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Abstract. Frit is a new lightweight 384-bit cryptographic permutation
proposed by Simon et al., which is designed for resisting fault injection
and performs competitively in both hardware and software. Dobraunig
et al. first studied Frit in EM construction, and left an open problem to
explore the security of Frit in a sponge or duplex modes. In this paper, by
introducing a new key-dependent cube attack method, we partially an-
swer the open question by Dobraunig et al. and give some key-recovery
attacks on the rounded-reduced Frit used in duplex authenticated en-
cryption mode (Frit-AE). Our results cover all the versions of Frit-AE
and include some practical key-recovery attacks that could recover the
key within several minutes.
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1 Introduction

Recently, the permutation-based cryptology becomes a good topic in symmetric-
key research groups. On one hand, many dedicated ciphers are permutation-
based, including Keccak [1], Keyak [2], Ketje [3], Chaskey [4], Salsa20 [5], As-
con [6] and et al. On the other hand, researchers introduced many cryptographic
permutations recently, such as Simpira [7], Gimli [8], Xoodoo [9], Frit [10] and
et al., whose target is to design one unified cryptographic primitive suitable
for many different applications (collision-resistant hashing, preimage-resistant
hashing, message authentication, message encryption, etc.). Using these permu-
tations, one could possibly initiate them with Even-Mansour construction [11] to
get a block cipher, such as Simpira-EM, Frit-EM. Also, one could use them with
Sponge construction [12] to get hash functions, like SHA-3. Another way is to use
these permutations with MonkeyDuplex [13] constructions to achieve authenti-
cated encryptions (AE), which is made very popular by CAESAR competition.
As far as we know, 4 out of 15 third-round candidates of CAESAR following this
strategy to achieve AE, i.e. Keyak [2], Ketje [3], Ascon [6], NORX [14]. Notably,
Ascon is selected as one of the finalists.
⋆ Corresponding Author



Frit (Fault-Resistant Iterative Transformation) [10] is a new lightweight 384-
bit cryptographic permutation proposed by Simon et al. recently. They give a
novel approach for designing cryptographic primitives to against fault injection
attack, providing a number of lightweight operations for nonlinearity and dif-
fusion. Frit can also be used for designing block ciphers, AE schemes, stream
ciphers and MAC functions.

Dobraunig et al. [15] first studied the Frit cipher against algebraic attack and
gave some key-recovery attacks on Frit in EM constructions, i.e. Frit-EM block
cipher. In the end of their paper, they left an open problem that if Frit is used in
MonkeyDuplex construction (denoted as Frit-AE, i.e. Frit-based authenticated
encryption), what is the security level of Frit-AE against the algebraic attacks,
such as cube-like or conditional cube attacks. In this paper, we will focus on this
open question.

Our contributions. This paper analyzes the security of the rounded-reduced Frit
used in MonkeyDuplex authenticated encryption mode (Frit-AE) against cube-
like attack. We first give the brief description that the possible implementations
of Frit with MonkeyDuplex. Similar to Ketje [3] and Ascon [6], shown in Figure 2,
we place the 16-round Frit in the initialization phase, whose input is a 384-bit
concatenation of 128-bit key (one limb) and 256-bit nonce (two limbs). Then, a
128-bit limb is XORed with 128-bit plaintext and output the 128-bit ciphertext.
Since there are three limbs (a, b, c) in the state of Frit, nine possible versions for
the initialization phase with different limb positions of the 128-bit key and 128-
bit ciphertext. We denote them as Fritβα-AE, where α, β ∈ {a, b, c} indicate the
limb positions of 128-bit key and 128-bit ciphertext, respectively. For detailed
information, please refer to Sect. 2.

At EUROCRYPT 2017, Huang et al. [16] introduced the conditional cube
attacks on Keccak sponge function [1]. Then, several cube-like attacks [17–20]
were proposed on permutation based AE schemes, i.e. Ketje, Keyak, Ascon. By
exploring bit conditions, which are related to both public bits and key bits,
they could reduce the diffusion of cube variables and construct cube testers for
Keccak. In this paper, we introduce a new key-dependent cube attack on Fritβα-
AE. Similar to conditional cube attacks [16], the key-dependent cube attack also
exploit cube testers with constraints. However, the difference with conditional
cube attack is that, the new attacks do not require the conditions to be de-
pendent on public bits. Actually, the idea of assigning (dynamic) constraints
to public variables and using them to recover key bits was earlier appeared in
conditional differential attacks, which was introduced by Knellwolf, Meier and
Naya-Plasencia at ASIACRYPT 2010 [21]. The authors classified the conditions
into three types:

– Type 0 conditions only involve public bits;
– Type 1 conditions involve both public bits and secret bits;
– Type 2 conditions only involve secret bits.

The key-dependent cube attack only considers the type 2 conditions, that only
involve secret key bits. In our attacks on Fritβα-AE, we find many different cube



testers for different key-dependent bit conditions with the help of MILP method.
So we could detect many key-dependent equations by exploring different cube
testers. Based on this idea, we give some round-reduced attacks on all nine ver-
sions of Fritβα-AE. The attacked rounds vary from 8 to 12, which are summarised
in Table 1.

Table 1. Summary of cryptanalysis results

α β Attacked Round Time Complexity Reference

a
a 9 229

Sect. 6.1b 10 229

c 9 229

b

a

8 229

Sect. 5

9 242

10 263

11 297

b

9 229

10 242

11 263

12 297

c

8 229

9 242

10 263

11 297

c
a 10 229

Sect. 6.2b 11 229

c 10 229

We also give practical implementations of 9-round attack on Fritbb-AE in 7
minutes to recover 128-bit key and 10-round Fritbb-AE in 8 hours to recover 1-bit
key. For Fritba-AE and Fritbc-AE, 10-round and 11-round attacks are implemented
to recover 128-bit key in 8 minutes. The success rate is 100% corresponding to
our analysis, which proves our algorithm is effective. The test code is given in
https://github.com/qly14/FritAE.git.

2 Frit

This section gives the used notations in the paper, a brief description of Frit,
and the Frit used in duplex authenticated encryption mode.



2.1 Notations

a, b, c three limbs in {0, 1}128
ar, br, cr the three limbs after r-round
K the 128-bit secret key
v, v′ two 128-bit variable vectors
RCi the i-th round constant,0 ≤ i ≤ 15
vi, v

′
i the i-th variable vectors of v, v′, 0 ≤ i ≤ 127

Ki the i-th bit of key, 0 ≤ i ≤ 127
⊕ 128-bit bitwise XOR
⊙ 128-bit bitwise AND
a <<< i cycle shift of a to the left by i bits

2.2 The Frit permutation

Frit is a 384-bit cryptographic permutation proposed by Simon et al., which
operates on a state of three limbs a, b, c in {0, 1}128 updated in 16-round. Each
round the state is updated in 6 bitwise operations: the round constant addition,
a mixing operation of limb a, the only nonlinear operation ⊙ used as a Toffoli
gate, a mixing operation of limb c, a switch operation and a transposition. The
details are illustrated in Algorithm 1.

Algorithm 1 Frit

Input: a, b, c ∈ {0, 1}128
for each i ∈ [0, 15] do

c← c⊕RCi

a← a⊕ (a <<< 110)⊕ (a <<< 87)
c← c⊕ (a⊙ b)
c← c⊕ (c <<< 118)⊕ (c <<< 88)
b← a⊕ b⊕ c
(a, b, c)← (c, a, b)

end for
return (a, b, c)

.

σc

σaa

b

c

Round Constants. The master round constant is generated by the primitive
polynomial X5 +X2 + 1 with the initial states (1, 1, 1, 1, 1). Choosing the first
32 bits of the sequence as the master round constant, for the i-th round RCi is
obtained by shifting the master round constant to the left by i bits (0 ≤ i ≤ 15).

Mixing operation. The two mixing steps are denoted as σa(a) = a ⊕ (a <<<
110) ⊕ (a <<< 87) and σc(c) = c ⊕ (c <<< 118) ⊕ (c <<< 88). We refer to the
inverses of σa, σc as σ−1

a , σ−1
c , which are similar rotation-invariants but need

more operations.



2.3 Frit used in duplex authenticated encryption mode
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Fig. 1. Fritβα-AE

Similar to Ketje [3] and Ascon [6], we use Frit to design authenticated en-
cryption by using the duplex authenticated encryption mode [13] as shown in
Figure 1. We denote it as Frit-AE. Our attack target is the initialization phase
of Frit-AE, as shown in Figure 2. In the initialization phase, the input of 16-
round Frit is a 384-bit concatenation of 128-bit key (one limb) and 256-bit nonce
(two limbs). Then, a 128-bit limb is XORed with 128-bit plaintext and output
the 128-bit ciphertext. Since there are three limbs (a, b, c) in the state of Frit,
nine possible versions for the initialization phase with different limb positions
of the 128-bit key and 128-bit ciphertext. We denote them as Fritβα-AE, where
α, β ∈ {a, b, c} indicate the limb positions of 128-bit key and 128-bit ciphertext,
respectively.

FritK||N

P1 C1

Fig. 2. Initialization phase of Frit-AE



3 Related Work

3.1 Cube attack

The cube attack was proposed by Dinur and Shamir in EUROCRYPT2009 [22].
The output bit of a cryptographic scheme can be denoted as a polynomial
f(k0, · · · , kn−1, v0, · · · , vm−1) over GF (2), where {k0, · · · , kn−1} are the secret
variables(the key bits) and {v0, · · · , vm−1} are the public variables(the IV or
nonce bits). We review the basic idea of [22] as Theorem 1.

Theorem 1.

f(k0, · · · , kn−1, v0, · · · , vm−1) = T · P +Q(k0, · · · , kn−1, v0, · · · , vm−1)

T is a monomial which is actually the product of some public variables {v0, · · · ,
vs−1} (1 ≤ s ≤ m), denoted as cube CT . None of the monomials in Q is divisible
by T . P is called superpoly, which does not involve any variables of CT . Then
the sum of f over all values of the cube CT (cube sum) is∑

v′=(v0,··· ,vs−1)∈CT

f(k0, · · · , kn−1, v
′, v0, · · · , vm−1) = P

where CT contains all binary vectors of the length s, and {vs, · · · , vm−1} are
fixed to constant.

The basic idea is to find enough T whose P is linear and not a constant, so as
to recover key through solving a system of linear equations.

3.2 Dynamic Cube attack

Dynamic cube attack was introduced by Dinur and Shamir in FES2011 [23]. The
basic idea is to simply a complex polynomial P :P = P1P2+P3 to the simple P3.
The P1 contains a linear public term called a dynamic variable, which can be 0
if the dynamic variable is assigned with a function of some secret variables and
cube variables. Thus P is simplified to a lower degree. The right guess of key
bits in dynamic variable will lead to zero cube sums of P with high probability,
otherwise the cube sums will be random.

3.3 Conditional Differential Cryptanalysis

Knellwolf, Meier and Naya-Plasenciaa [21] applied conditional differential char-
acteristic to NFSR-based constructions and extended to higher order differential
attacks at ASIACRYPT 2010. The input of a synchronous stream cipher is an
IV and a key. Suppose that the keystream for many chosen IV s under the same
secret key can be observed. By imposing specific conditions on certain bits of
the IV , the attacker can control the propagation of a difference through the
first few-round of the initialization process. Taking IV pairs conformed to these
conditions as input, the resulting keystream differences will present a bias. Addi-
tionally, conditions upon key define classes of weak keys. The authors classified
the conditions into three types:



– Type 0 conditions only involve public bits;
– Type 1 conditions involve both public bits and secret bits;
– Type 2 conditions only involve secret bits.

3.4 Conditional Cube Attack

Conditional cube attack [16] was proposed by Huang et al. at EUROCRYPT
2017 to attack Keccak keyed mode. Inspired by dynamic cube attack [22], which
reduces the degree of output polynomials of cube variables by adding some bit
conditions on the initial value (IV ), they reduce the degree by appending key
bit conditions. The conditions used by Huang et al. are the Type 1 conditions
from Sect. 3.3, which involve both public bits and secret bits.

4 Key-dependent cube attack

Different from conditional cube attack, the key-dependent cube attack do not
require the conditions to be dependent on public bits, it only involves Type
2 conditions. In duplex authenticated encryption mode, such as Ketje, Ascon
and Fritβα-AE, the initialization phase produces l-bit output. Each of the output
bits is written as a polynomial fi(k0, ..., kn−1, v0, ..., vm−1), i = 0, 1, ..., l − 1.
Choose a common cube CT , e.g (v0, ..., vs−1), 1 ≤ s ≤ m, then fi = T · Pi +Qi,
i = 0, 1, ..., l − 1. In our key-dependent cube attack, a common divisor of Pi is
found, which is a polynomial g(k0, ..., kn−1) that only involved some key bits.
The cube sum of fi over all values of the cube CT is Pi = g(k0, ..., kn−1) · P ′

i ..
Then the Corollary 1 is given.

Corollary 1. Given a series of polynomials fi (i ∈ {0, 1, ..., l − 1}):{0,1}n →
{0,1}.

f0(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1) · P ′
0 +Q0

f1(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1) · P ′
1 +Q1

...

fl−1(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1) · P ′
l−1 +Ql−1

(1)

where none of the monomials in Qi(x) is divisible by T . Then the sums of fi
(i ∈ {0, 1, ..., l − 1}) over all values of the cube (cube sum) are

∑
v′∈CT

f0(k0, ..., kn−1, v
′, vs, ..., vm−1) = g(k0, ..., kn−1) · P ′

0∑
v′∈CT

f1(k0, ..., kn−1, v
′, vs, ..., vm−1) = g(k0, ..., kn−1) · P ′

1

...∑
v′∈CT

fl−1(k0, ..., kn−1, v
′, vs, ..., vm−1) = g(k0, ..., kn−1) · P ′

l−1

(2)

where the CT contains all binary vectors of the length s, other public variables
vj , j ∈ {s, s+ 1, ...,m− 1} are constants.



The following Property 1 is easy to get.

Property 1 If g = 0, cube sums of fi (i ∈ {0, 1, ..., l − 1}) will be all 0 with
probability 1.

Assumption 1 If g = 1, cube sums of fi (i ∈ {0, 1, ..., l−1}) will be determined
by P ′

i (i ∈ {0, 1, ..., l − 1}), the cube sums of fi (i ∈ {0, 1, ..., l − 1}) all equal to
0 with probability about 2−l if fi (i ∈ {0, 1, ..., l − 1}) is a random oracle.

According to Property 1 and Assumption 1, we introduce the cube tester,
which has the Property 2 and Assumption 2.

Property 2 If at least one nonzero cube sum occurs among the cube sums of
fi (i ∈ {0, 1, ..., l−1}), we will determine that g = 1. It is guaranteed to be right.

Assumption 2 If the cube sums of fi (i ∈ {0, 1, ..., l − 1}) all equal to 0, we
will determine that g = 0. Note that, in a random oracle, g = 0 is wrong with
probability of 2−l, because P ′

i is zero with probability of about 1
2 .

In our paper, with the help of MILP method, we could find many different key-
dependent gs corresponding to different cubes, which are all linear with key bits.
At last, we could recover the full key by solving a set of linear equations on key
bits.

5 Key-dependent cube attack on Fritβb -AE

In this section, we first review the algebraic property of Frit analyzed in [10,15].
Then according to our observation of some properties, we give key-dependent
cube attack on three versions of rounded-reduced Fritβb -AE.

5.1 Algebraic property of Frit

The only nonlinear operation of Frit is a bitwise ⊙, so the round function’s
degree is 2. Let Fritr denote the r-round Frit and

(ar, br, cr) = Frit1(ar−1, br−1, cr−1) = Fritr(a0, b0, c0).

We obtain the following properties:

deg ar ≤ max(deg cr−1,deg ar−1 + deg br−1),

deg cr ≤ max(deg ar, deg br−1, deg cr−1),

deg br = deg ar−1.

Setting the deg a0 = deg b0 = deg c0 = 1, we can observe that the degrees of
ar, br, cr follow the Fibonacci sequence Fr = Fr−1 + Fr−2 (F0 = 0, F1 = 1). By



induction that deg ar−1 ≤ Fr+1, deg br−1 ≤ Fr and deg cr−1 ≤ Fr+1, we deduce
that

deg ar ≤ deg ar−1 + deg br−1 ≤ Fr+1 + Fr = Fr+2,

deg cr ≤ deg ar ≤ Fr+2,

deg br = deg ar−1 ≤ Fr+1.

The degrees of limbs ar, br, cr for first 10-round are listed in Table 2.

Table 2. Degrees of limbs ar, br, cr

r 0 1 2 3 4 5 6 7 8 9 10

deg ar 1 2 3 5 8 13 21 34 55 89 144
deg br 1 1 2 3 5 8 13 21 34 55 89
deg cr 1 2 3 5 8 13 21 34 55 89 144

5.2 New attacks on Fritβb -AE

Consider the 128-bit key K putting in limb b0 as Figure 3, which is denoted as
Fritβb -AE. Then the 256-bit nonce can be put in limbs a0 and c0. It is easy to
find that the output expressions of a2, b2, c2 of 2-round Frit are linear if we keep
the limb a0 to constants and set variables to limb c0.

.

σc

σa

.

σc

σav¢

( )
a
vs ¢

K

2a

2b

2c
1 1( )
c a

vs s
- -

( ( ))
a c a

v K vs s s ¢+ ( ))
a c a

(( ¢

Fig. 3. 2-round initial structure of Fritβb -AE

Set variable vector v′ to limb a0 and σ−1
c σ−1

a (v) to limb c0. It is clear that the
expressions of a1,b1,c1 of 1-round Frit are linear, and b2 = v+ σaσc(K ⊙ σa(v

′))
is linear too. To linearize a2 and c2, we need to keep that the expression b1⊙b2 =
σa(v

′)⊙ v + σa(v
′)⊙ σaσc(K ⊙ σa(v

′)) doesn’t have quadratic terms. That is,

1. For expression σa(v
′) ⊙ v, we need to keep that each vi (0 ≤ i ≤ 127) is

not multiplied by v′j (0 ≤ j ≤ 127) after mixing operation σa. So if v′j is



chosen as a cube variable, variables vj , v(j+18)%128 and v(j+41)%128 need to
be constants due to the diffusion property of σa.

2. For expression σa(v
′)⊙σaσc(K⊙σa(v

′)), the quadratic term gi,j(K)v′iv
′
j(i ̸=

j) depends on some relative bits of K. For a certain K, if all gi,j(K) = 0, the
expression is linear. In the attack procedure, we can set some v′is to constants
to reduce the num of bit conditions gi,j(K).

3. By carefully choosing some variables vi and v′j and setting others to con-
stants, we ensure that there are no quadratic terms viv

′
j in b1 ⊙ b2. For all

the quadratic terms gi,j(K)v′iv
′
j : if gi,j(K) = 0 or at least one of v′i, v

′
j is

constant, the degree of a2, c2 is 1; otherwise the degree is 2.

According to the above observation, assigning variables vi,v(i+18)%128,v(i+41)%128,
v(i+1)%128,v(i+19)%128, v(i+42)%128 and v′i(0 ≤ i ≤ 127) to constants except for
v′i and v′(i+1)%128, the only quadratic term of a2, c2 is K(i+1)%128v

′
iv

′
(i+1)%128.

Adding r-round after the 2-round initial structure of Figure 3, we try to attack
the (r + 2)-round Fritbb-AE as an example. We choose v′i, v

′
(i+1)%128 and other

Fr+1−1 variables in v as a (Fr+1+1)-dimension cube Ci. If K(i+1)%128 = 0, the
expressions of a2, b2 and c2 are linear, and the degree of br+2 is Fr+1 according to
Table 2. If K(i+1)%128 = 1, the expressions of a2 and c2 have only one quadratic
term K(i+1)%128v

′
iv

′
(i+1)%128. According to our experimental attacks on 9-round

Fritbb-AE in Sect. 5.3, the expression of br+2 has terms of degree Fr+1+1, which
must involve K(i+1)%128v

′
iv

′
(i+1)%128. By calculating the sums of all bit positions

of the output limb after (r + 2)-round Frit over all values of the cube Ci (cube
sum), we can recover the value of K(i+1)%128: if the cube sums of all bit posi-
tions of the output limb are 0, K(i+1)%128 = 0; otherwise K(i+1)%128 = 1. For
Fritab -AE and Fritcb-AE, we can test the terms of degree Fr+2 + 1 to recover the

key. The key-dependent attack on r+2-round Fritβb -AE is concluded as follows:

1. First set the cube’s dimension d = Fr+1 + 1 (β = b) or Fr+2 + 1 (β =
a, c) and cube variables set Ci = {v′i, v′(i+1)%128, vj0 , · · · , vjd−3

}, where set

{j0, · · · , jd−3} doesn’t have any elements of {i, (i+18)%128, (i+41)%128, (i+
1)%128, (i+ 19)%128, (i+ 42)%128}.

2. Assign the other variables of v, v′ except for the cube Ci to constants 0 and
calculate the cube sums of the whole 128 bit positions of the output limb
after r+2-round Frit over all values of the cube Ci. If all the 128 cube sums
are 0, we take the K(i+1)%128 as 0, otherwise K(i+1)%128 = 1.

3. The time complexity of recovering 1-bit key is 2d, and the time to get the
whole 128-bit key is 2d × 27 = 27+d by traversing i from 0 to 127.

According to Table 2, we can apply key-dependent attack to no more than 12-
round Fritbb-AE, 11-round Fritab -AE and Fritcb-AE. We give the experiments on
9-round Fritbb-AE and 10-round Fritbb-AE with time complexity 229 and 242. Then
the cube variables for attacking 11-round Fritbb-AE and 12-round Fritbb-AE with
time complexity 263 and 297 are given in Table 6 and Table 7.



5.3 Experiments on 9-round Fritbb-AE

We do experiments on the 9-round Fritbb-AE to verity our attack results. Us-
ing the 2-round initial structure in Figure 3, we can use a (F8 + 1)-dimension
(22-dimension) cube to recover 1-bit K. According to the attack procedure in
Sect. 5.2, the cube variables for recovering K1 are listed in Table 3. To recover
Ki (0 ≤ i ≤ 127), the cube variables needed are the variables in Table 3 by
adding i − 1 to the indexes in GF (27). We give several examples of the recov-
ered 1-bit key and corresponding 128-bit cube sums for some random keys in
Table 4, using the cube variables in Table 3. The details of the experiments refer
to https://github.com/qly14/FritAE.git.

Table 3. Cube variables of 9-round Fritbb-AE

Key Deg Cube variables

K1 22
v′0, v

′
1, v2, v3, v4, v5, v6, v7, v8, v10, v11, v12

v13, v14, v15, v16, v17, v20, v21, v22, v23, v24

We test about 100 random keys, and the success rate of recovering the whole
128-bit key is 100%. The time complexity of our attack on 9-round Fritbb-AE is
229, which only needs about 7 minutes on a personal computer.

Experiments on 8-round Fritab -AE and Fritcb-AE. Due to the property that a8 =
σ−1
a (b9) and c8 = a8 + a7 + b7, the terms of degree 22 that we test in b9 are

also existed in the expressions of a8 and c8. So using the same cube as Table 3,
we can make key-recovery attack on 8-round Fritab -AE and Fritcb-AE. The only
difference is that the cube sums are calculated by all bit positions of limb a8 or
c8. So with time complexity 229, we can make key-recovery attack on 8-round
Fritab -AE and Fritcb-AE with success rate 100%.

Table 4. Experimental results of 9-round Fritbb-AE

1-bit key 128-bit random key Cube sums

K1 = 0 0x1c93b7ae 81cf5ca8 644a0463 0c41db9e 0x00000000 00000000 00000000 00000000
K1 = 1 0xe58ec52a 3b3fccf2 17d04d42 4618e031 0x0800c010 20000040 00000000 00802020
K2 = 0 0x05ab60a7 fe41288e 69983eed 4ae9fe4c 0x00000000 00000000 00000000 00000000
K2 = 1 0xe96f359e 26ace184 1565c5cb 0fe1b095 0x04006008 10000020 00000000 00401010
K3 = 0 0x8047f929 e59445dc 0d13ea46 60acb0ec 0x00000000 00000000 00000000 00000000
K3 = 1 0xb3e808b5 a9094cb4 1064fa84 339eac56 0x02003004 08000010 00000000 00200808



5.4 Experiments on 10-round Fritbb-AE

Adding 8-round Frit after the 2-round initial structure, we can attack 10-round
Fritbb-AE using the (F9+1)-dimension (35-dimension) cube. Similar to the attack
on 9-round Fritbb-AE, we give the cube variables for recovering the K1 of the 10-
round Fritbb-AE in Table 5.

Table 5. Cube variables of 10-round Fritbb-AE to recover K1

Key Deg Cube variables

K1 35
v′0, v

′
1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17

v20, v21, v22, v23, v24, v25, v26, v27, v28, v30, v31, v32, v33, v34, v35, v36, v37

The time complexity is 235 for recovering 1-bit key and 242 for all 128-bit
key. Limited to the personal computer power, we only try to recover K1 for a
certain key as an example. The success rate of testing 10 random keys is 100%,
and recovering each 1-bit key needs about 8 hours. We notice that the same cube
can be used to attack 9-round Fritab -AE and Fritcb-AE. The time complexity and
success rate is same with the case of 10-round Fritbb-AE.

5.5 Attack on 11-round Fritbb-AE

Using the 2-round initial structure we can choose the 56-dimension cube to
attack the 11-round Fritbb-AE. The time complexity of recovering 128-bit key
is 256 × 27 = 263. The cube variables to recover K1 for 11-round Fritbb-AE are
given in Table 6. We can apply same attack procedure to 10-round Fritab -AE and
10-round Fritcb-AE with complexity 263.

Table 6. Cube variables of 11-round Fritbb-AE to recover K1

Key Deg Cube variables

K1 56
v′0, v

′
1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v20, v21

v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39,
v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v56, v57, v59, v60, v61, v62

5.6 Attack on 12-round Fritbb-AE

Similar to the previous attack, the 90-dimension cube can be used to attack
12-round Fritbb-AE, 11-round Fritab -AE and 11-round Fritcb-AE with complexity
290×27 = 297. The cube variables to recover K1 for 12-round Fritbb-AE are given
in Table 7 as an example.



Table 7. Cube variables of 12-round Fritbb-AE to recover K1

Key Deg Cube variables

K1 90

v′0, v
′
1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v20, v21

v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39,
v40, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v56, v57, v58, v59, v60
v61, v62, v63, v64, v65, v66, v67, v68, v69, v70, v71, v72, v73, v74, v75, v76, v77, v78

v79, v80, v81, v82, v83, v84, v85, v86, v87, v88, v89, v90, v91, v92, v93, v94

6 Key-dependent cube attack on Fritβa-AE and Fritβc -AE

In this section, we discuss the key-dependent cube attack on Fritβa -AE and Fritβc -
AE.

6.1 New attacks on Fritβa-AE

The cipher Fritβa -AE sets the 128-bit key K to limb a0 as Figure 4 and the
256-bit nonce to limbs b0 and c0. We give a 3-round initial structure by keeping
the limb b0 to constants 0 and setting σ−1

c σ−1
a (v) to limb c0. After 2-round Frit

the output expressions of a2, b2, c2 are linear with v. To linearize the output
expressions of a3, c3, the expression b2 ⊙ b3 = σaσc(σa(K) ⊙ v + σ−1

a (v)) ⊙ v
should not involve quadratic terms.
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Fig. 4. 3-round initial structure of Fritβa -AE

We notice that the mixing operation σ−1
a is much more complicated than σa,

where σ−1
a has 65 rotations but σa only has 3 rotations. Both the mixing oper-

ation σa and σc can be regarded as cyclic matrices, which are also commutative
matrices. So it is clear that

σaσc(σa(K)⊙ v + σ−1
a (v))⊙ v = σaσc(σa(K)⊙ v)⊙ v + σaσc(σ

−1
a (v))⊙ v

= σaσc(σa(K)⊙ v)⊙ v + σcσa(σ
−1
a (v))⊙ v

= σaσc(σa(K)⊙ v)⊙ v + σc(v)⊙ v.



Without the complicated mixing operation σ−1
a , it’s easier to guarantee there

are no quadratic terms in b2 ⊙ b3 = σaσc(σa(K) ⊙ v) ⊙ v + σc(v) ⊙ v. We use
the MILP(mixed-integer linear programming) to solve the problem of finding
variables of v which don’t multiply with each other as many as possible. The
successful applications of MILP involve counting active Sboxes of word-based
block ciphers introduced by Mouha et al. [24] and searching differential and linear
trails introduced by Sun et al. [25], etc. Then Li et al. give a new MILP model
to improve the key-recovery attack on Keccak [18]. In our MILP model, each
variable vi (i ∈ [0, 127]) is assigned with a variable xi ∈ {0, 1}. Then the case xi =
1 represents that vi can be chosen as a cube variables candidate. We generate
the constraints set F of {xi} to guarantee there are no quadratic terms in a3, c3
as Algorithm 2. For each term vivj in expression σaσc(σa(K)⊙v)⊙v+σc(v)⊙v,
if the coefficient gi,j(K) of vivj(i ̸= j) is not 0, we add a constraint xi + xj ≤ 1
to F . (Notice that the coefficient of vivj(i ̸= j) can not be constant 1.)

Algorithm 2 Generating Constraints on v to linearize a3, c3
Input: Variables set v = {vi} (i ∈ [0, 127])
Output: A set F of constraints
F = ∅
Exp = σaσc(σa(K)⊙ v)⊙ v + σc(v)⊙ v
for each i ∈ [0, 127] do

for each j ∈ [i+ 1, 127] do
if gi,j(K)vivj ∈ Exp and gi,j(K) ̸= 0 then

F ← F ∪ {xi + xj ≤ 1}
end if

end for
end for
return F

Our problem is modeled into a binary linear programming problem:

Maximize

127∑
i=0

xi

s.t. AX ≤ b, X = {xi|xi ∈ {0, 1}, 0 ≤ i ≤ 127}

where the AX ≤ b describe the constraints set F . Using the Gurobi Optimiz-
er [26] to solve the problem, we get the first two optimum solutions and the
corresponding index sets of v are listed in Table 8. Every variable vi in each set
will not multiply with each other in the same set. In the following we will use the
Index 0 to introduce the basic idea of our attack. (The Index 0 can be replaced
with Index 1 to get different bit conditions of K.)

The output limbs a3 and c3 can be linear by assigning the other variables
{vi} to constants 0 if i (0 ≤ i ≤ 127) is not involved in Index 0. Then setting
one variable vj (j /∈ Index 0) to be a cube variable(not a constant), we can get



Table 8. Index sets of independent variables

Set Num Values

Index0 29
0, 1, 7, 8, 15, 16, 23, 30, 31, 38, 39, 45, 46, 53, 60, 61,
68, 69, 75, 76, 83, 91, 98, 99, 105, 106, 113, 114, 121

Index1 28
0, 1, 2, 9, 16, 23, 24, 25, 31, 32, 39, 46, 54, 55, 61, 62,
69, 84, 85, 91, 92, 98, 99, 107, 114, 115, 121, 122

some quadratic terms gi,j(K)vivj(i ∈ Index 0), where gi,j(K) is not a constant.
The two cases gi,j(K) = 0 and gi,j(K) = 1 can be distinguished by some cube

testers, which are similar to the attack on Fritβb -AE. So we can get some bit
conditions to recover the secret key. By testing different cube sums to get 128
linearly independent bit conditions we can recover the 128-bit key.

Algorithm 3 Generating bit conditions and corresponding cube variables

Input: A set Index, the dimension d
Output: A list Bc of bit conditions and a list CT of corresponding cube variables
Bc = [ ]
CT = [ ]
Exp = σaσc(σa(K)⊙ v)⊙ v + σc(v)⊙ v
for each j ∈ [0, 127] \ Index do

V0 = ∅
V1 = [ ]
for each i ∈ Index do

if gi,j(K)vivj ∈ Exp and gi,j(K) ̸= 0 then
V0 ← V0 ∪ {i}
if gi,j(K) and (gi,j(K) + 1) not in Bc then

Add i to V1

Add gi,j(K) to Bc

end if
end if

end for
for each i ∈ V1 do

cube = {j, i} ∪ {km|km ∈ Index \ V0, 0 ≤ m ≤ d− 3}
Add cube to CT

end for
end for
return Bc, CT

The procedure to attack r + 3-round Fritβa -AE is concluded as follows.

1. First set the cube’s dimension d = Fr+1 + 1(β = b) or Fr+2 + 1(β = a, c).
Adding vj(j /∈ Index 0) to the cube variables set, we can choose one quadratic
term gi,j(K)vivj(i ∈ Index 0) from c3 and add vi to the cube variables set.
The other d − 2 cube variables are choosing from Index 0, which are not



multiplied with vj . That is, we obtain a d-dimension cube to recover one bit
condition gi,j(K).

2. Assign the other variables of v to constants 0 except for the cube variables
and calculate the cube sum of the whole 128 bits output after r + 3-round
Frit. If all the 128 cube sums are 0, we take the gi,j(K) as 0, otherwise
gi,j(K) = 1.

3. The time complexity of recovering 1 bit condition ofK is 2d. By changing the
value of j and relative quadratic term gi,j(K)vivj , we can generate different
cube variables to recover different gi,j(K). We can get 128 linearly indepen-
dent bit conditions and solve the set of equations to recover the 128-bit key.
We introduce the details to choose different bit conditions and corresponding
cube variables in Algorithm 3. The time complexity is 2d × 27 = 27+d.(The
time to solving the linear system can be omitted.)

We notice that the cube’s dimension d needs to be less than the size of set
Index 0 (or Index 1). So our attack can be applied to no more than 10-round
Fritba-AE and 9-round Fritaa-AE or Fritca-AE with d = 22. We give the details of
our attack on Fritba-AE as an example, and the attack procedures for Fritaa-AE
or Fritca-AE are similar.

Experiments on 10-round Fritba-AE. Applying the 3-round initial structure in
Figure 4 to the 10-round Fritba-AE, we can use the 22-dimension cube to get
some bit conditions of K. For example, setting j = 4 (v4 is a cube variable),
there are three quadratic terms in the expressions of c3 and a3:

(K4 +K91 +K114)v4v45, (K50 +K73 +K91)v4v91, (K73 +K96 +K114)v4v114.

Keeping only one variable in set {v45, v91, v114} to be a cube variable, there
is only one quadratic term in the expressions of c3 and a3. We can get 1 bit
condition of K by testing one cube. The examples of the bit conditions and
relative cube variables are listed in Table 9.

Table 9. Bit conditions and cube variables of 10-round Fritba-AE

Bit conditions Deg Cube variables

K4 +K91 +K114 22
v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39
v45, v46, v53, v60, v61, v68, v69, v75, v76, v83

K50 +K73 +K91 22
v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39
v46, v53, v60, v61, v68, v69, v75, v76, v83, v91

K73 +K96 +K114 22
v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39
v46, v53, v60, v61, v68, v69, v75, v76, v83, v114

All the 128 bit conditions and corresponding cube variables can be found by
Algorithm 3 using SageMath [27]. Then solving a set of 128 linear equations we
can recover the 128-bit key. Testing about 100 random keys has a success rate
of 100%, and recovering each key needs about 8 minutes with time complexity
229.



6.2 New attacks on Fritβc -AE

Set the 128-bit key K to limb c0 and the 256-bit nonce to limbs a0 and b0 as
Figure 5. We give a 4-round initial structure of Fritβc -AE by keeping the limb
a0 to constants 0 and setting σ−1

c σ−1
a (v) to limb b0. After 3-round Frit the

expressions of a3, b3, c3 are linear with v.
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Fig. 5. 4-round initial structure of Fritβc -AE, K∗ = σaσc(σaσcσc(K)⊙ σaσc(K))

To linearize the output expressions of a4 and c4, the expression b3⊙b4 should
not involve quadratic terms. By the conclusion σaσc(σ

−1
a (v)) = σc(v) of Sect. 6.1,

there needs that the expression σaσc(σaσc(K)⊙ v)⊙ v+σc(v)⊙ v to be linear if
we only consider the linear parts of b3 and b4 for simplicity.(It should be noted
that the K in the expression actually is K ⊕ RC0.) Comparing this expression
with σaσc(σa(K) ⊙ v) ⊙ v + σc(v) ⊙ v in Sect. 6.1, the only difference is the
coefficient gi,j(K) of each term vivj . We can apply the same analysis to Fritβc -
AE, and the details are not repeated here. The procedure to attack r+ 4-round
Fritβc -AE is similar with the procedure to attack r + 3-round Fritβa -AE given in
Sect. 6.1. We notice that only the 128 independent equations used to recover
the 128-bit key are different. As a result, we can attack 11-round Fritbc-AE and
10-round Fritac -AE and Fritcc-AE with time complexity 229. We give the details
of the attack procedure on Fritbc-AE as an example.

Experiments on 11-round Fritbc-AE. Applying the 4-round initial structure in
Figure 5 to the 11-round Fritbc-AE, we can use a 22-dimension cube to get 1 bit
condition of K, which is similar to the experiment on 10-round Fritba-AE. The
three examples of recovering 1 bit condition are listed in Table 10. It is clear
that the only differences are the bit conditions, which are recovered by the same
cube variables. Recovering 128-bit K needs to solve a set of 128 linear equations,
which are also can be calculated by Algorithm 3. After get 128-bit key, the last
step is calculating K ⊕ RC0 to get the original secret key. Testing about 100
random keys also has a success rate of 100% in about 8 minutes each.



Table 10. Bit conditions and cube variables of 11-round Fritbc-AE

Bit conditions Deg Cube variables

K4 +K51 +K74 +K81 +K91 22
v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

+K92 +K104 +K114 +K122 v45, v46, v53, v60, v61, v68, v69, v75, v76, v83
K10 +K33 +K40 +K50 +K51

22
v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

+K63 +K73 +K81 +K91 v46, v53, v60, v61, v68, v69, v75, v76, v83, v91
K33 +K56 +K63 +K73 +K74 22

v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39
+K86 +K96 +K104 +K114 v46, v53, v60, v61, v68, v69, v75, v76, v83, v114

7 Conclusion

In this paper, we partially answer the open question by Dobraunig et al. and
give some key-recovery attacks on the rounded-reduced Frit used in duplex au-
thenticated encryption mode (Fritβα-AE). Our results cover all the versions of
Fritβα-AE and include some practical key-recovery attacks that could recover the
key within several minutes. In the future, we will try to study the hash function
mode of Frit, i.e. Frit with sponge.
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Ascon v1. 2. Submission to the CAESAR Competition, 2016.

7. Shay Gueron and Nicky Mouha. Simpira v2: a family of efficient permutations using
the aes round function. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 95-125. Springer, 2016.

8. Daniel J Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Flo-
rian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, Fran?cois-Xavier S-
tandaert, Yosuke Todo, et al. Gimli: a cross-platform permutation. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 299-320.
Springer, 2017.

9. Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. Xoodoo
cookbook. Technical report, Cryptology ePrint Archive: Report 2018/767, 2018.
https://eprint. iacr. org/2018/767, 2018.



10. Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat Cos-
ta Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels Samwel.
Towards lightweight cryptographic primitives with built-in fault-detection. Cryp-
tology ePrint Archive, Report 2018/729, 2018. https://eprint.iacr.org/2018/729.

11. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudo-
random permutation. In International Conference on the Theory and Application
of Cryptology, pages 210-224. Springer, 1991.

12. Guido Bertoni, Joan Daemen, and Gilles Van Assche. On the indifferentiability of
the sponge construction. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 181-197, 2008.
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