
Towards Low-Energy Leakage-Resistant Authenticated Encryption
from the Duplex Sponge Construction

Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert.

UCL Crypto Group, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Abstract. The ongoing NIST lightweight standardization process explicitly puts forward a requirement
of side-channel security, which has renewed the interest for Authenticated Encryption schemes (AEs) with
light(er)-weight side-channel secure implementations. To address this challenge, we investigate the leakage-
resistance of a generic duplex-based stream cipher, and prove the classical bound, i.e., ≈ 2c/2, under an
assumption of non-invertible leakage. Based on this, we propose a new 1-pass AE mode TETSponge,
which carefully combines a tweakable block cipher that must have strong protections against side-channel
attacks and is scarcely used, and a duplex-style permutation that only needs weak side-channel protections
and is used to frugally process the message and associated data. TETSponge offers: (i) provable integrity
(resp. confidentiality) guarantees in the presence of leakage during both encryption and decryption (resp.
encryption only), (ii) some level of nonce misuse robustness, and (iii) black-box AE security with good
bounds in the multi-user setting as well. We conclude that TETSponge offers an appealing option for the
implementation of low-energy AE in settings where side-channel attacks are an actual concern.
Our analysis offers the first rigorous methodology for the analysis of the leakage-resistance of sponge/duplex-
based AEs. It can be easily adapted to others: we demonstrate this by showcasing brief analyzes of two
other 1-pass AEs Ascon, GIBBON, and two 2-pass AEs TEDTSponge and ISAP. These provide various
insights for both designs and implementations.

Keywords: Authenticated Encryption, Duplex Construction, Leakage-Resistance, Leveled Implementations,
Multi-User / Beyond Birthday Security.

1 Introduction

Problem statement. In 2013, the NIST initiated a lightweight cryptography project to understand the need
for dedicated Authenticated Encryption with Associated Data (AEAD), which has led to the launching of a
standardization process in 2019.1 In this context, resistance to side-channel attacks is identified as one of the
desirable features that is missing from existing solutions. From an application viewpoint, it is easily motivated
by the observation that lightweight devices may be deployed in environments where they can be under physical
control of an adversary, yet be responsible for critical tasks (e.g., automotive, drone-related). Maybe more
worryingly, a lack of embedded security can also be the root of serious distributed attacks starting from seemingly
non-critical connected objects (see for example [39]).

From a cryptographic viewpoint, NIST’s lightweight physical security goal challenges the current under-
standing of side-channel countermeasures, which typically imply significant overheads. For example, the cycle
counts of the (optimized) masked software implementations of block ciphers by Goudarzi and Rivain presented
at Eurocrypt 2017 [26] blows up by factors ranging from tenths to hundreds for number of shares ranging from
2 or 3 to more than 4, compared to a non-protected implementation. Significant (quadratic) overheads can also
be observed in hardware as the number of shares increase (especially if the random generation of the shares is
taken into account) [27].

This state of affairs raises the question of the design of AE modes allowing both efficient and light(er) weight
implementations (e.g., supporting constant memory requirements in streaming applications) and embedding
side-channel resistance features, so that the secure implementation of the mode can circumvent, at least in part,
the costs associated to the protection of its underlying primitives. Besides, and if aiming at standardization, it
is also desirable that such modes offer as many standard security features as possible. In this respect:

– Supporting good multi-user security is important in a context of large-scale deployment of lightweight
devices, which may be subject to mass-surveillance and distributed adversaries [7].

1 See https://csrc.nist.gov/projects/lightweight-cryptography.

https://csrc.nist.gov/projects/lightweight-cryptography

– Security beyond the classical birthday bound is useful to increase key lifetime [28], which is particularly
relevant in the case of lightweight devices that may not incorporate good key agreement mechanisms.

– Achieving some level of robustness against nonce reuse is in general a welcome option [38,4].

State-of-the-art. Taken separately, the design of lightweight symmetric primitives & modes and the design
of leakage-resilient (or resistant) primitives & modes have been topics of quite intense research over the last
years. For lightweight designs, we refer to the recent survey of Biryukov and Perrin [13], and to the CAE-
SAR competition.2 For leakage-resilient primitives, we refer to the line of works initiated by Dziembowski and
Pietrzak’s leakage-resilient stream cipher [23], which has then been the seed for the design of PRGs, PRFs and
PRPs [44,24,22], with contrasted practical impact [6]. For leakage-resistant authentication, encryption and AE
modes, we refer to the CCS 2015 work of Pereira et al. [37] and follow-ups [9,10,5].3 Yet, significant gaps remain,
particularly if we aim for a lighter single pass design.

Concretely, let’s inspect two concrete proposals that get closer to the NIST requirements. The first is ISAP
proposed at FSE 2017 by Dobraunig et al. as a potential solution for side-channel secure AE [18]. ISAP makes an
important step in putting forward the good properties of sponge-based constructions for side-channel security —
an observation that was also made by the Keccak team in the design of Keyak.4 In short, the main observation
exploited by these designs is that some kind of leakage can be heuristically captured by reducing the capacity
of the sponges. Yet, apart from the lack of a systematic analysis of leakage-resilience (or resistance), which (to
the best of our knowledge) is common to all sponge-based constructions, ISAP is a two-pass design, while we
are seeking for some lighter solutions with a single pass.

Second, a recent AE mode TEDT [8] for Tweakable Block Ciphers (TBCs) was designed to encourage the so-
called leveled implementations, where (expensive) protections against side-channel attacks are used in a minimal
way, while the bulk of the computation can be executed by cheap and weakly protected circuits. The authors
of TEDT argue that the leveled approach can bring significant performance gains compared to implementations
where side-channel protections are uniformly used during encryption.5 Precisely, leveled implementations reduce
the energy overheads of side-channel countermeasures, both in software implementations (in which case the
gains are also visible in reduced cycles counts) and hardware ones, at the cost of a slightly increased code size
or footprint. Regarding security, the leveled implementations of TEDT could ensure strong guarantees against
leakages—corresponding to the top of the hierarchy of confidentiality and integrity definitions established in [29].
Namely, TEDT ensures Ciphertext Integrity with Misuse and Leakage in encryption and decryption (CIML2) in
a liberal model where only the long-term key is “safe”. TEDT also ensures security against Chosen Ciphertext
Adversaries with misuse-resilience (meaning security for messages encrypted with fresh, non-repeating nonces,6

in the presence of nonce-reuse) and leakage in encryption and decryption (CCAmL2), in two different leakage
models. Yet, TEDT is also of two passes and rate 1/4, which is expected to be more expensive than the sponge-
based approach of ISAP.

Contribution. Based on this state-of-the-art, we can rephrase our problem as:

Can we design a single-pass leakage-resistant AE mode, and
how do we demonstrate the form of leakage-resistance that it provides?

The goal of efficient AE in 1 pass pinpoints the duplex construction [12] as the natural starting point (leakage-
resistant AE modes for block ciphers typically refresh their keying material for every message block, inducing a
significant overhead). To this end, our first contribution is the first rigorous leakage security analysis of a general
duplex-based stream encryption w.r.t. a leaky version of the classical eavesdropper security model. The analysis
is made in the ideal permutation model since there’s no other choice at present (see Section 3.5), and we naturally
focus on oracle-free leakage functions—as in [44] and in the concurrent work [21]. As a compensation for this

2 See https://competitions.cr.yp.to/caesar.html.
3 We note that when it comes to encryption in the presence of leakage, we use the term leakage-resistant for security

definitions that allow all the computations (including the computation of the “challenge ciphertext”) to leak, and the
term leakage-resilient for security definitions that exclude it, (following the terminology in [29,41]).

4 See https://keccak.team/files/Keyakv2-doc2.2.pdf.
5A similar approach has been applied to the Ascon cipher in [1] – see Fig. 4 (a) for an illustration of the parts of the

implementation they heavily protect.
6“Misuse-resilience” was due to [4]. As discussed in [29], misuse-resistance in the sense of [38] is believed impossible in

many leakage settings: briefly, when the inputs including nonces are arbitrarily controlled, the adversary could (almost)
control the leakage traces, and this enables identifying small changes in the encrypted messages.

2

https://competitions.cr.yp.to/caesar.html
https://keccak.team/files/Keyakv2-doc2.2.pdf

idealized analysis, all results are obtained under the weakest and easiest to validate leakage assumption, namely
non-invertibility [25]. Building upon these, we prove security bounds that are expressive and easy-to-understand,
translating to the classical ≈ 2c/2.

We then study how to extend the leakage-resistant duplex stream cipher into a 1-pass AEAD mode and
what can be achieved. We propose a new AEAD mode TETSponge, standing for Tweakable (due to the use
of TBC), Encrypt & Tag (the natural feature of duplex) Sponge, as our result. It enhances the duplex stream
cipher with two calls to an n-bit TBC used as a key derivation function (KDF) and a tag generation function
(TGF). We also borrow the use of np-bit public key material from [8] to boost multi-user security. We show that
these modifications cinch nice leakage AE security: leveled implementations, where only the two TBC-calls are
protected from side-channels, achieve: (i) multi-user CCAmL1 confidentiality up to ≈ 2n/2 queries and ≈ 2np

users, which corresponds to CCA security with misuse-resilience, in the presence of encryption leakages; (ii)
multi-user CIML2 authenticity up to 2n/n2 queries and ≈ 2np users, partly thanks to the invertibility of the
TBC-based TGF.

For practical usability, we carefully designed TETSponge to achieve high black-box CCA security as well,
i.e., up to 2n/n2 queries and ≈ 2np users. To keep this submission concise and easy to follow, the black-box
results are only presented in the separate supporting document.

Our (intermediate) result on the duplex stream cipher as well as the methodology for the leakage security
analysis of duplex/sponge-based AEs are general and can be easily adapted to other duplex/sponge AEs. To
serve a brief demonstration, we showcase our method on two other 1-pass AEs Ascon and GIBBON that have
a structure similar to TETSponge. On the other hand, since the consensus reached by many [18,10,5,29] is
that Encrypt-then-MAC designs with 2 passes are needed to achieve confidentiality against decryption leakages
(see Appendix A for such a DPA path on TETSponge), we further consider two examples: the 1st is a natural
2-pass extension of TETSponge that we name TEDTSponge, while the 2nd is ISAP. For all of them, we proved
(roughly) ≈ 2c/2 leakage security under very conservative assumptions similar to those for TETSponge. In
general, we believe our methodology could be applied to various duplex/sponge-based AEs: this opens the way
to formal leakage-resistance analyses of leveled implementations & possibly to linking them to the side-channel
cryptanalysis practice.

A concurrent and independent work of Dobraunig and Mennink (DM) [21] analyzed the leakage-resilience
of the duplex construction. While their main result is a bit similar to our Lemma 1, we have slightly different
positions: we focus more on how to build leakage secure AEs from the duplex, while DM concentrated more
on foundational aspects, and derived results on a duplex model more general than Lemma 1. Both works
also have different security targets and use different leakage assumptions: DM targets CPAL1 (while we target
CCAmL1) [29] and our non-invertible leakage assumption is strictly weaker than DM’s high min-entropy (note:
not high HILL pseudoentropy) assumption [25], and is directly connected to the side-channel cryptanalysis
practice. DM’s entropy assumption allows deriving tighter and simpler bounds for weaker forms of leakage-
resilience, while our assumption of non-invertibility based on 2 leakages is quite conservative, and thus our
bounds 2c/2 is likely to be pessimistic in most cases (we leave characterization for future work). Overall, our
works are complementary to each other, and we believe investigating an important problem from two different
perspectives greatly deepens the understanding.

Roadmap. In Section 2 we serve notations and the leakage security definitions used in this paper. Then Section 3
presents our analysis of the duplex-based stream cipher as well as the leakage assumptions in use. Building on
this, Section 4 defines TETSponge and shows its security, while Section 5 demonstrates the applications of our
methodology to some other candidates.

2 Preliminaries

Notations. Given a bit-string x ∈ {0, 1}∗, |x| denotes its length. For any value x, we denote by lsa(x)/msa(x)
the least/most significant a bits of x. [num]a is the binary encoding of the integer num using a representation
of a bits.

We denote by a (q1, . . . , qω, t)-bounded adversary a probabilistic algorithm that has access to ω oracles,
O1, . . . , Oω, can make at most qi queries to its i-th oracle Oi, and can perform computation bounded by running
time t. Security notions define the oracles O1, . . . , Oω available to the adversary in a security experiment. In a
proof in the ideal model, the adversary is also granted access to ideal objects (see later) that we do not always
make explicit in the notation.

3

A leaking implementation of an algorithm Algo is denoted LAlgo. It runs both Algo and a leakage function
LAlgo which captures the additional information given by the implementation of Algo during its execution. LAlgo
simply returns the outputs of both Algo and LAlgo which all take the same input.

Primitives. A random keyless permutation π, as used in sponge analyses, refers to a permutation of {0, 1}b
drawn uniformly at random among the set of all permutations of {0, 1}b. A Tweakable Block Cipher (TBC)
with key space {0, 1}κ, tweak space {0, 1}t, and domain {0, 1}n, also denoted (κ, t, n)-TBC, is a mapping

Ẽ : {0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n such that for any key K ∈ {0, 1}κ and any tweak T ∈ {0, 1}t,
X 7→ Ẽ(K,T,X) is a permutation of {0, 1}n. In this paper we only focus on (n, n, n)-TBC. An ideal TBC

ĨC : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n, with the same spirit as ideal (block) ciphers, is a TBC sampled

uniformly from all (n, n, n)-TBCs. In this case, ĨCTK is a random independent permutation of {0, 1}n for each
(K,T) ∈ {0, 1}n × {0, 1}n even if the key K is public.

Definition 1 (Nonce-based AEAD). A nonce-based authenticated encryption scheme with associated data
is a tuple AEAD = (Enc,Dec) such that:

– Enc : K ×N ×AD ×M→ C maps a key k ∈ K, a nonce N ∈ N , some blocks of associated data A ∈ AD,
and a message M ∈M to a ciphertext C ∈ C.

– Dec : K ×N ×AD × C →M∪ {⊥} maps k ∈ K, N ∈ N , A ∈ AD, and C ∈ C to a message M ∈ M that
is the decryption of that ciphertext, or to a special symbol ⊥ if integrity checking fails.

The message size `m uniquely determines the ciphertext size `c = `m + oh, where the constant oh is the stretch.
Given a key k ← K, Enck(N,A,M) := Enc(k,N,A,M) and Deck(N,A,C) := Dec(k,N,A,C) are deterministic
functions whose implementations may be probabilistic.

Multi-user leakage security. In general, leakage security definitions are stated w.r.t. implementations of some
(e.g., AEAD) scheme, and both an encryption leakage function LEnc and a decryption leakage function LDec are
associated to the implementation(s). This models the real-world leaky implementations of the mathematical
objects. Note that in theory, our leakage model is non-adaptive, as the leakages are a parameter of the to-be-
studied implementations determined before the experiment starts rather than chosen by the adversary during
the experiment. This restriction was motivated from the side-channel practice & the necessity for practical
modes (see [44,24] for some discussion).

Pioneered by Rogaway and Shrimpton [38], nowadays black-box AE analyses typically follow all-in-one def-
initions that integrate both confidentiality and integrity. However, in front of a leakage adversary, separate
definitions for integrity and confidentiality potentially offer more gradual degradations & clearer clarifications
on which implementation-level properties are necessary/sufficient for which goal [41]. In theory, this is in accor-
dance with the important general feature of physically observable cryptography that unpredictability is much
easier to ensure than indistinguishability [35], which naturally splits the level of confidence w.r.t. both notions.
Also, different levels of robustness against nonce reuse may be achieved w.r.t. both notions: it was shown that
when nonce is arbitrarily reused (in the same flavor as the misuse-resistance notion [38]), leakage integrity is
achievable [9,10], yet leakage confidentiality may not [9,29] (see footnote 6). This difference is also reflected in
the separate definitions.

Integrity. In detail, regarding integrity, we rely on the multi-user Ciphertext Integrity with Misuse-resistance
and Leakage (muCIML2) defined in [8], which was built upon the single-user version CIML2 introduced in [9,10].
The suffix 2 means two leakage sources, i.e., both encryption and decryption. In some sense, the definition is
obtained by enhancing the traditional (multi-user) INT-CTXT security with leakages.

Definition 2 (muCIML2 advantage). Given the implementation of a nonce-based authenticated encryption
AEAD = (Enc,Dec) with leakage function pair L = (LEnc, LDec), the multi-user ciphertext integrity advantage
with misuse-resistance and leakage of an adversary A against AEAD with u users is

AdvmuCIML2
A,AEAD,L,u := Pr

[
ALEncK,LDecK,π,π

−1,ĨC,ĨC−1

forges
]
,

where the probability is taken over the u user keys K = (K1, . . . ,Ku), Ki
$← K, over A’s random tape and the

ideal oracles π and ĨC and where:

– LEncK(i,N,A,M): if 1 ≤ i ≤ u, outputs the cipher EncKi(N,A,M) and the leakage trace LEnc(Ki, N,A,M);

4

– LDecK(i,N,A,C): if 1 ≤ i ≤ u, outputs
(
DecKi(N,A,C), LDec(Ki, N,A,C)

)
;

– The event “A forges” means that any of A’s query to LDecK(i,N,A,C) returns M 6= ⊥, while C was not
resulted from an earlier encryption query to LEncK(i,N,A,M).

Confidentiality. Regarding confidentiality, we try to achieve weaker nonce robustness, i.e., multi-user Chosen-
Ciphertext Attack security with misuse-resilience and Leakage. Informally, the notions allow the adversary A to
query leaking encryption and (leaking) decryption oracles arbitrarily, and capture the confidentiality of several
messages encrypted using fresh, non-repeating nonces. The latter goal is formalized via the “old-school”
left-or-right paradigm, i.e., A shall not tell apart encrypting M0 from encrypting M1. This choice follows from
the conceptual difficulty to define the leakage of the idealized (random) objects that are used in real-or-random
definitions [41]. As mentioned, the misuse-resilience we guarantee captures confidentiality with fresh nonces
in the challenges and was first introduced by Ashur et al. [4].

To capture the real-world feature that the challenge messages will eventually be decrypted and give leakages
that may cinch message recovering (relevant in applications such as secure bootloading [36]), an oracle LDecch

providing these “challenge dec-leakages” may be given to A. Following [29,8], the notion capturing 1 leakage
source (i.e., encryption only) is abbreviated as muCCAmL1, while the notion capturing the presence of 2 leakages
sources (i.e., including decryption) is muCCAmL2. See below for the formal definitions.

Definition 3 (muCCAmL2 & muCCAmL1 advantages). Given the implementation of a nonce-based authenti-
cated encryption AEAD = (Enc,Dec) with leakage function pair L = (LEnc, LDec), the multi-user chosen-ciphertext
advantage with misuse-resilience and leakage of an adversary A against AEAD with u users is

AdvmuCCAmL2
A,AEAD,L,u :=

∣∣∣Pr
[
PrivKmuCCAmL2,0

A,AEAD,L ⇒ 1
]
− Pr

[
PrivKmuCCAmL2,1

A,AEAD,L ⇒ 1
]∣∣∣ ,

AdvmuCCAmL1
A,AEAD,L,u :=

∣∣∣Pr
[
PrivKmuCCAmL1,0

A,AEAD,L ⇒ 1
]
− Pr

[
PrivKmuCCAmL1,1

A,AEAD,L ⇒ 1
]∣∣∣ ,

where the security game PrivKmuCCAmL2,d
A,AEAD,L is defined in Figure 1 and where the security game PrivKmuCCAmL1,d

A,AEAD,L
removes all the dec-leakages leakdec and leakddec from Figure 1.

PrivKmuCCAmL2,d
A,AEAD,L,u is the output of the following experiment:

Initialization: generates u secret keys K1, . . . ,Ku
$← K and sets Ech, E1, . . . , Eu ← ∅.

Leaking encryption queries: A gets adaptive access to LEnc(·, ·, ·, ·),
LEnc(i,N,A,M) outputs ⊥ if (i,N, ∗, ∗) ∈ Ech, else computes C ← EncKi(N,A,M) and leakenc ← LEnc(Ki, N,A,M),
updates Ei ← Ei ∪ {N} and returns (C, leakenc).

Leaking decryption queries: A gets adaptive access to LDec(·, ·, ·, ·),
LDec(i,N,A,C) outputs ⊥ if (i,N,A,C) ∈ Ech, else computes the plaintext M ← DecKi(N,A,C) and leakdec ←
LDec(Ki, N,A,C) and returns (M, leakdec);

Challenge queries: on possibly many occasions A submits (i,Nch, Ach,M
0,M1),

If |M0| 6= |M1| or Nch ∈ Ei or (i,Nch, ∗, ∗) ∈ Ech, returns ⊥; Else computes Cd ← EncKi(Nch, Ach,M
d) and

leakdenc ← LEnc(Ki, Nch, Ach,M
d), updates Ech ← Ech ∪ {(i,Nch, Ach, Cd)} and finally returns (Cd, leakdenc);

Decryption challenge leakage queries: A gets adaptive access to LDecch(·, ·, ·, ·),
LDecch(i,Nch, Ach, C

d) computes and outputs leakddec ← LDec(k,Nch, Ach, C
d) if (i,Nch, Ach, C

d) ∈ Ech; Else it outputs
⊥;

Finalization: A outputs a guess bit d′ which is defined as the output of the game.

Fig. 1: The PrivKmuCCAmL2,d
A,AEAD,L,u game.

We’ll also use a notion of eavesdropper security with leakage. Since it is a bit specific for “one-time” stream
ciphers, we defer it to Section 3.

Challenge leakages and implications. As mentioned in introduction, our definitions explicitly allow the challenge
queries to leak, a feature that was believed impossible (and dismissed) by the theory community. However, we
argue results in such models shed more light on real-world implementations (i.e., their message processing
leakages shall be somewhat “bounded”). A recent survey of Kalai and Reyzin [32] interpreted our results as
using a very strong assumption of “leak-free message processing”. We believe a more natural way to view our

5

results is that they ultimately reduce the message confidentiality of a full-fledged scheme to the manipulation of
a single message block with this scheme, leaving the goal to limit the message leakages to hardware engineers.
The real-world guarantees obtained in this setting may be far from theoretical perfectness, which is a general
concern with many instantiations of cryptographic primitives. For example, the AES is sometimes assumed to
be a 0.99-PRP rather than “exponentially secure” [33,42]. In a similar manner, one may implement the message
manipulation to be 0.9999-secure, or even 0.9-secure, and still have meaningful implications. Our bottomline is
that ignoring such a source of leakage from the definitions makes it impossible to progress on its mitigation,
while it may be an important source of risk in practice, as argued in [41] (slides 3.4, 3.5).

We stress that we are not saying the classical models without challenge leakages are useless: they do fit
into many scenarios (e.g., if you tolerate “local” attacks but not “global” security degradations). We are just
saying that excluding the plaintext leakage is not the right definition in general and that capturing/limiting this
leakage is an important scope for further investigations, which can only be triggered by a definitional framework
that covers it.

3 Analysis of the duplex stream cipher and its eavesdropper security with
leakage (EavL)

In this section we investigate the leakage confidentiality of a duplex-based stream cipher that appears as a
part of many AEs. Leakage confidentiality is in general hard to achieve (and analyze) and assumptions that
“bound” the information in leakages are clearly necessary, as otherwise cleartext messages may leak in full.
In this respect, we start with an introduction to the general leakage model (oracle-free probabilistic leakage
functions) that we will employ (Section 3.1). Then we formalize the two assumptions that we use to bound the
leakages’ informativeness, i.e., the non-invertibility assumption in Section 3.2, and the bounded XOR leakage
assumption in Section 3.3. Based on these, in Section 3.4 we formally define the duplex-based stream cipher
and its leakages, and prove its EavL security. We serve some discussion in Section 3.5.

3.1 Modeling leakages

Most analyses of sponge-based constructions rely on the ideal (permutation) model (see section 3.5 for an
alternative). We follow that practice, which has the advantage of offering an easy compatibility with quite
minimal leakage assumptions: we will assume that leakages resulting from each call to the permutation π are
non-invertible. This assumption was previously used by Yu et al. [44] on a random oracle-based PRG. This
approach also comes with the important benefit that it can be easily measured/challenged by cryptanalytic
practice (as will be detailed in the next section), and therefore might lead to a better understanding of how to
implement and design modes from a real-world perspective.

Formally, for F ∈ {π,⊕}, i.e., the components of a duplex, each computation of F comes with leakages LF,
which is an efficient probabilistic function of the values involved in the computation. For the permutation π, we
further split the leakage into an input and an output part, i.e., we write (Linπ (Sin), Loutπ (Sout)) for the leakage due
to evaluating π(Sin)→ Sout or π−1(Sout)→ Sin. This distinction between Linπ and Loutπ allows to independently
quantify the secrecy of the input and the output which better reflects the designers implementation goals for
each functions/calls.

We insist again on the probabilistic nature of all the leakage functions. This corresponds to the practical ob-
servation that measuring p times the leakage from the same computation does generally not result in completely
identical traces, due to noise in devices for instance. For simplicity, we’ll use superscript p to denote vectors of
p repeated measures of the same computation: e.g., [Linπ (Sin), Loutπ (Sout)]p denotes the leakages resulted from
measuring the evaluation π(Sin)→ Sout p times.

Oracle-freeness. We require that for any F, the leakage function LF must have no access to the ideal oracle π.
This restriction effectively excludes the artificial “future computation attacks” from the model: it guarantees that
LF only leaks information about the computation that is happening in the device rather than the computation
that may happen in “future” calls of π. Oracle-freeness restriction was first used by Yu et al. [44], and recently
by the concurrent work of DM [21]. For the sake of space, we refer to [23] and [44] for detailed discussion about
“future computation attacks”.

6

3.2 Bounding the leakages: non-invertibility restriction

Motivation. As mentioned before, we assume that (some of) the leakage functions are essentially non-invertible.
In detail, note that the following sequence of actions appear in virtually all duplex-based AEs: (1) squeezing
(the most significant bits, wlog) from a secret b-bit state Si: Yi ← msr(Si); (2) modifying the state with a b-bit
offset ∆: S′i ← Si⊕∆; (3) deriving a new state: Si+1 ← π(S′i). After the 3rd step, the subsequent computations
are irrelevant to the state Si. We therefore view this as a basic unit and bound its leakages on Si.

Let us reconsider the above unit. Note that for the call π(S′i) is step (3), in many cases the halve msr(S
′
i) is

a non-secret ciphertext block, see Fig. 3 or 4 (on the other hand, the halve lsc(∆) captures the possible XOR of
domain separation bits). Therefore, the least significant bits lsc(S

′
i) are the critical secret, and the subsequent

actions are compromised as long as lsc(S
′
i) is recovered. These c bits are involved in three actions: the 1st is of

course the call π(S′i), the others are: (a) the XOR of ∆, and (b) the “previous” π-call π(?)→ Si that “produces”
Si–following the convention in duplex papers, we didn’t present this action in the above unit, but it’s clearly
relevant. We shouldn’t be restricted to lsc(S

′
i), as we may also consider initializing the duplex with a key of κ 6= c

bits. Therefore, in our assumption we consider ω bits lsω(S′i) for generality, and assume that the side-channel
adversary cannot predicate the value of lsω(S′i) within a limited number of guesses, even if all the other involved
(b− ω)-bit values are chosen by him (this simplification also emphasizes the crucial role of lsω(S′i)).

Definition. Formally, we define

AdvInv[ω](A) := Pr
[
sch

$← {0, 1}ω,G ← Aπ(leak) : sch ∈ G
]
, (1)

where G is a finite set of guesses, and A’s input leak is a list of leakages depending on three values yin, ypre ∈
{0, 1}b−ω, and δ ∈ {0, 1}ω chosen by A, i.e.,

leak =
[
Loutπ (ypre‖sch), L⊕(δ, sch), Linπ (yin‖(δ ⊕ sch))

]p
. (2)

Further Insights. To clarify, the random state sch is the secret that is to be challenged by A. A is required to
choose ypre, yin, and δ (playing the role of the aforementioned lsc(∆)) to “fill in the gap” and gets the leakages,
as if ypre‖sch is the aforementioned current state Si of the “unit”, which is modified to yin‖(δ⊕ sch) and results
in a call to π(yin‖(δ ⊕ sch)). See Fig. 2 (Left) for illustration. As mentioned, sch is involved in three actions,
which exactly correspond to the three leakages. To capture the possibility of repeated dec-leakages as formalized
by muCCAmL2, we allow A to measure the leakages for multiple p times, and thus leak contains p repeats: this
may also enable an application to the rate-1 duplex in ISAP. It should be noted that, while this repetition may
reduce the measurement noise, it does not contradict the informal separation between SPA and DPA attacks
(put forward in [43]). Namely, in practice, it is expected that the (SPA) advantage of Eq. (1) is still much
smaller than that of a DPA against a block protected with similar countermeasures.

c

s

ych
Spre

m

π
sch

yin

Sout
ypre

Spre

(M [i])
r

cπ π π

δ

s′ch

Fig. 2: (Left) Illustrating the Inv[ω] assumption. The value in red (i.e., sch) is the critical secret. The involved
values are as defined with Eq. (1), while the values Spre and Sout are only mentioned in the subsequent security
tester. (Middle) The “basic” message manipulating operation. The value ych in red is the secret. (Right) A
summary: which values should be somehow ensured secret (i.e., the lsω bits of the input, and the entire output,
as stressed by the red bold lines).

In such an invertibility game, the power of A is quantified along four dimensions, i.e., the number qπ of its
queries to π, the number p of repeated leakage measures, the running time t, and the number NG of allowed
guesses (i.e., |G| ≤ NG; clearly the larger NG, the higher AdvInv[ω](A)). To simplify, we further define

AdvInv[ω](p, qπ, t, NG) := max
(p,qπ,t,NG)-A

{
AdvInv[ω](A)

}
, (3)

When ω = c, the assumption captures the secrecy of the “capacity halve”, which is in line with the intuition
proposed for ISAP [18].

7

Tester: measuring leakage in practice. The concrete value of the advantage AdvInv[ω] can be measured
for a specific implementation on a specific device by running the best known side-channel key/secret recovery
adversaryA against the following tester. This along with our theorems later (e.g., Theorem 3) allows to determine
how many plaintext blocks can be processed before key updating.

1: Tester for non-invertibility AdvInv[ω](p, qπ, t, NG)
2: Let the adversary A serve b− ω bit values ypre and yin and ω-bit offset δ

3: Pick the secret: sch
$← {0, 1}ω

4: Repea Spre ← π−1(ypre‖sch), s′ch ← sch ⊕ δ, and Sout ← π−1(yin‖s′ch) p times
5: Serve A with the leakages resulting from step 4. Following our notations, this gives A the leakages [Loutπ (ypre‖sch)]p,

[L⊕(sch, δ)]
p, and [Linπ (yin‖s′ch)]p.

6: Let A output NG guesses G = {s1, . . . , sNG}, and A wins as long as sch ∈ G

3.3 (In)Distinguishability of the XOR leakages

Motivation. As mentioned in Section 2, an implementation that aims at preserving confidentiality shall offer
some indistinguishability property for its message manipulations. To minimize assumptions & ease measuring in
practice, we follow the methodology of [37,8]: we define such an assumption w.r.t. the information an adversary
might extract from the “basic” message manipulation made in a keyed duplex (i.e., the aforementioned unit),
and then reduce the confidentiality of the “bigger” encryption to this assumption.

Definition. Note that, when running the aforementioned unit, a part of the state—typically of r bit,—is
extracted as a key stream block, see Fig. 2 (middle). Concerning the involved leakages, and with the goal of
bounding LOR distinguishing advantages with leakages in mind, we define

AdvLORL(A) :=

∣∣∣∣Pr
[
ych

$← {0, 1}r, c0 ← ych ⊕m0 : Aπ(c0, leak0)⇒ 1
]

− Pr
[
ych

$← {0, 1}r, c1 ← ych ⊕m1 : Aπ(c1, leak1)⇒ 1
]∣∣∣∣ , (4)

where leakd again depends on a c-bit value s chosen by A:

leakd =
([

Loutπ (ych‖s)
]p
, L⊕(ych,m

d),
[
L⊕(ych, c

d)
]p−1)

. (5)

Further Insights. Concretely, the sensitive data is the key stream block ych. It is the output of a permutation-
call, hence the presence of Loutπ (ych‖s). Then, ych is used to mask the message block, and thus L⊕(ych,m

d)
comes. Presenting

[
Loutπ (ych‖s)

]p
(allowing p repeatitions) as well as [L⊕(ych, c

d)]p−1, where the p− 1 leakages
come from the “decryption direction” and stem from the (multiple) challenge dec-leakages requirements in the
muCCAmL2 game, this resembles Eq. (2). We also define

AdvLORL(p, qπ, t) := max
A

{
AdvLORL(A)

}
. (6)

This quantity can again be measured by a tester (given in Appendix B.1). As discussed in [30,37], if a single
XOR of the message leaks a single bit, then no confidentiality would spring up. Thus, it is legitimate to focus
on protecting this part of the implementations. Concretely, and while it may not be possible to guarantee that
AdvLORL(p, qπ, t) is negligible, the advantages of this methodology are two-fold: in theory, it could help establish
somewhat best possible mode-level leakage security for relevant applications; in practice, it allows us to faithfully
reduce the confidentiality to very simplified one-time components, for a single computation from a fixed random
string, which further makes it easier to study and to protect as isolated components. To ease understanding, a
summary of the critical values and their leakages is given in Fig. 2 (right).

3.4 Leakage EavL security of duplex stream ciphers

We first formally define the duplex-based stream cipher DuStr[π] in question. We then define a security notion
of (left-or-right) Eavesdropper security with Leakage (EavL) as a tool to characterize the leakage confidentiality
of DuStr[π]: briefly, it states that two distinct messages encrypted by DuStr[π] are indistinguishable. It’s hard to
prove it “directly”: therefore we follow [37] and define an idealized stream cipher IdealS for “relay”. Technically,
we first prove that DuStr[π] and IdealS are indistinguishable with leakages. The gap between IdealS encrypting
two messages is easier to analyze, and can be bounded to O(`) · AdvLORL: these enable us to conclude on
DuStr[π].

8

The leaking duplex stream cipher and its ideal reference. In detail, we consider the stream cipher
defined by the following pseudocode, which constitutes the basis of many duplex-based AEs (e.g., Ascon and
TETSponge that will be introduced). For simplicity we assume the size of the inputs |A| and |M | are always
multiples of r (otherwise it would be too complicated to follow), and we use an offset δ1 to model the commonly
used domain separation bits in duplex AEs, which depends on the concrete schemes and is typically of only 1
or 2 bits. For preciseness we also make the leakages of each step explicit. Note that, to fit into the (multiple)
challenge dec-leakages requirements of muCCAmL2, the leakages from the “decryption direction” are allowed to
be repeated p− 1 times (e.g., see the vector [L⊕(msr(Sj), C[i])]p−1 in step (4) below).

The duplex stream cipher DuStrB [π](IV,A,M), |B| = κ:
(1) Computes S′0 ← IV ‖B, S1 ← π(S′0). The leakages of this step are [Linπ (S′0)]p and [Loutπ (S1)]p;
(2) For i = 1, . . . , ν, ν = |A|/r, computes S′i ← (A[i]‖0c)⊕Si and Si+1 ← π(S′i). The leakages are [Linπ (S′i), L

out
π (Si+1),

L⊕(msr(Si), A[i])]p;
(3) Sν+1 ← Sν+1 ⊕ (0r‖δ1) for a fixed offset δ1. The leakages are [L⊕(lsc(Sν+1), δ1)]p;
(4) For i = 1, . . . , `, ` = |M |/r, computes j ← i+ν, C[i]← msr(Sj)⊕M [i], S′j ← C[i]‖lsc(Sj), Sj+1 ← π(S′j). Leakages

are L⊕(msr(Sj),M [i]), [L⊕(msr(Sj), C[i])]p−1, [Linπ (S′j), L
out
π (Sj+1)]p;

(5) Returns c = C[1]‖ . . . ‖C[`].

Its ideal reference IdealS is obtained via replacing all the internal actions Si+1 ← π(S′i) in DuStr[π] by

sampling Si+1
$← {0, 1}b. Formally,

The ideal stream cipher IdealS(IV,A,M):

(1) Samples B
$← {0, 1}κ;

(2) Computes S′0 ← IV ‖B and samples S1
$← {0, 1}b. The leakages of this step are [Linπ (S′0)]p and [Loutπ (S1)]p;

(3) For i = 1, . . . , ν, ν = |A|/r, computes S′i ← (A[i]‖0c) ⊕ Si and samples Si+1
$← {0, 1}b. The leakages are

[Linπ (S′i), L
out
π (Si+1), L⊕(msr(Si), A[i])]p;

(4) Sν+1 ← Sν+1 ⊕ (0r‖δ1). The leakages are [L⊕(lsc(Sν+1), δ1)]p;

(5) For i = 1, . . . , `, ` = |M |/r, computes j ← i + ν, C[i] ← msr(Sj) ⊕M [i], S′j ← C[i]‖lsc(Sj), and samples Sj+1
$←

{0, 1}b. The leakages are L⊕(msr(Sj),M [i]), [L⊕(msr(Sj), C[i])]p−1, [Linπ (S′j), L
out
π (Sj+1)]p;

(6) Returns c = C[1]‖ . . . ‖C[`].

EavL: eavesdropper security with leakage. The EavL notion can be seen as the leaky version of the black-
box eavesdropper security, or an extremely weakened muCCAmL2 setting that only allows the adversary to make
a single query to the challenge leaking encryption oracle and have its ciphertext, encryption leakages, and several
dec-leakages (as such, it can also be viewed as “single-query leakage CCA”). Formally,

AdvEavL
LDuStr(A)

:=
∣∣Pr[Aπ(LDuStrB(IV,A,M0))⇒ 1]− Pr[Aπ(LDuStrB(IV,A,M1))⇒ 1]

∣∣. (7)

We next call an adversary (p, qπ, t)-bounded, if it makes qπ permutation queries, measures the dec-leakages for
p− 1 times, and runs in time t.

Indistinguishability of the real and ideal. The leakage functions LDuStr, resp. LIdealS, include all the leakages
mentioned with DuStrB [π], resp. IdealS. Recall LDuStrB [π](IV,A,M) := (DuStrB [π](IV,A,M), LDuStr(B, IV,A,M))
and LIdealS(IV,A,M) := (IdealS(IV,A,M), LIdealS(IV,A,M)) according to our conventions. We show that the
leaking objects LDuStrB [π] and LIdealS are indistinguishable upon processing a single input (IV,A,M). The
crux is to bound certain “bad events” during the execution of IdealS, for which we leverage the non-invertible
leakage assumption.

Lemma 1. For every (p, qπ, t)-bounded distinguisher Dπ and every adversary-chosen triple tpl = (IV,A,M)
such that (A,M) has ` blocks in total, it holds∣∣Pr[Dπ(LDuStrB [π](tpl))⇒ 1]− Pr[Dπ(LIdealS(tpl))⇒ 1]

∣∣
≤ (`+ 2)2

2c+1
+ AdvInv[κ](p, qπ, t∗, 2qπ)+ (`+ 1) ·AdvInv[c](p, qπ, t∗, 2qπ), (8)

where t∗ = O(t + p`tl), and tl is the total time needed for evaluating Linπ , Loutπ , L⊕, and the xor of two r-bit
values.

Proof. Wlog we consider the case of |A| = 0 for simplicity.

9

Preparations. Denote G1(D,DuStrB [π], π) and G2(D, IdealS, π) the games capturing the interactions between
D and the real (DuStrB [π], π) and the ideal (IdealS, π) resp, and simplified as G1 and G2. We’ll prove the
indistinguishability of G1 and G2. To make it rigorous, we use the H-coefficients technique. A deviation from
common applications of this technique is that, instead of considering the mere adversarial transcripts, we focus
on an extended notion of transcripts, which summarize the whole interactions. This is because during the games
in question, there are various other randomness sources such as the coins of the leakage functions, and these
could only be summarized by extended transcripts.

Concretely, note that the real adversarial transcripts could be summarized as two lists τle and τπ: the former
includes the ciphertext as well as the leakages (its concrete representation won’t be needed in this proof), while
the latter τπ =

(
(Sin1 , S

out
1), . . . , (Sinqπ , S

out
qπ)

)
includes the adversarial permutation queries and responses, and

indicates the i-th query is either forward π(Sini) → Souti or backward π−1(Souti) → Sini . Besides, at the end
of the interaction, we reveal the involved internal state values S = (S′0, S1, S

′
1, . . .) to D, and append it to the

transcript. Clearly, this doesn’t reduce its advantage.
Moreover, note that the interactions with the (real or ideal) stream cipher additionally rely on r, the

random coins of the distinguisher D & the involved leakage functions. Yet, it can be seen that during two
games G1(D,DuStrB [π1], π1) and G2(D, IdealS, π2), if the following conditions are fulfilled, then the queries and
responses of D are the same, and thus D outputs the same:

– π1 ` τπ, and π2 ` τπ;
– the internal state values produced in the two games are the same S;
– the random coins r used in G1 and G2 are the same.

It’s because all the internal actions in G1(D,DuStrB [π1], π1) and G2(D, IdealS, π2) give rise to the same results.
With the above considerations, we summarize all the randomness in what we call extended transcripts, i.e.,
τ = (τπ,S, r). Note that τle disappears in τ , as it can be recovered from r and S.

With respect to some fixed distinguisher D, an extended transcript τ = (τπ,S, r) is said attainable if there
exists randomness (r, π) such that using r, the ideal execution of G2(D, IdealS, π) yields (τπ,S). We denote T
the set of attainable transcripts. In all the following, we denote Tre, resp. Tid, the probability distribution of
the transcript τ induced by the real world, resp. the ideal world (note that these two probability distributions
depend on the distinguisher). By extension, we use the same notation to denote a random variable distributed
according to each distribution.

Given a set τπ and a random permutation π, we say that π extends τπ, denoted π ` τπ, if π(Sin) = Sout for
all (Sin, Sout) ∈ τπ. It is easy to see that for any attainable transcript τ = (τπ,S, r), the event Tid = τ happens
if and only if π ` τπ, S is generated in the execution, and the randomness r is used (by D and L), while the
event Tre = τ happens if and only if π ` τπ, π(S′i) = Si+1 for every S′i, Si+1 in S, and the randomness r is used.

With the above, the H-coefficients main lemma [15] is as follows.

Lemma 2. Fix a distinguisher D. Let T = Tgood ∪ Tbad be a partition of the set of attainable transcripts T .
Assume that there exists ε1 such that for any τ ∈ Tgood, one has

Pr[Tre = τ]

Pr[Tid = τ]
≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Bad Extended Transcripts. An attainable transcript τ = (τπ,S, r) is bad, if either of the following two conditions
is fulfilled:

– (B-1) contradiction: there exists two distinct indices i, j ∈ [0, . . . , `] such that S′i = S′j ∧ Si+1 6= Sj+1, or
S′i 6= S′j ∧ Si+1 = Sj+1;

– (B-2) exposure of secret state: if any of the following is fulfilled:
• there exits i ∈ [0, . . . , `] such that (S′i, ?) ∈ τπ; or
• there exits i ∈ [1, . . . , `+ 1] such that (?, Si) ∈ τπ.

As long as the c-bit (uniformly distributed) capacity halves of S′0, S1, S2, . . . , S`+1 don’t collide, the condition
(B-1) cannot be fulfilled. Therefore,

Pr[(B-1)] ≤
(
`+ 2

2

)
· 1

2c
=

(`+ 2)2

2c+1
. (9)

10

To bound Pr[(B-2)], we need the non-invertible leakage assumption. Consider an execution of G2 with the
inputs (IV,M). We divide (B-2) into three subevents:

(1) BadInner: that occurs when there exists an index i ∈ [1, . . . , `] such that
(
?, Si

)
∈ τπ or

(
S′i, ?

)
∈ τπ;

(2) BadInit: that occurs when (S′0, ?) ∈ τπ;
(3) BadFinal: that occurs when (?, S`+1) ∈ τπ.

Consider BadInner first. We follow Yu et al. [44, Appendix A] (i.e., their argument for an event Querya with
somewhat similar meaning): given an adversary Dπ, we construct an adversary Aπ such that

AdvInv[c](A) ≤ Prr,S,π[BadInner in Dπ(IdealS(IV,M))]. (10)

To this end, Aπ runs an instance of D, and keeps τπ, i.e., the set of D’s queries to π. Aπ simulates the following
process against D:

(1) Aπ guesses an index i
$← [1, `], samples a key B

$← {0, 1}κ, sets S′0 ← IV ‖B, and initializes a list leak with
the leakages [Linπ (S′0)]p;

(2) For j = 1, . . . , i− 1, Aπ samples the new state Sj
$← {0, 1}b, computes C[j]← msr(Sj)⊕M [j], and:

– computes S′j ← C[j]‖(lsc(Sj)⊕ δ1) and adds the leakages [L⊕(lsc(Sj), δ1)]p to leak when j = 1, and
– computes S′j ← C[j]‖lsc(Sj) otherwise.
Aπ further adds the leakages

[
Loutπ (Sj), L

in
π (S′j)

]p
, L⊕(msr(Sj),M [j]), and [L⊕(msr(Sj), C[j])]p−1 to leak;

(3) Aπ samples y
$← {0, 1}r and computes C[i] ← y ⊕M [i]. Aπ then submits y, C[i], and δ = δ1 (when i = 1)

or δ = 0 (when i > 1) to its Inv[c] challenger and obtains the leakages

leakch =
[
Loutπ (y‖sch), L⊕(sch, δ), L

in
π

(
C[i]‖(sch ⊕ δ)

)]p
for the challenge secret sch ∈ {0, 1}c. Aπ then adds the leakages L⊕(y,M [i]), [L⊕(y, C[i])]p−1, and leakch to
leak. This means y‖sch is taken as Si—though Aπ doesn’t know its value.

(4) Aπ then completes the remaining encrypting: for j = i+1, . . . , `, Aπ samples Sj
$← {0, 1}b, computes C[j]←

msr(Sj)⊕M [j], S′j ← C[j]‖lsc(Sj), and adds
[
Loutπ (Sj), L

in
π (S′j)

]p
, L⊕(msr(Sj),M [j]), and [L⊕(msr(Sj), C[j])]p−1

to leak.
(5) Finally, Aπ samples S`+1

$← {0, 1}b, adds [Loutπ (S`+1)]p to leak, returns (C[1]‖ . . . ‖C[`], leak) to D, and
outputs {lsc(Sin), lsc(S

out) : (Sin, Sout) ∈ τπ} as the set G.

The strategy of Aπ is to make a uniform guess on the position of the first inner secret value that appears in
τπ, as this value is the “first”, its being queried was necessarily due to the corresponding leakages (rather than
the compromising of the other inner states). This guess will be correct with probability 1/`. Then, Aπ simulates
IdealS(IV,M) and provides the leakages to D, except for the i index, for which the leakages are replaced by
those obtained from an Inv challenger. Now if the guess on the index i is correct, then all the inputs sent to D
are distributed exactly as those in a normal execution of G2. Therefore, when D halts, if D made a query with
sch, then outputting the aforementioned set G (based on τπ) would break the Inv game. So we have

Pr[sch ∈ G | BadInner in G2(D, IdealS, π)] ≥ 1

`
.

Now, we observe that

Pr[sch ∈ G | BadInner in G2(D, IdealS, π)] ≤ Pr[sch ∈ G]

Pr[BadInner in G2(D, IdealS, π)]
.

And it can be seen A is (p, qπ, t
∗, 2qπ)-bounded, with t∗ = O(t+ p`tl). By this,

Pr[BadInner in G2(D, IdealS, π)] ≤ ` · Pr[sch ∈ G]

≤ ` ·AdvInv[c](A) (Eq. 1)

≤ ` ·AdvInv[c](p, qπ, t
∗, 2qπ). (Eq. 3)

These finish the analysis of BadInner. For the events BadInit and BadFinal, similar arguments could establish

Pr[BadInit] ≤ AdvInv[κ](p, qπ, t
∗, 2qπ), Pr[BadFinal] ≤ AdvInv[c](p, qπ, t

∗, 2qπ).

The three terms plus Eq. (9) yield

Pr[Tid ∈ Tbad] ≤ (`+ 1) ·AdvInv[c](p, qπ, t
∗, 2qπ) + AdvInv[κ](p, qπ, t

∗, 2qπ)

+
(`+ 2)2

2c+1
. (11)

11

Summarizing. For any good transcript τ = (τπ,S, r) we have

Pr[Tid = τ] = Pr[π ` τπ] · Pr[r] · Pr[S]

= Pr[π ` τπ] · Pr[r] · 1

2κ
· 1

2(`+1)b
,

as Pr[S′0] = Pr[B] = 1
2κ , while Pr[Si] = 1

2b
for i = 1, . . . , `+ 1. Whereas

Pr[Tre = τ] = Pr[π ` τπ] · Pr[r] · 1

2κ
· Pr[∀i ∈ [0, `] : π(S′i) = Si+1 | π ` τπ].

Conditioned on ¬(B-1) and ¬(B-2), it can be seen Pr[∀i ∈ [0, `] : π(S′i) = Si+1 | π ` τπ | ∀j < i : π(S′j) =

Sj+1] ≥ 1
2(`+1)b . Therefore, Pr[Tre = τ] ≥ Pr[Tid = τ], and thus Pr[Tid ∈ Tbad] constitutes the final bound, i.e.,∣∣Pr[Dπ(LDuStrB [π](IV,M))⇒ 1]− Pr[Dπ(LIdealS(IV,M))⇒ 1]

∣∣
≤ (`+ 2)2

2c+1
+ (`+ 1) ·AdvInv[c](p, qπ, t

∗, 2qπ) + AdvInv[κ](p, qπ, t
∗, 2qπ).

as claimed. ut

Summarizing: EavL security of DuStr. The bound appears like twice the terms in Lemma 1 plus the term
`AdvLORL, which is due to masking the ` message blocks with ` independent random key stream blocks.

Theorem 1. For every (p, qπ, t)-bounded adversary A, every pair of messages M0 and M1 of equal-length, and

every (IV,A) such that d |A|r e+ d |M
0|
r e ≤ `, we have

AdvEavL
LDuStr(A) ≤ (`+ 2)2

2c
+ ` ·AdvLORL(p, qπ, t

∗) + 2AdvInv[κ](p, qπ, t
∗, 2qπ)

+ 2(`+ 1) ·AdvInv[c](p, qπ, t
∗, 2qπ), (12)

where tl is as defined in Lemma 1, and t∗ = O(t+ p`tl). See appendix B.3 for its (simple hybrid-based) proof.

Interpretation. Theorem 1 does not give rise to an encryption scheme since it concerns with encrypting only
one message. But as will be seen, it can be used to establish AE security in an almost modular manner.

Regarding bounds, the term ` ·AdvLORL(p, qπ, t
∗) reflects the reduction to the “minimal message manipula-

tion” (as discussed earlier), and the factor ` reflects a (seemingly) unavoidable leakage security loss. The terms

2AdvInv[κ](p, qπ, t
∗, 2qπ) + 2(`+ 1) ·AdvInv[c](p, qπ, t

∗, 2qπ) capture the hardness of side-channel secret recovery,
and they are roughly of some birthday type

O
(qπ + `+ t

µκ · 2κ
)

+O
(
` · qπ + `+ t

µc · 2c
)
,

for some parameters µκ and µc that depend on the concrete conditions. It is nowadays a common assumption
that with such a small data complexity (2 or 3 leakage traces) µκ and µc can be made very small [18], so we
“restore” the classical 2c/2 security. The birthday bounds are essentially tight w.r.t. our assumptions: a collision
between the (internal) secret c-bit state values allows the adversary to obtain more than 2 leakages about a
single secret value, which is beyond our assumption (security with 2 leakages). So our assumption Eq. (2),
though a bit conservative, tightly restores the classical 2c/2 birthday bound.

3.5 Discussion

Where does leakage-resistance come from? We note that, in (the model of) a duplex, the internal state
is kept evolving by calling a perfectly random permutation. Since the adversary cannnot recover the secret, he
cannot predicate what would be the next internal permutation call. Therefore, the subsequent state is derived
via a fresh permutation-call and thus random and secret.
On reducing to PRP assumptions. An alternative solution to study keyed sponge/duplex is to reduce them
to the PRP security of a “Partial-Key” Even-Mansour (PKEM) cipher [3]. It is thus natural to ask whether
EavL could also be reduced to the PRP security of PKEM with leakages. While this direction is in general

12

an interesting open problem, the tricky issue is that the PKEM-based representations in [3] (see Figure 5 in
Appendix C) contain a plenty of “imaginary” XORs that do not actually happen in reality. How to model the
leakage of these XORs is not directly obvious.

Keyed sponges are not forward secure [11], in the sense that the exposure of a b bit state enables recovering
the earlier states. Consequently, the final permutation call must hide its output state to some extent. This is
captured by the bad condition BadFinal in the proof of Lemma 1.

4 The new mode TETSponge

General considerations. By Theorem 1, the duplex is a nice starting point for efficient 1-pass leakage-resilient
AEs. Indeed, the final duplex state is typically truncated as the tag. But typically, in a leveled implementation,
only the initial keyed part would be strongly protected against side-channel attacks, and this causes the concern
of dec-leakages. First, dec-leakages enable recovering the internal state of (a leveled implementations of) the
duplex [1], after which universal forgery is possible. Second, verifying the tag requires to perform the entire
computation to recover the valid tag and to compare it with the one included in the ciphertext. Hence, this
valid tag may be leaked, constituting trivial forgeries and breaking CIML2. It is natural to ask how to remedy
those issues.

Towards the first issue, our (new) observation is that an additional keyed finalization function helps a lot.
Namely, even if the internal state has been recovered in full, the construction then collapses to a Hash-then-MAC
authenticator, with the duplex being a keyless hash and the keyed finalization being a fixed length MAC. Thus,
if the finalization is carefully protected, strong integrity with nonce-misuse and leakages is restored.

Towards the second issue, assuming n-bit tag size, then an approach to cope with the leaking tag is to rely on
an n-bit invertible primitive (e.g., a block cipher was used in [10]), so that the verification only compares (and
leaks) pre-images of tags without ever computing the valid tag, which then remains unpredictable. Inversion
may be challenging though, as the duplex permutation size b is typically much larger than any ordinary tag size
n. Due to the presence of leakages, it is hard to build a “small” invertible primitive from the large permutations
(Feistel-based solution consumes O(n) rounds [22]).

With these considerations, we use a tweakable block cipher (TBC) for the finalization to increase robustness
against dec-leakages. In detail, we derive a 2n-bit (hash) digest from the keyed duplex, and then use an (n, n, n)-
TBC to absorb this digest and generate the (n-bit) tag. This solves all the above. The motivation for employing
2n-bit digests is to boost the complexity of hash collision-based forgery attacks to 2n, which is inherited from [8].

This TBC shall be well protected against side-channel attacks. Therefore, following [37,18,8], we also use
it to derive the duplex-key from the nonce and “setup” the duplex. Now, as long as the internal state is not
fully exposed by SCAs, it enables the inner keyed duplex to maintain some level of privacy and integrity; even
if the state is leaked in full, the scheme collapses to Hash-then-TBC authenticator, and integrity is retained (so
that severe malware attacks like [39] won’t be possible). The use of “public keys” in order to offer multi-user
security beyond |K|/2 is also inherited from [8]. Briefly, the public keys create a strong independence between
different users and thus reduce the effectiveness of offline computation against the multiple user keys. Besides,
the actions involving these public keys do not need any additional physical protection.

Remark. At this stage, it is tempting to ask why bother integrity with nonce misuse-resistance and dec-leakages
in a 1-pass scheme that is not designed for nonce-reuse at all & loses security (precisely, confidentiality) against
dec-leakages? The reason is fundamental: when designing an AE, we choose 1-pass not because we do not desire
robustness against nonce-reuse & dec-leakages, but because it corresponds to a tradeoff between efficiency
and security that we want to cover. Still, it is desirable to have as much robustness as possible with minimal
overheads—which is a general direction [4,28]. So we question what level of robustness can be achieved by such
efficient designs and how to achieve it?

Specification.

Parameters. TETSponge[π, Ẽ] is built on an (n, n, n)-TBC Ẽ and a b = r + c bit permutation π. The key is
K‖PK , where |K| = n and |PK | = np. We stress that only K has to be kept secret, but PK can be public. The
secret key K is picked uniformly at random in {0, 1}n. The public key PK is hoped to be unique per session
for a separation. We feel that the easiest way to ensure this uniqueness is to pick PK uniformly from {0, 1}np ,
and thus we focus on this case. Let nN = |N | be the fixed length of the nonces. We require that np ≤ r,
nN + np + n ≤ r + c, and 2n ≤ r + c + 1. Yet, we recommend np ≈ n and c ≈ 2n and we actually choose

13

BN‖0∗

C = C[1]‖C[2]‖Z

Ẽ

K
π

n

r

M [1] C[1]

c
π

r

A[1]

c
π

r

A[2]‖10∗

c
π

PK‖0∗

M [2] C[2]‖10∗

c
π

U

n− 1
V

n
ZẼ

K

1

1‖0c−2 2‖0c−2 1‖0c−2

N‖PK‖0∗

Fig. 3: TETSponge[π, Ẽ]K,PK AEAD for ν = 2 blocks of associated data and ` = 2 message blocks. Dark squares
indicate the “leak-free” TBC where the triangle denotes the key input and the small black rectangle denotes
the tweak input. The value 1‖0c−2 is inserted only if |A[ν]| < r, resp. |M [`]| < r.

np = n− 1 and c = 2n as this leads to (black-box CCA & muCIML2) security up to 2n/n2 queries. There is no
recommendation for nN , but when n = 128 one could take nN = 96 which is a standard choice.

The encryption. As shown in Fig. 3, upon encrypting (N,A,M), the mode first derives an n-bit initial seed B

from N , using a strongly protected TBC-call to Ẽ
PK‖0∗
K (N‖0∗). The seed B is then used as the key of the duplex

to process A and M = M [1]‖ . . . ‖M [`] and produce c = C[1]‖ . . . ‖C[`]. Note that 2 bits are used for domain
separation, in order to distinguish M from A and mark if the last blocks of A and M are of full r bits or not.

Let U‖V be the most significant 2n− 1 bits of the final state with |U | = n. As discussed, another strongly

protected TBC-call is made, which generates the n-bit tag Z = Ẽ
V ‖1
K (U). The final ciphertext is C[1]‖ . . . ‖C[`]‖Z.

The Decryption. Upon decrypting (N,A,C), C = C[1]‖ . . . ‖C[`]‖Z, the mode first recovers the initial seed B

via B = Ẽ
PK‖0∗
K (N‖0∗), and then runs the duplex on A and C[1]‖ . . . ‖C[`] to recover M and the 2n − 1 bit

truncated state U‖V . Finally, it makes an inverse TBC call U∗ = (Ẽ
V ‖1
K)−1(Z), and outputs M if and only if

there is a match U = U∗. In such a way, invalid decryption only leaks meaningless random values U∗ (instead
of the correct tag) which increases robustness against dec-leakages at the mode level (formally, helps achieve
CIML2).

The encryption and decryption are formally described below. Note that when c is empty while A passes the
integrity checking, Dec explicitly returns a special value true, so that it can be used for authenticating A.

algorithm EncK,PK (N,A,M)

1. `← d|M |/re, ν ← d|A|/re
2. parse M as M [1]‖ . . . ‖M [`], with
|M [1]| = . . . = |M [`− 1]| = r and
1 ≤ |M [`]| ≤ r

3. parse A as A[1]‖ . . . ‖A[ν], with
|A[1]| = . . . = |A[ν − 1]| = r and
1 ≤ |A[ν]| ≤ r

4. B ← Ẽ
PK‖0n−nP
K (N‖0n−nN)

5. IV ← N‖PK‖0b−n−nN−nP
6. S0 ← IV ‖B, S1 ← π(S0)
7. if ν ≥ 1 then
8. for i = 1 to ν − 1 do
9. Si ← Si ⊕ (A[i]‖0c)

10. Si+1 ← π(Si)
11. if |A[ν]| < r then
12. A[ν]← A[ν]‖10r−|A[ν]|−1

13. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
14. Sν ← Sν ⊕ (A[ν]‖0c)
15. Sν+1 ← π(Sν)
16. if ` ≥ 1 then
17. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)
18. for i = 1 to `− 1 do
19. j ← i+ ν
20. C[i]← msr(Sj)⊕M [i]
21. Sj ← C[i]‖lsc(Sj)
22. Sj+1 ← π(Sj)

23. C[`]← ms|M [`]|(Sν+`)⊕M [`]
24. if |C[`]| < r then
25. Sν+` ← Sν+` ⊕ (0r‖[1]2‖0c−2)
26. Sν+` ← C[`]‖10r−|C[`]|−1‖lsc(Sν+`)
27. else Sν+` ← C[`]‖lsc(Sν+`)
28. Sν+`+1 ← π(Sν+`)
29. U‖V ← ms2n−1(Sν+`+1)

30. Z ← Ẽ
V ‖1
K (U)

31. c← C[1]‖ . . . ‖C[`], C ← c‖Z
32. return C

algorithm DecK,PK (N,A,C)
1. `← d |C|−n

r
e, ν ← d|A|/re

2. parse C as C[1]‖ . . . ‖C[`]‖Z, with |C[1]| = . . . =
|C[`− 1]| = r, 1 ≤ |C[`]| ≤ r, and |Z| = n

3. parse A as A[1]‖ . . . ‖A[ν], with |A[1]| = . . . = |A[ν −
1]| = r and 1 ≤ |A[ν]| ≤ r

4. B ← Ẽ
PK‖0n−nP
K (N‖0n−nN)

5. IV ← N‖PK‖0b−n−nN−nP
6. S0 ← IV ‖B, S1 ← π(S0)
7. if ν ≥ 1 then
8. for i = 1 to ν − 1 do
9. Si ← Si ⊕ (A[i]‖0c)

10. Si+1 ← π(Si)
11. if |A[ν]| < r then
12. A[ν]← A[ν]‖10r−|A[ν]|−1

13. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
14. Sν ← Sν ⊕ (A[ν]‖0c)
15. Sν+1 ← π(Sν)

14

16. if ` ≥ 1 then

17. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)

18. for i = 1 to `− 1 do

19. j ← i+ ν

20. M [i]← msr(Sj)⊕ C[i]

21. Sj ← C[i]‖lsc(Sj)
22. Sj+1 ← π(Sj)

23. M [`]← ms|C[`]|(Sν+`)⊕ C[`]

24. if |C[`]| < r then

25. Sν+` ← Sν+` ⊕ (0r‖[1]2‖0c−2)
26. Sν+` ← C[`]‖10r−|C[`]|−1‖lsc(Sν+`)
27. else Sν+` ← C[`]‖lsc(Sν+`)
28. Sν+`+1 ← π(Sν+`)
29. U‖V ← ms2n−1(Sν+`+1)

30. U∗ ← (Ẽ
V ‖1
K)−1(Z)

31. if U 6= U∗ then return ⊥
32. else if ` > 0 then return M [1]‖ . . . ‖M [`]
33. else return true

Note that since we expect the duplex to act as a keyless hash when the internal state has been leaked, we
cannot follow the more efficient design approaches that encroach the capacity of the duplex/sponge — including
full-state [34,16] and concurrent absorption [40].

Below we only provide the leakage security analyses of TETSponge. Its black-box muCCAm$ result is deferred
to Appendix I.

Leakage integrity muCIML2. For TETSponge, even very weak implementations could ensure integrity: as long
as the protected TBC calls are secure against key recovery attacks (e.g., DPAs exploiting multiple queries to
the TBCs), integrity is ensured even if all the other intermediate values (in the duplex) are leaked in full. Such
a leakage assumption was previously called “unbounded” [9]. Formally, we define L∗ = (L∗Enc, L

∗
Dec), where:

– L∗Enc consists of the following information appearing during the encryption:
• {Sin, Sout} for each internal call to π(Sin)→ Sout, and

• {T,X, Y } for each internal call to ẼTK(X)→ Y or (ẼTK)−1(Y)→ X (i.e., all values are completely leaked
except for the key K), and

• {a, b} for each internal XOR action a⊕ b.
– L∗Dec consists of the above that are generated during the decryption.

We further write −→q = (qe, qd, qĨC, qπ), and denote by (−→q , σ)-adversaries the adversaries that make qe, qd, qĨC,

and qπ queries to LEncK, LDecK, ĨC, and π, and have at most σ blocks (of r bits) in all their queried plaintext
and ciphertext including associated data. With these, we have the following result for TETSponge.

Theorem 2. Assume u ≤ 2np , np ≤ n, n ≥ 5, Q = σ + qe + qd + qπ ≤ min
{

2n/4, 2b/2
}

, and leakage L∗ is
“unbounded” as above. Then in the ideal TBC and permutation model, for any (−→q , σ)-adversary A it holds

AdvmuCIML2
A,TETSponge,L∗,u ≤

3u

2np
+

32Q2

2c
+

7nQ+ n2qĨC
2n

. (13)

See appendix D for its proof—its idea is simple, while its complexity stems from the analysis of the non-standard
sponge hash. Regarding the bounds, qπ, qĨC = t represents the time complexity. If n = 128, and with our chosen

parameters np = n − 1 and c = 2n, the bound simplifies to 5u
2127 + 214t+27σ

2128 , implying high security up to 2124

users, 2114 computations, and roughly 2120 message blocks.

Leakage confidentiality muCCAmL1. For confidentiality the implementations shall satisfy the bounded leak-
ages assumptions in Section 3, i.e., non-invertibility & bounded XOR leakages; and we will apply Theorem 1.
Following the notations of Section 3, we naturally define the leakage function L = (LEnc, LDec) of our implemen-
tation as follows:

– LEnc consists of the leakages that are generated during the encryption:
• the leakages Linπ (Sin) and Loutπ (Sout) generated by all the internal calls to π(Sin)→ Sout, and
• the leakages L⊕(a, b) generated by all the internal actions a⊕ b.

– LDec = ∅ since muCCAmL1 is CCA with encryption leakages only.

For the TBC Ẽ, we simply assume its leakage function LẼ returns nothing, i.e., Ẽ is leak-free. All the analyses
can be easily modified to incorporate non-empty LẼ (indeed, our earlier version addressed), but we eschew for
simplicity.

For −→q = (qm, qe, qd, qĨC, qπ), we denote by (−→q , t, σ)-adversaries those make qm, qe, qd, qĨC, and qπ queries to

the non-challenge LEnc, the challenge LEnc, Dec, ĨC, and π resp., run in time t, and have σ blocks in all its
(challenge & non-challenge) queries including associated data.

15

Theorem 3. Assume u ≤ 2np , np ≤ n, n ≥ 5, σ + qe + qd + qm + qπ ≤ min
{

2n/4, 2b/2
}

, and leakage
L = (LEnc, LDec) is defined as above. Then in the ideal TBC and permutation model, for any (−→q , t, σ)-adversary
A, it holds

AdvmuCCAmL1
A,TETSponge,L,u ≤

5u

2np
+

49Q2

2c
+

6(n+ 1)Q+ 2nqd + 2n2qĨC
2n

+ σAdvLORL(1, Q, t∗)

+ 2qeAdvInv[n](1, Q, t∗, 2Q) + 2(σ + qe)AdvInv[c](1, Q, t∗, 2Q),

where AdvLORLand AdvInv[ω] are defined in Eqs. (6) and (3) resp, Q = σ + qe + qd + qm + qπ, t∗ = O(t+ σtl),
and tl is the total time for evaluating Lin and Lout.

The proof follows a quite standard hybrid argument: from A we build a EavL adversary A2 against the duplex
stream cipher DuStrB [π], which simulates all but one challenge encryption queries and relays the exceptional
to its EavL challenger. The core feature enabling the hybrid is that, for each challenge encryption query, since
the nonce is used only once during its lifetime, DuStrB [π] is seeded with an initializing key B that is somewhat
independent from any other initializing key of the other encryption queries. See appendix E for the formal
presentations. Note that: (a) since the muCCAmL1 adversary A cannot require “challenge dec-leakages”, A2

doesn’t need to measure them on DuStrB [π] either, and thus we use the terms in Theorem 1 with p = 1; (b) in

TETSponge, the initializing key B is of n bits, and thus the term AdvInv[n](1, Q, t∗, 2Q).
The concrete security is mainly limited by the terms established in Theorem 1. As discussed, the terms

2qeAdvInv[n](1, Q, t∗, 2Q)+2(σ+ qe)AdvInv[c](1, Q, t∗, 2Q) are O
(
qe · qπ+σ+tµn·2n

)
+O

(
σ · qπ+σ+tµc·2c

)
for some specific

parameters µn and µc. Though, the influence of u the number of users on the security remains negligible: once
u ≤ 2np/5, TETSponge is secure up to the birthday 2n/2 complexity—it is smaller than 2c/2 due to the shorter
initial seed B.

Discussion. Again, the leakage assumptions needed for the two theorems are different, and integrity is ensured
by much weaker implementations. This not only coincides with the theory separation between unpredictability
and pseudorandomness [35] but also unveils which goal is easier in the real world. In addition, for both theorems,

the strong assumption on the implementation of Ẽ versus the weak assumption on π provides the separation of
duties that enables leveled implementations.

We also remark that, as a first step, we concentrate on a simplified model of “unbounded” leakage plus ideal
permutation for integrity. There are complicated gaps between this model and the real world situation, e.g.,
lightweight AEs tend to use weak permutations far from ideal and may admit (hash collision-based) attacks in
our model. Since duplex state can indeed be recovered via side-channels [1], this “attack” seems something real
rather than an artifact of our model, and may be worth noting, which we leave for further research.

5 Applications to some other AEs

Many AEs follow the general duplex structure but deviate on details. We next highlight how the previous
analysis can be applied to a few relevant examples. We start with 1-pass modes and focus on the Ascon and
GIBBON designs, of which the structures are similar to TETSponge. We then extend the discussion to two 2-pass
modes, namely TEDTSponge (that we introduce here) and ISAP. We leave the analyses of other modes (e.g.,
1-pass duplex such as full-state duplex-based AEs [16] and Beetle [14]) as interesting open questions.

Ascon was designed by Dobraunig et al. [19], and is among the final portfolio of the CAESAR competition.
Here we consider its NIST lightweight submission Ascon v1.2 [20]. Its structure is depicted in Fig. 4 (a)—as
mentioned earlier, this figure represents the leveled implementation considered in [1]. It uses two permutations
π1 and π2 that differ in the number of underlying rounds. Let n := |K| = |Z|. Assume π1 and π2 are two
independent random permutations. Then Ascon’s structure resembles a variant of TETSponge with KDFK(N) :=
π1(IV ‖K‖N)⊕ (0b−n‖K) and TGFK(S) := lsn

(
π1(S ⊕ (0r‖K‖0c−n))

)
⊕K.

As discussed in Section 4, merely protecting KDFK(N) and TGFK(S) against side-channel key recovery
is not enough. Concretely, we have to assume the leak-freeness (concretely menting strong protection against
side-channel attacks) of the sequence of actions IntCheckK(S,Z) below.

1: Integrity checking IntCheckK(S,Z)
2: Zc ← TGFK(S)
3: If Z = Zc then return 1 else return 0

16

A[1]

π1

BN‖0∗ Ẽ

K

N‖PK‖0∗

n

PK‖0∗

A[2]‖10∗

0c

A[1]

U

V

ZẼ

K

1

C[1] C[2] C[3]‖10∗ N

r

PK‖0∗

c

r

c

r

c

r

c

r

c

r

c

[1]c [2]c [1]c

0∗‖K

π2

A[2]

π2

A[3]

π2

M [1]

[1]c

C[1]

π2

M [2] C[2]

π1

K‖0∗ K

Z

N

IVA

π4 π4

A[2]

π4

[1]c

Z

A[1]

π4

C[2]

π4

C[3]

π4

C[1]

π4

K

RK

π3π3

M [1]

C[1]

π3

M [2]

C[2]

M [3]

C[3]

π

M [1] C[1]

π

M [2] C[2]

π

M [3] C[3]

π π ππ π π π

(a)

(d)

(c)

Y

K

N

π1

K‖0c/2

π2

A[1]

π2

A[2]

π3

M [1] C[1]

π3

M [2] C[2]

π3 π1

K‖0c/2 K

Z
(b)

0r

K

N

IV

N

K

IVKE

π1 π2

N1

...

...
π1

Nn

K∗

n

b− nn
RK

c = 2n

1

b− 1 b− 1

1

nn n

U

c = 2n

c c

n
n

Fig. 4: Duplex-based AEs considered in section 5 and their leveled implementations. (a) Ascon v1.2; (b) GIBBON;
(c) TEDTSponge; (d) ISAP v2.0. For TEDTSponge, the rule of adding separation bits is the same as TETSponge.
For ISAP v2.0, the structure named RK (short for ISAPRK) in the 1st gray rectangle is a rate-1 duplex, and
its input values N1, . . . , Nn are the 1st,..., n-th bits of the nonce N (i.e., π2 is called n − 1 = 127 times). This
structure is used again in the 2nd pass (the dark square “RK”).

17

Ensuring that these operations (i.e., KDFK(N) and IntCheckK(S,Z)) are well protected against side-channel
attacks is already sufficient for Ascon implementations to ensure integrity in the presence of leakage, which
resembles TETSponge. On the other hand, for confidentiality it additionally has to meet the non-invertible
assumption in Section 3.2 and the bounded XOR leakage assumption in Section 3.3. The results are as follows.

Theorem 4 (informal). For the leveled implementation of Ascon depicted in Fig. 4 (a), if KDFK(N) and
IntCheckK(S,Z) are “leak-free”, then for any adversary A making q queries to its oracles and running in time
t, we have

AdvmuCIML2
A,Ascon,L∗,u = O

(u2
2n

)
+O

((σ + q)2

2c

)
+O

(q
2n

)
, (14)

AdvmuCCAmL1
A,Ascon,L,u = O

(u2
2n

)
+O

((σ + q)2

2c

)
+O(σ) ·AdvLORL

(
1, O(q), O(t)

)
+O(σ) ·AdvInv[c]

(
1, O(q), O(t), O(q)

)
+O

(q
2n

)
, (15)

where L∗ is “unbounded” as in Theorem 2, while L is “bounded” as Theorem 3.

The proof is the same as the proof of Theorem 2 modulo minor changes. For verifying, a sketch is given in

Appendix F. The bounds are comparable to TETSponge. The term O
(
u2

2c

)
—more precisely, u2

2|K|
,—reflects the

multi-user key collision, and cannot be avoided. It may be interesting to investigate whether it can be reduced
to u

2|K|
by employing public randomness (like in TETSponge).

We remark that the equality checking of line 3 in IntCheckK(S,Z) is a non-linear operation, so it would
typically require special care to be protected. Since the value Zc is output by a masked implementation of
TGFK(S) in a leveled implementation of Ascon, a natural option would be to perform this additional operation
in a shared manner as well.

GIBBON. GIBBON was a member of the submission PRIMATEs [2] to the CAESAR competition. As shown
in Fig. 4 (b), its structure is very similar to Ascon, except that one more permutation is used. Therefore, our
analysis for Ascon can be transited without essential change and it leads to similar conclusions.

2-pass mode TEDTSponge. As mentioned in introduction, the consensus reached by many [5,18,10] seems to be
that Encrypt-then-MAC style designs with 2 passes is the only choice for achieving dec-leakages confidentiality
with leveled implementations. This was also a limitation of the discussed 1-pass designs. We thus consider
TEDTSponge[π, Ẽ], a natural 2-pass extension of TETSponge[π, Ẽ]: see Fig. 4 (c). More clearly, instead of deriving
the tag from the final duplex state of the 1st pass, we leverage the 2nd leak-free TBC-call for a Hash-then-TBC
authenticator and make an Encrypt-then-MAC composition. The keyless hash function for Hash-then-TBC is,
of course, built upon the sponge function. In summary, TEDTSponge[π, Ẽ] can be seen as a (more efficient)
duplex-based variant of the TEDT TBC-mode [8], or an ISAP variant using a (masked) TBC instead of the
rate-1 duplex (this will be introduced below).

For the sake of space, we defer its formal description to Appendix G.1. With similar assumptions and
following the proof for TETSponge, it can be shown that the leveled implementation of TEDTSponge offers
muCIML2 (see Theorem 6 in Appendix G.1) and muCCAmL2 security (see Theorem 5 in Appendix E.1) with
bounds almost the same as TETSponge. The muCCAmL2 security proof is similar to the muCCAmL1 proof of
TETSponge, except for the added handling of dec-leakages. For TEDTSponge, it is feasible to handle invalid
dec-leakages since they are far less informative than in 1-pass modes, while valid (challenge) dec-leakages have
been included in Theorem 1.

2-pass mode ISAP. Finally, we consider ISAP, and more precisely, its NIST submission ISAP v2.0 [17], which
is more robust against state exposure than the original version [18]. An illustration of ISAP v2.0 is in Fig. 4 (d).
It may be seen as a TEDTSponge variant (but note that ISAP was designed earlier) with the leak-free TBCs
replaced by primitives built upon ISAPRK, which is a rate-1 duplex as shown in the 1st gray rectangle in Fig.
4 (d). It is purely sponge-based: the goal of the rate-1 duplex is to exclude DPA & minimize the effectiveness
of SPA, even if the rate-1 duplex is called a polynomial number of times.

As mentioned in introduction, the original version only came with informal side-channel security arguments.
DM has given a proof for its “encryption part” under the high min-entropy leakage assumption [21]. Here we
show how our methodology and assumptions can establish AE security muCIML2 and muCCAmL2. For this,
define the two functions KDFK(N) and TGFK(U, Y) as well as the corresponding action IntCheckK(Y ‖U,Z) as
follows.

18

algorithm KDFK(N)

1. N1, . . . , Nn ← N
2. S0 ← K‖IVKE , S1 ← π1(S0)
3. for i = 1 to n− 1 do
4. S′i ← Si ⊕ (Ni‖0b−1)
5. Si+1 ← π2(S′i)
6. S′n ← Sn ⊕ (Nn‖0b−1)
7. Sf ← π1(S′n)
8. K∗ ← msb−n(Sf)
9. return K∗

algorithm IntCheckK(Y ‖U,Z)

1. Zc ← TGFK(U, Y)
2. If Z = Zc then return 1
3. return 0

algorithm TGFK(U, Y)

1. Y1, . . . , Yn ← Y

2. S0 ← K‖IVKA, S1 ← π1(S0)

3. for i = 1 to n− 1 do

4. S′i ← Si ⊕ (Yi‖0b−1)

5. Si+1 ← π2(S′i)

6. S′n ← Sn ⊕ (Nn‖0b−1)

7. Sf ← π1(S′n)

8. K∗ ← msb−n(Sf)

9. SZ ← π4(K∗‖U)

10. Z ← msn(SZ)

11. return Z

Then, for an ISAP implementation such that: (a) calls to KDFK(N) and IntCheckK(Y ‖U,Z) are “leak-free”,
and (b) leakages are non-invertible as in Section 3.2, and (c) XOR leakages are bounded as in Section 3.3, the
muCIML2 and muCCAmL2 security can be established similarly to TEDTSponge. For any adversary A making
q queries to its oracles and running in time t, assuming b− n ≥ c for simplicity, we have

AdvmuCIML2
A,ISAP,L∗,u = O

(u2

2n

)
+O

(u(σ + q)

2n

)
+O

((σ + q)2

2c

)
+O

(n(σ + q)

2n

)
, (16)

AdvmuCCAmL2
A,ISAP,L,u = AdvmuCIML2

A,ISAP,L∗,u +O(σ) ·AdvLORL(p,O(q), O(t)
)

+O(σ) ·AdvInv[c](p,O(q), O(t), O(q)
)
. (17)

The proof is similar to the proof for TEDTSponge: we serve a sketch in Appendix H. Note that ISAP does
not use duplex for message encryption (i.e., ciphertext blocks are not fed into the next permutations), but
Theorem 1 can be easily adapted to this case. Regarding bounds, again we encounter the unavoidable multi-

user degradation terms O
(
u2

2n

)
+ O

(u(σ+q)
2n

)
, and it may be interesting to study whether it can be reduced to

u
2n using public randomness.

Our technique (more precisely, the proof of Lemma 1) can be used to prove that the rate-1 duplex is a PRF
resilient to non-adaptive leakages. This shows the leak-freeness assumption of KDFK and TGFK can be replaced
by SPA security assumption on the permutations. But we have to strengthen the non-invertibility assumption,
by both allowing O(q) repeated measures and increasing the number of involved permutation calls. We defer
the discussion to Appendix H.1.

Summary. Our analyses mainly aimed at demonstrating the power and applicability of our methodology, and
we view this as a success. In summary, the results indicate that 1-pass modes with keyed initializing and finalizing
functions could have nice highly secure leveled implementations. As the non-invertibility leakage assumption is
easily connected to side-channel cryptanalysis practice, we believe our results bridge theory and practice.

Concretely, compared to Ascon, TETSponge has a higher mode-level robustness against dec-leakages (for in-
tegrity muCIML2, as discussed in Section 4), and avoids protecting the equality checking. But Ascon is inverse-free
and may be tweaked to support variable-length tags. A similar tradeoff holds bewteen ISAP and TEDTSponge.
So these schemes show different tradeoffs between security against leakage and efficiency: how to implement
them so that the physical assumptions required in our analyzes hold and which one to use in which application
context is an important question for further research.

Acknowledgments. We thank the reviewers of CRYPTO 2019 for comments that help reshape our work,
and Itamar Levi for discussion w.r.t. side-channel state recovery attack against duplex. Thomas Peters is a
postdoctoral researcher and François-Xavier Standaert is a senior research associate of the Belgian Fund for
Scientific Research (F.R.S.-FNRS). This work has been funded in parts by the European Union through the
ERC project SWORD (724725), the INNOVIRIS projects SCAUT and C-Cure, and the European Union and
Walloon Region FEDER USERMedia project 501907-379156.

References

1. Alexandre Adomnicai, Jacques J.A. Fournier, and Laurent Masson. Masking the Lightweight Authenticated Ciphers
ACORN and Ascon in Software. Cryptology ePrint Archive, Report 2018/708, 2019. Appeared at BalkanCryptSec
2018.

19

2. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink, Nicky Mouha, Qingju
Wang, and Kan Yasuda. PRIMATEs v1.02. Submission to the CAESAR Competition, 2016. Available: https:
//competitions.cr.yp.to/round2/primatesv102.pdf.

3. Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of Keyed Sponge Constructions
Using a Modular Proof Approach. In FSE 2015, pages 364–384, 2015.

4. Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated Encryption Robustness with Minimal
Modifications. In CRYPTO 2017, Part III, pages 3–33, 2017.

5. Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authenticated Encryption in the Face of
Protocol and Side Channel Leakage. In ASIACRYPT 2017, Part I, pages 693–723, 2017.

6. Sonia Beläıd, Vincent Grosso, and François-Xavier Standaert. Masking and leakage-resilient primitives: One, the
other(s) or both? Cryptography and Communications, 7(1):163–184, 2015.

7. Mihir Bellare and Björn Tackmann. The Multi-user Security of Authenticated Encryption: AES-GCM in TLS 1.3.
In CRYPTO 2016, Part I, pages 247–276, 2016.

8. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and Franois-Xavier Standaert. TEDT, a leakage-
resilient AEAD mode for high (physical) security applications. Cryptology ePrint Archive, Report 2019/137, 2019.
https://eprint.iacr.org/2019/137.

9. Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Ciphertext In-
tegrity with Misuse and Leakage: Definition and Efficient Constructions with Symmetric Primitives. In AsiaCCS
2018, pages 37–50, 2018.

10. Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. On Leakage-Resilient Authenticated
Encryption with Decryption Leakages. IACR Trans. Symmetric Cryptol., 2017(3):271–293, 2017.

11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-Based Pseudo-Random Number
Generators. In CHES 2010, pages 33–47, 2010.

12. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the Sponge: Single-Pass Authen-
ticated Encryption and Other Applications. In SAC 2011, pages 320–337, 2011.

13. Alex Biryukov and Leo Perrin. State of the art in lightweight symmetric cryptography. Cryptology ePrint Archive,
Report 2017/511, 2017. https://eprint.iacr.org/2017/511.

14. Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle Family of Lightweight and Secure
Authenticated Encryption Ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

15. Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating Ciphers. In EUROCRYPT 2014,
pages 327–350, 2014.

16. Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex with Built-In Multi-user Support. In
ASIACRYPT 2017, Part II, pages 606–637, 2017.

17. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart Mennink, and Robert Pri-
mas. ISAP v2.0. Submission to NIST, 2019. Available: https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf.
18. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and Thomas Unterluggauer. ISAP -

Towards Side-Channel Secure Authenticated Encryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.
19. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2. Submission to the

CAESAR Competition, 2016. Available: https://competitions.cr.yp.to/round3/asconv12.pdf.
20. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2. Submission to

NIST, 2019. Available: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/

round-1/spec-doc/ascon-spec.pdf.
21. Christoph Dobraunig and Bart Mennink. Leakage Resilience of the Duplex Construction. Cryptology ePrint Archive,

Report 2019/225, 2019.
22. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on

Feistel Networks. In CRYPTO 2010, pages 21–40, 2010.
23. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography. In FOCS 2008, pages 293–302, 2008.
24. Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical Leakage-Resilient Symmetric Cryptography.

In CHES 2012, pages 213–232, 2012.
25. Benjamin Fuller and Ariel Hamlin. Unifying Leakage Classes: Simulatable Leakage and Pseudoentropy. In ICITS,

pages 69–86, 2015.
26. Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking Be in Software? In EUROCRYPT

2017, Part I, pages 567–597, 2017.
27. Hannes Groß, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel Protected AES Implementation with

Arbitrary Protection Order. In CT-RSA 2017, pages 95–112, 2017.
28. Shay Gueron and Yehuda Lindell. Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key

Derivation. In CCS 2017, pages 1019–1036, 2017.
29. Chun Guo, Olivier Pereira, Thomas Peters, and Franois-Xavier Standaert. Authenticated Encryption with Nonce

Misuse and Physical Leakages: Definitions, Separation Results, and Leveled Constructions. Cryptology ePrint
Archive, Report 2018/484, 2018.

20

https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://eprint.iacr.org/2019/137
https://eprint.iacr.org/2017/511
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf

30. Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-Resilient Cryptography from Minimal
Assumptions. J. Cryptology, 29(3):514–551, 2016.

31. Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 Security in Sponge-Based Authenticated Encryption
Modes. In ASIACRYPT 2014, Part I, pages 85–104, 2014.

32. Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient Cryptography. Cryptology ePrint Archive,
Report 2019/302, 2019.

33. Ueli M. Maurer and Stefano Tessaro. Computational Indistinguishability Amplification: Tight Product Theorems
for System Composition. In CRYPTO 2009, pages 355–373, 2009.

34. Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State Keyed Sponge and Duplex: Applications
to Authenticated Encryption. In ASIACRYPT 2015, Part II, pages 465–489, 2015.

35. Silvio Micali and Leonid Reyzin. Physically Observable Cryptography (Extended Abstract). In TCC 2004, pages
278–296, 2004.

36. Colin O’Flynn and Zhizhang (David) Chen. Side channel power analysis of an AES-256 bootloader. In CCECE,
pages 750–755. IEEE, 2015.

37. Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-Resilient Authentication and Encryption
from Symmetric Cryptographic Primitives. In CCS 2015, pages 96–108, 2015.

38. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. In EURO-
CRYPT 2006, pages 373–390, 2006.

39. Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT Goes Nuclear: Creating a Zigbee Chain
Reaction. IEEE Security & Privacy, 16(1):54–62, 2017.

40. Yu Sasaki and Kan Yasuda. How to Incorporate Associated Data in Sponge-Based Authenticated Encryption. In
CT-RSA 2015, pages 353–370, 2015.

41. François-Xavier Standaert. Towards and Open Approach to Secure Cryptographic Implementations (Invited Talk). In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I, volume 11476 of Lecture Notes in Computer Science, page xv. Springer, 2019.

42. Stefano Tessaro. Security Amplification for the Cascade of Arbitrarily Weak PRPs: Tight Bounds via the Interactive
Hardcore Lemma. In TCC 2011, pages 37–54, 2011.

43. Thomas Unterluggauer, Mario Werner, and Stefan Mangard. Meas: memory encryption and authentication secure
against side-channel attacks. Journal of Cryptographic Engineering, Jan 2018.

44. Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical Leakage-Resilient Pseudorandom
Generators. In CCS 2010, pages 141–151, 2010.

21

Supplementary Material

A TETSponge is not CCAmL2 secure

Following the notational convention of section 4, we show a DPA path breaking the CCAmL2 security of TETSponge.

(i) First, we fix a nonce N and λ distinct 1-block ciphertexts c1, . . . , cλ. The parameter λ depends on the relative
strength of the implementation.

(ii) Second, we make λ decryption queries LDec(N,A, c1‖T), . . . , LDec(N,A, cλ‖T) for A = ⊥ and T arbitrary. This

results in the state S1 = π(N‖PK‖0∗‖B), B = Ẽ
PK‖0∗
K (N‖0∗), being derived λ times and the occurrence of the λ

XORing msr(S1)⊕ c1, . . . ,msr(S1)⊕ cλ. Now a standard DPA allows recovering msr(S1).
(iii) Then any challenge tuple (N,M0,M1) with M0[1] = M1[1] is easily distinguished.

The crucial feature of TETSponge that allows this attack is that processing invalid decryption queries requires to run
with secrets; as secrets are easier to be fixed during decryption, this allows DPAs. Note that to achieve confidentiality
against dec-leakages, all designs including TEDTSponge tried to process invalid decryption queries with keyless/non-secret
primitives.

B Proofs for Leakage Privacy Lemmas

B.1 Tester for LORL Advantage

As stressed many times, depending on the context, the concrete value of AdvLORL may not be negligible.

1: Tester for LORL AdvLORL

2: Let the challenging adversary A serve s and (m0,m1)

3: Pick the secret: ych
$← {0, 1}r, d $← {0, 1}

4: c← ych ⊕md, and repeat ych ⊕ c for p− 1 times
5: Generate the permutation leakages: repeating Spre ← π−1(ych‖s) for p times
6: ServeA with c and the leakage traces resulted from steps 4 and 5. This givesA the tuple (c, [Loutπ (ych‖s)]p, L⊕(ych,m

d),
[L⊕(ych, c)]

p−1)
7: Let A output the guess d′, A wins as long as d′ = d.

B.2 A Useful Lemma: EavL Security of the Ideal Stream IdealS

The proof of Theorem 1 will rely on the EavL security of the ideal stream cipher LIdealS, which is related to the term
AdvLORL in Eq. (4). Formally,

Lemma 3. For every pair of `-block messages M0 and M1 and (p, qπ, t)-bounded adversary Aπ, it holds∣∣Pr[Aπ(IdealS(IV,A,M0))⇒ 1]− Pr[Aπ(IdealS(IV,A,M1))⇒ 1]
∣∣

≤` ·AdvLORL(p, qπ, O(t+ p`tl)),

where tl is as defined in Lemma 1.

Proof. Again we assume |A| = 0 for simplicity. Let M0 = M0[1]‖ . . . ‖M0[`] and M1 = M1[1]‖ . . . ‖M1[`]. We start
by building a sequence of ` + 1 messages Mh,0, . . . ,Mh,` starting from M0 and modifying its blocks one by one till
obtaining M1. That is, Mh,i := M1[1]‖ . . . ‖M1[i]‖M0[i+1]‖ . . . ‖M0[`]. For any i, assuming a (p, qπ, t)-bounded adversary
Aπ against IdealS(IV,Mh,i−1) and IdealS(IV,Mh,i), we build a (p, qπ, O(t + p`tl))-bounded adversary Aπ2 against the
distribution defined in Eq. (4). In detail, Aπ2 proceeds in four steps:

(i) Aπ2 samples B
$← {0, 1}κ, initializes an empty list leak, and sets S′0 ← IV ‖B;

(ii) for j = 1, . . . , i − 1, Aπ2 samples Sj
$← {0, 1}b, computes C[j] ← msr(Sj) ⊕ M1[j], S′j ← C[j]‖lsc(Sj) (S′j ←

C[j]‖(lsc(Sj) ⊕ δ1) when j = 1), and adds [Linπ (S′j−1), Loutπ (Sj)]
p, L⊕(msr(Sj),M

1[j]), and [L⊕(msr(Sj), C[j])]p−1

(and L⊕(lsc(Sj), δ1)) to leak;

(iii) Aπ2 samples s
$← {0, 1}c and submits s to the LORL challenger. Assume that the outputs are (cb, leakb) with

leakb =
([

Loutπ (ych‖s)
]p
, L⊕(ych,m

b),
[
L⊕(ych, c

b)
]p−1

)
.

Aπ2 then adds the traces [Linπ ((M1[i− 1]‖0c)⊕ Si−1), Loutπ (ych‖s)]p, L⊕(ych,m
b), and [L⊕(ych, c

b)]p−1 to leak;

22

(iv) Aπ2 starts from cb‖C to emulate the remaining actions of IdealS encrypting the tail M0[i + 1]‖ . . . ‖M0[`] to obtain
C[i + 1]‖ . . . ‖C[`]. Eventually, Aπ2 serves the ciphertext C[1]‖ . . . ‖C[i − 1]‖cb‖C[i + 1]‖ . . . ‖C[`] (and lsc(Sν+`+1),
when = 1) as well as all the generated simulated leakages to Aπ, and outputs whatever Aπ outputs.

It can be seen depending on whether the input tuple received by Aπ2 captures the LORL challenger encrypting M0[i] or
M1[i], the inputs to Aπ capture IdealS encrypting Mh,i−1 or Mh,i. Moreover, Aπ2 is (p, qπ, O(t+ p`tl))-bounded if Aπ is
(p, qπ, t)-bounded. Therefore,∣∣Pr[Aπ(IdealS(IV,Mh,i−1))⇒ 1]− Pr[Aπ(IdealS(IV,Mh,i))⇒ 1]

∣∣
≤AdvLORL(p, qπ, O(t+ p`tl))

by Eq. (6). This along with a simple summation implies the main claim. ut

B.3 Proof of Theorem 1 (EavL Security of DuStr)∣∣Pr[Aπ(DuStrB [π](IV,A,M0))⇒ 1]− Pr[Aπ(DuStrB [π](IV,A,M1))⇒ 1]
∣∣

≤
∣∣Pr[Aπ(IdealS(IV,A,M0))⇒ 1]− Pr[Aπ(IdealS(IV,A,M1))⇒ 1]

∣∣︸ ︷︷ ︸
≤`·AdvLORL(p,qπ,O(t+p`tl)) (by Lemma 3)

+
∑
b=0,1

∣∣Pr[Aπ(DuStrB [π](IV,A,Mb))⇒ 1]− Pr[Aπ(IdealS(IV,A,Mb))⇒ 1]
∣∣.

For each b, Lemma 1 indicates∣∣Pr[Aπ(DuStrB [π](IV,A,Mb))⇒ 1]− Pr[Aπ(IdealS(IV,A,Mb))⇒ 1]
∣∣

≤AdvInv[κ](p, qπ, O(t+ p`tl), 2qπ) + (`+ 1) ·AdvInv[c](p, qπ, O(t+ p`tl), 2qπ) +
(`+ 2)2

2c+1
.

Therefore, ∣∣Pr[Aπ(DuStrB [π](IV,A,M0))⇒ 1]− Pr[Aπ(DuStrB [π](IV,A,M1))⇒ 1]
∣∣

≤ (`+ 2)2

2c
+ ` ·AdvLORL(p, qπ, O(t+ p`tl)) + 2AdvInv[κ](p, qπ, O(t+ p`tl), 2qπ)

+ 2(`+ 1) ·AdvInv[c](p, qπ, O(t+ p`tl), 2qπ).

C PKEM-based Representation of Keyed Sponges

0κ

IV

π
κ

B BB

c− n

r

A[1]

PKEM

π

B B

c− n

r

A[2]

π

B B

c− n

r

A[3]

...

Fig. 5: The PKEM-based representation of a keyed sponge with κ-bit key/initial seed B. Inside the red dashed
rectangles are the “partial-key” Even-Mansour cipher. It’s easy to see after the internal actions of XORing B
cancel, the construction turns basically the same as the keyed sponge.

D Proof of Theorem 2 (muCIML2 of TETSponge)

For brevity, from now on we refer to TETSponge and TEDTSponge as S1P and S2P, standing for Sponge with 1/2
Pass(es).

The proof proceeds in two steps:

(i) Below in appendix D.1, we transit the scheme S1P[π, ĨC]K,PK to its idealized version, via replacing the internal ideal

TBC ĨC by another “secret” ideal TBC S̃IC that isn’t accessible to the adversary A. In appendix D.2, we show the
real and idealized schemes are indistinguishable. The goal of this step is to argue that A cannot compromise the
KDF- and TGF- calls.

(ii) Then in appendix D.3, we prove unforgability for the idealized scheme to complete the muCIML2 proof.

23

D.1 Idealizing S1P

Note that we can’t simply replace the KDF- and TGF-calls of the u users by u independent tweakable random permuta-

tions, as otherwise the birthday term u2

2n
emerges.

Formally, we are to derive an upper bound on

AdvmuCIML2
D,S1P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S1P[π,S̃IC]K,PK,L
∗,u

for any −→q -bounded D. For this, we rely on the H-coefficients technique [15]. We summarize the adversarial queries to
the random permutation π in a list

τπ =
(
(Sin1 , Sout1), . . . , (Sinqπ , S

out
qπ)

)
.

Note that by our assumption, all the π queries made by S1P are completely leaked to D. These queries also result in
records of the form (Sin, Sout). To make a distinction, we denote by τ∗π the union of these leakage records and the
adversarial query transcript τπ. It isn’t hard to see:

– upon an encryption query EncKi,PKi(N,A,M), S1P makes at most d |A|
r
e+ d |M|

r
e+ 1 queries to π;

– upon a decryption query DecKi,PKi(N,A,C), the number of internal π calls is (similarly) at most d |A|
r
e+ d |c|

r
e+ 1,

with C = c‖Z.

Therefore, when interacting with the idealized scheme S1P[π, S̃IC]K,PK, the number of internal π calls is at most σ+qe+qd,
and thus

Q :=
∣∣τ∗π ∣∣ ≤ σ + qe + qd + qπ. (18)

Recall that the adversarial goal is to distinguish ĨCK1 , . . . , ĨCKu from S̃ICK1 , . . . , S̃ICKu . In this respect, at the end of

the interaction, we reveal all the internal calls to ĨC (in the real world) and S̃IC (in the ideal world) to D. We summarize
these calls in a list

τS̃IC =
(
(K1, T1, X1, Y1), (K2, T2, X2, Y2), . . .

)
.

In this set, the j-th tuple (Kj , Tj , Xj , Yj) indicates that:

– interacting with the real scheme S1P[π, ĨC]K,PK, the j th query is either ĨC
Tj
Kj

(Xj)→ Yj or (ĨC
Tj
Kj

)−1(Xj)→ Yj ; and,

– interacting with the idealized scheme S1P[π, S̃IC]K,PK, the j th query is either S̃IC
Tj
Kj

(Xj)→ Yj or (S̃IC
Tj
Kj

)−1(Xj)→
Yj .

Note that:

– these calls and their responses are secret in the black-box setting, but are leaked in our unbound leakage setting.

– yet, since we assume leak-freeness of KDF and TGF-calls, the secret user keys cannot be seen by the distinguisher,
and don’t appear in the true adversarial transcripts. The transcript τS̃IC, in some sense, is a merge of the finally
revealed secret keys and the information really leaked to D.

Recall that in the unbounded leakage setting, we actually view the duplex as a sponge-based hash function. In
this respect, we keep a list τ∗h for the inputs and outputs of this “imaginary” hash function. Concretely, we denote by
((N,PK,B,A, c), U‖V) an input-output pair of the hash, and further

τ∗h =
(
((N1, PK1, B1, A1, c1), U1‖V1), ((N2, PK2, B2, A2, c2), U2‖V2), . . .

)
for the hash transcript. As we assumed all the internal π queries have been leaked and included in τ∗π , this list is
redundant, in the sense that it can be fully recovered from τ∗π . But its presence eases the proof language.

In addition to the above, the “public-keys” PK = (PK1, . . . , PKu) are also included in the transcript. Moreover, to
simplify the definition of bad transcripts, we reveal to the distinguisher the user keys K = (K1, . . . ,Ku) at the end of
the interaction. This is wlog since D is free to ignore this additional information to compute its output bit. Formally, we
append both PK and K to the tuple (τ∗h , τ

∗
π , τĨC, τS̃IC) and obtain what we call the transcript

τ = (τ∗h , τ
∗
π , τĨC, τS̃IC,PK,K).

24

D.2 Gap between Real and Ideal

We start by defining bad transcripts. For a transcript τ , we define µPK and µV , the maximum multiplicity of PK and
V , as

µPK := max
pk∈{0,1}np

∣∣{i ∈ {1, . . . , u} : PKi = pk}
∣∣,

µV := max
v∈{0,1}n−1

∣∣∣{((N,PK,B,A, c), U‖V) ∈ τ∗h : V = v
}∣∣∣. (19)

Then it’s defined as follows.

Definition 4 (Bad Transcripts for Idealizing S1P, muCIML2). An attainable transcript τ is bad, if one of the
following conditions is fulfilled:

– (B-1) µPK ≥ n+ 1, µV ≥ n+ 1.
– (B-2) there exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.

Otherwise τ is good. Denote by Tbad the set of bad transcripts.

We remark that this step concerns with the secrecy of the user secret keys. As such, the condition (B-2) captures the
intuition that a contradiction appears between τĨC and τS̃IC. On the other hand, though crucial in the analyses, τ∗π doesn’t
appear in the conditions.

As PK1, . . . , PKu are uniformly distributed, it’s easy to see

Pr[µPK ≥ n+ 1] ≤

(
u

n+ 1

)
· 1

(2np)n
≤
(u

2np

)n+1

· 2np

(n+ 1)!
≤
(u

2np

)n+1

,

where the last inequality comes from (n + 1)! ≥
(
n+1
e

)n+1 ≥ 2n+1 ≥ 2np since n + 1 ≥ 6 > 2e. Furthermore, when
u ≤ 2np and np ≤ n, we have

Pr[µPK ≥ n+ 1] ≤
(u

2np

)n+1

≤ u

2np
. (20)

To reason about µV , we analyze the multi-semicollision property of the sponge-based hash. In detail, we consider
the game G2 capturing the interaction of D with the ideal world (S1P[π, S̃IC]K,PK, π, ĨC). We define several simple bad
events during this interaction:

– (B-11) Right after a forward π query π(Sin) → Sout happens, there exists another π query (Sin
′
, Sout

′
) such that

lsc−2(Sout) = lsc−2(Sin
′
) or lsc−2(Sout) = lsc−2(Sout

′
).

– (B-12) Right after a backward π query π−1(Sout)→ Sin happens,

• there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
); or

• there exists an S̃IC query/a KDF query (K,PKi‖0, N‖0∗, B) ∈ τS̃IC such that Sin = N‖PKi‖0∗‖B.
– (B-13) At any time, there exists n + 1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S

out
n+1) such that mid(Sout1) = . . . =

mid(Soutn+1), where mid(Souti) = ms2n−1(lsn−1(Souti)), i.e., extracting n− 1 bits from the middle.

– (B-14) Right after a (necessarily forward) S̃IC/KDF query S̃IC
PK‖0∗
K (N‖0∗) → B happens, there exists a π query

(Sin, Sout) such that Sin = N‖PK‖0∗‖B.

Denote by q1 the number of forward π queries, and by q2 that of backward π queries. Clearly, q1 ≤ Q, q2 ≤ qπ (as
S1P doesn’t make backward π queries), and q1 + q2 ≤ Q. With these, consider a forward query π(Sin) → Sout. Its

response Sout is uniformly distributed in a set of size at least 2b − Q. Consider any “target” (Sin
′
, Sout

′
). To reach

lsc−2(Sout) = lsc−2(Sin
′
), Sout shall be in a set of size at most 2r+2. Therefore, when Q ≤ 2b/2, we have

Pr[lsc−2(Sout) = lsc−2(Sin
′
)] ≤ 2r+2

2b −Q ≤
2r+3

2b
=

8

2c
.

This probability trick will be frequently used in the remaining analysis (without explicitly mentioned). Similarly,

Pr[lsc−2(Sout) = lsc−2(Sout
′
)] ≤ 8

2c
. As the number of “targets” is at most Q, we have

Pr[(B-11)] ≤ q1 ·Q ·
(8

2c
+

8

2c

)
≤ 16q1Q

2c
.

In a similar vein, it’s easy to see (as argued, (n+ 1)! ≥ 2n+1)

Pr[(B-12)] ≤ q2 ·Q ·
8

2c
+ q2 · (qe + qd) ·

2

2b
≤ 10q2Q

2c
, and

Pr[(B-13)] ≤

(
q1

n+ 1

)
·
(2

2n−1

)n
≤
(8Q

2n

)n+1

· 1

8(n+ 1)!
≤
(4Q

2n

)n+1

· 1

8
≤ Q

2n
.

25

The last bound relies on 4Q ≤ 2n.
For (B-14), we define a set

τ∗π
[
N,PK

]
:=
{
B ∈ {0, 1}n : (N‖PK‖0∗‖B, ?) ∈ τ∗π

}
. (21)

Then for a certain S̃IC query S̃IC
PK‖0∗
K (N‖0∗)→ B, we have

Pr
[
B ∈ τ∗π [N,PK]

]
≤
∣∣τ∗π [N,PKi]

∣∣
2n − 2qe − 2qd

≤
2
∣∣τ∗π [N,PKi]

∣∣
2n

.

Summing over all the S̃IC queries, we reach

Pr[(B-14)] ≤
∑

(K,PK‖0∗,N‖0∗,B)∈τ
S̃IC

2
∣∣τ∗π[N,PK]∣∣

2n

≤
u∑
i=1

(2
∑
N∈{0,1}nN :(Ki,PKi‖0∗,N‖0∗,?)∈τS̃IC

∣∣τ∗π[N,PKi

]∣∣
2n

)

≤µPK ·
∑

N∈{0,1}nN ,PK∈{0,1}np

2
∣∣τ∗π[N,PK]∣∣

2n
≤ 2nQ

2n
,

since
∑
N∈{0,1}nN ,PK∈{0,1}np

∣∣τ∗π[N,PK]∣∣ = |τ∗π | ≤ Q.

Define Bad1 := (B-11) ∨ (B-12) ∨ (B-13) ∨ (B-14). We now show that µV ≤ n conditioned on ¬Bad1, so that (recall
that q1 + q2 ≤ Q)

Pr[µV ≥ n+ 1] ≤ Pr[Bad1] ≤16q1Q

2c
+

10q2Q

2c
+
Q

2n
+

2nQ

2n

≤16Q2

2c
+

(2n+ 1)Q

2n
.

For this, we define a notion of “S1P hash chain” corresponding to a tuple (N,PK,A, c). Formally, this is a sequence of
π queries (Sin0 , Sout0), (Sin1 , Sout1),..., (Sinω , S

out
ω) such that:

– Sin0 = N‖PK‖0∗‖B, and
– With ν = d|A|/re and ` = d|M |/re, it holds ω = ν + `, and

• For i = 1, . . . , ν − 1, lsc(S
in
i) = lsc(S

out
i−1), msr(S

in
i)⊕msr(S

out
i−1) = A[i];

• When |A[ν]| < r, lsc(S
in
ν) = lsc(S

out
ν−1) ⊕ (0r‖[1]2‖0c−2), msr(S

in
ν) ⊕ msr(S

out
ν−1) = A[ν]‖10∗; when |A[ν]| = r,

lsc(S
in
ν) = lsc(S

out
ν−1), and msr(S

in
ν)⊕msr(S

out
ν−1) = A[ν];

• If ` > 1:

∗ lsc(S
in
ν+1) = lsc(S

out
ν)⊕ (0r‖[2]2‖0c−2), and msr(S

in
ν+1) = C[1];

∗ For i = ν + 2, . . . , ω − 1, lsc(S
in
i) = lsc(S

out
i−1), msr(S

in
i) = C[i− ν];

∗ When |C[`]| < r, lsc(S
in
ω) = lsc(S

out
ω−1) ⊕ (0r‖[1]2‖0c−2), msr(S

in
ω) = C[`]‖10∗; when |C[`]| = r, lsc(S

in
ω) =

lsc(S
out
ω−1), and msr(S

in
ω) = C[`].

• If ` = 1:

∗ When |C[`]| < r, lsc(S
in
ω) = lsc(S

out
ω−1) ⊕ (0r‖[3]2‖0c−2), msr(S

in
ω) = C[`]‖10∗; when |C[`]| = r, lsc(S

in
ω) =

lsc(S
out
ω−1)⊕ (0r‖[2]2‖0c−2), and msr(S

in
ω) = C[`].

Note that conditioned on ¬(B-12) and ¬(B-14), the first record (Sin0 , Sout0) was necessarily resulted from a forward π
query. Then, by iteratively applying ¬(B-12), it can be seen all the queries in such chains are forward.

Then, we show that, conditioned on ¬Bad1, distinct tuples (N,PK,A, c) and (N ′, PK′, A′, c′) necessarily induce

distinct S1P hash chains (Sin0 , Sout0),..., (Sinω , S
out
ω) and (Sin

′
0 , Sout

′
0),..., (Sin

′
ω , Sout

′
ω), which further result in distinct “last

calls”, i.e., Sinω 6= Sin
′

ω . Assume that d|A|/re = ν, d|M |/re = `, d|A′|/re = ν′, and d|M ′|/re = `′. As argued, all these
queries were due to forward π queries. We then consider several cases as follows.

Case 1: (N,PK) 6= (N ′, PK′). Then Sin0 6= Sin
′

0 , i.e., the two chains are distinct from the first π queries. By

¬(B-11), we have Sin1 6= Sin
′

1 ; similarly, iteratively applying ¬(B-11) eventually results in the desired result Sinω 6= Sin
′

ω′ .

Case 2: (N,PK) = (N ′, PK′). This means (A, c) 6= (A′, c′). We define X as:

– X = X when |X| is a multiple of r, and
– X = X‖10∗ otherwise.

Then we have to further consider several subcases.

26

Subcase 2.1: A‖c 6= A′‖c′. Then it’s clear that there exists an index i such that Sini 6= Sin
′

i . By ¬(B-11), Sinj 6= Sin
′

j

for any j > i, and thus Sinω 6= Sin
′

ω .

Subcase 2.2: A‖c = A′‖c′, and ν = ν′. Since (A, c) 6= (A′, c′), it has to be |A[ν]| < r or |C[`]| < r or |A′[ν′]| < r or

|C′[`′]| < r. Now,

– If |A[ν]| < r ∧ |A′[ν]| = r or |A[ν]| = r ∧ |A′[ν]| < r, then Sin
′

ν 6= Sinν due to the separation constant [1]2‖0c−2. Thus

by ¬(B-11), Sinj 6= Sin
′

j for any j > ν and further Sinω 6= Sin
′

ω .

– Else, then either |c[`]| < r ∧ |c′[`]| = r or |c[`]| = r ∧ |c′[`]| < r since (A, c) 6= (A′, c′). Then Sin
′

ω 6= Sinω due to the
separation constant [2]2‖0c−2.

Subcase 2.3: A‖c = A′‖c′, and ν 6= ν′. Wlog assume ν > ν′: then it has to be `′ ≥ 1. Now,

– If |A[ν′]| < r, then Sin
′

ν′ 6= Sinν′ since the separation constant [1]2‖0c−2 is only XORed into Sout
′

ν′−1, and thus all the
subsequent calls are distinct.

– Else, if `′ = 1, then Sin
′

ν′+1 6= Sinν′+1 since Sin
′

ν′+1 is obtained by XORing [3]2‖0c−2 with Sout
′

ν′ while Sinν′+1 is obtained
by XORing either [1]2‖0c−2 or 0c (depending on whether |A[ν′ + 1]| < r).

– Else, i.e., `′ > 1, then Sin
′

ν′+1 6= Sinν′+1 since Sin
′

ν′+1 is obtained by XORing [2]2‖0c−2 with Sout
′

ν′ while Sinν′+1 is obtained
by XORing either [1]2‖0c−2 or 0c.

By the above, the |τ∗h | hash records have |τ∗h | distinct forward π queries as their final π queries. Conditioned on
¬(B-13), the number of semi-collisions on V within these final π queries is at most n. Therefore, the claim µV ≤ n
follows.

Now, conditioned on ¬(B-1), we analyze (B-2). Note that in the ideal world, for any (K,T,X, Y) ∈ τS̃IC, the key K
is from the dummy key-tuple K, and is uniformly distributed. Then, using an auxiliary set

τĨC[T] :=
{
K ∈ {0, 1}n : (K,T, ?, ?) ∈ τĨC

}
,

it’s easy to see

Pr[(B-2)] ≤
∑

(K,T,?,?)∈τ
S̃IC

Pr
[
K ∈ τĨC[T]

]
≤

∑
t∈{0,1}n−1:(K,t‖0,?,?)∈τ

S̃IC

∣∣τĨC[t‖0]
∣∣

2n︸ ︷︷ ︸
C1

+
∑

V ∈{0,1}n−1:(K,V ‖1,?,?)∈τ
S̃IC

∣∣τĨC[V ‖1]
∣∣

2n︸ ︷︷ ︸
C2

.

By the construction, the S̃IC queries (K, t‖0, ?, ?) are necessarily KDF queries, for which K = Ki and t‖0 = PKi‖0∗ for
some user index i. Since µPK ≤ n, we have

C1 =

u∑
i=1

∣∣τĨC[PKi‖0∗]
∣∣

2n
≤ µPK ·

∑
PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n
≤ n ·

∑
PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n
.

On the other hand, for any S̃IC query (Ki, V ‖1, ?, ?), i.e., TGF query, there necessarily exists at least one hash record
((N,PK,B,A, c), U‖V) ∈ τ∗h such that PK = PKi. By this,

C2 =
u∑
i=1

∑
V :((?,PKi,?,?,?),?‖V)∈τ∗

h

∣∣τĨC[V ‖1]
∣∣

2n

≤µPK ·
∑

PK∈{0,1}np

∑
V :((?,PK,?,?,?),?‖V)∈τ∗

h

∣∣τĨC[V ‖1]
∣∣

2n

≤µPK · µV ·
∑

V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n
≤ n2 ·

∑
V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n
.

Therefore,

Pr[(B-2) | ¬(B-1)] ≤n ·
∑

PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n
+ n2 ·

∑
V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n

≤n2 ·
∑

t∈{0,1}n

∣∣τĨC[t]
∣∣

2n
≤
n2qĨC

2n
,

27

which allows us to conclude

Pr[Tid ∈ Tbad] ≤Pr[(B-1)] + Pr[(B-2) | ¬(B-1)]

≤ u

2np
+

16Q2

2c
+

(2n+ 1)Q+ n2qĨC
2n

.

Now consider a good transcript τ = (τ∗h , τ
∗
π , τĨC, τS̃IC,PK,K). Define

τS̃IC[K,T] :=
{

(X,Y) ∈ ({0, 1}n)2 : (K,T,X, Y) ∈ τS̃IC
}
.

With this notation, it’s clear that

Pr[Tid = τ] = Pr[K,PK] · Pr[π ` τ∗π] · Pr[ĨC ` τĨC] ·
∏

(K,T)

1

(2n)|τ
S̃IC

[K,T]|
.

On the other hand,

Pr[Tre = τ] = Pr[K,PK] · Pr[π ` τ∗π] · Pr[ĨC ` τS̃IC | ĨC ` τĨC] · Pr[ĨC ` τĨC]

= Pr[K,PK] · Pr[π ` τ∗π]

· Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC | ĨC ` τĨC] · Pr[ĨC ` τĨC],

Since τ is good,

Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC | ĨC ` τĨC]

= Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC] =
∏

(K,T)

1

(2n)|τ
S̃IC

[K,T]|
.

Therefore, for any good transcript τ we have Pr[Tre = τ] = Pr[Tid = τ], and thus

AdvmuCIML2
D,S1P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S1P[π,S̃IC]K,PK,L
∗,u

≤ u

2np
+

16Q2

2c
+

(2n+ 1)Q+ n2qĨC
2n

. (22)

D.3 Unforgability of the Idealized S1P

The remaining devotes to analyze S1P[π, S̃IC]K,PK. Consider the muCIML2 game G2 with S1P[π, S̃IC]K,PK. We define

an event CHAIN: at any time, for the i th user there exists a hash record ((N,PKi, B,A, c), U‖V) and a S̃IC query
(Ki, V

∗‖1, U∗, Z) (i.e., a TGF relation) such that U‖V = U∗‖V ∗, while there didn’t exist any encryption query of the
form LEnc(i,N,A, ?)→ c‖Z. It’s easy to see that, it isn’t possible to forge as long as CHAIN doesn’t happen.

To ease the analysis, we “break” CHAIN into several simple bad events, then show that CHAIN isn’t possible as long
as these events didn’t occur. Concretely,

– (C-1) There exists two user indices j, ` such that Kj‖PKj = K`‖PK`, or µPK ≥ n+ 1.

– (C-2) Right after a forward π query π(Sin)→ Sout happens, if:

• (C-21) there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sout) = lsc−2(Sin

′
), lsc−2(Sout) = lsc−2(Sout

′
),

or ms2n−1(Sout) = ms2n−1(Sout
′
); or

• (C-22) there exists a S̃IC query (K,V ‖1, U, Z) such that ms2n−1(Sout) = U‖V ; or

– (C-3) At any time, there exists n + 1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S
out
n+1) such that mid(Sout1) = . . . =

mid(Soutn+1).

– (C-4) Right after a backward π query π−1(Sout)→ Sin happens, if:

• (C-41) there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
), or

• (C-42) there exists a S̃IC query/a KDF relation (K,PK‖0∗, N‖0∗, B) such that Sin = N‖PK‖0∗‖B.

– (C-5) Right after a (necessarily forward) KDF query S̃IC
PK‖0∗
K (N‖0∗)→ B happens, there exists a π query (Sin, Sout)

such that Sin = N‖PK‖0∗‖B.

– (C-6) Right after an inverse TGF query (S̃IC
V ‖1
K)−1(Z)→ U , there exists a π query (Sin, Sout) such that ms2n−1(Sout) =

U‖V .

28

Some of the conditions have been analyzed before. First, using u ≤ 2np ≤ 2n we have

Pr[(C-1)] ≤ u2

2n+np
+

u

2np
≤ 2u

2np
.

Second, (C-21) is the previous (B-11) enhanced with ms2n−1(Sout) = ms2n−1(Sout
′
), thus Pr[(C-21)] ≤ 16q1Q

2c
+ 2Q2

22n−1

(q1 being the number of forward π queries). And it’s easy to see Pr[(C-22)] ≤ 2(qe+qd)Q

22n−1 . Thus (using qe + qd ≤ Q)

Pr[(C-2)] ≤ 16q1Q

2c
+

4Q2 + 4(qe + qd)Q

22n
≤ 16q1Q

2c
+
Q+ qe + qd

2n
≤ 16q1Q

2c
+

2Q

2n
.

The last inequality stems from Q ≤ 2n/4.
The condition (C-3) is the same as the previous (B-13), thus Pr[(C-3)] ≤ Q

2n
. The condition (C-4) is the previous

(B-12), thus Pr[(C-4)] ≤ 10q2Q
2c

. (C-5) is the previous (B-14), thus

Pr[(C-5) | ¬(C-1)] ≤ 2nQ

2n
. (23)

For (C-6), by ¬(C-2) and ¬(C-3) and an analysis similar to the previous for µV , the number of distinct records
((N1, PK1, B1, A1, c1), U1‖V), ((N2, PK2, B2, A2, c2), U2‖V), . . . (with the same V) in τ∗h is at most n. Therefore, for

each inverse query (S̃IC
V ‖1
K)−1(Z)→ U , there are ≤ n “target” U values, and thus

Pr[(C-6)] ≤ nqd
2n − qĨC

≤ 2nqd
2n

. (24)

Define Bad := (C-1) ∨ (C-2) ∨ . . . ∨ (C-6), then we have

Pr[Bad] ≤ 2u

2np
+

16Q2

2c
+

(2n+ 3)Q+ 2nqd
2n

.

Below we show Pr[CHAIN | ¬Bad] = 0. Assume otherwise, then consider the last adversarial action before CHAIN happens:

Case 1: A makes a π query. If this query is forward, then it contradicts ¬(C-2); if this query is backward, then it
contradicts ¬(C-4).

Case 2: A makes an encryption query LEncK,PK(i,N,A,M). Note that all the KDF calls/S̃IC queries of the form
(Ki, PKi‖0∗, X, Y) ∈ τS̃IC have nothing to do with the CHAIN event. Therefore, we further distinguish two subcases:

– Subcase 2.1: a subsequent (forward) π query causes CHAIN event. This again contradicts ¬(C-2).

– Subcase 2.2: the subsequent (new) TGF query S̃IC
V ‖1
Ki

(U)→ Z causes CHAIN event. Assume that the involved hash
record is ((N,PKi, B,A, c), U‖V) which corresponds to the i-th user. The assumption means there exists another
hash record of the j-th user ((N ′, PKj , B

′, A′, c′), U ′‖V ′) such that U‖V = U ′‖V ′. To reach a contradiction, we
distinguish two cases:
• Subcase 2.3.1: (N,A, c) 6= (N ′, A′, c′). Then as argued before, conditioned on ¬(C-21), the two involved hash

chains are different, and thus U‖V = U ′‖V ′ would contradict ¬(C-21);

• Subcase 2.3.2: (N,A, c) = (N ′, A′, c′). Then it has to be i 6= j. Now, if Ki 6= Kj , then the new S̃IC query

S̃IC
V ‖1
Ki

(U)→ Z has nothing to do with the j-th user. Otherwise, it holds PKi 6= PKj by ¬(C-1), which means
the two involved hash chains are different, and thus U‖V = U ′‖V ′ would contradict ¬(C-21).

Case 3: A makes a decryption query. We further distinguish two subcases:

– Subcase 3.1: a subsequent (forward) π query causes CHAIN event. Then it again contradicts ¬(C-2).

– Subcase 3.2: the subsequent (new) TGF query (S̃IC
V ‖1
Ki

)−1(Z)→ U causes CHAIN event. This contradicts ¬(C-6).

By the above, we have

AdvmuCIML2
D,S1P[π,TRPFamily]PK,L

∗,u ≤ Pr[Bad] ≤ 2u

2np
+

16Q2

2c
+

(2n+ 3)Q+ 2nqd
2n

. (25)

This plus Eq. (22) yield Eq. (13) (note that 4 < 5 ≤ n):

u

2np
+

16Q2

2c
+

(2n+ 1)Q+ n2qĨC
2n

+
2u

2np
+

16Q2

2c
+

(2n+ 3)Q+ 2nqd
2n

≤ 3u

2np
+

32Q2

2c
+

5nQ+ 2nqd + n2qĨC
2n

. (26)

29

E Proof of Theorem 3 (muCCAmL1 of S1P)

As mentioned, the proof is built upon Theorem 1. For ease of use, we define

AdvEavL
LDuStr(p, qπ, t, `) := max

{
AdvEavL

LDuStr(A)
}
,

with the maximal taken over all A measuring the decryption leakages for p − 1 times, making qπ permutation queries,
running in time t, and choosing inputs with ` blocks. Eq. (12) thus gives a bound for AdvEavL

LDuStr(p, qπ, t, `).

We then begin the muCCAmL1 proof of TETSponge. We start by defining G0 as the game PrivKmuCCAmL1,0
A,S1P,L , and G∗0 as

the game PrivKmuCCAmL1,1
A,S1P,L . We say a decryption query DecK,PK(i,N,A,C) is trivial if the action EncK,PK(i,N,A, ?)→ C

happened before.

We then define two games G1 and G∗1: G1, resp. G∗1, is obtained from G0, resp. G∗0, via replacing the internal ĨC-calls
by S̃IC-calls. By Eq. (22), we have

∣∣Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]
∣∣ ≤ u

2np
+

16Q2

2c
+

(2n+ 1)Q+ n2qĨC
2n

, (27)

and (similarly)

∣∣Pr[G∗1 ⇒ 1]− Pr[G∗0 ⇒ 1]
∣∣ ≤ u

2np
+

16Q2

2c
+

(2n+ 1)Q+ n2qĨC
2n

, (28)

where Q = σ + qe + qd + qm + qπ.

We then prove ∣∣Pr[G1 ⇒ 1]− Pr[G∗1 ⇒ 1]
∣∣

≤ 3u

2np
+

16Q2

2c
+

(2n+ 4)Q+ 2nqd
2n

+
∑qe
i=1 AdvEavL

LDuStr(1, Q, t
∗, `i), (29)

where `i is the number of blocks in the ith challenge message, and t∗ = O(t+σtl) for tl defined in Lemma 1. By Theorem
1, the last term is bounded as∑qe

i=1 AdvEavL
LDuStr(1, Q, t

∗, `i) ≤σAdvLORL(1, Q, t∗) + 2(σ + qe)AdvInv[c](1, Q, t∗, 2Q)

+ 2qeAdvInv[n](1, Q, t∗, 2Q) +
∑qe
i=1

(`i+2)2

2c︸ ︷︷ ︸
≤

(∑qe
i=1(`i + 2)

)2
2c

≤Q
2

2c

.

The above plus the gaps in Eq. (27) and Eq. (28) yield the claim. To this end, we denote the qe challenge tuples by

(i1, N1, A1,M
0
1 ,M

1
1), . . . , (iqe , Nqe , Aqe ,M

0
qe ,M

1
qe).

Then, we use qe hops to replace M0
1 , . . . ,M

0
qe by M1

1 , . . . ,M
1
qe in turn, to show that G1 can be transited to G∗1. For

convenience, we define G2,0 = G1, and define a sequence of games

G2,1,G2,2, . . . ,G2,qe ,

such that in the j-th system G2,j , the first j messages processed by the challenge encryption oracle are M0
1 , . . . ,M

0
j ,

while the remaining qe − j messages being processed are M1
j+1, . . . ,M

1
qe . In this vein, we have G2,qe = G∗1.

We then show that for j = 1, . . . , qe, G2,j−1 and G2,j are indistinguishable in the view of Aπ,ĨC. For this, from Aπ,ĨC

we build an adversary Aπ,ĨC2 , such that |Pr[G2,i−1 ⇒ 1]− Pr[G2,i ⇒ 1]| is related to AdvEavL
DuStr1(Aπ,ĨC2).

In detail, initially, Aπ,ĨC2 samples two key vectors K = (K1, . . . ,Ku) and PK = (PK1, . . . , PKu) for the secret and

public keys, and keeps a table SICTable to simulate the secret ideal TBC S̃IC via lazy sampling. At this stage, we define
a bad event BadUserKey, which occurs if there exits two user indices `1, `2 such that K`1‖PK`1 = K`2‖PK`2 .

Assume that entries in the tables are of the form SICTable(K,T,X) = Y and SICTable−1(K,T, Y) = X. Aπ,ĨC2

runs A: upon each query from A, it reacts as follows.

Upon a query to ĨC or π, Aπ,ĨC2 simply relays the query to its corresponding oracle and relays the response.

30

Upon a (non-challenge) encryption query (i∗, N∗, A∗,M∗), Aπ,ĨC2 distinguishes two cases:

– If (Ki∗ , PKi∗‖0∗, N∗‖0∗) /∈ SICTable,Aπ,ĨC2 samples an initial keyB∗ such that (Ki∗ , PKi∗‖0∗, B∗) /∈ SICTable−1,
defines SICTable(Ki∗ , PKi∗‖0∗, N∗‖0∗) ← B∗ and SICTable−1(Ki∗ , PKi∗‖0∗, B∗) ← N∗‖0∗, and then runs the

encryption DuStr1B∗ [π](N∗‖PKi∗‖0∗, A∗,M∗) to get the ciphertext c∗‖U∗‖V ∗ and leakages. Aπ,ĨC2 then computes

Z∗ ← SICTable(Ki∗ , V
∗‖1, U∗) (Aπ,ĨC2 defines the entry SICTable(Ki∗ , V

∗‖1, U∗) to a newly sampled value Z∗ if

(Ki∗ , V
∗‖1, U∗) /∈ SICTable). For this entire process Aπ,ĨC2 has to make `∗i + 1 queries to π and cost O(`itl) time.

Finally, Aπ,ĨC2 returns the outputs c∗‖Z∗ and the leakages to Aπ,ĨC;

– If (Ki∗ , PKi∗‖0∗, N∗‖0∗) ∈ SICTable, Aπ,ĨC2 simply runs the encryption process DuStr1B∗ [π](N∗‖PKi∗‖0∗, A∗,M∗)
with B∗ = SICTable(Ki∗ , PKi∗‖0∗, N∗‖0∗), computes Z∗ ← SICTable(Ki∗ , V

∗‖1, U∗) on the obtained U∗ and

V ∗, and returns c∗‖Z∗ and the leakages to Aπ,ĨC. The cost is similar to the above case.

Upon a non-trivial decryption query (i,N,A,C), Aπ,ĨC2 simply simulates the evaluation of DecK,PK(i,N,A,C)

and returns the result to A. This requires Aπ,ĨC2 to make `∗i + 1 queries to π. And if DecK,PK(i,N,A,C) 6= ⊥, then we
say another bad event BadCheck occurs.

Upon the `-th challenge tuple (ij, Nj, Aj,M
0
j ,M

1
j), it can be seen that, since BadUserKey didn’t happen,

it necessarily be (Kij , PKij‖0∗, Nj‖0∗) /∈ SICTable by the challenge nonce-respecting restriction on Aπ,ĨC on a single

user. Therefore, depending on `, Aπ,ĨC2 reacts as follows:

– When ` < j, it encryptsM0
` and returns. In detail,Aπ,ĨC2 samplesB`, defines the entries SICTable(Ki` , PKi`‖0

∗, N`‖0∗)←
B` and SICTable−1(Ki` , PKi`‖0

∗, B`)← N`‖0∗, and then runs DuStr1B` [π](M0
`)→ c`‖U`‖V`, generates the tag Z`

accordingly and returns c`‖Z` and the leakages to Aπ,ĨC. The cost is similar to the non-challenge encryption queries.
– When ` = j, it relays M0

` and M1
` to the eavesdropper EavL challenger of DuStr1 to obtain cb`‖U`‖V` and leakages

leakenc, then generates the tag Z` accordingly and returns cb`‖Z` toAπ,ĨC. This means the relation SICTable(Ki` , PKi`‖0
∗, N`‖0∗) =

Bch is implicitly fixed, where Bch is the secret n-bit initial seed picked inside the eavesdropper challenger. In this
respect, we define an additional bad event BadInitKey, which happens if the entry SICTable−1(Ki` , PKi`‖0

∗, Bch)

is defined before Aπ,ĨC2 terminates (i.e., a contradiction in the table SICTable occurs due to a collision within the
initial keys).

– When ` > j, it simply encrypts M1
` and returns. The details are similar to the described case ` < j.

Define Bad := BadUserKey∨BadInitKey∨BadCheck. It can be seen that as long as Bad never occurs, the whole process

is the same as either G2,j−1 or G2,j depending on whether b = 0 or 1. Clearly, Pr[BadUserKey] ≤ u2

2n+np
≤ u

2np
, while

Pr[BadInitKey] ≤ qe+qd+qm
2n

≤ Q
2n

as Bch
$← {0, 1}n inside the challenger. For BadCheck we appeal to the intermediate

results established in appendix D.3: in detail, Eq. (25) implies

Pr[BadCheck] ≤ 2u

2np
+

16Q2

2c
+

(2n+ 3)Q+ 2nqd
2n

,

where Q = σ + qe + qd + qm + qπ.

By the remarks before, besides running Aπ,ĨC, Aπ,ĨC2 internally processes qm+qe+qd−1 queries (except for the query

encrypted by its challenger). Therefore, for G2,j and G2,j−1, Aπ,ĨC2 makes at most σ+ qm + qe + qd + qπ = Q queries to π
and spends t∗ = O(t + σtl) running time (the additional time is mainly spent on evaluating the leakage functions). By
all the above, we have

Pr[G2,j ⇒ 1]− Pr[G2,j−1 ⇒ 1]

≤Pr[G2,j ⇒ 1 ∧ Bad in G2,j]− Pr[G2,j−1 ⇒ 1 ∧ Bad in G2,j−1] + AdvEavL
LDuStr(1, Q, t

∗, `i).

Finally, wlog assume that when the event Bad happens during the interaction, Aπ,ĨC could be aware and outputs 1;
moreover, Pr[G2,qe ⇒ 1] ≥ Pr[G2,0 ⇒ 1]. Then,∣∣Pr[G∗1 ⇒ 1]− Pr[G1 ⇒ 1]

∣∣ ≤ Pr[G2,qe ⇒ 1]− Pr[G2,0 ⇒ 1]

≤Pr[G2,qe ⇒ 1 ∧ Bad in G2,qe]− Pr[G2,0 ⇒ 1 ∧ Bad in G2,0]︸ ︷︷ ︸
≤Pr[G2,qe⇒1∧Bad in G2,qe]

+
∑qe
i=1 AdvEavL

LDuStr(1, Q, t
∗, `i)

≤ 3u

2np
+
Q

2n
+

16Q2

2c
+

(2n+ 3)Q+ 2nqd
2n

+
∑qe
i=1 AdvEavL

LDuStr(1, Q, t
∗, `i)

≤ 3u

2np
+

16Q2

2c
+

(2n+ 4)Q+ 2nqd
2n

+
∑qe
i=1 AdvEavL

LDuStr(1, Q, t
∗, `i),

which is the claim in Eq. (29).

31

E.1 muCCAmL2 Security of TEDTSponge/S2P

We also need the non-invertibility & bounded XOR leakage assumptions. Following the notations of Section 3, we define
the leakage function L = (LEnc, LDec) of its implementation as follows:

– LEnc consists of the leakages that are generated during the encryption:
• the leakages Linπ (Sin) and Loutπ (Sout) generated by all the internal calls to π(Sin)→ Sout, and
• the leakages L⊕(a, b) generated by all the internal actions a⊕ b.
• all the intermediate values involved in the computations of the hash H[π] (i.e., keyless functions are non-protected,

and leak everything).
– LDec consists of the above that are generated during the decryption.

We also use −→q = (p, qm, qe, qd, qπ, qĨC) to characterize the query power of a muCCAmL2 adversary.

Theorem 5. Assume u ≤ 2np , np ≤ n, n ≥ 5, 2σ + 2(qe + qd + qm) + qπ ≤ min
{

2n/4, 2b/2
}

, and S2P leakage
L = (LEnc, LDec) is defined as above. Then in the ideal model, for any (−→q , p− 1, t, σ)-adversary A that makes p− 1 queries
to the challenge decryption leakage oracle LDecch besides the −→q queries, it holds

AdvmuCCAmL2
A,S2P,L,u ≤

4u

2np
+

49Q2

2c
+

5Q+ 2nqd + 2n2qĨC
2n

+ σAdvLORL(p,Q, t∗)

+ 2qeAdvInv[n](p,Q, t∗, 2Q) + 2σAdvInv[c](p,Q, t∗, 2Q), (30)

where Q = 2σ + 2(qe + qd + qm) + qπ, t∗ = O(t+ pσtl), and tl is the total time for evaluating Lin and Lout.

Proof. The proof resembles appendix E: the main modification is to add treatments for decryption leakage (as here
we consider muCCAmL2 rather than muCCAmL1). Recall that a decryption query DecK,PK(i,N,A,C) is trivial if the
action EncK,PK(i,N,A,M) → C happens before. Although such trivial decryption queries are typically useless in the
non-leaking setting, they may serve new information here, and thus require explicit considerations.

Concretely, we start by defining G0 as the game PrivKmuCCAmL2,0
A,S2P,L and G∗0 as the game PrivKmuCCAmL2,1

A,S2P,L .

We then replace the internal ĨC-calls by S̃IC-calls: this modifies G0 to G1 and G∗0 to G∗1. By Eq. (36), we have

|Pr[G1 ⇒ 1]−Pr[G0 ⇒ 1]| ≤ u
2np

+ 16Q2

2c
+ Q

2n
+

n2q
ĨC

2n
and |Pr[G∗1 ⇒ 1]−Pr[G∗0 ⇒ 1]| ≤ u

2np
+ 16Q2

2c
+ Q

2n
+

n2q
ĨC

2n
, where

Q = 2σ + 2(qe + qd + qm) + qπ. We then prove∣∣Pr[G1 ⇒ 1]− Pr[G∗1 ⇒ 1]
∣∣

≤ 2u

2np
+

16Q2

2c
+

3Q+ 2nqd
2n

+
∑qe
i=1 AdvEavL

LDuStr(p,Q, t
∗, `i), (31)

where `i is the number of blocks in the ith challenge message, and t∗ = O(t + pσtl) for tl defined in Lemma 1. By
Theorem 1, the last term is bounded as∑qe

i=1 AdvEavL
LDuStr(p,Q, t

∗, `i) ≤σ ·AdvLORL(p,Q, t∗) + 2qeAdvInv[n](p,Q, t∗, 2Q)

+ 2σ ·AdvInv[c](p,Q, t∗, 2Q) +
∑qe
i=1

(`i+2)2

2c︸ ︷︷ ︸
≤Q

2

2c

.

The above plus the gaps between G0, G1, G∗0, and G∗1 yield the claim. The hybrid argument basically follows the same line
as appendix E: we denote the qe challenge tuples by (i1, N1, A1,M

0
1 ,M

1
1), . . . , (iqe , Nqe , Aqe ,M

0
qe ,M

1
qe), and use qe hops

to replace M0
1 , . . . ,M

0
qe by M1

1 , . . . ,M
1
qe in turn. Consider the game G2,j involved in the j-th hop: the first j messages

processed by the challenge encryption oracle are M0
1 , . . . ,M

0
j , while the remaining qe − j messages being processed are

M1
j+1, . . . ,M

1
qe . To bound the gap between G2,j−1 and G2,j in the view of Aπ,ĨC, we build an adversary Aπ,ĨC2 such that

|Pr[G2,i−1 ⇒ 1]− Pr[G2,i ⇒ 1]| is related to AdvEavL
DuStr0(Aπ,ĨC2).

Concretely, Aπ,ĨC2 also samples K = (K1, . . . ,Ku) and PK = (PK1, . . . , PKu) for commence, and internally simulate

S̃IC. Here the event BadUserKey occurs if there exits Kl1‖PKl1 = Kl2‖PKl2 . Aπ,ĨC2 then runs A and reacts as follows:

– Upon a query to ĨC or π: simply relays.

– Upon a (non-challenge) encryption query (i∗, N∗, A∗,M∗) from A, Aπ,ĨC2 simulates the (leaky) encryption process

of S2P[ĨC, S̃IC].LEncKi∗ ,PKi∗ (N∗, A∗,M∗) (which is similar to appendix E), and returns the resulted ciphertext and

leakage to A. For this entire process Aπ,ĨC2 makes 2`i + 2 queries to π and spends O(p`itl) time on evaluating the
leakage functions.

– Upon a trivial decryption query (i∗, N∗, A∗, C∗) from Aπ,ĨC, Aπ,ĨC2 parses C∗ = c∗‖Z∗ and simply emulates the

decryption S2P[π, S̃IC].LDecKi∗ ,PKi∗ (N∗, A∗, C∗), and relays the outputs as well as the leakages to A. The cost is
similar to the encryption case.

32

– Upon a non-trivial decryption query (i∗, N∗, A∗, C∗) from Aπ,ĨC, Aπ,ĨC2 parses C∗ = c∗‖Z∗, and computes U∗‖V ∗ ←
H[π](A∗, c∗, N∗, PKi∗). Then,

• if (Ki∗ , V
∗‖1, Z∗) /∈ SICTable−1, Aπ,ĨC2 samples V ∗∗ such that (Ki∗ , V

∗‖1, V ∗∗) /∈ SICTable, and defines the
two entries SICTable(Ki∗ , V

∗‖1, V ∗∗)← Z∗ and SICTable−1(Ki∗ , V
∗‖1, Z∗)← V ∗∗;

• if (Ki∗ , V
∗‖1, Z∗) ∈ SICTable−1, Aπ,ĨC2 sets V ∗∗ ← SICTable−1(Ki∗ , V

∗‖1, Z∗).
Now Aπ,ĨC2 returns (⊥, V ∗∗) to A. The bad event BadCheck occurs if V ∗∗ = V ∗.

– UponA submitting the `-th challenge tuple (i`, N`, A`,M
0
` ,M

1
`),Aπ,ĨC2 simulates S2P[π, S̃IC].LEncKi` ,PKi` (N`, A`,M

0
`)

when ` < j, and the process of S2P[π, S̃IC].LEncKi` ,PKi` (N`, A`,M
1
`) when ` > j, and:

• When ` = j, it relays M0
` and M1

` to the eavesdropper EavL challenger of DuStr0 to obtain cb` and leakages

leakenc and [leakdec]
p−1, and then generate the tag Z` accordingly and returns cb`‖Z` to Aπ,ĨC. Note that here

Aπ,ĨC2 acquires [leakdec]
p−1 the decryption leakages. Also, we define the event BadInitKey, which happens if

the entry SICTable−1(Ki` , PKi`‖0
∗, Bch) is defined for the initial key Bch sampled inside the eavesdropper

challenger.
– Upon A making the λ-th query to LDecch(`) (1 ≤ λ ≤ p− 1),

• When ` 6= j, Aπ,ĨC2 performs the corresponding decryption and returns the obtained leakages to Aπ,ĨC;

• When ` = j, Aπ,ĨC2 simply returns the λ-th trace in the aforementioned vector [leakdec]
p−1 as the answer.

The remaining analyses are similar to appendix E: first,

Pr[BadUserKey] ≤ u2

2n+np
≤ u

2np
, Pr[BadInitKey] ≤ qe + qd + qm

2n
≤ Q

2n
, and

Pr[BadCheck] ≤ u

2np
+

16Q2

2c
+

2Q+ 2nqd
2n

,

where the last bound comes from Eq. (37) in appendix G, and Q = 2σ+2(qe+qd+qm)+qπ. Define Bad := BadUserKey∨
BadInitKey ∨ BadCheck. Besides running Aπ,ĨC, Aπ,ĨC2 internally processes qm + qe + qd − 1 queries, and thus makes at
most Q queries to π and spends t∗ = O(t+ pσtl) running time. Therefore,∣∣Pr[G∗1 ⇒ 1]− Pr[G1 ⇒ 1]

∣∣ ≤ Pr[Bad in G2,qe] +
∑qe
i=1 AdvEavL

LDuStr(p,Q, t
∗, `i)

≤ 2u

2np
+

16Q2

2c
+

3Q+ 2nqd
2n

+
∑qe
i=1 AdvEavL

LDuStr(p,Q, t
∗, `i),

which is the claim in Eq. (31). ut

F Proof Sketch for Theorem 4 (Leakage Security of Ascon)

For muCIML2, the idea is simple: again if we reveal all the intermediate values to the adversary, Ascon collapses to a
Hash-then-MAC instance, and the integrity follows.

More concretely, following the flow in appendix D, we first modify Ascon as follows to obtain an idealized scheme:

– for each user index i, we replace KDFKi(N) := π1(IV ‖Ki‖N)⊕ (0b−n‖Ki) by a secret random function Fi(N) that
maps N to b-bit uniform values, and

– for each user index i, we replace TGFKi(S) := lsn
(
π1(S ⊕ (0c‖Ki‖0c/2))

)
⊕ Ki by a secret Tweakable Random

Function (TRF) Gi(msr(S), lsc(S)) that maps b-bit inputs to c-bit uniform values. As will be seen, using a TRF
helps unify the integrity analyses of Ascon and ISAP.

While appearing complicated, analysis of the gap due to these modifications basically follows the multi-instance PRF
security proof of the partial-key Even-Mansour cipher, and produces a bound

u2

2n
+O

(q2

2b

)
=
u2

2n
+O

((q + σ)2

2c

)
. (32)

This idealized Ascon variant collapses to a Hash-then-TRP variant shown in Fig. 6, with cL denoting C[1]‖ . . . ‖C[`−1],
i.e., the ciphertext except for the last block, and tw denoting the last C[`].

Then, we consider the “CHAIN” event: at any time, for the i th user there exists a chain of permutation queries
from the Fi query record Fi(N) = S0 to the Gi query record Gi(msr(S

′), lsc(S
′)), such that there didn’t exist any

encryption query of the form LEnc(i,N,A, ?)→ c‖Z for the corresponding A and c. To bound Pr[CHAIN], we adapt the
bad conditioned in appendix D.3 as follows:

– (C-1) There exists two user indices j, ` such that Kj = K`.
– (C-2) Right after a forward π2 query π2(Sin)→ Sout happens, if:

33

Gi ZUA H

N

cL
tw

Fig. 6: The simplified Hash-then-TRF authenticator for Ascon and ISAP.

• (C-21) there exists another π2 query (Sin
′
, Sout

′
) such that lsc−1(Sout) = lsc−1(Sin

′
), lsc−1(Sout) = lsc−1(Sout

′
);

or

• (C-22) there exists a Gi query Gi(tw, U) such that lsc(S
out) = U ; or

– (C-4) Right after a backward π2 query π−1
2 (Sout)→ Sin happens, if:

• (C-41) there exists another π2 query (Sin
′
, Sout

′
) such that lsc−1(Sin) = lsc−1(Sout

′
), or

• (C-42) there exists a Fi query record Fi(N) = S0 such that lsc−1(Sin) = lsc−1(S0).

– (C-5) Right after a Fi query Fi(N)→ S0 happens, there exists a π2 query (Sin, Sout) such that lsc−1(S0) = lsc−1(Sin).

Via an analysis similar to appendix D.3, we could have Pr[Bad] = O
(
u2

2n

)
+O

((q+σ)2

2c

)
. Below we show that the event

CHAIN cannot be triggered by adversarial permutation and encryption queries. Assume otherwise, then consider the last
adversarial action before CHAIN happens:

Case 1: A makes a π query. If this query is forward, then it contradicts ¬(C-2); if this query is backward, then it
contradicts ¬(C-4).

Case 2: A makes an encryption query LEncK(i,N,A,M). We further distinguish two subcases:

– Subcase 2.1: a subsequent (forward) π query causes CHAIN event. This again contradicts ¬(C-2).

– Subcase 2.2: the subsequent (new) TGF query Gi(C[`], U)→ Z causes CHAIN event. Assume that the involved input
tuple record is (N,A,C[1]‖ . . . ‖C[`]). The assumption means there exists another input tuple record of the i-th user
(N ′, A′, c′) such that H(N,A,C[1]‖ . . . ‖C[` − 1]) = U = U ′ = H(N ′, A′, C[1]‖ . . . ‖C′[`′ − 1]). We further have two
cases:

• Case 1: (N,A,C[1]‖ . . . ‖C[`− 1]) 6= (N ′, A′, C′[1]‖ . . . ‖C′[`′ − 1]). Then due to the suffix-free padding in Ascon,
and due to the domain separation bits between the two processing phases, the two tuples necessarily result in
distinct computation chains, which implies U 6= U ′ by ¬(C-2);

• Case 2: ` = `′, and (N,A,C[1]‖ . . . ‖C[` − 1]) 6= (N ′, A′, C′[1]‖ . . . ‖C′[`′ − 1]). Then the condition C[`] 6= C′[`]
means the query Gi(C[`], U)→ Z cannot create a chain w.r.t. (N ′, A′, c′).

Thus the impossibility.

Finally, we bound the probability that a decryption query returns non-empty conditioned on that CHAIN was
never triggered by π and encryption queries. Consider a non-trivial decryption query LDecK(i,N,A, c‖Z), where c =
C[1]‖ . . . ‖C[`]. If there has been a chain corresponding to (N,A, c), then it was created by a previous encryption query
LEncK(i,N,A,M)→ c‖Z∗. Since LDecK(i,N,A,C) is non-trivial, it has to be Z∗ 6= Z, and thus LDecK(i,N,A,C) must
return ⊥. Otherwise, conditioned on the previous query-response transcript, Gi was never called on the input (C[`], U),
U is the formatted input corresponding to (N,A,C[1]‖ . . . ‖C[`− 1]): the argument is similar to the previous argument
for encryption queries don’t trigger CHAIN event. Therefore, the output Gi(C[`], U) is necessarily uniform, and thus
Pr[Z∗ = Gi(C[`], U) = Z] ≤ 2

2n
. Taking a union over all the q decryption queries yields the term q

2n
. Summing over this

term, Pr[Bad], and Eq. (32) yield Eq. (14).

For muCCAmL1, the first step is also to replace the KDFKi(N) and TGFKi(S) calls by Fi(N) and Gi(tw, U), i.e.,
in the same way as mentioned. Now, assume that the muCCAmL1 adversary A only makes challenge encryption queries
with non-empty associated data: it’s clear that this assumption can only amplifies A’s advantage. With this, in the
subsequent hybrid argument, the constructed muCCAmL1 adversary A2 samples b-bit values to emulate the random
functions F1, . . . , Fu. For the challenge encryption query LEncK(i,N,A,M), assume that the sampled b-bit value of
Fi(N) is S0, then A2 takes A[1] ⊕ msr(S0) as the IV to query his EavL challenger of the duplex-bases stream cipher
DuStr: the subsequent argument is basically the same as appendix E. In all, similarly to appendix E, the final muCCAmL1

bound is the muCIML2 bound plus the terms O(σ) ·
(
AdvLORL(1, O(q), O(t)) + AdvInv[c](1, O(q), O(t), O(q))

)
. Note that

here the size of the initial key of DuStr is c rather than n, and thus we don’t have the (n-bit non-invertibility) term
O(σ) ·AdvInv[n](1, O(q), O(t), O(q)) any more.

34

G Formal Definition of TEDTSponge and Its muCIML2 Security

G.1 Definition of TEDTSponge/S2P

Formally, with the same conventions np ≤ r, nN + np + n ≤ r + c, and 2n ≤ r + c + 1 as in Section 4, the mode

TEDTSponge[π, Ẽ]/S2P[π, Ẽ] is described as follows. We again recommend the parameters np = n− 1 and c = 2n.

algorithm S2P[π, Ẽ].EncK,PK (N,A,M)

1. `← d|M |/re
2. parse M as M [1]‖ . . . ‖M [`], with |M [1]| = . . . =
|M [`− 1]| = r and 1 ≤ |M [`]| ≤ r

3. if ` > 0 then
4. B ← Ẽ

PK‖0n−nP
K (N‖0n−nN)

5. ivsize← r + c− n
6. IV ← N‖PK‖0ivsize−nN−nP
7. S0 ← IV ‖B
8. for i = 1 to ` do
9. Si ← π(Si−1)

10. C[i]← ms|M [i]|(Si)⊕M [i]
11. Si ← C[i]‖lsc(Si)
12. c← C[1]‖ . . . ‖C[`]
13. else c← ⊥
14. U‖V ← H[π](A, c, N,PK)

15. Z ← Ẽ
V ‖1
K (U), C ← c‖Z

16. return C

algorithm S2P[π, Ẽ].DecK,PK (N,A,C)
1. `← d |C|−n

r
e

2. parse C as c‖Z, with c = C[1]‖ . . . ‖C[`], |C[1]| = . . . =
|C[`− 1]| = r, and 1 ≤ |C[`]| ≤ r

3. U‖V ← H[π](A, c, N,PK)

4. U∗ ← (Ẽ
V ‖1
K)−1(Z)

5. if U 6= U∗ then return ⊥
6. else if ` = 0 then return true
7. else // ` > 0

8. B ← Ẽ
PK‖0n−nP
K (N‖0n−nN)

9. ivsize← r + c− n
10. IV ← N‖PK‖0ivsize−nN−nP
11. S0 ← IV ‖B
12. for i = 1 to ` do

13. Si ← π(Si−1)

14. M [i]← ms|C[i]|(Si)⊕ C[i]

15. Si ← C[i]‖lsc(Si)
16. return M [1]‖ . . . ‖M [`]

algorithm H[π](A, c, N,PK)

1. `← d|M |/re, ν ← d|A|/re, ω ← ν + `

2. parse M as M [1]‖ . . . ‖M [`], with |M [1]| = . . . =
|M [`− 1]| = r and 1 ≤ |M [`]| ≤ r

3. parse A as A[1]‖ . . . ‖A[ν], with |A[1]| = . . . = |A[ν −
1]| = r and 1 ≤ |A[ν]| ≤ r

4. S0 ← 0r+c

5. if ν ≥ 1 then

6. for i = 1 to ν − 1 do

7. Si ← π(A[i]‖lsc(Si−1))

8. if |A[ν]| < r then

9. A[ν]← A[ν]‖10r−|A[ν]|−1

10. Sν−1 ← Sν−1 ⊕ (0r‖[1]2‖0c−2)

11. Sν ← π(A[ν]‖lsc(Sν−1))

12. if ` ≥ 1 then

13. Sν ← Sν ⊕ (0r‖[2]2‖0c−2)

14. for i = 1 to `− 1 do

15. Si+ν ← π(C[i]‖lsc(Si+ν−1))

16. if |C[`]| < r then

17. Sω−1 ← Sω−1 ⊕ (0r‖[1]2‖0c−2)

18. Sω−1 ← C[`]‖10r−|C[`]|−1‖lsc(Sω−1)

19. else Sω−1 ← C[`]‖lsc(Sω−1)

20. Sω ← π(Sω−1)

21. Sω+1 ← π
(
N‖0r−nN ‖lsc(Sω)

)
22. Sω+2 ← π

(
PK‖0r−np‖lsc(Sω+1)

)
23. U‖V ← lsb2n−1(Sω+2)

24. return U‖V

It may be tempting to decrease the capacity of the first (keyed) sponge pass in order to improve efficiency. However,
such an optimization is unlikely to be easily exploitable in practice. The tricky issue is that this would induce a significant
difference between the throughput of the two passes (so that the second pass would remain the bottleneck anyway). As
a result, we prefer using a consistent c parameter.

With the “unbounded” leakage function L∗ similar to that defined for Theorem 2, TEDTSponge delivers 2n/n2

muCIML2 security as follows.

Theorem 6. Assume u ≤ 2np , np ≤ n, n ≥ 5, Q = 2σ + 2(qe + qd) + qπ ≤ min
{

2n/4, 2b/2
}

, and leakage L∗ is
“unbounded”. Then in the ideal TBC and permutation model, for any (−→q , σ)-adversary A it holds that

AdvmuCIML2
A,TEDTSponge,L∗,u ≤

2u

2np
+

32Q2

2c
+

3Q+ 2nqd + n2qĨC
2n

. (33)

The two-step proof resembles appendix D.

G.2 Idealizing S2P

We also idealize the scheme S2P first, via replacing the internal calls to ĨC by calls to S̃IC. Denote by S2P[π, S̃IC]K,PK

the resulted scheme. We then bound

AdvmuCIML2
D,S2P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S2P[π,S̃IC]K,PK,L
∗,u

35

for any −→q -bounded D, using H-coefficients. The transcripts τπ, τĨC, τS̃IC, and the extension τ∗π are very similar to those

defined in appendix D.1. It’s easy to see that, when interacting with the idealized scheme S2P[π, S̃IC]K,PK, the number
of internal π calls is at most 2σ + 2(qe + qd), which means

Q :=
∣∣τ∗π ∣∣ ≤ 2σ + 2(qe + qd) + qπ. (34)

Besides the above, we also keep a (redundant) list for the hash records of H[π], i.e.,

τ∗h =
(
((A1, c1, N1, PK1), U1‖V1), ((A2, c2, N2, PK2), U2‖V2), . . .

)
.

We also include the public-keys PK and reveal the secret keys K. These yield

τ = (τ∗h , τ
∗
π , τĨC, τS̃IC,PK,K).

For a transcript τ , we define the maximum multiplicity of V as

µV := max
v∈{0,1}n−1

∣∣∣{((A, c, N, PK), U‖V) ∈ τ∗h : V = v
}∣∣∣, (35)

and µPK as before. Then bad transcripts are defined as follows.

Definition 5 (Bad Transcripts for Idealizing S2P, muCIML2). An attainable transcript τ is bad, if one of the
following conditions is fulfilled:

– (B-1) µPK ≥ n+ 1, µV ≥ n+ 1.

– (B-2) there exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.

They’ve been analyzed in appendix D.2 except for µV ≥ n+1. The reasoning about µV also relies on the semicollision
properties gained before. In detail, we define several bad events during the game G2 capturing the interaction of D with
the ideal world:

– (B-11) Right after a forward π query π(Sin) → Sout happens, there exists another π query (Sin
′
, Sout

′
) such that

lsc−2(Sout) = lsc−2(Sin
′
) or lsc−2(Sout) = lsc−2(Sout

′
);

– (B-12) Right after a backward query π−1(Sout) → Sin happens, it holds lsc(S
in) = 0c, or there exists another π

query (Sin
′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
).

– (B-13) At any time, there exists n+ 1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S
out
n+1) such that lsn−1(Sout1) = . . . =

lsn−1(Soutn+1).

Note that they are very similar as (more precisely, simpler than) (B-11)-(B-13) in appendix D.2, except that Pr[(B-12)] ≤
2q2
2c

+ 8q2Q
2c
≤ 10q2Q

2c
. Thus we could adapt the previous Pr[µV ≥ n+1]. As before, define Bad1 := (B-11)∨(B-12)∨(B-13).

We show that µV ≤ n conditioned on ¬Bad1, so that

Pr[µV ≥ n] ≤ Pr[Bad1] ≤ 16q1Q

2c
+

10q2Q

2c
+
Q

2n
≤ 16Q2

2c
+
Q

2n
.

This roots at the following observations. First note that conditioned on ¬Bad1, the permutation queries in hash chains
are necessarily all forward, and such chains necessarily result in distinct last block queries. By these, via an analysis
similar to appendix D.2, distinct hash inputs (A, c, N, PK) necessarily result in distinct hash chains of H[π]. Therefore,
conditioned on ¬Bad1, there doesn’t exist n+ 1 distinct hash inputs (A1, c1, N1, PK1), . . ., (An+1, cn+1, Nn+1, PKn+1)
that result in the same output V1 = . . . = Vn+1, i.e., it holds µV ≤ n.

As proved in appendix D.2, Pr[µPK ≥ n+ 1] ≤ u
2np

, and Pr[(B-2) | ¬(B-1)] ≤ n2q
ĨC

2n
. Thus

Pr[Tid ∈ Tbad] ≤
u

2np
+

16Q2

2c
+
Q

2n
+
n2qĨC

2n
.

For any good transcript τ , we similarly have Pr[Tre = τ] = Pr[Tid = τ], and thus

AdvmuCIML2
D,S2P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S2P[π,S̃IC]K,PK,L
∗,u

≤ u

2np
+

16Q2

2c
+
Q

2n
+
n2qĨC

2n
. (36)

36

G.3 Unforgability of the Idealized S2P

Consider the muCIML2 game G2 with S2P[π, S̃IC]K,PK. We define the CHAIN event: at any time, for the i th user there

exists a hash record ((A, c, N, PKi), U‖V) and a S̃IC query (Ki, V
∗‖1, U∗, Z∗) (i.e., a TGF query) such that U = U∗

and V = V ∗, yet there didn’t exist any encryption query of the form LEnc(i,N,A,M)→ c‖Z∗. We “break” CHAIN into
several simple bad events as follows.

– (C-1) There exists two user indices j, ` such that Kj‖PKj = K`‖PK`.
– (C-2) Right after a forward π query π(Sin)→ Sout happens, if:
• (C-21) there exists another π query (Sin

′
, Sout

′
) such that lsc−2(Sout) = lsc−2(Sin

′
), or lsc−2(Sout) = lsc−2(Sout

′
),

or ls2n−1(Sout) = ls2n−1(Sout
′
); or

• (C-22) there exists a TGF query (Ki, V ‖1, U, Z) such that ls2n−1(Sout) = U‖V .
– (C-3) At any time, there exists n + 1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S

out
n+1) such that lsn−1(Sout1) = . . . =

lsn−1(Soutn+1).
– (C-4) Right after a backward π query π−1(Sout)→ Sin happens, if:
• (C-41) there exists another (Sin

′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
), or

• (C-42) lsc(S
in) = 0c.

– (C-5) Right after an inverse TGF query (S̃IC
V ‖1
Ki

)−1(Z)→ U∗, there exists a hash record ((A, c, N, PKi), U‖V) ∈ τ∗h
such that U = U∗.

With q1 and q2 denoting the number of forward and backward π queries, it’s easy to see

Pr[(C-1)] ≤ u

2np
, Pr[(C-2)] ≤ 16q1Q

2c
+

4Q2

22n
,

Pr[(C-3)] ≤ Q

2n
, Pr[(C-4)] ≤ 8q2Q

2c
+

2q2
2c
≤ 10q2Q

2c
.

For (C-5), as argued before, conditioned on ¬(C-2), ¬(C-3), and ¬(C-4), the number of distinct hash records
((A1, c1, N1, PKi), U1‖V), ((A2, c2, N2, PKi), U2‖V), . . . is at most n. These supply at most n “target values” U1, . . . , Un

to each backward TGF query (S̃IC
V ‖1
Ki

)−1(Z)→ U∗. By this,

Pr[(C-5)] ≤ 2nqd
2n

.

Define Bad := (C-1) ∨ (C-2) ∨ (C-3) ∨ (C-4) ∨ (C-5), using 4Q2

22n ≤ Q
2n

we have

Pr[Bad] ≤ u

2np
+

16Q2

2c
+

2Q+ 2nqd
2n

.

Below we show Pr[CHAIN | ¬Bad] = 0. Assume otherwise, then consider the last adversarial action before CHAIN happens:

Case 1: A makes a π query. If this query is forward, then it contradicts ¬(C-2); if this query is backward, then it
contradicts ¬(C-3).

Case 2: A makes an encryption query LEncPK(i,N,A,M)→ c‖Z. We further distinguish two subcases:

– Subcase 2.1: a subsequent (forward) π query causes CHAIN event. This again contradicts ¬(C-2).

– Subcase 2.2: the subsequent (new) TGF query S̃IC
V ‖1
Ki

(U)→ Z causes CHAIN event. This means right before this query

happens, there exists a hash record
(
(A′, c′, N ′, PKj), U

′‖V ′
)
∈ τ∗h such that (A′, c′, N ′, PKj) 6= (A, c, N, PKi), yet

U ′‖V ′ = U‖V . To reach a contradiction, we distinguish two cases:
• Subcase 2.3.1: i 6= j. Then if PKi 6= PKj , the two “hash chains” always have a different input blocks at the

end, and thus U‖V = U ′‖V ′ contradicts ¬(C-11). If PKi = PKj , then Ki 6= Kj by ¬(C-1), and thus the new

TGF query S̃IC
V ‖1
Ki

(U)→ Z has nothing to do with the j-th user.
• Subcase 2.3.2: i = j, yet (N,A, c) 6= (N ′, A′, c′). Then as argued, the two hash chains necessarily have a different

input blocks “in the middle”, and thus U‖V = U ′‖V ′ contradicts ¬(C-11).

Case 3: A makes a decryption query. We distinguish two subcases:

– Subcase 3.1: a subsequent (forward) π query causes CHAIN event. Then it again contradicts ¬(C-2).

– Subcase 3.2: the subsequent (new) TGF query (S̃IC
V ‖1
Ki

)−1(Z)→ U causes CHAIN event. This contradicts ¬(C-5).

By the above, we have

AdvmuCIML2

D,S2P[π,S̃IC]K,PK,L
∗,u ≤

u

2np
+

16Q2

2c
+

2Q+ 2nqd
2n

. (37)

This plus Eq. (36) yield Eq. (33):

u

2np
+

16Q2

2c
+
Q

2n
+
n2qĨC

2n
+

u

2np
+

16Q2

2c
+

2Q+ 2nqd
2n

≤ 2u

2np
+

32Q2

2c
+

3Q+ 2nqd + n2qĨC
2n

.

37

H Proof Sketch for Leakage Security of ISAP

For muCIML2, we again follow the flow in appendix D and first modify ISAP as follows to obtain an idealized scheme:

– for each user index i, we replace KDFKi(N) by a secret random function Fi(N) that maps N to (b− n)-bit uniform
values, and

– for each user index i, we replace TGFKi(U, Y) by a secret Tweakable Random Function (TRF) Gi(U, Y) that maps
an n-bit block Y and a b− n bit tweak U to n-bit uniform values.

To obtain a good bound, less straightforward technique has to be used. Concretely, we use two steps. We first replace
ISAPRK by random functions: the ISAPRK instance with the initial vector IVKE by Fi(N) (thus this covers the transition
KDFKi(N) −→ Fi(N)), while the ISAPRK instance with the initial vector IVKA by F ∗i (N). The gap is the standard
multi-instance PRF security of the inner keyed duplex, and is (such a bound can be found in [16], Theorem 1, in the
case of sampling key with replacement)

O
(u2

2n

)
+O

(u(q + σ)

2n

)
+O

((q + σ)2

2b

)
+O

((q + σ)2

2b−n

)
. (38)

We then use the H-coefficients technique to further bound the gap due to the transition TGFKi(U, Y) −→ Gi(U, Y).
The conditions for bad transcripts roughly consist of the following:

– There exists n hash records Hash(N1, A1, c1) = Y1‖U1, . . . ,Hash(Nn, An, cn) = Yn‖Un such that Y1 = . . . = Yn.

Following the analysis for TEDTSponge, the probability is O
((q+σ)2

2c

)
+O

(
q+σ
2n

)
.

– For the i-th user, there exists a hash record Hash(N,A, c) = Y ‖U such that F ∗i (Y)‖U ∈ τπ4 . Since multi-collisions

on Y has been limited to n by the 1st condition, we are able to obtain a probability of O
(n(q+σ)

2n

)
.7

With these, a simple analysis bounds the gap due to TGFKi(U, Y) −→ Gi(U, Y) to

O
((q + σ)2

2c

)
+O

(q + σ

2n

)
+O

(n(q + σ)

2n

)
. (39)

The resulted idealized ISAP collapses to a Hash-then-TRP MAC, i.e., it consists of two steps: (1) Y ‖U ← Hash(N,A, c),
(2) Z ← Gi(U, Y). It’s similar to Fig. 6—unlike Ascon, now the tweak input tw is an output halve of the hash rather
than something controlled by the adversary. It’s not hard to prove that the sponge-based hash function Hash(N,A, c)

is collision resistant with the bound O
((q+σ)2

2c

)
: we are not aware of existing work addressing this non-standard use,

but the proof is simple (follow the ideas in appendix G) and we omit. As long as no hash collision occurs during the
interaction, every non-trivial decryption query LDecK(i,N,A, c‖Z) results in a new call to Gi(U, Y)→ Z′ (as every early
query necessarily results in Y ′‖U ′ 6= Y ‖U), and thus Pr[Z′ = Z] = O

(
1

2n

)
. Taking a union bound over the q decryption

queries, and further summing over all the terms including Eq. (38) and Eq. (39) yield the bound (note that we assumed
b− n ≥ c).

For its muCCAmL2 security, we also need the implementation to satisfy the non-invertibility & bounded XOR leakage
assumptions. Following the notations of Section 3, we define the leakage function L = (LEnc, LDec) of its implementation
as follows:

– LEnc consists of the leakages that are generated during the encryption:
• the leakages Linπ (Sin) and Loutπ (Sout) generated by all the internal calls to π(Sin)→ Sout, and
• the leakages L⊕(a, b) generated by all the internal actions a⊕ b.
• all the intermediate values involved in the computations of the hash H[π] (i.e., keyless functions are non-protected,

and leak everything).
– LDec consists of the above that are generated during the decryption.

Then, assuming leak-freeness of KDFK(N) and IntCheckK(Y ‖U,Z), the proof flow is the same as that for TEDTSponge
(Appendix E.1)—note that we’ve demonstrated the transitions KDFKi(N) −→ Fi(N) and TGFKi(U, Y) −→ Gi(U, Y)
before, which is helpful for the argument.

H.1 Leakage-resilience of ISAPRK (sketch)

Formally, we show that ISAPRKK(Y) (defined as follows) is a leakage-resilient PRF, in the sense of indistinguishability
from the following leaking random function LF upon less than q queries. Note that LF contains a uniformly distributed
“faked” key K, but it only affects the leakages rather than the function output.

7Otherwise it’s the inferior O
((q+σ)2

2n

)
, i.e., birthday 2n/2 security even in the single-user setting.

38

algorithm ISAPRKK(Y)

1. Y1, . . . , Yn ← Y

2. S0 ← K‖IV , S1 ← π(S0)

3. for i = 1 to n− 1 do

4. S′i ← Si ⊕ (Yi‖0b−1)

5. Si+1 ← π(S′i)

6. S′n ← Sn ⊕ (Yn‖0b−1)

7. Sf ← π(S′n)

8. K∗ ← msb−n(Sf)

9. return K∗

algorithm LFK(Y)

1. Y1, . . . , Yn ← Y

2. S0 ← K‖IV , S1
$← {0, 1}b

3. for i = 1 to n− 1 do
4. S′i ← Si ⊕ (Yi‖0b−1)

5. Si+1
$← {0, 1}b

6. S′n ← Sn ⊕ (Yn‖0b−1)

7. Sf
$← {0, 1}b

8. K∗ ← msb−n(Sf)
9. return K∗

Assume that the total number of queries to the oracle is at most q. Then we extend the non-invertibility assumption
of Eq. (1) to the following:

AdvsSPA(A) := Pr
[
sch

$← {0, 1}b−1,G ← Aπ(leak) : sch ∈ G
]
, (40)

where G is a finite set of guesses, and A’s input leak is a list of leakages:

leak =
[
Loutπ (0‖sch), Loutπ (1‖sch), Linπ (0‖sch), Linπ (1‖sch)

]q
. (41)

The superscript sSPA stands for “super SPA”, meaning that it assumes SPA security but allows an arbitrary number of
repeated measuring. We also introduce the simpler notation

AdvsSPA(q, t,NG) := max
(q,t,NG)-A

{
AdvInv[ω](A)

}
, (42)

with the maximal taken over all adversaries running in time t, outputting NG guesses, and making at most q queries to
its permutation oracle π.

With this assumption, and following the proof of Lemma 1, it can be shown that for any (q, t)-adversary A, it holds∣∣∣Pr[AISAPRKK ,π,π
−1

⇒ 1]− Pr[ALF,π,π
−1

⇒ 1]
∣∣∣

≤ nq ·AdvsSPA(O(q), O(t), O(q)
)

+O
(n2q2

2b

)
.

To wit, the reduction is possible because during the lifetime of the rate-1 duplex ISAPRKK , with probability≥ 1−O
(
n2q2

2b

)
(excluding state collisions), each b− 1 bit secret state can only be involved in 2 different outputs and 2 different inputs,
which are all presented in Eq. (41). So the reduction simply picks the corresponding leakage from this list for simulating.

Comparison to our modes. The super SPA assumption shall be compared to the leak-free TBC in our modes
TETSponge and TEDTSponge, but the discussion isn’t feasible here (a huge amount of experiments is expected) and is
left for future work.

Comparison to DM. DM [21] gave a similar analysis using their high min-entropy leakage assumption. They assumed
deterministic leakage function, so it’s not beneficial at all to repeat measuring a leakage for Q times. This could be seen
as a simplified and more concise model of leakages. We feel that our “[Lπ]Q” model emphasizes the details in the SPA
assumption (i.e., it shall withstand repeated measuring during the whole lifetime of the main key), with the expense of
a higher rotational-level complexity.

I Black-box CCA Security of TETSponge and TEDTSponge

At the end, let’s fill in the missed piece, i.e., the black-box CCA security results of our two new modes TETSponge and
TEDTSponge. We’ll first define the CCA notion in question, then present the two theorems, and then their proofs.

I.1 CCA with misuse-resilience

Ashur et al. [4] proposed a strong indistinguishability notion for authenticated encryption which divides adversarial en-
cryption queries into challenge and non-challenge ones, and only requires the adversary to be nonce-respecting among the
former type of queries. The nonce-misuse in non-challenge queries should not affect the pseudorandomness of the responses
to the challenge queries, i.e., of the challenge ciphertexts. To avoid confusion with (the initials of) misuse-resistance [38],
we will refer to misuse-resilience as CCAm$ (with a small m), which is a “real-or-random” indistinguishability game
between the real world (Enck,Enck,Deck) and the random (or ideal) world (Enck, $,⊥), hence the $, where the second
oracle is the challenge oracle.

39

Definition 6 (muCCAm$ advantage). Given a nonce-based authenticated encryption AEAD = (Enc,Dec), the multi-
user chosen ciphertext misuse resilience advantage of an adversary A against AEAD with u users is

AdvmuCCAm$
A,AEAD,u :=

∣∣∣Pr
[
AEncK,EncK,DecK,π,π

−1,ĨC,ĨC−1

⇒ 1
]
− Pr

[
AEncK,$,⊥,π,π−1,ĨC,ĨC−1

⇒ 1
]∣∣∣,

where the probability is taken over the u user keys K = (K1, . . . ,Ku), where Ki ← K, over A’s random tape and the

ideal oracles π and ĨC and where:

– EncK(i,N,A,M): if 1 ≤ i ≤ u, outputs EncKi(N,A,M);

– $(i,N,A,M) outputs and associates a fresh random ciphertext C
$← C|M| to fresh input, and the already associated

C otherwise;
– Dec(i,N,A,C) outputs DecKi(N,A,C) if (i,N,A,C) is not an oracle answer to an encryption query (i,N,A,M)

for some M , and ⊥ otherwise;
– ⊥(i,N,A,C) outputs ⊥;
– for each user i: (i) nonce N cannot be used both in query to O1(i,N, ∗, ∗) and O2(i,N, ∗, ∗); (ii) O2(i, ∗, ∗, ∗) is

nonce-respecting; (iii) if C is returned by O1(i,N,A,M) or O2(i,N,A,M) query O3(i,N,A,C) is forbidden; (iv) a
nonce used twice with O1 cannot be used for an O3 query.

Note that this notion has included a notion of integrity since decryption are required to always return ⊥. This is of
the same spirit with the CCA3 notion suggested in [38].

I.2 muCCAm$ security of our modes

We can then deliver the results. To ease comparison, we defer their proofs. Let −→q = (qm, qe, qd, qĨC, qπ) and denote by
(−→q , σ)-adversaries the adversaries that make qm, qe, qd, qĨC, and qπ queries to the non-challenge encryption oracle, the

challenge encryption oracle, the LDec oracle, ĨC, and π, and have at most σ blocks (of r bits) in all their queried plaintexts
(both non-challenge and challenge) and ciphertexts, including associated data.

Theorem 7. Assume u ≤ 2np , np ≤ n, n ≥ 5, and Q = σ + qe + qd + qm + qπ ≤ min{2n/4, 2b/2}. Then in the ideal
TBC and permutation model, for any (−→q , σ)-adversary A it holds

AdvmuCCAm$
A,TETSponge,u ≤

5u

2np
+

56Q2

2c
+

23nQ+ 5n2qĨC
2n

. (43)

The proof is deferred to Appendix I.3.

Theorem 8. Assume u ≤ 2np , np ≤ n, n ≥ 5, and Q = 2σ+ 2(qe + qd + qm) + qπ ≤ min
{

2n/4, 2b/2
}

. Then in the ideal
TBC and permutation model, for any (−→q , σ)-adversary A, −→q = (qm, qe, qd, qĨC, qπ), it holds that:

AdvmuCCAm$
A,TEDTSponge,u ≤

4u

2np
+

53Q2

2c
+

8nQ+ 2n2qĨC
2n

. (44)

The proof is offered in Appendix I.4. The bounds are comparable to their muCIML2 bounds, i.e., implying high security
up to 2124 users, 2114 computations, and roughly 2120 message blocks. For comparison, we informally remark that from
the analysis in Appendix I.3, it can be seen the security bound increases up to 2n/n in the single user setting.

While it is possible to establish bounds beyond 2c/2 [31,14], we will see that the term 2c/2 constitutes the muCIML2
security limit and cannot be improved. Thus, better muCCAm$ bounds cannot result in a smaller choice of c when
muCIML2 security is a concern.

I.3 Proof of Theorem 7 (TETSponge)

Note that in the misuse resilience setting, schemes which achieve both CPA confidentiality and authenticity also achieve
CCA confidentiality [4]:

AdvmuCCAm$
A,AEAD,u =

∣∣∣Pr
[
AEncK,PK,EncK,PK,DecK,PK,π,ĨC ⇒ 1

]
− Pr

[
AEncK,PK,$,⊥,π,ĨC ⇒ 1

]∣∣∣
≤
∣∣∣Pr
[
AEncK,PK,EncK,PK,DecK,PK,π,ĨC ⇒ 1

]
− Pr

[
AEncK,PK,EncK,PK,⊥,π,ĨC ⇒ 1

]∣∣∣︸ ︷︷ ︸
Advmu-INT-CTXT

A,AEAD,u : mu INT-CTXT advantage of A on AEAD

+
∣∣∣Pr
[
AEncK,PK,EncK,PK,⊥,π,ĨC ⇒ 1

]
− Pr

[
AEncK,PK,$,⊥,π,ĨC ⇒ 1

]∣∣∣︸ ︷︷ ︸
defined as AdvmuCPAm$

A,AEAD,u

.

Clearly, Advmu-INT-CTXT
A,S1P,u ≤ AdvmuCIML2

A,S1P,u . Therefore, we focus on the CPA advantage AdvmuCPAm$
A,S1P,u . Again we employ the

H-coefficients technique, and present the two steps in two subsequent subsections.

40

Transcripts We summarize the queries to the challenge (second) encryption oracle in a set

τe =
(

(i1, N1, A1,M1, C1), . . . , (iqe , Nqe , Aqe ,Mqe , Cqe)
)
,

where Cj = cj‖Zj for each (ij , Nj , Aj ,Mj , Cj).
Besides, we reveal all the π queries underlying the non-challenge encryption queries (i.e., queries to the first encryption

oracle). We merge all these additional π queries with the adversarial queries to obtain a set τ∗π . It can be seen that

q∗π :=
∣∣τ∗π ∣∣ ≤ σ1 + qm + qπ,

where σ1 is the total number of blocks in the non-challenge encryption queries. At the end of the interaction, we also
reveal the KDF- and TGF-calls underlying these non-challenge encryption queries, and organize them in a list τS̃IC.

We also have the TBC query transcript τĨC. Similarly to appendix D, we organize τ∗h from τ∗π . Note that the queries
underlying the challenge encryption queries are not revealed (unlike appendix D). As such, τ∗h only contains the S1P
hash records corresponding to the non-challenge encryption queries.

Recall that we’ve switched to the CPA setting, so these are “enough”: transcripts are defined as

τ = (τe, τ
∗
h , τ
∗
π , τĨC, τS̃IC,PK,K).

For an encryption query (ij , Nj , Aj ,Mj , Cj) ∈ τe, we denote

Mj = Mj [1]‖ . . . ‖Mj [`j], Aj = Aj [1]‖ . . . ‖Aj [νj], and Cj = Cj [1]‖ . . . ‖Cj [`j]‖Zj .

With these, the number of blocks in challenge encryption queries is σ2 =
∑qe
j=1(`j + νj). We write σc =

∑qe
j=1 `j . We

further assume that |Mj [`j]| = r for any j: it can be seen this is wlog. Then it’s easy to see

Pr[Tid = τ] = Pr[K,PK] · Pr[ĨC ` τĨC] · Pr[S̃IC ` τS̃IC] · Pr[π ` τ∗π] ·
(

1

2r

)σc
·
(

1

2n

)qe
. (45)

Below we write
Q = σ2 + qe + q∗π = σ + qm + qe + qd + qπ,

which will be the total number of permutation-calls during the interaction.

Bad Transcripts. We then define bad transcripts as follows.

Definition 7 (Bad Transcripts for S1P, muCPAm$). An attainable transcript τ is bad, if one of the following con-
ditions is fulfilled:

– (B-1) there exists two users j, ` such that Kj‖PKj = K`‖PK`.
– (B-2) µPK ≥ n+ 1, µV ≥ n+ 1.
– (B-3) There exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.
– (B-4) There exists (ij , Nj , Aj ,Mj , Cj) ∈ τe such that (Kij , PKij‖0∗, ?, ?) ∈ τĨC.
– (B-5) Too many collisions within the qe tags of the challenge encryption queries, i.e.,

∣∣{(j, `) : Zj = Z`}
∣∣ ≥ qe.

– (B-6)
∣∣{((i,N,A,M, c‖Z), (K,V ‖1, X, Y)

)
∈ τe × (τĨC ∪ τS̃IC) : Z = Y }

∣∣ ≥ qe.
Otherwise τ is good. Denote by Tbad the set of bad transcripts.

First, Pr[(B-1)] ≤ u2

2n+np
≤ u

2np
. Then, the conditions (B-2) and (B-3) ∨ (B-4) are essentially the same as Definition 4,

and thus we recycle the corresponding results and obtain:

Pr[(B-1) ∨ (B-2) ∨ (B-3) ∨ (B-4)] ≤ 2u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + n2qĨC
2n

.

For (B-5), using Markov’s inequality yields

Pr[(B-5)] ≤ q2
e

2n

/
qe ≤

qe
2n
.

Similarly,

Pr[(B-6)] ≤
qe(qĨC + qm)

2n

/
qe ≤

qĨC + qm

2n
.

In all,

Pr[Tid ∈ Tbad] ≤
2u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + qe + qĨC + qm + n2qĨC
2n

≤ 2u

2np
+

16(q∗π)2

2c
+

4nq∗π + 2n2qĨC
2n

. (46)

41

Ratio of Probabilities of Good Transcripts. For a good transcript τ , by ¬(B-3), for any (ij , Nj , Aj ,Mj , Cj) ∈ τe
the initial key Bj = ĨC

PKij ‖0
∗

Kij
(Nj‖0∗) is uniform. We define a predicate BadKD(ĨC) to formalize the “badness” of this

key, which is fulfilled if either of the following conditions is fulfilled:

– (C-1) there exists (ij , Nj , Aj ,Mj , Cj) ∈ τe such that Bj = ĨC
PKij ‖0

∗

Kij
(Nj‖0∗) satisfies (Nj‖PKij‖0∗‖Bj , ?) ∈ τ∗π .

– (C-2) there exists two queries (ij , Nj , Aj ,Mj , Cj) and (i`, N`, A`,M`, C`) in τe such that Nj = N`, PKij = PKi` ,
and Bj = B`.

Conditioned on ĨC ` τĨC and ĨC ` τS̃IC, Bj remains random due to ¬(B-3) and ¬(B-4) (recall that the nonce values
of non-challenge and challenge encryption queries have no overlap). Furthermore, even given B1, . . . , Bj−1, Bj remains
random: because for any index ` < j, if i` 6= ij then Ki`‖PKi` 6= Kij‖PKij due to ¬(B-1), and Bj is thus independent
from B`; otherwise, we must have N` 6= Nj due to the nonce-respecting restriction, and thus Bj remains uniform in

at least 2n − qe − qm possibilities given B`, ĨC ` τĨC, and ĨC ` τS̃IC. Therefore, when qe + qm ≤ 2n/2, we have (the set
τ∗π [Nj‖PKj] is from Eq. (21))

Pr[(C-1)] ≤
qe∑
j=1

Pr
[
Bj ∈ τ∗π [Nj‖PKj]

]
≤

qe∑
j=1

∣∣τ∗π [Nj‖PKj]
∣∣

2n − qe − qm

≤µPK ·
∑

N‖PK∈{0,1}nN+np

2
∣∣τ∗π [Nj‖PKj]

∣∣
2n

≤ 2nq∗π
2n

.

For (C-2), since nonce is never repeated in a specific user, it has to be ij 6= i`. Thus by the condition PKij = PKi` and
¬(B-2), the number of choices for such two queries is at most nqe. For each of them, it holds Pr[Bj = B`] ≤ 1

2n−qe−qm ≤
2

2n
, thus

Pr[(C-2)] ≤ 2nqe
2n

.

In all,

PrĨC
[
BadKD(ĨC) | ĨC ` τĨC

]
≤ 2nq∗π + 2nqe

2n
. (47)

Then, given a random permutation π such that π ` τ∗π , we define a bad predicate Bad(π). To this end, for any
j ∈ [1, . . . , qe], we define a sequence of values as follows:

Sinj,0 = N‖PKij‖0
∗‖Bj , Soutj,0 = π(Sinj,0), Sinj,1 = Soutj,0 ⊕Aj [1]‖0c, Soutj,1 = π(Sinj,1), . . . ,

Sinj,νj = Soutj,νj−1 ⊕ (Aj [νj]‖1‖0∗)⊕ (0r‖[1]2‖0c−2) when |Aj [νj]| < r, and Sinj,νj = Soutj,νj−1 ⊕ (Aj [νj]‖0c) when |Aj [νj]| = r,
and

Soutj,νj = π(Sinj,νj), S
in
j,νj+1 = Cj [1]‖lsc

(
Soutj,νj ⊕ (0r‖[2]2‖0c−2)

)
,

Soutj,νj+1 = π(Sinj,νj+1), Sinj,νj+2 = Cj [2]‖lsc(Soutj,νj+1), Soutj,νj+2 = π(Sinj,νj+2), . . . ,

Sinj,νj+`j = Cj [`j]‖lsc
(
Soutj,νj+`j−1⊕(0r‖[1]2‖0c−2)

)
when |Cj [`j]| < r, and Sinj,νj+`j = Cj [`j]‖lsc(Soutj,νj+`j−1) when |Cj [`j]| =

r, and finally Soutj,νj+`j
= π(Sinj,νj+`j) and Uj‖Vj = ms2n−1(Soutj,νj+`j

). With the above, the predicate Bad(π) is fulfilled if:

– (C-3) there exists two indices j ∈ [1, . . . , qe] and ` ∈ [1, . . . , νj + `j] such that
(
? ‖lsc−2(Sinj,`), ?

)
∈ τ∗π .

– (C-4) there exists four indices j1, j2 ∈ [1, . . . , qe] and `1 ∈ [1, . . . , νj1 + `j1], `2 ∈ [1, . . . , νj2 + `j2] such that (j1, `1) 6=
(j2, `2), and lsc−2(Sinj1,`1) = lsc−2(Sinj2,`2).

– (C-5) there exists an index j ∈ [1, . . . , qe] such that any of the following is fulfilled:

• (Kij , Vj‖1, Uj , ?) ∈ (τĨC ∪ τS̃IC) or (Kij , Vj‖1, ?, Zj) ∈ (τĨC ∪ τS̃IC), or
• there exists another index ` ∈ [1, . . . , qe] such that Vj‖Uj = V`‖U` or Vj‖Zj = V`‖Z`.

For (C-3), we first consider the case j = 1, ` = 1. Conditioned on π ` τ∗π , the new capacity value lsc−2(Sinj,1) is uniform
due to ¬(C-1). Therefore,

Pr
[
(?‖lsc−2(Sinj,1), ?) ∈ τ∗π

]
≤ 2|τ∗π |

2c−2
≤ 8q∗π

2c
.

Conditioned on
(
? ‖lsc−2(Sinj,1)

)
, ?
)
/∈ τ∗π , lsc−2(Sinj,2), i.e., the “next” capacity value, is uniform. Therefore,

Pr
[
(?‖lsc−2(Sinj,2), ?) ∈ τ∗π

]
≤ 8q∗π

2c
.

42

Therefore, via an iterative-style analysis, it can be seen all internal capacity values are uniform, and thus

Pr[(C-3)] ≤
qe∑
j=1

(
νj + `j

)
· 8q∗π

2c
≤ 8σ2q

∗
π

2c
.

For (C-4), when j1 = j2, then `1 6= `2. By the above, both lsc−2(Sinj1,`1) and lsc−2(Sinj1,`2) are uniform, thus

Pr
[
lsc−2(Sinj1,`1) = lsc−2(Sinj1,`2)

]
≤ 8

2c
.

When j1 6= j2, by the above analysis, both lsc−2(Sinj1,`1) and lsc−2(Sinj2,`2) are uniform. Moreover, we have Sinj1,0 6= Sinj2,0
by ¬(C-2), which means lsc−2(Sinj1,`1) remains uniform given the value of lsc−2(Sinj2,`2). Therefore,

Pr
[
lsc−2(Sinj1,`1) = lsc−2(Sinj2,`2)

]
≤ 8

2c
.

By these, and as the number of choices for (j1, `1) and (j2, `2) is at most σ2
2 , we reach

Pr[(C-4)] ≤ 8σ2
2

2c
.

Finally, for (C-5), we have: (a) Pr[∃j : (Kij , Vj‖1, Uj , ?) ∈ (τĨC ∪ τS̃IC)] ≤ qe(qĨC + qm) · 2
22n−1 and Pr[∃j, ` : Vj‖Uj =

V`‖U`] ≤ q2
e · 2

22n−1 as Uj‖Vj is uniform for any j, and (b) Pr[∃j : (Kij , Vj‖1, ?, Zj) ∈ (τĨC ∪ τS̃IC)] ≤ 2qe
2n−1 , and (c) by

¬(B-5), Pr[∃j, ` : Vj‖Zj = V`‖Z`] ≤ qe · 2
2n−1 . Therefore,

Pr[(C-5)] ≤
4qe(qĨC + qm)

22n
+

4q2
e

22n
+

4qe
2n

+
4qe
2n
≤

4qe(qĨC + qm + qe)

22n
+

8qe
2n
≤

2qĨC + 10qe

2n
,

where the last inequality follows from qe ≤ 2n/2 and qm + qe ≤ 2n/2. Summing over the above, and further using
qe + σ2 + q∗π ≤ Q yield

Pr[Bad(π)] ≤ 8σ2q
∗
π

2c
+

8σ2
2

2c
+

2qĨC + 10qe

2n
≤ 8σQ

2c
+

2qĨC + 10qe

2n
.

Finally, conditioned on that ĨC ` τĨC, ĨC ` τS̃IC, π ` τ∗π , ¬BadKD(ĨC), and ¬Bad(π), we analyze the probability
that each produced key stream block equal ∆j [l] = Mj [l] ⊕ Cj [l], i.e., Pr[msr(S

in
j,ν+l) = Mj [l] ⊕ Cj [l]]. This means

msr(S
in
j,ν+l) = ∆j [l]‖s /∈ τ∗π for some s ∈ {0, 1}c. Among the 2c values of s, there are at most |τ∗π | ≤ q∗π “bad” values s∗

such that ∆j [l]‖s∗ ∈ τ∗π . Therefore,

Pr
[
msr(S

in
j,ν+l) = ∆j [l]‖s /∈ τ∗π

]
≥ 2c − q∗π

2r+c
≥

1− q∗π
2c

2r
.

By this,

Pr[∀j ∈ {1, . . . , qe} : S1P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj | π ` τ∗π ∧ ĨC ` τĨC]

≥Pr[¬BadKD(ĨC) ∧ ¬Bad(π) | π ` τ∗π ∧ ĨC ` τĨC ∧ ĨC ` τS̃IC] ·
(

1− q∗π
2c

2r

)σc
. (48)

It remains to analyze the involved tags. The event that the qe tags equal Z1, . . . , Zqe is equivalent to qe equalities as
follows:

ĨC
V1‖1
Ki1

(U1) = Z1, . . . , ĨC
Vqe‖1
Kiqe

(Uqe) = Zqe .

Consider the first equality. The entries ĨC
V1‖1
Ki1

(U1) and (ĨC
V1‖1
Ki1

)−1(Z1) may be rendered non-random due to the condi-

tion S1P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj for all j ∈ {1, . . . , qe} or due to ĨC ` τĨC. Yet, the former condition only

affects entries with the tweak PK‖0∗, while the latter won’t affect ĨC
V1‖1
Ki1

(U1) nor (ĨC
V1‖1
Ki1

)−1(Z1) by ¬(C-5). Therefore,

Pr[ĨC
V1‖1
Ki1

(U1) = Z1] = 1
2n

.

In a similar vein, for any index j ∈ {1, . . . , qe}, under the conditions that ĨC ` τĨC and “∀j ∈ {1, . . . , qe} :

S1P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj”, the ideal TBC entry ĨC
Vj‖1
Kij

(Uj) remains uniform. We need to additionally

consider the condition “ĨC
V`‖1
Ki`

(U`) for ` = 1, . . . , j−1”. For this, for any ` < j we have Vj‖Zj 6= V`‖Z` and Uj‖Vj 6= U`‖V`
by ¬(C-5). Consequently, Pr[ĨC

Vj‖1
Kij

(Uj) = Zj] ≥ 1
2n

, and thus

Pr[ĨC
Vj‖1
Kij

(Uj) = Zj for j = 1, . . . , qe] ≥
(

1

2n

)qe
. (49)

43

In summary,

Pr[Tre = τ]

Pr[Tid = τ]
≥

Pr[¬BadKD(ĨC) ∧ ¬Bad(π) | π ` τ∗π ∧ ĨC ` τĨC] ·
(

1− q
∗
π

2c

2r

)σc
·
(

1
2n

)qe
(

1
2r

)σc
·
(

1
2n

)qe
≥Pr[¬BadKD(ĨC) ∧ ¬Bad(π) | π ` τ∗π ∧ ĨC ` τĨC] ·

(
1− q∗π

2c

)σc
≥
(

1− 2nq∗π + 2nqe
2n

− 8σQ

2c
−

2qĨC + 10qe

2n

)
·
(

1− Q

2c

)σc
≥1−

2nq∗π + 2nqe + 2qĨC + 10qe

2n
− 8σQ

2c
.

Gathering this and Eq. (46) and further the muCIML2 bound Eq. (26) (with that q∗π = σ + qe + qd + qπ replaced by
Q = σ + qe + qd + qm + qπ) yield Eq. (43):

3u

2np
+

32(q∗π)2

2c
+

5nq∗π + 2nqd + n2qĨC
2n

+
2u

2np
+

16(q∗π)2

2c
+

4nq∗π + 2n2qĨC
2n

+
2nq∗π + 2nqe + 2qĨC + 10qe

2n
+

8σQ

2c

≤ 5u

2np
+

56Q2

2c
+

23nQ+ 5n2qĨC
2n

(2nqe + 2nqd ≤ 2nQ).

I.4 Proof of Theorem 8 (TEDTSponge)

Similarly to appendix I.3, we mainly bound the CPA advantage AdvmuCPAm$
A,S2P using H-coefficients. Since S2P and S1P

process the messages in a very similar manner, the muCPAm$ proofs are also similar.

Bad Transcripts. We summarize to the queries to the challenge (second) encryption oracle in

τe =
(

(i1, N1, A1,M1, C1), . . . , (iqe , Nqe , Aqe ,Mqe , Cqe)
)
.

For each of them (ij , Nj , Aj ,Mj , Cj) where Cj = cj‖Zj , we assume that the system makes the corresponding hash call
H[π](Aj , cj , Nj , PKij) during the interaction, and that these π queries are known to the distinguisher. We also reveal all
the π queries underlying the non-challenge encryption queries (i.e., to the first encryption oracle). We merge all these
additional π queries with the adversarial queries to obtain τ∗π . Here we have

q∗π :=
∣∣τ∗π ∣∣ ≤ qπ + (2qm + 2σ1) + (2qe + σ2) = qπ + 2(qm + qe) + 2σ1 + σ2

and

Q = 2σ + 2(qe + qd + qm) + qπ.

We also have the ideal TBC query transcript τĨC. Similarly to appendix I.3, we also organize the hash record transcript
τ∗h from τ∗π , and the transcript τS̃IC for the KDF and TGF calls underlying non challenge encryption queries. In all,
transcripts are defined as

τ = (τe, τ
∗
h , τ
∗
π , τĨC, τS̃IC,PK,K).

We then define bad transcripts.

Definition 8 (Bad Transcripts for S2P, muCCAm$). An attainable transcript τ is bad, if one of the following con-
ditions is fulfilled:

– (B-1) There exists two users j, ` such that Kj‖PKj = K`‖PK`.
– (B-2) µPK ≥ n+ 1, µV ≥ n+ 1.
– (B-3) There exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.
– (B-4) There exists an encryption query (ij , Nj , Aj ,Mj , Cj) such that:

• (Kij , PKij‖0∗, ?, ?) ∈ τĨC, or
• (Kij , Vj‖1, ?, ?) ∈ τĨC for the corresponding hash record ((Aj , cj , Nj , PKij), Uj‖Vj).

– (B-5) There exists a query (i,N,A,M, c‖Z) ∈ τe with corresponding hash record ((A, c, N, PK), U‖V) ∈ τ∗h such
that:

• contradiction-I: (Ki, V ‖1, ?, Z) ∈ τS̃IC or (Ki, V ‖1, U, ?) ∈ τS̃IC; or

44

• hash collision: there exists a hash record ((A′, c′, N ′, PK′), U ′‖V ′) ∈ τ∗h such that (A, c, N, PK) 6= (A′, c′, N ′, PK′)
though U‖V 6= U ′‖V ′; or

• contradiction-II: there exists another query (i′, N ′, A′,M ′, c′‖Z′) ∈ τe such that V ‖Z 6= V ′‖Z′.

(B-1) is obvious. Then, (B-2), (B-3), and (B-4) are essentially the same as Definition 5, and we recycle the bound (which
already includes the hash collision event):

Pr[(B-1) ∨ (B-2) ∨ (B-3) ∨ (B-4) ∨ hash collision] ≤ 2u

2np
+

16(q∗π)2

2c
+
q∗π
2n

+
n2qĨC

2n
.

For the remaining subconditions in (B-5), it’s easy to see Pr[contradiction] ≤ 2qe(qe+qm)

22n−1 +
2q2e

22n−1 = 4qe(2qe+qm)

22n ≤ 2qe
2n

(since 2qe + qm ≤ q∗π ≤ 2n/2). In all,

Pr[Tid ∈ Tbad] ≤
2u

2np
+

16(q∗π)2

2c
+
q∗π + n2qĨC + 2qe

2n
. (50)

Ratio of Probabilities. This step could reuse the results in appendix I.3. Concretely, we define BadKD(ĨC) and
Bad(π) as those in appendix I.3 without the condition (C-5). As such, we could recycle Eqs. (48) and (49) in the
following manner:

Pr[∀j ∈ {1, . . . , qe} : S2P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj | π ` τ∗π ∧ ĨC ` τĨC]

≥
(

1− 2nq∗π + 2nqe
2n

− 8σQ

2c

)
·
(

1− q∗π
2c

2r

)σc
,

Pr[∀j ∈ {1, . . . , qe} : ĨC
Vj‖1
Kij

(Uj) = Zj] ≥
(

1

2n

)qe
.

Therefore,

Pr[Tre = τ]

Pr[Tid = τ]
≥

(
1− 2nq∗π+2nqe

2n
− 8σQ

2c

)
·
(

1− q
∗
π

2c

2r

)σc
·
(

1
2n

)qe
(

1
2r

)σc
·
(

1
2n

)qe
≥1− 2nq∗π + 2nqe

2n
− 8σQ

2c
− σQ

2c
.

Gathering this and Eq. (50) and further Eq. (33) (with that q∗π = 2σ + 2(qe + qd) + qπ replaced by Q = 2σ + 2(qe +
qd + qm) + qπ) yield Eq. (44):

2u

2np
+

16(q∗π)2

2c
+
q∗π + n2qĨC + 2qe

2n

+
2nq∗π + 2nqe

2n
− 8σQ

2c
− σQ

2c
+

2u

2np
+

32Q2

2c
+

3Q+ 2nqd + n2qĨC
2n

≤ 4u

2np
+

53Q2

2c
+

8nQ+ 2n2qĨC
2n

.

45

	Towards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction
	1 Introduction
	2 Preliminaries
	3 Analysis of the duplex stream cipher and its eavesdropper security with leakage (EavL)
	3.1 Modeling leakages
	3.2 Bounding the leakages: non-invertibility restriction
	3.3 (In)Distinguishability of the XOR leakages
	3.4 Leakage EavL security of duplex stream ciphers
	3.5 Discussion

	4 The new mode TETSponge
	5 Applications to some other AEs
	A TETSponge is not CCAmL2 secure
	B Proofs for Leakage Privacy Lemmas
	B.1 Tester for LORL Advantage
	B.2 A Useful Lemma: EavL Security of the Ideal Stream IdealS
	B.3 Proof of Theorem 1 (EavL Security of DuStr)

	C PKEM-based Representation of Keyed Sponges
	D Proof of Theorem 2 (muCIML2 of TETSponge)
	D.1 Idealizing S1P
	D.2 Gap between Real and Ideal
	D.3 Unforgability of the Idealized S1P

	E Proof of Theorem 3 (muCCAmL1 of S1P)
	E.1 muCCAmL2 Security of TEDTSponge/S2P

	F Proof Sketch for Theorem 4 (Leakage Security of Ascon)
	G Formal Definition of TEDTSponge and Its muCIML2 Security
	G.1 Definition of TEDTSponge/S2P
	G.2 Idealizing S2P
	G.3 Unforgability of the Idealized S2P

	H Proof Sketch for Leakage Security of ISAP
	H.1 Leakage-resilience of ISAPRK (sketch)

	I Black-box CCA Security of TETSponge and TEDTSponge
	I.1 CCA with misuse-resilience
	I.2 muCCAm$ security of our modes
	I.3 Proof of Theorem 7 (TETSponge)
	I.4 Proof of Theorem 8 (TEDTSponge)

