
An Intelligent Multiple Sieve Method Based on
Genetic Algorithm and Correlation Power

Analysis

Yaoling Ding1, An Wang2,3(�), and Siu Ming YIU4

1 Department of Computer Science and Technology, Tsinghua University, Beijing
100084, China

dyl13@mails.tsinghua.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
wanganl@bit.edu.cn

4 Department of Computer Science, The University of Hong Kong, Hong Kong, China
smyiu@cs.hku.hk

Abstract. Correlation power analysis (CPA) is widely used in side-
channel attacks on cryptographic devices. Its efficiency mostly depends
on the noise produced by the devices. For parallel implementations, the
power consumption during the S-box operation contains information of
the whole intermediate state. When one S-box is analyzed by CPA, the
others are regarded as noise. Apparently, the information of the remained
S-boxes not only is wasted, but also increases the complexity of analysis.
If two or more S-boxes are considered simultaneously, the complexity
of exhaustive search on the corresponding key words grows exponen-
tially. An optimal solution is to process all the S-boxes simultaneously
and avoid traversing the whole candidate key space. Simple genetic algo-
rithm was used by Zhang et al. to achieve this purpose. While, premature
convergence causes failure in recovering the whole key, especially when
plenty large S-boxes are employed in the target primitive, such as AES.

In this paper, we study the reason of premature convergence, and
propose the multiple sieve method which overcomes it and reduces the
number of traces required in correlation power attacks. Operators and
the corresponding parameters are chosen experimentally with respect to
a parallel implementation of AES-128. Simulation experimental results
show that our method reduces the number of traces by 63.7% and 30.77%
compared to classic CPA and the simple genetic algorithm based CPA
(SGA-CPA) respectively when the success rate is fixed to 90%. Real ex-
periments performed on SAKURA-G confirm that the number of traces
required to recover the correct key in our method is almost equal to the
minimum number that makes the correlation coefficients of correct keys
outstanding from the wrong ones, and is much less than classic CPA and
SGA-CPA.

Keywords: Multiple sieve · Genetic algorithm · Correlation power anal-
ysis · Parallel implementation · AES.



1 Introduction

Side-channel analysis plays an important role in evaluating the performance
of cryptographic devices. Many efficient methods are proposed with respect to
it, such as correlation power analysis (CPA) [3], template attack [5], collision
attack [20], mutual information analysis [7], and so on. Correlation power anal-
ysis [3] is a classic approach in the scope of statistical power analysis against
cryptographic devices. It improves the former works [12, 17] and inspired many
new approaches [13, 23]. A leakage model based on Hamming distance was pro-
posed in that approach. The correlation coefficients between power samples and
Hamming distances of intermediate states were calculated to identify the cor-
rect key. This leakage model was also applied to partial bits amongst a machine
word, when the candidate key space (determined by the architecture of the de-
vice) was too large to be searched exhaustively. Experimental results showed
that the correlation coefficients decreased significantly and the number of power
traces increased a lot in the partial leakage model.

In recent years, artificial intelligence (AI) technology is widely used in side-
channel analysis. In 2011, machine learning was firstly used for side-channel anal-
ysis by Hospodar et al. [11]. Least square support vector machine was employed
to classify intermediate bit value in comparison to template attack. Later, Ler-
man et al. [14] introduced profiling attacks based on three different algorithms,
namely random forest, support vector machine (SVM) and self-organizing maps.
Each of the attack outperformed template attack when applied on triple data
encryption standard. In 2012, multi-class SVM was used to deal with the attack
on multi-bit value (Hamming weight model) [9]. It is improved by Bartkewitz et
al. [2] with a new multi-class classification strategy. SVM was also used as a pre-
processing tool for feature selection in the same approach. In 2013, Lerman et al.
[15] performed an attack requiring only partial knowledge for profiling. A method
based on neural network was proposed by Martinasek et al. [16] to recover the key
of AES with only one trace in the same year. Bartkewitz [1] introduced leakage
prototype learning for profiled differential side-Channel cryptanalysis in 2016.
Cagli et al. [4] conducted an profiling attack based on convolutional neural net-
works and data augmentation techniques to deal with jitter-based countermea-
sures. In 2017, Picek et al. [18] proposed a hierarchical classification approach for
side-channel analysis. Resistance of lightweight ciphers to side-channel analysis
was evaluated by Heuser et al. [8] using various machine learning attacks. Pa-
rameters involved in side-channel analysis based on machine learning algorithms
were studied in [19]. Besides, machine learning algorithms were also employed to
design countermeasures against side-channel analysis [21]. And Tsague at al. [22]
introduced a method combining side-channel analysis and machine learning tech-
niques to recover malware program executed on a smart card. So far, almost all
machine learning based power analysis are profiling attacks.

While, Zhang et al. [23] introduced a non-profiling AI-based power analy-
sis employing simple genetic algorithm to turn the key searching problem into
an correlation coefficient optimization problem. The authors claimed that their
method (SGA-CPA) was applicable to various cryptographic algorithms imple-
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mented with parallel S-boxes. However, our experiments show that when SGA-
CPA is confronted to ciphers with plenty large S-boxes, such as AES-128, pre-
mature convergence occurs, i.e., the evolution of candidate key population stops
before recovering all the key words.

1.1 Our contributions

In this paper, we take AES [6] for instance to illustrate the premature conver-
gence phenomenon and propose our solution to the problem. Our contributions
are:

– Multiple sieve method. We analyze the reason of premature convergence
for SGA-CPA when conducted to cryptographic algorithms with plenty large
S-boxes. Based on the theoretical explanation for that the correct key words
obtained by each execution of SGA-CPA are random, a method called mul-
tiple sieve (MS-CPA) was proposed taking advantage of the outputs of SGA-
CPA to sieve all the correct key words. We apply this method to AES-128
implemented in an 128-bit architecture and compare it with classic CPA and
SGA-CPA. Experimental results show that our method overcomes premature
convergence and requires less traces than the other two methods.

– Operators and parameters customization of SGA-CPA. Operators
and parameters used in genetic algorithms have huge influences on the effi-
ciency. Unlike the problems generally processed by genetic algorithms, the
correlation coefficient optimization problem discussed in this paper involves
S-box operation, which makes SGA-CPA inapplicable inside a key word.
In order to cover the candidate key word space as much as possible, we
initial the population with a large number of individuals. Operators are
customized and adjusted to work on these particular populations and indi-
viduals. The corresponding parameters are determined experimentally with
regard to complexity and efficiency.

1.2 Organization

The remainder of this paper is organized as follows. Sect. 2 starts with an
overview of classic CPA and SGA-CPA along with their imperfections. The the-
oretical explanation of our method is given afterwards. In Sect. 3, the multiple
sieve method is put forward. Sect. 4 describes the operators customized for our
method in detail, and the corresponding parameters are determined according
to experimental results. Comparisons of MS-CPA, SGA-CPA and classic CPA
based on simulated and real experiments are exposed in Sect. 5. We conclude
this paper in Sect. 6.

2 Preliminary

2.1 Correlation Power Analysis

Correlation power analysis [3] is a statistical side-channel attack based on the
dependency between power consumptions of cryptographic devices and the Ham-
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ming distances of intermediate states with regard to some reference ones. In the
method, a leakage modelW = aH(D⊕R)+b was presented to define the relation-
ship between the power consumption W and the Hamming distance H(D⊕R),
in which a was a scalar gain depending on the circuit and b enclosed offsets, time
dependent components and the noises produced by the device. The correlation
coefficient between W and H was calculated using the formula:

ρW,H =
cov(W,H)

σWσH
.

Attacks were conducted on cryptographic devices by scanning the candidate
values of key exhaustively and ranking them by the corresponding correlation
coefficients. The correct key was the one that maximized (minimized if a is
negative) ρW,H . A partial correlation coefficient ρW,Hl/m

was also derived by
applying the leakage model to l independent bits amongst an m-bit machine
word. The ratio of the two correlation coefficients was

ρW,Hl/m

ρW,H
=

√
l

m
.

For cryptographic algorithms implemented in devices with a large machine
word, the partial correlation coefficient was used to recover the key word by
word, known as divide and conquer, in order to avoid searching all the 2m can-
didate keys which was usually unpractical. Note that the correlation coefficient

was reduced by
√

l
m , and there required more power traces to reduce the noise

produced by the remaining (m− l) bits.

2.2 CPA Based on Simple Genetic Algorithm

In 2015, Zhang et al. [23] proposed a method basing on an observation that the
correlation coefficients between the intermediate states and the power consump-
tions were related to the number of correct key words in a parallel implementa-
tion: the more correct key words, the higher the correlation coefficient. There-
fore, they transformed the problem of searching correct key into the problem of
optimizing correlation coefficients of candidate keys, and introduced SGA-CPA
which combined CPA with simple genetic algorithm to solve it.

Simple genetic algorithm is a basic approach of genetic algorithms [10], which
are a group of probabilistic optimization methods based on the model of natural
evolution. In genetic algorithms, there are several basic concepts:

– Individual and Fitness. The potential solutions to an optimization prob-
lem are called individuals. The objective function is defined as fitness func-
tion which is used to evaluate the fitness of an individual.

– Population and Generation. A population is a group of individuals, which
are initialized randomly. After the initialization, the population is modified
by three basic operators in a loop until some termination criterion is reached.
Each run of the loop is called a generation.
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The three operators and their major functions are:

– Selection. An operator intends to improve the average fitness of the popu-
lation by giving individuals of higher fitness a higher probability to be copied
into the next generation.

– Crossover. An operator exchanges bit strings between two selected individ-
uals (called parents) with probability pc, in order to generate new solutions.

– Mutation. An operator enables genetic algorithms to generate new bit
strings by altering one or a few bits randomly in an individual with a low
probability pm.

In SGA-CPA, the candidate keys were defined as individuals, and the correla-
tion coefficient produced by the intermediate states (encrypted by the candidate
key) was the fitness, formally defined as:

Fitness := Corr(Trace, Intermediate(Plaintext,Key guess)).

Algorithm 1 shows the implementation of SGA-CPA, denoted as SGA CPA
(Th gen,N, pc, pm).

Algorithm 1 CPA combined with simple genetic algorithm.

Input: threshold of generation Th gen, size of population N , probability of crossover
pc, probability of mutation pm.

Output: the optimal key Best key.
1: Pop := InitPopulation(N);
2: ComputeFitness(Pop);
3: found key := false;
4: i := 0;
5: while !found key or i < Th gen do
6: ChildPopulation := Φ;
7: for j := 0 to N/2 do
8: child1 :=Selection(Pop);
9: child2 :=Selection(Pop);

10: Crossover(child1, child2, pc);
11: Mutation(child1, pm);
12: Mutation(child2, pm);
13: Add(child1, child2, ChildPop);
14: end for
15: Pop := ChildPop;
16: ComputeFitness(Pop);
17: Best key :=MaxFitness(Pop);
18: i := i+ 1;
19: if Verify(Best key) = true then
20: found key :=true;
21: end if
22: end while
23: return Best key;
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2.3 Theoretical Explanation and Existing Problem of SGA-CPA

Assuming D is chosen randomly in W = aH(D ⊕ R) + b, consider an uniform
random variable D̂, of which l bits are consistent with D but the other m − l
bits are independent with it. Let Hl/m represent the Hamming distance between

the l bits of D̂ and R, and Ĥ(m−l)/m represent the other m − l bits. Denote

Ĥ = H(D̂⊕R), then we have Ĥ = Hl/m + Ĥ(m−l)/m. The correlation coefficient

between W and Ĥ is

ρW,Ĥ =
Cov(W, Ĥ)

σWσĤ
=
Cov(W,Hl/m) + Cov(W, Ĥm−l/m)

σWσĤ
.

Under the assumption that the m− l bits of D̂ are independent with D, we have
Cov(W, Ĥm−l/m) = 0. Since the variances of Hl/m and Ĥ are respectively l/4
and m/4, the correlation coefficient leads to:

ρW,Ĥ =
Cov(W,Hl/m)

σWσĤ
=
σHl/m

σĤ
× ρW,Hl/m

=
l

m
× ρW,H . (1)

Assume that m = l× n, and D̂ has l× i (i ∈ {0, 1, 2, ..., n}) bits consistent with
D, then the correlation coefficient between W and Ĥ is

ρW,Hil/m
=
l × i
m
× ρW,H =

i

n
× ρW,H . (2)

Taking each l bits as a word, we get that the correlation coefficient increases
with the number of correlated words, but is independent with their indexes. In
this approach, we take full advantage of this property and propose an efficient
method to gain the secret information by sieving and combining the correlated
words.

The existing problem of SGA-CPA. The mathematical foundation of ge-
netic algorithms is the schema theorem [10], which states that the number of
short, low-order and highly-fit schemas increases exponentially in the subse-
quent generations. The schemas mentioned in the theorem are defined as build-
ing blocks. In the process of genetic algorithms, the individuals with building
blocks are identified by selection operators and then combined by crossover op-
erators. New building blocks are generated by mutation operators. After plenty
of generations, more and more building blocks accumulate in the individuals
according to the schema theorem. Eventually, the best individual is obtained
and the genetic algorithm converges to the optimal solution. Obviously, building
blocks are critical factors in genetic algorithms.

In the correlation coefficient optimization problem, correct key words (cor-
responding to S-boxes) are building blocks. The more correct key words an in-
dividual has, the higher its fitness will be. However, since most S-boxes are
implemented with complicate bool functions, altering any bit of the input usu-
ally causes huge changes in the output. Even if a wrong guess has similar bit
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string to the correct key word, it still leads to uncorrelated relationship between
the power traces and the outputs of the corresponding S-box, i.e., its fitness is
similar to the other wrong ones. Hence, there exists no building block smaller
than a key word, which make SGA-CPA inapplicable inside a key word. For the
cryptographic algorithms that employed small or not so many S-boxes, for ex-
ample DES and SM4 studied in [23], SGA-CPA works well because it is easy for
the initial population to cover all the values of each key words or obtain them
by crossover and mutation before the algorithm converge. While, for AES-128
which has 16 8-bit S-boxes, SGA-CAP tends to converge prematurely, because
of the insufficient local searching inside each key words.

3 Multiple Sieve Method Based on Simple Genetic
Algorithm

In this section, we put forward the multiple sieve method aiming at overcoming
premature convergence of simple genetic algorithm when combined with CPA.
Our method is focused on the outputs of S-boxes implemented parallel.

According to equation 2, the fitnesses of individuals which have the same
number of correct key words are almost equal. A deduction is that the contribu-
tions of different correct key words to the fitness of an individual are independent
from each other, and are almost the same. As a consequence, the probabilities of
correct key words being recovered in an execution of SGA CPA() are nearly
equal to each other.

As discussed in Sect. 2.3, SGA CPA() converges before recovering all the
key words when applied to cryptographic algorithms with plenty of large S-
boxes. Nevertheless, several correct key words are obtained in each execution. By
collecting all the optimal individuals obtained by SGA CPA(), we eventually
gain all of the correct key words. The problem is how to sieve and combine them
to the whole key.

Fig. 1 describes our solution MS-CPA, in which SGA CPA() is executed
in a loop, and the correct key words contained in the optimal individuals are
sieved and combined until the whole key is recovered. In each loop, SGA CPA()
is executed on a new randomly initialized population. A container, denoted as
combine key, is initialized with the optimal individual obtained in the first loop.
In the subsequent loops, every key word in combine key is replaced by the opti-
mal individual of that loop one by one, and the fitness of combine key is recalcu-
lated. If the fitness is larger than the original one, combine key is updated with
the new key word. As a result, new correct key words are sieved and maintained
in combine key. The pseudo code of MS-CPA is shown in algorithm 2, denoted
as MS CPA (Th pop, Th gen,N, pt, pc, pm).

Assume the average number of correct key words obtained by SGA CPA()
is ncorrect and a key contains nword words. Then, the probability of a key word
being recovered is ncorrect/nword in one loop, and the probability of a key word
being unrecovered after npop loops is (1−ncorrect/nword)npop . Thus, the relation-
ship between the success rate Psuccess of MS-CPA and the minimum number of
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Fig. 1. Multiple sieve method.

Algorithm 2 Multiple sieve method.

Input: threshold number of populations (loops) Th pop, threshold number of genera-
tions Th gen, the size of a population N , the crossover probability pc, the mutation
probability pm.

Output: the optimal key Combine key.
1: found key := false;
2: i := 0;
3: while !found key or i < Th pop do
4: Candidate key := SGA CPA(Th gen,N, pc, pm);
5: if i = 0 then
6: Combine key := Candidate key;
7: else
8: Temp key := Combine key;
9: for j := 1 to nword do

10: Temp key[j] := Candidate key[j];
11: if Fitness(Temp key) <= Fitness(Combine key) then
12: Temp key[j] := Combine key[j];
13: else
14: Combine key[j] := Temp key[j];
15: end if
16: end for
17: end if
18: if Verify(Combine key)= true then
19: found key := true;
20: end if
21: end while
22: Return Combine key;
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loops is

Psuccess ≈ [1− (1− ncorrect
nword

)npop ]n. (3)

In order to improve the success rate, larger ncorrect and npop should be chosen
with regard to computation complexity.

4 Simple Genetic Algorithm Customized for MS-CPA

Operators and parameters are critical factors influencing the efficiency of genetic
algorithms. In this section, we customize the simple genetic algorithm used in
our method basing on theoretical analysis and experiments.

4.1 Operators Customization

There exist various schemes of the three operators in genetic algorithms. In our
method, the simple genetic algorithm is required to converge quickly and recover
key words as many as possible.

As discussed in Sect. 2.3, SGA-CAP is inapplicable inside a key word. Thus,
we intend to perform the simple genetic algorithm on a large population, which
is able to cover the value space of each keyword as much as possible. Several clas-
sic schemes, namely proportional selection, roulette wheel selection, truncation
selection and tournament selection are tested. With the number of individuals
growing, proportional selection and wheel selection are close to random selec-
tion. The searching abilities of tournament selection and truncation selection
are similar, but tournament selection converge more slowly. Eventually, trunca-
tion selection is employed in our method due to its outstanding performance in
handling large populations. It works with a parameter pt. Only the best N × pt
individuals can be selected, and have the same selection probability. Algorithm 3
shows the outline of this scheme, denoted as TruncSelection(Pop,N, pt).

Algorithm 3 Truncation selection scheme for SGA-CPA.

Input: a sorted population Pop, size of the population N , probability of truncation
pt.

Output: the selected individual C.
1: index := Random(1, N × pt);
2: C := Pop[index];
3: Return C;

For the crossover operation, we consider three basic schemes generally used
in genetic algorithms, namely single point crossover, multiple points crossover
and uniform crossover. However, all the three schemes have a drawback which
is breaking building blocks easily. In our problem, it is difficult to regener-
ate a building block, because SGA-CAP is inapplicable inside the key word.
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Hence, we customize a scheme for our method which maintains the building
blocks and combines them in new individuals by exchanging key words. Algo-
rithm 4 shows the pseudo code of the word-wise crossover, denoted as Word-
wiseCrossover(C1, C2, pc).

Algorithm 4 Crossover scheme for SGA-CPA.

Input: two individuals about to be recombine C1, C2, probability of crossover pc.
Output: two updated individuals C1, C2.
1: for i := 1 to nword do
2: p := Random(0, 1);
3: if p < pc then
4: temp := C1[i]; C1[i] := C2[i]; C2[i] := temp;
5: end if
6: end for
7: Return C1, C2;
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Fig. 2. The number of key words recovered by SGA CPA with different crossover
schemes (a) our word-wise crossover; (b) classic single point crossover.

We compare the single point crossover with our word-wise crossover experi-
mentally. For single point crossover, we test pc ∈ [0.1, 0.9] and pm ∈ [0.07, 0.14]
ranging by 0.1 and 0.005, respectively. For our scheme, we test pc ∈ [0.1, 0.5]
ranging by 0.05 and pm ∈ [0.07, 0.14] ranging by 0.005, considering that the re-
combination results of C1 and C2 are the same for pc and 1−pc. Fig. 2 shows the
comparison between single point crossover and word-wise crossover. The exper-
imental results show that the number of key words recovered by SGA CPA()
equipped with WordwiseCrossover() is much more than that with single point
crossover. Similar results can be obtained with the other two schemes, which are
omitted here.
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The mutation operation usually alters one or a few bits with a very small
probability pt. In our problem, it is mainly used to generate new building blocks.
Therefore, we customize a scheme that alters one bit randomly within the key
word. The pseudo code of word-wise mutation is given in Algorithm 5, denoted
as WordwiseMutation(C, pm).

Algorithm 5 Mutation scheme for SGA-CPA.

Input: the individual about to be mutated C, probability of mutation pm.
Output: the updated individual C.
1: for i := 1 to nword do
2: p := Random(0, 1);
3: if p < pm then
4: index := random(1, word size)
5: AlterBit(C[i], index);
6: end if
7: end for
8: Return C;

We replace Selection(), Crossover() and Mutation() in Algorithm 1 with
the three customized scheme above, and obtain the SGA CPA() employed in
our MS-CPA.

4.2 Parameters Selection

The parameters required to be determined for the three operators are the size
of population N , the truncation probability pt, the crossover probability pc and
the mutation probability pc. Discussing the four parameters simultaneously is
complicated, so we classify them into two sets: the selection related ones (N, pt)
and the generation related ones (pc, pm).

pc and pm are fixed to appropriate values when (N, pt) are studied. We test
N ∈ [50, 2000] rangeing by 50 and pt ∈ [0.1, 0.8] ranging by 0.1. For each couple
values of (N, pt), SGA CPA() is executed for 400 times on different populations
and the number of recovered key words ncorrect are collected and averaged for
every 10 generations. The experimental results are shown in Fig. 3, from which
we know that SGA CPA() converge after the 150th generation. Therefore, we
extract the data at the 150th generation, and exhibit the relationship between
ncorrect and (N, pt) in Fig. 4. For each value of N ∈ [450, 1000], ncorrect reaches
the highest value at pt = 0.4, which is highlighted by a red line in the figure. In
order to discuss the influence of N on ncorrect, we fix pt = 0.4, and exhibit their
relationship in Fig. 5. From this figure, we know that ncorrect increases along
with N , but slowly after N = 1000. Considering the computation cost, we chose
(N, pt)=(500, 0.4) in our method. In Sect. 5, N = 500 and N = 1000 are set for
SGA-CPA receptively to be compared with MS-CPA.

For (pc, pm), the tested values are mentioned in Sect. 4.2, which are pc ∈
[0.1, 0.5] ranging by 0.05 and pm ∈ [0.07, 0.14] ranging by 0.005. Similar to
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Fig. 3. The relationship between
ncorrect and the generations for differ-
ent values of (N, pt).
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Fig. 4. The relationship between ncorrect

and (N, pt) at the 150th generation.
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Fig. 5. The relationship between ncorrect and N with pt = 0.4 at the 150th generation.

(N, pt), experiments are repeated 400 times for each couple values, and ncorrect
in every 10 generations are collected and averaged. Fig. 6 shows the relationship
between ncorrect and (pc, pm), according to which the optimal choice for (pc, pm)
are (0.5, 0.12) and the corresponding ncorrect is 11.67.

The minimum number of populations (loops) npop can be estimated by equa-
tion 3 with a certain success rate Psuccess. While, due to the randomness of
simple genetic algorithm, the number of correct key words in optimal individu-
als obtained by SGA-CPA is unstable, so the threshold of populations Th pop
is worth to be discussed. We test Th pop ∈ [5, 100] ranging by 5. MS CPA()
is executed 400 times for each value. The numbers of populations are collected
and averaged for each execution. The success rates are calculated for each value
of Th pop. Fig. 7 shows the relationship among them. At Th pop = 35, we have
Psuccess = 90% and npop = 8.42. According to equation 3, npop is 3.89 when
ncorrect = 11.67 and Psuccess = 90%. The reason of the deviation is that the
contributions of different key words to the fitness of an individual are slightly
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different from each other in a certain experiment, which leads to some key words
being recovered more hardly.
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Fig. 7. The relationship among Psucess, Th pop and npop.

5 Experiments and Comparison

In this section, we take AES-128 implemented in a 128-bit architecture for in-
stance to verify the efficiency of our method. AES-128 is a block cipher that
employs a 8-bit S-box to handle the 16 bytes in a block. The plaintexts are
masked by a 128-bit white key before the first round. At the end of each round,
a 128-bit subkey is xored with the intermediate state. Our experiments are fo-
cused on the intermediate states after (before) the S-box operation of the first
(last) round.
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5.1 Simulation experiments

In the simulation experiments, the power consumptions of the S-box operations
are simulated by adding two kinds of noises whose standard deviations are σ =
3.0 and σ = 5.0, repectively.

We perform MS-CPA, SGA-CPA and classic CPA on the same group of
traces. The size of group is ranging from 10 to 1000. For MS-CPA, the parameters
are (N, pt, pc, pt, Th gen, Th pop) = (500, 0.4, 0.5, 0.12, 150, 35). For SGA-CPA,
two kinds of parameters are considered here: N = 500, Th gen = 150×35 = 5250
and N = 1000, Th gen = 150 × 35/2 = 2625, denoted as SGA-CPA 500 and
SGA-CPA 1000, respectively. Their success rates and computation costs are
displayed in Fig. 8 and Fig. 9. The computation cost is estimated as the average
number of calculations for correlation coefficients. The sorting costs in truncation
selection are ignored here. The numbers of traces required to achieve 90% success
rate are summarized in Tab. 1.
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Fig. 8. Comparison of MS-CPA, SGA-CPA with N = 500, 1000 and classic CPA for
σ = 3.0.
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Fig. 9. Comparison of MS-CPA, SGA-CPA with N = 500, 1000 and the classic CPA
for σ = 5.0.

The experimental results show that the success rate of our method is much
more than the other two methods, and the computation costs of MS-CPA are less
than SGA-CPA. For σ = 3.0, it is required 225 traces for MS-CPA to achieve 90%
success rate, the corresponding computation cost is about 0.75×106 calculations.
With the same number of traces, the success rates of SGA-CAP 1000 and SGA-
CPA 500 are about 63% and 49.5%, and the corresponding computation costs
are about 1.31× 106 and 1.74× 106 calculations, respectively. For σ = 5.0, it is
required 405 traces for MS-CPA to achieve 90% success rate, the corresponding
computation cost is about 0.60 × 106 calculations. With the same number of
traces, the success rates of SGA-CAP 1000 and SGA-CPA 500 are about 70.1%
and 55.7%, and the corresponding computation costs are about 1.04 × 106 and
1.57 × 106 calculations, respectively. The success rate of classic CPA is nearly
zero in both situations. Although the success rate of SGA-CPA can be improved
by extending the size of populations, it is still less than that of MS-CPA.
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Table 1. comparison of MS-CPA with SGA-CPA and classic CPA

Method
σ = 3.0 σ = 5.0

#Traces Reduction #Traces Reduction

Our MS-CPA 225 - 405 -

SGA-CPA 1000 280 19.64% 490 17.37%

SGA-CPA 500 325 30.77% 565 28.32%

CPA 620 63.70% 875 53.71%

5.2 Experiments on FPGA

For the real experiments, we encrypt random plaintexts with a fixed key using
AES-128 provided officially by SAKURA-G, and acquire 2000 power traces. Since
the registers are set before S-box operations, our experiments are focused on the
intermediate states before S-box operations of the last round and the ciphertexts.

Firstly, we calculate the correlation coefficients between the power traces and
the intermediate states which are obtained by decrypting the ciphertexts with
candidate keys that have i (i ∈ {0, 1, 2, ..., 16}) correct key words. Candidate keys
are chosen randomly, and the number of traces used to calculate the correlation
coefficients is ranging from 10 to 1000. The relationship between the correlation
coefficients and the number of traces is shown in Fig. 10. The blue lines indi-
cate the wrong keys, and the red one indicates the correct key. The saturation
of the blue lines helps to distinguish the candidate keys with different number
of correct key words: the less the correct key words, the lower the saturation.
Apparently, the blue lines with higher saturation have larger correlation coeffi-
cients, which implies that the more correct key words a candidate key has, the
larger correlation coefficient it leads to, and it is more and more obvious when
the number of traces increases. Besides, the red line corresponding to correct key
out stands from others when the number of traces is above 280, which indicates
that the minimum threshold for attacks based on correlation coefficients of the
whole key is 280.

Secondly, classic CPA is conducted on the same group of power traces. Simi-
larly, the size of the group is ranging from 10 to 1000. We calculate the correlation
coefficients corresponding to all the values of each key word. Fig. 11 shows the
experimental results of the one that requires the most number of traces to iden-
tify the correct value. The blue lines indicate the wrong guesses and the red one
indicates the correct guess. Obviously, the minimum number of traces required
for CPA to recover all the key words is depending on the one shown in Fig. 11,
which is 500. Therefore, the minimum threshold for attacks based on the corre-
lation coefficients of single key word is 500, which is 44% more than the one of
the whole key.

Finally, we perform MS-CPA and SGA-CPA on these traces. The fitnesses
of the best individuals obtained by every generation as well as the combined
ones are collected. Fig. 12 and Fig. 13 show the relationship between the fit-
nesses and the number of traces. The red line indicates the fitness of the correct
key. The blue one stands for the fitness of the combined individual in MS-CPA,
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Fig. 10. The relationship between cor-
relation coefficients and the number of
traces for different candidate keys.
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Fig. 11. The relationship between cor-
relation coefficients and the number of
traces for a single key word in classic
CPA.
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Fig. 12. The relationship between the
number of traces and fitnesses of the best
individuals in each generations as well as
the combined ones in MS-CPA.
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Fig. 13. The relationship between the
number of traces and fitnesses of the best
individuals in the first 150 and the last
generations in SGA-CPA.

and the best individual obtained by the last generation (5250th) in SGA-CPA,
respectively. The green ones indicate the fitnesses obtained by the first 150 gen-
erations in both methods. For MS-CPA, the blue line coincide with the red one
when the number of traces is above 280, which implies that MS-CPA nearly
reaches the minimum threshold of traces for attacks against the whole key. For
SGA-CAP, the blue line coincide with the red one when the number of traces
is above 340, which is 17.64% more than that of MS-CPA. Note that, at the
point Num traces = 540, the fitness of the best key obtained by SGA-CPA is
lower than the correct one. In fact, similar phenomenons occur almost in each
experiment of SGA-CPA at different points. The major reason is that SGA-CPA
converges before recovering all the key words, and the random local search based
on word-wise mutation is not effective enough to generate the correct one after
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the convergence. While, our method MS-CPA is not suffering from this problem.
This experimental results show that MS-CPA is robust to SGA-CPA.

6 Conclusion

In this approach, we discuss the imperfections of using simple genetic algorithm
to solve the correlation coefficient optimization problem, and put forward the
multiple sieve method which not only overcomes the premature convergence of
simple genetic algorithm when combined with CPA, but also reduce the number
of traces required in the power analysis on cryptographic algorithms implemented
with parallel S-boxes. Experimental results verify the efficiency and robustness
of our method, when compared to SGA-CPA and classic CPA. The number of
traces required in MS-CPA is nearly equal to the minimum threshold of traces
for power attacks against the whole key. Our approach extends the application
of genetic algorithms in power analysis.
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