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Abstract. In this paper, we recast state-of-the-art constructions for fully
homomorphic encryption in the simple language of arithmetic modulo
large Fermat numbers. The techniques used to construct our scheme are
quite standard in the realm of (R)LWE based cryptosystems. However,
the use of arithmetic in such a simple ring greatly simplifies exposition
of the scheme and makes its implementation much easier.
In terms of performance, our test implementation of the proposed scheme
is slower than the current speed records but remains within a comparable
range. We hope that the detailed study of our simplified scheme by the
community can make it competitive and provide new insights into FHE
constructions at large.

1 Introduction

Fully homomorphic encryption (FHE) is an extremely fascinating concept. It
aims at allowing any party to perform arbitrary computations on encrypted data
without giving them the ability to decrypt. The concept was initially proposed by
Rivest, Adleman and Dertouzos [RAD78] in 1978. For a long time it seemed to be
an inaccessible grail. However, in 2009, Gentry proposed the first viable approach
to FHE [Gen09] and invented the notion of bootstrapping which allowed him to
offer (at least in principle) the ability to perform computations of unlimited
depth.

In addition, Gentry explains in [Gen09] how to express the security of FHE
schemes. In fact, he describes how it can be reduced to the traditional notion of
semantic security. However, semantic security is often considered as insufficient
for regular cryptosystems and it is usually required to preserve security in the
presence of chosen ciphertext attacks (CCA). Unfortunately, it well-known that,
essentially by definition, FHE schemes cannot resist the strongest form of the
attacks, i.e., CCA2 attacks. Furthermore, when circular security is involved, even
CCA1 security is problematic. This is a complex issue and recent developments
(see [EHN+18]) provide innovative solutions to the problem.



Gentry’s original system is based on ideal lattices. In an attempt to sim-
plify the description of FHE, [vDGHV10] proposed another system based on the
hardness of approximate GCD computations that works by performing arith-
metic over large natural numbers. However, this conceptual simplicity goes with
a high computational cost. After the initial breakthrough of Gentry, many other
FHE systems were proposed, each offering new improvements in terms of key-
sizes and efficiency. Note that most of these systems are based on the hardness of
Learning-with-error (LWE) or Ring-LWE. Unfortunately, the gain in efficiency
comes with the cost of using more complex mathematical objects which can make
the underlying techniques harder to understand for a non-specialist audience.

In this paper, we propose to recast state-of-the-art FHE cryptosystems in the
simple language of arithmetic modulo a large Fermat number. In this language,
everything can be expressed in terms of numbers and their binary decompositions
which are familiar to a broad audience. As a consequence, we achieve a simplicity
of description close to FHE over the integers, and the system is easy to implement
by just using a large number library. To maintain the simplicity, we only aim
at semantic security for our proposal. In addition, despite the fact that our test
implementation is slower than the fastest available system of [CGGI18], it has
reasonably good performance.

1.1 Organization of the Paper

The paper is organized as follows. Section 2 describes the cryptosystem and its
founding principles. Section 3 studies its correctness. In Section 4, we discuss
cryptanalytic approaches and provide (hopefully) secure parameter choices.

Section 5 presents a basic experiment with a test implementation of the
system.

2 Description of the cryptosystem

We organize the description of our FHE cryptosystem in three subsections. The
first presents the system parameters and the general logic behind Fermat FHE.
The second describes the functionalities which involve the private key of the sys-
tem and are reserved to the key’s owner. Finally, the third subsection describes
the functionalities that involve encrypted data only and are intended for remote
use.

2.1 Parameters and principle of the system

The first parameter is the Fermat number which serves as the main modulus for
all computations:

F = 22
f

+ 1.



Since all numbers modulo F but −1 can be represented by 2f -bit integers,
we can choose to view them as juxtapositions of L = 2` blocks of H = 2h bits,
where `+ h = f. We remark 2LH ≡ −1 (mod F ).

As many FHE systems, we deal with noisy messages. In our case, the high
bits of each block are used to hold significant bits, while the low bits contain
noise. A fundamental identity that makes the system work is that given two bits
x and y , we have:

x+ y = 2(x ∧ y) + (x⊕ y).

Thus, if we can add the values of two bits as integers, or even as integers mod-
ulo 4, we are simultaneously computing an AND and a XOR gate. As a consequence,
any cryptosystem that offers the possibility to homorphically add integers mod-
ulo 4, has the potential to become fully homomorphic since AND and XOR form
a complete set of logical gates. However, after addition, the two resulting bits
are stuck together and we cannot directly apply other consecutive gates. In the
context of FHE, the idea that operations modulo 4 can be used to provide logical
gates appeared in [DM15].

In order to correct the issue of having the AND and XOR of x and y stuck
together, our system should provide the ability to extract them as separate bits.
At the same time, the extraction procedure has to maintain the noise level of
ciphertexts low enough to guarantee that consecutive gates operate properly.
This is essentially the same idea as the gate bootstrapping of [CGGI18]. How-
ever, since bootstrapping as introduced in [Gen09] can be much more complex
operation, we prefer for clarity’s sake to call it bit-extraction.

2.2 Owner’s functionalities (with secret key)

Private key generation. A private key of the system s is almost a randomly
selected bitstring of L bits. More precisely, we insist that at most half the bits
of s are set. This is easily done by generating s uniformly at random and by
replacing s by its bitwise complement if it doesn’t already satisfy the condition.
This only reduces the effective keysize by one bit while permitting a better
control of the noise during some operations on ciphertexts.

The individual bits are denoted si . Moreover, we associate to the key s an
integer S modulo F defined as:

S =

L−1∑
i=0

si2
iH .

By abuse of notation, we often refer to S as the private key of the system
and forget about the string s except when referring to the individual bits si .
We denote the number of bits set to 1 in s as Ns , i.e., we let Ns =

∑L−1
i=0 si.

Due to the constraint we have enforced when selecting s , we know that:

Ns ≤ L/2.



Encryption of zero. A noiseless encryption of zero would simply be a pair:

(A,AS (mod F ))

computed from a random integer A modulo F . Of course, from such a noiseless
encryption, it is easy to recover S – except for the trivial encryption (0, 0). To
prevent the recovery of S , we add noise E to the second component, resulting
in

(A, (AS + E) mod F ).

The noise is created in two steps. First, we create a vector e of L coordinates
which are taken independently from a probability distribution that we call the
noise distribution ê . Second, we compute:

E =

L−1∑
i=0

ei2
iH .

Knowing the private key, it is easy to create encryptions of zero and to test
whether a pair (A,B) is an encryption of zero. This is done by computing B−AS
(mod F ) and by verifying that it can be decomposed as a sum of the form:

L−1∑
i=0

ei2
iH ,

where the (signed) values ei are small enough to be compatible with ê .

Note that, by linearity, a sum of two encryptions of zero is also an encryption
of zero — with a slightly larger noise.

Concerning the noise distribution ê , we follow classical choices and two main
options are possible. We take either a uniform distribution on a small inter-
val around 0 or a discrete Gaussian distribution centered at zero and of small
variance.

Integer encryption. Given an integer M modulo F , we encrypt it by taking a
random encryption of zero (A,B) and by outputting (A,B +M).

Integer (approximate) decryption. To decrypt a pair (A,B), we simply compute
M̃ = B −AS (mod F ).

Note that the decryption M̃ of an encryption of M is equal to M +E where
E is the error used while encrypting M . As a consequence, M̃ is an approximate
or noisy decryption of M . In order to deal with exact values, we need to restrict
the space of messages and to use an encoding scheme that permits to remove
the noise after decryption. In the full system, we make use of two main coding
schemes which are described in the following paragraphs.



Encoding of bits or bit-vectors Messages. First, we choose a high-order bit posi-
tion to encode bit messages. Note that since we need at least one bit of margin to
compute AND gates, we cannot encode on the highest bit of each block. When en-
coding input to basic gates, the simplest choice is to use bit position bM = H−2.
For inputs used in a richer way, such as Mux control bits or bit-extraction keys,
the bits are encrypted with different (and possibly multiple) values of bM .

The choice of bM being given, the encryption of a bit x ∈ {0, 1} is simply an
encryption of the integer Mx = 2bMx . This puts the bit at position bM in the
lowest block of the encrypted message. To perform decryption, one computes the
approximate decryption M̃x and takes the closest integer to M̃x/2

bM . As long
as the noise remains smaller than 2bM−1 , the decrypted value is correct.

It is also easy to encrypt a vector of L bits in a single message. For this
purpose, we just define the message as:

Mx =

L−1∑
i=0

xi2
iH+bM .

We do not directly use this representation to encode bit vectors in the basic
scheme, even if it could potentially be useful for SIMD encodings. However, this
vector encoding is used during the bit-extraction procedure.

2.3 Remote functionalities (without secret key)

Integer addition. Given two encrypted integers, anyone can add then and obtain
an (approximate) encryption of their sum with a slightly larger noise than the in-
put encryptions. Given the encryption of two encoded bits (using the same value
for bM ), this, in particular, computes their sum modulo 4. As a consequence,
the resulting encrypted value contains both the XOR and AND of the input bits.
These bits can then be separated by the bit-extraction procedure that appears
below.

Mux gates. In order to implement the bit-extraction procedure, we need a sub-
routine that given an encrypted bit c and the encryption of two integers I0
and I1 produces another encryption of Ic , possibly with larger noise. Let the
encryption of I0 (resp. I1 ) be given as a pair (A(0), B(0)) (resp. (A(1), B(1))).
Remark that (A(2), B(2)) = (A(1)−A(0), B(1)−B(0)) is an encryption of I1−I0 .
We first compute (A(3), B(3)) an encryption of c(I1 − I0) and then output
(A(0) +A(3), B(0) +B(3)) as the final encryption of Ic = I0 + c(I1 − I0).

The computation of A(3) and B(3) is performed from a special encoding
of the bit c that we describe below. In order to do the computation, we first

decompose A(2) and B(2) in binary, denoting each individual bit as a
(2)
i and

b
(2)
i . We then regroup the bits according to their position inside of their block,

computing:

A
(2)
i =

L−1∑
j=0

a
(2)
jH+i2

jH ,



and similarly for B
(2)
i . Of course, we have:

A(2) =

H−1∑
i=0

A
(2)
i 2i and B(2) =

H−1∑
i=0

B
(2)
i 2i.

In addition, each of the numbers A
(2)
i and A

(2)
i are small according to the way

we express the size of noise. Indeed, in each block the value is either 0 or 1.
Because of this, the noise on the resulting encryption can be controled. A detailed
analysis of the noise is given in Section 3.

Assume now that we are given encryptions of 2ic in the form (Ki, Li) and
encryptions of −2icS in the form (Mi, Ni) for all i ∈ [0, H − 1], then we can
compute (A(3), B(3)) as:

A(3) =

H−1∑
i=0

B
(2)
i Ki +

H−1∑
i=0

A
(2)
i Mi and

B(3) =

H−1∑
i=0

B
(2)
i Li +

H−1∑
i=0

A
(2)
i Ni.

Indeed, if c is zero, this produces a sum of product of encryption of zeroes by
values which are small. Thus, in that case, we have an encryption of 0. When
c is one, the computation has two parts, a linear combination of multiples of
encryption of 0 as before and a message which is the linear combination with
the same coefficients of the message values of the combined ciphertext, i.e., the
message part is equal to:

H−1∑
i=0

B
(2)
i 2ic−

H−1∑
i=0

A
(2)
i 2icS

= c(B(2) −A(2)S).

This is precisely a reencryption of (c times) the (approximate) decryption of
(A(2), B(2)). Thus, this computation on the binary decomposition achieves the
desired functionnality. For completeness, the corresponding pseudo-code is given
as Algorithm 1.

Note: The creation of all the encryptions of the value 2ic and 2icS calls for
two important comments:

1. Since we know that (2A, 2B) is an encryption of the double of the value
encrypted in (A,B), one might wonder why we create all the encryptions of
2ic rather than just an encryption of c . This comes from the need to control
the resulting noise value. Indeed, every doubling of the encrypted value also
doubles the size of the noise. In truth, depending on the exact parameters of
the system and the analysis of the noise, only a fraction of these encryptions
of 2ic might be necessary. Also note that for small values of i , it is even



possible to remove the corresponding components from the computation of
(A(3), B(3)), since these contributions are submersed in the noise.

In summary, it is possible to reduce the size of an encrypted mux, at the
cost of degrading the noise propagation property. This leads to different
compromises for the system parameters.

2. It is interesting to remark that an encryption of −2icS can be built in two
distinct ways. One option is to add −2icS to the B -part of an encryption
of zero as for any encryption. The other is to add 2ic to the A-part of an
encryption of zero, resulting in the same distribution of outputs.

This could be important when the FHE system is used by more than two
parties. Indeed, it allows users without knowledge of the key S to encrypt a
mux-key of their choice. However, we need to provide them with a method
to construct encryptions with a small enough noise level to be used as Mux
keys. This would require specific adjustments to the system parameters.

Algorithm 1: Encrypted Mux Algorithm.

Input: Ciphertexts (A(0), B(0)) , (A(1), B(1))
Encrypted Mux c as (Ki, Li) and (Mi, Ni) for i in [0 · · ·H − 1]

Result: Re-encryption of (A(c), B(c))

1 (A(2), B(2))← (A(1) −A(0) (mod F ), B(1) −B(0) (mod F )) ;

2 if A(2) = F − 1 then A(2) ← 0;

3 if B(2) = F − 1 then B(2) ← 0;

4 Binary decompose A(2) as
∑LH−1

i=0 ai 2i ;

5 Binary decompose B(2) as
∑LH−1

i=0 bi 2i ;

6 (A(3), B(3))← (0, 0);
7 for i = 0 to H − 1 do

8 A ←
∑L−1

j=0 ajH+i 2jH+i ;

9 B ←
∑L−1

j=0 bjH+i 2jH+i ;

10 A(3) ← A(3) + BKi +AMi ;

11 B(3) ← B(3) + BLi +ANi ;

12 end

13 return (A(3) + A(0), B(3) + B(0))

Bit-extraction procedure. As mentioned in Section 2.1, one of the main function-
ality is the extraction of a bit from an encrypted message into a fresh encryption.
At the same time, this should limit the noise level as the new ciphertext. As a
result, the newly encrypted version of the bit can be used in further computa-
tions. Interestingly, this bit-extraction procedure can also change the encryption
and even the parameters of the system.



In the simplest setting, we directly use a circular encryption paradigm and
both sets are keys and parameters are identical. However, it is possible to use
the ability to change keys and parameters in variations of the system.

To make this explicit, thoughout the section, we denote by Fin , Lin , Hin and
Sin the parameters and key of the encrypted message (A,B) given as input.
Similarly, Fout , Lout , Hout and Sout are the parameters and key of the message
produced by the bit-extraction.

More precisely, we assume that we want to extract from (A,B) the bit x at
position bp in the lowest order block of the decryption. As a consequence, we
have:

B − SinA = Y 2bp+1 + x 2bp + ein (mod Fin)

with x ∈ {0, 1} . The value Y < Fin ·2−bp can be arbitrary (since we are ignoring
the values in other blocks) and ein denotes the error on the lowest block.

The goal is to produce a new encryption (Aout, Bout) such that:

Bout − SoutAout = Y ′ 2Hout + x 2bM + eout,

under the output key. The value Y ′ can be an arbitrary value Y ′ < Fout ·2−Hout .
Indeed, we only focus on the content of the lowest block of output. In order to
be able to re-use the new message in further operations, we need to bound the
error eout . Also note that the position bM doesn’t need to be the same as the
position bP and that the form of new encryption ensures that there are only
zeroes in the lowest order block above the encrypted bit in position bM .

As in [DM15], we rely on the use of an homomorphic accumulator in order
to simulate an approximation of the exact decryption process. More precisely,
as in [CGGI18], we perform this computation modulo 2bp+1 . The modulus is
chosen to remove the parasitical high bits contained in Y . Recall that the ex-
act decryption process would compute V = B − SinA (mod F ), then V0 = V
(mod 2Hin) and finally round V0/2

bp to the closest integer.

Decomposing A and B into their blocks as:

A =

Lin−1∑
i=0

Ai2
iHin and B =

Lin−1∑
i=0

Bi2
iHin ,

we can rewrite this as:

V0 = B0 −A0s0 +

Lin−1∑
i=1

AisLin−i + C (mod 2Hin),

where the value si are the bits of Sin and C is a carry value induced by reduction
modulo the Fermat number. Since the key Sin comes from a binary string, we
can bound C and write |C| ≤ Ns + 1. More precisely, here Ns denotes the
number of 1s in Sin and we have Ns ≤ Lin/2. In particular, this ensures that
|C| ≤ Lin . Note that the sign change between A0 and the others Ai also arises
from the reduction modulo Fin .



By design, V0 is equal to Y · 2bp+1 +x · 2bp +E0 , where x is the bit we want
to decrypt, bp the position where the bit is located and E0 is an additional term
that regroups ein , C and possibly message bits at a position below bP .

To decrypt the value of a XOR gate, it thus suffices to compute:

W0 = B0 −A0s0 +

Lin−1∑
i=1

AisLin−i (mod 2bP+1),

which is an approximation of V0 (mod 2bP+1), within C . If we assume that
|E0|+ |C| it smaller than 2bP−1 , then the bit x is the closest integer to W0/2

bP .

However, when decrypting the result of an AND gate, there is a bit at the
position immediately below corresponding to the XOR value. As a consequence,
W0/2

bP can close to 0, 1/2 or 1. The first two cases correspond to a 0 and the
last to a 1. Unfortunately, directly rounding 1/2 to the closest integer would lead
to an undefined result. To avoid this issue, we have two options. The simplest
(and slowest) approach is to start by extracting the XOR value, in the same bit
position as the original message bit. Subtracting this encryption of the extracted
XOR from the base encrypted message removes this bit. Once this is done, the
AND value becomes isolated and can be normally extracted. The drawback of
this approach is that it requires two consecutive bit-extractions, which slows the
computation down by a factor of two.

The second approach to extract an AND bit, is to perform a single extraction
where W0 is replaced by W ′0 = W0 − 2bP−2 before taking the highest bit. After
the subtraction, W ′0/2

bP is close to −1/4, 1/4 or 3/4. Thus, the closest integer
corresponds to the expected bit value in the three cases. The drawback here is
that the noise analysis becomes more difficult.

The key to performing modular computations with encrypted values comes
from [AP14], which embeds modular integers into a symmetric group. The idea
is simplified in [DM15], which makes use of roots of unity inside the ring of
polynomials they are using.

Basically, the idea is to use a rotating buffer containing 2bP+1 binary values.
Initially, the vector contains a value z0 at all positions closer to position 0 than
position 2bP and a value z1 in the other positions. This encrypted vector is then
rotated by an amount equal to W0 (or W ′0 = W0−2bP−2 ). The effect is to bring
one copy of the desired value zx in position 0 of the vector.

Implementing this idea within the FHE scheme requires some tricks. First,
since Sin needs to be kept secret W0 cannot be computed explicitly. Thus,
instead of rotating the buffer all at once, we proceed in an incremental way.
For each rotation by an offset AisLin−i , we rotate by Ai and use a multiplexer
operation keyed by an encrypted sLin−i to keep the rotated copy when sLin−i = 1
and the original otherwise.

The second trick allows to greatly reduce the cost by packing the rotating
buffer into a vector inside a single encrypted number. This fixes the size of the



rotating buffer to 2Lout . Indeed, a one-block rotation corresponds to multiplica-
tion by 2Hout and performing 2Lout such multiplications brings us back to the
original value modulo Fout . In other words, 2Hout is a 2Lout -th root of unity,
which allows us to proceeds as in [DM15].

In order to perform the computations modulo 2Lout instead of 2bP+1 , we
need to rescale all the numbers in the computation of W0 by a factor 2`out−bP

and round to the closest integer. This introduces some additional noise but the
principle remains the same and works as long as we control the size of the noise.
More precisely, assuming that `out ≤ bP we are thus computing:

W0 = bB0 − s0A0

2bP−`out
e+

Lin−1∑
i=1

b Ai
2bP−`out

esLin−i + (−2`out−2) (mod 2Lout),

where the parenthesized term −2`out−1 is only included when computing an
AND gate with the second method. The grouping of B0 − s0A0 inside a single
rounding might seem surprising at first; it can be easily achieved by applying
a Mux controled by s0 to select between a rotation by bB0 2`out−bP e and a
rotation by b(B0 −A0) 2`out−bP e

In addition, packing the rotating buffer into a single vector forces us to choose
z1 = −z0 . Indeed, we can only store values in the first Lout blocks, the other be-
ing implicitly defined by rotation by Lout blocks which multiplies by −1 modulo
the Fermat number.

If we choosez0 = −2bM−1 , the produced ciphertext contains a value equal
to (−1)x+1 2bM−1 in its lowest order block. Adding 2bM−1 to the B -part of the
ciphertext transforms this value into x 2bM as desired. In the pseudo-code given
in Algorithm 2, the initial of z0 and z1 in their respective blocks is done by
setting all blocks to 2bM−1 and applying a well-chosen (fixed) rotation in order
to have z0 around block 0.

Basic (circular) gates. With the bit-extraction at hand, applying the XOR and
AND gates is easy. We assume here that we are using the circular setting, with
the same key, parameters and message bit position for all encryptions.

Given encryptions of two bits x and y , placed at position bM , we simply
compute their sum and apply bit-extraction to obtain both the XOR and the AND

of x and y . The first method is to first extract an encrypted copy of the XOR

(using bP = bM ), subtract it from the original value and extract the AND value
(using bP = bM + 1).

The second method is to extract the AND, using bP = bM + 1 and the sub-
traction of 2bP−2 from W0 as explained above. Once an encrypted copy of the
AND is extracted, it suffices to subtract its double from the original sum to obtain
an encryption of the XOR bit. This leads to a higher noise value in the XOR but
computes both gates with a single extraction. If this optimization is used, it is
necessary to track the noise growth and apply bit-extraction on the XOR thus
obtained when the noise becomes critically large.



Algorithm 2: Bit-Extraction Algorithm.

Input: Ciphertext (A,B) , bit position to extract bP , Boolean IsIsolated,
new bit position bM
Encrypted Mux Description of all key bits si for i [0 · · ·Lin − 1] .

Result: Re-encryption of bit from position bP at position bM as (Aout, Bout)

1 Block decompose A as
∑Lin−1

i=0 Ai 2iHin ;

2 Block decompose B as
∑Lin−1

i=0 Bi 2iHin ;

3 (A′, B′)← (0,
∑Lout−1

i=0 2iHout+bM−1) ;

4 if IsIsolated then voffset ← 2`out−1 else voffset ← 2`out−2 ;

5 v0 ← b B0

2bP −`out
e+ voffset (mod 2Lout) ;

6 v1 ← b B0−A0

2bP −`out
e+ voffset (mod 2Lout) ;

7 (A(0), B(0))←
((

2v0Hout A′
)

mod Fout,
(
2v0Hout B′

)
mod Fout

)
;

8 (A(1), B(1))←
((

2v1Hout A′
)

mod Fout,
(
2v1Hout B′

)
mod Fout

)
;

9 (Aout, Bout)← Mux
(
s0, (A

(0), B(0)), (A(1), B(1))
)

;

10 for i = 1 to Hin − 1 do

11 v1 ← b Ai

2bP −`out
e (mod 2Lout) ;

12 (A(1), B(1))←
((

2v1Hout Aout

)
mod Fout,

(
2v1Hout Bout

)
mod Fout

)
;

13 (Aout, Bout)← Mux
(
sLin−i, (Aout, Bout), (A

(1), B(1))
)

;

14 end

15 return (Aout, (Bout + 2bM−1) mod Fout)

Also note that the NOT gate is very easy to compute. If (A,B) is an encryption
of x at position bM then (A, 2bM −B (mod F )) is an encryption of x̄ = 1− x .
Moreover, this operation does not increase the noise level.

We thus have a complete set of gates and can perform universal computations
with circuits of arbitrary depth. In addition to the optimization presented above,
many others are possible. It is also possible to directly compute additional gates
without needing to expand them in terms of the basic gates. We give examples
in the Appendix.

3 Details and analysis of remote functionalities

In this section, we study in details the noise value that arise from the remote
functionalities performed with the secret key. The analysis can be done with
two scenarii in mind. We either request an absolute guarantee that the errors
always stay small enough to permit correct decryption. With this first scenario,
the natural choice of noise distribution is the uniform distribution in an interval
around zero. This gives an upper-bound on the initial noise level and the goal
of the analysis is to provide similar upper-bounds on the noise of subsequent
ciphertexts.



Alternatively, we can allow a vanishingly small probability of error during
computation in order to get smaller parameters for the system. With this sce-
nario, the natural choice of noise distribution is a discrete Gaussian around 0
with given variance. Unfortunately, this second scenario requires assumptions
about the distribution of errors resulting from all computations on ciphertext.
Essentially, it needs to assume that every resulting noise follows a Gaussian (or
sub-Gaussian as in [AP14]) distribution, with some bound on its variance and
that the all the resulting noise values behave like independent variables. With
this assumption, when noises are added, a bound on the variance of the sum is
obtained by summing the bounds on the variances of the summands. The expec-
tations can also be added to get the expectation of the sum (but these are usually
all equal to zero). If the allowed error for correctness is many standard devia-
tions away, we obtained a very small (and effectively computable) probability
of getting an erroneous result. However, being heuristic, this approach presents
some risks and also leads to a complex analysis in order to obtain concrete prob-
abilities of erroneous computation. Unfortunately this approach is necessary to
obtain optimized parameter choices offering a reasonable efficiency for the FHE
scheme.

Also, note that, in both cases, noise analysis is done assuming that all com-
putations are honesting performed. Indeed, it is extremely simple for a dishonest
remote user to add arbitrary noise of any magnitude to the ciphertexts he com-
putes. Furthermore, any information about these ciphertexts leaked by the secret
owner could fully compromise the system. However, since, as discussed in the in-
troduction, we only consider semantic security, we will not consider these attacks
any further.

3.1 Analysis of Mux

In order to perform this analysis, it simpler to explicitly compute the decryption
of the resulting ciphertext and to give the exact formula for the output error. In
order to do this, let’s assume that the inputs satisfy:

B(i) −A(i)S ≡ Ii + Ei (mod F ) for i = 0, 1,

Li −KiS ≡ 2ic+ Fi (mod F ) for i = 0 · · ·H − 1, and

Ni −MiS ≡ −2icS + Gi (mod F ) for i = 0 · · ·H − 1.

A(3) =

H−1∑
i=0

B
(2)
i Ki +

H−1∑
i=0

A
(2)
i Mi and

B(3) =

H−1∑
i=0

B
(2)
i Li +

H−1∑
i=0

A
(2)
i Ni.



With these notations, we have:

B(3) −A(3)S ≡
H−1∑
i=0

B
(2)
i (Li −KiS) +

H−1∑
i=0

A
(2)
i (Ni −MiS)

≡
H−1∑
i=0

B
(2)
i (2ic+ Fi) +

H−1∑
i=0

A
(2)
i (−2icS + Gi)

≡ c(B(2) −A(2)S) +

H−1∑
i=0

B
(2)
i Fi +

H−1∑
i=0

A
(2)
i Gi

≡ c(I1 − I0 + E1 − E0) +

H−1∑
i=0

B
(2)
i Fi +

H−1∑
i=0

A
(2)
i Gi (mod F )

After adding back (A(0), B(0)), we obtain a message that decrypts exactly to:

Ic + Ec +

H−1∑
i=0

B
(2)
i Fi +

H−1∑
i=0

A
(2)
i Gi.

Thus, if the maximum error values in each block of Ei , Fi and Gi (for all
relevant i) are respectively bounded by Emax , Fmax and Emax , the error on
blocks of the final message is bounded by:

Emax +HLFmax +HLGmax.

With the (sub)Gaussian modelling of errors, we need to sum variances instead
of bounds in the above formula.

3.2 Correctness of bit-extraction

As seen in the description of the bit-extraction procedure, exact decryption of
the low-order block computes

V0 = b0 − a0s0 +

L−1∑
i=1

aisLin−i + C (mod 2B),

with a carry C such that |C| ≤ Ns + 1.

By design, V0 is equal to x ·2bp +E0 , where x is the bit we want to decrypt,
bp the position where the bit is located and E0 some error term.

During bit-extraction of an isolated bit, i.e. a XOR or an AND with the first
method, we extract from the rotating buffer the value in position:

W0 = bB0 − s0A0

2bP−`out
e+

Lin−1∑
i=1

b Ai
2bP−`out

esLin−i (mod 2Lout),



The extracted value is correct, if and only if, bW0/Loute = x . This is equiv-
alent to checking that the total accumulated error is smaller than 2`out−1 .

Since every rounding induces an error of at most 1/2 in absolute value, the
total error is:

Ns/2 + (|E0|+ |C|)/2bP−`out .
Since we enforced the private key S to contain at most 50% of 1s during key
generation, we have Ns/2 ≤ 2`in−2. Thus, if `out ≥ `in , the extracted value is
correct as long as:

|E0| ≤ 2bP−2 − |C|2`out−bP · ≤ 2bP−2 − 2`in+`out−bP .

In particular, if we choose the parameters to satisfy `in + `out ≤ 2bP − 3 then it
suffices to have |E0| ≤ 2bP−3 . In the standard circular case, since bP is either
bM or bM + 1 and `in = `out = `, it suffices to require ` ≤ bM − 2.

However, this reasoning isn’t sufficient when applying the second method to
compute an AND gate. Indeed, the subtraction of 2`out−2 introduces an extra
error term which added to the above bound on the rounding error is enough to
corrupt bit values. There are several ways out of the problem:

1. Use a larger value for `out than for `in to get additional margin. This can
be costly because of the use of larger parameters. In addition, it requires a
keyswitch procedure (see the Appendix) to convert back to the input pa-
rameters.

2. Make the key sparser, for example choosing Ns ≤ Lin/4. This is easy to
implement but makes the security analysis harder in order to account for
the possibility of dedicated attacks on sparse keys.

3. Provide a better bound on the rounding error. This is not possible directly
since the bound is tight for specifically constructed ciphertexts. However, at
runtime, the implementation knows the rounding error on each of the Lin

terms of W0 . Since the global error is a sum of at most Lin/2 of these terms,
it suffices to compute the sum of the Lin/2 largest positive terms (or of all
positive terms if there are fewer than that) and a similar sum for the largest
negative terms (taken in absolute value). The largest of these values gives a
concrete runtime upper bound.
On average, we expect this runtime bound to be of the order of Lin/8 (instead
of Lin/4 for the basic bound). This provides enough margin to permit bit-
extraction with a somewhat stricter bound on |E0| . For example, if the
parameters satisfy `in + `out ≤ 2bP − 4 then the updated bound becomes
|E0| ≤ 2bP−4 . For an AND gate in the circular case, since bp is bM + 1, the
condition ` ≤ bM − 2 is left unchanged.
Note that, in the rare event where bit-extraction is declared unsuccessful
due to a rounding error bound being too large, it is possible to re-randomize
the ciphertext by adding some encryption of zero and restart the procedure.
Alternatively, one can also use the first method to recover from these rare
error cases. Since bit-extraction fails very rarely, the additional computation
cost is negligible when considering the global cost of the circuit computation.



4. We can go further in this direction by giving a probabilistic bound on the
accumulated rounding error with the (sub)Gaussian model. Indeed, if we
assume that the rounding errors are uniform and independent, the sum of Ns
of them is a subgaussian distribution with a relatively small variance. Under
these assumptions, we expect the concrete error magnitude to be even smaller
than the worst-case bound for the isolated bit case. Using this approach
makes the code simpler since there is no need to compute a concrete bound
during the homomorphic computation. However, as we already mentionned,
the analysis becomes messier and relies on unproven hypotheses about the
distributions of errors. Yet, this approach is necessary to provide optimized
parameters.

3.3 Noise on Extracted Result

The noise after the bit-extraction process comes from a succession of Lin Mux
applied to a noiseless initial value. As a consequence, it is equal to the sum of
noise introduced by each Mux.

The exact value of the bound on the sum greatly depends on which encrypted
value of the form 2isj and −2isjS are provided for each key bit sj . One extreme
case is to assume that encryptions are provided for all powers 2i with a noise
bound εkey then the total noise after bit-extraction is bounded by:

2LinHoutLoutεkey.

At the other extreme, we may only be given the encryptions of 2Hout/2sj
and −2Hout/2sjS , again with a noise bound εkey . In that case, all the terms
with i < Hout/2 in the Mux sums are removed, which induces an error equal to
2isj . Furthermore, terms with i > Hout/2 make use of scalings of the provided
encryption and the noise is also scaled. Thus, the total error is bounded by:

2Lin2Hout/2 (1 + Loutεkey) .

4 Security Evaluation and parameters

In section, we give a short analysis of known attacks that work on related systems
and explain how to choose parameters to rule out basic adaptations of these
attacks to our proposal. Of course, further cryptanalytic scrutiny by independent
teams is necessary to give confidence in the system and quantify its security more
precisely.

4.1 The underlying hard problems

Before going into the analysis of the attacks, we first state the hard problem(s)
that underly Fermat FHE. More precisely, we focus on the distinguishing prob-
lems. In fact, we can state two distinct problems depending on whether we give
out the full value of the B -part or just its low-order block.



Full encryptions of zero. The main problem on which the system relies is the
hardness of distinguishing between encryptions of zero (with some given noise
distribution) and purely random pairs of numbers. Equivalently, the adversary
is given access to one of the two following black-boxes and needs to distinguish
them. The first box simply generates pairs of uniform independent random num-
ber (A,B) modulo F . The second box contains a binary key s and generate
pairs (A,AS + E) where E is picked from a fixed noise distribution known to
the adversary.

Truncated encryptions of zero. Another problem related to the system is the
same distinguishing problem where the second component of each pair is reduced
to its low-order block. I.e., instead of providing B each box releases B (mod 2H)
for some fixed small H .

Any adversary with non-negligible advantage against this second problem
can be adapted easily to solve the first one. Indeed, it suffices to truncate the
provided samples to their low-order block on the B -part and apply the given
distinguisher.

However, the converse is unlikely to hold. Indeed, the second problem presents
similarities to LWE while the first is similar to RLWE.

4.2 Ruling out combinatorial attacks

Given an encrypted message, finding the corresponding noise value is enough
to recover the secret key. Of course, directly guessing a secret candidate also
suffices. As usual, a birthday algorithm performs better than exhaustive search
and allows key recovery. If quantum algorithms are taken into account, a third-
root time algorithm is expected.

To estimate the security level, we assume that the best combinatorial attack
works in third-root of the minimum of the key space and noise space.

As a consequence, since the main parameters are powers of 2, for a 128-bit
security level, we need at least L = 512 blocks; for a 256-bit security level, the
minimum becomes L = 1024 blocks. With the third-root attack rule-of-thumb,
this is even overkill.

In any case, these choices seem sufficient to rule-out any possiblity of a direct
combinatorial attack.

4.3 Lattice-based attacks

There are lots of possible lattice-based attacks that have been proposed on
(R)LWE systems. For our system, one can directly from an encryption (A,B) of



zero express the recovering of the secret key s and error e as a lattice problem
by looking for the short solutions of the equation:

B −
∑

i = 0L−1si2
iBA ≡

∑
i = 0L−1ei2

iB (mod F ).

Another possibility given many encryption (Ai, Bi) of zero is to build a
distinguisher by first finding a short solution of:∑

xiAi ≡ 0 (mod F )

and then checking whether
∑
xiBi (mod F ) contains small values in its basis

2H -decomposition.

In both cases, we consider a lattice of determinant F and want to obtain
vectors of norm shorter than 2H . We now give a general analysis of the cost of
lattice attack sharing these parameters.

Let L be a general lattice of determinant F and dimension d . We want
to estimate the cost of finding a short vector of norm at most 2H . There are
several models to perform such estimates, a survey in the context of LWE is
given in [APS15]. These models predict, for an arbitrary δ > 1, the runtime to
find a vector of norm F 1/dδd .

The simplest is the Lindner-Peikert model [LP11] which predicts that the
logarithm (in basis 2) of the running time (expressed in seconds on a 2.3 GHz
computer) is:

1.8

log2 δ
− 110.

This simple model is described as too optimistic in [APS15]. The paper also
give a slightly more complex quadratic model which approximates the logarithm
of the running time by:

0.009

log2 δ
− 27,

For a fixed δ , the quantity F 1/dδd is minimized at d =
√

logF/ log δ. In
order to have the value at this point to be smaller than 2H , we need:

2
√

log2 F log2 δ ≤ H.

Thus, we require:

log2 δ ≤
H2

4 log2 F
=

H

4L
.

As a consequence, assuming that a single short vector is enough, the cost of a
lattice attack is:

either
7.2L

H
− 110 or

0.144L2

H2
− 27,

depending on the model we are using.



Since L/H is by construction a power of 2, the number of options is very
restricted. We see that both models predict that L/H = 16 should be easy to
attack. They also agree that L/H = 32 provides a security level of about 120
bits; possibly a bit more if we consider the number of repetitions necessary for
the distinguishing attack and the fact that runtime is given in seconds. With
L/H = 64, the estimates are respectively above 350 and 500; either of them
should rule out all lattice attacks.

It should be noted that there is a complete family of estimates for the cost
of lattice reduction depending on the type of algorithms and/or machine that
are used. Many of those are covered in [APS15]. However, with the two simple
models in agreement, it is reasonable to consider the choices L/H = 32 or
L/H = 64 for cryptographic parameters.

4.4 Arora–Ge style algebraic attacks

In order to consider algebraic attacks in the style of [AG11] on our scheme, we
need to express our knowledge about the key S and the noise in encryptions
as algebraic equations. Of course, each of the L key bits satisfies s2i = si . In
addition, assuming that the noise level is at most ε , i.e., that every component
of the noise vector belongs to [−ε · · · ε] , we see that the components of the noise
all satisfy the degree-2ε + 1 equation

∏ε
i=−ε(x − d) = 0. Furthermore, every

encryption of zero gives a linear relation between the bits of the key and the L
chunks of noise in the encryption.

We now make the paranoid assumption that the attacker is able to write
down every chunk of noise as a linear expression of the key bits. Note that we
do not know how to achieve this goal in our system. With this assumption,
every encryption of zero gives an extra degree 2ε + 1 equation about the key
bits. Moreover, every monomial in these equations is square-free, thanks to the
s2i = si relations.

As a consequence, after collecting enough encryptions of zero, it is possibly to
linearize the system of equations and solve a linear system in

(
L

2ε+1

)
unknowns.

Assume that we choose ε to be proportional to L , i.e., ε = εL , then asymptoti-
cally, since linear algebra is super-quadratic, the cost is more than 22H(2ε)L where
H is the entropy function defined by H(x) = −x log2 x−(1−x) log2(1−x). With
ε = 0.025, this cost is already higher than the cost of combinatorial algorithms.

Note. It is easy to write linear relations involving a sum of the noise and
the addition carry from the previous block using formulas similar to the ones
used in the bit-extraction procedure. However, writing similar equations without
the carries seems much more difficult. As a consequence, thanks to the presence
of carries, it might possible to use noise components in the restricted range
{−1, 0, 1} , without compromising the security against algebraic attacks. This
is especially useful for the noise involved in the encryption of key-bits that are
provided for the bit-extraction procedure. Since there is only a limited supply of
such encryption, it seems that choosing εkey = 1 can be a viable option, especially



for optimized parameters. Studying the exact cryptanalytic consequences of such
a choice is an interesting topic for future research.

4.5 Unoptimized parameters

To design an unoptimized set of parameters, we choose them to satisfy the
bounds that guarantee that the errors never become too large, in a way com-
patible with the security analysis. We consider the case L/H = 64. This leads
us to the choice H = 64, L = 4096 and εkey = 128. As a consequence, we get a

very large Fermat number 22
18

+ 1 and a slow system.

4.6 Optimized parameters

For optimization, we restrict ourselves to L/H = 32 and we rely on the carry
propagation as protection against the Arora-Ge style attack, restricting the noise
level when encrypting key-bits to εkey = 1. For input data, a much larger noise
level can be used.

Basically, two main parameters choices are possible. The first choice is H =
16 and L = 512, which leads to a quite small Fermat number 22

8192

+ 1. Unfor-
tunately, with the choice, the system is functional only using the first method
for the bit-extraction of an AND gate. Furthermore, it is necessary to provide all
encryptions 2isj which makes the bit-extraction key quite large and also slows
down the bit-extraction because of the number of multiplications which become
necessary for each Mux.

The second choice is H = 32 and L = 1024 together with the Fermat
number 22

65536

+ 1. This is similar to the TRGSW parameters of [CGGI18].
Note that in contrast with this system, we prefer to provide a single parameter
set; as consequence of that is that the key S contains twice as many bits which
slows the computation by a factor of 2. With this choice, the system remains
functional with second method for AND gates given only encryptions of 216sj
(and −216sjS ) as bit-extraction key.

5 Test implementation

In order to test the system, we have implemented the computation of the mini-
mum of two 16-bit numbers as already proposed on the THFE website tutorial
found at https://tfhe.github.io/tfhe/coding.html.

We made all the experiments on a Intel Core i7–7700HQ at 2.8GHz. With
THFE code, the timings are highly dependent on the FFT library which is
used. With the fastest and very optimized library (Spqlios using FMA), the
full homomorphic computation is done in 0.8 second. With the Nayuki FFT



library, the runtime is much higher, 7.6 seconds with the portable version and
3.3 seconds with the AVX version.

With the parameter set H = 32 and L = 1024, which is comparable to TFHE
parameters, a pure GMP implementation of the arithmetic takes 16.2 seconds
to perform the homomorphic computation of the minimum. With an approxi-
mate multiplication based on a portable implementation of the NTT (see the
Appendix) the time is reduced to 9.4 seconds. As we mentioned above, since
the key S has twice as many bits in our case, this slows our system down by
a factor of two. Making the key sparser to reduce its size accordingly indeed
reduces the time to 8.1 seconds with the GMP version and 4.7 seconds with the
NTT version. We thus see that the results are comparable to the Nayuki version
of TFHE.

In addition, let us mention the timings for the parameter set H = 16 and
L = 512. They are respectively 19.3 seconds for the pure GMP implementation
and 13.4 seconds for the NTT version. So despite the reduced size of the Fermat
number, it is unfortunately much slower.

It remains to be seen how further our test implementation can be optimized
by rewriting an approximate multiplication using a very fast FFT algorithm.
However, it is likely than further effort, possibly with better parameter selection
might considerably improve the performance of Fermat FHE.

6 Conclusion

In this paper, we propose an instantiation of FHE, inspired by existing systems
but relying on the simple ring of integers modulo a Fermat number. The use of
this simple ring allows to describe the system in more widely accessible terms
and to hide many implementation details for the mathematical description of the
system. Further study of the security and of advanced implementation techniques
for this Fermat FHE system is necessary in order to further optimize it and to
get a precise comparison with other systems.

Researching further variations allowing more functionalities is also a promis-
ing direction for the future. We provide additional information in the Appendix.
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Possible variants and extensions

Approximate multiplication modulo F

In the description of the system, we use multiplication modulo F everywhere.
However, a noisy multiplication which leads to invalid low-order bits in some
blocks suffices. This can be easily achieved by multiplying polynomials modulo
smaller power of two. For example, given two numbers A =

∑L−1
i=0 ai2

iH and

B =
∑L−1
i=0 bi2

iH , we can compute the product of A(X) =
∑L−1
i=0 aiX

i and



B(X) =
∑L−1
i=0 biX

i modulo H2 and modulo XL + 1. If C(X) denotes the
result of this multiplication, then C(2H) is an approximation of AB (mod F ).

This multiplication of polynomials can be performed with fast NTT or FFT-
based algorithms. Furthermore, the number of FFT/NTT computations can be
limited by keeping encrypted key bits in their FFT form.

Key switching

We already know that the bit-extraction procedure can be used with distinct
input and output keys and parameters. However, the output parameter Lout

cannot be smaller than Lin . As a consequence, we need a way to move back from
a larger parameter set to a smaller one. This can be done using a key switching
similar to the one in [AP14]. Furthermore, this key-switching procedure cleans
up the obtained ciphertext by zeroizing all blocks of decrypted value expect the
low order one.

As in the bit-extraction procedure, we want to compute a reencryption of:

b0 − a0s0 +

L−1∑
i=1

aisi

If we decompose each ai in binary, we just need to add/subtract encryptions
of 2jsi (with the new parameters) corresponding to bits set to 1. We can omit
from the sum any input bit position that is outside of the output block-size.

For this key-switch procedure, the output block-size cannot be larger than
the input block-size, otherwise, the high order bits in the decryption would be
unpredictable.

Note that this key-switch procedure can also be used in a circular version
to clean up the ciphertext keeping only the lowest order block and zeroizing
the others. It is important to remark that this procedure is much faster than
bit-extraction since it doesn’t require the long sequence of Mux operations.

Ciphertext compression

In the textbook description of the system, every encryption is a pair (A,B) of
numbers modulo F . However, during homomorphic computation only the low-
order block of B is needed. Thus, ordinary ciphertext can be reduced by almost
a factor of two by only keeping the low-order block B0 .

For the encrypted key bits used in the bit-extraction process, the situation
is different. Indeed, the value of B is required to perform the Mux operation
correctly. However, it is possible in that case (as mentioned in [CGGI18]) to
compress the A part of the encrypted key by generating all the A-values that
are needed from pseudo-random generator. They can thus be compressed by
just giving out the seed of the generator. Again, this leads to a compression by
almost 2.



Sparse or structured keys

In order to speed-up the bit-extraction, we need to limit the number of Mux that
are required. Since each key-bit requires a Mux, this can be achieved by using
sparser keys. For example, if we only have non-zero key-bits at even position,
the number of Mux operations is halved.

Alternatively, we can structure the key to have a single bit set to 1 in an
adjacent pair of key-bits at position 2i and 2i+1. This also reduces the number
of Mux to L/2 instead of L .

The impact of such sparse or structured keys on security needs to be studied
deeper.

Other gates

In addition to the AND and XOR gates, arithmetic modulo 4 can easily be used to
compute other binary gates. It is also possible to compute gates with more than
two inputs. For example, given three bits x , y and z , x + y + z (mod 4) is a
two-bit number with the XOR of x , y and z as low-order bit and the majority
as high order bit.

Other moduli

In addition to using Fermat numbers, the system can be adapted to pseudo-
Fermat or pseudo-Mersenne number of the form 2HL±1, where H is not neces-
sarily a power of 2. It is preferable to keep a power of 2 for L since bit-extraction
requires computation modulo powers of 2. However, if key-switching is used, this
is not even necessary. Allowing these options would provide finer-grained param-
eters choices allowing to better tune the performance/security ratio.

Using an even wider variety of numbers such as QL±1 might even be possible.
However, the possible gains are less clear.


