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Abstract. Threshold private set intersection enables Alice and Bob who hold sets SA and SB of size n
to compute the intersection SA∩SB if the sets do not differ by more than some threshold parameter t. In
this work, we investigate the communication complexity of this problem and we establish the first upper
and lower bounds. We show that any protocol has to have a communication complexity of Ω(t). We
show that an almost matching upper bound of Õ(t) can be obtained via fully homomorphic encryption.
We present a computationally more efficient protocol based on weaker assumptions, namely additively
homomorphic encryption, with a communication complexity of Õ(t

2
). We show how our protocols can

be extended to the multiparty setting. For applications like biometric authentication, where a given
fingerprint has to have a large intersection with a fingerprint from a database, our protocols may result
in significant communication savings.
Prior to this work, all previous protocols had a communication complexity of Ω(n). Our protocols are
the first ones with communication complexities that mainly depend on the threshold parameter t and
only logarithmically on the set size n.

1 Introduction

Private set intersection enables two mutually distrustful parties Alice and Bob to compute the intersection
SA∩SB of their respective sets SA and SB without revealing any other information. Efficient protocols have
numerous applications ranging from botnet detection [NMH+10], through online advertising [PSSZ15], to
private contact discovery [Mar14]. The first solution to this problem was given by Meadows [Mea86] and since
then, a long line of work [FNP04, KS05, DT10, DCW13, PSZ14, PSSZ15, KKRT16, HV17, KMP+17, RR17a,
RR17b, CLR17, GN17, KLS+17, PSWW18] has considered the problem in the two-party, the multi-party,
and the server-aided setting with both passive and active security. Beyond private set intersection, several
works [KS05, HW06, DD15, EFG+15, PSWW18] have also considered protocols for privately computing the
size of the set intersection, rather than the intersection itself. Freedman et al. [FNP04] proved a lower bound
of Ω(n) on the communication complexity of any private set intersection protocol, where n is the size of
the smallest input set. This lower bound directly extends to the case of protocols that only compute the
intersection size and it constitutes a fundamental barrier to the efficiency of these protocols.

In certain scenarios we do not require the full power of private set intersection. For example, for the case
of biometric authentication we may want to check whether a given fingerprint reading matches a fingerprint
from a database. In this setting, we are neither interested in the concrete intersection nor in the exact size
of the intersection. All we care about is a binary answer telling us whether the fingerprints have a large
intersection or not. In the case of privacy-preserving ridesharing [HOS17] two users only want to share a
ride if large parts of their trajectories on a map intersect. In this case, the users may be interested in the
concrete intersection of their routes, but only if the intersection is large. Yet another example can be found
in the online dating world, where two potential love birds Alice and Bob are only interested in learning
the intersection of their dating preferences if the intersection thereof is sufficiently large. Speaking more
abstractly, this problem is known as threshold private set intersection, where Alice and Bob hold sets of size
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n each and only want to learn the intersection if their sets do not differ by more than t elements. Only a
few works [FNP04, HOS17, GN17, PSWW18, ZC18] have considered this problem and all of them present
solutions, whose communication complexity scales at least linearly in the size of the smaller input set. This
seems to be somewhat inherent to these works, since all of them start from a private set intersection protocol
and then massage it until it becomes a threshold private set intersection protocol. In this work we ask:

What is the communication complexity of threshold private set intersection?

Answering this question is both theoretically and practically relevant. As explained above, threshold and
regular private set intersection protocols have many applications. A better understanding of their communi-
cation complexities and their qualitative differences provides us with a better understanding of this research
area. It enables us to pick the right tool for a given job and it allows us to have a firm understanding of the
communication complexities that we can expect. From a practical perspective, overcoming the private set
intersection lower bound of Ω(n) may result in significant efficiency gains for applications that only require
threshold private set intersection. For example, in the biometric authentication setting one usually only
allows for a very small difference between a stored and a given fingerprint. We show that using threshold
private set intersection protocols, the communication complexity can be almost completely independent of
the total size of the fingerprints and instead only depends on the maximum allowed difference between the
two fingerprints.

1.1 Our Contribution

We initiate the study of sublinear (in the set size) threshold private set intersection and provide a first
characterization of its communication complexity. We prove a lower bound of Ω(t) on the communication
complexity of any protocol that computes the intersection of two sets that do not differ by more than t
elements. We present an almost matching upper bound of Õ(t) based on fully homomorphic encryption. We
show how to avoid the use of fully homomorphic encryption by presenting a computationally more efficient
protocol based on weaker assumptions, namely additively homomorphic encryption, with communication
complexity of Õ(t2). Furthermore, we show how our protocols can be extended to the multiparty setting.
For applications, where the set intersection has to be large and thus t is small, our protocols may result in
significant improvements over the state-of-the-art in terms of communication complexity.

Along the way we also present a communication efficient protocol for private intersection cardinality test-
ing, which privately computes whether two sets differ by more than a given threshold t or not. We believe that
this protocol may be of independent interest. From a conceptual perspective, our paper highlights somewhat
surprising connections between threshold private set intersection, set reconciliation protocols [MTZ03] from
distributed systems, and sparse polynomial interpolation [BT88], which have to the best of our knowledge
not been known before.

What this paper is not about. Most existing works on private set intersection aim to develop the most prac-
tically efficient protocols. At the same time, many basic theoretical questions about private set intersection
remain unanswered. The goal of this work to provide first answers to one such question. We hope that the re-
search direction initiated in this work will eventually lead to asymptotically optimal and practically efficient
protocols. The results in this paper present several novel techniques to provide the first non-trivial feasibility
results for sublinear threshold private set intersection, which we believe to be of theoretical importance, but
we do not claim them to be practically useful yet.

1.2 Technical Overview

Our main threshold private set intersection protocol can be split into two subprotocols. One for testing,
whether two given sets are “similar enough” and one for computing the set intersection of two such similar
sets. Here we highlight some of the main ideas underlying our protocols.

2



Private Intersection Cardinality Testing. The goal of private intersection cardinality testing is to
enable Alice and Bob, who hold sets SA and SB of elements from a field Fp, to determine, whether their
sets are similar or not. More formally, we have some similarity threshold parameter t and we would like
to test whether | (SA \ SB) ∪ (SB \ SA) | ≤ 2t without revealing any other information about the sets. Our
solution to this problem is based on the idea of encoding sets as polynomials over a field as has been
done in numerous previous works [BK89, MTZ03, FNP04, KS05]. However, in contrast to previous works,
which encode the elements of a set into the roots of a polynomial, we encode the elements into separate
monomials of a polynomial. Our encoding procedure encodes a set SA = {a1, . . . , an} as a polynomial
pA(x) =

∑n
i=1 x

ai . The main idea behind this encoding is that, given two encoded sets pA(x) and pB(x),
the number of monomials in the polynomial p(x) = pA(x)− pB(x) corresponds to the size of the symmetric
set difference between SA and SB . In particular, if | (SA \ SB) ∪ (SB \ SA) | ≤ 2t, then p(x) has at most
2t monomials. Encoding the sets in such a way, allows us to make use of the polynomial sparsity test of
Grigorescu et al. [GJR10], which itself is heavily based on the seminal work of Ben-Or and Tiwari [BT88].
A polynomial p(x) is called t-sparse if it has at most t monomials. Grigorescu et al. present a randomized
algorithm that only requires 2t evaluations of p(x) to determine, whether the polynomial is t-sparse or not.
To obtain our private intersection cardinality test, we combine the ideas above with additively homomorphic
encryption and the privacy-preserving linear algebra techniques of Kiltz et al. [KMWF07]. Our resulting
protocol has a communication complexity of Õ(t2).

Threshold Private Set Intersection. For the problem of threshold private set intersection, our starting
point is the set reconciliation protocol by Minsky et al. [MTZ03], where Alice and Bob hold sets SA and
SB and would like to compute the set union SA ∪ SB in a communication efficient manner. As shown by
Minsky et al., Alice and Bob can do this with communication complexity proportional to the size of the
symmetric set difference, that is, with communication complexity roughly Õ((|SA\B | + |SB\A|) log p) bits.
This is asymptotically close to optimal, since at the very least both parties need to exchange the data
elements that are not part of the intersection SA ∩ SB . The set reconciliation protocol by Minsky et al.
starts by encoding both sets as monic polynomials, where the roots of the polynomial correspond to the
elements of the set. For a set SA = {a1, . . . , an}, the corresponding polynomial is pA(x) =

∏n
i=1 (x− ai).

The degree deg(pA) of the polynomial equals the set size n and since pA is monic, it can be interpolated
from n evaluation points. The main observation behind Minsky et al.’s protocol is that

p(x) :=
pA(x)

pB(x)
=

pA\B(x)

pB\A(x)

If we divide the two polynomials representing the sets, then the common factors of pA(x) and pB(x) cancel
out and what remains is a rational function1, where the numerator represents the elements exclusively
contained in SA and the denominator represents the elements only contained in SB . It is straightforward
to see that if SA and SB do not differ by more than 2t elements, that is if |SA\B | + |SB\A| ≤ 2t, then

deg(p) = deg
(
pA\B

)
+ deg

(
pB\A

)
≤ 2t and we can interpolate p from 2t evaluation points via rational

function interpolation2. The second observation behind Minsky et al.’s protocol is that we can compute
evaluation points of p(x) from evaluation points of pA(x) and pB(x). To evaluate p at location α, both Alice

and Bob first separately evaluate pA(x) and pB(x) at α and then jointly compute p(α) = pA(α)
pB(α) .

Based on these observations the set union protocol by Minsky et al. roughly works as follows. Let us as-
sume that we already know that the sets do not differ by more than 2t elements. First, both Alice and Bob en-
code their sets as polynomials as described above. Both parties separately evaluate their polynomials on some
pre-agreed set of evaluation points {α1, . . . , α2t} to obtain {pA(α1), . . . , pA(α2t)} and {pB(α1), . . . , pB(α2t)}.
After exchanging their sets of polynomial evaluations, both parties use rational interpolation to compute

the function p(x) =
pA\B(x)

pB\A(x)
. Given p(x), for example Alice, learns the denominator pB\A(x) and computes

1
A rational function is the fraction of two polynomials. See Section 2.1 for details.

2
See [MTZ03] for details on rational function interpolation over a field.
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an encoding of the set union pA∪B(x) = pA(x) · pB\A(x). Importantly for us we observe that apart from

computing the set union, Alice can also compute the set intersection by computing pA∩B(x) = pA(x)
pA\B(x) . The

key observation here is that in order to compute the intersection, it is sufficient for Alice to learn which
elements are exclusive to her set. In case of a “large” intersection, this quantity is much smaller than the
size of the sets or the size of the intersection.

Given Minsky et al.’s protocol, one possible approach towards constructing a sublinear private set in-
tersection protocol (for similar sets) would be to combine it with a generic protocol for secure two-party
computation. Both parties input evaluation points of their polynomials, using a secure computation protocol
we interpolate p(x), and finally output pA\B(x) and pB\A(x) to Alice and Bob respectively. Unfortunately,
this does not seem to result in a practically or asymptotically efficient protocol. In order to interpolate p(x),
one would have to perform a gaussian elimination inside the secure computation protocol. For a system of
linear equations with O(t) unknowns, this requires O(t3) operations.

We take a very different approach. We only make minimal use of generic secure computation to obtain
“noisy” evaluation points of p. Using these points, Alice can then in plain interpolate a rational function
pA\B(x)

U(x) , where U(x) is a uniformly random polynomial. From this polynomial Alice can learn pA\B(x) and

therefore pA∩B(x), but nothing else beyond that.

1.3 Subsequent Work

After publishing an extended abstract of this work at CRYPTO 2019 [GS19], we have extended our protocols
to the multiparty setting. These results can be found in Section 8. Independently, Badrinarayanan, Miao,
and Rindal [BMR20] also showed how to extend the techniques presented in this work to the multiparty
setting.

2 Preliminaries

Notation. Let λ be the computational and κ the statistical security parameter. For a set S, we write v ← S
to denote that v is chosen uniformly at random from S. For a possibly randomized algorithm A, we write
v ← A(x) to denote a run of A on input x that produces output v. For n ∈ N, we write [n] := {1, 2, . . . , n}.
We write |S| for the number of elements in S. We use Õ(·) as a variant of the big-O notation that ignores
polylog factors.

Sets. Throughout most of the paper we will assume that the sets of Alice and Bob are of equal size n. We
show how to deal with sets of different sizes in Section 6.4. We assume that the set elements come from a
field Fp, where p is a Θ(κ)-bit prime.

Size of the Intersection vs. Size of the Symmetric Set Difference. We will measure the “similarity”
of two sets SA and SB in terms of size of their symmetric set difference. In some scenarios it may be
more convenient to measure the similarity of two sets in terms of intersection size. These two measures
are equivalent. A lower bound tmin on the intersection set size |SA ∩ SB |, corresponds to a upper bound
tmax = 2 (n− tmin) on the size of the symmetric set difference | (SA \ SB) ∪ (SB \ SA) |.

2.1 Linear Algebra

We recall some terminology and definitions from linear algebra.

Matrices. Let Fk×kp be the set of k-by-k square matrices with entries from Fp. A matrix M ∈ Fk×kp is said

to be invertible, if there exists a matrix M−1, such that M ·M−1 = I, where I is the identity matrix. A
matrix that is not invertible is called singular. A matrix M is singular if and only if it has determinant 0.
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Polynomials. Let p(x) =
∑n
i=0 aix

i be a polynomial. We call {a0, . . . , anx
n} the monomials and {a0, . . . , an}

the coefficients of the polynomial. The degree deg(p) of a polynomial p(x) is the the largest i, such that the
monomial aix

i 6= 0. A polynomial is said to be monic if for i = deg(p), we have ai = 1. We write Fp[X] to
denote the set of polynomials with coefficients from the field Fp. A polynomial p(x) ∈ Fp[X] of degree d is
uniquely defined and can be efficiently interpolated form d+1 evaluation points {(α1, p(α1)), . . . , (αd+1, p(αd+1))}
via Lagrange interpolation. If p(x) is monic, then d points suffice. A polynomial h(x) = p(x)

q(x) , where p(x),

q(x) are polynomials of degree n and m, is called a rational polynomial or rational function. It can be inter-
polated, uniquely up to constants, from n+m+ 1 points [MTZ03]. If p(x) and q(x) are monic, then n+m
points suffice. A polynomial p(x) is said to be `-sparse if has at most ` monomials, i.e. if |{aix

i | ai 6= 0}| ≤ `.

Our main construction in Section 6 will make use of an observation about polynomials due to Kissner and
Song [KS05]. For the sake of concreteness we restate their lemma3 here in a slightly less general fashion,
which is tailored to our needs.

Lemma 1 ([KS05]). Let p be a prime. Let p(x), q(x) ∈ Fp[X] be polynomials of degree d ≤ t with
gcd(p(x), q(x)) = 1. Let R1(x),R2(x) ∈ Fp[X] be two uniformly random polynomials of degree t. Then
U(x) = p(x) · R1(x) + q(x) · R2(x) is a uniformly random polynomial of degree at most 2t.

Another basic observation about polynomials that we will need, is captured in Lemma 2. Simply speaking
it states that for some given polynomial p(x) of degree dp and some uniformly random polynomial R(x) of
degree dR, the probability that the polynomials share a common root negligible in the statistical security
parameter κ.

Lemma 2. Let p be a Θ(κ)-bit prime. Let p(x) ∈ Fp[X] be an arbitrary but fixed non-zero polynomial of
degree at most dp and let R(x) ∈ Fp[X] be a uniformly random polynomial of degree at most dR. Then

Pr[gcd(p(x),R(x)) 6= 1] ≤ negl(κ)

Proof (sketch). The gcd of p(x) and R(x) equals to one if and only if the two polynomials share no common
roots. A uniformly random polynomial R(x) of degree dR has at most dR roots, which are distributed

uniformly at random. The probability of picking one random root that is not a root of p(x) is 1 − dp
p . It

follows that

Pr[gcd(p(x),R(x)) 6= 1] = 1− Pr[gcd(p(x),R(x)) = 1]

= 1− (1−
dp
p

)dR

≤ negl(κ)

2.2 Secure Two-Party Computation

Our security definitions are given in the universal composability (UC) framework of Canetti [Can01]. We
provide a brief overview here and refer the reader to [MU07, CDN15] for a more complete summary of the
security model.

We consider a two-party protocol Π that is supposed to implement some ideal functionality F . Security
is defined by comparing two processes. In the real process the two parties execute the protocol Π . The
protocol itself is allowed to make use of an idealized functionality G. An environment Z chooses the inputs of
all parties, it models everything that is external to the protocol, and it represents the adversary, who attacks
the protocol. Z may corrupt a party and get access to that party’s internal tapes. In the ideal process, two
dummy parties send their inputs to the ideal functionality F and get back the output of the computation.
In such an ideal process, a simulator S, also known as the ideal world adversary, emulates Z’s view of a real

3
The lemma we are referring to here is Lemma 2 in the paper of Kissner and Song.
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protocol execution. S has full control of the corrupted dummy party. S emulates Z’s view of that party as
well as its communication with G. At the end of both executions Z outputs a single bit. Let REALλ[Z, Π ,G],
respectively IDEALλ[Z, S,F ], be the random variable denoting Z’s final output bit in the real, respectively
ideal, process. We say Π securely implements F , if no environment Z can distinguish whether it has been
part of a real or ideal process.

Definition 1. Π securely implements functionality F with respect to a class of environments Env in the
G-hybrid model, if there exists a simulator S such that for all Z ∈ Env we have

|Pr[REALλ[Z, Π ,G] = 1]− Pr[IDEALλ[Z, S,F ] = 1]| ≤ negl(λ)

In this paper, we focus on static passive adversaries. We consider environments Z that get full read-only
access to a corrupted party’s internal tapes. The corrupted party follows the protocol honestly.

2.3 Additively Homomorphic Encryption.

We recall the definition of additively homomorphic encryption and the associated IND-CPA security notion.

Definition 2 (Public Key Encryption Scheme). A public key encryption scheme E = (KeyGen,Enc,Dec)
consists of three algorithms:

KeyGen(1λ): The key generation algorithm takes as input the security parameter 1λ and outputs a key pair
(sk, pk).

Enc(pk,m): The encryption algorithm takes as input the public key pk, a message m ∈ M, and outputs a
ciphertext c.

Dec(sk, c): The decryption algorithm takes as input the secret key sk, the ciphertext c′ ∈ C, and outputs a
plaintext m.

We say E is additively homomorphic if we can add encrypted values and multiply them by plaintext
constants. Concretely, if there exist operations � and �, such that for any a, b ∈M and any two ciphertexts
c1 = Enc(pk,m1) and c2 = Enc(pk,m2), it holds that (a� c1) � (b� c2) = Enc(pk, a ·m1 + b ·m2). For the
sake of simplicity and readability we will use the same notation for algebraic operations on the plaintext
and algebraic operations on the ciphertext space. We assume that it will be clear from the context which
one is meant. Possible instantiations of such a cryptosystem are the Paillier cryptosystem [Pai99] or its
generalization the Damg̊ard-Jurik cryptosystem [DJ01]. We will furthermore assume that the message space
of the encryption scheme is a field4.

Definition 3 (Indistinguishability under Chosen Plaintext Attacks). Let E = (KeyGen,Enc,Dec)
be a (homomorphic) encryption scheme and let A be a PPT adversary. We say E is IND-CPA-secure if for
all PPT adversaries A it holds that

Pr

b = b′ :

(sk, pk)← KeyGen(1λ)
(m0,m1)← A(pk)

b← {0, 1}
c← Enc(pk,mb)

b′ ← A(c)

 ≤ 1

2
+ negl(x)

2.4 Oblivious Linear Function Evaluation.

Oblivious linear function evaluation allows a receiver to obliviously evaluate a linear function that is only
known to the sender. Concretely, the sender has two input values a, b ∈ F that determine a linear function

4
For the case of the Paillier cryptosystem this is strictly speaking not the case, since not every element from the
message space has an inverse. However, finding an element that does not have an inverse is as hard as breaking
the security of the cryptosystem. Therefore, we can treat the message space as if it was an actual field.
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FOLE

The sender has input (a, b) ∈ F2
and the receiver has input x ∈ F.

– Upon receiving a message (inputS, (a, b)) from the sender with a, b, store a and b.
– Upon receiving a message (inputR, x) from the receiver with x, store x.
– Compute y = a · x+ b and send (output, y) to the receiver.

Fig. 1. Oblivious Linear Function Evaluation Functionality.

f(x) = a · x + b over F and the receiver holds input x ∈ F. The receiver will learn only f(x), and the
sender learns nothing about the evaluation point x. The corresponding ideal functionality FOLE is depicted
in Figure 1. Several efficient instantiations, both in the passive and malicious settings, exist [NP99, IPS09,
ADI+17, GNN17].

3 Lower and Upper Bounds

To provide a better understanding of what is possible and what is not, we present upper and a lower bounds
for the communication complexity of threshold private set intersection protocols. We prove unconditionally
that any threshold private set intersection protocol has to have a communication complexity of Ω(t), where
t is an upper bound on the size of the symmetric set difference. We show how to obtain an almost matching
upper bound of Õ(t) using fully homomorphic encryption [RAD78, Gen09, BGV12]. Due to its computational
complexity, this bound seems to be mainly of theoretical interest. We sketch a construction based on simpler
assumptions, namely garbled circuits [Yao86], with a communication complexity of Õ(t3). In light of these
results, our main protocol, which we will describe in the following sections, places itself in between those
bounds. It has a communication complexity of Õ(t2) and is thus asymptotically more efficient than the
garbled circuit solution. It is based on weaker assumptions, namely additively homomorphic encryption, and
is computationally more efficient than the construction based on fully homomorphic encryption. A visual
illustration of these results can be found in Figure 2.

Comm.
Complexity

FHE

Õ(t)

Main
Construction

Õ(t
2
)

Garbled
Circuits

Õ(t
3
)

Impossible

Fig. 2. An illustration what is possible and what is not in terms of communication complexity of threshold private
intersection protocols. t is the upper bound on the symmetric set difference of the two sets.

Lower Bound for Threshold Private Set Intersection. To prove our lower bound for threshold private
set intersection, we will make use of a known lower bound for the disjointness problem. In the disjointness
problem, Alice and Bob hold two n-bit vectors a and b, and would like to compute the function

Dis(a, b) =

{
0 if ∃i : ai = bi = 1

1 Otherwise
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A series of results [BFS86, KS92, Raz90, BYJKS04] have established that the communication complexity
of this function is Θ(n). Freedman et al. [FNP04] observed that these results directly yield a lower bound
of Ω(n) on the communication complexity of any set intersection protocol for sets of size n. We sketch how
these results also provide a lower bound for threshold private set intersection. Assume towards contradiction
that for sets of size n′, which have an intersection of size at least n′ − t, there exists a protocol Π that
computes their intersection with communication complexity o(t). We can use such a protocol to construct
a private set intersection protocol for sets of size t with complexity o(t) as follows. Assume Alice has input
set SA and Bob has input set SB each of size t. The private set intersection protocol simply fixes a set SD
of n′ − t distinct dummy elements as part of the protocol description. Alice and Bob execute the threshold
private set intersection protocol Π, where Alice uses SA ∪D and Bob uses SB ∪D as the input to Π. Since
both parties use the same dummy elements, it is guaranteed that their inputs to Π have an intersection of
size at least n′− t, which means that the protocol will always output the intersection (SA∪SD)∩ (SB ∪SD).
From this output each party can locally compute ((SA ∪ SD) ∩ (SB ∪ SD)) \ SD = SA ∩ SB to learn the
desired intersection, which contradicts the lower bound of Ω(t) for computing the set intersection of SA and
SB . The lower bound for the communication complexity of threshold private set intersection follows.

Upper Bound from Fully Homomorphic Encryption. We sketch how to combine the set reconciliation
protocol of Minsky et al. [MTZ03] with fully homomorphic encryption [RAD78, Gen09, BGV12] to obtain
an almost matching upper bound of Õ(t). We provide a high-level description of the construction here
and leave the details to the interested reader. Fully homomorphic encryption allows anyone to evaluate
arbitrary circuits over encrypted data without being able to decrypt. Known instantiations are based on
lattice based assumptions, such as learning with errors [BV11a] or the ring learning with errors [BV11b].
Fully homomorphic encryption leads to a conceptually very simple and communication efficient solution for
general secure two party computation. Alice encrypts her data and sends it to Bob. Bob encrypts his data
and homomorphically evaluates the desired function on their joint encrypted data. He sends back the result
to Alice, who can decrypt the result of the computation. The communication complexity only depends on
the size of the inputs and the size of the output, but importantly it does not depend on the size of the
evaluated circuit.

Using fully homomorphic encryption, we let Alice and Bob execute a variation of Minsky et al.’s protocol.
Alice encodes her set SA as a polynomial pA(x) =

∏n
i=1 (x− ai) and sends Bob encrypted evaluations

{pA(α1) , . . . , pA(α2t)} as well as an additional encrypted evaluation pA(z) and the uniformly random z itself
in the clear. Bob evaluates his set as a polynomial on the same points and then homomorphically interpolates

the rational function pA(x)
pB(x) =

pA\B(x)

pB\A(x) , where the gcd of numerator and denominator is 1, using the first 2t

encrypted points to obtain a candidate polynomial p. Bob computes

(p(x), pA(z), pB(z), z) 7→

{
pA\B(x) if p(z) = pA(z)

pB(z)

⊥ Otherwise

on the encrypted data and sends back the result to Alice. The correctness of this approach directly follows
from the correctness of Minsky et al.’s protocol. Security follows from the security of fully homomorphic
encryption. The total communication consists of Alice sending 2t + 1 ciphertexts to Bob and him sending
the coefficients of the polynomial in the numerator, i.e. t ciphertexts, to Alice. Assuming the ciphertexts
are larger than the corresponding plaintexts by at most a multiplicative constant and assuming that the set
elements are drawn from Fp, we can conclude that the total communication complexity is O(t log p) bits.
Despite its nice communication complexity, this solution has two drawbacks. From a theoretical perspective,
it relies on fully homomorphic encryption and thus can only be instantiated from lattice based assumptions.
From a practical perspective, it does not seem to be anywhere near practical due to the fact that one has
to homomorphically perform a rational polynomial interpolation on the ciphertexts, which leads to a high
computational complexity.
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Using Garbled Circuits. A simple, but asymptotically inefficient solution based on one-way functions
and oblivious transfer can be obtained by using garbled circuits [Yao86] instead of fully homomorphic en-
cryption. For garbled circuits, the communication complexity corresponds to the size of the circuit that is
being evaluated. Following the same approach as above, the size of the circuit is dominated by the rational
interpolation logic. Using gaussian elimination this step requires O(t3) operations, which leads to a total
communication complexity of at least Õ(t3) bits.

4 Intersection Cardinality Testing

An important building block for our threshold private set intersection protocol in Section 6, is a intersection
cardinality testing protocol, which enables two parties to check whether their sets differ by more than a given
threshold 2t with communication complexity Õ(t). We present a non-private solution based on polynomial
sparsity testing here and show how to obtain a privacy-preserving version thereof in Section 5. We believe
that the non-private as well as the private intersection cardinality test may be of independent interest.

From a conceptual perspective, our protocol is very simple. It is basically a direct application of the
polynomial sparsity test of Grigorescu et al. [GJR10] to an appropriate encoding of sets as polynomials. We
encode a set SA = {a1, . . . , an} as a polynomial pA(x) =

∑n
i=1 x

ai . The main idea behind this encoding is
that the sparsity of the polynomial pA(x)− pB(x) corresponds to the size of the symmetric set difference of
SA and SB . The protocol Π2t

ICT is described in Figure 3.

Π
2t
ICT

Alice and Bob have as input set SA = {a1, . . . , an} ∈ Fnp and SB = {b1, . . . , bn} ∈ Fnp respectively.

Protocol:

1. Alice and Bob encode their sets as polynomials pA(x) =
∑n
i=1 x

ai and pB(x) =
∑n
i=1 x

bi in Fq[X].
2. Alice picks uniformly random u← Fq.
3. Alice computes the Hankel matrix

HA =


pA(u

0
) pA(u

1
) . . . pA(u

2t
)

pA(u
1
) pA(u

2
) . . . pA(u

2t+1
)

...
...

. . .
...

pA(u
2t

) pA(u
2t+1

) . . . pA(u
4t

)


and sends it along with u to Bob.

4. Bob, using his own Hankel matrix HB, computes HC = HA −HB.
5. If det (HC) = 0, then Bob outputs similar, otherwise he outputs different.

Fig. 3. Protocol for intersection cardinality testing based on the polynomial sparsity testing protocol of Grigorescu
et al. [GJR10].

Theorem 1. Let SA and SB be subsets of Fp. Let q > (4t2+2t)(p−1)2κ be a prime power. Π2t
ICT has a com-

munication overhead of 4t+1 field elements from Fq. If |SA\B |+|SB\A| ≤ 2t, then Pr[Π2t
ICT outputs similar] =

1 and if |SA\B |+ |SB\A| > 2t, then Pr[Π2t
ICT outputs different] ≥ 1− 2−κ.

Proof. The original algorithm of Grigorescu et al. [GJR10] takes an arbitrary polynomial p as its input,
computes the corresponding Hankel matrix H, and then computes the determinant thereof. We essentially

9



directly apply their algorithm to the polynomial pC(x) = pA(x) − pB(x). We exploit the fact that we can
compute the Hankel matrix HC of pC(x) by first computing the Hankel matrices HA and HB . The correctness
and the parameters of the randomized polynomial sparsity testing protocol directly follow from the test of
Grigorescu et al.5

It remains to show that the sparsity of the computed polynomial does indeed reflect the size of the
symmetric set difference. If SA and SB have an intersection of size k, then the polynomial pA(x)−pB(x) will
have exactly 2(n− k) monomials. Thus, if |SA\B |+ |SB\A| < 2t, then k > n− t and therefore pA(x)− pB(x)
will be a 2t-sparse polynomial. ut

Efficiency. To get a better idea of what this theorem means in terms of concrete efficiency, it is worth
looking at some common real world parameter settings. For instance, for sets of 64-bit integers, a statistical
security parameter κ = 40, and a threshold t of size at most 220, we roughly require a 128-bit modulus q.

5 Private Intersection Cardinality Testing

We obtain a privacy-preserving version of the intersection cardinality test from Section 4 via a combination of
homomorphic encryption and the matrix singularity test due to Kiltz et al. [KMWF07]. The singularity test
enables Alice, who holds a encrypted matrix over a finite field, and Bob, who holds the decryption key, to test
whether the matrix is singular or not. Recall, that a matrix being singular and it having determinant 0 are
equivalent statements. Let FINV be the corresponding ideal functionality, which either returns singular or
invertible. Kiltz et al. show how to securely and efficiently implement such a functionality using additively
homomorphic encryption.

Theorem 2 ([KMWF07]). Let M ∈ Fk×kq be the encrypted matrix. Assuming IND-CPA-secure additively
homomorphic encryption, the ideal functionality FINV can be realized securely with communication complexity
O(k2 log q log k) in O(log k) rounds with security against a passive adversary. The protocol is correct with
probability 1− k+1

q , which for a q chosen as in Theorem 1 is overwhelming in κ.

For our choice of q (see Theorem 1) the protocol of Kiltz et al. fails with negligible (in κ) probability. In
the following, for the sake of simplicity, we will assume that the corresponding ideal functionality FINV has
perfect correctness. All of our protocols and proofs trivially extend to the case, where the ideal functionality
errs with a negligible probability.

5.1 Ideal Functionality

The ideal functionality F2t
PICT for private intersection cardinality testing is depicted in Figure 4. Alice and

Bob send their input sets SA and SB to the ideal functionality, which checks whether the sets differ by more
than 2t elements. It outputs different if this is the case and it outputs similar otherwise. Note that our
ideal functionality is size hiding in the sense that the environment Z does not learn the size of the input sets
of Alice or Bob.

5.2 Protocol

Our private intersection cardinality test Π2t
PICT closely follows its non-private counterpart Π2t

ICT from Sec-
tion 4. The main difference is that we now encrypt the Hankel matrix of Alice before sending it to Bob. Upon
receiving Alice’s encrypted matrix, Bob exploits the homomorphic properties of the encryption scheme to
compute the Hankel matrix that corresponds to the polynomial encoding of the symmetric set difference.
Using FINV, Bob learns whether the matrix is singular or invertible and thus learns, whether the intersection
of the two sets is large enough. The protocol Π2t

PICT is depicted in Figure 5.

5
See Theorem 3 in their work.
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F2t
PICT

Alice and Bob have as input set SA and SB respectively.

– Upon receiving message (inputA, SA) from Alice, store SA.
– Upon receiving message (inputB, SB) from Bob, store SB .
– If | (SA \ SB)∪(SB \ SA) | ≤ 2t, then the functionality outputs similar, otherwise different, to Alice

and Bob.

Fig. 4. Ideal functionality for private intersection cardinality testing.

Π
2t
PICT

Alice and Bob have as input set SA = {a1, . . . , an} ∈ Fnp and SB = {b1, . . . , bn} ∈ Fnp respectively.

Protocol:

1. Alice and Bob encode their sets as polynomials pA(x) =
∑n
i=1 x

ai and pB(x) =
∑n
i=1 x

bi in Fq[X].
2. Alice picks uniformly random u← Fq.
3. Alice samples an encryption key (sk, pk) ← KeyGen(1

λ
) and computes an encrypted version of her

Hankel matrix

HA =


c0 c1 . . . c2t

c1 c2 . . . c2t+1

...
...

. . .
...

c2t c2t+1 . . . c4t


where ci ← Enc(pk, pA(u

i
)).

4. Alice sends HA, u, and pk to Bob.
5. Bob computes his own encrypted Hankel matrix HB and computes HC = HA −HB.
6. Alice sends sk and Bob sends HC to the ideal functionality FINV.
7. If Bob gets back singular from FINV, then he sends similar to Alice and outputs similar himself,

otherwise he sends and outputs different.

Fig. 5. Protocol for private intersection cardinality testing.

5.3 Security

Theorem 3. Let q be as in Theorem 1. Let E = (KeyGen,Enc,Dec) be a IND-CPA secure additively homo-
morphic encryption scheme. Then Π2t

PICT securely implements F2t
PICT in the FINV-hybrid model with security

against a passive adversary and overwhelming (in κ) correctness.

Proof. Either Alice or Bob can be corrupted. We consider the two cases separately.

Alice corrupt. In this case, security holds trivially. The environment corrupting Alice learns nothing beyond
the input and output of the computation.

Bob corrupt. The simulator S sends Bob’s input to the ideal functionality and obtains result ∈ {similar, different}.
S picks a uniformly random u ← Fq and samples an encryption key (sk, pk) ← KeyGen(1λ). It computes
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ci ← Enc(pk, 0) for 0 ≤ i ≤ 4t.

HA =


c0 c1 . . . c2t

c1 c2 . . . c2t+1

...
...

. . .
...

c2t c2t+1 . . . c4t


The simulator leaks u, pk, and HA to Z. At this point Bob would send some matrix HC to the ideal

functionality FINV, which is also simulated by S. If result = similar, then the simulator leaks singular to Z.
Otherwise the simulator leaks invertible. The only difference between the environment’s view in a real and
a simulated protocol execution is the matrix HA. In a real execution it contains encrypted evaluations of
Alice’s polynomial. In the simulated execution it contains encryptions of 0. Indistinguishability of the real
and ideal process follows directly from the IND-CPA security of the encryption scheme. ut

Instantiating FINV in Π2t
PICT with the singularity test of Kiltz et al. [KMWF07], results in a protocol

with a communication complexity of Õ(t2) in the plain model.

Lemma 3. The communication complexity of Π2t
PICT is Õ(t2) in the plain model.

6 Threshold Private Set Intersection

In this section we present our threshold private set intersection protocol, which proceeds as follows. First,
Alice and Bob use F2t

PICT to determine whether their sets differ by more than 2t elements. If the ideal
functionality outputs different, the parties output ⊥. If it outputs similar, the parties engage in a secure set
intersection protocol, which has a communication complexity of Õ(t) bits.

6.1 Ideal Functionality

The ideal functionality F2t
TPSI for threshold private set intersection is depicted in Figure 6. Alice and Bob

send their input sets SA and SB to the ideal functionality, which checks whether the sets differ by more
than 2t elements. If this is the case, the functionality returns ⊥ to both parties. If this is not the case, the
functionality returns the set intersection SA ∩ SB to both Alice and Bob.

F2t
TPSI

Alice and Bob have as input sets SA and SB respectively.

– Upon receiving message (inputA, SA) from Alice, store SA and leak (inputA, |SA|) to the environment
Z.

– Upon receiving message (inputB, SB) from Bob, store SB and leak (inputB, |SB |) to the environment
Z.

– If | (SA \ SB)∪ (SB \ SA) | ≤ 2t, then the functionality outputs A∩B, otherwise ⊥, to Alice and Bob.

Fig. 6. Threshold Private Set Intersection functionality.
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6.2 Protocol

Our protocol loosely follows the approach of Minsky et al.’s [MTZ03] set reconciliation protocol. Assume
that the sets of Alice and Bob do not differ by more than t elements. Both Alice and Bob encode their sets
as polynomials over a field, where the roots of the polynomials are the elements of the corresponding set.
Let pA(x) =

∏n
i=1(x− ai) and pB(x) =

∏n
i=1(x− bi) be those polynomials. Ideally, we would like to directly

apply Minsky et al.’s protocol to interpolate p(x) = pB(x)
pA(x)

=
pB\A(x)

pA\B(x)
from which both Alice and Bob could

compute the intersection of their sets. For example, Alice could extract6 pA\B(x) from p(x) and compute the

intersection function as pA(x)
pA\B(x) . Unfortunately, Alice would learn more information than she should, since

she could also simply extract pB\A(x) and learn Bob’s entire set.

As discussed before, one possible solution is to use generic secure two-party computation for interpolating
p and separating the numerator and denominator. Due to the complexity of the computational task, this
does not seem to result in a asymptotically or practically efficient solution. Our protocol takes a different
approach and only makes minimal use of generic secure two-party computation. We only use it to transform
evaluation points of p into a noisy versions thereof. Using these noisy evaluation points, Alice and Bob can
perform the interpolation in plain to compute the set intersection without learning the other party’s input.

In our construction, we will make use of a noisy polynomial addition functionality functionality F (3t+1, t)
NPA ,

which takes the polynomials pA(x) and pB(x) of Alice and Bob as its input and outputs noisy evaluation
points {V(α1), . . . ,V(α3t+1)}, where V(x) = pA(x) · R1(x) + pB(x) · R2(x). The polynomials R1 and R2 are
uniformly random polynomials of degree t. We show how to efficiently instantiate this functionality with
communication complexity Õ(t) in Section 7. Our protocol is presented in Figure 7.

Π
2t
TPSI

Alice and Bob have as input set SA = {a1, . . . , an} ∈ Fnp and SB = {b1, . . . , bn} ∈ Fnp respectively.
The values α1, . . . , α3t+1 ∈ Fp are fixed and publicly known.

Protocol:

1. Alice and Bob send SA and SB to F2t
PICT.

2. If F2t
PICT returns different, both parties output ⊥.

3. Alice and Bob encode their sets as polynomials pA(x) =
∏n
i=1(x− ai) and pB(x) =

∏n
i=1(x− bi).

4. Alice and Bob send pA(x) and pB(x) to F (3t+1, t)
NPA .

5. Both receive evaluation points (V(α1) , . . . ,V(α3t+1)), where V(αi) = pA(αi) ·R1(αi) + pB(αi) ·R2(αi)
and R1,R2 are uniformly random polynomials of degree t.

6. Alice computes p(αi) =
V(αi)

pA(αi)
=

U(αi)

pA\B(αi)
for each i ∈ [3t+1] and interpolates p with gcd of numerator

and denominator being 1 from these points.
7. Alice performs the following steps (Bob works analogously):

(a) Alice sets SA∩B := SA.
(b) For each ai ∈ SA, if pA\B(ai) = 0, Alices removes ai from SA∩B .
(c) Alice outputs SA∩B .

Fig. 7. Protocol for securely computing the intersection of two sets that do not differ by more than 2t points.

6
separating the numerator and denominator from a given rational function is easy here, because we obtain the
coefficients of both separately during the interpolation step.
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6.3 Security

Theorem 4. Protocol Π2t
TPSI securely implements F2t

TPSI in the (F2t
PICT,F

(3t+1, t)
NPA )-hybrid model with security

against a passive adversary.

Proof. We first show that our protocol indeed produces the correct result and we then go on to prove its
security.

Correctness. If SA and SB differ by more than 2t elements, then both parties output ⊥ and terminate in
step 2 of the protocol. If on the other hand | (SA \ SB) ∪ (SB \ SA) | ≤ 2t, then since |SA| = |SB |, it follows
that | (SA \ SB) | ≤ t and | (SB \ SA) | ≤ t. Alice computes polynomial

p(αi) =
V(αi)

pA(αi)
=

pA(αi) · R1(αi) + pB(αi) · R2(αi)

pA(αi)

=
pA∩B(αi) · pA\B(αi) · R1(αi) + pA∩B(αi) · pB\A(αi) · R2(αi)

pA∩B(αi) · pA\B(αi)

=
pA\B(αi) · R1(αi) + pB\A(αi) · R2(αi)

pA\B(αi)

The numerator is a polynomial of degree at most 2t and the denominator is a polynomial of degree at most
t. It follows that she can interpolate p(x) from 3t+1 points. The polynomial in the denominator encodes the
elements that are only in Alice’s set and thus she can learn the intersection by removing those elements from
her set SA. By Lemma 2 we are certain that, with overwhelming probability, no root in the denominator
pA\B will be cancelled out by accident from the remaining random numerator.

Security. We assume that Alice is corrupt. The proof, where Bob is corrupt is completely symmetrical.
The simulator sends Alice’s input set to the ideal functionality F2t

TPSI and either obtains result = ⊥ or
the intersection result = SA∩B . In the first step of the protocol, Alice would send her set SA to the ideal
functionality F2t

PICT, which is simulated by the simulator S. If result = ⊥, then S returns different as the ideal
functionality’s answer to Z. Otherwise, S answers with similar. In case the protocol did not terminate, Alice

would continue by sending pA(x) to F (3t+1, t)
NPA . At this point, the simulator needs to construct a polynomial

V(x) for responding to Alice’s query. In a real protocol execution the polynomial would be

V(x) = pA∩B(x)
(
pA\B(x) · R1(x) + pB\A(x) · R2(x)

)︸ ︷︷ ︸
U(x):=

Since |SA| = |SB |, it follows that |SA\B | = |SB\A| and thus deg
(
pA\B

)
= deg

(
pB\A

)
. Furthermore, we

know that deg
(
pA\B(x)

)
= |SA| − |SA∩B |. From these observations we can conclude that the degree of

deg(U) = |SA| − |SA∩B |+ t. The simulator S picks a uniformly random polynomial U(x) of that degree and
for 1 ≤ i ≤ 3t+ 1, it computes the polynomial evaluations V(αi) = U(αi) · pA∩B(αi) and leaks them to Z as

the output of F (3t+1, t)
NPA . The environment’s view in a real and in a simulated process only differs in the way

we choose the polynomial V(x). We know that deg
(
pA\B

)
= deg

(
pB\A

)
≤ t, that gcd

(
pA\B , pB\A

)
= 1, and

that deg(R1) = deg(R2) = t. Indistinguishability of the real and the simulated process directly follows from
Lemma 1. ut

When instantiating the hybrids we use in Π2t
TPSI with the protocols from Sections 5 and 7, then we obtain

a protocol with communication complexity Õ(t2). To reduce the communication complexity of our Π2t
TPSI

protocol to Õ(t), it suffices to reduce the communication complexity of Π2t
PICT from Õ(t2) to Õ(t). Thus, in

this context, our work reduces the problem of communication efficient threshold private set intersection to
that of communication efficient private intersection cardinality testing.

Lemma 4. The communication complexity of Π2t
TPSI is Õ(t2) in the plain model.
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6.4 Dealing with Sets of Different Sizes

Throughout the paper we have so far assumed that the sets of Alice and Bob are of the same size. This
was done for the sake of simplicity, but is not necessary in general. Consider two sets SA and SB , where,
without loss of generality, we assume that |SB | > |SA|. Independently of their actual intersection size, the
symmetric set difference of the two sets will be at least tmin := |SB | − |SA|. This means that the threshold
parameter t in our privacy-preserving protocols would need to be at least tmin. Since the set sizes are
known, we can simply pad SA to the size of SB with dummy elements and adapt our difference threshold
to tnew := t + |SB | − |SA| ≤ 2t accordingly. The simple approach of padding the smaller set to the size
of the larger one would thus increase the communication complexity of our protocols by at most a small
constant factor. The relation between the size of the symmetric set difference and total set sizes is illustrated
in Figure 8.

|SB | − |SA|

≤ tA

|SA|

tB

|SB |

tA

Fig. 8. An illustration of how the size of the symmetric set difference behaves for sets of different sizes. The set
intersection between the sets SA and SB is indicated by the shaded gray area. The size of the symmetric set difference
(SA\B∪SB\A) is tA+tB. The dotted rectangle on the right illustrates the amount of padding we would have to perform
to make the two sets be of the same size. Padding SA to the size of SB would increase the symmetric set difference
by at most tA.

7 Noisy Polynomial Addition

We show how to efficiently instantiate the noisy polynomial addition functionality F`, tNPA from Section 6 using
oblivious linear function evaluation.

7.1 Ideal Functionality

The ideal functionality F`, tNPA, depicted in Figure 9, for noisy polynomial addition takes polynomials pA(x)
and pB(x) of degree n from Alice and Bob as input, and returns back ` evaluation points of pA(x) · R1(x) +
pB(x) · R2(x), where R1(x) and R2(x) are uniformly random polynomials of degree t.

7.2 Protocol

Our starting point is a protocol by Ghosh and Nilges [GN17], which implements a very similar functionality
in the FOLE-hybrid model. In their protocol the sender inputs a polynomial pA(x) and random polynomial
R(x), the receiver inputs a polynomial pB(x) and gets back a noisy polynomial pA(x) + R(x) · pB(x). We use

a modified version of their protocol to instantiate our F`, tNPA functionality.
In our protocol, both Alice and Bob evaluate their input polynomials on the evaluation points {α1, . . . , α`}.

Alice picks two uniformly random polynomials RA
1 (x),RA

2 (x) of degree t and a random polynomial UA(x) of de-

gree `. Bob picks two random polynomials RB
1 (x),RB

2 (x) of degree t and a random polynomial UB(x) of degree
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F`, tNPA

Alice and Bob have inputs pA(x) and pB(x) of degree n.
Let {α1, . . . , α`} be a set of publicly known distinct points in F.

– Upon receiving message (inputS, pA(x)) from Alice, where pA(x) ∈ F[X], store the polynomial pA(x).
– Upon receiving message (inputR, pB(x)) from Bob, where pB(x) ∈ F[X], store polynomial pB(x).
– Once both parties have submitted their polynomials, pick uniformly random polynomials

R1(x),R2(x) ∈ F[X] of degree t and set p(x) = pA(x) · R1(x) + pB(x) · R2(x).
– Send ` evaluation points {p(α1), · · · , p(α`)} to Alice and Bob.

Fig. 9. Noisy Polynomial Addition Functionality.

`. Now Alice and Bob will invoke the FOLE ideal functionality 2` times, where Alice will act as the receiver in
the first ` and as the sender in the last ` invocations. In the first ` instances, for each i ∈ [`], Alice inputs eval-

uation points pA(αi), Bob inputs (RB
1 (αi),UB(αi)), and Alice receives back sA(αi) = pA(αi) ·R

B
1 (αi)+UB(αi).

In the next ` instances, for each i ∈ [`], Bob inputs pB(αi), Alice inputs (RA
2 (αi),UA(αi)), and Bob receives

back sB(αi) = pB · R
A
2 (αi) + UA(αi). For each i ∈ [`], Alice sends s′A(αi) = sA(αi) + pA(αi) · R

A
1 (αi)− UA(αi)

to Bob, who can then compute

pA(αi) · R1(αi) + pB · R2(αi) :=

sB(αi) + s′A(αi) + pB(αi) · R
B
2 (αi)− UB(αi) =

pA(αi) ·
(

RA
1 (αi) + RB

1 (αi)
)

+ pB ·
(

RA
2 (αi) + RB

2 (αi)
)

In a completely symmetrical fashion, Bob sends s′B(αi) = sB(αi) + pB(αi) ·R
B
1 (αi)−UB(αi) to Alice, who

can then compute the same evaluation points of their noisy polynomial addition pA(αi) ·R1(αi)+pB ·R2(αi).
Our protocol is described formally in Figure 10.

Theorem 5. Π`, t
NPA implements F`, tNPA in the FOLE-hybrid model with security against a passive adversary.

Proof (Sketch). We assume that Alice is corrupt. The proof, where Bob is corrupt is completely symmetrical.

The simulator sends Alice’s input pA to the ideal functionality F`, tNPA and gets back {p(α1), · · · , p(α`)}. The
simulator picks the polynomials UB(x) and UA(x) of degree ` uniformly at random. It then picks pB(x) of

degree n and RA
1 (x),RA

2 (x),RB
1 (x),RB

2 (x) of degree t uniformly at random under the constraint that

p(αi) = pA(αi) ·
(

RA
1 (αi) + RB

1 (αi)
)

+ pB(αi) ·
(

RA
2 (αi) + RB

2 (αi)
)

Using these values the simulator computes sA(αi), sB(αi), s
′
A(αi), s

′
B(αi) as in the protocol description.

During the first ` invocations of FOLE, Alice would send (inputR, pA(αi)) to the ideal functionality
FOLE. The simulator leaks sA(αi) to Z as the response that Alice would receive from FOLE. During the

next ` invocations of FOLE Alice would send (inputS, (RA
2 (αi),UA(αi))), but does not receive anything back,

hence we do not need to simulate anything here. Finally we leak s′B(αi) to Z as the message that she would
receive in step 6. The only difference between a real protocol execution and our simulation is the choice of
pB(x), which in turn influences the value of s′B(αi). However, since

p(αi) = sA(αi) + s′B(αi) + pA(αi) · R
A
1 (αi)− UA(αi)

we have that
s′B(αi) = p(αi)− pA(αi) · R

A
1 (αi)− pA(αi) · R

B
1 (αi) + UA(αi)− UB(αi)
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Π
`, t
NPA

Let {α1, . . . , α`} be a set of publicly known distinct points in Fp. Alice and Bob have inputs pA(x) ∈ Fp[X]
and pB(x) ∈ Fp[X] of degree n each.

Protocol:

1. Alice picks R
A
1 (x),R

A
2 (x) ∈ Fp[X] of degree t and UA(x) ∈ Fp[X] of degree ` uniformly at random.

2. Bob picks R
B
1 (x),R

B
2 (x) ∈ Fp[X] of degree t and UB(x) ∈ F[X] of degree ` uniformly at random.

3. For each i ∈ [`]
– Alice sends (inputR, pA(αi)) to FOLE.
– Bob sends (inputS, (R

B
1 (αi),UB(αi))) to FOLE.

– Alice receives back sA(αi) = pA(αi) · R
B
1 (αi) + UB(αi).

4. For each i ∈ [`]
– Bob sends (inputR, pB(αi)) to FOLE.
– Alice sends (inputS, (R

A
2 (αi),UA(αi))) to FOLE.

– Alice receives back sB(αi) = pB(αi) · R
A
2 (αi) + UA(αi).

5. For each i ∈ [`], Alice sends to Bob

s
′
A(αi) = sA(αi) + pA(αi) · R

A
1 (αi)− UA(αi)

6. For each i ∈ [`], Bob sends to Alice

s
′
B(αi) = sB(αi) + pB(αi) · R

B
2 (αi)− UB(αi)

7. Alice outputs the evaluation points

p(αi) = sA(αi) + s
′
B(αi) + pA(αi) · R

A
1 (αi)− UA(αi)

8. Bob outputs the evaluation points

p(αi) = sB(αi) + s
′
A(αi) + pB(αi) · R

B
2 (αi)− UB(αi)

Fig. 10. Protocol for computing evaluation points of the noisy polynomial addition of pA(x) and pB(x) in the FOLE-
hybrid model.

At this point we observe that the values s′B(αi) are distributed uniformly at random, since we only learn
` evaluation points and since UB(x) is a uniformly random polynomial of degree `, which is not known to
Alice. ut

Efficiency. The communication complexity of Π`, t
NPA essentially depends on the communication complexity

of the FOLE functionality. Using a passively secure instantiations of FOLE with constant communication over-
head [NP99, IPS09, ADI+17], we obtain a instantiation for F`, tNPA with communication complexity O(` log p).

8 Multiparty Threshold PSI

In this section we extend our protocol for intersection cardinality testing and threshold private set intersection
to the multiparty setting. We consider the settings where m parties {P1, · · · , Pm}, holding sets Si for i ∈ [m]
of size n, learn the intersection if and only if | ∩i∈[m] Si| > n − t. In other words each party will learn the
intersection if and only if |Si \ (∩j∈[m]Sj)| ≤ t for all i ∈ [m]. In the following, we present a multiparty

cardinality testing protocol based on threshold fully homomorphic encryption [BGG+18] and a multiparty
threshold private set intersection protocol based on generic secure multiparty computation, both having
communication complexities of Õ(t).
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8.1 Cardinality Testing

The cardinality testing protocol from Section 3 can be extended to the multiparty settings in a conceptually
simple manner. For the sake of simplicity, let us consider the case for three parties Alice, Bob and Charlie
with input sets SA, SB and SC of size n. Each party X ∈ {A,B,C} encodes its set SX into a polynomial
pX(x), where the roots of the polynomial correspond to the elements of the set. Observe that, for example,
pA(x) = pA∩B∩C(x) · pA\(A∩B∩C)(x). Now if |SA ∩ SB ∩ SC | > (n − t), then degree of pA∩B∩C(x) will be
greater than (n − t) and consequently the degree of pA\(A∩B∩C)(x) is at most t. In this case, the rational
function:

pB(x) + pC(x)

pA(x)
=

pB\(A∩B∩C)(x) + pC\(A∩B∩C)(x)

pA\(A∩B∩C)(x)

is uniquely defined by 2t evaluation points. However, we need to take care of one more issue here, namely, it
may be the case that the numerator polynomial pB\(A∩B∩C)(x)+pC\(A∩B∩C)(x) and denominator pA\(A∩B∩C)(x)

accidentally share additional roots, which may cancel out as well7. This problem is easily solved by random-
izing one of the polynomials in the numerator with a random scalar. Note that such a rerandomization
does not affect the individual roots, but rerandomizes the roots of the sum of the two polynomials in the
numerator.

Using the observations above in combination with (decentralized) threshold fully homomorphic encryption
(TFHE) we can construct our desired cardinality testing protocol. In a TFHE scheme, Alice, Bob, and Charlie
jointly generate secret key shares skA, skB , skc along with a public key pk. Every party can encrypt using
pk and homomorphically evaluate circuits on given ciphertexts, but only all parties together can decrypt.

Our protocol works as follows. All parties jointly generate skA, skB , skc and pk. Bob and Charlie send
2t+ 1 encrypted evaluations {pX(α1) , . . . , pX(α2t) , pX(z)} for X ∈ {B,C} to Alice, where z is a uniformly
random evaluation point. Alice uses 2t of those points to homomorphically interpolate a candidate rational
function

p(x) =
pB(x) + r · pC(x)

pA(x)
,

where r is a uniformly random scalar, and uses the last evaluation point to (homomorphically) compute

(p(x), pB(z), pC(z), z) 7→

{
1 if p(z) = pB(z)+r·pC(z)

pA(z)

0 Otherwise

All parties jointly decrypt the result of this computation and output similar if the ciphertext contains 1 or
different otherwise.

The total communication consists of Bob and Charlie each sending Alice 2t + 1 ciphertexts. It follows
that the communication complexity of the protocol is Õ(t).

8.2 Threshold PSI

In this section we present out multiparty threshold private set intersection protocol.

Ideal functionality The ideal functionality for multiparty threshold private set intersection is shown in
Figure 11. In this functionality all the m parties with sets S1, · · · , Sm will learn the intersection if and only
if | ∩i∈[m] Si| > n− t.

7
We would like to thank Saikrishna Badrinarayanan, Peihan Miao, and Peter Rindal for pointing this out to us.
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F tMTPSI

m parties {P1, · · · , Pm} have input sets S1, · · · , Sm respectively. Where |Si| = n for all i ∈ [m]

– Upon receiving message (input, Si) from party Pi, store Si and leak
(
input, |SPi

|
)

to the environment
Z.

– If | ∩ Si| > n− t, then output ∩Si, otherwise ⊥, to all Pi.

Fig. 11. Threshold Multiparty Private Set Intersection functionality.

Protocol We extend our protocol from Section 6 to the multiparty setting in a simple manner. For the sake
of simplicity, we only sketch the protocol for the three-party setting. The protocol can easily be generalized
to any arbitrary number of parties.

The three parties holding sets SA, SB and SC respectively encode them into polynomials pA, pB , pC and
run the cardinality testing protocol from Section 8.1 to determine whether |SA ∩ SB ∩ SC | > (n− t). If that
is the case, then three parties will run a passively-secure MPC protocol to obtain 3t + 1 evaluation points
of the polynomial pA(x)R1(x) + pB(x)R2(x) + pC(x)R3(x), where R1(x),R2(x),R3(x) are uniformly random
polynomials of degree t. Now each party locally divides evaluations of pA(x)R1(x)+pB(x)R2(x)+pC(x)R3(x)
by the evaluation of their input polynomial over the same points. Let us consider the computation for Alice.
Alice computes 3t+ 1 evaluation points of the following rational function:

pA(x)R1(x) + pB(x)R2(x) + pC(x)R3(x)

pA(x)

=
pA\(A∩B∩C)(x)R1(x) + pB\(A∩B∩C)(x)R2(x) + pC\(A∩B∩C)(x)R3(x)

pA\(A∩B∩C)(x)
.

Now given that |SA ∩ SB ∩ SC | > (n − t), the degree of numerator is at most 2t and the degree of
denominator is upper bounded by t. Therefore, 3t + 1 evaluation points are sufficient for Alice to locally
interpolate the rational function to learn the denominator pA\(A∩B∩C) from which she learns the intersection
by computing SA \ (SA \ (SA ∩ SB ∩ SC)).

Security of the protocol follows from a straightforward generalization of Lemma 1, since the cardinality
check ensures that degree of each polynomial in the numerator is upper bounded by t. The concrete commu-
nication complexity of the protocol depends on the concrete communication complexity of the underlying
passively secure protocol. However, ignoring the communication complexity of the cardinality check, each
party in our protocol only has an input of size Õ(t). Furthermore, note that one could in principle implement
the threshold private set intersection via TFHE just like the cardinality check given above. We chose to split
the description of the cardinality test and the intersection protocol to highlight the fact that a cardinality
test from simpler assumptions would immediately lead to an overall protocol from those simpler assumptions.

9 Conclusion and Open Problems

In this work we have initiated the study of sublinear threshold private set intersection. We have established
a lower bound, showing that any protocol has to have a communication complexity of at least Ω(t), where
t is the maximum allowed size of the symmetric set difference. We have shown an almost matching upper
bound of Õ(t) based on fully homomorphic encryption and we have shown how to obtain a protocol with
communication complexity Õ(t2) based on additively homomorphic encryption. Our work poses several
exciting open questions. From a theoretical perspective, it remains an open problem to construct a protocol
with communication complexity Õ(t) from weaker assumptions than fully homomorphic encryption. Since
our intersection protocol in Section 6 already has the desired complexity, one “only” needs to find a protocol
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for private set intersection cardinality testing with the same communication complexity. From a practical
perspective, it is an open question to develop protocols that are practically, rather than just asymptotically,
efficient.
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