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Abstract. We study (ℓ, ℓ)-isogeny graphs of principally polarised supersingular abelian surfaces (PPSSAS).
The (ℓ, ℓ)-isogeny graph has cycles of small length that can be used to break the collision resistance
assumption of the genus two isogeny hash function suggested by Takashima. Algorithms for computing
(2, 2)-isogenies on the level of Jacobians and (3, 3)-isogenies on the level of Kummers are used to develop
a genus two version of the supersingular isogeny Diffie–Hellman protocol of Jao and de Feo. The genus
two isogeny Diffie–Hellman protocol achieves the same level of security as SIDH but uses a prime with
a third of the bit length.
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Errata This is the ePrint version of the conference submission to PQCrypto 2019. The ePrint version of
the file has been corrected in June 2022. Two mistakes have been corrected:

1. The number of paths P (n, a) in Proposition 5 has been corrected.

2. Bob’s kernel has been corrected in Section 3.4.

1 Introduction

Isogeny-based cryptography involves the study of isogenies between abelian varieties. The first proposal was
an unpublished manuscript of Couveignes [6] that outlined a key-exchange algorithm set in the isogeny graph
of elliptic curves. This was rediscovered by Rostovtsev and Stolbunov [18]. A hash function was developed
by Charles, Goren and Lauter [4] that uses the input to the hash to generate a path in the isogeny graph
and outputs the end point of the path. Next in the line of invention is the Jao–de Feo cryptosystem [12]
which relies on the difficulty of finding isogenies with a given degree between supersingular elliptic curves.
A key exchange protocol, called the Supersingular Isogeny Diffie–Hellman key exchange (SIDH), based on
this hard problem, was proposed in the same paper. The authors proposed working with 2-isogenies and
3-isogenies for efficiency.

Elliptic curves are principally polarised abelian varieties of dimension one, hence we can turn to principally
polarised abelian varieties of higher dimension when looking to generalise isogeny-based cryptosystems. As
noted by Takashima elliptic curves have three 2-isogenies but abelian surfaces (abelian varieties of dimension
2) have fifteen (2, 2)-isogenies. Hence, this motivates the use of abelian surfaces for use in these cryptosystems.

In this work, we will focus on principally polarised supersingular abelian varieties of dimension two,
which we call principally polarised supersingular abelian surfaces (PPSSAS) and consider their application
to cryptography. The two challenges before us are: to understand the isogeny graphs of PPSSAS, and to have
efficient algorithms to compute isogenies between principally polarised abelian surfaces (PPAS) in general.

In this work, we will examine the structure of the (ℓ, ℓ)-isogeny graph of PPSSAS and show that the
genus two hash mentioned above is no longer collision resistant. This will be presented in §2. The realisation
of the genus two version of SIDH will make up §3 and we will examine its security in §4.

Due to space restrictions, we will assume knowledge of abelian varieties and some of their properties.
Assiduous readers can refer to [16] and [15] for definitions and background.
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2 PPSSAS Graph

Let p and ℓ be distinct primes. In this section, we will examine the structure of the graph Gp,ℓ, where the
vertices are isomorphism classes of PPSSAS over Fp, and edges are present between two vertices if they are
(ℓ, ℓ)-isogenous. We will see that the PPSSAS graph has a regular and repeating substructure that we can
identify. This can be seen explicitly in the subgraphs of the full isogeny graph presented in Appendix A.

2.1 Morphisms to Subgroups

One of the key tools in studying isogenies between abelian varieties is the correspondence between subgroups
and isogenies. This subsection explains the properties a subgroup needs to have in order to correspond to an
appropriate isogeny.

The first result allows us to restrict our attention to Jacobians of hyperelliptic curves of genus two or
some reducible product of two elliptic curves.

Theorem 1. If A/Fp is a PPAS, then A ∼= JH for some smooth (hyperelliptic) genus two curve H, or
A ∼= E1 × E2 where Ei are elliptic curves.

Proof. Use [11, Theorem 3.1] which says that A is isomorphic over Fpn (for some n) to the two cases in the
theorem, or to the restriction of scalars of a polarized elliptic curve over a quadratic extension of Fpn . Since
we are working over Fp, the latter case is absorbed into the second case. ⊓⊔

Given an abelian variety A, the dual variety A∨ exists and is unique up to isomorphism. An ample divisor
L of A defines an isogeny ϕL : A → A∨ known as the polarisation of A. If the polarisation is an isomorphism,
then we say that it is principal.

There is a non-degenerate alternating pairing, known as the Weil pairing, on an abelian variety A over k

em : A[m](k)×A∨[m](k) → k
∗
,

where A[m] is the m-torsion subgroup of A.
Being non-degenerate, the Weil pairing is non-trivial on the entire torsion subgroup. But there are sub-

groups in the torsion subgroup onto which the Weil pairing acts trivially when restricted. We give them a
special name:

Definition 1. A subgroup S of A[m] is proper if A[n] ̸⊆ S for any 1 < n ≤ m.
Let A be an abelian variety over F̄p, and let m be a positive integer co-prime with p. We say a proper

subgroup S of A[m] is maximal m-isotropic if

(1) the m-Weil pairing on A[m] restricts trivially to S, and
(2) S is not properly contained in any other subgroup of A[m] satisfying (1).

We call the first condition the isotropic condition. Note that the definition for a maximal isotropic subgroup
does not include kernels of isogenies that factor through the multiplication-by-n map.

The following result then illustrates the preservation of principal polarisations under isogenies whose
kernels are isotropic.
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Proposition 1. Let H be a hyperelliptic curve of genus two over Fq. Let K be a finite, proper, Fq-rational
subgroup of JH(Fq). There exists a PPAS A over Fq, and an isogeny ϕ : JH → A with kernel K, if and only
if K is a maximal m-isotropic subgroup of JH [m] for some positive integer m.

Proof. The quotient JH → JH/K always exists as an isogeny between abelian varieties [19, III.3.12]. Since
JH is the Jacobian of a hyperelliptic curve, it has a principal polarisation λ. Now consider the polarisation
µ = [deg ϕ] ◦ λ on JH , then we certainly have K = kerϕ ⊆ kerµ, and since K is isotropic, we use [15,
Theorem 16.8] to get a polarisation λ′ on JH/K. Using [15, Remark 16.9], we have that deg λ′ = 1 and so
JH/K is a PPAS.

Furthermore, by Theorem 1, we have that A is the Jacobian of a hyperelliptic curve of genus two or a
product of two elliptic curves. ⊓⊔

Using the results above, we can focus on the type of subgroups of the torsion group that correspond to
the isogenies we would like to investigate. We will denote by Cn the cyclic group of order n.

Lemma 1. Let A be a PPAS. If K is a maximal ℓn-isotropic subgroup, then it cannot be cyclic.

Proof. Suppose that K is cyclic, then K is trivial on the pairing from the alternating property. It can then
be shown that K is contained in C2

ℓn , which is also isotropic and so K cannot be maximal. ⊓⊔

Proposition 2. Let A be a PPAS. Then the maximal ℓn-isotropic subgroups of A[ℓn] are isomorphic to

Cℓn × Cℓn or Cℓn × Cℓn−k × Cℓk

where 1 ≤ k ≤ ⌊n/2⌋.

Proof. We see, from Lemma 1 and the fact that maximal isotropic subgroups must be proper, that K must
have rank 2 or 3. Suppose that K has rank 2, then it can be shown that to be maximal, K must have the
structure Cℓn × Cℓn by repeated inclusion.

Let Cℓa ×Cℓb ×Cℓc ×Cℓd be a subgroup of A[ℓn]. To simplify notation, we write this as [a, b, c, d]. Without
loss of generality, we can take a ≥ b ≥ c ≥ d. Then we have that the dual is [n− a, n− b, n− c, n− d] (since
the composition with the original isogeny is multiplication-by-ℓn) and n− a ≤ n− b ≤ n− c ≤ n− d. Hence
to get the symmetry as specified by [16, pg. 143, Thm. 1], we must have that n− a = d and n− b = c. Since
we must have that one of the indices is zero, we take d = 0 and the result follows. ⊓⊔

This result narrows down the subgroups that we need to study in order to study sequences of (ℓ, ℓ)-isogenies
between PPAS.

2.2 Number of neighbours in an (ℓ, ℓ)-isogeny graph

In this section, we will consider the structure of an (ℓ, ℓ)-isogeny graph, Gp,ℓ. We do so by computing the
number of neighbours that each vertex is connected to. Also, we will see that the number of paths between
each vertex can vary according to the structure of the kernel.

We approach this question by choosing an arbitrary PPAS and considering isogenies emanating from this
surface. Then the nascent isogeny graph is a rooted graph at the chosen surface. The first result counts the
number of elements n steps from the root.

Theorem 2. Let A be a PPAS, ℓ be a prime different from p and n > 2. Then the number of ℓn-maximal
isotropic subgroup of A[ℓn] is

ℓ2n−3(ℓ2 + 1)(ℓ+ 1)

(
ℓn + ℓ

ℓn−2 − 1

ℓ− 1
+ 1

)
if n is even, and

ℓ2n−3(ℓ2 + 1)(ℓ+ 1)

(
ℓn +

ℓn−1 − 1

ℓ− 1

)
if n is odd.
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The proof of the theorem follows by summing the number of maximal isotropic subgroups which is given in
the following proposition.

Proposition 3. Let A be a PPAS. Let N(a, b, c) be the number of maximal isotropic subgroups of A iso-
morphic to Cℓa × Cℓb × Cℓc . Then

1. N(n, n− a, a) = ℓ3n−2a−4(ℓ2 + 1)(ℓ+ 1)2, where 1 ≤ a < n/2;
2. N(n, n, 0) = ℓ3n−3(ℓ2 + 1)(ℓ+ 1);
3. N(2k, k, k) = ℓ4k−3(ℓ2 + 1)(ℓ+ 1).

Proof. We will prove this for the second case. Note that this is equivalent to finding a subgroup isomorphic
to C2

ℓn in A[ℓn] ∼= C4
ℓn which satisfies the isotropic condition.

So we need to find 2 elements in C4
ℓn that have full order, are isotropic under the Weil pairing and

generate subgroups with trivial intersection. To make things concrete, let ⟨P1, . . . , P4⟩ = C4
ℓn . Let us pick

the first element A ∈ C4
ℓn . This involves picking a full order element in C4

ℓn for which we have ℓ4n − ℓ4n−4

choices. Let A =
∑

[ai]Pi.
To pick the second element B ∈ C4

ℓn , we need to pick a full order element but also ensure that B is
isotropic to A under the Weil pairing. If we write B =

∑
[bi]Pi, then we require that

eℓ(A,B) = eℓ(P1, P2)
a1b2−a2b1 · eℓ(P1, P3)

a1b3−a3b1 · eℓ(P1, P4)
a1b4−a4b1

· eℓ(P2, P3)
a2b3−a3b2 · eℓ(P2, P4)

a2b4−a4b2 · eℓ(P3, P4)
a3b4−a4b3

= 1 .

But this is a linear condition on the selection of the bi’s. Thus this gives us ℓ3n − ℓ3n−3 choices1. But we
need to pick B such that B /∈ ⟨A⟩. Given that B has full order, we need to avoid (ℓ − 1)ℓ3(n−1) elements.
Hence the total number of choices for B is

ℓ3n − ℓ3(n−1) − (ℓ− 1)ℓ3(n−1) .

Now, we need to divide the choices we have for A and B by the number of generating pairs in a subgroup
C2

ℓn . The total number of generating pairs is (ℓ2n − ℓ2(n−1))(ℓ2n − ℓ2(n−1) − (ℓ− 1)ℓ2(n−1)). Hence the total
number of maximal isotropic C2

ℓn subgroups of C4
ℓn is

(ℓ4n − ℓ4n−4)(ℓ3n − ℓ3(n−1) − (ℓ− 1)ℓ3(n−1))

(ℓ2n − ℓ2(n−1))(ℓ2n − ℓ2(n−1) − (ℓ− 1)ℓ2(n−1))
= ℓ3n−3(ℓ2 + 1)(ℓ+ 1) .

The other two cases are proved similarly. ⊓⊔

Now, suppose we have an isogeny which has a maximal isotropic kernel K with order ℓ2n, then we can
decompose this isogeny into a sequence of n (ℓ, ℓ)-isogenies:

A0
ϕ1−−−→ A1

ϕ2−−−→ A2
ϕ3−−−→ . . .

ϕn−−−→ A0/K .

As mentioned in the introduction, this decomposition of isogenies is non-unique. This arises from kernels
whose structure allows for more than one subgroup isomorphic to Cℓ×Cℓ. The key observation is that these
subgroups form the kernels of ϕ1. In that spirit, the next two lemmata will give properties for the kernels of
the first isogeny.

1 To see this, note that each eℓ(Pi, Pj) = µαi,j , where µ is an ℓ-root of unity and αi,j is some non-zero integer. We
can express the isotropic condition as

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡
α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)
+α2,3(a3b2 − a2b3) + α1,4a4b1
+α2,4a4b2 + α3,4a4b3

(mod ℓ) .

In the case where (α1,4a1 + α2,4a2 + α3,4a3 ̸≡ 0, we have free choices for b1, b2, b3 (not all divisible by ℓ) and so
have ℓ3n − ℓ3n−3 choices.
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Lemma 2. Let A be a PPAS. Let K be a maximal isotropic subgroup of A[ℓn] which is isomorphic to
Cℓn ×Cℓn−a ×Cℓa for some a ≥ 0. Let ⟨P,Q,R⟩ = K such that P,Q,R have orders ℓn, ℓn−a, ℓa respectively.

(1) Let Pi, Qi, Ri ∈ Ai be elements mapped from P = P0, Q = Q0, R = R0. Then [ℓn−i−1]Pi ∈ kerϕi+1 for
all i ≥ 0.

(2) The first (ℓ, ℓ)-isogeny must have kernel

⟨[ℓn−1]P, [ℓn−a−1]Q+ [k][ℓa−1]R⟩ for 0 ≤ k ≤ ℓ− 1, or ⟨[ℓn−1]P, [ℓa−1]R⟩ .

Proof. (1) One can show by contradiction that if there is a kernel not containing Pi, then we will have cyclic
kernels, which cannot be a kernel of a (ℓ, ℓ)-isogeny by Lemma 1.
Next, let P ′ ∈ ⟨Pi⟩, Q′ ∈ ⟨Qi⟩, and R′ ∈ ⟨Ri⟩ such that P ′, Q′, R′ all have order ℓ. Then kernels cannot be
of the form P ′+Q′, P ′+R′, Q′+R′. Indeed, it can be shown by examining the pairing eℓ(P

′+Q′, P ′+R′)
to see that one either obtains a cyclic kernel, or that the subgroup above is not isotropic.

(2) We have from the first part that [ℓn−1]P must be a generator of the group. The second generator must
be chosen from the remaining points of order ℓ. By the isotropic condition of K, we have that they are
all isotropic on the pairing as well.

⊓⊔

Lemma 3. Let G ∼= Cℓn × Cℓn−a × Cℓa and H be abelian groups. Let

⟨P ⟩ ∼= Cℓn , ⟨Q⟩ ∼= Cℓn−a , ⟨R⟩ ∼= Cℓa

be subgroups of G with trivial intersections. If ϕ : G → H is a group homomorphism, with

kerϕ =
〈
[ℓn−1]P, [ℓn−a−1]Q+ [k][ℓa−1]R

〉
for 1 ≤ k ≤ ℓ− 1 and a ≤ n/2, then H ∼= Cℓn−1 × Cℓn−a × Cℓa−1 .

Proof. We have that ϕ(P ) has order ℓn−1 and Q has order ℓn−a, since [ℓn−a−1]Q /∈ kerϕ. Since the order of
the kernel is ℓ2, we must have that H ∼= Cℓn−1 × Cℓn−a × Cℓa−1 . ⊓⊔

We can now study the different isogenies that exist between two vertices on the graph. In particular, we
will be counting the number of different paths between any two vertices on the graph.

We will examine the base cases first, where there is only one path between two vertices, or where two
vertices are separated by two (ℓ, ℓ)-isogenies.

Proposition 4. Let A be a PPAS, and let K ∼= (Cℓn × Cℓn−a × Cℓa). Let P (n, a) be the number of paths
from A to A/K. Then

1. P (n, 0) = 1 for all n;
2. P (2, 1) = ℓ+ 1.

Proof. 1. Since kernels of (ℓ, ℓ)-isogenies cannot be cyclic, the only possible subgroup of order ℓ2 of Cℓn×Cℓn

is Cℓ × Cℓ, and there is only one choice for this subgroup.
2. Let K = Cℓ2 ×Cℓ×Cℓ. Then from Lemma 2 (and using its notation) we must have that the first isogeny

has kernel

⟨[ℓ]P,Q+ [k]R⟩ for 0 ≤ k ≤ ℓ− 1, or ⟨[ℓ]P,R⟩ .

There are ℓ+1 choices for the first kernel. Thereafter, there is only one choice for the second kernel and
so we have a total of ℓ+ 1 paths.

⊓⊔

Now, we can prove the general case.
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Proposition 5. Using the notation above, where P (n, a) is the number of paths in a (Cℓn × Cℓn−a × Cℓa)-
isogeny. Then P (n, a) satisfies the following recursive equation:

P (n, a) = ℓ · P (n− 1, a− 1) + P (n− 1, a) ,

where 1 ≤ a < n/2, and with the following boundary conditions:

P (n, 0) = 1, P (2, 1) = ℓ+ 1 .

Proof. We will prove this by induction. The base cases of the induction steps are easy and the boundary
conditions follow from Proposition 4. We will show the induction step.
Let us suppose that the recursive formula holds for P (n− 1, a− 1) and P (n− 1, a). Now, suppose that our
kernel is isomorphic to Cℓn ×Cℓn−a ×Cℓa . Since each (ℓ, ℓ)-isogeny has a kernel of the form Cℓ×Cℓ, we have,
from Lemma 2(2), that the first isogeny must have a kernel of the form

⟨[ℓn−1]P, [ℓn−a−1]Q+ [k][ℓa−1]R⟩ for 0 ≤ k ≤ ℓ− 1, or ⟨[ℓn−1]P, [ℓa−1]R⟩ .

It is clear that if the kernel is given by

⟨[ℓn−1]P, [ℓn−a−1]Q⟩ or ⟨[ℓn−1]P, [ℓa−1]R⟩ ,

then the residual kernel will be of the form

Cℓn−1 × Cℓn−a−1 × Cℓa or Cℓn−1 × Cℓn−a × Cℓa−1

respectively. Otherwise, if the first kernel has the form

⟨[ℓn−1]P, [ℓn−a−1]Q+ [k][ℓa−1]R⟩ for 1 ≤ k ≤ ℓ− 1,

the residual kernel will be of the form Cℓn−1 × Cℓn−a × Cℓa−1 by Lemma 3. Hence we are done. ⊓⊔

Proposition 4 actually shows us the different paths that can exist between vertices in the graph. In
particular, for kernels with rank 2, there can only be a single path between the domain and codomain.
However, for kernels with rank 3, there can be a multitude of paths that exist between the domain and
codomain. It can be seen that the following shapes (diamonds) are the basic paths drawn out by kernels
with group structure Cℓ2 × Cℓ × Cℓ for different ℓ’s.

ℓ = 2 ℓ = 3 ℓ = 5 ℓ = 7

The non-uniqueness of these paths can be seen more explicitly in the example in Appendix A, where the
kernel has order 256. Also in Appendix A, we will see how the diamonds fit together in the isogeny graph.

2.3 Cryptanalysis of the Isogeny-based Hash Functions

The CGL hash function performs a random walk on the supersingular elliptic curve 2-isogeny graph. From
each supersingular elliptic curve, there are three 2-isogenies emanating from that curve. The algorithm
receives a binary string as input and returns an Fp2 value as output. It does so by taking a fixed base curve,
discards one of the three isogenies (how this is done will not be of consequence in this discussion), and

6



uses the first bit of the input as a choice between the remaining two isogenies. In the subsequent step, the
algorithm uses the second bit to choose between the only two isogenies that does not lead back to the base
curve (this is termed “no back-tracking”). Note that in this discussion, we have not mentioned how one can
deterministically choose one isogeny over the other given a fixed bit, but there is a variety of ways one can
“order” the isogenies. Readers are encouraged to refer to the original paper for more details.

In the genus two case of the hash function, due to the additional isogenies available to a single vertex (15
as opposed to 3), it is hoped that one can achieve a higher security level with a smaller number of steps. In
[21] Takashima outlined an algorithm for obtaining a sequence of (2, 2)-isogenies without backtracking. He
also implicitly suggested the generalisation of the above hash function to genus two. The genus two version
of the CGL hash uses the input bits to traverse the (2, 2)-isogeny graph of PPSSAS. The algorithm begins at
a pre-chosen PPSSAS and begins a walk based on the binary input to the algorithm. The walk on the graph
is similar to the original CGL hash with a difference of an increased number of paths at each iteration.

Genus Two Hash Collisions One of the main results of [4] is the proof that the CGL hash function is
collision resistant. The vague intuition for this is that the supersingular elliptic curve isogeny graph is locally
tree-like, i.e. there are no small cycles in a small enough subgraph. This assumption fails in the genus two
case as pictured above, any diamond configuration leads to a collision in the hash. An attacker can find two
pairs of bits so that the walks collide. Using the diamond of ℓ = 2 as an example, where a hash is performed
by walking along the left-most path. An attacker, with the knowledge that the hash has traversed through
a diamond, will be able to choose either the middle path or the right-most path to achieve a collision.

In terms of endomorphisms, the collision resistance in the CGL hash is achieved by the lack of endomor-
phisms of degree 2k, where k is small, in the graph. However, as we have seen in the previous section, we
might be able to find endomorphism of degree 16 (or cycles of length 4) after 2 iterations of the genus two
hash.

3 Genus Two SIDH Cryptosystem

In this section, we will construct the key exchange protocol for genus two. The scheme presented here follows
the original scheme closely. Before presenting the scheme, we will review two algorithms used to select a base
PPSSAS and select a key from the keyspace. We will also look briefly at the isogeny algorithms employed in
the scheme.

We note that the MAGMA implementation of the scheme is extremely slow. An example is presented in
Appendix B.

3.1 Selecting a Base Hyperelliptic Curve

Similar to the SIDH case, we pick primes of the form p = 2n · 3m · f − 1.
We consider a base hyperelliptic curve given by

H : y2 = x6 + 1 .

It can be shown that the Jacobian of H is supersingular since it is the double cover of the supersingular
elliptic curve y2 = x3 + 1, which is supersingular over Fp, since p ≡ 2 (mod 3). We then take a random
sequence of Richelot isogenies to obtain a random PPSSAS.

3.2 Selection of Secrets

Our aim is to use scalars to encode the secret kernel to be used by the two parties of the key exchange as
this allows for a compact representation of the secret.

Firstly, let H/Fq be a hyperelliptic curve of genus two and let JH be its Jacobian. The secret kernels
will be maximal isotropic subgroups of JH [ℓn] of order ℓ2n. As seen in §2, the kernels will have structure
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Cℓn × Cℓn−k × Cℓk , where 0 ≤ k < n/2. Hence they should be generated by three points: Q1, Q2 and Q3.
Furthermore, to fulfil the condition of isotropy, we also require that the generators satisfy

eℓn(Q1, Q2) = eℓn(Q1, Q3) = eℓn(Q2, Q3) = 1 .

Our approach is summarised by the following steps:

Pre-computation:
Step 1: Find generators for JH [ℓn]. Name them P1, P2, P3, P4.
Step 2: Find the values αi,j such that eℓn(Pi, Pj) = eℓn(P1, P2)

αi,j .
Secret selection:

Step 3: Pick some r1, r2, r3, r4 ∈ [1, . . . , ℓn − 1]4 such that they are not simultaneously divisible by ℓ.
Step 4: Pick a random2 0 ≤ k < n/2 and compute s1, s2, s3, s4 and t1, t2, t3, t4 by solving the two
linear congruences  r1s2 − r2s1 + α1,3(r1s3 − r3s1)

+α1,4(r1s4 − r4s1) + α2,3(r2s3 − r3s2)
+α2,4(r2s4 − r4s2) + α3,4(r3s4 − r4s3)

 ≡ 0 mod ℓk

 r1t2 − r2t1 + α1,3(r1t3 − r3t1)
+α1,4(r1t4 − r4t1) + α2,3(r2t3 − r3t2)
+α2,4(r2t4 − r4t2) + α3,4(r3t4 − r4t3)

 ≡ 0 mod ℓn−k

Step 5: Output (s1, . . . , s4, r1, . . . , r4, t1, . . . , t4) as the secret scalars which will give the generators of the
kernel:

Q1 =
∑

[si]Pi, Q2 =
∑

[ri]Pi, Q3 =
∑

[ti]Pi .

Remark 1. Note the following:

(i) Step 1 can be performed using standard group theoretic algorithms.
(ii) Step 2 performs discrete logarithm computations modulo a 2 and 3-smooth modulus and so is extremely

efficient by using the Silver–Pohlig–Hellman algorithm [8, §13.2].
(iii) In Step 4, we pick a random solution in the solution space for ri and ti. It can be shown that this ensures

that the isotropic condition is upheld.

3.3 Isogeny Algorithms

Computing an ℓ-isogeny between elliptic curves can be done with a complexity of O(ℓ). The general method
to compute the codomains of this isogeny or to map points under the isogeny is to use Vélu’s formula [25].
However, the efficient computation of arbitrary isogenies between abelian varieties of dimension greater than
1 is lacking. Here, we will present algorithms for computing the codomains of (2, 2) and (3, 3)-isogenies
and show how we can map subgroups under these isogenies. The speed-ups come from the use of simpler
representations in the computation: the use of hyperelliptic curves in the (2,2) case and the use of Kummer
surfaces in the (3,3).

Richelot Isogenies We will use Richelot isogenies to perform our (2, 2)-isogenies as is standard in the liter-
ature. Richelot isogenies are relatively well-understood and have been implemented in various computational
algebra programs. Useful references for Richelot isogenies are [20,3,1].

Note that Richelot isogenies operate on the level of hyperelliptic curves in the sense that they are mor-
phisms between hyperelliptic curves. The support of the elements in the kernel of a (2,2)-isogeny defines a
factorisation of the defining hyperelliptic curve polynomial into quadratic polynomials. One can find the hy-
perelliptic curve in the codomain via the Richelot correspondence. We can map points between hyperelliptic
curves via this Richelot correspondence. We use this to extend the map on curves to a map on Jacobians by
mapping the support of elements of the Jacobian.

2 This will not be a uniformly random choice if one wants to sample the entire keyspace.
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(3,3)-isogenies over the Kummer Surface As for (3,3)-isogenies, we note that for the purposes of genus
two isogeny cryptography, we do not need to map points under the isogeny but only need to map Kummer
points under the isogeny since the Jacobian points that correspond to the Kummer points both generate
identical subgroups.

Given an abelian variety A, the Kummer variety is defined by A/⟨±1⟩. This is a quartic surface in P3 and
computations of isogenies on the Kummer surface was the object of study of [2]. We can use the formulae3

presented in [2] to compute the images of Kummer points under the isogeny. This has also been noted by
Costello in [5].

We remark that the procedure detailed in [2, §3] is incomplete. Using the notation in [2], a last transfor-
mation is necessary as c has shifted away from 1 due to prior transformations. At that stage, we have the
following:

(s, t, c0, c1, c2,m0,m1,m2, u) = (s′, t′, 1,−1, 0,−r′, 0, 1, 1) .

We need one last transformation
y 7→ (4/λ1)

2y

and set
s = λ1/4, r = Coefficient of x in H1, t = Coefficient of 1 in H1

to get the (r, s, t)-parameterisation of [2, Theorem 6].
The key to forming the cubic formula which maps Kummer points to Kummer points under the (3, 3)-

isogeny lies in the biquadratic forms on the Kummer surface from [3, pg. 23]. Given the generators of the
maximal isotropic subgroup of JH [3], the authors found two cubic forms which are each invariant under
translation by T1 and T2 respectively. The cubic forms generated spaces of dimension 8 and intersect in
dimension 4, which gives an explicit description of the quartic model of the Kummer surface.

3.4 Genus Two SIDH

We will present the key exchange protocol in genus two for completeness. The astute reader will see that all
the steps carry over from the original scheme presented in §3.2 of [14].

Set-up Pick a prime p of the form p = 2eA3eBf − 1 where 2eA ≈ 3eB . Now, we pick a hyperelliptic curve H
using the methods of §3.1 which will be defined over Fp2 . We then generate the bases {P1, P2, P3, P4} and
{Q1, Q2, Q3, Q4} which generate JH [2eA ] and JH [3eB ] respectively.

First Round Alice chooses her secret scalars (ai)i=1,...,12 using the steps outlined in §3.2 and computes the
isogeny ϕA : JH → JA with kernel given by〈

4∑
i=1

[ai]Pi,

8∑
i=5

[ai]Pi,

12∑
i=9

[ai]Pi

〉
.

She also needs to compute the points ϕA(Qi) for i = 1, 2, 3, 4. She sends the tuple

(G2(JA), ϕA(Q1), ϕA(Q2), ϕA(Q3), ϕA(Q4))

to Bob, where G2(JA) is the G2-invariants of the hyperelliptic curve associated to JA.
At the same time, Bob chooses his secret scalars (bi)i=1,...,12 using the steps outlined in §3.2 and computes

the isogeny ϕB : JH → JB which has the kernel〈
4∑

i=1

[bi]Qi,

8∑
i=5

[bi]Qi,

12∑
i=9

[bi]Qi

〉
.

3 The files containing the formulae can be found in http://www.cecm.sfu.ca/~nbruin/c3xc3/.
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He computes the points ϕB(Pi) for i = 1, 2, 3, 4, and sends the tuple

(G2(JB), ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4))

to Alice.

Second Round Alice will receive Bob’s tuple and proceeds with computing JB from the G2-invariant, and
the points 〈

4∑
i=1

[ai]ϕB(Pi),

8∑
i=5

[ai]ϕB(Pi),

12∑
i=9

[ai]ϕB(Pi)

〉
.

This is the kernel of a (2eA , 2eA−k, 2k)-isogeny ϕ′
A : JB → JBA. Bob will perform a similar computation and

arrive at the PPSSAS JAB . But since

JAB = JA/ϕA(KB) ∼= JH/⟨KA,KB⟩ ∼= JB/ϕB(KA) = JBA ,

they can then use the G2-invariants of JAB and JBA as their shared secret.

Remark 2. The method in [2] allows us to find ±ϕB(Pi). However, we need the map

(P1, P2, P3, P4) 7→ (ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4))

or
(P1, P2, P3, P4) 7→ (−ϕB(P1),−ϕB(P2),−ϕB(P3),−ϕB(P4))

to ensure that the subgroup generated by Alice in the second round is isotropic.
To fix this problem, one could check if

e2eA (ϕB(Pi), ϕB(Pj)) = e2eA (Pi, Pj)
3eB

for all 1 ≤ i < j ≤ 4 and negate the ϕB(Pi)’s accordingly.

4 Security and Analysis

4.1 Security Estimates

In this section, we will define the computational problem needed to analyse our cryptosystem.
Let p be a prime of the form 2n · 3n · f − 1, and fix a hyperelliptic curve of genus two H over Fp2 and let

JH denote its Jacobian. Fix bases for JH [2n] and JH [3m], denoting them by {Pi}i=1,2,3,4 and {Qi}i=1,2,3,4

respectively.

Problem 1 (Computational Genus Two Isogeny (CG2I) Problem). Let ϕ : JH → JA be an isogeny whose
kernel is given by K. Given JA and the images {ϕ(Qi)}, i ∈ {1, 2, 3, 4}, find generators for K.

This problem is conjectured to be computationally infeasible for the same reasons as listed in [14].
However, due to the higher regularity of the genus two isogeny graph, we are able to perform a smaller
number of isogeny computations to achieve the same security level as compared to SIDH.

Let us look at the complexities of the algorithms one can employ against the CG2I problem, where the
task is to recover the isogeny ϕA : JH → JA when given JH and JA. We note that from Proposition 3, we
have that the number of elements in the n-sphere is ℓ3n−3(ℓ2 + 1)(ℓ + 1) ≈

√
p3, hence a naive exhaustive

search on the leaves of JH has a complexity of O(
√

p3). One can improve on this by considering the meet-in-
the-middle search by listing all isogenies of degree ℓn from JH and JA and finding collisions in both lists. The
meet-in-the-middle search has a complexity of O( 4

√
p3). One can perform better by employing a quantum

computer to reduce the complexity to O( 6
√
p3) using Claw finding algorithms [23]. This compares favourably

with the genus one case which has classical security of O( 4
√
p), and quantum security of O( 6

√
p). An example

of a prime which one can use to achieve 128-bits of security is 171-bits, whereas the genus one case requires
512-bits for the same level of security.
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4.2 Existing Attacks on SIDH

We will dedicate this section to examining the impact of the attacks proposed in the cryptanalysis papers
[9,24,10,17,7]. We will group the attacks into two classes: Curves and points, and computing endomorphism
rings.

Attacks on curves and points include the adaptive attack [9] and fault attacks [24,10]. Attacks via the
computation of endomorphism rings include the methods using auxiliary points to find a subring of the endo-
morphism ring [17] and using the Deuring correspondence [7]. The purpose of computing the endomorphism
ring is due to the result in [9] that showed a reduction, in most cases, that the SIDH problem is at most as
difficult as computing the endomorphism ring. The key observation behind this result is that the isogenies
tend to be short paths in the graph, and so a lattice reduction performed on the basis of the connecting ideal
would yield an element that corresponds to the secret isogeny via results in [13].

Adaptive Attack Due to the similar construction of the two protocols, the adaptive attack still carries
over to the genus two version. Suppose the attacker is playing the role of Bob and sends Alice the points

ϕB(P1), ϕB(P2), ϕB(P3), ϕB([2
n−1]P4 + P4)) .

Following the procedure detailed in [9], Bob will be able to recover the first bit of a4. To recover the rest of
the secret, one only needs to tweak the algorithm presented in the original paper.

Fault Attack The loop-abort fault attack presented in [10] would still apply, as our protocol still requires
repeated computations of isogenies of low degrees, resulting in the existence of intermediate curves which is
key to the attack.

The fault injection on a point as presented in [24] relies on the recovery of the image of one random point
under the secret isogeny. Intuitively, the n-torsion points of an abelian variety of genus g is a Z/nZ-module of
rank 2g. Hence the recovery of the image of one random point as in the g = 1 case in [24] is akin to recovering
a one-dimensional subspace and the task of finding the secret isogeny is the recovery of the complementary
subspace.

This approach can still work in our setting, however we will require a minimum of 2 images of random
points under the isogeny. This is because the complementary subspace in our case is of dimension 2, and so
we will need at least two points to span that space.

Endomorphism Ring Computations Let E be a supersingular elliptic curve over k and let char k = p > 0.
Then we know that EndE ⊗Q = Bp,∞, where Bp,∞ is the quaternion algebra over Q ramified at p and ∞.
Also, EndE is a maximal order of Bp,∞. In the case of higher genus, if A is a PPSSAV of dimension g, then
we have that the endomorphism algebra is EndA⊗Q = Mg(Bp,∞) [16, pg. 174, Cor. 2].

We will leave the thorough examination of the effects of endomorphism ring computations on the cryp-
tosystem as an open problem.

5 Conclusion

We studied the (ℓ, ℓ)-isogeny graphs and cryptanalysed a genus two variant of the CGL hash function. We
studied the implementation of the genus two SIDH cryptosystem by looking at the mapping of Kummer
points under a (3, 3)-isogeny and Jacobian points under a (2, 2)-isogeny. We have shown that the genus two
isogeny cryptosystem can be implemented, but the fact of the matter is: improvements in the algorithms
need to be found before a practical implementation can be achieved.
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14. Luca De Feo, Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve iso-
genies. J. Mathematical Cryptology 8(3), 209–247 (2014)

15. Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic Geometry, pp. 103–150. Springer
New York, New York, NY (1986)

16. Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Tata
Institute of Fundamental Research, Bombay (2008)

17. Petit, C.: Faster algorithms for isogeny problems using torsion point images. Advances in Cryptology - ASI-
ACRYPT 2017 pp. 330–353 (2017)

18. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report
2006/145 (2006), http://eprint.iacr.org/

19. Serre, J.P.: Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117. Springer-Verlag, New
York (1988), translated from the French

20. Smith, B.: Explicit Endomorphisms and Correspondences. Ph.D. thesis, University of Sydney (2005)
21. Takashima, K.: Efficient Algorithms for Isogeny Sequences and Their Cryptographic Applications, pp. 97–114

(2018)
22. Takashima, K., Yoshida, R.: An algorithm for computing a sequence of richelot isogenies. Bull. Korean Math.

Soc 46, 789–802 (2009)
23. Tani, S.: Claw Finding Algorithms Using Quantum Walk. ArXiv e-prints (2007)
24. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. Post-Quantum Cryptography - PQCrypto 2017

pp. 107–122 (2017)
25. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A. 273, 238 – 241 (1971)

A Examples of Isogeny Graphs

We will consider kernels with order 256 in this example. The key to each example is to the find the number
of C2×C2 subgroups of each kernel since this would correspond with the number of possible (2, 2)-isogenies.
Firstly, we note that the structure of maximal isotropic subgroups of order 256 must be C16 × C16, or
C16 × C4 × C4, or C16 × C8 × C2 by Proposition 2. The isogeny graphs are given in Figure 1.
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The easy case is when the kernel K0 has the structure C16×C16. This is because there is only one C2×C2

subgroup in K. Hence, there is only one isogeny path available and we have a straight line.

Now, let us consider the case when K1 has the structure C16 × C4 × C4. We will label the isomorphism
classes of the surfaces by (n), where n is a natural number. We will denote the first surface by (1).

We can represent the 3 generators of K1 by P , Q and R, where their orders are 16, 4 and 4 respectively.
There are 3 different C2 × C2 subgroups of K given by ⟨[8]P, [2]Q⟩, ⟨[8]P, [2]R⟩ and ⟨[8]P, [2](Q + R)⟩ in
accordance to Lemma 2. Hence, we can and will denote the (2, 2)-subgroups of K by the scalar preceding Q
and R. For instance, the three subgroups given here are denoted by (2, 0), (0, 2) and (2, 2).

These 3 subgroups lead to non-isomorphic surfaces labelled as (2), (3) and (4). The edges are labelled by
the subgroup corresponding to the isogeny.

Consider the vertex (2), and consider the (2, 2)-isogeny from (2) with kernel ⟨[4]P, [2]R⟩4 and denote the
codomain by (8). One can see that the isogeny from (1) to (8) has kernel ⟨[4]P, [2]Q, [2]R⟩.

One can also map from (3) and (4) to (8) via the kernels (2,0) and (2,0). Immediately, one can spot the
diamonds mentioned prior to this example. Indeed, the diamonds can be seen repeatedly in the graph.

Vertices can form tips of the diamond when there is a C4 ×C2 ×C2 subgroup in the kernel. This is best
illustrated in the next example where the kernel K2 has structure C16 × C8 × C2. Using the notation from
the previous example, K2 will be given by ⟨P ′, Q′, R′⟩, where P ′ = P , [2]Q′ = Q and R′ = [2]R

Starting from the vertex (1) again, we have the same 3 subgroups, which result in the same surfaces (2),
(3) and (4). We also have that the three surfaces will all have maps into (8) as before. However, residual
kernel at (2) is now isomorphic to C8 × C8, hence we see that the isogeny path from (2) down to (18) is a
straight line. The residual kernel at (4) on the other hand, is C8 ×C4 ×C2, hence it contains C4 ×C2 ×C2

as a subgroup and so, (4) forms the tip of another diamond.

Another thing to note about this case is that the moment R is in the kernel, we cannot have C4×C2×C2

as a subgroup of the residual kernel. This can be observed from the diagonal right-to-left lines in Figure 1b.

Lastly, Figure 2 shows all the neighbours which are two (2, 2)-isogenies away. So the top vertex is connected
to each of the middle and bottom vertices by an isogeny of degree 4 and 16 respectively. The diamonds
corresponding to kernels with the structure C4 ×C2 ×C2, (though contorted) are present and its number is
as predicted in Proposition 3.
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(a) Kernel has structure C16 × C4 × C4.
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(b) Kernel has structure C16 × C8 × C2.

Fig. 1: Isogeny subgraphs when the kernel has order 256.

4 Note that we actually mean ⟨[4]ϕ(P ), [2]ϕ(R)⟩, where ϕ corresponds to the (2, 2)-isogeny from (1). We will drop ϕ
for ease of notation.
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Fig. 2: Isogeny graph from an arbitrary vertex showing 2 layers of isogenies.

B Implementation

We have implemented the key exchange scheme in MAGMA using p of 100-bits. This yields a classical security
of 75-bits and a quantum security of 50-bits. The first round of the key exchange which required the mapping
of points took 145.7 seconds for Alice and 145.41 seconds for Bob. The second round of the key exchange
took 74.8 seconds for Alice and 72.29 seconds for Bob.

The implementation took parameters eA = 51 and eB = 32, and f = 1 with

p = 4172630516011578626876079341567 .

The base hyperelliptic curve is defined by

H : y
2
= (380194068372159317574541564775i + 1017916559181277226571754002873)x

6

+ (3642151710276608808804111504956i + 1449092825028873295033553368501)x
5

+ (490668231383624479442418028296i + 397897572063105264581753147433)x
4

+ (577409514474712448616343527931i + 1029071839968410755001691761655)x
3

+ (4021089525876840081239624986822i + 3862824071831242831691614151192)x
2

+ (2930679994619687403787686425153i + 1855492455663897070774056208936)x

+ 2982740028354478560624947212657i + 2106211304320458155169465303811

where i2 = −1 in Fp2 .
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The generators of the torsion subgroups are given by

P1 =


x2 + (2643268744935796625293669726227i + 1373559437243573104036867095531)x

+2040766263472741296629084172357i + 4148336987880572074205999666055,
+(2643644763015937217035303914167i + 3102052689781182995044090081179)x

+1813936678851222746202596525186i + 3292045648641130919333133017218

 ,

P2 =


x2 + (1506120079909263217492664325998i + 1228415755183185090469788608852)x

+510940816723538210024413022814i + 325927805213930943126621646192,
+(1580781382037244392536803165134i + 3887834922720954573750149446163)x

+167573350393555136960752415082i + 1225135781040742113572860497457

 ,

P3 =


x2 + (3505781767879186878832918134439i + 1904272753181081852523334980136)x

+646979589883461323280906338962i + 403466470460947461098796570690,
+(311311346636220579350524387279i + 1018806370582980709002197493273)x
+1408004869895332587263994799989i + 1849826149725693312283086888829

 ,

P4 =


x2 + (2634314786447819510080659494014i + 72540633574927805301023935272)x

+1531966532163723578428827143067i + 1430299038689444680071540958109,
+(3957136023963064340486029724124i + 304348230408614456709697813720)x

+888364867276729326209394828038i + 2453132774156594607548927379151

 ,

Q1 =


x2 + (2630852063481114424941031847450i + 66199700402594224448399474867)x

+497300488675151931970215687005i + 759563233616865509503094963984,
+(1711990417626011964235368995795i + 3370542528225682591775373090846)x

+2409246960430353503520175176754i + 1486115372404013153540282992605

 ,

Q2 =


x2 + (950432829617443696475772551884i + 3809766229231883691707469450961)x

+1293886731023444677607106763783i + 2152044083269016653158588262237,
+(3613765124982997852345558006302i + 4166067285631998217873560846741)x

+2494877549970866914093980400340i + 3422166823321314392366398023265

 ,

Q3 =


x2 + (1867909473743807424879633729641i + 3561017973465655201531445986517)x

+614550355856817299796257158420i + 3713818865406510298963726073088,
+(846565504796531694760652292661i + 2430149476747360285585725491789)x

+3827102507618362281753526735086i + 878843682607965961832497258982

 ,

Q4 =


x2 + (2493766102609911097717660796748i + 2474559150997146544698868735081)x

+843886014491849541025676396448i + 2700674753803982658674811115656,
+(2457109003116302300180304001113i + 3000754825048207655171641361142)x

+2560520198225087401183248832955i + 2490028703281853247425401658313

 .

The secret scalars of Alice and Bob are

α1 = 937242395764589 , α2 = 282151393547351 , α3 = 0, α4 = 0,

α5 = 0, α6 = 0, α7 = 1666968036125619 , α8 = 324369560360356 ,

α9 = 0, α10 = 0, α11 = 0 , α12 = 0 ,

β1 = 103258914945647 , β2 = 1444900449480064 , β3 = 0, β4 = 0,

β5 = 0, β6 = 0, β7 = 28000236972265 , β8 = 720020678656772 ,

β9 = 0, β10 = 0, β11 = 0 , β12 = 0 ,

Using their secret scalars, they will obtain the following pair of hyperelliptic curves

HA : y
2
= (3404703004587495821596176965058i + 403336181260435480105799382459)x

6

+ (3001584086424762938062276222340i + 3110471904806922603655329247510)x
5

+ (1017199310627230983511586463332i + 1599189698631433372650857544071)x
4

+ (2469562012339092945398365678689i + 1154566472615236827416467624584)x
3

+ (841874238658053023013857416200i + 422410815643904319729131959469)x
2

+ (3507584227180426976109772052962i + 2331298266595569462657798736063)x

+ 2729816620520905175590758187019i + 3748704006645129000498563514734 ,

HB : y
2
= (3434394689074752663579510896530i + 3258819610341997123576600332954)x

6

+ (3350255113820895191389143565973i + 2681892489448659428930467220147)x
5

+ (2958298818675004062047066758264i + 904769362079321055425076728309)x
4

+ (2701255487608026975177181091075i + 787033120015012146142186182556)x
3

+ (3523675811671092022491764466022i + 2804841353558342542840805561369)x
2

+ (3238151513550798796238052565124i + 3437885792433773163395130700555)x

+ 1829327374163410097298853068766i + 3453489516944406316396271485172 .
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The auxiliary points computed are the following

ϕB(P1) = ±


x2 + (576967470035224384447071691859i + 3905591233169141993601703381059)x

+1497608451125872175852448359137i + 2622938093324787679229413320405,
(2205483026731282488507766835920i + 1887631895533666975170960498604)x
+2270438136719486828147096768168i + 1098893079140511975119740789184

 ,

ϕB(P2) = ±


x2 + (200280720842476245802835273443i + 3878472110821865480924821702529)x

+476628031810757734488740719290i + 2957584612454518004162519574871,
(3949908621907714361071815553277i + 630639323620735966636718321043)x
+901597642385324157925700976889i + 2429302320101537821240219151082

 ,

ϕB(P3) = ±


x2 + (4133157753622694250606077231439i + 2486410359530824865039464484854)x

+217800646374565182483064906626i + 1249364962732904444334902689884,
(1265490246594537172661646499003i + 2130834160349159007051974433128)x

+2580286680987425601000738010969i + 578046610192146114698466530758

 ,

ϕB(P4) = ±


x2 + (6601102003779684073844190837i + 87106350729631184785549140074)x
+2330339334251130536871893039627i + 1494511552650494479113393669713,
(1706314262702892774109446145989i + 3539074449728790590891503255545)x

+1950619453681381932329106130008i + 685170915670741858430774920061

 ,

ϕA(Q1) =


x2 + (3464040394311932964693107348618i + 1234121484161567611101667399525)x

+17895775393232773855271038385i + 3856858968014591645005318326985,
(2432835950855765586938146638349i + 3267484715622822051923177214055)x

+985386137551789348760277138076i + 1179835886991851012234054275735

 ,

ϕA(Q2) =


x2 + (363382700960978261088696293501i + 3499548729039922528103431054749)x

+3832512523382547716418075195517i + 3364204966204284852762530333038,
(3043817101596607612186808885116i + 4027557567198565187096133171734)x
+4087176631917166066356886198518i + 1327157646340760346840638146328

 ,

ϕA(Q3) =


x2 + (3946684136660787881888285451015i + 1250236853749119184502604023717)x

+3358152613483376587872867674703i + 467252201151076389055524809476,
(1562920784368105245499132757775i + 987920823075946850233644600497)x
+1675005758282871337010798605079i + 1490924669195823363601763347629

 ,

ϕA(Q4) =


x2 + (1629408242557750155729330759772i + 3235283387810139201773539373655)x

+1341380669490368343450704316676i + 1454971022788254094961980229605,
(2393675986247524032663566872348i + 3412019204974086421616096641702)x

+1890349696856504234320283318545i + 841699061347215234631210012075

 .

This allows for both parties to compute the final isogeny to obtain

1055018150197573853947249198625i + 2223713843055934677989300194259,
819060580729572013508006537232i + 3874192400826551831686249391528,
1658885975351604494486138482883i + 3931354413698538292465352257393


as their common G2-invariants.
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