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Abstract. Despite recent advances in the area of pairing-friendly Non-Interactive Zero-Knowledge
proofs, there have not been many efficiency improvements in constructing arguments of satisfiability of
quadratic (and larger degree) equations since the publication of the Groth-Sahai proof system (JoC’12).
In this work, we address the problem of aggregating such proofs using techniques derived from the
interactive setting and recent constructions of SNARKs. For certain types of quadratic equations, this
problem was investigated before by González et al. (ASIACRYPT’15). Compared to their result, we
reduce the proof size by approximately 50% and the common reference string from quadratic to linear,
at the price of using less standard computational assumptions. A theoretical motivation for our work is
to investigate how efficient NIZK proofs based on falsifiable assumptions can be. On the practical side,
quadratic equations appear naturally in several cryptographic schemes like shuffle and range arguments.
This is the full version of the paper of the same title published at PKC 2019.

1 Introduction

NIZK in Bilinear Groups. Non-Interactive Zero-Knowledge Proofs allow to convince any party of the truth of
a statement without revealing any other information. They are a very useful building block in the construction
of cryptographic protocols. Since the first pairing-friendly NIZK proof system of Groth, Ostrovsky and Sahai
[17] many different constructions have emerged in different models and under different assumptions, for
various types of statements. Compared to a plain discrete logarithm setting, bilinear groups have a rich
structure which is specially amenable to construct NIZK proofs.

Among this variety of results, there are three particularly interesting families with different advantages
in terms of generality, efficiency or strength of the assumptions. On the one hand, there is a line of research
initiated by Groth, Ostrovsky and Sahai [17] and which culminated in the Groth-Sahai proof system [19].
The latter result provides relatively efficient proofs for proving satisfiability of several types of quadratic
equations in bilinear groups based on standard assumptions. Although several works have tried to improve
the efficiency of Groth-Sahai proofs [7, 28], for many equation types they still remain the best alternative
based on falsifiable assumptions.

Another family of results are the constructions of quasi-adaptive NIZK (QA-NIZK) arguments, initiated
by Jutla and Roy [20] and leading to very efficient proofs of very concrete statements. Most notably, given
a bilinear group gk := (p,G1,G2,GT , e,P1,P2), proving membership in linear spaces in Gm1 or Gm2 , for
some m ∈ N, requires only one group element [22, 21]. The power of the quasi-adaptive notion of zero-
knowledge allows to specialize the common reference string to the language one is proving membership in,
trading generality for efficiency under very weak computational assumptions. Other works have constructed
proofs for different languages in the QA-NIZK setting, like the proof for bilateral spaces (linear spaces in
Gm1 ×Gn2 ) [12], or, beyond linear spaces, the language of vector commitments to integers opening to a boolean
vector [12] or shuffles and range proofs [13].
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Finally, in the last few years, an extremely successful line of research has constructed succinct non-
interactive arguments of knowledge (zk-SNARKs) [14, 25, 10, 6, 15] for NP complete languages, which are
not only constant-size (independent of the witness size) but which are also very efficient in a concrete sense.
One of the main downsides of SNARKs is that their security relies on knowledge of exponent assumptions,
a very strong type of assumptions classified as non-falsifiable [27]. However, one cannot achieve succinctness
(proofs essentially independent of the size of the statement being proved and its witness) and security based
on falsifiable assumptions at the same time, as per the impossibility result by Gentry and Wichs [11].

Commit-and-Prove. In a broad sense, we can think of many of the results in these three families as commit-
and-prove schemes [5]. This is very clear for the Groth-Sahai proof system, which has even been recasted in
the commit-and-prove formalism by Escala and Groth [7]. This is probably less obvious for some results in
the QA-NIZK setting. However, as noted already in the first QA-NIZK construction of membership in linear
spaces [20], in these cases one can often think of the statement as a commitment to the witness. For instance,
in the case of proving that a vector y in the exponent is in the linear span of the columns of some matrix
A, this means that y = Aw and we can think of y as a commitment to w. Finally, in the case of many
SNARK constructions, e.g. [6] the commitment is usually a “knowledge commitment” — from which the
witness is extracted in the soundness proof using knowledge assumptions — while the rest can be considered
the “proof”.

With this idea in mind, it is interesting to compare these three approaches for constructing proofs of
satisfiability of d equations in n variables in bilinear groups in terms of proof size. We observe that for linear
equations, while the original Groth-Sahai proof system required O(n) group elements for the commit step
and O(d) for the “prove” one, recent works have shown how to aggregate the proof in the quasi-adaptive
setting [21, 12], reducing the “prove” step to O(1) in many cases. For quadratic equations in the other hand,
we summarize the three different approaches in Table 1.

Construction Assumption Commitment size Proof size CRS size

Groth-Sahai [17] Falsifiable O(n) O(n) O(1)

QA-NIZK [12] Falsifiable O(n) 10|G1|+ 10|G2| O(n2)

SNARKs [6] Non-falsifiable |G1|+ |G2| 2|G1| O(n)

Table 1. Three different approaches for proving quadratic equations in bilinear groups. For concreteness, assume
that one wants to prove that a set of values x1, . . . , xn form a bitstring, that is, satisfiability of xi(xi − 1) = 0.

Motivation. Quadratic equations are much more powerful than linear ones. In particular, they allow to
prove boolean Circuit Sat, but they are also important to prove other statements like range, shuffle proofs or
validity of an encrypted vote. While for proving statements about large circuits non-falsifiable assumptions
are necessary to get around impossibility results, it would be desirable to eliminate them in less demanding
settings, to understand better what the security claims mean in a concrete sense. As in the QA-NIZK
arguments for linear spaces, there are even natural situations in which the statement is already “an encrypted
witness”, and it seems unnatural to use the full power of knowledge of exponent assumptions in these cases
(for instance, in the case of vote validity).

In summary, it is worth investigating efficiency improvements for quadratic equations under falsifiable
assumptions. In particular, aggregating the “prove” step would be an important step towards this goal.
The techniques for the linear case do not apply to the quadratic one, and we are only aware of one result
in aggregating the proof of quadratic equations, namely the bitstring argument of González et al. [12] for
proving that a set of commitments to integers opens to boolean values. There is a large concrete gap between
this result and the others in the non-falsifiable setting both in terms of the size of the proof and the common
reference string. Thus, it is natural to ask if it is possible to reduce the gap and improve on this result
importing techniques from SNARKs in the falsifiable setting.

1.1 Our results

We introduce new techniques to aggregate proofs of quadratic equations. First, in Sect. 3.1, we construct a
proof system for proving that d equations of the type Xi(Xi − 2) = 0 are satisfied, where Xi is an affine
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combination of some a1, . . . , an. The size of the proof is constant and the set of commitments to the variables
is of size linear in n, and the size of the CRS is linear in d. The prover computes a number of exponentiations
linear in n + d, while the verifier computes a number of pairings linear in d. Our proof system is perfect
zero-knowledge and computationally sound under a variant of the so-called target strong Diffie-Hellman
assumption. These assumptions belong to the broader class of q-assumptions, where each instance of the
problem is of size proportional to some integer q, which in our case is the number of equations. In particular,
the bitstring language of [12] can be formulated as such a system of equations. In Sect. 3.2 we discusss as
a particular case an argument for unit vector, and argue how to modify our general proof system so that it
can be proven sound under static assumptions. A typical application of membership in these languages is
for computing disjunctions of statements such as “the committed verification key is equal to V1, or V2, . . . ,
or Vm”, which might be expressed as vk =

∑m
i=1 biVi, bi ∈ {0, 1} and (b1, . . . , bm) is a unit vector.

Next, in Sect. 4, we generalize the previous argument to prove that d equations of the type (Xi−z1)(Xi−
z2) . . . (Xi − zm) = 0 are satisfied, where Xi is an affine combination of the variables a1, . . . , an. For this we
combine techniques from the interactive setting of [4] for proving set membership in a set of size m of Zp
with ideas from Sect. 3.1 and from quasi-adaptive aggregation [21]. In Appendix A, we illustrate how to use
this for improved range proofs in bilinear groups under falsifiable assumptions.

Finally, in Sect. 5 we discuss two approaches to construct shuffle arguments. They are the most efficient
in terms of proof size in the common reference string model under falsifiable assumptions in bilinear groups
(comparing favorably even to the best constructions in the generic bilinear group model [9]), but they have
large public parameters (quadratic in the shuffle size).

Language Proof size CRS size Assumption

Sect. 3.1 Quadratic equations 4|G1|+ 6|G2|
(d+O(1))|G1|
+(d+ 3n+O(1))|G2|

q-STSDH (7)

Sect. 3.2 Unit vector 6|G1|+ 6|G2|
(4(n+ 1) +O(1))|G1|
+(5(n+ 1) +O(1))|G2|

1-STSDH (7)

Sect. 4.2 Set Membership 6|G1|+ 6|G2|
(mn+ 2n+ 3m+O(1))|G1|

+(5mn+O(1))|G2|
Z-GSDH (6),
q-QTSDH (8)

Table 2. The table shows the proof sizes (not including commitments) and CRS sizes of our constructions. We
consider d variables and n equations, and m is the size of the set from the set membership proof. The assumptions
6, 7 and 8 are new.

Proof size CRS size Assumption

[16] 15n+ 246 2n+ 8 PPA, SPA, DLIN

[9] (4n− 1)|G1|+ (3n+ 1)|G2| O(n)(|G1|+ |G2|)
Bilinear generic
group model

[13] (4n+ 17)|G1|+ 14|G2| O(n2)|G1|+O(n)|G2|
SXDH,

SSDP [13]

Sect. 5.1 (4n+ 11)|G1|+ 8|G2| O(n2)|G1|+O(n)|G2|
SXDH,

1-STSDH (7)

Sect. 5.2 (2n+ 11)|G1|+ 8|G2| O(n2)(|G1|+ |G2|)
SXDH,

n-QTSDH (7)

Table 3. Comparison of our shuffle arguments with state-of-the-art arguments. Note that PPA stands for the Pairing
Permutation Assumption and SPA for the Simultaneous Pairing Assumption.

1.2 Our techniques

Let G1,G2,GT be groups of prime order p and let e : G1 × G2 → GT be a bilinear map. Both SNARKs
and our schemes can be seen as “commit-and-prove” schemes [7]: in the first step we commit to the solution
of the equations. In the case of SNARKs, the knowledge assumption allows to extract the solutions from a
constant-size commitment during the soundness proof, but we are trying to avoid using these assumptions,
so we require perfectly binding commitments for each element of the solution. The second step is a proof of
the opening of the commitments verifying the equations.
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Let r1, . . . , rd ∈ Zp. The “prove” part is handled with a polynomial aggregation technique in which
satisfiability of a set of d equations is encoded into a polynomial p(X) such that p(rj) = 0 if and only if the
jth equation is satisfied. To prove that d equations are satisfied, one needs to prove that p(X) is divisible

by
∏d
j=1(X − rj). The key to succinctness is that the divisibility condition is only checked at a secret point

s chosen by the trusted party who generates the CRS. This preserves soundness as long as the prover only
knows s (or powers thereof) in G1 or G2, but not its discrete logarithm.

In the soundness proof, the witness is extracted from the knowledge commitment, and then used to
find some rj such that p(rj) 6= 0 and compute auxiliary information which, together with the proof, allows
to break a hard problem, e.g. the q-Target Strong Diffie-Hellman Assumption in [6]. Under non-falsifiable
assumptions the commitments, even if perfectly binding, can be only opened in the source groups, instead of
in Zp. This has an impact on the soundness proof, as it is not possible to eliminate some terms in the proof to
find a solution to the q-TSDH assumption, so we need to consider a more flexible assumption. Furthermore,
since the solutions define the coefficients of polynomial p(X), our access to this polynomial is much more
limited.

For our set-membership proof we start from the following insight: the satisfiability of equation b(b−1) = 0
can be proven showing knowledge of a signature for b if only signatures for 0 or 1 are known. This approach
can be easily extended for larger sets of solutions as done by Camenisch et al. [4]. To express the validity
of many signature and message pairs, we again encode the signature verification equations as a problem of
divisibility of polynomials.

This requires the signature verification to be expressible as a set of quadratic equations. While structure
preserving signatures clearly solve this problem, it is overkill, since we only need unforgeability against static
queries. Further, even the generic group construction of [15] requires at least 3 group elements. We choose
basic Boneh-Boyen signatures since each signature consists of only one group element. Our argument needs
to solve other technical difficulties which are explained in more detail in Sect. 4.

1.3 Related Works

The recent line of research in SNARKs started with [14], in which the first sub-linear arguments without
random oracles were presented, but with CRS of quadratic size. Subsequent works have defined alternative
models for the encoding of the circuit [24, 10, 6, 15], reducing the CRS size to linear and obtaining smaller
proofs, going as small as 3 group elements in the case of [15]. In particular, our encodings are based on those
of [10, 6].

When considering falsifiable assumptions, one classic way to prove quadratic equations in the non-
interactive setting makes use of Groth-Sahai proofs [18], which are quite efficient and can be aggregated
to obtain a constant-size proof of many equations.

In this work, we also use techniques from QA-NIZK proofs. This model was introduced in [20] to build
proofs of membership in linear subspaces over G1 or G2. It was later improved to make proofs constant-size
(independent of the size of the witness) [21, 22, 23] and adapted to the asymmetric setting [12]. Although
introduced initially to build proofs of linear equations, the QA-NIZK setting has also been used to build
the first constant-size aggregated proofs of some quadratic equations under standard assumptions [12], in
particular the proof that a set of commitments open to bits.

The usage of signatures for proving membership in a set dates back to the work of Camenisch et al. [4] in
the interactive setting, and in the non-interactive setting by Rial et al. [29]. Both works achieve constant-size
proofs but without aggregation (i.e. proving n instances requires O(n) communication). Set membership
proofs were also recently investigated by Bootle and Groth [3] in the interactive setting. They construct
proofs logarithmic in the size of the set and aggregate n instances with a multiplicative overhead of O(

√
n).

In the non-interactive setting, González et al. constructed set membership proofs of size linear in the size of
the set and aggregated many instances without any overhead [13].
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1.4 Organization

In Sect. 2 we establish the assumptions required for our proofs, present the relevant security definitions
and recall the subschemes that we will make use of, namely ElGamal encryption, Boneh-Boyen signatures,
Groth-Sahai proofs and proofs of membership in linear spaces. Sect. 2.3 recalls some standard definitions
in the QA-NIZK setting. In Sect. 3, we present our proof system for satisfiability of quadratic equations.
In Sect. 3.2, we give an argument to prove that a commitment opens to a unit vector which can be proven
secure based on a static assumption. In Sect. 4 we present an aggregated argument to prove membership in
a set of Zp. In Sect. 5 we discuss new approaches to construct shuffle arguments. In the appendix, Sect. A
discusses the application of the set membership argument in Zp to range proofs, and Sect. B contains the
proofs of hardness in generic groups of our assumptions.

2 Preliminaries

2.1 Bilinear Groups and Implicit Notation

Let G be some probabilistic polynomial time algorithm which on input 1λ, where λ is the security parameter,
returns the group key which is the description of an asymmetric bilinear group gk := (p,G1,G2,GT , e,P1,P2),
where G1,G2 and GT are additive groups of prime order p, the elements P1,P2 are generators of G1,G2

respectively, e : G1 × G2 → GT is an efficiently computable, non-degenerate bilinear map, and there is no
efficiently computable isomorphism between G1 and G2.

Elements in Gγ are denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T} and PT := e(P1,P2). For
simplicity, we often write [a]1,2 for the pair [a]1, [a]2. The pairing operation will be written as a product ·,
that is [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in boldface. Given a
matrix T = (ti,j), [T]γ is the natural embedding of T in Gγ , that is, the matrix whose (i, j)th entry is ti,jPγ .
We denote by |Gγ | the bit-size of the elements of Gγ .

In refers to the identity matrix in Zn×np , 0m×n refers to the all-zero matrix in Zm×np , and eni the ith
element of the canonical basis of Znp (simply I, 0, and ei, respectively, if n,m are clear from the context).

Given a set R = {r1, . . . , rd} ⊂ Zp, we denote by `i(X) =
∏
j 6=i

(X − ri)
(rj − ri)

the ith Lagrange interpolation

polynomial associated to R.

2.2 Hardness Assumptions

Definition 1. Let `, k ∈ N. We call D`,k a matrix distribution if it outputs (in PPT time, with overwhelming
probability) matrices in Z`×kp . We define Dk := Dk+1,k.

The following applies for Gγ , where γ ∈ {1, 2}.

Assumption 1 (Matrix Decisional Diffie-Hellman Assumption in Gγ [8]) For all non-uniform PPT
adversaries A,

|Pr[A(gk, [A]γ , [Aw]γ) = 1]− Pr[A(gk, [A]γ , [z]γ) = 1]| ≈ 0,

where the probability is taken over gk ← G(1λ), A ← D`,k,w ← Zkp, [z]γ ← G`γ and the coin tosses of
adversary A.

Intuitively, the D`,k-MDDH assumption means that it is hard to decide whether a vector is in the image
space of a matrix or it is a random vector, where the matrix is drawn from D`,k. In this paper we will refer
to the following matrix distributions:

Lk : A =


a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 ... ak
1 1 ... 1

 , U`,k : A =

( a1,1 ... a1,k

.

.

.

.
.
.

.

.

.
a`,1 ... a`,k

)
,
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where ai, ai,j ← Zp. The Lk-MDDH Assumption is the k-linear family of Decisional Assumptions and cor-
responds to the Decisional Diffie-Hellman (DDH) Assumption in Gγ when k = 1. The SXDH Assumption
states that DDH holds in Gγ for all γ ∈ {1, 2}. The U`,k-MDDH assumption is the Uniform Assumption and
is the weakest of all matrix assumptions of size `× k.

Additionally, we will be using the following family of computational assumptions:

Assumption 2 (Kernel Diffie-Hellman Assumption in Gγ [26]) For all non-uniform PPT adversaries
A:

Pr
[
[x]3−γ ← A(gk, [A]γ) : x 6= 0 ∧ x>A = 0

]
≈ 0,

where the probability is taken over gk ← G(1λ), A← D`,k and the coin tosses of adversary A.

The D`,k-KerMDHGγ Assumption is not stronger than the D`,k-MDDHGγ Assumption, since a solution
to the former allows to decide membership in Im([A]γ). In asymmetric bilinear groups, there is a natural
variant of this assumption.

Assumption 3 (Split Kernel Diffie-Hellman Assumption [12]) For all non-uniform PPT adversaries
A:

Pr
[
[r]1, [s]2 ← A(gk, [A]1,2) : r 6= s ∧ r>A = s>A

]
≈ 0,

where the probability is taken over gk ← G(1λ), A← D`,k and the coin tosses of adversary A.

While the Kernel Diffie-Hellman Assumption says one cannot find a non-zero vector in one of the groups
which is in the co-kernel of A, the split assumption says one cannot find different vectors in G`1 × G`2 such
that the difference of the vector of their discrete logarithms is in the co-kernel of A. As a particular case, [12]
considers the Split Simultaneous Double Pairing Assumption in G1,G2 (SSDP) which is the RL2-SKerMDH
Assumption, where RL2 is the distribution which results of sampling a matrix from L2 and replacing the
last row by random elements.

q-Assumptions. We first recall the q-Strong Diffie-Hellman and q-Target Strong Diffie-Hellman assump-
tions, which essentially tell us that inversion is hard in the exponent, even when given q powers of the element
to invert.

Assumption 4 (q-Strong Diffie Hellman Assumption in Gγ, q-SDH [2]) For all non-uniform PPT
adversaries A:

Pr

[(
r, [ν]γ

)
← A(gk, {[si]γ}qi=1) : ν =

1

s− r

]
≈ 0,

where the probability is taken over gk ← G(1λ), s← Zp and the coin tosses of adversary A.

Assumption 5 (q-Target Strong Diffie-Hellman Assumption, q-TSDH [1]) For all non-uniform PPT
adversaries A:

Pr

[
(r, [ν]T )← A(gk, {[si]1,2}qi=1) : ν =

1

s− r

]
≈ 0,

where the probability is taken over gk ← G(1λ), s← Zp and the coin tosses of adversary A.

The soundness proofs of our schemes will rely on the following variations of the two assumptions above.

Assumption 6 (Z-Group Strong DH Assumption in Gγ, Z-GSDH) Let Z ⊂ Zp such that #Z = q.
For all non-uniform PPT adversaries A:

Pr

[
([z1]1, [z2]γ , [ν]2)← A

(
gk,Z, [ε]1,2, {[si]1,2}qi=1

)
:
z1 6∈ Z ∧ z2 = εz1

ν =
∏
z∈Z(s−z)
s−z1

]
≈ 0,

where the probability is taken over gk ← G(1λ), s, ε← Zp and the coin tosses of adversary A.
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The name is motivated by the fact that it is a variant of the q-SDH Assumption in which the adversary
must only give [z1]1 in the group G1, instead of giving it in Zp as in the q-SDH Assumption.

Assumption 7 (q-Square TSDH Assumption, q-STSDH) For all non-uniform PPT adversaries A:

Pr

[
(r, [β1]1, [β2]2, [ν]T )← A

(
gk, [ε]2, {[si]1,2}qi=1

)
:

β1 6= ±1

β2 = εβ1 ∧ ν =
β2
1−1
s−r

]
≈ 0,

where the probability is taken over gk ← G(1λ), s, ε← Zp and the coin tosses of adversary A.

Note that the challenger knows ε, s, so this assumption is falsifiable. Indeed, upon receiving (r, [β1]1, [β2]2, [ν]T ),
the challenger verifies that [β1]1 6= [±1]1, e([1]1, [β2]2) = e(ε[β1]1, [1]2), and ε(s − r)[ν]T = e([β1]1, [β2]2) −
e([ε]1, [1]2). A similar argument can be made for the other assumptions in this section.

Assumption 8 (q-Quadratic TSDH Assumption, q-QTSDH) For all non-uniform PPT adversaries
A:

Pr


(
r, [β1]1, [β2]1, [β̃1]2, [β̃2]2, [ν]T

)
← A

(
gk, [ε]1,2, {[si]1,2}qi=1

)
:

β1β̃1 6= 1

β2 = εβ1 ∧ β̃2 = εβ̃1 ∧ ν = β1β̃1−1
s−r

 ≈ 0,

where the probability is taken over gk ← G(1λ), s, ε← Zp and the coin tosses of adversary A.

2.3 Quasi-Adaptive Non-Interactive Zero-Knowledge Arguments

In this section we recall the formal definition of Quasi-Adaptive non-interactive zero-knowledge proofs. A
Quasi-Adaptive NIZK proof system [20] enables to prove membership in a language defined by a relation
Rρ, which in turn is completely determined by some parameter ρ sampled from a distribution Dgk . We say
that Dgk is witness sampleable if there exists an efficient algorithm that samples (ρ, ω) from a distribution
Dpar

gk such that ρ is distributed according to Dgk , and membership of ρ in the parameter language Lpar can
be efficiently verified with ω. While the Common Reference String (CRS) can be set based on ρ, the zero-
knowledge simulator is required to be a single probabilistic polynomial time algorithm that works for the
whole collection of relations Rgk .

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for witness-relations Rgk =
{Rρ}ρ∈sup(Dgk ) with parameters sampled from a distribution Dgk over associated parameter language Lpar, if
there exists a probabilistic polynomial time simulator (S1,S2), such that for all non-uniform PPT adversaries
A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;CRS← K1(gk , ρ);
(x,w)← A1(gk ,CRS);π ← P(CRS, x, w)

: V(CRS, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;
CRS← K1(gk , ρ); (x, π)← A2(gk ,CRS)

:
V(CRS, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk ← K0(1λ); ρ← Dgk ;CRS← K1(gk , ρ) : AP(CRS,·,·)
3 (gk ,CRS) = 1] =

Pr[gk ← K0(1λ); ρ← Dgk ; (CRS, τ)← S1(gk , ρ) : AS(CRS,τ,·,·)
3 (gk ,CRS) = 1]

where
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– P(CRS, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a proof π if (x,w) ∈ Rρ.
Otherwise, it outputs ⊥.

– S(CRS, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated proof S2(CRS, τ, x) if (x,w) ∈
Rρ and ⊥ if (x,w) /∈ Rρ.

We assume that CRS contains an encoding of ρ, which is thus available to V.
For witness sampleable distributions, a stronger notion of soundness, where the adversary has also access

to a witness of the parameter ρ, is defined in the full version of [12].

Computational Quasi-Adaptive Strong Soundness:

Pr

[
gk ← K0(1λ); (ρ, ω)← Dpar

gk ;

CRS← K1(gk , ρ); (x, π)← A2(gk , ω,CRS)
:
V(CRS, x, π) = 1 and
¬(∃w : Rρ(x,w))

]
≈ 0.

2.4 Building Blocks

ElGamal encryption. We denote by Enc[sk](m, r) the lifted ElGamal encryption of message m with ran-
domness r and public key [sk]. Using implicit group notation, ElGamal encryption is as follows:[

c1
c2

]
= Enc[sk](m, r) = m[e2] + r

[
1
sk

]
,

where if one knows the secret key sk in Zp, then one can recover the message in G by computing [c2]−sk[c1] =
[m]. ElGamal encryption is semantically secure under the DDH assumption. It can be seen as a commitment
scheme, in which case it is perfectly binding and computationally hiding under the DDH assumption, and
in fact this is how we will use it in our schemes.

Boneh-Boyen signatures [2]. We briefly recall Boneh-Boyen signatures. Let G1,G2,GT , e : G1×G2 → GT
be a bilinear group. Messages are elements of Zp, and signatures are elements of G2. The secret key is sk ∈ Zp,
and the public key (verification key) is [sk]1 ∈ G1. To sign a message x ∈ Zp, the signer computes

[σ]2 =

[
1

sk− x

]
2

The verifier accepts the signature if the equation e([sk]1 − [x]1, [σ]2) = [1]T holds. Boneh-Boyen signatures
are existentially unforgeable under the q-SDH assumption.

Dual-mode commitments and Groth-Sahai proofs [18]. Groth-Sahai proofs allow to prove satisfia-
bility of quadratic equations in bilinear groups in the non-interactive setting. More precisely, Groth-Sahai
proofs deal with equations of the form

my∑
j=1

ajyj +

mx∑
i=1

bixi +

mx,my∑
i,j=1

γi,jxiyj = t,

in which the set of variables is divided into two disjoint subsets X = {x1, . . . , xmx} and Y = {y1, . . . , ymy},
and depending on the type of equation X,Y ⊂ Zp (quadratic equations in Zp), X ⊂ Zp,Y ⊂ Gγ (multi-
exponentiation equations in Gγ) for γ ∈ {1, 2} or X ⊂ G1 and Y ⊂ G2 (pairing product equations). Here the
product means a bilinear operation which is multiplication in Zp, exponentiation or the pairing operation.

The scheme can be seen as a commit-and-prove scheme [7], where in the first step the prover gives
commitments to the solutions, and in the second provides a proof that these commitments verify the corre-
sponding equation. In particular, the commitments used are dual-mode commitments, that is, commitments
that can be either perfectly binding or perfectly hiding, and we can switch from one to the other with an
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indistinguishable change of security game. More precisely, Groth-Sahai commitments to field elements z ∈ Zp
and group elements [z] ∈ G are, respectively:

Com(z;w) = z [u] + w[u1], Com([z];w1, w2) =

[
0
z

]
+ w1[u1] + w2[u2],

where [u], [u1], [u2] are vectors in G2 given in the commitment key, and their definitions depend on whether
we want the commitments to be perfectly binding or perfectly hiding.

Groth-Sahai proofs are sound, witness-indistinguishable and, in many cases, zero-knowledge. More pre-
cisely, the proof is always zero-knowledge for quadratic equations in Zp and multi-exponentiation equations,
and also for pairing product equations provided that t = 1.

QA-NIZK Arguments of Membership in Linear Spaces [20]. We describe some languages for which
there exist constant-size QA-NIZK arguments of membership which will be used as building blocks in our
constructions. These languages are (i) linear subspaces of Gmγ , γ ∈ {1, 2} [21, 22], and (ii) bilateral linear
subspaces, that is, linear subspaces of Gm1 ×Gn2 [12]. For γ ∈ {1, 2},

L[M]γ := {[x]γ ∈ Gnγ : ∃w ∈ Ztq, x = Mw}, (i)

L[M]1,[N]2 := {([x]1, [y]2) ∈ Gm1 ×Gn2 : ∃w ∈ Ztq, x = Mw, y = Nw}, (ii)

We use LS (BLS) to designate (bilateral) linear subspace proof systems for the languages L[M]γ (L[M]1,[N]2).
These proof systems verify strong soundness, which essentially means that they are sound even when the
discrete logarithm of the matrices is given. This property is formally defined in González et al. [12].

Case (i) can be instantiated based on the Kernel Diffie-Hellman assumption 2, and the proof has size
|Gγ |, whereas (ii) can be based on the Split Kernel Diffie-Hellman assumption 3, and the proof has size
2|G1|+ 2|G2|.

3 Proving Satisfiability of Quadratic Equations

In this section we present a scheme in which soundness is based on the q-STSDH Assumption.

3.1 Arguments for Quadratic Equations from q-Assumptions

Intuition. Given n, d ∈ N, the number of variables and equations, respectively, we build a proof system for
the family of languages

Lquad,ck =

 ([c]1,V, b) ∈ G2n
1 × Zn×dp × Zdp

∣∣∣∣∣∣∣
∃a,w ∈ Znp s.t
[c]1 = Comck(a,w) and{
a>vj + bj

}d
j=1
∈ {0, 2}


where [c]1 = Comck(a,w) is a vector of ElGamal encryptions. This generalizes to any other perfectly binding
commitment of the form [c]1 = Comck(a;w) = [U1a + U2w]1 for ck = ([U1]1, [U2]1), and [U1]1, [U2]1 are
from a witness sampleable distribution.

We follow the approach of Danezis et al. [6] and encode the equations

a>vj + bj ∈ {0, 2}

into a Square Span Program (SSP): we construct n+1 polynomials v0(X), . . . , vn(X) and a target polynomial
t(X), where deg(vi) < deg(t) = d for all i ∈ {0, . . . , n}. This codification asserts that a witness a satisfies
the set of equations if and only if t(X) divides p(X), where

p(X) =

(
v0(X) +

n∑
i=1

aivi(X)

)2

− 1.
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The polynomials vi(X), i ∈ {1, . . . , n}, are defined as the interpolation polynomials of the coefficients vij of
V at r1, . . . , rd, which are fixed, arbitrary, pairwise different points of Zp. Similarly, v0(X) is the interpolation
polynomial of bj − 1 at the same points. That is, if vj is the jth column of V,

a>vj + bj − 1 =

n∑
i=1

aivij + bj − 1 =

n∑
i=1

aivi(rj) + v0(rj).

Note that the statement Z ∈ {0, 2} is equivalent to (Z − 1)2 − 1 = 0 and hence, the polynomial p(X)
interpolates the left side of this equation in r1, . . . , rd when Z is replaced by a>vj + bj − 1 for each j ∈
{1, . . . , d}. The target polynomial t(X) =

∏d
i=1(X − ri) is 0 at r1, . . . , rd and therefore encodes the right

sides. This codification gives us the equivalence: the equations hold if and only if t(X) divides p(X).

Danezis et al. constructed a SNARK for this statement, “t(X) divides p(X)”, which is very efficient
because it just checks that the divisibility relation holds at a single secret point s ∈ Zp whose powers
[s]1, [s]2, . . . , [s

d]1, [s
d]2 are published in the CRS. That is, the proof essentially shows “in the exponent” that

p(s) = h(s)t(s),

where h(X) = p(X)/t(X). When all the equations hold, h(X) is a polynomial and the evaluation at s can be
constructed as a linear combination of the powers of s in the CRS. When some equation does not hold, h(X)
is a rational function, and its evaluation at s is no longer efficiently computable from the CRS. The actual
proof system has some additional randomization elements to achieve Zero-Knowledge, but its soundness
follows from this argument.

In the scheme of Danezis et al., the prover outputs a perfectly hiding commitment to the witness. In
the soundness proof, one uses a knowledge of exponent assumption to extract the witness in Znp from the
commitment. The witness is used to derive a reduction from breaking soundness to the d-TSDH Assumption.
More precisely, it follows from the SSP characterization that if the equation with index j∗ does not hold,
then p(X) = q(X)(X − rj∗) + b, for some b 6= 0. From the extracted value of the witness a one can identify
at least one such j∗ and also recover the coefficients of q(X) and the value b in Zp. From the verification
equation, the reduction can obtain [

p(s)

s− rj∗

]
T

=

[
q(s) +

b

s− rj∗

]
T

(1)

and using b, q(s) derive

[
1

s− rj∗

]
T

.

In other words, there are two ways in which the Danezis et al.’s scheme (as well as most other SNARKs)
use knowledge assumptions: (a) extracting vectors of committed values from one single group element (beyond
what is information-theoretically possible), and (b) extract in the base field, so computing discrete logarithms.
Our goal is to avoid knowledge of exponent assumptions, so to circumvent (a) we change the scheme to include
perfectly binding commitments to the witness. However, we still have to deal with (b), as our commitments
to a can only be opened to [a]γ ∈ Gγ . Therefore, we are no longer able to compute [q(s)]T since it requires
to compute terms of the form [aiajs

k]T from [ai]1, [aj ]2 and powers of s in one of the groups, in any case it
would be a multiplication of three group elements.

At this point, we would like to be able to include in the proof a commitment that allows the reduction
to extract q(s), but the fact that q(s) is “quadratic” in the witness makes this difficult. For this reason, we
factor q(X) into two polynomials q1(X) and q2(X). In the soundness game we will program the CRS3 to
depend on an index j∗ and let the prover compute binding commitment to [q2(s)]2, while [q1(s)]1 can be
directly computed from the proof. From these factors we are able to compute [q(s)]T . However, extracting b
in Zp to obtain a reduction to the q-TSDH problem seems difficult, so we will rely on a more flexible security

3 This is why we lose a factor 1/d in the soundness reduction.
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assumption where we do not need to remove b. The idea of the new assumption is to give the adversary
powers of s in the source groups and ask the adversary to output(

rj∗ , [β]1,

[
b

s− rj∗

]
T

)
, where β2 − 1 = b.

However, this is not a hard problem, as the adversary can set b as a combination of s − rj∗ to achieve
elimination of the denominator in b

s−rj∗
. For example, if an adversary sets β = s− rj∗ + 1, it can compute a

valid solution as (rj∗ , [β]1, [s−rj∗+2]T ). To prevent this type of attacks from happening, we add an element
[ε]2 ∈ G2 to the challenge, and ask the adversary to output [εβ]2 too, so that β cannot be set as a function of
s (since the adversary will not be able to compute εs in G2). We call the modified assumption the q-STSDH,
which is proven to be generically secure (see Sect. B). Further, it can be easily checked that the assumption
is falsifiable as we note in Sect. 2.2. To make sure that we can extract [εβ]2 from the prover’s output and
also that the rest of the elements of the proof are of the right form, we will require the prover to show that
its output is in a given linear space.

Scheme description. Given n, d ∈ N we construct a QA-NIZK argument for the language Lquad,ck .

Setup.

– Algorithm K0(gk , n, d) samples ck = [u]1 ← L1. A commitment Comck (a;w) is the concatenation of
Encck (ai;wi) = [aie2 +wiu]1. That is, Comck (a;w) = [U1a+ U2w]1, where U1,U2 are 2n×n matrices
such that U1 has e2 in the diagonal and [U2]1 has u in the diagonal.

– Algorithm K1(gk , ck , n, d) picks s← Zp,
{
φ̂i

}
i∈{1,...,n+1}

← Z3
p, Q2 ← U3,3 and generates also the CRS

for proving membership in bilateral linear spaces of Sect. 2, BLS.CRS, for the linear spaces generated by
the matrices:

[M]1 =


e2

. . .

e2

u
. . .

u

0

v1(s) . . . vn(s) 0 t(s) 0


1

∈ G(2n+1)×(2n+4)
1 ,

[N]2 =

[
v1(s) . . . vn(s)

φ̂1 . . . φ̂n
0

t(s) 0

φ̂n+1 Q2

]
2

∈ G4×(2n+4)
2 .

The CRS includes the elements

(
gk , ck ,

{[
si
]
1,2

}
i∈{1,...,d}

,
{[
φ̂i

]
2

}
i∈{1,...,n+1}

, [Q2]2,BLS.CRS

)
.

Prover. The prover P with input (CRS, [c]1,V, b,a) picks δ ← Zp, rq.2 ← Z3
p and defines the polynomial

p(X) =

(
v0(X) +

n∑
i=1

aivi(X) + δt(X)

)2

− 1 ∈ Zp[X],

where each vi(X), for i ∈ {1, . . . , n}, is the interpolation polynomial of the components vij of V at points rj ,
for j ∈ {1, . . . , d}, and v0(X) is the interpolation polynomial of bj − 1 at the same points. It then computes

h(X) = p(X)
t(X) , which is a polynomial in Zp[X] because a satisfies the equations, and the following elements:

[V ]1 = [
∑n
i=1 aivi(s) + δt(s)]

1
[V ]2 = [

∑n
i=1 aivi(s) + δt(s)]

2

[H]1 = [h(s)]1 [q2]2 =
[∑n

i=1 aiφ̂i + δφ̂n+1 + Q2rq.2

]
2
.
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The prover can compute all these elements as linear combinations of the powers of s in the CRS. The prover
also computes a BLS proof ψ of

([c]1, [V ]1 , [V ]2 , [q2]2)
> ∈ Im

(
[M]1
[N]2

)
with witness (a,w, δ, rq.2)

> ∈ Z2n+4
p .

Finally, it sends the proof π to the verifier, where π :=
(

[H]1 , [V ]1,2 , [q2]2 , ψ
)
.

Verifier. The verifier V with input (CRS, [c]1,V, b, π) checks whether the equation

e([v0(s) + V ]1 , [v0(s) + V ]2)− [1]T = e([H]1 , [t(s)]2) (2)

holds and BLS.verify(ψ) = 1. If both conditions hold, it returns 1, else it returns 0.

Completeness. This property is based on the perfect completeness of membership in bilateral spaces, and
the observation that the left hand side of the verification equation is e ([v0(s) + V ]1 , [v0(s) + V ]2) − [1]T =[
(v0(s) + V )2 − 1

]
T

= [p(s)]T , and the right hand side is e ([H]1 , [t(s)]2) = e ([h(s)]1 , [t(s)]2) = [p(s)]T .

Soundness. We introduce two technical lemmas that we will use in the following to prove the soundness of
the scheme. Recall that U`,k is the uniform distribution on `× k matrices over Zp. We define U`,k,r to be the
uniform distribution on `× k matrices over Zp with rank r.

Lemma 1. For any k, r ∈ N, r < k, there exists an L1-MDDHG1
PPT adversary B0 such that for any PPT

adversary A

Pr[M← Uk,k,r+1 : A([M]1) = 1]− Pr[M← Uk,k,r : A([M]1) = 1]| ≤ AdvL1-MDDH,G1(B0).

Proof. Direct application of Theorem 1 of [30].

Lemma 2. Let v(X) be a polynomial in Zp[X]. For any r ∈ Zp, we define q2(X) and β as the quotient
and remainder, respectively, of the polynomial division of v(X) by X − r, i.e. v(X) = q2(X)(X − r) + β. If
p(X) = v(X)2 − 1, then

p(X) = (v(X) + β) q2(X)(X − r) + β2 − 1.

Proof. By definition, p(X) = v(X)2 − 1, if we expand this expression using the definition of q2(X) we have:

p(X) =v(X) (q2(X)(X − r) + β)− 1 = v(X)q2(X)(X − r) + v(X)β − 1

=v(X)q2(X)(X − r) + q2(X)(X − r)β + β2 − 1

=(v(X) + β)q2(X)(X − r) + β2 − 1. ut

Theorem 1. Let AdvSound(A) be the advantage of any PPT adversary A against the soundness of the
scheme. There exist PPT adversaries B1,B3 against the L1-MDDHG2

and d-STSDH Assumptions, respec-
tively, and an adversary B2 against strong soundness of the BLS proof such that

AdvSound(A) ≤ d
(

2AdvL1-MDDH,G2
(B1) + AdvBLS(B2) + Advd-STSDH(B3)

)
.

Proof. In order to prove soundness we will prove indistinguishability of the following games.

– Real: This is the real soundness game. The output is 1 if the adversary produces a false accepting proof,
i.e. if there is some equation a>vi + bi 6∈ {0, 2} and the verifier accepts the proof.

– Game0: This game is identical to the previous one, except that the commitment key u is chosen by the
game.
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– Game1: This game is identical to the previous one, except that some j∗ ← {1, . . . , d} is chosen and the
game aborts if a satisfies the j∗-th equation, i.e. [a]>1 vj∗ + [bj∗ ]1 ∈ {[0]1, [2]1}.

– Game2: For r = rj∗ and i ∈ {1, . . . , n + 1} let αi(X) and βi be the quotient and the reminder of the
polynomial division of vi(X) by X − rj∗ if i ∈ {1, . . . , n}, and of t(X) by X − rj∗ if i = n + 1. This
game is identical to the previous one, except that Q2 is now a uniformly random matrix conditioned on

having rank 1, and each
[
φ̂i

]
2

is changed to[
φ̂i

]
2

= [αi(s)]2e2 + βi[ε]2e3 + [Q2]2ri,

where ε← Zp, ri ← Z3
p and ei is the ith vector of the canonical basis of Z3

p.

Obviously, the games Real and Game0 are indistinguishable.

Lemma 3. Pr[Game0(A) = 1] ≤ d · Pr[Game1(A) = 1].

Proof. If A breaks soundness, at least one equation does not hold. Thus the challenger has at least a
probability of 1

d of guessing this equation. ut

Lemma 4. There exists a L1-MDDHG2
adversary B1 such that

|Pr[Game1(A) = 1]− Pr[Game2(A) = 1]| ≤ 2AdvL1-MDDH,G2
(B1).

Proof. We construct an adversary B1 against the U3,3-rank problem in which it receives [Q2]2 ∈ G3×3
2 as

input and must decide if the matrix has rank 1 or rank 3. B1 constructs the elements of CRS as in the
previous game, but it uses [Q2]2 as commitment key and defines [φ̂i]2 as:[

φ̂i

]
2

= [αi(s)]2e2 + [Q2]2ri, where ri ← Z3
p.

If [Q2]2 has full rank, then [Q2]2ri is a uniformly distributed element of G3
2, so adversary perfectly

simulates Game1, else it perfectly simulates Game2.
We conclude by using the reduction between the rank problem and the L1-MDDHG2 problem, as estab-

lished in Lemma 1. ut

Lemma 5. There exists an adversary B2 against the strong soundness of the BLS proof and a d-STSDH
adversary B3 such that

Pr[Game2(A) = 1] ≤ AdvBLS(B2) + Advd-STSDH(B3).

Proof. For any adversary which breaks soundness A, let E be the event that ([c]1, [V ]1, [V ]2, [q2]2)> ∈

Im

(
[M]1
[N]2

)
of Sect. 2 and E be the complementary event. Obviously,

Pr[Game2(A) = 1] ≤ Pr[Game2(A) = 1|E] + Pr[Game2(A) = 1|E]. (3)

We can bound the second summand by the advantage of an adversary B2 against the strong soundness of
BLS. Such an adversary receives [M]1, [N]2 sampled according to the distribution specified by Game3 and the
witness that proves that M,N are sampled according to this distribution, which is s (see strong soundness,
defined in Sect. 2.3). It also generates the BLS.CRS, and the rest of the CRS is chosen in the usual way.
Adversary B2 can use the output of A to break the soundness of BLS in a straightforward way.

In the following, we bound the first term of the sum in equation (3) by constructing an adversary B3
which breaks the d-STSDH Assumption in the case that E happens. Note that in this case there exists

a witness (a,w, δ, rq.2)
>

of membership in Im

(
[M]1
[N]2

)
. Further, this witness is partially unique, because

[c]1 is a perfectly binding commitment, so a,w, δ are uniquely determined, and in particular this uniquely
determines the polynomial p(X).
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We now describe the full reduction. Adversary B3 receives a challenge of the d-STSDH Assumption and
plugs it in the CRS. The rest of the elements are chosen by adversary B3 with the distribution specified by the
game. The CRS is then sent to the soundness adversary A, who eventually outputs π for the corresponding
[c]1.

Adversary B3 extracts [a]1 ∈ G1 from the knowledge of u ∈ Z2
p and aborts if the j∗-th equation is satisfied.

By definition e([v0(s) + V ]1 , [v0(s) + V ]2)−[1]T = [p(s)]T . If we divide both sides of the verification equation
(2) by s− rj∗ , [

p(s)

s− rj∗

]
T

= e

(
[H]1 ,

[
t(s)

s− rj∗

]
2

)
= e

[H]1 ,

∏
i 6=j∗

(s− ri)


2

 , (4)

so the adversary B3 can compute

[
p(s)

s− rj∗

]
T

from [H]1 and the powers of [s]1,2 in the CRS. On the other

hand, if we apply Lemma 2 to p(X), we have[
p(s)

s− rj∗

]
T

=

[
(v(s) + β)q2(s) +

β2 − 1

s− rj∗

]
T

, (5)

and we have β2−1 6= 0 (otherwise the j∗-th equation is satisfied, in which case the game aborts). We describe
in the following how B3 can compute right side of (5) and the elements to break the d-STSDH Assumption.
B3 can compute [β]1 =

∑n
i=0[ai]1βi and also [v(s) + β]1 = [V ]1 + [β]1, because it knows [V ]1 from the

proof π and the extracted values [ai]1, and βi are the reminders of dividing vi(X) by X − rj∗ .
Since B3 sampled Q2 itself, it can recover [q2(s)]2 and [εβ]2 from [q2]2 because it can compute two vectors

v2,v3 ∈ Z3
p such that v>i [Q2]2 = 0, v>i ej = 0 if i 6= j and v>i ej = 1 if i = j. B3 multiplies these vectors by

q2 (which is correctly computed, because E holds), resulting in:

v>2 [q2]2 =

[
v>2

n+1∑
i=1

ai (αi(s)e2 + βiεe3 + Q2ri) + v>2 Q2rq.2

]
2

=

[
n+1∑
i=1

aiαi(s)

]
2

,

v>3 [q2]2 =

[
n+1∑
i=1

aiβiε

]
2

.

From these values, B3 can compute [q2(s)]2 and [εβ]2 by adding [α0(s)]2 and β0[ε]2 to the above extracted
elements, respectively:[

α0(s) +

n+1∑
i=1

aiαi(s)

]
2

= [q2(s)]2, β0[ε]2 +

[
ε

n+1∑
i=1

aiβi

]
2

= [εβ]2.

From these values and [v(s)+β]2, computed above, B can derive [(v(s) + β)q2(s)]T as e([v(s)+β]1, [q2(s)]2),

and from equation (5) recover

[
β2 − 1

s− rj∗

]
T

.

Finally, B3 returns

(
rj∗ , [β]1, [εβ]2,

[
β2 − 1

s− rj∗

]
T

)
, breaking the d-STSDH Assumption. ut

Zero-Knowledge. We describe the simulation algorithm (S1,S2). S1(gk) outputs (CRS, τ = {s}, τBLS), the
common reference string computed in the usual way plus the simulation trapdoor s ∈ Zp and the simulation
trapdoor of the bilateral spaces membership proof.

Simulator S2(CRS, [c]1, τ, τBLS): This algorithm samples V S ∈ Zp,
[
qS2
]
2
← G3

2, and defines:

[
HS
]
1

=

[
(V S)2 − 1

t(s)

]
1

.
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S also constructs ψS ← BLS.simulator(CRS, [c]1 ,
[
V S
]
1
,
[
V S
]
2
,
[
qS2
]
2
, τBLS). The algorithm outputs π :=

([c]1 ,
[
V S
]
1
,
[
V S
]
2
,
[
qS2
]
2
, ψS).

Theorem 2. The scheme above is Perfect Zero-Knowledge.

Proof. The key idea behind the proof is that all its the elements can be seen as perfectly hiding commitments
to a, where a is the opening of [c]1. For any V S and any a, there always exists a compatible δ. Further,
since Q2 has full rank,

[
qS2
]
2

is compatible with any values a, δ.
[
HS
]
1

is uniquely determined by V S and
the rest of the elements of the CRS. Finally, perfect zero-knowledge follows from the perfect zero-knowledge
property of the bilateral space membership proof. ut

3.2 Unit Vector from Static Assumptions

Given n, we build a proof system for the family of languages

Luv,ck =

 [c]1 ∈ G2n
1

∃a,w ∈ Znp s.t. [c]1 = Comck(a,w),

a ∈ {0, 1}n and

n∑
j=1

aj = 1

 ,

where Comck is a perfectly binding commitment scheme, with ck chosen from a witness samplable distribution
Dρ. For simplicity, we assume that [c]1 is a vector of ElGamal encryptions as in the previous schemes.

Alternatively, to better match the description of the language Lquad,ck given in Sect. 3.1, we can also
define this language as:

Luv,ck =

{
[c]1 ∈ G2n

1

∃a,w ∈ Znp s.t. [c]1 = Comck(a,w),

a>V + b> ∈ {0, 2}n+1

}
,

where

V =

2 1
. . .

...
2 1

 , b =


0
...
0
1

 .

That is, V = (2In|1) and b = (0n|1)>. In particular, this is a special case of the language Lquad,ck, with
V = (vij) and b fixed.

Our argument for this language is almost identical to the argument in Sect. 3.1, except that we use a
dual point of view and now the points R = {r1, . . . , rn+1} are published only in the exponent, while s ∈ Zp
can be public4. We remark that this change affects crucially the information that must be included in the
CRS to allow the prover to compute [H]1, the quotient of dividing p(s) by t(s). In the general case (for any
V, b), this information would be quadratic in n after this change. On the other hand, the advantage of this
approach is that soundness is based on a static assumption. The intuition behind it is that if the points
r1, . . . , rn+1 are random and unrelated, one can reduce satisfiability of the jth equation to a computational
problem which is only related to rj and independent of the rest.

The fact that the CRS is quadratic makes the scheme less interesting in the general case. For this reason,
we restrict this dual approach to the unit vector argument. A similar situation is found in the paper of
González et al. [12], in which they provided a constant proof that a set of perfectly binding commitments
to integers open to bits. In the general case, the common reference string was quadratic, while in the unit
vector case it was linear.

4 Actually it is not necessary for completeness, but it can be published without compromising security.
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Intuition. Apart from the change of basis for computing [H]1, another important but very technical dif-
ference with respect to the previous scheme is that we use a special form of interpolation. Given some

points {r1, . . . , rn+1} we can define the polynomial vi(x) =
∑n+1
j=1 vij

˜̀
j(X) where ˜̀

j(X) =
∏
k 6=j

X − rk
rj − rk

is

the (normalized) Lagrange interpolation polynomial for which vi(X) is the polynomial that at the point rj
goes through vij , that is the ijth matrix entry of V of Sect. 3.1. We want to prove security under static
assumptions. So, we just want one point challenge instead of d as in the previous constructions, where the
assumptions were not static. In our construction we need to compute the interpolation polynomials knowing
all the interpolation points in Zp but one, say rj∗ , that we know in the group Gγ . The polynomials ˜̀

j(x) are
rational functions in terms of rj∗ and they are infeasible to compute in this situation. Our approach allows
us to compute the interpolation polynomials as degree 1 polynomials in terms of rj∗ . We achieve that using
the non-normalized Lagrange interpolation with polynomials `j(X) =

∏
k 6=j(X−rk) for which vi(x) in point

rj goes through µjvij , where µj =
∏
k 6=j(rj − rk).

As in Sect. 3.1 if we consider Z = a>V + b>, Z satisfies equations Z ∈ {0, 2}n+1 if and only if
(Z−1)2 = 1. Given a set of points R = {r1, . . . , rn+1}, the non-normalized interpolation polynomials, vi(X)
such that vi(rj) = µjvij for i ∈ {1, . . . , n} and v0(rj) = µj(bj − 1) have a very specific form, namely

v0(X) = −
n∑
i=1

`i(X), vi(X) = 2`i(X) + `n+1(X), for i ∈ {1, . . . , n}.

With the definition of `i(X) that we are using, by a similar argument as in previous sections now the
polynomial p(X) is of the form:

p(X) =

(
−

n∑
i=1

`i(X) +

n∑
i=1

ai (2`i(X) + `n+1(X))

)2

−

(
n+1∑
i=1

`i(X)

)2

, (6)

where
∑n+1
i=1 `i(X) is the interpolation polynomial that has value µi in each point ri. The equation (6) is 0

in {r1, . . . , rn+1} if and only if all the equations are satisfied.
If [c]1 is in the language and a is its opening, there exists an index i∗ such that ai∗ = 1 and aj = 0 if

j 6= i∗. Thus, substituting these values in the equation (6),

p(X) =

− n∑
i=1,i6=i∗

`i(X) + `i∗(X) + `n+1(X)

2

−

(
n+1∑
i=1

`i(X)

)2

.

Consequently, in order to compute the polynomial h(X) = p(X)
t(X) , the prover would need products like

`j,i :=
`j(X)`i(X)

t(X) =
∏
k 6=i,j(X − rk). The trivial solution is to provide {`j,i}n+1

i,j=1 in the CRS, but this implies

a quadratic CRS. Our approach allows to give just n+ 1 combinations of `i as we can see in the following,
which results in a linear CRS.

Again, the key difference with the scheme of Sect. 3.1 is that here we want the prover to know s in Zp
but not the interpolation points, so the way we compute H changes. We decompose p(X) in a product of
polynomials as follows. Let v(X) = v0(X) +

∑n
i=1 aivi(X) = −

∑n
i=1,i6=i∗ `i(X) + `i∗(X) + `n+1(X) and

k(X) =
∑n+1
i=1 `i(X). Then,

p(X) = (v(X) + k(X))(v(X)− k(X)). (7)

Note that

v(X) + k(X) = −
n∑

i=1,i6=i∗
`i(X) + `i∗(X) + `n+1(X) +

n+1∑
i=1

`i(X) = 2 (`i∗(X) + `n+1(X))

v(X)− k(X) = −
n∑

i=1,i6=i∗
`i(X) + `i∗(X) + `n+1(X)−

n+1∑
i=1

`i(X) = −2

n∑
i=1,i6=i∗

`i(X).

(8)
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Now we can use this decomposition to compute h(X):

h(X) =
(v(X) + k(X))(v(X)− k(X))

t(X)
=
−4
(∑n

i=1,i6=i∗ `i(X)
)

(`i∗(X) + `n+1(X))

t(X)

= −4

n∑
i=1,i6=i∗

`i,i∗(X) + `i,n+1(X).

(9)

This h(X) can be computed evaluated in s for any i∗ using equation (9) by an honest prover who is given
n∑

j=1,j 6=i

`j,i(s) + `j,n+1(s)


i∈{1,...,n}

in the CRS.
Note that in the scheme, h(X) is randomized with an additional term δt(X) in v(X), where δ ← Zp, in

order to get zero-knowledge.

Scheme description. Given n ∈ Zp we construct a QA-NIZK argument for the language Luv,ck .

Setup.

– Algorithm K0(gk , n) samples ck = ([u]1) from the 1-Lin distribution L1. A commitment Comck (a;w) is
the concatenation of Encck (ai;wi) = [aie2 + wiu]1 of ElGamal encryptions.

– Algorithm K1(gk , ck , n) picks s, {rj}j∈{1,...,n+1} ← Zp, computes the non-normalized Lagrange interpo-
lation polynomials `i(X) =

∏
k 6=i(X−rk) using the points rj as interpolation points, and evaluates `i(s),

for i ∈ {1, . . . , n+ 1}. It also defines t(X) :=
∏n+1
i=1 (X − ri) andLi(s) :=

n∑
j=1,j 6=i

`j,i(s) + `j,n+1(s)


i∈{1,...,n}

.

It picks
{
φi, φ̂i

}
i∈{1,...,n+1}

← Z2
p × Z3

p, Q1 ← U2,2, Q2 ← U3,3 and generates also the CRS for proving

membership in bilateral linear spaces BLS.CRS, for the linear space generated by the matrices:

[M]1 =


e2

. . .

e2

u
. . .

u

0

2`1(s) + `n+1(s) . . . 2`n(s) + `n+1(s)
φ1 . . . φn

0
t(s) 0 0
φn+1 Q1 0


1

∈ G(2n+3)×(2n+6)
1 ,

[N]2 =

[
2`1(s) + `n+1(s) . . . 2`n(s) + `n+1(s)

φ̂1 . . . φ̂n
0

t(s) 0 0

φ̂n+1 0 Q2

]
2

∈ G4×(2n+6)
2 .

The CRS includes the elements(
gk , ck ,

{
[`i(s)]1,2, [Li(s)]1,2, [φi]1 ,

[
φ̂i

]
2

}
i∈{1,...,n+1}

, [t(s)]1,2, [Q1]1, [Q2]2,

BLS.CRS

)
.
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Prover.

– The prover P(CRS, [c]1,V, b,a) picks δ ← Zp, rq.1, rq.2 ← Z2
p × Z3

p and computes

[V ]1,2 = [2`i∗(s) + `n+1(s) + δt(s)]1,2 ,

defines p(s) = (v0(s) + V +
∑n+1
i=1 `i(s))(v0(s) + V −

∑n+1
i=1 `i(s)) and H = h(s) = p(s)

t(s) . The prover can
compute

[H]1 =
[
−4Li∗(s) + 2δ(v0(s) + V )− δ2t(s)

]
1

(see the intuition above)

and the following elements:

[q1]1 = [
∑n
i=1 aiφi + δφn+1 + Q1rq.1]

1
, [q2]2 =

[∑n
i=1 aiφ̂i + δφ̂n+1 + Q2rq.2

]
2
.

The prover also computes a BLS proof ψ that

([c]1, [V ]1 , [q1]1, [V ]2 , [q2]2)
> ∈ Im

(
[M]1
[N]2

)
,

with witness (a,w, δ, rq.1, rq.2)
> ∈ Z2n+6

p . Finally, it sends the proof π to the verifier, where

π := ([H]1 , [V ]1 , [V ]2 , [q1]1 , [q2]2 , ψ) .

Verifier.

– The verifier V(CRS, [c]1,V, b, π) checks whether the equation

e([v0(s) + V ]1 , [v0(s) + V ]2)− e

([
n+1∑
i=1

`i(s)

]
1

,

[
n+1∑
i=1

`i(s)

]
2

)
= e([H]1 , [t(s)]2) (10)

holds, where [v0(s)]1 = −
∑n
i=1[`i(s)]1, and BLS.verify(ψ) = 1. If both conditions hold, it returns 1, else

it returns 0.

Completeness. The reason why the prover can compute H is explained in the intuition. On the other hand,
membership in bilateral spaces is perfectly complete. Further, the right hand side of the verification equation

is e ([H]1 , [t(s)]2) = e
([

p(s)
t(s)

]
1
, [t(s)]2

)
= [p(s)]T , while the left hand is

[
(v0(s) + V )2 −

(∑n+1
i=1 `i(s)

)2]
T

=

[p(s)]T .

Soundness.

Theorem 3. Let AdvPS(A) be the advantage of any PPT adversary A against the soundness of the scheme.
There exist PPT adversaries B1,B2,B3,B4 such that

AdvPS(A) ≤ (n+ 1)
(
AdvL1-MDDH,G1(B1) + 2AdvL1-MDDH,G2(B2)

+ AdvBLS(B3) + Adv1-STSDH(B4)
)
.
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Proof. In order to prove soundness we will prove indistinguishability of the following games.

– Real: This is the real soundness game. The output is 1 if the adversary produces a false accepting proof,
i.e. if there is some equation a>vi + bi 6∈ {0, 2} and the verifier accepts the proof.

– Game0: This game is identical to the previous one, except that the commitment key u is chosen by the
game.

– Game1: This game is identical to the previous one, except that some j∗ ← {1, . . . , n + 1} is chosen and
the game aborts if a satisfies the j∗-th equation. This can be checked by opening c thanks to knowledge
of u and checking whether [a]>1 vj∗ + [bj∗ ]1 ∈ {[0]1, [2]1}.

– Game2: This game is identical to the previous one, except that Q1 is now a uniformly random matrix
conditioned on having rank 1. If j∗ 6= n+ 1, the elements [φi]1 are changed to

[φi]1 =

{
[Q1]1ri, i = 1, . . . , n+ 1, i 6= j∗

[2`j∗ ]1e
2
1 + [Q1]1rj∗ , i = j∗

where ri, rj∗ ,← Z2
p and e21 is the first element in the canonical basis of Z2

p, while if j∗ = n + 1, each
[φi]1 is changed to

[φi]1 =

{
[`n+1(s)]1 e

2
1 + [Q1]1ri, i = 1, . . . , n

[Q1]1 rn+1, i = n+ 1

where ri, rn+1 ← Z2
p.

– Game3: This game is identical to the previous one, except that Q2 is now a uniformly random matrix

conditioned on having rank 1. If j∗ 6= n+ 1, the elements
[
φ̂i

]
2

are changed to

[
φ̂i

]
2

=


[2`i,j∗(s) + `n+1,j∗(s)]2 e

3
1 + [Q2]2r̃i, i = 1, . . . , n, i 6= j∗

[ε]2 e
3
3 + [Q2]2r̃j∗ i = j∗

[`j∗(s)]2 e
3
1 + [Q2]2r̃n+1 i = n+ 1

where r̃i, r̃j∗ , r̃n+1 ← Z3
p, ε ← Zp and e3i is the ith element in the canonical basis of Z3

p, while if

j∗ = n+ 1, the elements
[
φ̂i

]
2

are changed to

[
φ̂i

]
2

=

{
[2`i,n+1(s)]2 e

3
1 + [ε]2 e

3
3 + [Q2]2r̃i, i = 1, . . . , n, i 6= j∗

[`n+1(s)]2 e
3
1 + [Q2]2r̃n+1, i = n+ 1

where r̃i, r̃n+1 ← Z3
p, ε← Zp.

Obviously, the games Real and Game0 are indistinguishable. The indistinguishability of the other games
is based on the rank problem as in the soundness proof in Sect. 3.1.

Lemma 6. There exists an adversary B3 against the strong soundness of the BLS argument and an adversary
B4 against the 1-STSDH assumption such that

Pr[Game3(A) = 1] ≤ AdvBLS(B3) + Adv1-STSDH(B4).

Proof. As in the proof of Lemma 5, we distinguish two events, the event that the adversary succeeds in
giving a false proof of membership in bilinear spaces (event E), and the complementary event E, which
is the interesting part of the proof. It can be proved easily following an analogous argument that such an
adversary B3 could break soundness of BLS. We describe the reduction for adversary B4 that receives a
challenge (gk, [ε]2, [α]1,2) of the 1-STSDH Assumption and plugs (gk, [ε]2) in the CRS. Adversary B4 chooses
s← Zp, and all the points ri, i 6= j∗ as random elements in Zp. Then it implicitly sets rj∗ to be s− rj∗ = α,
so that rj∗ can be computed in G1 and G2 but not in Zp. Then it sets:

[`j(s)]1,2 =
∏
i 6=j,j∗(s− ri) [α]1,2 for j 6= j∗, [`j∗(s)]1,2 =

[∏
i6=j∗(s− ri)

]
1,2
,

[Lj(s)]1,2 =
∑n
i=1,i6=j ([`j,i(s)]1,2 + [`n+1,i(s)]1,2) , [t(s)]1,2 =

∏
i 6=j∗(s− ri) [α]1,2
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for j ∈ {1, . . . , n+1}. The rest of the elements of the CRS are computed as sampled as specified by the game.
All these elements are added to the CRS and sent to the soundness adversary A, who eventually outputs π
for the corresponding [c]1 .

Adversary B4 extracts [a]1 ∈ G1 from [c]1 and the knowledge of u ∈ Z2
p and aborts if the j∗th equation

is satisfied.

By definition e([v0(s) + V ]1 , [v0(s) + V ]2) − e
([∑n+1

i=1 `i(s)
]
1
,
[∑n+1

i=1 `i(s)
]
2

)
= [p(s)]T . We note that

it can compute
[
p(s)
α

]
T

from [H]1:

[
p(s)

α

]
T

= e

(
[H]1,

[
t(s)

α

]
2

)
= e([H]1, [`j∗(s)]2) (11)

by the verification equation (10) and [`j∗(s)]2 is efficiently computable by the adversary.

Moreover, p(s) can be factored as p(s) = (v(s) + k(s))(v(s) − k(s)) for equation (9). We can write
v(s) = (V0 + αV1) and k(s) = (K0 + αK1), where V0,K0 are the terms which the adversary does not know
how to divide by α. More specifically,

p(s) = (V0 + αV1)2 − (K0 + αK1)2, (12)

and therefore

p(s)

α
=

(
V0
α

+ V1

)
(V0 + αV1)−

(
K0

α
+K1

)
(K0 + αK1)

=
V 2
0 −K2

0

α
+ 2V0V1 + αV 2

1 − 2K0K1 − αK2
1

=
V 2
0 −K2

0

α
+ (2V0 + αV1)V1 − 2K0K1 − αK2

1

=
V 2
0 −K2

0

α
+ (V0 + V )V1 − 2K0K1 − αK2

1

(13)

The BLS proof guarantees the existence of values a, δ, rq.1, rq.2, binding property of commitments ci assure
ai are unique. So, the elements V0, V1,K0,K1 are uniquely determined. We remember here the polynomials
v(X), k(X) that we have defined above in (8) but adding the randomization term in v(X):

v(X) =

n∑
i=1

(2ai − 1)`i(X) +

n∑
i=1

ai`n+1(X) + δt(X),

k(X) =

n+1∑
i=1

`i(X),

for which the equation (6) holds. Assuming j∗ 6= n+ 1, if we divide by X − rj∗ , we obtain

v(X)

X − rj∗
=

(2aj∗ − 1)`j∗(X)

X − rj∗
+

n∑
i=1,i6=j∗

(2ai − 1)`i,j∗(X) +

n∑
i=1

ai`n+1,j∗(X) + δ`j∗(X),

k(X)

X − rj∗
=
`j∗(X)

X − rj∗
+

n+1∑
i=1,i6=j∗

`i,j∗(X),

(14)

where the first term that is not divisible by X − rj∗ corresponds to V0, K0 in each equation, respectively
when the polynomials are evaluated on s. The other terms of the equations correspond to V1,K1 respectively.
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So, if j∗ 6= n+ 1:

V0 = (2aj∗ − 1)`j∗(s)

V1 =

n∑
i=1,i6=j∗

(2ai − 1)`i,j∗(s) +

(
n∑
i=1

ai

)
`n+1,j∗(s) + δ`j∗(s)

K0 = `j∗(s)

K1 =

n+1∑
i=1,i6=j∗

`i,j∗(s),

otherwise, if j∗ = n+ 1:

V0 =

n∑
i=1

ai`n+1(s)

V1 =

n∑
i=1

(2ai − 1)`i,n+1(s) + δ`n+1(s)

K0 = `n+1(s)

K1 =

n∑
i=1

`i,n+1(s).

In either case, B4 knows [V ]1,2 from the proof, K0,K1 ∈ Zp, we will now argue that V0 can be computed
in G1 from one of the extracted values of [q1]1 and V1 can be computed in G2 from the extracted values of
[q2]2. More specifically, remember that in this game if j∗ 6= n+ 1

[q1]1 =

 n∑
i=1,i6=j∗

aiQ1ri + aj∗
(
2`j∗(s)e

2
1 + Q1rj∗

)
+ δQ1rn+1 + Q1rq.1


1

[q2]2 =

 n∑
i=1,i6=j∗

ai
(
(2`i,j∗(s) + `n+1,j∗(s))e

3
1 + Q2r̃i

)
+ aj∗

(
εe33 + Q2r̃j∗

)
2

+
[
δ
(
`j∗(s)e

3
1 + Q2r̃n+1

)
+ Q2rq.2

]
2
,

if j∗ = n+ 1

[q1]1 =

[
n∑
i=1

ai
(
`n+1(s)e21 + Q1ri

)
+ δQ1rn+1 + Q1rq.1

]
1

[q2]2 =

[
n∑
i=1

ai
(
2`i,n+1(s)e31 + εe32 + Q2r̃i

)
+ δ

(
`n+1(s)e31 + Q2r̃n+1

)
+ Q2rq.2

]
2

.

Since B4 sampled Q1,Q2 itself, it can extract the following values from [q1]1 and [q2]2 defining appropriate
orthogonal vectors to theses matrices, similarly to the extraction explained in Lemma 5:

– if j∗ 6= n+ 1, it extracts [aj∗2`j∗(s)]1,
[∑n

i=1,i6=j∗ ai(2`i,j∗(s) + `n+1,j∗(s)) + δ`j∗(s)
]
2

and [εaj∗ ]2.

– if j∗ = n+ 1, it extracts [
∑n
i=1 ai`n+1(s)]

1
, [
∑n
i=1 2ai`i,n+1 + δ`n+1(s)]

2
and [ε

∑n
i=1 ai]2.

From these values it can compute [V0]1, [V1]2 in both cases, and also defining β := 2aj∗ − 1 for j∗ 6= n + 1
and β :=

∑n
i=1 ai for j∗ = n+ 1, it can compute [εβ]2 in both cases (if j∗ 6= n+ 1, computes 2 [εaj∗ ]2 − [ε]2,

otherwise it has extracted [ε
∑n
i=1 ai]2).
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Combining [V0]1, [V1]2, [α]1,2 with K0, K1 it can substract from equation (11) the terms [(V + V0)V1 +
2K0K1 + αK2

1 ]T in equation (13), so the adversary can compute in GT :

[
V 2
0 −K2

0

α

]
T

=


[

(2aj∗ − 1)2 − 1

α
`2j∗(s)

]
T

, j∗ 6= n+ 1[
(
∑n
i=1 ai)

2 − 1

α
`2n+1(s)

]
T

, j∗ = n+ 1.

Since the adversary knows `2j∗(s) ∈ Zp in both cases, it can compute:

[
V 2
0 −K2

0

α`2j∗(s)

]
T

=


[

(2aj∗ − 1)2 − 1

α

]
T

, j∗ 6= n+ 1[
(
∑n
i=1 ai)

2 − 1

α

]
T

, j∗ = n+ 1

which is

[
β2 − 1

α

]
T

in both cases. Finally, the adversary can return

(
rj∗ , [β]1, [εβ]2,

[
β2 − 1

α

]
T

)
, which

breaks the 1-STSDH Assumption.
ut

Theorem 4. The scheme above is Perfect Zero-Knowledge, i.e. there exists a simulator algorithm S who has
access to the trapdoor τ = {s, r1, . . . , rn+1}, that constructs a simulated proof πS such that it is statistically
indistinguishable from the real proof π.

The proof is analogous to the one of Theorem 2 of Sect. 3.1.

3.3 Detailed Efficiency Comparison

Below we give more detailed figures for a better comparison of our result of Sect. 3.1 and our bitstring
argument with the results of [12].

Language Proof size CRS size Assumption

Sect. 3.1 Bitstring 4|G1|+ 6|G2|
(n+O(1))|G1|+
+(4n+O(1))|G2|

q-STSDH 7

Sect. 5 of [12] 10|G1|+ 10|G2|
O(n2)|G1|+
+O(n2)|G2|

SSDP

Sect. 3.2 Unit vector 6|G1|+ 6|G2|
(4(n+ 1) +O(1))|G1|+
+(5(n+ 1) +O(1))|G2|

1-STSDH 7

Sect. 5 of [12] 10|G1|+ 10|G2|
(20n+O(1))|G1|+
+(18n+O(1))|G2|

SSDP

Table 4. The table shows the proof sizes (not including commitments) for bitstrings and unit vectors of size n.

4 Aggregated Set Membership Arguments

In the construction of Sect. 3.1, if V is the identity matrix and b = 0, the equations aV + b ∈ {0, 2}d just
prove that each ai ∈ {0, 2}. In this section we consider a generalization and build a proof system which proves
that some perfectly binding commitments open to ai ∈ Z = {z1, . . . , zm} ⊂ Zp. The proof is constant-size
and uses the Boneh-Boyen signature scheme (the basic scheme from [2, Sect. 4.3]) together with a technique
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to aggregate quadratic equations similar to the one of Sect. 3.1 and inspired by the quadratic span programs
of Gennaro et al. [10].

First, in Sect. 4.1, we describe how to construct an argument of membership for a single a ∈ Z and then
in Sect. 4.2 we show how to aggregate the argument. Sect. A in the appendix shows how to apply these ideas
to construct a range proof.

4.1 Non-Aggregated Set Membership Argument

Intuition. We build a constant-size proof of membership for polynomially-large sets in Zp with linear CRS.
The idea is to give in the common reference string Boneh-Boyen signatures to each element of the set. The
proof of membership is just a proof of knowledge of a valid signature. Recall that [σ]2 is a valid signature
for x if and only if

e([sk− x]1, [σ]2)− [1]T = [0]T .

The statement x ∈ Z is proven committing to x and to [σ]2 =
[

1
sk−x

]
2
, and giving a Groth-Sahai proof for

the satisfiability of the verification equation.

The problem with this approach is that it is not possible to extract x ∈ Zp from its Groth-Sahai com-
mitment, but only [x]1 ∈ G1. Therefore, it is not clear how to reduce soundness to the EUF-CMA security
of Boneh-Boyen, as the reduction can only output a “relaxed form” of forgery ([x]1, [σ]2), for some x /∈ Z,
instead of (x, [σ]2).5.

It turns out that Boneh-Boyen signatures are not unforgeable when purported forgeries are pairs of the
form ([x]1, [σ]2). The problem is that [x]1 may be dependent of sk, whereas this is impossible when x ∈ Zp
must be given. Indeed, for any message of the form [sk− x]1 one might compute a forgery as [1/x]2.

To solve this issue, we force the prover to commit to [εx]1, where the discrete logarithm of [ε]1 remains
hidden. Since [sk · ε]1 is not given, the adversary cannot choose x to be a function of sk.

Scheme description. We give a proof of membership in Z = {z1, . . . , zm} ⊂ Zp. More precisely, we build
a proof for the family of languages:

Lmemb,Z,ck :=
{

[c]1 ∈ G2
1

∣∣∃w ∈ Zp s.t. [c]1 = Comck(x;w) and x ∈ Z
}
.

Setup. Parameters for the Boneh-Boyen signatures are generated. Choose ε ← Zp. The CRS contains [ε]2,

signatures [σj ]2 =
[

1
sk−zj

]
2

of each zj ∈ Z, and the Groth-Sahai CRS. The simulation trapdoor is ε and the

GS simulation trapdoor for equations which are right-simulatable 6.

Prover. If x ∈ Z, then there is some pair ([y]2, [σ]2), where [σ]2 is in the CRS, such that

e([sk]1 − [x]1, [σ]2) = [1]T and [y]2 = x[ε]2.

The prover produces a Groth-Sahai proof of the equations:

e ([sk]1 − [X]1, [Σ]2) = [1]T and [Y ]2 = X[ε]2

where X,Y,Σ are the variables.

5 An alternative is of course to commit to x bit-by-bit to make it extractable, but it is completely impractical.
6 See Ràfols [28]. These are statements for which only the commitments in G2 need to be perfectly hiding and where

it is sufficient to get the simulation trapdoor to equivocate commitments in G2.
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Verifier. Accept if and only if both proofs are valid.

Theorem 5. The argument above is computationally quasi-adaptively sound under the Z-GSDH Assumption
in G2 and the soundness of Groth-Sahai proofs.

Proof. We construct an adversary B against the Z-GSDH assumption, which receives gk := (p,G1,G2,GT , e,P1,P2)
together with [ε]1,2 and {[si]1,2}mi=1 from the challenger. The adversary defines a new generator for G2,
P2 = [

∏m
i=1(s− zi)]2, defines a new group key gk := (p,G1,G2,GT , e,P1,P2), and defines [sk]1 = [s]1. Note

that we use implicit notation with respect to P1,P2 and not with respect to the new generators.
The adversary can now build the signatureszj [ε]2,

 m∏
i=1
i 6=j

(s− zi)


2

 =

(
zj [ε]2,

1

sk− zj
P2

)

which are valid with respect to the group key gk.
Let A be an adversary against our set membership proof. Adversary B runs A with the new group key gk,

Groth-Sahai commitment keys for which it knows the discrete logarithm (in order to open commitments),
and signatures ([σ1]2, . . . , [σm]2). Suppose that A wins by producing an accepting proof for some x 6∈ Z.
From the adversary’s proof and committed values one can extract [x]1 and ([y∗]2, [σ

∗]2) and, from perfect
soundness of Groth-Sahai proofs, it follows that

e([sk]1 − [x]1, [σ
∗]2) = e(P1,P2) and [y∗]2 = x[ε]2.

This implies that [σ∗]2 =
[∏m

j=1(sk−zj)
sk−x

]
2
, and hence ([x]1, [y

∗]2, [σ
∗]2) is a solution to the Z-GSDH problem.

ut

Theorem 6. The argument above is composable zero-knowledge under the composable zero-knowledge prop-
erty of Groth-Sahai proofs.

Proof. The proof simulator uses the Groth-Sahai trapdoor and ε to simulate the Groth-Sahai proof of both
equations (note that even though the commitment [c]1 is part of the statement, both equations are right-
simulatable when ε is known). ut

4.2 Aggregated Set Membership Argument

Let Z ⊂ Zp , m = |Z|, and n ∈ N. We construct a QA-NIZK argument for the following language

Lmemb,Z,ck :=

{
[c]1 ∈ G2n

1

∣∣∣∣∃w ∈ Znp s.t. [c]1 = Comck(x;w)
and x1, . . . , xn ∈ Z

}
,

where [c]1 = Comck(x;w) is a vector of ElGamal encryptions. The generalization to other perfectly binding
commitments is straightforward.

Intuition. To express the validity of n signature and message pairs, we construct polynomials v(X), y(X),
which encode the set of n verification equations for the Boneh-Boyen signatures. Given the set R =
{r1, . . . , rn} ⊂ Zp, recall that we denote as `i(X) the ith Lagrange interpolation polynomial associated
to R.

We define v0(X) as the constant polynomial v0(X) = sk, and t(X) =
∏
rj∈R(X − rj). The set of

polynomials v0(X), {`i(X)}ni=0, t(X) accepts x1, . . . , xn if and only if t(X) divides (v0(X)− v(X))y(X)− 1,
where

v(X) =

n∑
j=1

xi`i(X), y(X) =

m∑
i=1

σk(i)`i(X),
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and σk(i) is the signature of some zk(i) such that xi = zk(i).
That is, at any point rj ∈ R, if xj = v(rj), then y(rj) is a a valid signature of xj . This follows from

(v0(X)− v(X))y(X)− 1 = h(X)t(X) for some polynomial h(X)

=⇒ (v0(rj)− v(rj))y(rj)− 1 = 0 ⇐⇒ (sk− xj)y(rj)− 1 = 0.

In particular, if j ∈ [n] is such that xj /∈ Z, then y(rj) is a forgery for xj . For simplicity, in this exposition
we ignore the issue mentioned in previous section about commitment extractability, but this is taken into
account in the argument.

Note that to compute y(X) given `i(X) in some source group, the prover would need to know the discrete
logarithm of the signatures. To render the interpolation polynomials efficiently computable, we include in
the CRS the terms [σis

j ]2, where σi = 1
sk−zi , for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and all other values which

require the signature’s discrete logarithm. Consequently, our CRS is of size O(nm).
A direct instantiation of techniques from Sect. 3.1 requires perfectly binding commitments to each of

the signatures and hence, a proof of size linear in the number of statements. But it turns out that perfectly
binding commitments to signatures are not necessary for proving membership in Z. To achieve this, we use
a trick similar to Sect. 3.1. We program the CRS in order to extract a valid signature for xj∗ , for a random
j∗ ∈ {1, . . . , n}, in such a way that the adversary might only detect the change in the CRS with negligible
probability.

Scheme description. Given m,n ∈ N and a set Z ⊂ Zp, |Z| = m, we construct a QA-NIZK argument for
the language Lmemb,Z,ck .

Setup.

– Algorithm K0(gk) sets ck = [u]1 ← L1.

– Algorithm K1(gk , ck) picks s ← Zp,
{
φi, φ̂i

}
i∈{1,...,n+1}

← Z3
p × Z4

p, Q1 ← U3,3,Q2 ← U4,4, picks

a Boneh-Boyen secret key sk ← Zp, generates signatures [σ1]2, . . . , [σm]2 for each element in Z and
generates also crsΠ1

and crsΠ2
for proving membership in the linear spaces generated, respectively, by

the matrices M,N, where:

[M]1 =


e2

. . .

e2

u
. . .

u

0

`1(s) . . . `n(s)
φ1 . . . φn

0
t(s) 0
φn+1 Q1


1

∈ G(2n+4)×(2n+4)
1 ,

[N]2 =

[
σ1`1(s) σ1`2(s) . . . σm`n(s)

σ1φ̂1 σ1φ̂2 . . . σmφ̂n

t(s) 0

φ̂n+1 Q2

]
2

∈ G5×(nm+5)
2 .

The CRS includes the elements(
gk , ck ,

{
[sj ]1, [sks

j ]1, [σis
j ]1,2, [φi]1, [σiφ̂j ]2

}
i∈{1,...,m},j∈{1,...,n}

, [φn+1]1, [φ̂n+1]2,

[Q1]1, [Q2]2, crsΠ1 , crsΠ2

)
.

Prover. The prover P(CRS, [c]1,x,w) picks δv, δy ← Zp, rq.1 ← Z3
p, rq.2 ← Z4

p and defines the polynomials

v(X) =

n∑
i=1

xi`i(X) + δvt(X), y(X) =

n∑
i=1

σk(i)`i(X) + δyt(X)

h(X) =
(v0(X)− v(X))y(X)− 1

t(X)
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where v0(rj) = sk, for all j ∈ {1, . . . , n}, t(X) =
∏
r∈R(X − r) and `i(X) is the ith Lagrangian interpolation

polynomial associated toR. By definition of the language, each xi is equal to zk(i), for some k(i) ∈ {1, . . . ,m}.
The prover computes the following elements:

[H]1 = [h(s)]1
[V ]1 = [v(s)]1 [q1]1 = [

∑n
i=1 xiφi + δvφn+1 + Q1rq.1]

1

[Y ]2 = [y(s)]2 [q2]2 =
[∑n

i=1 σk(i)φ̂i + δyφ̂n+1 + Q2rq.2

]
2
.

The prover also computes two LS proofs

ψ1 ← Π1.LS.prove

crsΠ1
,

 cV
q1


1

,


x
w
δv
rq.1


 , ψ2 ← Π2.LS.prove

crsΠ2
,

[
Y
q2

]
2

,

 y
δy
rq.2

 ,

where y = (y1,1, y1,2, . . . , yn,m) and yi,j is equal to 1 if i = k(j) and 0 otherwise. Finally, it sends the proof
π to the verifier, where

π := ([H]1 , [V ]1 , [Y ]2 , [q1]1 , [q2]2 , ψ1, ψ2) .

Verifier. The verifier V(CRS, π) checks whether the equation

e([H]1 , [t(s)]2) = e([v0(s)]1 − [V ]1, [Y ]2)− [1]T holds, and

Π1.LS.verify

crsΠ1
,

 cV
q1


1

, ψ1

 = 1, Π2.LS.verify

(
crsΠ2

,

[
Y
q2

]
2

, ψ2

)
= 1.

If all of these conditions hold, it returns 1, else 0.

Completeness. If x1, . . . , xn ∈ Z then (v0(rj) − v(rj))y(rj) − 1 = (xk(j) + sk)σk(j) − 1 = 0 for all j, and
thus (v0(X)− v(X))y(X) = 1 mod t(X). This implies that h(X) is a well defined polynomial in Zp[X] such
that e ([h(s)]1 , [t(s)]2) = e ([v0(s)− v(s)]1 , [y(s)]2)− [1]T . It is easy to check that

 cV
q1

 = M


x
w
δv
rq.1

 and

(
Y
q2

)
= N

 y
δy
rq.2

 ,

where y = (y1,1, . . . , ym,n), and therefore ψ1, ψ2 are valid proofs.

Soundness.

Theorem 7. Let AdvPS(A) be the advantage of a PPT adversary A against the soundness of the scheme.
There exist PPT adversaries B1,B2,B3,1,B3,2,B4,B5 such that

AdvPS(A) ≤ n ( 2AdvL1-MDDH,G1
(B1) + 3AdvL1-MDDH,G2

(B2) + AdvLS,Π1
(B3,1)

+AdvLS,Π2
(B3,2) + AdvZ-GSDH,G1

(B4) + Advn-QTSDH(B5)) .

Proof. In order to prove soundness we will prove indistinguishability of the following games.

– Real: This is the real soundness game. The output is 1 if the adversary produces a false accepting proof,
i.e. if there is some xi /∈ Z and the verifier accepts the proof.
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– Game0: This game is identical to the previous one, except that the commitment key u is chosen by the
game in order to extract [x]1 from [c]1.

– Game1: This game is identical to the previous one, except that some j∗ ← {1, . . . , n} is chosen and the
game aborts if the extracted value [x]1 is such that [xj∗ ]1 ∈ [Z]1.

– Game2: For i = 1, . . . , n, let αi(X) and βi be the quotient and the reminder, respectively, of dividing
`i(X) by X − rj∗ . Let αn+1(X) and βn+1 be the quotient and the reminder of dividing t(X) by X − rj∗ .
This game is identical to the previous one, except that Q1 is now a uniformly random matrix conditioned
on having rank 1, and for i = 1, . . . , n+ 1, [φi]1 is changed to

[φi]1 = [αi(s)]1e
3
2 + βi[ε]1e

3
3 + [Q1]1ri,

where e3j is the jth vector of the canonical basis of Z3
p, ri ← Z3

p, ε← Zp.
– Game3: Let αi(X) and βi be defined as above. This game is identical to the previous one, except that

Q2 is now a uniformly random matrix conditioned on having rank 1, and each
[
φ̂i

]
2

is now defined as[
φ̂i

]
2

= [αi(s)]2e
4
2 + [βi]2e

4
3 + βi[ε]2e

4
4 + [Q2]2r̃i,

where e4j is the jth vector of the canonical basis of Z4
p, r̃i ← Z4

p and ε ← Zp is the same value used in
the definition of [φi]1.

Obviously, the games Real and Game0 are indistinguishable. The proofs of indistinguishablility of Game1,Game2
and Game2,Game3 are the same as their analogues in Sect. 3.1. We proceed to prove that in Game3 the ad-
versary wins only with negligible probability.

Lemma 7. There exists adversaries B3,i against the soundness of Πi.LS, an adversary B4 against Z-GSDH
in G1, and an adversary B5 against n-QTSDH such that

Pr[Game3(A) = 1] ≤ AdvLS(B3,1) + AdvLS(B3,2) + Advn-QTSDH(B4) + AdvZ-GSDH,G1
(B5).

Proof. Let E1 be the event where (c, V, q1) is not in the image of M, E2 the event that (Y, q2) is not in the
image of N, and E3 = E1 ∪ E2. Then

Pr[Game3(A) = 1] ≤Pr[Game3(A) = 1|E1] + Pr[Game3(A) = 1|E2]+

+ Pr[Game3(A) = 1|E3], (15)

and, clearly,

Pr[Game3(A) = 1|E1] + Pr[Game3(A) = 1|E2] ≤ AdvΠ1.LS(B3,1) + AdvΠ2.LS(B3,2).

We now proceed to bound Pr[Game3(A) = 1|E3]. Conditioned on E3, there exist some x†,w, δv, rq.1
and y†, δy, rq.2 such that (c, V, q1)> = M(x†,w, δv, rq.1)> and (Y, q2)> = N(y†, δy, rq.2)>. Given that c is
perfectly binding, it must be that x = x†. It follows that V =

∑n
i=1 xi`i(s)+δvt(s) = v(s) and Y = y†(s) for

some polynomial y†(X) =
∑n
i=1

∑m
j=1 y

†
i,jσi`i(X) + δyt(X). Further, except with probability 1/q, each eij is

linearly independent of the columns of [Q1]1, [Q2]2, so one can extract from [q1]1 (resp. [q2]2) the coefficients
of these vectors in its expression in terms of [Q1]1, e

3
2, e

3
3 (resp. [Q2]2, e

4
2, e

4
3, e

4
4), which are:

[∑n+1
i=1 xiαi(s)∑n+1
i=1 xiβiε

]
1

=

[
α(s)
βε

]
1

and


∑m,n
i,j=1 y

†
i,jσiα̃j(s) + δyα̃n+1(s)∑m,n

i,j=1 y
†
i,jσiβj + δyβ̃n+1∑m,n

i,j=1 y
†
i,jσiβjε+ δyβ̃n+1ε


2

=

 α̃(s)

β̃

β̃ε


2

where xn+1 = δv and α(X), α̃(X) are the quotients and β, β̃ are the reminders of dividing, respectively, v(X)
and y(X) by X − rj∗ .
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If we divide both sides of the verification equation by (s− rj∗), and we denote by α0(s), β0 we get that

e

(
[H]1,

[
t(s)

s− rj∗

]
2

)
=

1

s− rj∗
(e([v0(s)]1 − [v(s)]1, [y(s)]2)− [1]T )

=
1

s− rj∗

[
(v0(s)− v(s))(α̃(s)(s− rj∗) + β̃)− 1

]
T

=[(v0(s)− v(s))α̃(s) + α(s)β̃]T +

[
(v0(s)− β)β̃ − 1

s− rj∗

]
T

Note that β = v(rj∗) = xj∗ , v0(s) = sk and thus if (v0(s)− β)β̃ − 1 = 0, then β̃ is a valid signature for xj∗ .

Let E4 the event (v0(s)− β)β̃− 1 = 0 and thus Pr[Game4(A) = 1|E3] ≤ Pr[Game4(A) = 1|E4 ∩E3] + Pr[
Game4(A) = 1|E4 ∩ E3].

We build an adversary B4 against Assumption 6 which receives gk, {[ski]1, [ski]2}i∈[m], [ε]1,2. Essentially,
the adversary works as the one described in Sect. 4.1 for the (non-aggregated) set membership argument.
It simulates Game4(A) computing all the discrete logarithms of the CRS itself, except for the Boneh-Boyen
secret key, [ε]1,2, and the signatures in the CRS are computed as in Sect. 4.1. When A outputs [q1]1, [q2]2,

B4 extracts [βε]1, [β̃]2 and returns ([xj∗ ]1, [βε]1, [β̃]2). In the case E4, we have already argued that β̃ is
a valid signature for xj∗ , and in this game xj∗ /∈ S. We conclude that Pr[Game4(A) = 1|E4 ∩ E3] ≤
AdvZ-GSDH,G1(B4).

We also construct B5 an adversary against Assumption 8. It receives as input [ε]1, [ε]2, [s]1, [s]2, . . . , [s
d]1[sd]2

and it starts a simulation of Game4(A), by sampling honestly the rest of the elements of the CRS. Fi-
nally, A outputs [V ]1, [Y ]2, [q1]1, [q2]2 as part of the purported proof for [c]1. We will see in the following

how B4 computes [ν]T :=
[
(v0(s)−β)β̃−1

s−rj∗

]
T

and returns ([v0(s)− β]1 ,[(v0(s)− β)ε]1, [β̃]2, [β̃ε]2, [ν]T ), with

(v0(s)− β)β̃ − 1 6= 0, breaking Assumption 8.
The values [α̃(s)]2, [β̃]2 and [β̃ε]2 are extracted from [q2]2, while [α(s)]1, [βε]1 are extracted from [q1]1,

[β]1 = [xj∗ ]1 is extracted from [c]1, β0 = sk, and [v0(s)ε]1 = sk[ε]1 can be computed by B5 because it sampled
sk. The value [ν]T is computed as

[ν]T := e

(
[H]1,

[
t(s)

s− rj∗

]
2

)
− e([v0(s)]1 − [V ]1, [α̃(s)]2)− e

(
[α(s)]1, [β̃]2

)
.

Zero-Knowledge. The proof of perfect zero-knowledge is essentially the same as for Theorem 2. Note that
[V ]1, [Y ]2, [q1]1, [q2]2 are independent of x, while [H]1 is the unique solution to the verification equation.
Perfect zero-knowledge of the argument of membership in linear spaces implies that the proofs ψ1, ψ2 can
be simulated with the same distribution as honest proofs.

5 Shuffle Arguments

From our results, we can construct two different shuffle arguments in the CRS model under falsifiable
assumptions. They both follow the basic template of the shuffle argument of [13]. Let [c1]2, [c2]2 be two
vectors of n ciphertexts which open to vectors of plaintexts [m1]2, [m2]2, respectively, and we want to prove
thatm2 is a permutation ofm1. The shuffle argument of [13] consists of the following steps. The CRS includes
a vector of group elements [z]1 = ([z1]1, . . . , [zn]1) sampled uniformly and independently. The prover chooses
a permutation [x]1 = ([x1]1, . . . , [xn]1) of [z]1 and proves: (1) xi ∈ Z = {z1, . . . , zn} for all i ∈ {1, . . . , n},
(2)

∑
xi =

∑
zi and (3)

∑
zim1,i =

∑
xim2,i.

The first two steps force x to be a permutation of z: if all xi ∈ Z and their sum equals the sum of all
the elements in Z and x is not a permutation, the prover has found a non-trivial combination of elements of
Z which is 0, which is a type of kernel problem. The last step links this fact with m2 being a permutation
of m1.
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In both our constructions and in the original argument of [13], Steps (2) and (3) are handled with the
following Groth-Sahai equations, in which uppercase letters are variables for which the prover has provided
commitments: (2)

∑
[Xi]1 =

∑
[zi]1 and (3)

∑
e([zi]1, [M1,i]2) =

∑
e([Xi]1, [M2,i]2).

We next specify two different ways of proving Step 1, which results in two different constructions with
different performance.

5.1 Unit Vector Argument

The first approach is the closest to the work of González et al. [13]. There, Step 1 is rewritten as proving

that x = z>B, for a matrix B = (b1| . . . |bn) ∈ {0, 1}n2

, where the bi are unitary vectors (not necessarily
different, as this is handled by step 2). The approach of [13] is to adopt a commit-and-prove strategy using
arguments for linear spaces and the bitstring argument of [12]. The ‘prove’ part is constant-size, but the
‘commit’ part is a priori quadratic, as we would need to commit to each entry of the matrix B.

To overcome this and obtain linear complexity, they switch to shrinking commitments to each row b∗i of
B, which take only two elements each. Obviously these commitments cannot be perfectly binding, and this
fact interferes with the extraction step in soundness proof. However, a key step in their argument is that they
set these commitments in a way that one single coordinate j∗ (which remains unknown to the adversary) is
perfectly binding. Thus the corresponding column is uniquely determined and can be extracted in the proof.
From here, it is concluded that an adversary cannot cheat in the j∗-th ciphertext, and since j∗ is unknown
to the adversary, general soundness is reduced to this case with a tightness loss of 1/n. Note that this is on
top of the factor 1/n from the bitstring argument, resulting in a soundness loss of 1/n2.

We observe that we can plug our unit vector argument instead of the one from [12], modified to accept
shrinking commitments to each of the rows of B as those in [13]. We include an additional game at the
beginning of the soundness proof of the unit vector argument, in which we choose a random coordinate and
abort if the corresponding commitment is not in the language. From here on the proof works as in Sect. 3.2.
This proof inherits the disadvantages of [13], namely the quadratic CRS and the tightness loss in the security
reduction, but we improve the proof size from (4n+ 17)|G1|+ 14|G2| to (4n+ 11)|G1|+ 8|G2| and our proof
still uses falsifiable and static assumptions.

5.2 Argument of Membership in a Set of Group Elements

Another approach to Step 1, instead of the aggregated unit vector proofs, is to prove directly membership in
a subset Z = {[z1]1, . . . , [zn]1} ⊂ G1. Note that the set is witness sampleable and in particular, the discrete
logarithms might be known when generating the CRS. More precisely, we want to construct an argument
for the language

Lmemb-group,Z,ck :=
{

[c]1 ∈ G2
1

∣∣∃w ∈ Zp s.t. [c]1 = Comck([x]1;w) and [x]1 ∈ Z
}
,

and for efficiency, the proof should be aggregated. This can be achieved by modifying the aggregated mem-
bership proof in a subset of Zp from Sect. 4.2. Note that there we had x ∈ Zp, and this was necessary
to produce the proof, so to ensure completeness when the prover knows only [x]1 ∈ Z ⊂ G1, we provide
additional elements in the CRS. This is possible because the set is witness sampleable. More precisely, x was
involved in the definition of the terms

[V ]1 = [v(s)]1, where v(X) =

n∑
i=1

xi`i(X) + δvt(X),

[q1]1 =

[
n∑
i=1

xiφi + δvφn+1 + Q1rq.1

]
1

,

so we include the elements {[zi`j(s)]1, [ziφj ]1}i,j∈{1,...,n} in the CRS. The proof works exactly the same, as
the reduction could only open the commitments in the group.
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We can use this to prove Step 1 of the shuffle argument above. In this case, the CRS size is still quadratic
in the number of ciphertexts, but we avoid losing the second factor 1/n in the reduction, and the proof
consists only of the commitments to [xi]1 and a constant number of elements. More precisely, the proof size
is (2n+ 11)|G1|+ 8|G2|.
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A Range Argument in the Interval [0, 2n − 1]

We want to prove that a Groth-Sahai commitment [c]1 opens to some integer y in the range [0, 2n−1]. That
is, we want to construct a NIZK proof system for the language

Lrange,ck :=

{
[c]1 ∈ G2

1 :
∃y, r ∈ Zp s.t. [c]1 = Comck(y; r)
and y ∈ [0, 2n − 1]

}
,

where ck := ([u1]1, [u2]1)← K0(1λ). We follow a widely used approach (for example [29, 4] to name a few),
which divides the statement y ∈ [0, 2n − 1] into ` range proofs in smaller intervals. That is,

1. commit to y1, . . . , y`,
2. show that yi ∈ [0, d− 1], for each i ∈ [`],
3. show that y =

∑
i∈[`] yid

i−1.

We commit to y1, . . . , y` using only `+ 1 group elements using a simple adaptation of ElGamal to vectors of
size n. To prove point 3 we could use membership in linear spaces, as done in [12, Sect. 5.5], requiring only
one element from G1. For point 2 we use our aggregated set-membership proof which requires 6 elements of

G1 and 6 of G2. The total size of the proof is thus
(

n
log d + 7

)
G1 + 6G2. Choosing d = nk we get that and

` = n
lognk

= n
k logn , and thus the size of our Range Proof is

(
n

k logn + 7
)
G1 + 6G2, for an arbitrarily chosen

k ∈ N. The size of the CRS is dominated by 5` · d = 5 nk+1

k logn (the size of matrix N in our set membership

proof).
In practice, the size of the proof is bounded by the security parameter, i.e. n < 128 (one can’t commit

to a number bigger than the field size). Although for such a big n the size of the CRS is huge, ≈ 12000 and
≈ 730000 group elements for k = 1, 2 respectively, the size of the proof is just 26 and 18 group elements for
k = 1, 2 respectively. For n = 64 and k = 2, the size of a proof is 13 group elements, it requires roughly
70000 group elements in the CRS. For n = 64 and k = 1, the size of a proof is bounded by ≈ 18 group
elements and the CRS contains roughly 2000 group elements. For more conservative ranges, say n ≈ 10, one
gets proofs of size 10 group elements while the CRS contains roughly 500 group elements, for k = 2, or of
size 12 with a CRS of size 50 for k = 1.

Language Proof size CRS size Assumption

Sect. A Range Proof
(

n
k logn + 7

)
|G1|+ 6|G2|

(
nk+1

k logn +O(1)
)
|G1|+

+
(
5 n

k+1

k logn +O(1)
)
|G2|

Z-GSDH 6,
q-QTSDH 8

Sect. 4 of [29] ≈ 15 n
logn (|G1|+ |G2|) O

(
n

logn

)
q-HSDH

Table 5. The table shows the proof sizes (not including commitments for bitstring and unit vector) and CRS sizes of
our results in range proofs. The range considered is [0, 2n−1] and k > 0 is a free parameter (e.g. k = 1/4, 1/2, 1, 2, . . .),
and the constant of [29] is at least 4, for committing to signatures, plus 3 · 4 elements for Groth-Sahai proofs of the
signature verification.

B Generic Hardness of Assumptions

Proposition 1. The Z-GSDH Assumption (6) in Gγ holds in the generic group model.

Proof. A generic adversary receives Z in Zp, ε and the powers 1, s, . . . , sq in G1, and ε and 1, s, . . . , sq in
G2. Then any z1 output by the adversary must be of the form

z1 =

q∑
i=0

bis
i,
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for some coefficients bi, i ∈ {0, . . . , q}, and since z2 = εz1, we have that necessarily

z2 =

q∑
i=0

biεs
i.

This forces bi = 0 for i ∈ {1, . . . , q}, since a generic adversary cannot compute εsi in Gγ . Thus z1 = b0.
Then the adversary cannot compute ∏

r∈Z(s− r)
s− r1

in GT , since r1 is not a root of p(s) =
∏
r∈Z(s − r), so the above is a rational function, which cannot be

computed with group operations.

Proposition 2. The q-STSDH Assumption( 7) holds in the generic group model.

Proof. A generic adversary receives the powers 1, s, . . . , sq in G1, and ε and 1, s, . . . , sq in G2. Then any β1
output by the adversary must be of the form

β1 =

q∑
i=0

bis
i,

for some coefficients bi, i ∈ {0, . . . , q}, and since β2 = εβ1, we have that necessarily

β2 =

q∑
i=0

biεs
i.

This forces bi = 0 for i ∈ {1, . . . , q}, since a generic adversary cannot compute εsi in G1. Thus β1 = b0. Now,

if a generic adversary is able to compute
β2
1−1
s−r in GT , necessarily there exist polynomials p1, p2 such that

b20 − 1

s− r
= p1(s, ε) · p2(s),

where deg p1,deg p2 ≤ q and p1 does not have terms in εsi for any i. However, since β1 is a constant with
respect to s, ε, and β2

1 − 1 6= 0, the above is a rational function, which cannot be computed with group
operations.

Proposition 3. The q-QTSDH Assumption (8) holds in the generic group model.

Proof. A generic adversary receives ε and the powers 1, s, . . . , sq in G1, and 1, s, . . . , sq in G2. Then any β1
output by the verifier must be of the form

β1 =

q∑
i=0

bis
i + bq+1ε,

for some coefficients bi, i ∈ {0, . . . , q + 1}, and since β2 = εβ1, we have that necessarily

β2 =

q∑
i=0

biεs
i + bq+1ε

2.

This forces bi = 0 for i ∈ {1, . . . , q}, since a generic adversary cannot compute εsi in G1, and bq+1 = 0, since

it cannot compute ε2 either. Thus β1 = b0. Analogously, β̃1 = b̃0 for some constant b̃0. Now, if a generic

adversary is able to compute β1β̃1−1
s−r in GT , necessarily there exist polynomials p1, p2 such that

b0b̃0 − 1

s− r
= p1(s, ε) · p2(s, ε),

where deg p1,deg p2 ≤ q and p1 does not have terms in εsi for any i. However, since β1β̃1 is a constant with
respect to s, ε, and β1β̃1 − 1 6= 0, the above is a rational function, which cannot be computed with group
operations.

33


	Shorter Quadratic QA-NIZK Proofs

