamped as well as additional information. These blocks
are chained through the use of hash functions, each block containing a hash of the previous block, in
a similar way as the hashchain by Haber and Stornetta [HS91] and similar to blockchains [Nak08].

Definition 6.10 (Block). We define a block for a party P with public key pk ∈ {0, 1}∗ as a tuple
B = (rnd, prev, vi, vo, t, c) and

1. rnd ∈ N is the sequence number of the block;
2. prev ∈ {0, 1}∗ is the root hash MT.root(Brnd−1) of the previous block Brnd−1, or prev = H(pk)

when rnd = 0;
3. vi = (tu, sig) ∈ {0, 1}θ × {0, 1}κ is a (time receipt, signature)-pair such that

Σ.verify(pk, tu||prev, sig) = accept;
4. vo = (s, p) is a VDF output: p = VDF(tu||prev||sig, s)
5. t ∈ {0, 1}θ is a time receipt of the creation of the block;
6. c ∈ {0, 1}∗ is the entry to be timestamped;

For convenience we use the notation B.pk, B.rnd, B.prev, B.vi, B.vo, B.tu, B.sig, B.t, B.s, B.p
and B.c to refer to these elements in block B.

We assume that there is a canonical construction for the Merkle tree of a block. The exact
construction is not important, but we make some characterizations to simplify the construction.
We are interested in having t||p be a leaf of the tree. Eagle-eyed readers will note that this string is
similar to what we expect from an element of S[IVDF], where each element of the sequence must
consist of the output of a VDF (p) preceded by a time receipt (t). Additionally, we have that prev
and c are leaves. These assumptions allow for an easy characterization of the link between these
instances and the next VDF input.

Definition 6.11 (Chain). We define a chain for a party P with public key pk ∈ {0, 1}∗ as a
sequence of blocks C = (B0, . . . , Bk) where for all 0 ≤ i ≤ k:

1. Bi.rnd = i;
2. B0.prev = H(pk) and Bi.prev = MT.root(Bi−1) for i > 0;
3. Bi.p = VDF(Bi.t

u||Bi.prev||Bi.sig, Bi.s) for i ≥ 0;
4. Σ.verify(pk,Bi.t

u||Bi.prev,Bi.sig) = accept;
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H2TS-based prover Pγ,εH2TS

Given parameter VDF rate γ, interrupt time ε. It answers queries from the environment Z and
interacts with its oracle FγVDF and executes a digital signature scheme Σ with keypair (pk, sk).
It maintains a chain C initialized by a block ((0,H(pk), (⊥, 0), (0θ, 0κ), clock(),⊥)) and a variable
triple (tu, prev, sig). Upon initialization, it initializes tu ← clock(), prev ← MT.root(B0) and sig ←
Σ.sign(sk, tu||prev) and inputs (start, tu||prev||sig) to FγVDF. The block creation process takes at
most ε time steps. That is, for every consecutive blocks in the chain, Bi and Bi+1, we have that
Bi+1.t

u −Bi.t ≤ ε.

– On input (record, c), c ∈ {0, 1}∗:
Query vo = (s, p)← FγVDF.output(t

u||prev||sig);
Let t← clock(), block ← (len(C) + 1, prev, (tu, sig), (s, p), t, c);
Append block to C as Blen(C)+1;
Let tu ← clock(), prev ← MT.root(C) and sig ← Σ.sign(sk, tu||prev);
On input (start, tu||prev||sig) to FγVDF;
Return tu||prev||sig.

– On input (stamp, c), c ∈ {0, 1}∗:
Let i∗ = min{i|Bi.c = c};
If i∗ = ⊥ then return (c, 0,⊥);
Else Query vo = (s, p)← FγVDF.output(t

u||prev||sig);
Let u← 〈h2ts(C, i), (s, clock()||vo)〉 and a∗ ← s/γ +

∑
C[i∗+1:)Bj .t−Bj .t

u

Return (c, a∗, u)

(a) H2TS-based prover

H2TS-based verifier Vγ,εH2TS

Given parameter VDF rate γ and interrupt time ε. It answers queries from the environment Z and
interacts with its oracle F∗VDF and can make queries of the form Σ.verify(pk,msg, sig) for a given pk:

– On input (verify, c, a, u), c ∈ {0, 1}∗, a ∈ {0, 1}θ:
Parse S := 〈(si, xi)〉l ← u as an H2TS-sequence with VDF-index set IVDF and time receipt
index I−1

VDF and first element (⊥, c);
If unable, return reject;
For each (si, ti||xi||sigi) ∈ I−1

VDF:
if Σ.verify(pk, ti||xi, sigi) = reject return reject;

If ¬h2tsverify(S, γ, ε) ∨ ¬verchain(C) then return reject;
Return accept

(b) H2TS-based verifier

Fig. 10: H2TS-based Timestamping Protocol

5. Bi.t < Bj .t for all i < j ≤ k;

Let len(C) = k be the length of C. We define the notations C[i] = Bi for block indexing, last(C) =
Bk for the last block of C and C[i : r) = (Bi, . . . , Br−1) for subchains (in particular C[i :) =
(Bi, . . . , last(C))).

Having Bi.prev = MT.root(Bi−1) (and prev being a leaf of the canonical Merkle tree) allows us to
generate a Merkle tree for the entire chain by concatenating Merkle trees through prev. Additionally,
this allows us to say that MT.root(C) = MT.root(last(C)). More interestingly, because we use the
root of the previous block as part of the input to our VDF, we can do a similar concatenation of
Merkle trees through the signed VDF inputs that actually results in an H2TS-sequence.

In order to construct this H2TS-sequence S, we take a chain C and a record c stored in Bi and
proceed as follows:

1. Start with the H2-sequence induced by MT.path(Bi, c) (cf. Section 6.1),
2. For j = i+ 1, . . .:
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(a) Append (Bj .s, Bj .t
u||MT.root(Bj−1)||Bj .sig)

(b) Append MT.path(Bj , Bj .t||Bj .p)
This construction allows us to create an H2TS-sequence starting from any element in a block

(in particular c) and ending at the end of the chain, passing through every VDF proof and including
every time receipt t and tu. This allows a party to attest a certain age of c, as Lemma 6.4 states
that this sequence must have been created sequentially except with negligible probability. Given a
chain C we refer to the H2TS-sequence starting from Bi.c and going through the entire subchain
C[i :) as h2ts(C, i).

In Figure 10 we present a timestamping protocol based on the chains presented in Definition 6.11
and H2TS-sequences. We show that this protocol realizes the functionality Fαts presented in Figure 6.
Opposed to the previous protocol, every time that a prover gets a new record query, they stop their
current execution of FγVDF and start a new on, create a block with the input in the query and the
output of FγVDF and query the VDF functionality again with this block as an input. When creating
a timestamp, the prover finds the block with the expected block and extracts the H2TS-sequence
from it up to the end of the chain.

Requiring the timestamp sequence to have a specific structure related to the chain is necessary
to meaningfully realize Fαts. In this setting, timestamps can be by split and recombined, creating
new timestamps without interacting with the functionality. Our functionality can deal with cases
of timestamps that are merged to create a longer timestamp for a certain value, in the form of
Definition 6.3. In these cases, the functionality asks the adversary whether the new proof is valid,
but the adversary is not able to make the functionality accept a proof that is longer than it should
be (that is, the timestamp is still checked by checkstamp).

However, our functionality is not equipped to deal with other cases that would occur naturally.
For example, take the following H2TS-sequence:

〈(⊥, x), (⊥,H(x)||H(y)), (⊥, t||H(x1)||sig), (s, t∗||VDF(x2, s))〉.

It is clear that substituting the first element of the sequence with (⊥, y) results in a valid H2TS-
sequence of strength s for y. In order to properly construct a protocol that realizes this functionality
we must either give the functionality understanding of the structure of Merkle trees or “artificially”
require additional parameters for verification. We choose to do the latter. As we have a previously
stated that blocks have a canonical Merkle tree associated to them, the verifier can check whether
an H2TS-sequence is constructed through h2t(C, i). This makes cases like the previous example
invalid (assuming that x was the content c of the block). We call this verification function verchain.

We constructed our H2TS-sequences with an ε-delay, representing the time between VDF
executions. This is needed as we need to take into account the time spent creating a new block. For
simplicity, we assume that the adversary also has an advantage constructing the chain. Instead of
taking ε time steps, the adversary takes εA = dε/αe. In this setting, we can consider that ε also
includes the time needed to generate the proof of the VDF, this allows us to extend our result to
the alternative formulation of FγVDF as presented in Section 3.

Theorem 6.12. Let µ ∈ N+ be the security parameter. For any real-world PPT adversary A
with oracle access to Fγ·αVDF, there exists a black-box PPT simulator Aid such that for any PPT
environment Z the probability that Z can distinguish between the ideal world with Fαts and Aid

(cf. Figure 6,11) and the real world with A, Pγ,εH2TS and Vγ,εH2TS (cf. Figure 10a,10b) is negligible in
µ, λ and κ.

Proof. Let SAH2TS be as defined in Figure 11. We consider all related execution transcripts in the
ideal and real world

(Πideal, Πreal)← Exec(ZIdeal(Fαts,S
A
H2TS),ZReal(Pγ,εH2TS,V

γ,ε
H2TS,A)),

where all parties including Z and A receive the same starting input tape and randomness tape.
If these executions are identical from the viewpoint of Z, then Z will output the same bit. It

follows that to prove the theorem we only have to bound the probability that the two views of Z
are not identical: ∣∣∣Pr[ZIdeal(Fαts,S

A
H2TS) = 1]− Pr[ZReal(Pγ,εH2TS,V

γ,ε
H2TS,A) = 1]

∣∣∣
≤ Pr[View(Z, Πideal) 6= View(Z, Πreal)].
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Simulator SAH2TS

Given any real world PPT A, the simulator SAH2TS runs the A in a black box manner, the honest
prover Pγ,εH2TS and the verifier Vγ,εH2TS. It maintains a list R of all stamp queries to FγVDF. It sees all VDF
queries they make, but faithfully and immediately forwards all queries and responses. The simulator
acts as follows:

– On input (record, c), c ∈ {0, 1}∗:
Send (record, c) to Pγ,εH2TS;

– On input (stamp, c), c ∈ {0, 1}∗:
/* Query proof from Pγ,εH2TS. */

Query (c, a, u)← Pγ,εH2TS(stamp, c);
/* Check validity of the proof */

If Vγ,εH2TS.verify(c, a, u) = accept then v ← 1 else v ← 0;
Return (c, a, u, v);

– When A inputs query (corrupt) to Pγ,εH2TS:
Send (corrupt) to Fαts;

– When A inputs (start, t||MT.root(Bi)||σ) to Fγ·αVDF:
If Σ.verify(t||MT.root(Bi), σ, pkP) = accept then send (record, Bi.c) to Fαts;

– When Fαts inputs (cnewstamp, c, a, u):
Input (verify, c, a, u) to Vγ,εH2TS;
If Vγ,εH2TS outputs accept return 1 to Fαts.
Else, return 0 to Fαts.

Fig. 11: Simulator

One can verify that in the ideal world all queries by Z and their answers by Pγ,εH2TS (potentially
under control of A) are perfectly forwarded by the functionality and the simulator. Actually the
only way for Z’s view to be different is when a verify query by Z results in a different outcome
between the ideal world and real world. We now bound the probability that this event occurs.

Given some related pair (Πideal, Πreal) of execution transcripts, let

(tbad,Z, (verify, c, a, u)) ∈ Πideal ∩Πreal

be the first query for which the answer oi in the ideal world differs from the output or 6= oi in
the real world. Let qverify, and qVDF be the maximum of the amount of verify and VDF queries,
respectively, made in Πreal or Πideal. Below we only consider what happened up to time tbad and
disregard anything afterwards.

Assume oi = accept, this is only possible if SAH2TS has output (c, a, u, 1) (as answer to a stamp
query or as a stamped query). That can only happen when Vγ,εH2TS(verify, c, a, u) = accept and thus
that or = accept, which is a contradiction. It follows that oi = reject and or = accept and u is of
the form

〈((si, pi), ti, ci, σi)|si ∈ N+, pi ∈ {0, 1}µ, ti ∈ {0, 1}θ, σi ∈ {0, 1}κ〉l

where:

Σ.verify((si, pi)||ti||ci, σi, pkP) = accept a =
∑
si/γ

VDF((si, pi)||ti||ci||σi, si+1) = pi+1 a ≤ (tbad − t0)

Now consider the case when (c, a, u) was not legitimately constructed through the functionality
in the ideal world. Then, in contrast with our previous construction, cf. Section 5, the simulator
has to more actively deal with proofs that were not generated through stamp but constructed
by the adversary/environment. If u was constructed by truncating and recombining previous
proof chains in a valid way, they would have been accepted through the checknewstamp query to
SAH2TS. Additionally, proofs legitimately computed by the adversary would be accepted through
this mechanism, as the simulator ensures that the appropriate record query is created whenever a
start query is input into Fγ·αVDF.
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To continue, we bound the probabality that the adversary has constructed the proof in a
non-sequential manner by Lemma 6.8 as at most 2 · (qH · 2−λ + qVDF · 2−µ) · (QH +QVDF + |S|). Thus
in the remainder of the proof we can assume the adversary has constructed the proof sequentially.

Since oi = reject, it must be caused by one of the rules in Procedure checkstamp resulting in
v = 0 for (c, a, u):

1. The case that c was not recorded by Fαts:
Whenever A wants to construct a valid timestamp for a record c, they must take a particular
hash r as part of the input to Fγ·αVDF such that there is a particular sequence of H calls
such that they form a Merkle path of a fixed length and parity8 from c to r. Any other
sequence of hashes, e.g., with wrong parity, will not be accepted by Vγ,εH2TS. As SAH2TS has
access to all random oracle calls, it can check the c used to construct a particular r that is
input to Fγ·αVDF and generate the respective record to Fαts. Therefore, A can only construct a
timestamp without triggering a record query through a collision in H, which has probability
at most qH · 2−λ ·QH.

2. The case that the claimed age a is older than the real age ar times α:
As A only has access to Fγ·αVDF then they can only create H2TS-sequences diluted by a
factor α. As the time-dilution factor acts the same over γ and ε, the adversary gains no
additional advantage by changing the spacing of the time receipts in the sequence. Hence,
it is impossible for the adversary to have created this proof in a sequential manner.

3. The case that the claimed age a is older than the time acorr since corruption times α:
The adversary cannot stretch VDF strengths of an honest chain in order to make it seem
older because of the honest time receipts. Hence, if the adversary created this proof in
a sequential manner and it started with a VDF of the form VDF(t||x||σ) with a valid
signature then it is clear the adversary succeeded in forging a digital signature before
corruption. The probability of this event is negligible in κ.

4. The case that (c, a, u, 0) ∈ R:
The same analysis holds, but then for the first time checkstamp(c, a, u) was called.

As the number to all queries are polynomially bounded by µ, λ or κ, the probability of distinguishing
is negligible in µ, λ and κ. ut

We have shown that we can create secure timestamps through random oracle sequences. Besides
the practical advantages of only having to run one VDF instance, this result also allows for an efficient
way to create timestamps for a large number of records through hash-based accumulators. Our
analysis naturally extends to that context, as we would still be able to extract an H2TS-sequence.

7 Discussion

7.1 Beyond timestamping

Up to this point, we have presented a timestamping functionality and a pair of protocols that realize
the functionality using VDFs. However, building a timestamping service is not the only motivation
for this work. Publicly verifiable timestamping can serve as a valuable tool in a trustless distributed
setting, for example, in blockchain protocols. One of the main motivations (and inspirations) for the
construction of Bitcoin was that of a public timestamp server which guarantees the immutability of
the records of transactions of the cryptocurrency [Nak08]. Bitcoin allows for verifiable timestamping9

but only as a means to an end and using numerous assumptions and a very high resource cost.
What Bitcoin has done is highlight the usefulness of timestamping in this new setting.

Proofs-of-Work in blockchains serve two distinct purposes. The most well-known is Sybil
prevention in a setting where there is no barrier to the creation of fake identities. PoW serves as
a way to simulate the identities needed for leader election in the consensus protocol. The second
purpose is the addition of a computational cost to the creation of each individual block. Due to the
wastefulness of PoW-based blockchains, there has been a strong research push to find alternatives.

8 Whether the tree branches left or right.
9 Up to a certain point, as there exist attacks to modify the timestamps in the Bitcoin blockchain.
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These alternate proposals fulfill the first role of the proofs of work but not the second. This is by
design, as the computational cost is exactly what they want to avoid. Erasing the computational
cost allows for attacks that exploit the ability of an adversary to costlessly simulate the execution
of the blockchain protocol on their own. Blockchains then become vulnerable to attempts to break
the consistency of the blockchain by rewriting it starting from a point in the far past. Such attacks
are specially relevant in a proof-of-stake construction, as parties may no longer have stake in the
preseent but they held enough stake at some point in the past. Timestamping through VDFs can
fulfill this function of proof-of-work at considerably lower cost and in a sustainable manner.

Blockchain protocols can also benefit from cryptographic timestamping beyond preventing
low-cost simulation attacks. So called “layer 2” scaling solutions for blockchains, such as [PD16], are
based on timing assumptions that are represented by the addition of blocks in the native chain. Tying
time to the block schedule only works within the context of one specific blockchain, as the number
of blocks of one chain has no meaning in any other protocol. The lack of a protocol-independent
notion of time prevents these constructions from being used to transact between two different
chains, In general, inter-blockchain protocols have struggled with finding a common notion of time.
Because VDFs are publicly verifiable and protocol-independent, they fulfill this purpose, allowing
for cryptographic proofs of age. For this reason, they can also find a place in blockchain sharding, as
a way to synchronize the multiple chains. VDFs have also been discussed as a source for randomness
for (and from) blockchain protocols [LW15, PW16] but our construction is orthogonal to this use,
as trustworthy randomness requires a pre-determined choice of strength for the VDF, as otherwise
it is vulnerable to grinding attacks.

For our security assumptions to hold, we require honest parties to have a fast enough rate such
that the adversarial advantage α is not too high. This idea seems to contrast with the premise that
VDFs can be used in permissionless blockchain protocols, as access to a fast enough rate becomes a
barrier for entry. However, the two ideas are not necessarily at odds. VDF-based proofs of age are
transferable. More importantly, they can directly be combined with cryptographic accumulators in
order to timestamp batches of records.

7.2 Immutability beacon

In a similar vein of a public randomness beacon, we propose an immutability beacon which consists
of a party (or a set of parties) collecting hash pointers and computing VDFs over a Merkle root of
the tree of these pointers. Any party wishing to have a timestamp can send a pointer of the record
to be timestamped to the beacon, which will use it as part of the input to an execution of a VDF.
In essence, the beacon would run the protocol from Figure 10a where Bi.c is substituted by the
Merkle tree of all pointers. This beacon would then regularly publish the outputs of the VDF as
well as the Merkle tree, allowing for any party to construct their own timestamps using this output.
Additionally, once a timestamp has been generated, the client does not need to rely on the prover
anymore.

Besides being publicly verifiable, VDF timestamps are also naturally linkable through hash
sequences. Such links allow users of an immutability beacon to place little trust in the beacon. If an
immutability beacon stops computing VDFs or starts behaving erratically, the users can simply
switch to a different beacon without this change affecting their existing timestamps. Even better,a
party may make use of different beacons simultaneously, which also allows them to create the
strongest possible timestamps, by choosing the appropriate VDF proofs in order to maximize the
strength of a timestamp.

In practice, timestamps are not able to represent the totality of the elapsed time, as immutability
beacons do not immediately create a block after receiving a stamping query. Not being able to
create timestamps on-demand is the price of not doing the computation oneself. To counteract this
problem, a party might want to have access to multiple immutability beacons.
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