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Abstract

Murphy, Murky, Mopey, Moody, and Morose decide to write a paper together over the
Internet and submit it to the prestigious CRYPTO’19 conference that has the most amazing
PC. They encounter a few problems. First, not everyone is online every day: some are lazy and
go skiing on Mondays; others cannot use git correctly and they are completely unaware that
they are losing messages. Second, a small subset of the co-authors may be secretly plotting to
disrupt the project (e.g., because they are writing a competing paper in stealth).

Suppose that each day, sufficiently many honest co-authors are online (and use git correctly);
moreover, suppose that messages checked into git on Monday can be correctly received by honest
and online co-authors on Tuesday or any future day. Can the honest co-authors successfully
finish the paper in a small number of days such that they make the CRYPTO deadline; and
perhaps importantly, can all the honest co-authors, including even those who are lazy and those
who sometimes use git incorrectly, agree on the final theorem?
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1 Introduction

The “synchronous” model is one of the most commonly studied models in the past 30 years of
distributed computing and cryptography literature. In the synchronous model, it is assumed that
whenever an honest node sends a message, an honest recipient is guaranteed to have received it
within a bounded delay ∆, and the protocol is aware of the maximum delay ∆.

We love the synchronous model because it allows us to achieve robustness properties that would
otherwise be impossible. For example, assuming synchrony, we can achieve distributed consensus
even when arbitrarily many nodes may be malicious [12]. In comparison, it is well-known that if
message delays can be arbitrarily long [13], consensus is impossible in the presence of 1

3 fraction of
corrupt nodes.

On the other hand, the synchrony assumption has been criticized for being too strong [4, 31]:
if an honest node ever experiences even a short outage (e.g., due to network jitter) during which
it is not able to receive honest messages within ∆ delay, this node is now considered as corrupt.
From this point on, a consensus protocol proven secure under a synchronous model is not obliged
to provide consistency and liveness to that node any more, even if the node may wake up shortly
afterwards and wish to continue participating in the protocol. Similarly, as soon as P has even a
short-term outage, a multi-party computation (MPC) protocol proven secure under a synchronous
model is not obliged to provide privacy for party P ’s inputs — for example, some protocols that aim
to achieve fairness and guaranteed output would now have the remaining online parties reconstruct
P ’s secret-shared input and thus P loses its privacy entirely.

We stress that this is not just a theoretical concern. Our work is in fact directly motivated
by conversations with real-world blockchain engineers who were building and deploying a fast
cryptocurrency and pointed out what seems to be a fatal flaw in a blockchain protocol [33] that
was proven secure in the classical synchronous model: even when all nodes are benign and only a
few crash in a specific timing pattern, transactions that were “confirmed” can be “undone” from
the perspective of an honest node who just experienced short-term jitter possibly unknowingly (see
Section A for a detailed description of this real-world example).

Not only so, in fact to the best of our knowledge, all known classical-style, synchronous consensus
protocols [3, 20, 27] are underspecified and unimplementable in practice: if a node ever experiences
even a short-term outage and receives messages out of sync, these protocols [?, 20, 27] provide no
explicit instructions for such nodes to join back and continue to enjoy consistency and liveness!

Of course, one known solution to this problem is to simply adopt a partially synchronous [13]
or asynchronous [7] model. In a partially synchronous or asynchronous model, a short-term outage
would be treated in the same way as a long network delay, and a node that is transiently offline will
not be penalized. For this reason, partially synchronous (or asynchronous) protocols are known to
be arbitrarily partition tolerant; while synchronous protocols are not. Unfortunately, as mentioned,
partially synchronous or asynchronous protocols can tolerate only 1/3 fraction of corruptions!

Can we achieve the best of both worlds, i.e., design distributed computing protocols that resist
more than 1/3 corruption and meanwhile achieve a practical notion of partition tolerance?

1.1 Definitional Contribution: A “Weak Synchronous” Network

At a very high level, we show that synchrony and partition tolerance are not binary attributes,
and that we can guarantee a notion called “best-possible partition tolerance” under a quantifiable
measure of synchrony. To this end, we propose a new model called a χ-weakly-synchronous network.
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A natural but overly restrictive notion. One natural way to quantify the degree of synchrony
is to count the fraction of nodes that always respect the synchrony assumption. For example, we
may want a distributed computing protocol to satisfy desired security properties (e.g., consistency,
liveness, privacy), as long as more than χ fraction of nodes are not only honest but also always
have good connectivity (i.e., bounded ∆ delay) among themselves. This model, however, is overly
restrictive especially in long-running distributed computing tasks such as a blockchain: after all, no
node can guarantee 100% up-time [2], and over a few years duration, it could be that every node
was at some point, offline.

χ-weak-synchrony. We thus consider a more general model that allows us to capture network
churn. We now require only the following:

[χ-weakly-synchronous assumption:] In every round, more than χ fraction nodes are not only
honest but also online; however, the set of honest and online nodes in adjacent rounds need
not be the same.

Throughout the paper we use the notation Or to denote a set of at least bχnc + 1 honest nodes
who are online in round r — henceforth Or is also called the “honest and online set of round r”.
Note that the remaining set [n]\Or may contain a combination of honest or corrupt nodes and an
honest node in [n]\Or is said to be offline in round r.

We assume that the network delivery respects the following property where multicast means
“send to everyone”:

[network assumption:] when a node in Or multicasts a message in round r, every node in Ot
where t ≥ r + ∆ must have received the message in round t.

We allow the adversary to choose the honest and online set of each round (even after observing
the messages that honest nodes want to send in the present round), and delay or erase honest
messages, as long as the above χ-weak-synchrony and network delivery constraints are respected.
For example, the adversary may choose to delay an honest but offline node’s messages (even to
online nodes) for as long as the node remains offline. The adversary can also selectively reveal an
arbitrary subset of honest messages to an honest and offline node.

Therefore, our weak synchrony notion can be viewed as a generalization of the classical syn-
chronous notion (henceforth also called strong synchrony). In a strongly synchronous network, it
is required that the honest and online set of every round must contain all honest nodes.

We ask whether we can achieve secure distributed computing tasks under such a χ-weakly-
synchronous network. With the exception of liveness (or guaranteed output) which we shall
discuss shortly, we would like to guarantee all security properties, including consistency and privacy,
for all honest nodes, regardless of whether or when they are online/offline. Defining liveness (or
guaranteed output) in the χ-weakly-synchronous model, however, is more subtle. Clearly we cannot
hope to guarantee liveness for an honest but offline node for as long as it remains offline. Therefore,
we aim to achieve a “best-effort” notion of liveness: a protocol has T -liveness iff for any honest
node that becomes online in some round r ≥ T , it must have produced output by the end of round
r.

The challenges. We are faced with a few apparent challenges when designing distributed pro-
tocols secure under χ-weak-synchrony. First, the online nodes may change rapidly in adjacent
rounds. For example, if χ = 0.5 and everyone is honest, the honest and online sets belonging to
adjacent rounds can be almost disjoint. Second, we stress that offline nodes may not be aware they
are offline, e.g., a DoS attack against a victim’s egress router clearly will not announce itself in
advance. Further, the adversary can selectively reveal a subset of messages to offline nodes such
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that they cannot detect they are offline from the protocol messages they receive either. Because of
these facts, designing protocols in our χ-weakly-synchronous model is significantly more challenging
than the classical synchronous model (or even the above restrictive model where we may assume a
sufficiently large set of honest and persistently online nodes).

1.2 Results: Consensus in a Weakly Synchronous Network

We consider the feasibility and infeasibility of achieving Byzantine Agreement (BA) in a χ-weakly-
synchronous network. In a BA protocol, a designated sender has an input bit that it wants to
convey to all other nodes. We would like to achieve the following guarantess for all but a negligible
fraction of executions: 1) consistency, i.e., all honest nodes must output the same bit; 2) validity,
i.e., if the designated sender is honest and online in the starting round (i.e., round 0) of the protocol,
every honest node’s output (if any) must agree with the sender’s input bit; and 3) T -liveness, i.e.,
every node in Or where r ≥ T must have produced an output by the end of round r. Note that
if the designated sender is honest but offline initially, the protocol cannot make up for the time
lost when the sender is offline — thus validity requires that the sender not only be honest but also
online in the starting round.

As mentioned, we are primarily interested in protocols that tolerate more than 1/3 corruptions
since otherwise one could adopt a partially synchronous or asynchronous model and achieve arbi-
trary partition tolerance. To avoid a well-known lower bound by Lamport et al. [23], throughout
the paper we will assume the existence of a public-key infrastructure (PKI).

Impossibility when minority are honest and online. Unfortunately, we show that it is
impossible to have a χ-weakly-synchronous consensus protocol for χ < 0.5− 1/n, i.e., if the honest
and online set of each round contains only minority number of nodes (and this lower bound holds
even assuming any reasonable setup assumption such as PKI, random oracle, common reference
string (CRS), or the ability of honest nodes to erase secrets from memory). The intuition for the
lower bound is simple: there can be two honest well-connected components that are partitioned
from each other, i.e., the minority honest nodes inside each component can deliver messages to
each other within a single round; however messages in between incur very long delay. In this case,
by liveness of the consensus protocol, each honest well-connected component will reach agreement
independently of each other. We formalize this intuition later in Section 4.

Best-possible partition tolerance. Due to the above impossibility, a consensus protocol that
achieves consistency, validity, and liveness under 0.5-weak-synchrony is said to be best-possible
partition tolerant.

A refinement of synchronous consensus. First, it is not hard to see that any best-possible
partition tolerant Byzantine Agreement (BA) protocol (i.e., secure under 0.5-weak-synchrony) must
also be secure under honest majority in the classical, strong synchronous model. On the other
hand, the converse is not true. Interestingly, we examined several classical, honest-majority BA
protocols [3,20,27,33] and found none of them to satisfy best-possible partition tolerance. In this
sense, our notion of best-possible partition tolerance can also be viewed as a refinement of classical
honest-majority BA, i.e., we can tease out a proper subset of honest-majority BA protocols that
satisfy good-enough partition tolerance in practice — and we strongly recommend this robust subset
for practical applications.
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Round-efficient, best-possible partition tolerant BA. Of course, to show that our notion is
useful, we must show existence of a best-possible partition tolerant BA that is efficient; and this
turns out to be non-trivial.

Theorem 1.1 (Informal). Assume the existence of a PKI and enhanced trapdoor permutations.
Then, there exists an expected constant-round BA protocol secure under 0.5-weak-synchrony.

Note that here, expected constant-round means that there is a random variable T whose ex-
pectation is constant, such that if an honest node becomes online in round r ≥ T , it must have
produced an output in round r.

We additionally show how to extend the above result and construct a best-possible partition
tolerant BA protocol that is optimistically responsive [33]: specifically, under the following opti-
mistic conditions, the honest and online nodes in O will produce an output in O(δ) amount of time
where δ is the actual maximum network delay (rather than the a-priori upper bound ∆):

O := “there exists a set O containing at least 3n/4 honest and persistently online nodes, and
moreover, the designated sender is not only honest but also online in the starting round”

Corollary 1.2 (Informal). Assume the existence of a PKI and enhanced trapdoor permutations.
Then, there exists an expected constant-round BA protocol secure under χ-weak-synchrony; more-
over, if the optimistic conditions O specified above also holds, then the honest and online nodes in
O would produce output in O(δ) time where δ is the actual maximum network delay.

Classical, corrupt-majority BA protocols inherently sacrifice partition tolerance. As is
well-known, in the classical, strongly synchronous model, we can achieve BA even when arbitrarily
many nodes can be corrupt. We show, however, the set of corrupt-majority protocols are disjoint
from the set of best-possible partition tolerant protocols. Not only so, we can show that the more
corruptions one hopes to tolerate, the less partition tolerant the protocol becomes. Intuitively, the
lower bound is simple because in a corrupt majority protocol, a minority honest well-connected
component must independently reach agreement among themselves in a bounded amount of time;
and obviously there can be two such components that are disconnected from each other and thus
consistency among the two components is violated (with constant probability).

This simple observation, however, raises another philosophical point: if we adopted the classical
synchronous model, it would be tempting to draw the conclusion that corrupt-majority BA is
strictly more robust than honest-majority BA. However, we show that one must fundamentally
sacrifice partition tolerance to trade for the ability to resist majority corruption and this tradeoff
is, unfortunately, inherent.

1.3 Results: MPC in a Weakly Synchronous Network

We next consider the feasibility of realizing multi-party computation in a χ-weakly-synchronous
network. Imagine that n parties would like to jointly evaluate the function f(x1, . . . , xn) over their
respectively inputs x1, x2, . . . , xn such that only the outcome is revealed and nothing else. Again,
a couple of subtleties arise in formulating the definition. First, one cannot hope to incorporate the
inputs of offline nodes if one would like online nodes to obtain outputs quickly. Thus, we require that
at least bχnc+1 number of honest nodes’ inputs be included and moreover, every honest node who
has always been online throughout the protocol should get their inputs incorporated. Concretely,
we require that the ideal-world adversary submit a subset I ⊆ [n] to the ideal functionality, such
that I ∩ Honest ≥ bχnc + 1 where Honest denotes the set of honest nodes, and moreover I must
include every honest node who has been online throughout the protocol. Henceforth, the subset I
is referred to as the “effective input set”:
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• for every i ∈ I that is honest, the computation should use node i’s true inputs;

• for every i ∈ I that is corrupt, we allow the ideal-world adversary to replace the input to any
value of its choice; and

• for every i /∈ I, the computation simply uses a canonical input ⊥ as its input.

Second, the notion of guaranteed output must be treated in the same manner as liveness for BA
since we cannot hope that honest but offline nodes can obtain output for as long as they remain
offline. We say that an execution of the multi-party protocol completes in T rounds, iff for any
honest node in Ot where t ≥ T , it must have produced an output by the end of round t.

Under the above definition, we prove the following theorem (informally stated):

Theorem 1.3 (Informal). Assume the existence of a PKI, enhanced trapdoor permutations, and
that the Learning with Errors (LWE) assumption holds. Then, there is an expected constant-round
protocol that allows multiple parties to securely evaluate any function f under 0.5-weak-synchrony.

We further extend our results in a non-trivial manner and and achieve optimistically responsive
MPC in Section B.

1.4 Additional Related Work

We compare with additional related work in this section. As mentioned, known classical-style,
synchronous consensus protocols are underspecified and unimplementable in practice. To the best
of our knowledge, the only known synchronous consensus (tolerating minority Byzantine fault) that
has been deployed is Nakamoto’s blockchain [15, 28–30], which was the first longest-style protocol.
Subsequent works [10,11,21,31,34] have shown how to remove the Proof-of-Work assumption and
yet emulate the stochastic process of Nakamoto consensus. Pass and Shi [30, 31] were the first to
observe that in fact, this class of protocols can be proven secure in a so-called sleepy model that
is more relaxed model than classical synchrony. Unlike classical synchrony which treats only those
who have always been online since the very beginning as honest, the sleepy model allows an honest
node to join late as well as have short-term outages and later join back. Pass and Shi [30,31] show
that known longest-chain-style consensus protocols can achieve consistency and liveness, as long
as at any time, among the online nodes, the majority (possibly measured by compute-power) are
honest — obviously such protocols also achieve security under strong synchrony assuming honest
majority.

Although both the sleepy model and our work allow honest nodes to join late or have temporary
outages, the two models are in fact mutually exclusive. The reason is that the sleepy model requires
progress even if only 1% of the anticipated number of nodes show up — such protocols are henceforth
said to be availability-favoring. Pass and Shi [30,31] formally prove that such availability-favoring
protocols cannot be partition tolerant. In this paper, we explore a consistency-favoring model
instead where we favor consistency over availability under network partitions. Intuitively, a minority
partition should prefer to get stuck rather than risking inconsistency with the majority.

2 Technical Roadmap

The most technically non-trivial part of our result is how to realize Byzantine Agreement (BA)
under 0.5-weak-synchrony. Existing synchronous, honest-majority protocols [20,27] completely fail
in our model. Since the honest and online set can change rapidly in every round, it could be
that by the end of the protocol, very few or even no honest nodes have been persistently online,
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and everyone honest was offline at some point. In other words, it could be that from the view
of every honest node, message delivery was asynchronous at some point in the protocol. Indeed,
interestingly many of our core techniques are in fact reminiscent of asynchronous consensus rather
than synchronous approaches.

Although at a very high level, we follow a well-known recipe that constructs BA from a series
of building blocks:

Reliable Broadcast (RBC) ⇒ Verifiable Secret Sharing (VSS)
⇒ Leader Election (LE) ⇒ Byzantine Agreement (BA)

as it turns out, for all these building blocks, even how to define them was non-trivial: the definitional
subtleties arise partly due to the new χ-weakly-synchronous model, and partly due to compositional
issues.

2.1 Reliable broadcast (RBC)

Reliable broadcast. Reliable broadcast (RBC) allows a designated sender to convey a message to
other nodes. The primitive can be viewed as a relaxed version of BA: assuming 0.5-weak-synchrony,
RBC always guarantees the following for all but a negligible fraction of executions:

1. Consistency: if two honest nodes output x and x′ respectively, it must be that x = x′. In
fact, for technical reasons that will become clear later, we actually need a strengthening of
the standard consistency notion, requiring that an efficient extractor can extract the value
that honest nodes can possibly output, given honest nodes’ transcript in the initial T rounds
of the protocol.

2. Validity: if the sender is honest, then honest nodes’ output must be equal to the honest
sender’s input;

3. T -liveness (under an honest and initially online sender): if the sender is not only honest but
also online in the starting round, then every node in Ot where t ≥ T must have produced an
output by the end of round t;

4. Close termination: if any honest node (even if offline) produces and output in round r, then
anyone in Ot where t ≥ r + 2∆ must have produced an output by the end of round t too.

Interestingly, note that the T -liveness property is reminiscent of classical synchronous definitions
whereas the close termination property is reminiscent of asynchronous definitions.

Weakly synchronous RBC construction. At a very high level, our RBC construction combines
techniques from classical synchronous “gradecast” [14,20] and asynchronous “reliable broadcast” [6,
7]. We defer the concrete construction to Section 5; the construction is constant round, i.e., achieves
T -liveness where T = O(1).

2.2 Verifiable secret sharing (VSS)

Verifiable secret sharing (VSS) allows a dealer to share a secret among all nodes and later be able
to reconstruct the secret. We propose a new notion of (a computationally secure) VSS that is
composable and suitable for a 0.5-weakly-synchronous network. Somewhat imprecisely, we require
the following properties:
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• Binding (formally referred to as Validity in Section 6.2). Standard notions of VSS [7] require
that the honest transcript of the sharing phase binds to the honestly reconstructed secret.
For technical reasons needed later in the proof of the Leader Election (LE), we require a
stronger notion: an efficient extractor E , knowing honest nodes’ public and secret keys, must
be able to extract this secret from the honest transcript during the sharing phase, and later
the honestly reconstructed secret must agree with the extractor’s output.

• Secrecy and non-malleability. If the dealer is honest, then the shared value must remain secret
from the adversary before reconstruction starts. Not only so, we also need a non-malleablity:
an adversary, after interacting in VSS instances each with an honest dealer, cannot act as a
dealer in another VSS instance and share a secret that is related to the honest secrets.

• Liveness. For liveness, we require that if the dealer is honest and online in the initial round
of the sharing phase, for t ≥ T , everyone in Ot must have output “sharing-succeeded”.
Even when the dealer is corrupt or initially offline, if any honest node (even if offline) ever
outputs “sharing-succeeded” in some round r, then everyone in Ot where t ≥ r+ 2∆ must
have output “sharing-succeeded” by the end of round t. If some honest node has output
“sharing-succeeded”, then reconstruction must be successful and will terminate in T rounds
for honest and online nodes.

Just like the RBC definition, our VSS definition also has both synchronous and asynchronous
characteristics.

Weakly synchronous VSS construction. Informally our construction works as follows:

• Share. In the starting round of the sharing phase, the dealer secret splits its input s into
n shares denoted s1, s2, . . . , sn using a (bn/2c+ 1)-out-of-n secret-sharing scheme. It then
encrypts the share sj to node i’s public key pkj using a public-key encryption scheme — let
CTj be the resulting ciphertext. Now, the node proves in zero-knowledge, non-interactively,
that the ciphertexts CT1, . . . ,CTn are correct encryptions of an internally consistent sharing
of some secret — let π denote the resulting proof. Assuming PKI and honest majority, we
can realize a Non-interactive Zero-Knowledge Proof (NIZK) system (without CRS) using a
technique called multi-string honest majority NIZK proposed by Groth and Ostrovsky [18]
(see Section C.1). Finally, the dealer invokes an RBC instance (henceforth denoted RBC0)
to reliably broadcast the tuple (sid , {CTj}j∈[n], π) to everyone — here sid denotes the cur-
rent instance’s unique identifier and this term is needed here and also included in the NIZK
statement for compositional reasons.

Suppose that the RBC scheme employed satisfies Trbc-liveness. Now in round Trbc (assuming
that the starting round is renamed to round 0), if a tuple has been output from the RBC0

instance with a valid NIZK proof, then reliably broadcast the message “ok”; otherwise reliably
broadcast the message ⊥ — note that here n instances of RBC are spawned and each node i
will act as the designated sender in the i-th instance. Finally, output “sharing-succeeded”
iff not only RBC0 has output a tuple with a valid NIZK proof but also at least bn/2c+ 1 RBC
instances have output “ok” — note that at this moment, the node (denoted i) can decrypt its
own share s′i from the corresponding ciphertext component contained in the output of RBC0.

• Reconstruct: If the sharing phase has output “sharing-succeeded” and moreover the recon-
struction phase has been invoked, then node i multicasts the decrypted share s′i as well as a
NIZK proof that the decryption was done correctly (in a way that is consistent with its public
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key). Finally, as soon as bn/2c+ 1 decryption shares with valid NIZK proofs are received,
one can reconstruct the secret.

2.3 Leader election (LE)

A leader election (LE) protocol is an inputless protocol that allow nodes to elect a leader denoted
L ∈ [n] among the n nodes1. For the outcome of LE to be considered “good”, we want that not
only every honest node must agree on the leader, but also that this leader belongs to Or for some
a-priori known round r — jumping ahead, later in our BA protocol, everyone would attempt to
propose a value during this round r and the proposal of the elected leader will be chosen.

Intuitively, we would like that the LE achieves a good outcome with O(1) probability. Our
actual definition turns out to be tricky due to compositional issues that arise due to multiple LE
instances sharing the same PKI. We would like that even when multiple LE instances share the
same PKI, roughly speaking, almost surely there is still independent constant probability that each
individual instance’s outcome is good. In formal definition (see Section 7), we will precisely specify
which subset of honest coins that are freshly chosen in each LE instance allow us to capture this
desired independence. Note that this independence property is desired because later in our BA
protocol, we need to argue that after a bounded number of trials, an honest leader must be elected
except with negligible probability.

Weakly synchronous LE construction. Our LE protocol is in fact inspired by the asynchronous
leader election protocol by Canetti and Rabin [7]. Since our LE construction is rather technical,
we explain a high-level intuition here while deferring the full protocol to Section 7. The idea is
for everyone i to choose n coins denoted ci,1, . . . , ci,n ∈ F, one for each person. All these coins
will be committed to using a VSS protocol such that corrupt nodes cannot choose their coins after
seeing honest coins. Each person j’s charisma is the product of the coins chosen for him by at
least bn/2c+ 1 others, i.e.,

∏
i∈Dj ci,j where Dj ⊆ [n] and |Dj | ≥ bn/2c+ 1 — in this way, at

least one in Dj is honest and has chosen a random coin. In our protocol, every person j will
announce this set Dj itself through an RBC protocol. Ideally we would like nodes to agree on a set
of candidates that contain many nodes in Or for some r, and elect the candidate with the maximum
charisma (lexicographically) from this set — unfortunately at this moment we do not have Byzantine
Agreement yet. Thus we must accomplish this task without reaching agreement. Our idea is for
each node to independently calculate a sufficiently large set of candidates; and although honest
nodes may not agree on this candidate set, honest nodes’ candidate sets must all contain every node
in Or. We stress that the challenge here is that honest offline nodes’ candidate sets must also
satisfy this property even though they are receiving only an arbitrary subset of messages chosen
by the adversary — note that these nodes basically have “asynchronous” networks. Perhaps more
challengingly, it could be that every honest node may be offline in some round, and thus everyone’s
network may be asynchronous at some point.

Towards this end, we adapt Canetti and Rabin’s leader election idea [7] to our weakly syn-
chronous setting: specifically, everyone first reliably broadcasts a tentative candidate set S, but
they keep maintaining and growing a local candidate set denoted S∗ ⊇ S. They would keep adding
nodes that they newly deem eligible to their local set S∗, until at some point, they decide that

1Some recent works such as Dfinity [19] and Algorand [9] proposed to adopt a Verifiable Random Function [26]
(VRF) to perform leader election in consensus protocols. This approach does not work in our context since the
adversary is allowed to decide which nodes are offline in this round after examining what messages honest nodes want
to send in the present round. If a VRF is employed, the adversary can examine who is the leader and make the leader
offline. Such an adversary can hamper liveness indefinitely.
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their local set S∗ is sufficiently inclusive based on sufficiently many tentative candidate sets that
have been reliably broadcast. At this moment, the node stops growing its local candidate set and
outputs the candidate with maximum charisma from its current local set. We refer the reader to
Section 7 for a detailed description of this protocol.

2.4 Byzantine Agreement (BA)

The next question is how to construct BA given a 0.5-weakly-synchronous LE scheme. This step
turns out to be non-trivial too. In particular, we stress that existing synchronous BA protocols [3,
20, 27] are broken under 0.5-weak-synchrony, not only because they lack a good leader election
(or common coin) algorithm — in fact even if we replaced the leader election in existing schemes
with an ideal version (e.g., our own leader election scheme in Section 7), the resulting BA schemes
would still be broken under 0.5-weak-synchrony. All existing synchronous BA schemes make use of
synchrony in a strong manner: they rely on the fact that if an honest node i sees some message
m in round t, then i is surely able to propagate the message to every honest node by the end of
round t + ∆. This assumption is not true in our model since our model does not provide any
message delivery guarantees for offline honest nodes. Instead, our protocol makes use of only weak
synchrony and specifically the following observation (and variants of it): if bn/2c+ 1 number of
nodes declare they have observed a message m by the end of round t, then at least one of them
must be in Ot and if all of these nodes try to propagate the message m to others in round t, then
everyone in Ot∗ where t∗ ≥ t+ ∆ must have observed m by the end of round t∗.

At a very high level, our protocol works as follows. The protocol proceeds in epochs. We make
the following simplifying assumptions for the time being: 1) ∆ = 1, and 2) every node keeps echoing
every message they have seen in every round (in our later technical sections we will remove the
need for infinite echoing):

• Propose: For the first epoch, the designated sender’s signature on a bit is considered a valid
proposal. For all other epochs, at epoch start a leader election protocol is invoked to elect
a leader. Recall that with constant probability, the leader election algorithm guarantees the
following “good” event G: 1) the LE protocol guarantees that the elected leader is in Or for
some pre-determined round r; and 2) no two honest nodes output inconsistent leaders. Now
imagine that in precisely round r of this epoch, everyone tentatively proposes a random bit
b — and if the node indeed gets elected as a leader the proposed bit will be recognized as a
valid proposal2.

• Vote (formally called “Prepare” later): Let Tle be the liveness parameter of the LE scheme. In
round Tle of the epoch e, a node votes on the elected leader’s proposal if in epoch e−1 majority
nodes complained of not having received majority votes for either bit — in this case no honest
node can have made a decision yet. Otherwise if the node has observed majority votes for
some bit b′ from the previous epoch e − 1, it votes for b′ — in this case some honest node
might have made a decision on b′ and thus we might need to carry on the decision. Henceforth
the set of majority votes for b′ from epoch e− 1 is said to be an epoch-e pseudo-proposal for
b′.

• Commit: In round Tle +1 of the epoch e, a node sends an epoch-e commit message for a bit b,
iff it has observed majority epoch-e votes on b, and no epoch-e proposal or pseudo-proposal
for 1− b has been seen.

2This is necessary because if a single proposer made a proposal after being elected, the adversary could make the
proposer offline in that precise round.
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• Complain: In round Tle + 2 of the epoch e, send a complaint if neither bit gained majority
votes in this epoch.

At any point of time, if bn/2c+ 1 number of commits from the same epoch and for the same
bit b has been observed, output the decision b and continue participating in the protocol (we shall
describe a termination technique in Section E).

Remark 2.1. We point out that although our BA protocol might somewhat resemble the recent
work by Abraham et al. [3], their protocol is in fact broken under 0.5-weak-synchrony (even if they
adopted an ideal leader election protocol) for a couple of reasons. In their protocol, in essence a
node makes a decision if the node itself has seen majority votes and no conflicting proposal. To
ensure consistency under weak synchrony, our protocol makes a decision when majority votes have
been collected and moreover, majority nodes have declared that they have not seen a conflicting
proposal (or pseudo-proposal). Finally, we introduce a “complain” round, and technically this (and
together with the whole package) allows us to achieve liveness under 0.5-weak-synchrony — in
comparison, Abraham et al.’s protocol [3] appears to lack liveness under weak synchrony.

2.5 Multi-Party Computation

We now consider multi-party computation in a weakly synchronous network. Specifically, we will
consider the task of secure function evaluation (SFE). Imagine that n nodes each has an input where
node i’s input is denoted xi. The nodes would like to jointly compute a function f(x1, . . . , xn) over
their respective inputs. The privacy requirement is that besides learning the outcome, each node
must learn nothing else (possibly in a computational sense). Recall that earlier in our Byzantine
Agreement (BA) protocols, there is no privacy requirement, and therefore our goal was to ensure
that honest nodes who drop offline do not risk inconsistency with the rest of the network. With
SFE, we would like to protect not only the consistency but also the input-privacy of those who are
benign but drop offline or have unstable network connection.

Of course, in a weakly synchronous environment, if we would like online nodes to obtain outputs
in a bounded amount of time, we cannot wait forever for offline honest nodes to come online. Thus,
in our definition, we require that 1) at least n/2 honest nodes’ inputs be included in the computation;
and 2) every honest node that remains online during the protocol must get their inputs incorporated.
Note that the second requirement ensures that our notion is strictly stronger (i.e., more robust)
than classical synchronous MPC under honest majority.

Weakly synchronous MPC construction. Our goal is to construct an expected constant-
round SFE protocol secure under 0.5-weak-synchrony. The näıve approach of taking any existing
MPC and replacing the “broadcast” with our weakly synchrounous BA (see earlier subsections of
this section) may not solve the problem. Specifically, we need to additionally address the following
challenges:

1. Classical synchronous MPC protocols are not required to provide secrecy for honest nodes
who even temporarily drop offline. Once offline, an honest node’s input may be reconstructed
and exposed by honest nodes who still remain online.

2. Many standard MPC protocols [5, 16] require many pairs of nodes to have finished several
rounds of pairwise interactions to make progress. Even if such protocols required only con-
stant number of rounds in the classical synchronous model, they may suffer from bad round
complexity in our model — recall that in a weakly synchronous network, nodes do not have
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persistent online presence; thus it can take (super-)linear number of rounds for sufficiently
many pairs of nodes to have had an opportunity to rendezvous.

To tackle these challenges we rely on a Threshold Multi-Key Fully Homomorphic Encryption
(TMFHE) scheme [4,17]. In a TMFHE scheme [4],

1. Each node i can independently generate a public key denoted pki and register it with a PKI.

2. Now, each node i can encrypt its input xi resulting in a ciphertext CTi.

3. After collecting a set of ciphertexts {CTi}i∈S corresponding to the nodes S ⊆ [n], any node
can independently perform homomorphic evaluation (for the function f) on the ciphertext-set

{CTi}i∈S and obtain an encryption (denoted C̃T) of f({xi}i∈S).

4. Now, each node i can evaluate a partial decryption share of C̃T such that if sufficiently many
partial decryption shares are combined, one can reconstruct the plaintext evaluation outcome
f({xi}i∈S).

In our protocol, in round 0, every node i will compute an TMFHE ciphertext (denoted CTi)
that encrypts its own input and compute a NIZK proof (denoted πi) attesting to well-formedness
of the ciphertext. The pair (CTi, πi) will be broadcast by invoking an instance of our BA protocol
described in Section 8. Let Tba be the liveness parameter of BA. Now, every honest node in OTba

will have obtained outputs from all BA instances at the beginning of round Tba. From the outputs
of these BA instances, nodes in OTba

can determine the effective-input set I — specifically if any
BA instance that has produced a well-formed output with a valid NIZK proof, the corresponding
sender will be included in the effective-input set. Observe that everyone in O0 will be included in
I. Now, in round Tba, any node who has produced outputs from all n BA instances will perform
homomorphic evaluation independently over the collection of ciphertexts {CTi}i∈I. They will then
compute and multicast a partial decryption share and a NIZK proof vouching for the correctness of
the partial decryption share. Now, everyone in Ot for t ≥ Tba will have received sufficiently many
decryption shares in round t to reconstruct the evaluation outcome.

Comparison with “lazy MPC”. Interestingly, the recent work by Badrinarayanan et al. [4]
propose a related notion called “lazy MPC”; and their goal is also to safeguard the inputs of
those who are benign but drop out in the middle of the protocol. Their model, however, is overly
restrictive:

1. first, Badrinarayanan et al. [4] require that a set of majority number of honest nodes to be
online forever;

2. not only so, they also make the strong assumption that nodes who drop offline never come
back (and thus we need not guarantee liveness for nodes who ever drop offline).

As mentioned, in long-running distributed computation environments (e.g., decentralized blockchains
where a secure computation task may be repeated many times over the course of years), most likely
no single node can guarantee 100% up-time (let alone majority). From a technical perspective, the
existence of a majority “honest and persistent online” set also makes the problem significantly easier.
For example, for BA, there is in fact a simple compiler that compiles any existing honest-majority,
strongly synchronous BA to a setting in which the existence of majority “honest and persistent
online” set is guaranteed: basically, simply run an honest-majority, strongly synchronous BA pro-
tocol denoted BA0. If BA0 outputs a value v, multicast a signed tuple (finalize, v). Output v iff
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bn/2c+ 1 number of (finalize, v) messages have been received with valid signatures from distinct
nodes. In fact, this simple protocol also ensures liveness for drop-outs who come back online.

Under our definition of weak synchrony, realizing BA is highly non-trivial (see earlier sub-
sections of this section). Once we realize BA, our approach for realizing MPC is reminiscent of
Badrinarayanan et al. [4]. There is, in fact, a notable difference in a low-level subtlety: in Badri-
narayanan et al. [4]’s lazy MPC model, they can afford to have sufficiently many pairs of nodes
engage in several rounds of pairwise interaction, whereas in our model, it can take (super-)linear
number of rounds for sufficiently many pairs of nodes to have had an opportunity to rendezvous.
For this reason, we need to use a strengthened notion of Threshold Multi-Key Fully Homomorphic
Encryption (TMFHE) in comparison with Badrinarayanan et al. [4]. We defer a more detailed
discussion of these technicalities to Sections 9 and C.2.

3 Defining a Weakly Synchronous Execution Model

A protocol execution is formally modeled as a set of Interactive Turing Machines (ITMs). The ex-
ecution proceeds in rounds, and is directed by a non-uniform probabilistic polynomial-time (p.p.t.)
environment denoted Z(1κ) parametrized by a security parameter κ ∈ N. Henceforth we refer to
ITMs participating in the protocol as nodes and we number the nodes from 1 to n(κ) where n is
chosen by Z and may be a polynomial function in κ.

3.1 Modeling Corruption and Network Communication

We assume that there is a non-uniform p.p.t. adversary A(1κ) that may communicate with Z freely
at any time during the execution. A controls a subset of nodes that are said to be corrupt. All
corrupt nodes are fully within the control of A: A observes a node’s internal state the moment
it becomes corrupt and henceforth all messages received by the corrupt node are forwarded to A;
further, A decides what messages corrupt nodes send in each round. In this paper, we assume that
corruption is static, i.e., the adversary A decides which nodes to corrupt prior to the start of the
protocol execution.

Nodes that are not corrupt are said to be honest, and honest nodes faithfully follow the pre-
scribed protocol for as long as they remain honest. In each round, an honest node can either be
online or offline.

Definition 3.1 (Honest and online nodes). Throughout the paper, we shall use the notation Or
to denote the set of honest nodes that are online in round r. The set Or is also called the “honest
and online set” of round r. For i ∈ Or, we often say that i is honest and online in round r.

We make the following assumption about network communication — note that our protocol is
in the multicast model, i.e., every protocol message is sent to the set of all nodes:

Assumption 1 (Message delivery assumption). We assume that if someone in Or multicasts a
message m in round r, then everyone in Ot where t ≥ r + ∆ will have received m at the beginning
of round t.

In other words, an honest and online node is guaranteed to be able to deliver messages to the
honest and online set of nodes ∆ or more rounds later. The adversary A may delay or erase honest
messages arbitrarily as long as Assumption 1 is respected.

Remark 3.2 (Offline nodes’ network communication). Note that the above message delivery as-
sumption implies that messages sent by honest but offline nodes can be arbitrarily delayed or even
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completely erased by the adversary. Further, the adversary can control which subset of honest
messages each offline node receives in every round; it can omit an arbitrary subset of messages or
even all of them from the view of honest offline nodes for as long as they remain offline.

Remark 3.3. We stress that a node is not aware whether it is online or offline. This makes
protocol design in this model more challenging since the adversary can carefully choose a subset
of messages for an offline (honest) node to receive, such that the offline node’s view can appear
perfectly “normal” such that it is unable to infer that it is offline. Jumping ahead, a consensus
protocol secure in our model should guarantee that should an offline node make a decision while it
is offline, such decisions would nonetheless be safe and would not risk inconsistency with the rest
of the network.

Our protocol needs to be aware of the parameters ∆ and n. Throughout we shall assume that
∆ and n are polynomial functions in κ. Formally, we can imagine that Z inputs ∆ and n to all
honest nodes at the start of the execution. Throughout the paper, we assume that (A,Z) respects
the following constraints:

Z always provides the parameters n and ∆ to honest nodes at the start of the execution such
that n is the total number of nodes spawned in the execution, and moreover, the adversary
A respects Assumption 1.

Schedule within a round. More precisely, in each round r, the following happens:

1. First, each honest node receives inputs from Z and receives incoming messages from the
network; note that at this moment, A’s decision on which set of incoming messages an honest
node receives will have bearings on whether this honest node can be included in Or;

2. Each honest node then performs polynomially bounded computation and decides what mes-
sages to send to other nodes — these messages are immediately revealed to A. Further, after
the computation each honest node may optionally send outputs to Z.

3. At this moment, A decides which nodes will belong to Or where r denotes the current round.
Note that A can decide the honest and online set Or of the present round after seeing what
messages honest nodes intend to send in this round.

4. A now decides what messages each corrupt node will send to each honest node. Note also
that A is rushing since it can see all the honest messages before deciding the corrupt nodes’
messages.

5. Honest nodes send messages over the network to other nodes (which may be delayed or erased
by A as long as Assumption 1 is satisfied).

Definition 3.4 (χ-weak-synchrony). We say that (A,Z) respects χ-weak-synchrony (or that A
respects χ-weak-synchrony), iff in every round r, |Or| ≥ bχ · nc+ 1.

To aid understanding, we make a couple of remarks regarding this definition. First, observe that
the set of honest and online nodes need not be the same in every round. This allows us to model
churns in the network: nodes go offline and come online; and we wish to achieve consistency for all
honest nodes, regardless of whether they are online or offline, as long as sufficiently many nodes
are online in each round. Second, the requirement of χ-weak-synchrony also imposes a corruption
budget. As an example, consider the special case when χ = 0.5 and n is an even integer: if
(A,Z) respects 0.5-weak-synchrony, it means that the adversary controls at most n/2 − 1 nodes.
It could be that the adversary in fact controls fewer, say, n/3 number of nodes. In this case, up
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to n/2 − 1 − n/3 honest nodes may be offline in each round, and jumping ahead, in a consensus
protocol we will require that consistency hold for these honest but offline nodes as well.

Finally, note also that our weakly-synchronous model is a generalization of the classical syn-
chronous model: in the classical synchronous model, it is additionally required that for every r, Or
must be equal to the set of all nodes that remain honest till the end of round r (or later).

3.2 Modeling Setup Assumptions

In the plain model without any setup assumptions, Lamport et al. [23] showed that no consensus
protocol could tolerate 1/3 or more corruptions; however for < 1/3 corruptions, one can con-
struct protocols that tolerate arbitrary network partitions by adopting the partially synchronous
model [8, 13, 22]. It is also known that assuming a public-key infrastructure (PKI) and computa-
tionally bounded adversaries, one can construct consensus protocols that tolerate arbitrarily many
corruptions in the classical fully synchronous model. Thus the interesting open question is whether,
assuming the existence of a PKI and computationally bounded adversaries, we can construct proto-
cols that tolerate more than 1/3 corruptions and yet provide some quantifiable degree of partition
tolerance. Therefore, throughout this paper we shall assume the existence of a PKI and computa-
tionally bounded adversaries. We assume that the adversary chooses which nodes to corrupt before
the PKI is established.

3.3 Weakly Synchronous Byzantine Agreement

We now define Byzantine Agreement (BA) in a weakly synchronous network. The consistency
definition is standard except that now we require consistency for honest nodes regardless of whether
they are online or offline. For validity, if the sender is honest but offline initially, we cannot hope
that the protocol will somehow make up for the time lost waiting for the sender to come online, such
that honest and online nodes would output by the same deadline. Thus we require validity to hold
only if the sender is not only honest but also online in the starting round. For liveness, we cannot
hope that honest but offline nodes obtain outputs quickly without the risk of being inconsistent
with the rest of the network. Thus, we require that as soon as an honest node is online at time T
or greater (where T is also called the liveness parameter), it must produce an output if it has not
done so already.

Syntax. A Byzantine Agreement (BA) protocol must satisfy the following syntax. Without loss
of generality, we assume that node 1 is the designated sender. Before protocol start, the sender
receives an input bit b from Z; and all other nodes receive no input. The nodes then run a protocol,
and during the protocol every node may output a bit.

Security. Let T (κ, n,∆) be a polynomial function in the stated parameters. For P ∈ {consistency,
validity, T -liveness}, a BA protocol is said to satisfy property P w.r.t. some non-uniform p.p.t.
(A,Z) that is allowed to spawn multiple possibly concurrent BA instances sharing the same PKI, iff
there exists a negligible function negl(·) such that for every κ ∈ N, except with negl(κ) probability
over the choice of protocol execution, the corresponding property as explained below is respected
in all BA instances spawned — henceforth we rename the starting round of each BA instance to be
round 0 and count rounds within the same instance accordingly afterwards:

• Consistency. If honest node i outputs bi and honest node j outputs bj , it must be that bi = bj .

• Validity. If the sender is in O0, any honest node’s output must be equal to the sender’s input.
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• T -liveness. Any node in Or for r ≥ T must have output a bit by the end of round r.

We say that a BA protocol satisfies property P ∈ {consistency, validity, and T -liveness} under
χ-weak-synchrony if it satisfies the property P w.r.t. any non-uniform p.p.t. (A,Z) that respects
χ-weak-synchrony and is allowed to spawn multiple possibly concurrent BA instances sharing the
same PKI. Henceforth, if a BA protocol satisfies consistency, validity, and T -liveness under χ-weak-
synchrony, we also say that the protocol is a “χ-weakly-synchronous BA protocol”.

Remark 3.5 (Worst-case vs expected notions of liveness). We note that T -liveness defines a
worst-case notion of liveness. In the remainder of the paper, we sometimes use an expected round
complexity notion. We say that our BA protocol is expected constant round, iff there is a random
variable R whose expectation is constant such that everyone in Or where r ≥ R should have
produced an output by the end of round r.

Multi-valued agreement. The above definition can be extended to multi-valued agreement
where nodes agree on a value from the domain {0, 1}`(κ) rather than a single bit. Multi-valued
agreement can be obtained by parallel composition of ` instances of BA. In this paper, we will refer
to the multi-valued version as Byzantine Agreement (BA) too.

4 Lower Bounds

4.1 Impossibility of Weakly-Synchronous Consensus for χ ≤ 0.5

First, we show that for any χ ≤ 0.5 − 1
n , it is impossible to achieve BA under χ-weak-synchrony.

The intuition for this lower bound is simple: if a BA protocol allows a minority set of online
nodes to reach agreement without hearing from the offline nodes, then two minority camps could
independently reach agreement thus risking consistency. We formalize this intuition in the following
theorem and its proof.

Theorem 4.1. For any χ ≤ 0.5 − 1
n , for any polynomial function T , no BA protocol Π can

simultaneously achieve consistency, validity, and T -liveness under χ-weak-synchrony.

We point out that the above the lower bound holds even if A is restricted to scheduling the same
honest and online set throughout, i.e., O0 = O1 = . . ., has to decide the message delivery schedule in
advance, and even when no node is corrupt. Moreover, the lower bound holds even for randomized
protocols, allowing computational assumptions, and allowing additional setup assumptions (e.g.,
PKI, random oracle, or the erasure model).

Proof. For the sake of contradiction, suppose that there exists some BA protocol Π that achieves
consistency, validity, and T -liveness under χ-weak-synchrony for χ ≤ 0.5 − 1

n . Consider two ran-
domized executions of Π denoted EXEC0 and EXEC1 respectively, each with n nodes and with
∆ = 1. We assume that n is even and recall that node 1 is the designated sender. In both exe-
cutions, all nodes are honest. We consider the following two sets of nodes Sa = {1, . . . , n/2} and
Sb = {n/2 + 1, . . . , n}. The adversary declares Sa to be the set of honest and online nodes in every
round and declares all nodes in Sb to be offline throughout. In both executions, A always delivers
all messages between nodes in Sa immediately at the beginning of the next round, and it does the
same for Sb. However, no messages are delivered in between Sa and Sb. Clearly, such an adversary
A respects χ-weak-synchrony. The only difference between the two executions is that in EXECb,
the sender receives the input bit b ∈ {0, 1}.
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Now consider EXECb: due to validity and liveness, except with negligible probability, all nodes
in Sa would output b by the end of round T . For nodes in Sb, their view in the execution is
identically distributed as an execution in which all nodes in Sb form the honest and online set
and all nodes in Sa are offline — in such an execution A respects χ-weak-synchrony too. Thus by
liveness, except with negligible probability, nodes in Sb would output a bit too by the end of round
T ; by consistency, they must output the bit b. However, observe that the joint view of nodes in S0

is identically distributed for both EXEC0 and EXEC1. Thus we have reached a contradiction.

Best-possible partition tolerance. In light of Theorem 4.1, a BA protocol secure under 0.5-
weak-synchrony is also said to be best-possible partition tolerant.

4.2 Classical Corrupt-Majority Protocols Sacrifice Partition Tolerance

It is well-known that there exist Byzantine Agreement protocols that tolerate arbitrarily many
byzantine faults [12] under the classical synchronous model henceforth referred to as strong syn-
chrony. If we adopted the classical strong synchrony model we might be misled to think that
protocols that tolerate corrupt majority are strictly more robust than those that tolerate only cor-
rupt minority. In this section, however, we show that corrupt-majority protocols (under strong
synchrony) in fact sacrifice partition tolerance in exchange for tolerating corrupt majority, and this
is inherent. As explained earlier, in real-world scenarios such as decentralized cryptocurrencies,
partition tolerance seems to be a more important robustness property.

It is not too difficult to see that any corrupt-majority, strongly-synchronous protocol cannot
be secure under 0.5-weak-synchrony. Specifically, with a corrupt-majority strongly-synchronous
protocol, if the network partitions into multiple minority connected components, each component
will end up reaching its own independent decision. We can generalize this intuition and prove
an even stronger statement: any strongly-synchronous protocol that tolerates more than ν ≥ 0.5
fraction of corruptions cannot be secure under ν-weak-synchrony, i.e., such a protocol cannot
guarantee consistency for all honest nodes (including offline ones) even if we make the strong
assumption that at least ν fraction of honest nodes are online. In other words, the more corruptions
the protocol tolerates under strong synchrony, the less partition tolerant it becomes.

The remainder of the section not only formalizes the above intuitive reasoning. Henceforth we
use the following notation:

• We say that (A,Z) respects µ-strong-synchrony iff at least bµnc + 1 nodes are honest and
moreover all honest nodes are forever online. We say that a BA protocol satisfies property
P ∈ {consistency, validity, and T -liveness} under µ-strong-synchrony iff it satisfies property
P w.r.t. any non-uniform p.p.t. (A,Z) that respects µ-strong-synchrony.

• Let BA{µ} be the family that contains every protocol Π satisfying the following: ∃ a polyno-
mial function T (·, ·, ·) s.t. Π that satisfy consistency, validity, and T (κ, n,∆)-liveness under
µ-strong-synchrony.

• Let BA+{χ} be the family that contains every protocol Π satisfying the following: ∃ a
polynomial function T (·, ·, ·) s.t. Π that satisfy consistency, validity, and T -liveness under
χ-weak-synchrony.

Theorem 4.2. ∀0 < µ < 0.5, χ ≤ 1− µ− 2/n, BA{µ} ∩ BA+ {χ} = ∅.

Proof. For the sake of contradiction, we assume there exists a protocol Π such that Π ∈ BA{µ} ∩
BA+ {χ} for some 0 < µ < 0.5 and some χ < 1 − µ − 2/n. Then there exists some polynomial
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functions T (·, ·, ·) and T+(·, ·, ·), such that Π satisfies T -liveness under µ-strong-synchrony and
T+-liveness under χ-weak-synchrony.

Consider two randomized executions (henceforth denoted EXEC0 and EXEC1) of Π each with
n nodes and with ∆ = 1. All nodes are honest and recall that the designated sender is node
1. Messages between S = {1, . . . , n − (bµnc + 1)} and S′ = [n]\S sent in or before the round
max(T, T+) + 1 are delayed till the beginning of the round max(T, T+) + 2. All other messages are
delivered immediately at the beginning of the next round (including messages between S and S′

sent after the round max(T, T+)+1). It is not hard to see that |S| ≥ bχ·nc+1 and |S′| ≥ bµ·nc+1.
The only difference between the two executions is that Z gives input bit 0 to the designated sender
(i.e., node 1) in EXEC0 and input bit 1 to the designated sender in EXEC1.

Suppose that the adversary declares the set S (which includes the designated sender) to be the
honest and online set throughout, then clearly (A,Z) respects χ-weak-synchrony in both executions.
By liveness and validity under χ-weak-synchrony, except with negligible probability, all nodes in S
have output b in EXECb for b ∈ {0, 1} by the end of round max(T, T+) + 1; further, all nodes in S′

have output b by the end of round max(T, T+) + 2 for each b ∈ {0, 1} (since nodes in S′ come back
online in round max(T, T+) + 2).

On the other hand, in both EXEC0 and EXEC1, before round max(T, T+) + 2, the joint view of
nodes in S′ is identically distributed as one in which only nodes in S′ are honest and can commu-
nicate with each other within a single round, and all other nodes (including the designated sender)
are faulty and have crashed. Thus from the joint view of nodes in S′ in both executions before
round max(T, T+) + 2, the adversary respects µ-strong-synchrony. By liveness under µ-strong-
synchrony, in both EXEC0 and EXEC1, a node in S′ must output before the round max(T, T+) + 1;
and moreover, its output in EXEC0 must be identically distributed as its output in EXEC1. We
have thus reached a contradiction.

Remark 4.3. Note that the proof in fact implies that an even stronger version of the theorem
holds where we broaden both the family BA{µ} and the family BA+ {χ}:

• We may broaden BA{µ} to include even protocols that are only required to satisfy consistency,
validity, and polynomial liveness w.r.t. any non-uniform p.p.t. (A,Z) that respects µ-strong-
synchrony, and moreover, all corrupt nodes can only exhibit crash fault.

• We may broaden BA+ {χ} to include even protocols that are only required to satisfy con-
sistency, validity, and polynomial liveness w.r.t. any non-uniform p.p.t. (A,Z) that respects
χ-weak-synchrony, and moreover makes no corruptions.

5 Reliable Broadcast (RBC)

5.1 Additional Preliminary

In our upper bound sections (Sections 5, 6.2, 7, 8, and 9), for convenience, we will make a slightly
stronger assumption on the underlying network — but in fact this stronger assumption can be
realized from Assumption 1 described earlier.

Assumption 2 (Strong message delivery assumption). If i ∈ Or and either i has multicast or has
received a message m before the end of round r, then everyone in Ot where t ≥ r + ∆ will have
received m at the beginning of round t.
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In Section D, we describe how to realize Assumption 2 through a simple echo mechanism —
roughly speaking, nodes echo and retry sending messages they have seen until they believe that the
message has become part of the honest and online nodes’ view.

5.2 Definition

We define a primitive called reliable broadcast (RBC) that allows a designated sender to broadcast
a message, guaranteeing consistency regardless of whether the sender is honest or online, and
additionally guaranteeing liveness when the sender is not only honest but also online in the starting
round. We also require a “close termination” property: even when the designated sender is corrupt,
we require that if some honest node outputs in round r, then everyone in Ot where t ≥ r+2∆ must
have output by the end of round t too. The liveness notion is defined in a similar fashion as in
Section 3.3: since under weak synchrony we cannot guarantee progress for offline nodes, we require
that any honest node who comes back online in some time T or greater will have received output
(assuming an honest and initially online sender). For technical reasons that will be useful later in the
proof of our Leader Election (LE) protocol, we need a stronger version of the standard consistency
property: not only must honest nodes’ outputs agree, there must be an efficient extractor that
outputs either a bit b ∈ {0, 1} or ⊥ when given the PKI and the honest nodes’ transcript in the
initial T rounds as input. If any honest node indeed makes an output, the output must be consistent
with the extractor’s output b.

Syntax. An RBC protocol consists of the following algorithms/protocols:

• PKI setup: at the very beginning every node i registers a public key pki with the PKI;

• RBC protocol: all instances of RBC share the same PKI. In each RBC instance, a designated
sender (whose identifier is pre-determined and publicly-known) receives a value x from the
environment Z whereas all other nodes receive nothing. Whenever a node terminates, it
outputs a value y. Henceforth we shall assume that an admissible Z must instruct all nodes
to start protocol execution in the same round3;

• Extractor E : a polynomial-time deterministic extractor denoted E that is a construct used
in our security definitions and proofs, not in the real-world protocol.

Security. Let T (n,∆, κ) be a polynomial function in the stated parameters. For property P ∈
{T -consistency, validity, T -liveness, close termination}, we say that an RBC protocol Π satisfies
property P under χ-weak-synchrony iff for a non-uniform p.p.t. pair (A,Z) that respects χ-weak-
synchrony and can spawn multiple instances of RBC sharing the same PKI, there exists a negligible
function negl(·) such that for every κ ∈ N, except for negl(κ) fraction of the executions in the
experiment EXECΠ(A,Z, κ), the following properties hold for every instance of RBC:

• T -consistency. Let y := E({pki}i∈[n],Tr) where Tr denotes the transcript of all honest nodes
in the initial T rounds of the RBC instance. Then, if any honest node ever outputs y′, it must
be that y′ = y.

• Validity. If the sender is honest and its input is x, then if any honest node outputs x′, it must
be that x′ = x.

3Later in our VSS and LE protocols that invoke RBC, the fact that the RBC’s environment Z is admissible is
guaranteed by construction.
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• T -liveness (under an honest and initially online sender). If the sender is not only honest and
but also online in the starting round of this RBC instance (henceforth the starting round is
renamed to be round 0 for convenience), then every node that is honest and online in round
r ≥ T will have produced an output by the end of round r.

• Close termination. If an honest node outputs in some round r, then every node that is honest
and online in round r′ ≥ r + 2∆ will have output by the end of round r′.

Remark 5.1. Although in general, consistency and liveness can be parametrized by different delay
functions, without loss of generality we may assume that two parameters are the same T (since we
can always take the maximum of the two).

5.3 Construction

During the PKI setup phase (shared across all subsequent RBC instances), every node calls (vk, ssk)←
Σ.K(1κ) and registers the vk with the PKI. The portion ssk is kept secret and henceforth the node
will use ssk to sign protocol messages in all future RBC instances. Henceforth, although not explic-
itly noted, we assume that every message is by default tagged with the current session’s identifier
denoted sid . Every signature computation and verification will include the sid . We also assume
that each message is tagged with the purported sender such that a recipient knows under which
public key to verify the signature.

1. Propose (round 0): In round 0, the sender multicasts (propose, x) where x is its input,
attached with a signature on the tuple.

2. ACK (round ∆): At the beginning of round ∆, if a tuple (propose, y) with a valid signature
has been received from the sender, multicast (ack, y) along with a signature on the tuple.

3. Commit (round 2∆): At the beginning of round 2∆, if the node has observed bn/2c+ 1
number of (ack, y) messages for the same y and with valid signatures from distinct nodes, and
moreover, it has not received any conflicting (propose, y′) message (with a valid signature
from the sender) for y′ 6= y, then multicast (commit, y) along with a signature on the tuple.

4. Finalize (any time): At any time, if the node has received bn/2c+ 1 valid (commit, y) mes-
sages for the same y and from distinct nodes, multicast (finalize, y) along with a signature
on the tuple. At any time, if a collection of bn/2c+ 1 (finalize, y) messages with valid
signatures from distinct nodes have been observed, output y.

We defer the constructor of the extractor E to the proofs since it is a construct needed only in
the security definitions and proofs and not in the real-world protocol.

5.4 Proof

Henceforth although not explicitly noted, we by default assume that (A,Z) is non-uniform p.p.t.
and respects 0.5-weak-synchrony. As before, a good execution is one in which no honest node
ever sees a forged signature in any RBC instance. Assuming that the signature scheme is secure
and recall that all messages are signed with the session’s identifier, all but a negligible fraction
of executions must be good. Henceforth we consider only good executions. In the proofs below
we focus on what happens in a specific challenge instance spawned by (A,Z); however, in a good
execution, all the statements and proofs apply to all instances spawned by (A,Z).

Henceforth we say that a message m is in honest and online view in round r in some execution,
if for every t ≥ r, every node in Ot must have observed m at the beginning of t in this execution.
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5.4.1 Consistency

Lemma 5.2. Consider a good execution: if some node in O2∆ multicasts (commit, y) and another
node in O2∆ multicasts (commit, y′), then y = y′.

Proof. For the sake of contradiction, we assume that two nodes i, i′ ∈ O2∆ multicast (commit, y)
and (commit, y′) respectively for y 6= y′. Then node i must have received bn/2c+ 1 valid (ack, y)
messages, and one of them must have been signed by some node j ∈ O∆ during round ∆. Now,
node j must have observed a valid (propose, y) message at the beginning of round ∆ and thus
by our strong message delivery assumption (Assumption 2), everyone in O2∆ will have observed
the same at the beginning of round 2∆. Thus no one in O2∆ will multicast (commit, y′) and this
contradicts our assumption.

Construction of the extractor E. Consider the following extractor E that takes in all nodes’
public keys and the honest nodes’ transcript in the initial 2∆ rounds as input and outputs the
following:

• If m number of honest nodes multicast (commit, y) in round 2∆ for some y, and moreover
m+ f ≥ bn/2c+ 1 where f denotes the number of corrupt nodes, then output y.

• Otherwise, output ⊥.

Note that if at least bn/2c+ 1− f number of honest nodes multicast (commit, y) in round 2∆, at
least one of these honest nodes must be in O2∆. Thus by Lemma 5.2, the output of the extractor
must be uniquely defined.

Theorem 5.3 (Consistency). The RBC protocol in Section 5.3 satisfies 2∆-consistency under 0.5-
weak-synchrony.

Proof. Consider a good execution: we prove that if an honest node (denoted j) ever outputs y,
then the extractor E must output y too. Node j must have seen bn/2c+ 1 (finalize, y) messages
signed by distinct nodes. At least one of these finalize messages is from an honest node i. Node
i must have seen bn/2c+ 1 number of (commit, y) messages signed by distinct nodes. This means
at least bn/2c+ 1− f number of honest nodes must have multicast (commit, y) in round 2∆. This
means that the extractor E ’s outcome must be y too — note that as argued above, the extractor’s
outcome is uniquely defined.

5.4.2 Validity

Theorem 5.4 (Validity). The RBC protocol in Section 5.3 satisfies validity under 0.5-weak-synchrony.

Proof. If the sender is honest and its input is x, in a good execution without forged signatures
in honest view, no honest node will multicast (ack, x′) for any x′ 6= x; thus no honest node will
ever observe bn/2c+ 1 ack messages for x′ 6= x and no honest node will multicast (commit, x′) for
x′ 6= x. Thus there cannot be bn/2c+ 1 (commit, x′) messages for x′ 6= x in honest view. Thus no
honest node will multicast (finalize, x′) for x′ 6= x and there cannot be bn/2c+ 1 (finalize, x′)
messages in honest view.

5.4.3 Liveness

Theorem 5.5 (Liveness). The RBC protocol in Section 5.3 satisfies 4∆-liveness under 0.5-weak-
synchrony.
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Proof. If the sender is in O0 and proposes the value y in round 0, then a valid propose message for
y will appear in honest and online view in round ∆, and there is no other valid propose message
for y′ 6= y ever in honest view. Thus everyone in O∆ will multicast an ack message for y in round
∆, and all of these messages will be in honest and online view in round 2∆. Thus everyone in O2∆

will multicast an commit message for y in round 2∆ and all of these messages will be in honest and
online view in round 3∆. Now everyone in O3∆ will multicast a finalize message for y in round
r and all of these messages will be in honest and online view in round 4∆.

5.4.4 Close Termination

Theorem 5.6 (Close termination). The RBC protocol in Section 5.3 satisfies close termintion
under 0.5-weak-synchrony.

Proof. Consider a good execution. Let r be the first round in which there is some honest node
who has observed bn/2c+ 1 number of valid (finalize, x) messages from distinct nodes for some
value x. One of these (finalize, x) messages must have been sent by someone i∗ ∈ Or in round
r or earlier. Now i∗ must have observed a collection of bn/2c+ 1 number of (commit, x) messages
from distinct nodes at the beginning of round r. Thus by our strong message delivery assumption
(Assumption 2), this collection of commit messages will appear in honest and online view in round
r + ∆. Thus everyone in Or+∆ will have multicast (finalize, x) in round r + ∆ if they have
not done so earlier. By our strong message delivery assumption (Assumption 2), a collection of
bn/2c+ 1 number of (finalize, x) messages from distinct nodes will appear in honest and online
view in round r + 2∆.

6 Verifiable Secret Sharing (VSS)

6.1 Definitions

A Verifiable Secret Sharing (VSS) allows a dealer to share a secret among all nodes and later
reconstruct the secret. Standard notions of VSS [7] require that the honest transcript of the
sharing phase binds to the honestly reconstructed secret. For technical reasons needed later in
the proof of the Leader Election (LE), we require a stronger notion, i.e., an efficient extractor E ,
knowing honest nodes’ public and secret keys, must be able to extract this secret from the honest
transcript during the sharing phase (and later the honestly reconstructed secret must agree with
the extractor’s output). We need a composable notion of secrecy which we call non-malleability —
note that composition was a non-issue in previous works that achieves security against unbounded
adversaries [7]. Finally, for liveness, we require that if the dealer is honest and online in the initial
round, for t ≥ T , everyone in Ot must have output “sharing succeeded”. Even when the dealer is
corrupt or initially offline, if any honest node ever outputs “sharing succeeded” in some round r,
then everyone in Ot where t ≥ r+2∆ must have output “sharing succeeded” by the end of round
t. If some honest node has output “sharing succeeded”, then reconstruction must be successful
and will terminate in T rounds for honest and online nodes.

We give a formal description below.

6.1.1 Syntax

A Verifiable Secret Sharing (VSS) scheme for a finite field F consists of a setup algorithm K that is
run once upfront and henceforth shared among all protocol instances where each protocol instance
contains two sub-protocols called Share and Reconstruct:
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1. (pki, ski)← K(1κ): every node i calls this algorithm to generate a public and secret key pair
denoted pki and ski; and pki is registered with the PKI.

2. Share: A designated node called the dealer receives an input s ∈ F from Z and all other
nodes receive no input. Now all nodes execute the Share sub-protocol for the dealer to secret-
share its input. We assume that for the same VSS instance, an admissible Z always instructs
all honest nodes to start executing Share in the same round. Should execution of Share
successfully terminate, a node would output a canonical output “sharing succeeded”.

3. Reconstruct: All nodes execute the Reconstruct sub-protocol to reconstruct a secret that is
shared earlier in the Share sub-protocol. We assume that an admissible Z always instructs
all honest nodes to start executing Reconstruct in the same round. Should execution of
Reconstruct successfully terminate, a node would output a reconstructed secret s′ ∈ F.

Besides these real-world algorithms, a VSS scheme additionally has a polynomial-time extractor
algorithm E that is needed later in the security definitions (including the definitions of validity and
non-malleability). We shall explain the extractor E later when we define security.

6.1.2 T -Liveness

Consider a pair (A,Z) that may spawn multiple (concurrent or sequential) VSS instances all of
which share the same n, PKI setup, and the same ∆. Let T (n,∆, κ) be a polynomial function in
n, ∆, κ. We say that a VSS protocol satisfies T -liveness under χ-weak-synchrony iff for any non-
uniform p.p.t. (A,Z) that respects χ-weak-synchrony (and may spawn multiple instances sharing
the same PKI), there exists negl(·) such that for any κ ∈ N, such that except with negl(κ) probability,
the following holds for every VSS instance spawned:

1. Termination of Share under honest and initially online dealer: suppose that the Share sub-
protocol is spawned in round r0, and moreover the dealer is in Or0 , then any node in Or for
r ≥ r0 + T must have output “sharing succeeded” by the end of round r;

2. Close termination of Share: if an honest node i has terminated the Share sub-protocol outputting
“sharing succeeded” in round r, then for every r′ ≥ r + 2∆, every node in Or′ must have
terminated the Share sub-protocol outputting “sharing succeeded” by the end of round r′;

3. Termination of Reconstruct: if by the end of some round r, some honest node has terminated
the Share sub-protocol outputting “sharing succeeded”, and moreover honest nodes have been
instructed to start Reconstruct, then, anyone in Ot for t ≥ r + T must have terminated the
Reconstruct sub-protocol outputting some reconstructed value in F by the end of round t.

6.1.3 T -Validity

As before, we consider an (A,Z) pair that is allowed to spawn multiple (concurrent or sequential)
VSS instances, all of which share the same n, PKI setup, and ∆. Let T (n,∆, κ) be a polynomial
function in its parameters. Henceforth let Honest ⊆ [n] denote the set of honest nodes. We
say that a VSS protocol satisfies T -validity under χ-weak-synchrony, iff for every non-uniform
p.p.t. (A,Z) that respects χ-weak-synchrony (and may spawn multiple VSS instances sharing the
same PKI where each instance has a unique sid), there exists a negligible function negl(·) such
that except with negl(κ) probability, the following holds for every VSS instance spawned: let
s′ := E({pki}i∈[n], {ski}i∈Honest,Tr) where Tr denotes the transcript observed by all honest nodes in
the initial T rounds of the Share sub-protocol; it must be that
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(a) if an honest node ever outputs a reconstructed secret, the value must agree with s′;

(b) if E outputs ⊥, then no honest node ever outputs “sharing succeeded”4;

(c) if the dealer is honest and online in the round in which the Share sub-protocol was invoked,
and moreover it received the input s from Z, then s′ = s.

6.1.4 Non-Malleability

Consider the following experiment ExptA(1κ, s) involving an adversary A and a challenger C, as well
as a challenge input s ∈ F. We assume that throughout the experiment, if an honest node outputs
a string in any VSS instance, the adversary A is notified of the node’s identifier, the identifier of
the VSS instance, as well as the corresponding output.

1. Setup. First, A chooses which set of nodes to corrupt. Henceforth the challenger C acts
on behalf of all honest nodes and interact with A. The honest nodes run the honest key
generation algorithm such that each picks a public/secret-key pair. The public keys are given
to A. A now chooses corrupt nodes’ public keys arbitrarily and sends them to C.

2. Queries. The adversary A is now allowed to (adaptively) instruct C to spawn as many VSS
instances as it wishes. The queries can be issued at any time, including before, during, or
after the challenge phase (see the Challenge paragraph later).

• Whenever A sends C a tuple (sid ,Share, u, x) where sid ∈ {0, 1}∗ and u ∈ [n], C spawns
instance sid with node u as the dealer. If u is honest, A must additionally specify the
honest dealer u’s input x in this instance (otherwise the field x is ignored). Now, C invokes
the instance’s Share sub-protocol (if this has not been done already);

• Whenever A sends C a tuple (sid ,Reconstruct) where sid ∈ {0, 1}∗, C does the following:
if the instance sid has been spawned, then invoke the Reconstruct sub-protocol for that
instance (if this has not been done).

• Whenever A sends C a tuple (sid ,Extract) and instance sid has executed for at least T
rounds, then C computes E({pki}i∈[n], {ski}i∈Honest,Tr) where Tr is the transcript of honest
nodes in the initial T rounds of the Share sub-protocol; C returns the result to A.

3. Challenge. At any time, A may send the tuple (challenge, sid , u) to C where u must be an
honest node and the challenge sid must not be specified in any Extract or Reconstruct query
throughout the experiment (in the past or future). C then spawns a challenge VSS instance
identified by sid where u is the designated dealer and receives the input s; further C invokes
the challenge instance’s Share sub-protocol.

4. Output. Whenever the adversary A outputs a bit b ∈ {0, 1}, this bit is defined as the
experiment’s output.

We assume that an admissible A never attempts to create two VSS instances with the same sid ,
i.e., A chooses distinct session identifiers for all instances. Further, throughout the experiment, A
is allowed to decide which honest nodes are online/offline in each round (after seeing the messages
honest nodes want to send in that round). A also controls the message delivery schedule5.

4Note that (a) implies that if E outputs ⊥, then no honest node will ever output a reconstructed secret.
5Specifically, when honest nodes running inside C want to send messages, the messages are forwarded to A, and

A tells C when each honest node receives what message.
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Definition 6.1 (Non-malleability for VSS). We say that a VSS scheme satisfies non-malleability un-
der χ-weak-synchrony iff for any non-uniform p.p.t.A that respects χ-weak-synchrony, there exists a
negligible function negl(·) such that for any s, s′ ∈ F,

∣∣Pr[ExptA(1κ, s) = 1]− Pr[ExptA(1κ, s′) = 1]
∣∣ ≤

negl(κ).

6.2 A 0.5-Weakly-Synchronous VSS Scheme

We show how to construct a 0.5-weakly synchronous VSS scheme. We will rely on the following
cryptographic primitives:

1. let NIZK := (K, K̃,P,V) denote multi-CRS NIZK scheme that satisfies completeness, zero-
knowledge, and simulation soundness (see Section C.1);

2. let PKE := (K,Enc,Dec) denote a perfectly correct public-key encryption scheme that pre-
serves IND-CCA security; and

3. let RBC denote a reliable broadcast scheme that satisfies Trbc-consistency, Trbc-liveness, va-
lidity, and close termination under 0.5-weak-synchrony for some polynomial function Trbc.

PKI setup (shared across all VSS instances): During the PKI setup phase, every node i performs
the following:

• let (epki, eski)← PKE.K(1κ); (vki, sski) := Σ.K(1κ); crsi ← NIZK.K(1κ); and let (rpki, rski)←
RBC.K(1κ);

• node i registers its public key pki := (epki, crsi, vki, rpki) with the PKI; and it retains its
secret key comprised of ski := (eski, sski, rski).

Share (executed by the dealer): Let s be the input received from the environment, the dealer
does the following:

• it splits s into n shares using a (bn/2c + 1)-out-of-n Shamir Secret Sharing scheme, where
the i-th share is henceforth denoted si;

• for i ∈ [n], it computes CTi := PKE.Encepki(sid , si) where sid is the identifier of the current
instance;

• it calls NIZK.P({crsi}i∈[n], x, w) to compute a proof π where x and w are defined as below:
x := (sid , {pki,CTi}i∈[n]) is the statement declaring that there is a witness w := (s, {si}i∈[n])
such that for each i ∈ [n], CTi is a valid encryption6 of (sid , si) under epki (which is part of
pki); and moreover, the set of shares {si}i∈[n] is a valid sharing of the secret s.

• finally, the dealer relies on RBC to reliably broadcast the tuple (sid , {CTi}i∈[n], π) — hence-
forth this RBC instance is denoted RBC0.

Share (executed by everyone): Every node i does the following (where the starting round of Share
is renamed round 0):

• Any time: whenever the RBC0 instance outputs a tuple of the form (sid , {CTj}j∈[n], π), it
calls NIZK.V to verify the proof π w.r.t. the statement (sid , {pki,CTi}i∈[n]); and if the check
succeeds, it sets flag := 1 (we assume that flag was initially 0).

• Round Trbc: if flag = 1, reliably broadcast the message “ok”; else reliably broadcast the
message “⊥”;

6For simplicity, we omit writing the randomness consumed by PKE.Enc which is also part of the witness.
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• Any time: whenever more than bn/2c+ 1 RBC instances have output “ok” and RBC0 has
output a tuple; decrypt CTi contained in the tuple output by RBC0 using secret key eski; let
( , si) be the decrypted outcome; now record the share si and output “sharing-succeeded”;

Reconstruct (executed by everyone): when the Reconstruct sub-protocol has been invoked, every
node i waits till the instance’s Share sub-protocol has output “sharing-succeeded” and then
performs the following where the set S is initially empty:

• let si be the share recorded at the end of the Share sub-protocol;

• call NIZK.P({crsi}i∈[n], x, w) to compute a proof (henceforth denoted πi) for the following
statement x := (sid , i, si,CTi) declaring that there is random string that causes PKE.K to
output the tuple (epki, eski) where epki ∈ pki; and moreover, (sid , si) is a correct decryption
of CTi using eski — the witness w includes the randomness used in PKE.K, eski, and the
randomness of PKE.Dec.

• multicast the tuple (sid , i, si, πi);

• upon receiving a tuple (sid , j, sj , πj) such that πj verifies w.r.t. the statement (sid , j, sj ,CTj)
where CTj was the output of RBC0 during the Share sub-protocol, add sj to the set S.

• whenever the set S’s size is at least bn/2c+ 1, call the reconstruction algorithm of Shamir
Secret Sharing to reconstruct a secret s, and if reconstruction is successful, output the result.

Since the extractor algorithm E is only needed in the proofs, we defer its presentation to Sec-
tion 6.3.

6.3 Proofs

6.3.1 Liveness

Theorem 6.2. Without loss of generality, assume that Trbc ≥ 3∆ (if not, we can simply define
Trbc := 3∆); and moreover assume that the RBC scheme employed satisfies Trbc-liveness, validity,
Trbc-consistency, and close termination under 0.5-weak-synchrony; the NIZK scheme employed sat-
isfies simulation soundness; and the PKE scheme is perfectly correct. Then, the above VSS scheme
satisfies 2Trbc-liveness under 0.5-weak-synchrony.

Proof. Henceforth we ignore the negligible fraction of bad views in which the following types of
bad events take place: the Trbc-liveness, validity, consistency, or the close termination properties of
the RBC scheme are violated; or an honest node accepts a zero-knowledge proof for an untruthful
statement.

Termination of Share under an honest and initially online dealer. Assume that the dealer
is honest and online in the round in which Share is invoked (henceforth rename this round to be
round 0). Then, by the Trbc-liveness and validity of the RBC scheme, for every r ≥ Trbc, everyone in
Or will have output a tuple from the RBC0 instance by the end of round r, and moreover the tuple
must be what the dealer inputs into the RBC0 instance. By completeness of the NIZK scheme,
everyone in OTrbc

will have passed the checks in the Share sub-protocol and will have reliably
broadcast “ok” in round Trbc. Now by the Trbc-liveness and validity of the RBC scheme again, for
any r ≥ 2Trbc, everyone in Or will have output “sharing succeeded”.
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Close termination. We next prove the close termination property. The following claim is easy
to see (due to the validity of RBC):

Claim 6.3. If an honest node outputs “sharing succeeded” in round r, then the following must
have happened by round r: some honest node i∗ must have reliably broadcast “ok” and this node i∗

must have output a tuple (sid , {CTj}j∈[n], π) from the RBC0 instance and the proof π in the tuple
must have verified correctly by i∗.

Now, suppose an honest node outputs “sharing succeeded” in round r. By Claim 6.3 and by
consistency and close termination of the RBC scheme, in every round r′ ≥ r + 2∆, everyone in Or′
will have

1. seen at least bn/2c+ 1 RBC instances output “ok”; and

2. seen the RBC0 instance output a tuple and the tuple must be the same as what i∗ outputs
from its RBC0 (see Claim 6.3) and thus the tuple is well-formed.

Thus everyone in Or′ will have output “sharing-succeeded” by the end of round r′.

Termination of Reconstruct. Finally, we prove termination of the Reconstruct protocol. Suppose
that some honest node has output “sharing-succeeded” in some round r, and that the Reconstruct
sub-protocol has also been invoked by the end of round r. By close termination of the Share phase,
for every r′ ≥ r + 2∆, everyone in Or′ must have output “sharing-succeeded”. Thus everyone
i ∈ Or+2∆ must have multicast (sid , i, si, πi) by the end of round r+ 2∆; and for every t ≥ r+ 3∆,
everyone in Ot must have received these messages multicast by everyone in Or+2∆ by round t. Due
to the completeness of NIZK, the proof πi in each such received message must verify.

So far we have shown that for every t ≥ r + 3∆, everyone in Ot will have a large enough
decrypted share set S to start the reconstruction process of the secret sharing scheme. We have yet
to prove that reconstruction will be successful, i.e., all the values in S form an internally consistent
sharing of some secret.

By consistency of RBC0, all honest nodes’ output tuple from RBC0 must be the same, and let
(sid , {CTj}j∈[n], π) be this tuple. By Claim 6.3, some honest node i∗ must have verified the proof π.
Further, before an honest node adds a share to the set S it must have verified a proof showing that
the share is consistent with what is encrypted inside one of the ciphertexts denoted CTj contained
in the tuple (sid , {CTj}j∈[n], π). Due to simulation soundness of the NIZK scheme (which implies
the standard notion of soundness) and perfect correctness of PKE, except with negligible probability
the shares in S must be an internally consistent sharing of some secret.

6.3.2 Definition of the Extractor Algorithm E

The extractor algorithm E is defined as follows: given {pki}i∈[n], {eski}i∈Honest and the initial Trbc

rounds of the honest nodes’ transcript in the Share sub-protocol, perform the following:

• call the RBC scheme’s Erbc to extract a tuple;

• if the tuple output by Erbc is of the form (sid , {CTj}j∈[n], π) and the proof π verifies w.r.t.
the statement (sid , {pki,CTi}i∈[n]), then

1. for j ∈ Honest, use eskj to decrypt CTj and obtain s′j ;

2. now call the secret sharing scheme’s reconstruction algorithm to recover a secret s′ from
the set of shares {s′j}j∈Honest;
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3. output the reconstructed secret (if reconstruction is successful);

• else output ⊥ if either the tuple output by Erbc is not of the anticipated form, or at least one
the above checks fails, or the reconstruction step above is unsuccessful.

6.3.3 Validity

Theorem 6.4. Assume that RBC satisfies Trbc-consistency and Trbc-validity, NIZK satisfies sim-
ulation soundness, PKE satisfies perfect correctness, then the VSS scheme satisfies Trbc-validity
under 0.5-weak-synchrony.

Proof. Henceforth we ignore the negligible fraction of bad executions in which RBC’s Trbc-consistency,
or its Trbc-validity, or NIZK’s simulation soundness is violated. The following statements hold for
the remaining good executions. By Trbc-consistency of the RBC scheme, every honest node’s RBC0

must output what the Erbc extractor (inside the construction of Evss) extracted if any output is ever
produced.

1. If the tuple output by Erbc is not a well-formed tuple of the form
(
sid , {CTj}j∈[n], π

)
or if π does

not verify for the statement
(
sid , {CTj , pkj}j∈[n]

)
, then Evss will output ⊥. In this case, every

honest node will input ⊥ to RBC and by validity of RBC, no honest node will collect enough
“ok” outputs and thus will never output “sharing succeeded”.

2. Else let Erbc’s output be
(
sid , {CTj}j∈[n], π

)
where π verifies for the statement

(
sid , {CTj , pkj}j∈[n]

)
.

In this case, Erbc will decrypt the ciphertexts {CTj}j∈Honest and use the decrypted results to
reconstruct s′. Further, honest nodes in the protocol will decrypt some set of at least bn/2c+ 1
ciphertexts and use the decrypted outcome to reconstruct the secret. By simulation soundness
of the NIZK and perfect correctness of PKE, it must be that all decrypted shares form an
internally consistent sharing of the secret and thus no matter which set of bn/2c+ 1 ciphertexts
are decrypted for reconstruction, the reconstructed outcome will be the same.

It remains to prove that if the dealer is honest, the reconstructed outcome will be the dealer’s
input for the VSS scheme. This holds in a straightforward manner because in this case, the shares
encrypted in the ciphertexts will form an internally consistent sharing of the dealer’s input secret.

6.3.4 Non-Malleability

We define the following hybrid experiment.

Experiment HybA(1κ, s). Experiment HybA(1κ, s) is almost identical as the real non-malleability
experiment ExptA(1κ, s), except the following modifications: each honest node i calls (c̃rsi, τi) ←
NIZK.K̃. The challenger will use c̃rsi as part of node i’s public key and retain the trapdoor τi.
Whenever an honest node needs to compute a proof, instead of calling the real NIZK.P, the chal-
lenger instead calls the simulated prover NIZK.P̃ using the trapdoors {τi}i∈Honest and generates a
proof without using any witness.

Claim 6.5. Suppose that the NIZK scheme satisfies zero-knowledge. For any s, the adversary A’s
view in HybA(1κ, s) is computationally indistinguishable from its view in ExptA(1κ, s).

Proof. Straightforward from the zero-knowledge property of the NIZK scheme.

30



Lemma 6.6. Assume that the RBC scheme satisfies validity, the NIZK scheme satisfies simulation
soundness, and the PKE scheme satisfies IND-CCA security and perfect correctness, then for any
s, s′, A’s view in experiment HybA(1κ, s′) is computationally indistinguishable from its view in
experiment HybA(1κ, s).

Proof. We define H̃yb
A
i (1κ, s) to be a hybrid experiment where in the challenge phase, the challenger

computes a secret sharing of both s let (s1, . . . sn) denote the resulting shares. Now, for each honest
user j,

• if j is among the first i honest users (assume honest users are ordered by their respective
identities), CTj is computed by encrypting sj ;

• else CTj is computed by encrypting 0.

Henceforth, let h = bn/2c+ 1 denote the number of honest users (without loss of generality, it
suffices to consider an adversary that always corrupts a fixed number of nodes such that h =

bn/2c+ 1). Clearly H̃yb
A
h (1κ, s) = HybA(1κ, s).

Claim 6.7. Suppose that the assumptions in Lemma 6.6 hold. For any s, A’s view in H̃yb
A
h (1κ, s)

is computationally indistinguishable from its view in H̃yb
A
0 (1κ, s).

Proof. Due to the hybrid argument, it suffices to prove that for any s, A’s view in H̃yb
A
i (1κ, s) is

computationally indistinguishable from its view in H̃yb
A
i−1(1κ, s) for any i ∈ [1, h].

We construct a reduction B who can break IND-CCA security if there an adversary A that can

distinguish H̃yb
A
i (1κ, s) and H̃yb

A
i−1(1κ, s). B follows how Hyb would interact with A except the

following modifications:

• B obtains a challenge public-key epk∗ from the IND-CCA challenger. Now B will embed epk∗

into the i-th honest node’s public key; for every other honest node j 6= i, B generates its epkj
and eskj by calling the honest PKE.K(1κ);

• For the challenge instance, B creates secret shares for s and let (s1, . . . sn) denote the resulting
shares. B submits the challenge plaintexts si and 0 to the IND-CCA challenger, and obtains
a set of ciphertexts CT∗i . Now, B computes CT∗j := Enc(epkj , sj) for j < i and j ∈ Honest;
it computes CT∗j := Enc(epkj , 0) for j > i and j ∈ Honest. B now uses the ciphertext CT∗j in
place of the CTj ’s in the challenge phase for each j ∈ Honest (note that at this moment, all
NIZKs from honest nodes are being simulated without using any witness);

• For the challenge instance, honest nodes do not attempt to decrypt its own share at the end
of Share before outputting “sharing-succeeded”;

• For any non-challenge instances, if an honest node observes bn/2c+ 1 RBC instances output
“ok”, it needs to call the decryption algorithm to decrypt its own share; since B cannot decrypt
honest node i’s ciphertexts itself, it calls the IND-CCA challenger to help with decryption
instead;

• Similarly, whenever A makes an Extract query for a non-challenge instance, the extractor E
(simulated by B now) must perform decryption if certain checks pass (see description of E
earlier) — B also calls the IND-CCA challenger to decrypt ciphertexts pertaining to i;

• Finally, B makes the same guess as what A outputs.
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Let (sid∗, {CT∗j}j∈[n], π
∗) be the dealer u’s input into RBC0 during the challenge instance. We

now argue the following claim:

Fact 6.8. If the NIZK scheme is simulation sound, PKE is perfectly correct, and RBC satisfies
validity, then except with negligible probability in the above experiment, B will never ask the IND-
CCA challenger to decrypt CT∗i .

Proof. By the definition of the honest algorithm and validity of RBC, and also by the E definition,
the challenger will only ask the IND-CCA challenger to decrypt CT∗i iff the challenger has seen a
proof π that verifies for the statement (sid , {pkj ,CTj}j∈[n]). Since the NIZK is simulation sound,
except with negligible probability the statement (sid , {pkj ,CTj}j∈[n]) must be true. Now by the
perfect correctness of PKE, if the sid in the above tuple is not equal to sid∗, then CTi 6= CT∗i .

It is not difficult to see that if the IND-CCA challenger encrypted si, then A’s view in the

above experiment is identically distributed as H̃yb
A
i (1κ, s); otherwise it is identically distributed as

H̃yb
A
i−1(1κ, s). Thus A’s advantage in distinguishing H̃yb

A
i (1κ, s) and H̃yb

A
i−1(1κ, s) would directly

translate to B’s advantage in distinguishing which challenge plaintext the IND-CCA encrypted
(with only negligible loss due to possible failure of the RBC’s validity or the simulation soundness
of the NIZK).

Finally, Lemma 6.6 follows by observing that for any s, s′, H̃yb
A
0 (1κ, s) is identically distributed

as H̃yb
A
0 (1κ, s′) due to the property of Shamir Secret Sharing.

Theorem 6.9 (Non-malleability). Suppose that the RBC scheme satisfies validity, the NIZK scheme
satisfies zero-knowledge and simulation soundness, and the PKE scheme satisfies IND-CCA secu-
rity and perfect correctness. Then, for any non-uniform p.p.t. A satisfying the requirements of
Definition 6.1, for any s and s′ A’s views in ExptA(1κ, s) and in ExptA(1κ, s′) are computationally
indistinguishable.

Proof. The proof follows directly due to Claim 6.5 and Lemma 6.6.

7 Leader Election (LE)

7.1 Definition

A leader election (LE) protocol is an inputless protocol such that when a node terminates, it outputs
an elected leader L ∈ [n]. For the outcome of LE to be considered good, we want that not only
every honest node must agree on the leader, but also that this leader belongs to Or for some a-priori
known round r. We would like that the LE achieves a good outcome with O(1) probability. Our
actual definition below is somewhat tricky due to compositional issues that arise due to multiple
LE instances sharing the same PKI. We would like that even when multiple LE instances share
the same PKI, roughly speaking, almost surely there is still independent constant probability that
each individual instance’s outcome is good. In our formal definition below, we will precisely specify
which subset of honest coins that are freshly chosen in each LE instance allow us to capture this
desired independence. Note that this independence property is desired because later in our BA
protocol, we need to argue that after super-logarithmically many trials, an honest leader must be
elected except with negligible probability.

We formalize the definitions below.
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T -liveness. Consider an (A,Z) pair that is allowed to spawn multiple concurrent or sequential
LE instances all of which share the same n, PKI setup, and ∆.

Let T (n,∆, κ) be a polynomial function in its parameters. We say that an LE protocol denoted
Π satisfies T -liveness under χ-weak-synchrony if for every non-uniform p.p.t. (A,Z) that respects
χ-weak-synchrony and may spawn multiple LE instances sharing the same PKI, there exists a
negligible function negl(·) such that for every κ ∈ N, except with negl(κ) probability, the following
holds for every LE instance spawned (for the LE instance of interest, we rename its starting round
to round 0):

every node in Or for r ≥ T must have output by the end of round r.

(T ∗, q)-quality. We consider an (A,Z) pair who can spawn m(κ) LE instances possibly running
concurrently. Henceforth let ~ρ∗` denote the collection of the following randomness:

for each node honest and online in the starting round (i.e., round 0) of the `-th instance: the
first d(κ, n) bits of randomness consumed by this node in this round,

where d(κ, n) is an appropriate polynomial function that depends on the construction. Let ~ρ be all
randomness consumed by the entire experiment (including by (A,Z) and by honest nodes and the
randomness of the PKI), and let ~ρ\~ρ∗` denote all other randomness besides ~ρ∗` .

We say that a leader election (LE) protocol satisfies (T ∗, q)-quality under χ-weak-synchrony, iff
for any polynomial functionm(κ), for any non-uniform p.p.t. (A,Z) that respects χ-weak-synchrony
and spawns m(κ) LE instances possibly executing concurrently, there exists a negligible function
negl(·) such that for all κ ∈ N, for every 1 ≤ ` ≤ m(κ), except for a negl(κ) fraction of choices for
~ρ\~ρ∗` , there exist at least q fraction of choices for ~ρ∗` , such that the experiment (determined by the
joint randomness choice above) would guarantee the following good events for the `-th instance:

1. Consistency: if an honest node outputs L and another honest node outputs L′, it holds that
L = L′; and

2. Fairness: let L be the leader output by an honest node, we have that L ∈ OT ∗ where OT ∗
denotes the set of honest nodes that are online in round T ∗ (assuming that the start round
of the `-th instance is renamed to be round 0).

7.2 Construction

The construction is a bit involved and thus we refer the reader to Section 2.3 for an intuitive
explanation of our protocol. Below we focus on a formal description.

Let VSS denote a verifiable secret sharing scheme for inputs over the finite field F. (see Sec-
tion 6.2) and let Tvss be its liveness parameter. We now show how to construct leader election
from verifiable secret sharing. In our protocol below, there are n2 instances of VSS. Henceforth we
use VSS[i, j] to denote the j-th instance where node i is the designated dealer. Additionally, let
RBC denote a reliable broadcast protocol (see Section 5) whose liveness parameter is denoted Trbc.
Let Σ := (K, Sign,Ver) denote a digital signature scheme.

The following protocol is executed by every node, below we describe the actions taken by node
i ∈ [n] — for simplicity we implicitly assume that every message is tagged with its purported
sender:

• PKI setup (shared across all LE instances): each node i calls (rpki, rski) ← RBC.K(1κ);
(vpki, vski) ← VSS.K(1κ); and (vki, sski) ← Σ.K(1κ). Now its public key is (rpki, vpki, vki)
and its secret key is (rski, vski, sski).
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In the following, we describe the leader election (LE) protocol. We assume that all LE protocols
share the same PKI. Moreover, whenever a node i uses sski to sign messages, the message to
be signed is always tagged with the session identifier sid of the current instance and signature
verification also verifies the signature to the same sid .

• Round 0: Node i chooses n random coins ci,1, . . . , ci,n ∈ F. For instances VSS[i, 1], . . ., VSS[i, n]
where node i is the dealer, node i provides the inputs ci,1, . . . , ci,n respectively to each instance.
Then, node i invokes the Share sub-protocol of all n2 instances of VSS.

• Any round: At any time during the protocol, if in node i’s view, all n VSS instances where
node j is the dealer has terminated outputting “sharing succeeded”, we say that node i now
considers j as a qualified dealer.

• Round Tvss: If in round Tvss, at least bn/2c + 1 qualified dealers have been identified so far:
let D be the current set of all qualified dealers; reliably broadcast the message (qualified-set,
D) using RBC. Henceforth, we use RBC[j] to denote the RBC instance where j is the sender. If
not enough qualified dealers have been identified, reliably broadcast the message ⊥.

• Any round: In any round during the protocol, if RBC[j] has output (qualified-set, Dj) such
that Dj is a subset of [n] containing at least bn/2c + 1 nodes, and moreover every node in Dj

has become qualified w.r.t. node i’s view so far, then node i considers j as a candidate, and
node i records the tuple (j,Dj).

• Round Tvss + Trbc: In round Tvss + Trbc, do the following:

– invoke the Reconstruct sub-protocol of all VSS instances;

– if at least bn/2c+ 1 nodes are now considered candidates: let S be the set of all candidates
so far; now multicast (candidate-set, S) along with a signature on the message.

• Any round: At any point of time, if a node i has observed a (candidate-set, Sj) message
with a valid signature from the purported sender j where Sj is a subset of [n] of size at least
bn/2c+ 1, and moreover, every node in Sj is now considered a candidate by node i too, we say
that node i becomes happy with j.

• As soon as node i becomes happy with at least bn/2c + 1 nodes, let S∗i be the current set of
nodes that are considered candidates;

• As soon as the relevant VSS instances (needed in the following computation) have terminated
the reconstruction phase outputting a reconstructed secret — henceforth let c′u,v be the secret
reconstructed from instance VSS[u, v]:

– For every u ∈ S∗i : let (u,Du) be a previously recorded tuple when u first became a candi-
date; compute node u’s charisma as Cu :=

∏
v∈Du c

′
v,u.

– Output the node u∗ ∈ S∗i with maximum charisma (where ordering between elements in F
is determined using lexicographical comparisons).

7.3 Proof

7.3.1 Definitions and Notation

Consider a pair (A,Z) that spawns multiple possible concurrent instances of LE after a shared PKI
setup. Henceforth we define ~ρ∗` to be the following collection of coins consumed in by honest nodes
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in the starting round (i.e., round 0) of the `-th LE instance:

{ci,j : i ∈ Honest, j ∈ [n]}

Good execution. Henceforth, we define a good execution to be one in which 1) no VSS instance
violated Tvss-liveness or Tvss-validity; 2) no RBC instance violated Trbc-consistency, validity, Trbc-
liveness (under an honest and initially online sender), or close termination; and 3) there is no
signature from an honest node i in honest view that i never signed.

The following fact is easy to see.

Fact 7.1. For every polynomial m, for every non-uniform p.p.t. (A,Z) that respects 0.5-weak-
synchrony and spawns m possibly concurrent LE instances, there exists a negligible function negl(·)
such that conditioning on the randomness {~ρ∗`}`∈[m] being fixed to any string of appropriate length,
the probability of a good execution is 1− negl(κ).

Without loss of generality we may assume that Trbc ≥ 2∆ and Tvss ≥ 2∆ — if not we can just
let Trbc := 2∆ or let Tvss := 2∆.

Fact 7.2. In a good execution, the following holds for every LE instance where the relevant in-
stance’s starting round is renamed to round 0 for convenience: every honest node in O0 is consid-
ered as a qualified dealer by every node in OTvss; thus, every node in OTvss will reliably broadcast a
(qualified-set, D) message where D includes every node in O0.

Proof. Follows directly from Tvss-liveness of the VSS scheme.

Fact 7.3. In a good execution, the following holds for every LE instance where the relevant in-
stance’s starting round is renamed to round 0: if a node in OTvss reliably broadcasts some (qualified-set,
D), then in round Tvss + Trbc, every node in OTvss+Trbc

will consider j as a candidate. Combining
Fact 7.2 we may also conclude that every node j ∈ OTvss+Trbc

will send a (candidate-set, Sj)
message in round Tvss + Trbc where OTvss ⊆ Sj.

Proof. By Trbc-liveness (under an honest and initially online sender) and validity of the RBC scheme,
if i ∈ OTvss reliably broadcasts (qualified-set, D), every node in OTvss+Trbc

will have received
the output (qualified-set, D) from the corresponding RBC instance at the beginning of round
Tvss + Trbc. If suffices to prove that in this round, every node in OTvss+Trbc

will consider everyone
in D a qualified dealer. This follows from the close termination property of the VSS scheme and
the fact that Trbc ≥ 2∆.

Fact 7.4. In a good execution, the following holds for every LE instance where the relevant in-
stance’s starting round is renamed to round 0: every honest node i’s local set S∗i will contain every
node in OTvss.

Proof. Every honest node i decides S∗i only when it has become happy with at least bn/2c+ 1
nodes. Thus at least one of these nodes, denoted j, must be from OTvss+Trbc

.
Recall that i becomes happy with j if it has received a (candidate-set, Sj) message where

Sj ⊆ [n] is of size at least bn/2c+ 1, and moreover everyone in Sj is considered a candidate by i.
Since there is no signature forgery in a good execution, the (candidate-set, Sj) message i received
from j must be the one that j sent in round Tvss +Trbc. By Fact 7.3, OTvss ⊆ Sj . By the definition
of “happy with”, Sj must be a subset of node i’s local candidate set when i is happy with j.
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7.3.2 Liveness

Henceforth, if an honest node i considers j as a candidate due to having output a message
(qualified-set, Dj) from RBC[j], we say that i considers j a candidate with the coin-set Dj .

Fact 7.5. In a good execution, the following holds for every LE instance where the relevant in-
stance’s starting round is renamed to round 0: if in some round r, some honest node i considers j
a candidate with the coin-set Dj, then the following holds:

In any round r′ ≥ max(r, Tvss + Trbc) + Tvss, for every instance VSS[d, j] where d ∈ [n]: every
node in Or′ will have reconstructed some secret c′d,j ∈ F.

Proof. If j is considered a candidate by an honest node i in round r, it means that in i’s view in
round r, RBC[j] has output (qualified-set, Dj) where Dj ⊆ [n] is at least bn/2c+ 1 in size, and
moreover, i considers everyone in Dj qualified. This means that for everyone d ∈ Dj and every
u ∈ [n], i has output “sharing succeeded” from the instance VSS[d, u]. The remainder of the
proof follows directly from the Tvss-liveness and Tvss-validity property of VSS.

Theorem 7.6 (Liveness). Assume that the VSS scheme satisfies Tvss-liveness and Tvss-validity;
the RBC scheme satisfies Trbc-consistency, Trbc-liveness, validity, and close termination; and the
signature scheme satisfies existential unforgeability under chosen-message attack. Then, the leader
election protocol defined above satisfies (2Tvss + Trbc)-liveness.

Proof. Let t∗ := 2Tvss + Trbc and recall that Tvss ≥ 2∆. Henceforth consider only good executions
and ignore the negligible fraction of bad executions. The following statements hold for all LE
instances in a good execution where the relevant instance’s starting round is renamed to round 0.
Due to Fact 7.3, every node in Ot for t ≥ t∗ will have received a (candidate-set, ) message from
every node in OTvss+Trbc

by the end of round t. Further, due to the close termination property of
the RBC scheme and liveness of the VSS scheme, if some node i ∈ OTvss+Trbc

sent (candidate-set,
Si), then every node in Ot will consider every node in Si as a candidate by the end of round t.
Thus, for every i ∈ Ot, its local set S∗i will have been determined by the end of round t. Finally, by
Fact 7.5, every node in Ot will have reconstructed the relevant secrets by the end of round t such
that its LE protocol will have produced an output by the end of round t.

7.3.3 Quality

Let Erbc denote the extractor for the RBC scheme; and let Evss be the extractor for the VSS scheme.

Experiment Expt(A,Z),m,`(1κ). We define an experiment Expt(A,Z),m,` that is basically the real-
world execution but augmented with new random variables defined as below. Imagine that (A,Z)
spawns m possibly concurrent LE instances. When the `-instance has executed for Tvss + Trbc

rounds, we define the following random variables related to the execution:

1. {c̃i,j}i∈[n],j∈[n]: If i is honest, then c̃i,j (where j ∈ [n]) denotes the random coin chosen by
honest node i in round 0; else c̃i,j is obtained as

c̃i,j := Evss({VSS.pkd}d∈[n], {VSS.skd}d∈Honest,Tr(VSS[i, j]))

where Tr(VSS[i, j]) denotes the transcript of honest nodes in the initial Tvss rounds of instance
VSS[i, j].
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2. {D̃i}i∈[n]: If i is honest and reliably broadcasted a qualified-set message in round Tvss, let

D̃i be the qualified set included by i in this message; if i is honest but reliably broadcasted
⊥ in round Tvss; simply let D̃i := ⊥. If i is corrupt, we define D̃i as below:

• let D∗ be the outcome of applying Erbc to the transcript of the honest nodes in the
initial Trbc rounds of instance RBC[i];

• let D̃i be D∗ iff D∗ is a subset of [n] at least bn/2c+ 1 in size; else let D̃i := ⊥.

3. {C̃i}i∈[n]: henceforth we assume that for any x ∈ F, (⊥ · x) = (x · ⊥) = ⊥; we define {C̃i}i∈[n]

as below:

C̃i :=

{∏
j∈D̃i c̃j,i if D̃i 6= ⊥
⊥ o.w.

4. Q ∈ {0, 1}: Q := 1 iff the following good event happens: for some i ∈ OTvss ,

C̃i = max
j
{C̃j : j ∈ [n] and C̃j 6= ⊥} (1)

Experiment Ẽxpt
(A,Z),m,`

~ρ∗`
(1κ). We use the notation Ẽxpt

(A,Z),m,`

~ρ∗`
to denote the same experiment

as Expt(A,Z),m,` except that we now fix the random string ~ρ∗` ; all other random bits consumed by
the experiment are chosen at random as before.

Hybrid experiment Hyb(A,Z),m,`(1κ). Consider a hybrid experiment Hyb(A,Z),m,` that is almost
the same as Expt(A,Z),m,` except the following modification: in the `-th LE instance, every honest
node i uses a canonical input denoted 0 in all VSS instances where i serves as the designated dealer;
however, the value c̃i,j is still chosen at random.

Lemma 7.7. Assume that the VSS scheme satisfies non-malleability. Then, for every fixed polyno-
mial m, there is some negligible function negl(·), such that for every ` ≤ m, for every fixed choice

of ~ρ∗` , the fraction of ~ρ\~ρ∗` that causes the event Q to differ in Hyb(A,Z),m,` and in Ẽxpt
(A,Z),m,`

~ρ∗`
is

upper bounded by negl(κ).

Proof. Suppose the claim is not true, i.e., there exists some polynomial m and p, some particular
choice of ` ≤ m and ~ρ∗` such that the fraction of ~ρ\~ρ∗` that causes the eventQ to differ for Hyb(A,Z),m,`

and Ẽxpt
(A,Z),m,`

~ρ∗`
is at least 1/p(κ).

We now construct a non-uniform p.p.t. reduction B that leverages (A,Z) to break the non-
malleability of the VSS scheme. We consider an M -multi-challenge variant of the non-malleability
game where in the challenge phase, the non-malleability adversary B may specify M simultaneous
challenge instances in the challenge phase, and the challenger (denoted C) will either share the
secret vector ~s or ~s′ where each coordinate of the vector is shared in one of the challenge instances.
B is not allowed to invoke Reconstruct or send Extract queries for any of the challenge instances.
Through a standard hybrid argument, it is not difficult to see that given a VSS scheme, if no
efficient adversary can distinguish which challenge secret is shared in the single-challenge non-
malleability game, then no efficient adversary can distinguish which challenge vector is shared in
the multi-challenge non-malleability game.
B will now leverage (A,Z) to break non-malleability in the M -multi-challenge game. Now

consider the following experiment: B simulates the behavior of all honest nodes in the LE instances
when interacting with (A,Z) (who may spawn multiple instances of LE). B simply follows the
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honest LE algorithm when simulating honest nodes, except that when B serves as a man-in-the-
middle for between (A,Z) and C for simulating the VSS instances. Specifically, B calls the VSS’s
non-malleability secrecy challenger (denoted C) to compute honest nodes’ public keys and messages
pertaining to all VSS instances and forwards them to (A,Z); further, B forwards to C the part of
all messages and public keys received that pertain to the VSS instances.

When the `-th LE instances starts, let Γ denote all honest-dealer VSS instances contained in
the i-th LE instance — this will be the challenge VSS instances in the non-malleability game. B
submits two challenge vectors to C, ~0 and ~ρ∗` where (`, ~ρ∗` ) denotes the bad choice that causes
Lemma 7.7 to fail. C secret shares one of challenge vectors. For VSS instances contained in all
other LE instances, B still simulates them as before by forwarding between C and (A,Z). Finally,
the experiment stops when it has completed (Trbc + Tvss) rounds of the `-th LE instance. At this
point, B may additionally make some Extract queries to the VSS challenger C (for corrupt-dealer
VSS instances) to evaluate whether the good event Q has happened. B outputs 1 if Q is true and
outputs 0 otherwise.

Fact 7.8. When interacting with C, B never makes a Reconstruct or Extract query on the challenge
VSS instances.

It is not difficult to see that if C chooses the challenge vector ~0, the above experiment is

identically distributed as in Hyb(A,Z),m,`; otherwise it is identically distributed as Ẽxpt
(A,Z),m,`

~ρ∗`
.

The proof follows by observing that if the fraction of ~ρ\~ρ∗` that causes the event Q to differ for

Hyb(A,Z),m,` and Ẽxpt
(A,Z),m,`

~ρ∗`
is at least 1/p(κ), then the probability that B outputs 1 in Hyb(A,Z),m,`

and Ẽxpt
(A,Z),m,`

~ρ∗`
differs by at least 1/p too.

Lemma 7.9. Suppose that the VSS scheme satisfies Tvss-liveness, Tvss-validity, and non-malleability
under 0.5-weak-synchrony and that the RBC scheme satisfies Trbc-consistency, Trbc-liveness, and
validity. For any polynomial function m(·), for any non-uniform p.p.t. (A,Z) that respects 0.5-
weak-synchrony and spawns m(κ) LE instances, there exists a negligible function negl(·) such that
for all κ ∈ N, for any 1 ≤ ` ≤ m, except for negl(κ) fraction of ~ρ\~ρ∗` , the good event Q holds for at

least 1
2 + 1

9n fraction of the choices for ~ρ∗` in Expt(A,Z),m,`.

Proof. Follows directly from the following Claim 7.10 and Claim 7.11.

Claim 7.10. Suppose that the VSS scheme satisfies non-malleability. Assume that (A,Z) is non-
uniform p.p.t., respects 0.5-weak-synchrony, and spawns m possibly concurrent LE instances. Sup-
pose the VSS scheme employed satisfies Tvss-validity and non-malleability under 0.5-weak-synchrony.
Moreover, suppose that there is some q(κ, n) and some negligible function ν(·) such that for any
` ≤ m, for 1 − ν(κ) fraction of ~ρ\~ρ∗` , the good event Q holds for at least q(κ, n) fraction of the ~ρ∗`
in Hyb(A,Z),m,`. Then there is some negligible function ν ′(·) and ν ′′(·) such that for any ` ≤ m, for
1− ν ′(κ) fraction of ~ρ\~ρ∗` , the good event Q holds for at least q(κ, n)− ν ′′(κ) fraction of the ~ρ∗` in

Expt(A,Z),m,`.

Proof. The proof follows from Lemma 7.7 as follows. Let k1 be the length of ~ρ∗` and let k2 be the
length of ~ρ\~ρ∗` . If the above is true, then the number of (~ρ∗` , ~ρ\~ρ∗` ) combinations that cause Q to

differ for Hyb(A,Z),m,` and Expt(A,Z),m,` is upper bounded by 2k1+k2 · negl(κ).
On the other hand, assume that the claim we are proving does not hold, i.e., there is some

polynomial function p(·), and p′(·) such that for 1/p(κ) fraction of ~ρ\~ρ∗i , the good event Q holds
for only less than q(κ, n) − 1/p′(κ) fraction of the ~ρ∗i in Expt(A,Z),m,`. In this case, the number of
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(~ρ∗` , ~ρ\~ρ∗` ) combinations that cause Q to differ for Hyb(A,Z),m,` and Expt(A,Z),m,` is lower bounded
by

(1/p− negl) · 2k2 · (1/p′) · 2k1 = 2k1+k2 · (1/poly(κ))

Thus we have reached a contradiction.

Claim 7.11. Suppose that the VSS scheme satisfies Tvss-liveness, Tvss-validity, and non-malleability
under 0.5-weak-synchrony. For every polynomial m and every non-uniform p.p.t. (A,Z) that re-
spects 0.5-weak-synchrony and spawns m LE instances sharing the same PKI, there is a negligible
function negl(·) such that for every ` ≤ m, for all but negl(κ) fraction of ~ρ\~ρ∗` , the good event Q

holds for 1
2 + 1

8n fraction of ~ρ∗` in Hyb(A,Z),m,`.

Proof. In Hyb, note that the honest coins ~ρ∗` , i.e., the set of values {c̃i,j}i∈Honest,j∈[n] in the `-th
instance are independent of (A,Z)’s view in the experiment, independent of whether the execution
is “good” defined in Section 7.3.1, and independent of the choice of {c̃i,j}i∈Crupt,j∈[n] ∪ {D̃i}i∈[n].

Define the following event denoted X: for every i ∈ OTvss , D̃i is a subset of [n] at least bn/2c+ 1
in size; moreover, for every j ∈ D̃i that is corrupt, it holds that c̃j,u 6= ⊥ for every u ∈ [n]. Clearly,
the event X is independent of ~ρ∗` in Hyb.

Now, for every choice of every ~ρ\~ρ∗` such that X is true and moreover the execution is good
by the definition in Section 7.3.1, it is not hard to see that the good event Q holds for 0.5 + 1

3n
fraction of the ~ρ∗` choices. To conclude the proof, we show that X is true for all but a negligible
fraction of ~ρ\~ρ∗` . Since the execution is good except with negligible probability over the choice
of ~ρ\~ρ∗` , it suffices to show that X is true for all good executions of Hyb. Observe that in a good
execution of Hyb, Fact 7.2 also (note that earlier the proof of Fact 7.2 was for the original experiment
Expt(A,Z),m,` but the same proof holds for Hyb too). Thus in a good execution of Hyb, in the `-th
LE instance, every node in OTvss will reliably broadcast a (qualified-set, D) message where D
includes every node in O0. Further, in a good execution, if D is multicast by an honest node, for
every corrupt node j ∈ D, for every u ∈ [n], c̃j,u 6= ⊥ by the validity and liveness of VSS.

Theorem 7.12 (Quality). Suppose that the VSS scheme satisfies Tvss-liveness, Tvss-validity, and
non-malleability under 0.5-weak-synchrony; that the RBC scheme satisfies Trbc-consistency, Trbc-
liveness, validity, and close termination; and that the signature scheme employed satisfies exis-
tential unforgeability under chosen-message attack; then, the above LE protocol satisfies (Tvss, 1/2)-
quality under 0.5-weak-synchrony.

Proof. We start by proving the following claim.

Claim 7.13. In a good execution, if the event Q is true, then the following holds: let i∗ ∈ OTvss be
the honest node for which Equation (1) holds; then, every honest node’s output must be i∗.

Proof. Observe that in any good execution, Fact 7.4 holds. Further, in a good execution, if an
honest node successfully evaluated a node i’s charisma in the execution, then the charisma value
must agree with C̃i. Now, if the good event Q also holds in this execution, and let i∗ ∈ OTvss be
the honest node for which Equation (1) holds, then every honest node’s output must be i∗.

By Fact 7.1, we know that for every choice of ~ρ∗` , all but a negligible fraction of the choices of
~ρ\~ρ∗` lead to a good execution. Thus the total number of (~ρ∗` , ~ρ\~ρ∗` ) combinations that lead to a
bad execution must be at most negl(κ) ·2k1+k2 where k1 denotes the length of ~ρ∗` and k2 denotes the
length of ~ρ\~ρ∗` . Now suppose for the sake of contradiction that the theorem is not true, i.e., there
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exists some 1/poly(κ) fraction of ~ρ\~ρ∗` such that less than 1/2 of the choices of ~ρ∗` lead to the good
event Q. Due to Lemma 7.9 and the above claim, it must be that for each of 1/poly(κ) − negl(κ)
fraction of the choices of ~ρ\~ρ∗` , there exist 1/poly′(κ) fraction of ~ρ∗` that cause the execution to be
bad. In this case, we know that the number of (~ρ∗` , ~ρ\~ρ∗` ) combinations that lead to a bad execution
must be at least 2k1+k2 · (1/poly′′(κ)). Thus we have reached a contradiction.

8 Byzantine Agreement

8.1 Protocol Description

Let LE be a leader election scheme that satisfies Tle-liveness and (T ′le, 1/2)-quality under 0.5-weak-
synchrony where Tle > T ′le.

PKI setup. Upfront, every node performs PKI setup as follows: every node calls (LE.pk, LE.sk)←
LE.K(1κ); further, it calls (vk, ssk) ← Σ.K(1κ). The tuple (LE.pk, vk) is the node’s public key and
registered with the PKI, and the tuple (LE.sk, ssk) is the node’s secret key.

As before we assume that all messages, excluding the ones within the LE instance7, are signed
(using each node’s ssk) and tagged with the purported sender, and honest recipients verify the
signature (using the purported sender’s vk) upon receiving any message. To allow multiple BA
instances to share the same PKI, we assume that a message is always tagged with the current
instance’s session identifier sid before it is signed and the verification algorithm checks the sid
accordingly. Messages with invalid signatures are discarded immediately.

Protocol. In the following, an epoch-e commit evidence for b ∈ {0, 1} is a set of signatures from
bn/2c+ 1 number of distinct nodes on the message (prepare, e, b). Our protocol works as follows.
For each epoch e = 1, 2, . . ., do the following (henceforth the initial round of each epoch is renamed
round 0 of this epoch):

• Propose. For the initial Tle rounds in each epoch, do the following:

1. If the current epoch is e = 1, then in round 0 of epoch 1, the sender multicasts a signed tuple
(propose, b) where b is its input bit.

2. Round 0 of every epoch: invoke an instance of the LE protocol.

3. Round T ′le of every epoch: every node i ∈ [n] flips a random coin bi←${0, 1}, and multicasts
a signed tuple (propose, bi)

• Prepare (round Tle + ∆ of each epoch). If e = 1 and a node has heard an epoch-1 proposal
for b from the sender, then it multicasts the signed tuple (prepare, e, b). Else if e > 1, every
node performs the following:

1. if an epoch-e proposal of the form (propose, e, b) has been heard from an eligible epoch-e
proposer which is defined by the output of LE and moreover, either an epoch-(e−1) commit
evidence vouching for b or bn/2c+ 1 epoch-(e−1) complaints from distinct nodes have been
observed, multicast the signed tuple (prepare, e, b).

If LE has not produced an output in the range [n] at the beginning of this round, act as if
no valid proposal has been received.

7Recall that the LE instance deals with its own message signing internally.
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2. else multicast the signed tuple (prepare, e, b) if the node has seen an epoch-(e− 1) commit
evidence vouching for the bit b (if both bits satisfy this then send a prepare message for
each bit).

• Commit (round Tle + 2∆ of each epoch). If by the beginning of the commit round of the
current epoch e, a node

1. has heard an epoch-e commit evidence for the bit b;

2. has not observed a valid epoch-e proposal for 1− b (from an eligible proposer); and

3. has not observed any epoch-(e− 1) commit evidence for 1− b;

then multicast the signed tuple (commit, e, b).

• Complain (round Tle + 3∆ of each epoch). If no epoch-e commit evidence has been seen,
multicast the signed tuple (complain, e).

• End of this epoch and beginning of next epoch (round Tle + 4∆).

Finalization. At any time during the protocol, if a node has collected bn/2c+ 1 commit messages
(from distinct nodes) for the same epoch and vouching for the same bit b, then output b if no bit
has been output yet and continue participating in the protocol.

Remark 8.1. In the above scheme, a node would continue participating in the protocol forever
after producing an output. We devise a termination technique in Section E.

8.2 Proof

Henceforth we ignore the negligible fraction of bad executions in which there exists a forged sig-
nature in honest view. We refer the remaining set of (all but negligible fraction of) executions as
good executions. Throughout the proof, we shall assume by default that (A,Z) is non-uniform
p.p.t. and respects 0.5-weak-synchrony.

8.2.1 Consistency

Lemma 8.2 (Consistency within the same epoch). In a good execution, if for some e, an honest
node multicasts (commit, e, b), then there cannot be an epoch-e commit evidence for 1 − b ever in
honest view.

Proof. Henceforth for convenience, an epoch-(e − 1) commit evidence for 1 − b is said to be an
epoch-e pseudo-proposal for 1− b.

Suppose for the sake of contradiction that the above is not true, i.e., some honest node i
multicasts (commit, e, b) and there is at some point an epoch-e commit evidence for 1 − b too in
honest view. At the beginning of the commit round of epoch e, node i must have seen an epoch-e
commit evidence for b, and must not have observed an epoch-e valid proposal or pseudo-proposal
for 1 − b. On the other hand, since there is an epoch-e commit evidence for 1 − b in honest view,
some honest node that is online in the prepare round of epoch e must have sent an epoch-e prepare
message for 1 − b — this node must have observed a valid epoch-e proposal or pseudo-proposal
for 1 − b at the beginning of the prepare round of epoch e. Due to our strong message delivery
assumption (Assumption 2), node i must have observed either a valid epoch-e proposal or pseudo-
proposal for 1 − b at the beginning of the commit round of epoch e. Thus we have reached a
contradiction.
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Lemma 8.3 (Consistency across epochs). In a good execution, if there is some e ∈ N and b ∈ {0, 1}
such that an honest node ever sees a set of bn/2c+ 1 (commit, e, b) messages with valid signatures
from distinct nodes, then for e′ ≥ e, there cannot be an epoch-e′ commit evidence for 1− b ever in
honest view.

Proof. By Lemma 8.2, there cannot be an epoch-e commit evidence for 1− b in honest view.
Now, some honest node that is online in the commit round of epoch e must have sent an

epoch-e commit message for the bit b — this node must have observed an epoch-e commit evidence
for b at the beginning of the commit round of epoch e. Thus every honest node that is online
in the complain round of epoch e must have observed the same commit evidence by our strong
message delivery assumption (Assumption 2), and thus will not send an epoch-e complain message.
Consider the prepare round of epoch e+ 1: every honest node that is online in this round 1) must
have observed an epoch-e commit evidence for b; 2) must not have observed bn/2c+ 1 number of
epoch-e complain messages from distinct nodes; and 3) must not have observed any epoch-e commit
evidence for 1 − b by Lemma 8.2. Thus every honest node that is online in the prepare round of
epoch e + 1 will send an epoch-(e + 1) prepare message for b, and will not send an epoch-(e + 1)
prepare message for 1 − b. Thus there will not be any epoch-(e + 1) commit evidence for 1 − b in
honest view.

Now, every honest node that is online in the commit round of epoch e + 1 must have seen
bn/2c+ 1 number of epoch-(e + 1) commit messages for b. By induction, we can thus prove the
statement for all e′ ≥ e.

Theorem 8.4 (Consistency). In a good execution, if an honest node outputs b and another honest
node outputs b′, it must be that b = b′.

Proof. If an honest node outputs b due to having received bn/2c+ 1 number of valid epoch-e commit
messages for b from distinct nodes, we say that the node finalizes to b due to epoch e.

It is not hard to see that if there is no epoch-e commit evidence for b in honest view, then no
honest node will finalize to b due to epoch e. Now, let e∗ be the smallest epoch such that some
honest node finalizes to some bit due to epoch e∗, and let b∗ denote this finalized bit. By Lemma 8.3
it holds that for any e ≥ e∗, there cannot be an epoch-e commit evidence for 1− b in honest view.
Thus no honest node will finalize to 1− b due to epoch e.

8.2.2 Validity

Theorem 8.5 (Validity). In a good execution in which the sender is honest and online in the initial
round, all honest nodes must output the sender’s input bit.

Proof. If the sender (i.e., node 1) is honest and online in the starting round, every honest node
that is online in the prepare round of the first epoch will multicast a prepare message for the
sender’s input bit b. Thus every honest node that is online in the commit round of the first epoch
will multicast a commit message for the sender’s input b. Thus, every honest node that is online
in the complain round of the first epoch will have observed a collection of bn/2c+ 1 number of
(commit, e = 1, b) messages from distinct nodes and will have output the bit b. The remainder of
the proof follows from Theorem 8.3.

8.2.3 Liveness

Henceforth we say that a message m is in honest and online view in round r, if for every t ≥ r,
every node in Ot must have observed m at the beginning of t.
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Fact 8.6. At the beginning of every epoch e > 1, either there is an epoch-(e− 1) commit evidence
in honest and online view, or there are bn/2c+ 1 epoch-(e − 1) complaints from distinct nodes in
honest and online view.

Proof. Let r be the complain round of epoch e− 1 and let t be the starting round of epoch e. At
the beginning of round r,

• either some node in Or has seen an epoch-(e − 1) commit evidence for some b ∈ {0, 1} in
which case the commit evidence will appear in honest and online view in the starting round
of epoch e by our strong message delivery assumption (Assumption 2);

• or no node in Or has seen an epoch-(e−1) commit evidence in which case all nodes in Or will
multicast an epoch-e complaint in round r. In this case, bn/2c+ 1 number of epoch-(e − 1)
complaints from distinct nodes will appear in honest and online view in the starting round of
epoch e.

Theorem 8.7 (Liveness). Let T be a random variable representing the first round such that every
node that is honest and online in round t ≥ T will have produced an output by the end of round
t. For any non-uniform p.p.t. (A,Z) that respects 0.5-weak-synchrony, we have that there is some
suitable constant C such that for every λ ∈ N, except for exp(−Cλ) fraction of the executions,
T ≤ λ · (Tle + 4∆).

Proof. Consider an execution during which no honest node observes a forged signature from an
honest node. Suppose that one of the following is true for some epoch e > 1, we say that epoch e
is a lucky epoch: let r denote the starting round of epoch e,

• either bn/2c+ 1 epoch-(e− 1) complaints from distinct nodes are in honest and online view
in round r; or

• there is some bit b ∈ {0, 1} such that 1) an epoch-(e− 1) commit evidence for b is in honest
and online view in round r, 2) the proposer of epoch e, denoted i∗, is honest and online in
the round (within epoch e) in which it makes the proposal; and 3) i∗ proposes the same bit
b too.

If an epoch e > 1 is lucky, everyone in Oprepare
e will multicast (prepare, e, b), and will not

multicast (prepare, e, 1− b) where Oprepare
e denotes the honest and online set in the prepare round

of epoch e (and the meaning of similar notations below can be likewise inferred). Thus we have
that 1) an epoch-e commit evidence for b will appear in honest and online view at the beginning
of epoch e + 1; and 2) there cannot be an epoch-e commit evidence for 1 − b ever in honest view.
Note, however, that nodes in Ocommit

e may not multicast (commit, e, b) since it might have observed
an epoch-(e− 1) commit evidence for 1− b at the beginning of the commit round of epoch e.

Now, suppose that epoch e > 1 is lucky and let b be the bit proposed in epoch e by the honest
epoch-e proposer. Suppose that additionally, the proposer of epoch e+1 is honest and online in the
round in which it makes the epoch-(e+ 1) proposal, and moreover it happens to propose the bit b
in epoch e+ 1 too. In this case, it is not difficult to see that epoch e+ 1 is lucky too, and moreover,
since there is no epoch-e commit evidence for 1 − b in honest view, it must be that everyone in
Ocommit
e+1 will multicast (commit, e+ 1, b) in the commit round of epoch e+ 1. Thus for every honest

node i that is online in round t where t is at least ∆ rounds after the commit round of epoch e+ 1,
i must have produced an output at the beginning of round t.

Finally, to prove the theorem, it suffices to observe the following:
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Claim 8.8. Suppose that the LE scheme satisfies (Tle
′, 1/2)-quality. Then the probability that there

exists two consecutive lucky epochs in λ(Tle + 4∆) rounds is at least 1− exp(−Cλ)− ν(κ) for some
appropriate constant C and appropriate negligible function ν(·).

Proof. First, imagine that the LE scheme satisfied a stronger property where the negligible function
negl(·) in the quality definition is 0 instead. In other words, for every `, in the `-th LE instance,
conditioned on all randomness consumed by the experiment upto the starting round of the `-th LE
instance (inclusive) but not including ~ρ∗` , there are at least 1/2 choices of ρ∗` that would cause the
good event Q to happen for the `-th instance. In this case, clearly conditioned on all randomness
consumed by the experiment upto the starting round of the `-th LE instance (inclusive) but not
including ~ρ∗` , there are at least 1/4 choices of (ρ∗` , b

∗) that would cause the `-th epoch to be lucky
where b∗ is the random bit to propose chosen by the resulting honest proposer of epoch `. Thus
after λ(Tle + 4∆) rounds the probability that there do not exist two consecutive lucky epochs is
upper bounded by exp(−Cλ).

In reality, our LE scheme satisfies only a weaker property. There is a negligible probability the
randomness chosen by the experiment ~ρ will be bad in the following sense: there exists some ` such
that for the particular the choice of ~ρ\~ρ∗` , less than 1/2 of the choices for ~ρ∗ would lead to the good
event Q in the `-th LE instance. The claim then follows by union bound.

9 Multi-Party Computation

We now consider multi-party computation in a weakly synchronous network. Specifically, we will
consider the task of secure function evaluation (SFE). Imagine that n nodes each has an input where
node i’s input is denoted xi. The nodes would like to jointly compute a function f(x1, . . . , xn) over
their respective inputs. The privacy requirement is that besides learning the outcome, each node
must learn nothing else (possibly in a computational sense).

Recall that earlier in our Byzantine Agreement (BA) protocols, there is no privacy requirement,
and therefore our goal was to ensure that honest nodes who drop offline do not risk inconsistency
with the rest of the network. With SFE, we would like to ensure that honest nodes who drop
offline not only do not risk inconsistency from the rest of the network, but also do not risk losing
the privacy of their respective inputs.

Of course, in a weakly synchronous environment, if we would like online nodes to finish the
protocol in a bounded amount of time, we cannot wait forever for offline honest nodes to come
online. Thus, in our definition, we require that

1. at least bn/2c+ 1 number of honest inputs be included in the computation; and

2. for every honest node that remains online during the protocol, their inputs must be included
(our formal definitions later are a slight generalization: we require that all honest nodes
who remain online till a specific round during the protocol must be able to get their inputs
incorporated).

Note that the second requirement makes sure that our security requirement is strictly stronger
than SFE protocols secure under classical synchrony, i.e., any SFE protocol secure under our
definition must be secure under classical synchrony assuming honest majority.
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9.1 Definition

We consider secure function evaluation (SFE) protocols under χ-weak-synchrony, assuming the
existence of a PKI. Our definition is a UC-style, simulation-based notion assuming a weakly syn-
chronous network model. In the following, we assume that the real-world adversary A (or the
ideal-world adversary S) can communicate at any time and arbitrarily with the environment Z.

Real-world experiment RealA,Z,Π(1κ).

• Corrupt. Let Crupt← A(1κ) where Crupt ⊆ [n]. Henceforth let Honest := [n]\Crupt.

• PKI Setup. For every i ∈ Honest, let (pki, ski) be a public- and secret-key pair output by
the honest key generation algorithm. Let {pki}i∈Crupt ← A({pki}i∈Honest).

• Input. Z chooses honest nodes’ inputs {xi}i∈Honest.

• Execute. Honest nodes interact with A who controls the corrupt nodes. A can decide the
message delivery schedule and the honest and online set Or for each round r (possibly subject
to certain constraints, e.g., χ-weak-synchrony).

• Output. When an honest node produces an output, the output is sent to Z.

Ideal-world experiment IdealS,Z,T (1κ).

• Corrupt. Let Crupt← S(1κ, z) where Crupt ⊆ [n]. Henceforth let Honest := [n]\Crupt.

• Input. Z chooses honest nodes’ inputs {xi}i∈Honest.

• Honest and online sets. In each round r, S must output a set Or ⊆ Honest such that
|Or| ≥ bχnc+ 1;

• Effective inputs. In some round r∗ ≤ T during the ideal execution, S additionally outputs
({x̃i}i∈Crupt, I) where it is required that I ⊆ [n], |I ∩ Honest| ≥ bχnc + 1, and moreover I
includes any honest node that has always remained online so far. Intuitively, this means that
among the honest nodes, the subset (I∩Honest)’s inputs will be taken into account. Further,
in this step, the ideal-world adversary S has an opportunity to replace corrupt nodes’ inputs
too.

Now, define the ideal-world outcome {yi}i∈[n] := f({x∗i }i∈[n]) where x∗i is defined as:

x∗i :=


xi if i ∈ I ∩ Honest

⊥ if i ∈ Honest\I
x̃i o.w.

• Output. For each round r ≥ r∗, S must also output an honest subset Lr ⊆ Honest who are
supposed to receive an output in this round. S must respect the following constraints:

1. each honest node is included in no more than one set Lr;

2. if for some r ≥ T , some honest node i ∈ Or but i has not been included in any Lt for
t < r, then i must be included in Lr.

Now honest node i ∈ Lr will output yi to Z in round r.
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Definition 9.1 (Weakly synchronous SFE). Let T (κ, n,∆) be a polynomial function in the stated
parameters. We say that a protocol Π securely evaluates the function f in T time under χ-weak-
synchrony iff for every real-world non-uniform p.p.t.A that respects χ-weak-synchrony, there exists
an ideal-world non-uniform p.p.t. adversary S, such that for every non-uniform p.p.t. environment
Z, its views in the experiments RealA,Z,Π(1κ) and IdealS,Z,T (1κ) are computationally indistinguish-
able.

Note that in the above, we use a single definition to capture the correctness, privacy, and
liveness requirements of the SFE task.

9.2 Construction

We show how to construct a 0.5-weakly-synchronous SFE protocol that allows n nodes to securely
evaluate any polynomial function f(x1, . . . , xn) over their respective inputs. As mentioned, to
circumvent the well-known 1/3 lower bound in the plain, authenticated-channels model, our protocol
assumes the existence of a PKI.

For simplicity, we describe our protocol assuming that all nodes want to receive the same output,
i.e., y1 = y2 = . . . = yn in the definition of the ideal experiment IdealS,Z,T (1κ) earlier. Later in
Remark 9.3, we argue that it is not difficult to extend our protocol to the case when different nodes
want to receive different outputs.

We will leverage the following building blocks:

1. a 0.5-weakly-synchronous Byzantine Agreement (BA) protocol whose liveness parameter is
denoted Tba (see Sections 3.3 and 8);

2. a (bn/2c+ 1)-out-of-n Threshold Multi-Key Fully Homomorphic Encryption (TMFHE) scheme [4,
17] denoted TMFHE := (Gen,Enc,Eval,PartDec,FinDec) — see Section C.2 for a formal defi-
nition of TMFHE; and

3. an honest-majority multi-CRS non-interactive zero-knowledge proof (NIZK) system denoted
NIZK := (K,P,V) — see Section C.1 for a formal definition;

We have explained the intuition behind our construction earlier in Section 2.5. We now give a
formal descryption of our protocol.

• PKI setup: every node i ∈ [n] calls BA’s key generation algorithm and obtains (BA.pki,BA.ski),
calls NIZK.K and obtains crsi. calls TMFHE.Gen and obtains (TMFHE.pki, TMFHE.ski). The
node now registers the tuple (BA.pki, crsi,TMFHE.pki) with the PKI.

• Round 0: Each node i ∈ [n] does the following (else do nothing):

1. call CTi ← TMFHE.Enc({TMFHE.pkj}j∈[n], xi) where xi denotes its input — henceforth let
ρi be the random coins consumed by TMFHE.Enc;

2. call πi ← NIZK.P({crsj}j∈[n], stmt, w) using the statement stmt := ({TMFHE.pkj}j∈[n],
CTi, i) and the witness w := (xi, ρi), and (stmt, w) is considered to be in the language L
iff CTi is a correct encryption corresponding to node i of the plaintext xi under the public
keys {TMFHE.pkj}j∈[n] and using randomness ρi;

3. call BA to broadcast the tuple (CTi, πi) — henceforth the BA instance in this step where
node i is the designated sender is denoted BA[i];

• Any round: if all {BA[j]}j∈[n] instances have produced an output, a node i does the following:
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1. for each j ∈ [n], let (CTj , πj) be the output from BA[j]: if NIZK.V({crsj}j∈[n], ({TMFHE.pkj}j∈[n],
CTj , j), πj) outputs 1, add j to the “effective-input” set I (which was initially empty);

2. note that at this moment, the variables (CTj , πj) for j ∈ [n] and I must be well-defined;

• Round Tba: if all {BA[j]}j∈[n] instances have produced an output (and thus the relevant vari-
ables are now well-defined), a node i does the following (else it does nothing):

1. let C̃T ← TMFHE.Eval(fI, {CTj}j∈I) where fI the restricted version of f where for every
i /∈ I its input is set to a default value ⊥;

2. let pi ← TMFHE.PartDec(TMFHE.ski, C̃T);

3. let π′i ← NIZK.P(({crsj}j∈[n], stmt, w) using the statement stmt := (pi, f , I, {CTj}j∈[n],

{TMFHE.pkj}j∈[n], i) and the witness w := (C̃T, ψi,TMFHE.ski), and (stmt, w) is considered

to be in the language iff C̃T is a correct outcome of evaluating TMFHE.Eval(fI, {CTj}j∈I),

and moreover, pi is a correct outcome of evaluating TMFHE.PartDec(TMFHE.ski, C̃T) where
(TMFHE.pki,TMFHE.ski) must match the output of TMFHE.Gen when consuming random-
ness ψi.

4. multicast the message (pi, π
′
i) (tagged with the purported sender i).

• Every round r > Tba: if all {BA[j]}j∈[n] instances have produced an output (and thus relevant
variables are now well-defined), a node i does the following:

1. for every tuple (pj , π
′
j) received from some purported sender j ∈ [n], add j to the set S

(which was initially empty) iff the following verification passes:

NIZK.V({crsk}k∈[n], (pj , f,I, {CTk}k∈[n], {TMFHE.pkk}k∈[n], j), π
′
j) = 1

2. whenever the set S’s size is at least bn/2c+ 1, call µ ← TMFHE.FinDec({pj}j∈S) and
output µ.

Theorem 9.2 (Weakly synchronous multi-party computation). Suppose that the TMFHE scheme
satisfies simulation security, the BA scheme satisfies consistency, validity, and Tba-liveness under
0.5-weak-synchrony, and the multi-CRS NIZK scheme satisfies zero-knowledge and simulation sound
extractability. Then, the above SFE protocol securely evaluates the function f in Tba +∆ time under
0.5-weak-synchrony.

We will present the full proofs of the above theorem in Section 9.3.

Remark 9.3 (On different outputs for different nodes). It is not hard to generalize the above
protocol to allow different nodes to receive different outputs. Specifically, we can have every node
include the public-key of a public-key encryption (PKE) scheme in the PKI — henceforth node i’s
encryption public-key is denoted epki and the corresponding secret decryption key is denoted eski.
We now use the above protocol for all nodes to compute the common output {PKE.Encpki(yi)}i∈[n]

where yi is node i’s output after evaluating f over the effective-input set. Then, each node simply
decrypts its portion of the ciphertext to obtain its output.

9.3 Proofs

We construct the following sequence of hybrid experiments.
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Hyb0. Hyb0 is identical to the real-world experiment Real except that now, the adversary A inter-
acts with a challenger C which internally emulates the execution of all honest nodes.

Hyb1. Hyb1 is almost identical to Hyb0, except the following modifications:

• Instead of calling the real-world NIZK.K algorithm, C instead calls the simulated CRS gener-
ation algorithm K̃, such that for for each i ∈ Honest, C obtains (c̃rsi, τi, eki). C uses c̃rsi as
node i’s NIZK CRS, and keeps the simulation trapdoor τi and extraction key eki to itself.

• Whenever C needs to compute a NIZK on behalf of an honest node i, it instead calls the
simulated prover P̃ algorithm supplying the trapdoor τi to compute a simulated proof without
using the witness.

Claim 9.4. Assume that NIZK satisfies computational zero-knowledge, then Z’s view in Hyb0 is
computationally indistinguishable from its view in Hyb1.

Proof. The proof is standard and can be achieved through a sequence of hybrid experiments, where
we first replace the real-world setup with a simulated setup, and then replace the NIZK proofs one
by one with simulated proofs; in every step, we show that adjacent hybrids are indistinguishable
by a straightforward reduction to the NIZK’s computational zero-knowledge property.

Hyb2. Hyb2 is almost identical to Hyb1, except that now, if any of the following bad events happen,
the challenger C simply aborts:

1. Failure of BA’s consistency, validity, or Tba-liveness: the BA scheme’s consistency, validity,
or Tba-liveness is violated;

2. Failure of NIZK’s simulation sound extractability: whenever A supplies a NIZK proof in any
message on behalf of a corrupt node, C calls the NIZK’s extraction algorithm using the honest
nodes extraction keys {ekj}j∈Honest to extract a witness; however, the witness is not valid for
the statement being proven.

Henceforth, whenever a message of the form (CTj , πj) for j ∈ Crupt is received from A where
πj verifies, let (x̃j , ρ̃j) denote the extracted plaintext and randomness.

Claim 9.5. Suppose that BA satisfies consistency, validity, and Tba-liveness, and that NIZK satisfies
simulation sound extractability. Then, Hyb2 does not abort except with negligible probability; and
thus Z’s views in Hyb1 and in Hyb2 are computationally indistinguishable.

Proof. If Z can distinguish whether it is in Hyb1 or Hyb2 with non-negligible probability, we can
easily construct a reduction that leverages (A,Z) to break either the consistency, validity, or Tba-
liveness of BA, or the simulation sound extractability of NIZK. Specifically, for applying simulation
sound extractability, note that all NIZK statements in the protocol is tagged with the identity of
the prover and thus no statement can be reused.

Hyb3. Let Sim1,Sim2 denote the simulator algorithms for the TMFHE scheme. Hyb3 is almost
identical to Hyb2, except the following modifications:

• In round 0, instead of calling TMFHE.Enc to compute TMFHE ciphertexts on behalf of honest
nodes, C instead calls TMFHE.Sim1 to compute the corresponding ciphertexts without using
the actual plaintext.
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• In round Tba, instead of calling TMFHE.PartDec to compute decryption shares on behalf of
honest nodes, C instead calls TMFHE.Sim2(state, µ, C̃T, Honest, {TMFHE.ρ̃j}j∈Crupt), where

– state denotes the internal state output by TMFHE.Sim1 earlier;

– for j ∈ Crupt, ρ̃j is the randomness extracted from the corresponding NIZK proof that
A submitted together with the corrupt node’s ciphertext if j ∈ I; else ρ̃j := ~0.

– µ := fI({x∗j}j∈I) where x∗i := xi if i ∈ Honest ∩ I and x∗i := x̃i (i.e., the plaintext
extracted from a corresponding NIZK proof supplied by A) if i ∈ Crupt ∩ I.

Note that in Hyb3, all honest nodes must obtain the same C̃T after calling TMFHE.Eval in any
instance. Note also that although C obtains |Honest| number of simulated partial decryptions
shares after calling TMFHE.Sim2, it may only need to send a subset of these shares to A.

Lemma 9.6. Suppose that TMFHE satisfies simulation security. Then Z’s views in Hyb2 and Hyb3

are computationally indistinguishable.

Proof. Suppose for the sake of contradiction that Z can distinguish its views in Hyb2 and Hyb3

with non-negligible probability, we will construct a reduction R that breaks the simulation security
of TMFHE with non-negligible probability.

Imagine that on one hand, R is interacting with either RealR(1κ, d, n) experiment or the
IdealR,(Sim1,Sim2)(1κ, d, n) experiment of the TMFHE scheme. On the other hand, R is also in-
teracting with (A,Z).

• First, R specifies the same set of corrupt nodes as A outputs.

• R receives from the TMFHE experiment a set of public keys {TMFHE.pki}i∈Honest which it will
embed into the interactions with A. For i ∈ Honest, R calls BA’s key generation algorithm
to generate a public- and secret-key pair denoted (BA.pki,BA.ski) for node i; moreover, it
calls (c̃rsi, τi, eki)← NIZK.K̃. It hands {BA.pki, c̃rsi, TMFHE.pki}i∈Honest to A, and waits for
A to specify {BA.pki, c̃rsi,TMFHE.pki}i∈Crupt. R passes the terms {TMFHE.pki}i∈Crupt to the
TMFHE experiment it is interacting with.

• At any time, if R receives a NIZK proof from A on behalf of corrupt nodes, it calls the NIZK
scheme’s extractor and use the extraction keys {ekj}j∈Honest to extract a witness.

• At any time, if the bad events defined above (that violate either the security of the BA scheme
or the simulation sound extractability of the NIZK scheme) happen in any instance, R simply
aborts.

• In round 0, when R needs to generate TMFHE ciphertexts on behalf of honest nodes, it
calls the TMFHE experiment supplying the challenge plaintexts {xi}i∈Honest and uses the
ciphertexts returned by the TMFHE experiment to compute its messages to A. Note that R
can compute the simulated NIZK proofs without using the witness (i.e., the plaintext and the
randomness used in the encryption algorithm).

• Assuming that R does not abort, then in round Tba, some honest nodes must have produced
output from all {BA[j]}j∈[n] instances. For each j ∈ Crupt,

1. if some honest node’s BA[j] has output (CTj , πj) and πj passes the NIZK verification,
then R must have extracted a witness (x̃j , ρ̃j) such that CTj is a valid TMFHE ciphertext
for x̃j using randomness ρ̃j . In this case, R submits to the TMFHE experiment the tuple
(x̃j , ρ̃j) for generating node j’s ciphertext;
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2. else R submits to the TMFHE experiment a canonical tuple (~0,~0) for generating node j’s
ciphertext — note that these ciphertexts will be excluded from the evaluation anyway.

• In round Tba, when R needs to compute partial decryption shares on behalf of honest nodes,
R forwards the corresponding query (I, fI,Honest) to the TMFHE experiment and uses the
partial decryption shares returned by the TMFHE experiment. Here again R can compute
the simulated NIZK proofs without using a valid witness.

• Besides the above modifications, R otherwise follows how Hyb2 would interact with (A,Z).

The proof follows by making the following observation: if R is interacting with the RealR(1κ, d, n)
experiment of TMFHE, then Z’s view is identically distributed as in Hyb2; else if R is inter-
acting with the IdealR,(Sim1,Sim2)(1κ, d, n) experiment of TMFHE, then Z’s view in the above ex-
periment is identically distributed as in Hyb3. Thus if Hyb2 can be distinguished from Hyb3

by an efficient Z with non-negligible probability, R can leverage (A,Z) to have non-negligible
probability of distinguishing whether it is interacting with the RealR(1κ, d, n) experiment or the
IdealR,(Sim1,Sim2)(1κ, d, n) experiment of TMFHE.

Construction of S and IdealS,Z,T . We now describe an ideal experiment involving an ideal-world
adversary S.

• Corrupt: S outputs the same set of corrupt nodes as A.

• Round 0: S interacts with A in the same way as how the challenger C in Hyb3 interacts with
A. Note that in round 0, S can now interact with A using Sim1 and the NIZK’s simulated
prover without knowing honest nodes’ inputs.

• Honest and online sets: In every round r, S outputs the same set of honest and online set
Or as A.

• Round Tba and effective inputs: In round Tba, if S has not aborted, it must have computed
the effective-input set I and must have extracted the inputs for the set I ∩ Crupt. At this
point, S outputs 1) the effective-input set I; and 2) the replaced inputs for I ∩ Crupt, and
for Crupt\I it outputs the input ~0. Now S obtains the ideal-world outcome µ. From this
point on S can compute the partial decryption shares on behalf of honest nodes knowing µ
by calling Sim2 and the NIZK’s simulated prover; thus S can continue to interact with A in
the same way as the challenger C in Hyb3 would interact with A.

• Output: Just like the challenger C in Hyb3, here S is also emulating the honest nodes in its
head. If in some round r ≥ Tba, an honest node produces an output, S would include the
node in the Lr set it outputs.

Clearly, the above description of IdealS,Z,T is identical to Hyb3 since it is just a rewriting of
Hyb3. To complete the proof that our protocol securely evaluates the function f under 0.5-weak-
synchrony in T := Tba + ∆ time, it now suffices to prove that in the above IdealS,Z,T experiment,
assuming S does not abort, then S respects the constraints specified by the IdealS,Z,T experiment
for T := Tba + ∆ (see Section 9.1). More specifically, the following must hold:

1. in each round r, the Or ⊆ Honest set S outputs is at least bn/2c+ 1 in size;

2. S outputs a set I such that O0 ⊆ I; and
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3. S respects the constraints (w.r.t. T := Tba + ∆) on the {Lr}r≥Tba
sets it outputs.

The first fact holds trivially since (A,Z) respects 0.5-weak-synchrony. The second fact holds since
by validity and Tba-liveness of BA, everyone in O0 must be included in I due to the honest protocol
definition. The third fact holds since by the validity and Tba-liveness of BA, for everyone in OTba

,
all of their {BA[j]}j∈[n] instances must have produced an output at the beginning of round Tba, and
they must send a partial decryption share and the corresponding NIZK proof in round Tba. Thus
everyone in Ot for t ≥ Tba + ∆ must have produced an output from all {BA[j]}j∈[n] instances and
moreover received bn/2c+ 1 partial decryption shares whose NIZK proofs verify.
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A Optimistically Responsive Byzantine Agreement

A.1 Background on Optimistically Responsive Synchronous Consensus

Optimistically responsive synchronous consensus was a notion raised in a recent work called Thun-
derella [33] and later extended by Loss and Moran [25]. The goal is to have responsive confirmation
(i.e., as fast as the actual network delay) when a set of optimistic conditions denoted O holds;
while the basic security properties including consistency and liveness are guaranteed other a set of
weaker, worst-case conditions denoted W. In Thunderella [33], nodes are separated into two logical
roles, the leader and a committee of voters, and informally speaking, the optimistic and worst-case
conditions are defined as follows:

• O := “the leader and 3n
4 fraction of the committee are honest”; and

• W := “majority of the committee are honest”.

For our informal description here, we will use “state-machine-replication” version of Thunderella
which agrees on a linearly-ordered log through repeated consensus over time. In Thunderella, con-
sensus is achieved through an asynchronous “fast path” and a synchronous “slow chain” combi-
nation — one can abstractly think of the slowchain as any standard synchronous state machine
replication protocol. A leader proposes blocks on the fast path and the committee vote on the
proposed blocks. Once votes from 3

4 fraction of the committee have been collected, one can imme-
diately confirm the block on the fast path without waiting for the underlying slowchain. Henceforth
a collection of at least 3n

4 votes from distinct committee members on a block is called a notarization.
It is not difficult to see that as long as the majority of the committee remain honest (i.e., conditions
W) and honest voters do not double-vote at each sequence number, then only a unique block can
gain notarization at each sequence number.

Note that as long as the leader and at least 3n
4 of the committee are honest (i.e., conditions O),

then blocks are confirmed on the fast path responsively (i.e., at the actual network speed) without
having to wait for any a-priori set synchronization delay. If there is no progress on the fast path for
a certain amount of time, a backup procedure is invoked to “fall back” to the slowchain. During
this fallback, everyone will leverage the slowchain to reach agreement on what blocks have been
confirmed on fast path, such that any block that has already been confirmed by an honest node on
the fast path will not be rolled back. This is accomplished by having everyone post notarizations of
blocks they have seen on the fast path to the slowchain (a practical optimization is to periodically
post digests of the fast-path log to the slowchain to form “checkpoints”, such that during a fall-
back, nodes only need to post notarizations since the last checkpoint [32, 33]). After the fallback
completes, transactions can be posted to the slowchain to be confirmed; and importantly, at this
point nodes can use the slowchain to decide how to reconfigure rebootstrap the fast path.

Subsequently, the work by Loss and Moran [25] built upon Thunderella’s idea and showed how
to construct an optimistically responsive, leaderless, single-shot consensus protocol.
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Thunderella is not best-possible partition tolerant. Thunderella was proven secure under
the classical synchronous model [33]. However, Thunderella is not best-possible partition tolerant
(i.e., secure under 0.5-weak-synchrony) even if the underlying synchronous slowchain is best-possible
partition tolerant.

We will describe a scenario in which all everyone is honest but a few honest nodes crash with
an unfortunate timing pattern. In this scenario, an honest committee member (e.g., Coinbase) can
possibly experience a confirmed block being rolled back, leading to financial loss. Suppose that
initially, the leader is honest and online. Moreover, exactly d3n/4e committee members are honest
and online and the remaining committee members are offline. Blocks thus get confirmed on the fast
path. At some point the leader proposes the block B. At this moment, the leader crashes. Moreover,
one committee member, say, Coinbase, experiences a network-layer attack and goes offline — recall
that an adversary can selectively deliver messages for offline nodes. Now, the adversary chooses to
deliver d3n/4e committee members’ votes to Coinbase (including the vote from Coinbase itself),
but it prevents everyone else from seeing Coinbase’s vote. Thus no-one except Coinbase has seen a
notarization for the block B. Since Coinbase is unaware that its network is experiencing a partial
outage, it informs its customer, Andy, to ship his Lamborghini [1] to a buyer, and indeed Andy
does.

Recall that since the leader has crashed, the fast path will shut down and this will trigger a
fallback to the slowchain. When the fallback completes, everyone temporarily has to post trans-
actions to the slowchain to confirm until they figure out a way to rebootstrap the fast-path. Of
course, Coinbase would try to post the notarized block B to the slowchain too, but for as long as
it remains offline, the adversary can delay this message. When Coinbase eventually comes back
online, the fallback has already completed and the notarized block B, which Coinbase and Andy
believed to be confirmed, is now effectively undone.

It is not hard to see that a similar attack applies to Loss and Moran [25] too.

A.2 Optimistically Responsive, Weakly Synchronous Consensus

We now show how to construct an optimistically responsive protocol that is secure under 0.5-
weak-synchrony. To keep the notations simple, we will describe it for Byzantine Agreement (i.e.,
single-shot consensus) rather than state-machine replication (i.e., repeated consensus).

Under classical strong synchrony, a node who has seen a notarization (on some value) believes
that he is capable of propagating the knowledge to all other nodes very quickly (assuming himself
to be honest since we care about achieving security only for honest nodes), and thus it is safe to
consider the value confirmed. Under 0.5-weak-synchrony, an honest but offline node may not be
able to propagate this knowledge to others any time soon. It is, however, safe to confirm a value if
“many” honest nodes have seen its notarization too, such that in any round at least one of these
honest nodes will be online and capable of propagating the notarization to others (and posting it
to the slow path in the event of a fallback).

Concretely, we require an additional amplification voting-round on the fast path. Nodes do
not immediately output a value upon seeing a notarization (i.e., a collection of 3n

4 votes); instead,
they vote on the notarization again. Once a node has seen a “notarization on notarization”, it
is safe to output the notarized value on the fast path. Note that having seen a “notarization on
notarization” in round r implies that in every round in or after r, some node in Or must have seen
the notarization (and thus it voted on the “notarization on notarization”). This node will then be
able to ensure that this knowledge is propagated to others in the network.

Last but not the least, we need to make sure that the underlying (slow) synchronous consensus
protocol is secure under 0.5-weak-synchrony too — thus for the slow path we adopt the weakly

54



Fast path:

• Sender multicasts its input bit b attached with a signature.

• Upon hearing a bit b attached with a valid signature from the sender for the first time, sign
the tuple (ack, b) and multicast the tuple and signature.

• A notarization for b ∈ {0, 1} is a collection of at least 3n
4 signatures on the tuple (ack, b) from

distinct nodes. Upon collecting a notarization for b, sign the tuple (commit, b) and multicast
the tuple and signature.

• If at least 3n
4 commit messages with valid signatures from distinct nodes vouching for the same

bit b have been observed by the beginning of round 3∆, output b immediately but continue
participating in the protocol.

Slow path:

• At the beginning of round 3∆: for every i ∈ [n], fork an instance of BA denoted BA[i] where
the designated sender is i. For the instance BA[i], the i-th node’s input is defined as follows:

– if a notarization for b has been observed, then the input is b and its notarization;

– else if a sender’s signature on the bit b has been observed, the input is b and the sender’s
signature (include sender signatures for both bits if both have been seen);

– else the input is ∅.

• When all n BA instances have produced output: examine the n outputs from the BA instances
and output a bit as follows (if no bit has been output so far):

– if among the n outputs, a notarization for some bit b exists, then output b;

– else if a valid sender signature for the bit 0 exists among the n outputs, output 0;

– else output 1.

Figure 1: An optimistically responsive, 0.5-weakly-synchronous Byzantine Agreement protocol
called BA∗.

synchronous Byzantine Agreement protocol described in Section 8.
In Figure 1, we formalize the above intuition and describe the resulting protocol BA∗.

Theorem A.1 (Optimistically responsive, 0.5-weakly synchronous consensus). Let T (·, ·, ·) be some
polynomial function. Suppose that the BA protocol employed by BA∗ satisfies consistency, validity,
and T -liveness under 0.5-weak-synchrony. Then, BA∗ satisfies consistency, validity, and (T + 3∆)-
liveness under 0.5-weak-synchrony. Furthermore, if there is a set O containing at least 3n/4 honest
nodes who are persistently online, and moreover the designated sender belongs to O0, then, except
with negligible probability, everyone in O will output in 3δ rounds where δ is the actual maximum
network delay.

We prove the above theorem in Section A.3.

A.3 Proofs

As before, a good execution is one in which no honest node ever sees a forged signature. Assuming
that the signature scheme is secure, all but a negligible fraction of executions must be good.
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Henceforth given an execution, we say that some message m is in honest view if an honest ever
observes it during this execution.

A.3.1 Consistency

Lemma A.2 (Uniqueness of notarization). In a good execution, it cannot be that both bits have
notarization in honest view. Further, if a bit b has at least 3n

4 commit messages in honest view, this
bit must have a notarization in honest view and thus 1− b cannot have notarization or 3n

4 commit
messages in honest view.

Proof. Consider a good view. Each honest node will sign an ack message for at most one bit; each
corrupt node can sign an ack message for both bits. Let f < n/2 be the number of corrupt nodes.
The total number of acks for either 0 or 1 in honest view can be at most n−f+2f = n+f < 3n/2.
However, both bits have notarization in honest view, then the total number of acks must be at
least 3n

4 × 2 = 3n
2 . Note that an honest node will only send a commit message for b if it has seen a

notarization for b. Therefore the remainder of the lemma follows in a straightforward manner.

Fix some execution, if any honest node i outputs a bit b by tallying the n outputs of the BA
instances (in this execution), we say that i outputs b on the slow path. If any honest node i outputs
a bit b due to having observed 3n

4 commit messages for b by the beginning of round 3∆, we say
that i outputs b on the fast path. By Lemma A.2, it holds that in any good execution, if an honest
node i outputs b on the fast path and an honest node j outputs b′ on the fast path, it must be that
b = b′. Therefore, to prove consistency, it suffices to prove the following lemma.

Lemma A.3 (Fast-path slow-path agreement). Consider some good execution: if an honest node i
outputs b on the fast path and an honest node j outputs b′ on the slow path, it must be that b = b′.

Proof. If in a good execution, some honest node outputs b on the fast path, it must be that by
round 3∆, the node sees a collection of at least 3n

4 commit messages from distinct nodes vouching
for b. Therefore, at least 3n

4 −f honest nodes (henceforth denoted the set S) have signed (commit, b)
by round 3∆ — by honest protocol definition, nodes in S will only sign it if they have observed a
notarization on b.

Now, recall that (A,Z) respects 0.5-weak-synchrony, it must be that S ∩ O3∆ 6= ∅. Let i ∈
S∩O3∆, i must input b and its notarization into the i-th BA instance. By validity of the BA scheme
under a 0.5-weak-synchrony, any honest node’s output in the i-th BA instance must be b and its
notarization. Therefore, if any node outputs a bit b′ on the slow path, it must be that b′ = b.

A.3.2 Validity

Consider some good execution where the sender is honest and online in the starting round, and its
input is b. Clearly no honest node will send (ack, 1− b), and thus 1− b cannot gain notarization in
honest view. Thus no honest node will send (commit, 1 − b) either. Thus 1 − b cannot gain f + 1
commit messages in honest view. Thus if any honest node outputs a bit on the fast-path it must
be b.

If the sender is in O0, everyone in O3∆ must have seen the sender’s signature on b. Recall that
1 − b also cannot gain notarization in honest view. By validity of the BA, at least one of the BA
instances will output either the sender’s signature on b or a notarization for b. Thus if any honest
node outputs a bit on the slow-path, it must be b.
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A.3.3 Liveness and Optimistic Responsiveness

If at least 3n/4 honest nodes are persistently online and the sender belongs to O0, optimistic
responsiveness of the protocol is straightforward.

We now prove (worst-case) liveness. Consider some good execution. By T -liveness of the BA
employed in BA∗, any node honest and online in round t where t ≥ T + 3∆ must have produced
output in all n instances of BA. Therefore, any node in Ot for t ≥ T + 3∆ must have output a bit
in BA∗ by the end of round t.

B Optimistically Responsive Multi-Party Computation

B.1 Definition

Defining optimistically responsive MPC is somewhat non-trivial. Let χ, α ∈ (0, 1]. Suppose that
we would like to have a χ-weakly-synchronous MPC protocol that allows honest nodes to obtain
outputs responsively under the following optimistic conditions:

O = “at least α · n nodes are not only honest but also persistently online”.

Due to a lower bound for optimistically responsive BA proven by Pass and Shi [33], this would only
be possible iff α ≥ 1 − χ/2. Additionally, note that if χ ≥ 2

3 , we can simply adopt asynchronous
MPC. On the other hand, if χ < 1

2 , it would be impossible to achieve fairness and guaranteed
output. Thus we are mainly interested in the parameter range 1

2 ≤ χ <
2
3 .

Another interesting issue arises in the definition: if nodes must obtain output responsively under
the optimistic conditions O, the computation can wait for only dα · ne number of nodes’ inputs —
henceforth we refer to this set the “effective input set”. Now, since the adversary can always make
the corrupt nodes’ messages deliver faster than honest nodes, inevitably it can include f corrupt
inputs in the effective input set where f denotes the number of corrupt nodes. Thus the smaller α
(i.e., we want to obtain outputs responsively under a less stringent condition), the smaller fraction
of honest inputs may be included in the effective input set, and this tradeoff is inevitable.

Formal definition. Like in Section 9, we consider the task of secure function evaluation (SFE). In
our formal definition, we may use a standard simulation-based definition to capture the correctness,
privacy, and worst-case liveness and guaranteed output delivery requirements. For cleanness, we
do not directly capture the optimistic responsiveness in the simulation-based definition, since it is
easy to define optimistic responsiveness as a separate property of the SFE protocol.

Therefore, our formal definition here is almost the same as the definitions in Section 9, except
that now, in the ideal-world experiment, we require that the effective input set I ⊆ [n] specified by
the adversary must satisfy one of the following conditions:

1. either |I| ≥ α · n or

2. |I ∩ Honest| ≥ bχ · nc+ 1.

In particular, the former condition on I corresponds to the case in which the effective input set
is determined on the fast path where as the latter condition corresponds to the case in which the
effective input set is determined in the slow, synchronous path.

Since our new ideal experiment is parametrized by the parameter α ≥ 1− χ/2, we now denote
it as IdealS,Z,T,α(1κ).
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Examples. We elaborate on two special-case parameterizations:

1. χ = 0.5, α = 1: in this case, our result can be viewed as an improvement over classical honest-
majority MPC: not only do we provide an optimistically responsive path when everyone is
honest and persistently online, we also achieve best-possible partition tolerance in the worst-
case.

2. χ = 0.5, α = 3/4: in comparison with the best-possible partition tolerant MPC protocol
earlier in Section 9, here we allow online nodes to obtain outputs optimistically responsively;
however, we have to sacrifice the fraction of honest inputs in the effective input set (and as
argued above, this tradeoff is inherent).

In an unpublished manuscript [24], Liu-Zhang et al. present a somewhat incomparable formula-
tion of optimistically responsive MPC in the universal composition framework, assuming a classical,
fully synchronous network. They then show how to construct a protocol under their formulation
assuming trusted setup (and not just PKI). We will be able to provide more detailed comparisons
with their work when it is published.

B.2 Building Block: Optimistically Responsive Set Agreement (SA)

B.2.1 Definition

Syntax. Each node i receives an input xi from an appropriate finite domain. Sometime during
the protocol, a node may output a set of the form X := {(i, x′i)}i∈S,S⊆[n] and moreover, all the
indices i must be different.

Security. Let T (κ, n,∆) be a polynomial function in the stated parameters, let 1
2 ≤ χ <

2
3 , and let

1−χ/2 < α ≤ 1. We say that an SA protocol satisfies property P ∈ {consistency, α-validity, T -liveness}
under χ-weak-synchrony, iff for any non-uniform p.p.t. (A,Z) that respects χ-weak-synchrony, there
exists a negligible function negl(·) such that the corresponding condition P stated below holds for
1− negl(κ) fraction of the executions:

1. Consistency: if an honest node outputs the set X and another honest node outputs the set
X ′, it must be that X = X ′.

2. α-validity: if an honest node outputs the set X, then X must satisfy at least one of the
conditions below:

(a) either |X| ≥ αn and X ∩{(i, xi)}i∈Honest ≥ n−f where f denotes the number of corrupt
nodes; or

(b) X ∩ {(i, xi)}i∈Honest ≥ bχnc+ 1.

3. T -liveness: every node in Or where r ≥ T must have produced an output by the end of round
r (as before, we assume that the starting round of the SA is renamed round 0).

Besides the above security properties, we would like our SA protocol to be optimistically re-
sponsive, i.e., as long as there exists a set O containing at least αn nodes who are not only honest
but also persistently online, then except with negligible probability, everyone in O should produce
an output in Topt(κ, n, α, δ) number of rounds where δ is the actual maximum network delay and
Topt is an appropriate polynomial function.
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B.2.2 Construction

We rely on the following building blocks:

• let ARBC denote an asynchronous reliable broadcast protocol that achieves consistency and
validity as long as at least bχnc+1 nodes are honest, and achieves Tarbc-honest-sender-liveness
and Tarbc-close-termination as long as at least αn nodes are honest (see Section C.3);

• let ABA denote an asynchronous Byzantine Agreement protocol that satisfies consistency,
validity, and Taba-liveness as long as more than 2n/3 nodes are honest (see Section C.3);

• let SBA denote a χ-weakly-synchronous Byzantine Agreement protocol as defined in Sec-
tion 3.3 and let Tslow be its liveness parameter.

We describe our optimistically responsive set agreement protocol in Figure 2. Our protocol is
inspired by techniques from a few earlier works [6, 25] but we combine them in a new way.

Fix some execution, if any honest node i outputs a set Y by tallying the n outputs of the SBA
instances (in this execution), we say that i outputs Y on the slow path. If any honest node i
outputs a set Y due to having observed at least αn commit messages for Y by the end of round
2∆(Tarbc + Taba + 1), we say that i outputs Y on the fast path.

Theorem B.1 (Optimistically responsive set agreement). Suppose that 1
2 ≤ χ < 2

3 and 1 −
χ/2 ≤ α ≤ 1. Suppose that the ARBC protocol employed satisfies consistency and validity as
long as at least bχnc + 1 nodes are honest and satisfies Tarbc-honest-sender-liveness and Tarbc-
close-termination as long as at least αn nodes are honest, the ABA protocol employed satisfies
consistency, validity, and Taba-liveness as long as more than 2n/3 nodes are honest, the SBA
protocol employed satisfies consistency, validity, and Tslow-liveness under χ-weak-synchrony, and
the digital signature scheme employed is secure. Then, the above SA protocol satisfies consistency,
α-validity, and (2∆(Tarbc + Taba + 1) + Tslow + 1)-liveness.

Further, if there exists a set O of at least αn honest nodes who are persistently online, then
except with negligible probability, everyone in O will output on the fast path.

Note that the above theorem implies that the protocol is responsive under the optimistic con-
dition that at least αn nodes are honest and persistently online since the fast-path protocol is
asynchronous in nature. We now prove the above theorem.

B.2.3 Consistency Proof

We first prove consistency. As before, a good execution is one in which no honest node ever sees
a forged signature. Assuming that the signature scheme is secure, all but a negligible fraction of
executions must be good. Henceforth given an execution, we say that some message m is in honest
view if an honest ever observes it during this execution.

Lemma B.2 (Uniqueness of notarization). In a good execution, it cannot be that both bits have
notarization in honest view. Further, if a bit b has at least αn commit messages in honest view,
this bit must have a notarization in honest view and thus 1 − b cannot have notarization or αn
commit messages in honest view.

Proof. The proof is almost identical to Lemma A.2 except that now we have more generalized
parameters.

By Lemma B.2, it holds that in any good execution, if an honest node i outputs Y on the fast
path and an honest node j outputs Y ′ on the fast path, it must be that Y = Y ′. Therefore, to
prove consistency, it suffices to prove the following lemma.
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The protocol invokes n instances of asynchronous reliable broadcast denoted {ARBC[i]}i∈[n], n
instances of asynchronous Byzantine Agreement denoted {ABA[i]}i∈[n], and n instances of χ-
weakly-synchronous Byzantine Agreement {SBA[i]}i∈[n]. In ARBC[i] and SBA[i] where i ∈ [n],
node i is the designated sender. We assume that the asynchronous instances {ARBC[i]}i∈[n] and
{ABA[i]}i∈[n] are invoked upfront at protocol start.

PKI setup:

• During the PKI registration phase, each node i run ARBC and ABA’s setup algorithms (if
any) and let (ARBC.pki,ARBC.ski) and (ABA.pki,ABA.ski) be the output key pairs. Fur-
ther, generate a digital signature key pair denoted (vki, sski). Now, register the tuple
(ARBC.pki,ABA.pki, vki) with the PKI.

Fast path:

• At protocol start, node i inputs xi into ARBC[i] where xi denotes its input value.

• As soon as ARBC[j] outputs a value x′j , input 1 to ABA[j] if no value has been input into
ABA[j] yet.

• As soon as at least αn instances of ABA[j] has output the bit 1, input 0 to the remaining
instances of ABA[j].

• Once all instances {ABA[j]}j∈[n] have completed, let Ifast ⊆ [n] be the set containing every j
such that ABA[j] has output the bit 1.

• As soon as all instances {ABA[j]}j∈[n] have completed and thus Ifast is well-defined and more-
over the subset of instances {ARBC[j]}j∈Ifast

have output a value: let x′j denote the output
from ARBC[j]. Now, if |Ifast| ≥ αn, node i sets Xfast := {(j, x′j)}j∈Ifast

and multicasts the
message (ack, Xfast) signed with its secret key sski.

• Henceforth, a collection of at least αn number of (ack, Yfast) messages with valid signatures
from distinct nodes and vouching for the same set Yfast is said to be a notarization for Yfast.

As soon as a notarization for some Yfast has been observed, a node i multicasts the message
(commit, Yfast) signed with its secret key sski.

• Once at least αn number of (commit, Yfast) messages have been received with valid signatures
from distinct nodes and vouching for the same set Yfast, and moreover the current round is no
greater than 2∆(Tarbc +Taba + 1), then output Yfast and continue participating in the protocol.

Slow path:

• Round 2∆(Tarbc +Taba +1)+1: invoke the slow, χ-weakly-synchronous instances {SBA[i]}i∈[n];
moreover each node i’s input in SBA[i] is defined as follows:

1. if a notarization on some Yfast has been observed, then the input is Yfast and its notarization;

2. else the input is xi.

• Once all n instances {SBA[i]}i∈[n] have produced an output, examine the outputs from all these
instances and output a value as follows (if no value has been output yet):

1. if among the n outputs, some set Yfast and a valid notarization exists, output Yfast.

2. else the n outputs must be of the form x1, x2, . . . , xn: now, output the set {(j, xj)}j∈[n].

Figure 2: Optimistically responsive set agreement SA.
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Lemma B.3 (Fast-path slow-path agreement). Consider some good execution: if an honest node
i outputs set Y on the fast path and an honest node j outputs Y ′ on the slow path, it must be that
Y = Y ′.

Proof. If in a good execution, some honest node outputs Y on the fast path, it must be that by
the end round 2∆(Tarbc +Taba + 1), the node sees a collection of at least αn commit messages from
distinct nodes vouching for b. Therefore, at least αn− f honest nodes (henceforth denoted the set
S) have signed (commit, Y ) by round 2∆(Tarbc + Taba + 1) — by honest protocol definition, nodes
in S will only sign it if they have observed a notarization on Y .

Now, recall that (A,Z) respects 0.5-weak-synchrony, it must be that S∩O2∆(Tarbc+Taba+1)+1 6= ∅.
Let i ∈ S ∩ O2∆(Tarbc+Taba+1)+1, i must input Y and its a notarization into SBA[i]. By validity of
the SBA scheme under a 0.5-weak-synchrony, any honest node’s output in the SBA[i] instance must
be Y and its notarization. Therefore, if any node outputs a bit Y ′ on the slow path, it must be
that Y ′ = Y .

B.2.4 Validity Proof

There are only two ways an honest node would output a set Y in the protocol:

1. the node has observed a notarization for Y ;

2. the node has not observed a notarization for Y — in this case for j ∈ [n], each SBA[j]’s
output must be of the form xj , and the output must be Y := {(j, xj)}j∈[n].

First, validity for the latter case is easy to see: due to the validty of SBA, in a good execution,
an honest node’s output set Y must satisfy {(j, xj)}j∈O2∆(Tarbc+Taba+1)+1

⊆ Y .

It suffices to prove that in the former case, it must be that |Y | ≥ αn and moreover Y ∩
{(j, xj)}j∈Honest ≥ n− f (if the execution is good). In the former case, there is a notarization for Y
in honest view. This means that at least αn−f > 0 honest nodes must have signed (ack, Y ) where
f denotes the number of corrupt nodes. By honest protocol definition, an honest node would sign
(ack, Y ) only if |Y | ≥ αn and if for each (j, yj) ∈ Y , yj is the outcome of ARBC[j]. The proof thus
follows from the validity of ARBC since more than χn nodes must be honest.

B.2.5 Liveness Proof

The (2∆(Tarbc +Taba +1)+Tslow +1)-livenes proof follows in a straightforward fashion from liveness
of the Tslow-liveness of SBA.

B.2.6 Optimistic Responsiveness Proof

Suppose there is set O containing at least αn honest nodes who are persistently online. Note that
since α ≥ 1− χ/2 and 1

2 ≤ χ <
2
3 , it holds that α > 2/3. In this case, all the security properties of

ABA will be respected.
Since at least αn nodes are honest, due to Tarbc-honest-sender-liveness of ARBC, by the end of

round Tarbc∆, everyone in O will have produced an output in the instances {ARBC[j]}j∈O. Thus
by the end of round Tarbc∆, everyone in O must have input 1 to each instance in {ABA[j]}j∈O.
By Taba-liveness and validity of ABA, by the end of round (Tarbc + Taba)∆, everyone in O must
have produced an output of 1 for each instance in {ABA[j]}j∈O. By the end of the same round
(Tarbc + Taba)∆, everyone in O will have input a bit to every instance in {ABA[j]}j /∈O too. By
Taba-liveness of ABA, by the end of (Tarbc + 2Taba)∆, everyone in O will have produced an output
in all instances {ABA[j]}j∈[n]. Further, if any ABA[j] where j ∈ [n] has output 1 for someone in
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O, then it must be that someone ĩ ∈ O has input 1 to ABA[j] and ĩ’s ARBC[j] instance must have
produced an output when this happened. Due to the Tarbc-close-termination of ARBC, the end of
round 2∆(Tarbc + Taba), everyone i ∈ O must have produced an output from instance ARBC[j] if
ABA[j]’s output for node i is 1.

Since at least αn nodes are honest, we can apply the consistency condition of ARBC. Therefore
for every j ∈ [n], any two honest nodes’ outputs in ARBC[j] must be the same. Thus, by the end of
round 2∆(Tarbc + Taba), everyone in O will have multicast a signed tuple (ack, Y ) for the same set
Y ⊆ [n] such that |Y | ≥ αn. Thus by the end of round 2∆(Tarbc+Taba)+∆, everyone in O will have
received the signed tuple (ack, Y ) from everyone in O. Thus everyone in O will multicast a signed
tuple (commit, Y ) in round 2∆(Tarbc +Taba)+∆ and thus by the end of round 2∆(Tarbc +Taba +1),
everyone in O will have received the signed tuple (commit, Y ) from everyone in O, and will output
Y on the fast path.

B.3 Construction: Optimistically Responsive MPC

Recall that in the MPC protocol of Section 9, each node i relies on a Byzantine Agreement instance
(denoted BA[i]) to broadcast its homomorphically encrypted input and a NIZK proof that the
encryption is computed correctly. In round Tba, if a node has produced outputs from all {BA[j]}j∈[n]

instances, it would then perform homomorphic evaluation, compute a partial decryption share, and
multicast the partial decryption share and a NIZK proof that the homomorphic evaluation and
partial decryption is done correctly. Clearly, all nodes in OTba

would have produced outputs from
all {BA[j]}j∈[n] instances in round Tba, and their decryption shares would be sufficient for the
reconstruction. Note that in this protocol, all {BA[j]}j∈[n] instances jointly realize the task of set
agreement.

Our new optimistically responsive MPC protocol is almost the same as the protocol in Section 9
except that now, we rely on an optimistically responsive set agreement protocol SA to reach agree-
ment on the effective input set. For completeness, we describe the new protocol below, highlighting
the difference from Section 9 in blue. Below, suppose that 1

2 ≤ χ < 2
3 , and 1 − χ/2 ≤ α ≤ 1.

Moreover, suppose that SA is an optimistically responsive set agreement protocol that achieves
consistency, α-validity, and Tsa-liveness under χ-weak-synchrony, and achieves responsiveness as
long as at least αn nodes are not only honest but also online.

• PKI setup: every node i ∈ [n] calls SA’s key generation algorithm and obtains (SA.pki,SA.ski),
calls NIZK.K and obtains crsi. calls TMFHE.Gen and obtains (TMFHE.pki, TMFHE.ski). The
node now registers the tuple (BA.pki, crsi,TMFHE.pki) with the PKI.

• Round 0: Each node i ∈ [n] does the following (else do nothing):

1. call CTi ← TMFHE.Enc({TMFHE.pkj}j∈[n], xi) where xi denotes its input — henceforth let
ρi be the random coins consumed by TMFHE.Enc;

2. call πi ← NIZK.P({crsj}j∈[n], stmt, w) using the statement stmt := ({TMFHE.pkj}j∈[n],
CTi, i) and the witness w := (xi, ρi), and (stmt, w) is considered to be in the language L
iff CTi is a correct encryption corresponding to node i of the plaintext xi under the public
keys {TMFHE.pkj}j∈[n] and using randomness ρi;

3. invoke SA and input the tuple (CTi, πi) to SA.

• As soon as SA has produced an output of the form X := {(j,CTj , πj)}j∈I′ for some I′ ⊆ [n]
(and all the j’s must be distinct), a node i does the following:
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1. for each j ∈ I′, let (j,CTj , πj) be the corresponding tuple included inX: if NIZK.V({crsj}j∈[n],
({TMFHE.pkj}j∈[n], CTj , j), πj) outputs 1, add j to the “effective-input” set I (which was
initially empty);

2. let C̃T ← TMFHE.Eval(fI, {CTj}j∈I) where fI the restricted version of f where for every
i /∈ I its input is set to a default value ⊥;

3. let pi ← TMFHE.PartDec(TMFHE.ski, C̃T);

4. let π′i ← NIZK.P(({crsj}j∈[n], stmt, w) using the statement stmt := (pi, f , I, {CTj}j∈[n],

{TMFHE.pkj}j∈[n], i) and the witness w := (C̃T, ψi,TMFHE.ski), and (stmt, w) is considered

to be in the language iff C̃T is a correct outcome of evaluating TMFHE.Eval(fI, {CTj}j∈I),

and moreover, pi is a correct outcome of evaluating TMFHE.PartDec(TMFHE.ski, C̃T) where
(TMFHE.pki,TMFHE.ski) must match the output of TMFHE.Gen when consuming random-
ness ψi.

5. multicast the message (pi, π
′
i) tagged with the purported sender i;

6. Wait to receive sufficiently many decryption shares for reconstruction as follows:

– for every tuple (pj , π
′
j) received from some purported sender j ∈ [n], add j to the set

S (which was initially empty) iff the following verification passes:

NIZK.V({crsk}k∈[n], (pj , f,I, {CTk}k∈[n], {TMFHE.pkk}k∈[n], j), π
′
j) = 1

– whenever the set S’s size is at least bn/2c+ 1, call µ ← TMFHE.FinDec({pj}j∈S) and
output µ.

Theorem B.4 (Optimistically responsive and weakly synchronous multi-party computation). Sup-
pose that 1

2 ≤ χ < 2
3 , and 1 − χ/2 ≤ α ≤ 1. Suppose that the TMFHE scheme satisfies simulation

security, the SA scheme satisfies consistency, α-validity, and Tsa-liveness under χ-weak-synchrony,
and the multi-CRS NIZK scheme satisfies zero-knowledge and simulation sound extractability. Then,
the above SFE protocol securely evaluates the function f in Tsa + ∆ (worst-case) time under 0.5-
weak-synchrony. Furthermore, if there exists a set O containing at least αn nodes who are not only
honest, but also persistently online, then except with negligible probability everyone in O will obtain
output in time that depends only on δ but not ∆ where δ denotes the actual maximum network
delay.

Note that in our actual construction above, we may adopt an ARBC and an ABA scheme that are
expected constant (asynchronous) round (see Section C.3). In this case, under optimistic conditions,
an output will be produced in honest and online view in O(δ) time; and under worst-case conditions
(i.e., 0.5-weak-synchrony), an output will be produced in honest and online view in O(∆) time.

Proof. Responsiveness under the stated optimistic conditions follows directly from the consistency
and responsiveness of SA under the same set of conditions, and the soundness of NIZK. The
simulation proof can be done with straightforward modifications to the proof of Theorem 9.2 in
Section 9.3 — basically, in the new proof, the ideal-world adversary S would call the simulated
partial decryption algorithm and would output the effective input set I and replaced inputs for
I∩Crupt not in round Tba, but as soon as some honest node has produced an output from SA.

C Additional Preliminaries

Throughout the paper, a function negl(·) is said to be negligible if for every polynomial p(·), there
exists some κ0 such that negl(κ) ≤ 1/p(κ) for every κ ≥ κ0.
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C.1 Honest-Majority Multi-CRS NIZK

An honest-majority multi-CRS non-interactive zero-knowledge proof (NIZK) system for the lan-
guage L consists of the following algorithms where RL is the witness relation for the language
L:

• crs← K(1κ): each node i ∈ [n] runs K to generate a common reference string (CRS) which is
published in the PKI;

• π ← P({crsi}i∈[n], x, w): given a statement x and a witness w ∈ RL(x), and the set of all n
CRSes denoted {crsi}i∈[n], compute a proof denoted π;

• {0, 1} ← V({crsi}i∈[n], x, π): given a statement x, the set of all CRSes {crsi}i∈[n] and a proof
π, the verifier algorithm V outputs 0 or 1 denoting either reject or accept.

• (c̃rs, τ) ← K̃(1κ): a simulated CRS generation algorithm that generates a simulated c̃rs and
a trapdoor τ ;

• π ← P̃(x, {c̃rsi}i∈[n], {τi}i∈G) where G ⊆ [n] and |G| ≥ bn/2c+ 1: a simulated prover al-
gorithm that produces a proof for the statement x without any witness, and the simulated
prover needs to have access to at least bn/2c+ 1 number of trapdoors.

We care about achieving security against an adversary that corrupts only minority of the com-
mon reference strings. Thus we formally define minority-constrained below.

Definition C.1 (Minority-constrained adversary A). We say that an adversary A who has oracle
access to an honest key generation oracle K is minority-constrained, iff with probability 1, it outputs
a set {crsi}i∈[n] such that at least bn/2c+ 1 of these entries are outputs of the K oracle during its
interactions with A.

We would like to have the following security properties.

Completeness. Completeness requires that for any non-uniform p.p.t. minority-constrained A,
the following holds:

Pr
[
({crsi}i∈[n], x, w)← AK(1κ), π ← P({crsi}i∈[n], x, w), V({crsi}i∈[n], x, π) = 0 and w ∈ RL(x)

]
≈ 0

Note that since A is minority-constrained, the set {crsi}i∈[n] it selects must contain at least
bn/2c+ 1 number of CRSes output by the honest K oracle.

Zero-knowledge. An honest-majority multi-CRS NIZK system satisfies zero knowledge iff the
following properties hold. First, we require that simulated reference strings are indistinguishable
from real ones, i.e., for every non-uniform p.p.t. A,

Pr [crs← K(1κ) : A(1κ, crs) = 1] ≈ Pr
[
(c̃rs, )← K̃(1κ) : A(1κ, c̃rs) = 1

]
Moreover, we require that if the adversary A is minority-constrained, it cannot distinguish

interactions with a real prover using real witnesses to prove statements and a simulated prover who
proves statements without using witnesses, even when A obtains the trapdoors of the simulated
CRSes. More formally, for any non-uniform p.p.t. minority-constrained adversary A, we have that

Pr
[
({crsi}i∈[n], x, w)← AK̃(1κ,·)(1κ), π ← P({crsi}i∈[n], x, w) : A(π) = 1 and w ∈ RL(x)

]
≈Pr

[
({crsi}i∈[n], x, w)← AK̃(1κ,·)(1κ), π ← P̃({crsi}i∈[n], ~τ , x) : A(π) = 1 and w ∈ RL(x)

]
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where ~τ is the following vector: for every CRS in the set {crsi}i∈[n] that is output by K̃, the vector
~τ includes its corresponding trapdoor. Note that there are at least bn/2c+ 1 entries in ~τ since A
is minority-constrained.

Simulation soundness. Intuitively, simulation soundness requires that even though an A may
adaptively interacts with a simulated prover and obtain simulated proofs of false statements, if A
ever produces a fresh proof for some purposed statement x, then x must be true except with neg-
ligible probability. More formally, an honest-majority multi-CRS NIZK system satisfies simulation
soundness iff for any non-uniform p.p.t. minority-constrained adversary A, there exists a negligible
function negl(·), such that the following holds:

Pr

[ (
{crsi}i∈[n], x, π

)
← AC(1κ,·) :

(x, π) not output from C(1κ, ·), and

x /∈ L but V({crsi}i∈[n], x, π) = 1

]
≤ negl(κ)

where C(1κ, ·) is the following oracle:

• Upon receiving input gen from A, it runs (crs, τ)← K̃(1κ); it then records τ and returns only
crs to A. Note that A can make such gen queries multiple times to attempt to generate CRSes
for multiple nodes; and it can choose a subset of these to include in the output {crsi}i∈[n].

• Then, at some point, A outputs {crsi}i∈[n] — this set of CRSes must be consistent with the
CRSes in A’s final output.

• At this moment, A is allowed to send (prove, x) to the oracle multiple times; and for each
such invocation, the oracle would call π ← P̃({crsi}i∈[n], ~τ , x) and return the resulting π to A,

where ~τ is the following vector: for every CRS in the set {crsi}i∈[n] that is output by K̃, the
vector ~τ includes its corresponding trapdoor. Note that ~τ must contain at least bn/2c+ 1
such trapdoors since A is minority-constrained.

Simulation sound extractability. Simulation sound extractability is a further strengthening
of simulation soundness and directly implies simulation soundness. Intuitively, simulation sound
extractability requires that even though an A may adaptively interacts with a simulated prover
and obtain simulated proofs of false statements, if A ever produces a fresh proof for some purposed
statement x, then except with negligible probability, some p.p.t. extractor must be able to extract
a valid witness from the proof, using an extraction key that is produced during a simulated setup
procedure.

More formally, an honest-majority multi-CRS NIZK system satisfies simulation sound ex-
tractability iff there exist p.p.t. algorithms K̃0 and E such that the following is satisfied:

• K̃0 outputs a triple denoted (c̃rs, τ, ek) where the first two terms have an output distribution
identical to that of K̃; and

• for any non-uniform p.p.t. minority-constrained adversary A, there exists a negligible function
negl(·), such that the following holds:

Pr

[ (
{crsi}i∈[n], x, π

)
← AC(1κ,·) :

w ← E({crsi}i∈[n], ~ek, x, π)

(x, π) not output from C(1κ, ·), and

(x,w) /∈ RL but V({crsi}i∈[n], x, π) = 1

]
≤ negl(κ)

where C(1κ, ·) is the following oracle:
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1. Upon receiving input gen from A, it runs (crs, τ, ek) ← K̃0(1κ); it then records τ and
returns crs and ek to A.

2. Then, at some point, A outputs {crsi}i∈[n] — this set of CRSes must be consistent with
the CRSes in A’s final output.

At this moment, define the following notation:

– ~τ is the following vector: for every CRS in the set {crsi}i∈[n] that is output by K̃,
the vector ~τ includes its corresponding trapdoor. Note that ~τ must contain at least
bn/2c+ 1 such trapdoors since A is minority-constrained.

– Similarly, the notation ~ek denotes the following vector: for every CRS in the set
{crsi}i∈[n] that is output by K̃0, the vector ~ek includes its corresponding extraction
key ek included in the triple.

3. At this moment, A is allowed to send (prove, x) to the oracle multiple times; and for each
such invocation, the oracle would call π ← P̃({crsi}i∈[n], ~τ , x) and return the resulting π
to A.

Groth and Ostrovksy [18] showed how to construct a multi-CRS NIZK from standard crypto-
graphic assumptions, resulting in the following theorem.

Theorem C.2 (Multi-CRS NIZK [18]). Assume the existence of enhanced trapdoor permutations.
Then, there exists a multi-CRS NIZK system that satisfies completeness, zero-knowledge, and sim-
ulation sound extractability.

C.2 Threshold Multi-Key Fully Homomorphic Encryption

Threshold Multi-key Fully Homomorphic Encryption (TMFHE) was first constructed by Gordon,
Liu, and Shi [17] for t-out-of-n threshold access structures assuming the existence of a common
reference string (CRS)8. Subsequently, Badrinarayanan et al. [4] showed how to remove the CRS
and further generalized the scheme to any monotone access structure. Our formulation below is
a slight strengthening of Badrinarayanan et al.’s formulation (see also Remark C.3) but we only
define it for t-out-of-n access structures (and not general monotone access structure).

A t-out-of-n Threshold Multi-Key Fully Homomorphic Encryption (TMFHE) scheme [4, 17]
consists of the following p.p.t. algorithms.

{pki, ski} ← Gen(1κ, d, n): each node i independently calls Gen to generate a public-/secret-key
pair denoted (pki, ski). Gen takes as input the security parameter κ, the maximum depth d
of the circuit, and the total number of nodes n;

CTi ← Enc(pk1, . . . , pkn, i,m): takes the nodes’ public keys, an index i ∈ [n], a message m ∈
{0, 1}κ, and outputs a ciphertext denoted CTi on behalf of node i;

C̃T ← Eval(C, {CTj}j∈L): a deterministic algorithm that takes in a subset of indices L ⊆ [n]
and a boolean circuit C : ({0, 1}κ)|L| → {0, 1}, of depth at most d and of size polynomially

bounded in κ, and ciphertexts {CTj}j∈L, and outputs an evaluated ciphertext denoted C̃T;

pi ← PartDec(ski, C̃T): takes in a secret key ski and an evaluated ciphertext C̃T, and outputs a
partial decryption share denoted pi;

8Although some subsequent works cite Gordon et al [17] as n-out-of-n Multi-Key FHE, the citations are incorrect.
Their work in fact constructed t-out-of-n Threshold Multi-Key FHE and applied it to constant-round multi-party
computation with guaranteed output.
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µ ← FinDec({pi}i∈S): takes partial decryption shares {pi}i∈S for some subset S ⊆ [n] of size at
least t, output a decrypted message µ.

Correctness and compactness. We require that there is a polynomial poly(·) such that for any
L ⊆ [n], for any set of messages {mj}j∈L ∈ ({0, 1}κ)|L|, any boolean circuit C : ({0, 1}κ)|L| → {0, 1},
and for any S ⊆ [n] where |S| ≥ t, the following holds with probability 1:

for j ∈ [n], let (pkj , skj) ← Gen(1κ, n); for i ∈ L, let CTi ← Enc({pkj}j∈[n], i,mi); let C̃T ←
Eval(C, {CTi}i∈L); for j ∈ S, let pj ← PartDec(skj , C̃T); it must be that 1) FinDec({pj}j∈S) =

C({mi}i∈L); and 2) C̃T < poly(κ, d, n), i.e., the evaluated ciphertext C̃T’s size depends only
on κ, d, and n but does not depend on the circuit’s size |C|.

Simulation security. Formally, simulation security requires the following. There exist p.p.t.
algorithms Sim := (Sim1,Sim2) such that for any non-uniform p.p.t. adversary A, we have that the
following experiments RealA(1κ, d, n) and IdealA,Sim(1κ, d, n) are computationally indistinguishable:

• RealA(1κ, d, n):

1. Crupt← A(1κ, d, n) where Crupt ⊆ [n] and |Crupt| < t. Henceforth let Honest := [n]\Crupt;

2. For i ∈ Honest, run pki ← Gen(1κ, d, n). For each j ∈ Crupt, the adversary A({pki}i∈Honest),
who receives the honest nodes’ public keys as input, outputs {pkj}j∈Crupt. Henceforth let
~pk := {pkj}j∈[n].

3. ({mi}i∈Honest) ← A where each message mi ∈ {0, 1}κ. Now for i ∈ Honest, let CTi ←
Enc( ~pk, i,mi).

4. For every j ∈ Crupt, the adversary A({CTi}i∈Honest), who receives the challenge ciphertexts
computed in the previous step as input, outputs a pair (mj , ρ

enc
j ) where mj ∈ {0, 1}κ denotes

a message and ρenc
j is the random coins to be consumed by the encryption algorithm, and let

CTj ← Enc( ~pk, j,mj) consuming the random coins ρenc
j ;

5. The adversary A specifies polynomially many queries (indexed by k) of the form (Lk, Ck, Sk)
where Lk ⊆ [n] is a subset of indices, Ck : ({0, 1}κ)|Lk| denotes a circuit to be evaluated,
and Sk ⊆ Honest denotes the subset of honest nodes’ partial decryptions requested by A.
For each query indexed by k, let C̃Tk ← Eval(Ck, {CTj}j∈Lk), and for j ∈ Sk, let pk,j ←
PartDec(skj , C̃Tk), and A receives the set {pj}j∈Sk ;

6. Output the adversary A’s output.

• IdealA,Sim(1κ, d, n):

1. Crupt← A(1κ, d, n) where Crupt ⊆ [n] and |Crupt| < t. Henceforth let Honest := [n]\Crupt;

2. For i ∈ Honest, run pki ← Gen(1κ, d, n). For each j ∈ Crupt, the adversary A({pki}i∈Honest),
who receives the honest nodes’ public keys as input, outputs {pkj}j∈Crupt. Henceforth let
~pk := {pkj}j∈[n].

3. ({mi}i∈Honest) ← A where each message mi ∈ {0, 1}κ. Now let ({CTi}i∈Honest, state) ←
Sim1( ~pk, Crupt);

4. For every j ∈ Crupt, the adversary A({CTi}i∈Honest), who receives the challenge ciphertexts
computed in the previous step as input, outputs a pair (mj , ρ

enc
j ) where mj ∈ {0, 1}κ denotes

a message and ρenc
j is the random coins to be consumed by the encryption algorithm, and let

CTj ← Enc( ~pk, j,mj) consuming the random coins ρenc
j ;
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5. The adversary A specifies polynomially many queries (indexed by k) of the form (Lk, Ck, Sk)
where Lk ⊆ [n] is a subset of indices, Ck : ({0, 1}κ)|Lk| denotes a circuit to be evalu-
ated, and Sk ⊆ Honest denotes the subset of honest nodes’ partial decryptions requested
by A. For each query indexed by k, let C̃Tk ← Eval(Ck, {CTj}j∈Lk), let {pk,j}j∈Sk ←
Sim2(state, µk, C̃Tk, Sk, {ρenc

j }j∈Crupt) where

µk :=

{
C({mj}j∈Lk) if |Sk ∪ Crupt| ≥ t
⊥ o.w.

The adversary A receives the set {pk,j}j∈Sk ;

6. Output the adversary A’s output.

Remark C.3 (Difference from Badrinarayanan et al.’s formulation [4]). Our definition is a slight
variant and slight strengthening of Badrinarayanan et al. [4]. In Badrinarayanan et al. [4]’s defini-
tion, there is a separate DistSetup phase and a KeyGen phase. In their security game, the adversary
must explain to the experiment the randomness supplied to KeyGen for generating corrupt nodes’
keys (but need not do so for DistSetup). It is not hard to see that Badrinarayanan et al. [4]’s
construction and proofs still hold even if the adversary does not explain to the experiment the ran-
domness that is used to seed KeyGen to generate corrupt nodes’ keys. In particular, the adversary
already supplies to the experiment all randomness used to generate corrupt nodes’ ciphertexts.
Therefore, when Sim2 simulates partial decryption shares, instead of using the corrupt secret keys
(output by KeyGen) to decrypt terms from the corrupt nodes’ ciphertext, the experiment can obtain
the same terms from the adversary’s explanation of the corrupt ciphertext and supply it to Sim2.

With this observation, we may merge their KeyGen algorithm into the DistSetup stage (which
we call Gen in our definition). In the new security experiment, the adversary need not explain the
randomness used to seed Gen to generate corrupt nodes’ keys. For our Sim2 to simulate the partial
decryption shares on behalf of honest nodes, Sim2 is supplied with the randomness used to generate
corrupt ciphertexts rather than the randomness used to generate corrupt keys.

Theorem C.4 (TMFHE [4]). Suppose that the standard Learning With Errors (LWE) assump-
tion holds. There exists a Threshold Multi-Key FHE (TMFHE) scheme that satisfies correctness,
compactness, and simulation security as defined above.

C.3 Asynchronous Consensus

An asynchronous protocol is one in which a node can only take action (including perform compu-
tation and send messages) when one of the following two events takes place:

1. at protocol start when an input is received from Z — in this paper we consider protocols in
which Z provides input only once to each node;

2. upon receiving some message from the network.

From a programmer’s perspective, an asynchronous protocol’s implementation should only have
two types of callback functions corresponding to the above two events respectively. In particular,
the implementation cannot have timeouts or query any local or global clock.
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Asynchronous network model. Our asynchronous building blocks achieve security even when
the adversary A can arbitrarily delay honest nodes’ messages and deliver them to different nodes at
different times of its choice. However, A cannot erase honest nodes’ messages and must eventually
deliver them to the intended recipients.

The round complexity of an asynchronous protocol is accounted for using a standard notion
called asynchronous round [7]. We refer the reader to Canetti and Rabin [7] for a formal definition
of this notion.

C.3.1 Asynchronous Reliable Broadcast (ARBC)

Syntax. A designated sender i ∈ [n] receives an input x from the enviornment, every other node
receives no input. During the protocol, a node may output a value y.

Security. We say that an asynchronous reliable broadcast (ARBC) protocol satisfies consistency,
validity, or T -liveness assuming that at least ρn nodes are honest, iff for any non-uniform p.p.t.
(A,Z) that corrupts at most n− ρn nodes and spawns multiple ARBC instances sharing the same
PKI, there exists a negligible function negl(·) such that for all but negl(κ) fraction of the executions,
the corresponding property defined below holds:

• Consistency. If an honest node outputs x and another honest node outputs y, it must be
that x = y.

• Validity. If the designated sender is honest, then if any honest node outputs x, x must be
the sender’s input.

• T -honest-sender-liveness. If the designated sender is honest and rename the asynchronous
round in which the designated sender inputs some value x to the protocol to be round 0, then
all honest nodes will have output a value in asynchronous round T .

• T -close-termination. Moreover, if any honest node outputs a value in asynchronous round r,
then all honest nodes will have output a value in asynchronous round r + T .

Theorem C.5. Assume the existence of a PKI and digital signatures. Then, for any 0 < χ ≤ 1,
there exists an ARBC scheme that satisfies consistency and validity as long as bχnc + 1 nodes are
honest, and satisfies 2-honest-sender-liveness and 2-close-termination as long as at least (1−χ/2)n
nodes are honest.

Proof. Consider the following protocol parametrized by 0 < χ ≤ 1.

• During PKI setup, everyone generates public and secret key pair for a digital signature scheme
and regiesters the public key with the PKI.

• During the entire protocol, always echo (i.e., multicast) every fresh message that is observed
for the first time.

• When the designated sender receives an input value x from Z, it multicasts (propose, x) with
a signature on the tuple.

• Upon receiving a tuple of the form (propose, x′) with a valid signature from the designated
sender, multicast (ack, x′) with a signature on the tuple.

• Upon observing at least (1− χ/2)n signatures on the same tuple (propose, x′), output x′.
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The consistency proof holds due to a very similar argument as the proofs of Lemma A.2 and
Lemma B.2. For validity, note that if any honest node outputs x, the node must have observed
(1 − χ/2)n nodes’ signatures on (ack, x), and thus an honest node must have signed (ack, x) and
this honest node must have seen the designated sender’s signature on (propose, x). Honest-sender-
liveness is obvious, and close termination is also obvious due to the fact that honest nodes echo
every fresh message they see.

C.3.2 Asynchronous Byzantine Agreement (ABA)

Observe that the broadcast version of Byzantine Agreement is impossible in the asynchronous
setting since an honest sender with a really long network delay is indistinguishable from a corrupt
sender that has crashed. Thus nodes cannot tell whether they should wait longer for the sender’s
message or simply give up and agree on a value without the sender. We thus define the agreement
version of Byzantine Agreement like in the standard consensus literature.

Syntax. Every node receives an input bit b ∈ {0, 1} from the environment Z. Every node
eventually outputs a bit b′.

Security. We say that an asynchronous Byzantine Agreement (ABA) protocol satisfies consis-
tency, validity, or T -liveness assuming that at least ρn nodes are honest, iff for any non-uniform
p.p.t. (A,Z) that corrupts at most n − ρn nodes and spawns multiple ABA instances sharing the
same PKI, there exists a negligible function negl(·) such that for all but negl(κ) fraction of the
executions, the corresponding property defined below holds:

• Consistency. If an honest node outputs x and another honest node outputs y, it must be
that x = y.

• Validity. As long as at least ρn honest nodes obtain the same input bit b, then any honest
node’s output must be b.

• T -liveness. Rename the first round in which at least ρn number of honest nodes have obtained
input from Z to be round 0, then all honest nodes will have output a value in asynchronous
round T .

Theorem C.6 (Asynchronous Byzantine Agreement [7]). Assume the existence of PKI and digital
signatures. Then, there exists an ABA protocol that satisfies satisfies consistency, validity, and
T -liveness for any T (·) that is super-logarithmic in κ, as long as at least b2n/3c + 1 nodes are
honest. Further, honest nodes obtain outputs in the ABA protocol in expected constant number of
asynchronous rounds.

D Echo Mechanism

As mentioned earlier, a brute-force mechanism to realize Assumption 2 from Assumption 1 is to have
nodes echo (i.e., multicast) all messages they have seen in every round. This approach, however,
would be very expensive.

We now describe a more efficient mechanism to realize Assumption 2 from Assumption 1.
Effectively, online nodes only need to retry a few times whereas offline nodes might need to keep
retrying until shortly after they come online — however, since nodes are unaware whether they
are online or offline, the actual protocol needs to look for a different indicator as to when to stop
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retrying. The idea is to stop retrying when more than n/2 nodes have echoed the message. More
concretely, nodes rely on the following echo mechanism to realize Assumption 2:

• An echo from a node i for a message m is of the format (echo,m) tagged with node i’s
signature9.

• Upon observing a fresh message m (including messages contained in an echo, messages input
from Z, messages received over the network, or messages the node tried to send itself),
multicast an echo for m in every round until more than n/2 valid echos for m have been heard
from distinct nodes. Note that nodes need not recursively send echos for an echo.

Theorem D.1. Consider a good execution: the above echo mechanism satisfies Assumption 2.

Proof. Suppose that some honest node stops echoing m in round r, we prove that everyone in Or′
where r′ ≥ r + ∆ will have seen m.

Let r′′ ≤ r be the first round in which some honest node hears more than n/2 echos for m.
Some node i∗ ∈ Or′′−1 must have sent an echo for m; and since r′′ is the first round in which some
honest node hears more than n/2 echos for m, it must be that i∗ sent an echo for m in round r′′− 1
too. Thus, by Assumption 1, every node honest and online in round r′ ≥ r′′ + ∆ will have seen
m.

E A Termination Technique for Byzantine Agreement

In our BA protocol in Section 8.1, honest nodes participate forever even after having output a bit. It
is, however, quite easy to devise a termination technique such that terminated nodes need not send
additional messages including even the echo messages in Section D that is necessary for realizing
the strong message delivery assumption (Assumption 2). Henceforth a set of bn/2c+ 1 commit
messages for b signed by distinct nodes pertaining to the same epoch is called a finalization evidence
for b. Moreover, we assume that every message is signed together with the session identifier and
tagged with the message’s purported sender. Upon receiving a message with an invalid signature,
the message is immediately discarded.

Basically, whenever a node sees a finalization evidence C for the bit b in its view, it not only
outputs b but also multicasts the tuple (finalize, b, C) every round, until the node has heard a
valid finalize message (with a valid finalization evidence) from bn/2c+ 1 number of nodes — at
this point it continues to multicast this tuple for ∆ + 1 additional rounds and then it terminates.

It is not difficult to see that if the original BA protocol in Section 8 satisfies consistency and
validity w.r.t. (A,Z) then the modified BA protocol above satisfies consistency and validity w.r.t.
(A,Z) too. The theoreom below states the termination/liveness property of the above modified
BA scheme.

Theorem E.1 (Termination). Suppose that the original BA protocol in Section 8 satisfies T -
liveness, then in the modified protocol, except with negligible probability, everyone in Ot where
t ≥ T + 3∆ will not only have output but also terminated by the end of round t+ ∆.

Proof. Earlier we have shown that everyone in Ot where t ≥ T must have received bn/2c+ 1
commit messages pertaining to the same epoch and for the same bit by the end of round t. We first
prove that in the modified scheme, some honest node must have terminated by the end of round

9We assume that all protocol instances share the same echo-PKI. For composition, we assume that the message
signed is tagged with the session identifier sid and verification is aware of the sid too.
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T + 2∆. Suppose that no honest node has terminated even after round T + 2∆ — we show that
this is impossible since if so, then every node in OT must send a finalize message for b in round
T and thus every node in OT+∆ will have received bn/2c+ 1 number of finalize messages from
distinct nodes in round T + ∆ and will have terminated by the end of round T + 2∆.

Due to the same proof as in Section D, except with negligible probability the following state-
ments also hold. Suppose that r is the first round in which some honest node hears valid finalize

messages from bn/2c+ 1 number of nodes. Then, everyone in Ot where t ≥ r + ∆ will have seen
at least one valid finalize message containing a valid finalization evidence at the beginning of
round t. Thus everyone in Or+∆ will multicast a finalize message in round r + ∆. Therefore
everyone in Ot′ where t′ ≥ r + 2∆ will have seen bn/2c+ 1 number of finalize messages from
distinct nodes and will have terminated by the end of round t′ + ∆.

F Supplemental Figure

Best-possible
partition tolerant

protocols

Classical 
corrupt-majority 

protocols

Classical 
honest-majority protocols

Figure 3: The set of best-possible partition tolerant BA protocols is a strict subset of classical
honest-majority BA protocols. No BA protocol that tolerates corrupt majority satisfies best-possible
partition tolerance.
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