
Updatable Anonymous Credentials and
Applications to Incentive Systems
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Abstract

We introduce updatable anonymous credential systems UACS and use them to construct a
new privacy-preserving incentive system. In a UACS, a user holding a credential certifying
some attributes can interact with the corresponding issuer to update his attributes. During
this, the issuer knows which update function is run, but does not learn the user’s previous
attributes. Hence the update process preserves anonymity of the user. One example for a class
of update functions are additive updates of integer attributes, where the issuer increments an
unknown integer attribute value v by some known value k. This kind of update is motivated by
an application of UACS to incentive systems. Users in an incentive system can anonymously
accumulate points, e.g. in a shop at checkout, and spend them later, e.g. for a discount.

In this paper, we (1) formally define UACS and their security, (2) give a generic construction
for UACS supporting arbitrary update functions, and (3) construct a new incentive system using
UACS that is efficient while offering offline double-spending protection and partial spending.

Keywords: Anonymous Credentials, Updatable Anonymous Credentials, Privacy, Incentive System,
Incentive Collection, Customer Loyalty Program

1 Introduction

Updatable anonymous credential systems. Anonymous credential systems provide a privacy-
preserving way of authentication in contrast to the standard authentication through identification
via username and password. Authentication with identifying information allows service providers to
collect and exchange user-specific data to build a comprehensive user profile without the user’s consent.
Anonymous credentials mitigate such problems, provide anonymity, and support authentication
policies [BCKL08, BBB+18, CL01, CL04, DMM+18]. A credential is parameterized with a vector
of attributes (e.g., birth date, affiliation, subscription end) and when authenticating, users
can prove possession of a credential that fulfills a certain access policy (e.g., “affiliation =
university or subscription end > [today]”) without revealing anything about the attributes
except that they fulfill the access policy.

An extended abstract of this paper appears in the proceedings of CCS’19, ACM.
This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research
Centre “On-The-Fly Computing“ under the project number 160364472 – SFB 901/3.
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While authentication is perfectly anonymous in an anonymous credential system, the issuer
of a credential always learns the credentials’ plaintext attributes. Suppose that a user wants to
extend a subscription for which she has a credential as described above. To extend the subscription
in a traditional anonymous credential system, she would reveal all her attribute values to the
issuer, who would then issue a new credential containing her old attributes and the newly updated
subscription end value. This means that updating attributes is not privacy-preserving.

To solve this problem, we introduce updatable anonymous credential systems (UACS). A UACS
has, in addition to the usual (issue and show) protocols of anonymous credential systems, an update
protocol. This allows a user to interact with a credential issuer in order to update attributes in a
privacy-preserving manner. More specifically, the update protocol takes as input an update function
ψ. The user contributes a hidden parameter α and her old credential with attributes ~A. By running
the protocol with the issuer, the user obtains a new credential on attributes ~A∗ = ψ( ~A, α). The
issuer only learns what update function ψ is applied, but does not learn ~A or α.

In the subscription update scenario, to add 30 days to the current subscription end, the update
function would be defined as ψ((A, subscription end), α) = (A, subscription end + 30). In this
particular case, the hidden parameter α is ignored by ψ, but we will later see update functions that
depend on α, e.g. to issue hidden attributes.

The update protocol can be efficiently realized using only building blocks already used by most
anonymous credential constructions: Zero-knowledge proofs, commitments, and blind signature
schemes with efficient “signing a committed value” protocols.

The idea to implement the UACS update protocol between a user and issuer is as follows: A user’s
credential on attributes ~A is a digital signature on ~A by the issuer. The user prepares the update by
computing her updated attributes ~A∗ = ψ( ~A, α) and committing to ~A∗. The user then proves that
she possesses a valid signature on her old attributes ~A under the public key of the issuer and that
she knows α such that the commitment can be opened to ψ( ~A, α). Afterwards, issuer and user run
a blind signature protocol to jointly compute a signature on the committed ~A∗ (i.e. the updated
attributes) without revealing ~A∗ to the issuer.

The lack of privacy-preserving updates (as explained above) limits the usefulness of anonymous
credentials in several practical applications, such as service subscription management and point
collection. In such applications, attributes (such as the subscription end or collected point total) are
routinely updated and users would prefer not to be tracked through these updates. As a specific
example of what UACS enables, we look at incentive systems, which is essentially a point collection
application.

Incentive systems. An incentive system allows users to collect points (e.g., for every purchase
they make), which they can redeem for bonus items or discounts. Such systems aim at reinforcing
customer loyalty and incentivize certain behavior through points. In practice, such systems are
centralized services, e.g. German Payback [PAY19] and American Express Membership Rewards
program [Ame19]. In order to earn points for a purchase, the user reveals her customer ID (e.g., by
showing a card). This means that the user’s privacy is not protected as every purchase made can be
linked to the user’s identity by the incentive system provider.

To remedy this, cryptographic incentive systems [MDPD15, JR16, HHNR17] aim at allowing users
to earn and spend points anonymously. The general idea is that users store their own points in
authenticated form (e.g., in the form of a credential).

We would expect a cryptographic incentive system to offer the following features.

• Anonymity: Providers are unable to link earn/spend transactions to users. In practice, this
protects users from having their shopping history linked to their identity and point values.

• Online double-spending protection: A user cannot spend more points than they have earned.
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Given continuous access to a central database, the provider can immediately detect double-
spending.

• Offline double-spending protection: Detecting double-spending works for stores without con-
tinuous access to a central database. Double-spending transactions can be detected and the
perpetrating user can be identified. Losses incurred by double-spending can be reclaimed from
that user.

• Partial spending: Users do not have to spend all of their points at once.

• Efficiency: The process of earning and spending points can be run on a consumer phone and is
fast enough to be accepted by users.

The current state of the art either does not have offline double-spending protection, or does not
handle the combination of partial spending and offline double-spending securely. Our system will
offer all of these features simultaneously.

We will now explain our UACS-based incentive system by constructing it step by step. As a
first sketch, let us assume that the user stores her point count v as an attribute in her credential.
When the user earns k additional points, the incentive system provider runs an update on the user’s
credential, adding k points to her current point count attribute v, i.e. they use update function
ψ((v), α) = (v + k). When the user wants to (partially) spend k ≤ v points, they run an update ψ
such that ψ((v), α) = v − k if v ≥ k and ψ((v), α) =⊥ otherwise.

Of course, this first sketch does not prevent users from double-spending their points: the spend
update operation creates a new credential with lowered point count, but there is no mechanism
that forces the user to use the new credential. She can instead keep using the old one, which
certifies a higher point count. Hence we modify the first sketch with basic online double-spending
protection: The attributes now include a random double-spend identifier dsid, i.e. attribute vectors
are of the form ~A = (dsid, v). To earn points, the update function still just increases the point
count (ψ((dsid, v), α) = (dsid, v + k)). When the user wants to spend points, she reveals her dsid
to the provider and the provider checks that her specific dsid has never been revealed to it (spent)
before. If that check succeeds, the user chooses a random successor double-spend identifier dsid∗
and sets her hidden update parameter α to dsid∗. Finally, user and provider run the update
ψ((dsid, v), α = dsid∗) = (dsid∗, v − k), embedding a new dsid∗ into the successor credential. If the
user tries to spend her old credential (with the old dsid) again, the provider will detect the duplicate
dsid. Anonymity is still preserved because dsid∗ is hidden from the provider until the credential is
spent.

However, this approach requires all stores where points can be spent to be permanently online
in order to check whether a given dsid has already been spent. As this is a problem in practice,
offline double-spending protection is desirable. The idea is that stores that are offline and have an
incomplete list of spent dsids may incorrectly accept a spend transaction, but they can later (when
they are online again) uncover the identities of double spenders. This allows the provider to recoup
any losses due to offline double-spending by pursuing a legal solution to roll back illegal transactions.
To incorporate offline double-spending protection, we additionally embed a user’s secret key usk
and a random value dsrnd into credentials, i.e. attributes are now ~A = (usk, dsid, dsrnd, v). The
update function to earn points is unchanged. To spend points, the provider now sends a random
challenge γ to the user and the user reveals c = usk · γ + dsrnd mod p (where usk, dsrnd are values
from her credential attributes). The user chooses new hidden random dsid∗, dsrnd∗ for its successor
credential and then runs the update for ψ((usk, dsid, dsrnd, v), α = (dsid∗, dsrnd∗)) = (usk, dsid∗,
dsrnd∗, v − k). As long as a credential is only spent once, usk is perfectly hidden in c. If the user
tries to spend the same credential a second time, revealing c′ = usk · γ′ + dsrnd mod p for some
different challenge γ′, the provider can compute usk from c, c′, γ, γ′, identifying the double-spender.
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This last description comes close to the scheme we present in this paper. However, one problem
remains to handle: assume some user double-spends a credential on attributes (usk, dsid, dsrnd,
v). For both spend transaction, she receives a remainder amount credential as the successor with
attributes ~A∗ = (usk, dsid∗, dsrnd∗, v − k). While both transactions will be detected as double
spending and the user’s key is revealed, the user can keep using both remainder amount credentials
anonymously, allowing her to spend 2 · (v − k) > v points. To prevent this, we need a mechanism
that allows us to recognize remainder amount credentials that were derived from double-spending
transactions. This can be achieved by forcing the user to reveal an encryption ctrace of dsid∗ under
usk when spending points. As soon as a user double-spends, the provider can compute usk as above.
With it, he can decrypt all ctrace for that user, allowing him to find out what dsids have been
derived from double-spending transactions of the double-spending user. Consequently, the user can
be held accountable for spending remainder tokens derived from double-spending transactions.

Related work on anonymous credential systems. There is a large body of work on anonymous
credential systems, extending the basic constructions [BCKL08, CL01, CL04, PS16] with additional
features such as revocation [CKS10, CL01], controlled linkability and advanced policy classes
[BBB+18], hidden policies [DMM+18], delegation [BB18, CDD17], and many others. Our notion of
privacy-preserving updates on credentials, in its generality, is a new feature (although the general
idea of privacy-preserving updates has been briefly sketched before [NDD06]). We show how to
efficiently extend the standard blind-signature-based construction of anonymous credentials with
updates, which makes our update mechanism compatible with a large part of features presented in
existing work (with the exception of [DMM+18], which does not rely on blind signatures).

The scheme in [CKS10] allows issuers to non-interactively update credentials they have issued.
In contrast to our updatable credentials, their update cannot depend on hidden attributes and the
issuer learns all attributes issued or updated. Their update mechanism is mostly aimed at providing
an efficient means to update revocation information, which is controlled by the issuer. Updatable
credentials in the sense of our paper allow for the functionality in [CKS10] as well (although in our
system, updates are done interactively between user and issuer). However, beyond that, our updates
can depend on hidden attributes of the user and the issuer does not learn the attributes resulting
from the update.

More technically similar to our updatable credential mechanism are stateful anonymous credentials
[CGH11, GGM14]. A stateful credential contains a state. The user can have his credential state
updated to some successor state as prescribed by a public state machine model. For this, the user
does not have to disclose his current credential state. Such a state transition is a special case of an
update to a state attribute in an updatable credential. In this sense, our construction of updatable
credentials generalizes the work of [CGH11].

Related work on incentive systems. Existing e-cash systems are related to incentive systems,
but pursue different security goals [CHL05]. E-cash does not support the accumulation of points
within a single token. Instead, each token corresponds to a coin and can be identified. To spend a
coin, a user transfers it to another owner. In incentive systems, a number of points is accumulated
into a single token (i.e. the token is like a bank account rather than a coin).

A cryptographic scheme that considers the collection of points in a practical scenario is described
by Milutinovic et al. in [MDPD15]. Their scheme uCentive can be seen as a special e-cash system,
where a so called uCent corresponds to a point. The user stores and spends all uCents individually,
which induces storage and communication cost linear in the number of uCents (hence efficiency
is restricted). Similar to our system, uCentive builds upon anonymous credentials (but without
updates) and commitments, but they do not offer offline double-spending protection.

Jager and Rupp [JR16] introduce black-box accumulation (BBA) as a building-block for incentive
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systems. They formalize the core functionality and security of such systems based on the natural
requirement that users collect and sum up values in a privacy-preserving way. In detail, they
present a generic construction of BBA combining homomorphic commitments, digital signatures,
and non-interactive zero-knowledge proofs of knowledge (Goth-Sahai proofs [GS08]). The BBA
solution has three major shortcomings: the token creation and redemption processes are linkable,
users have to redeem all of their points at once, and stores must be permanently online to detect
double-spending.

Hartung et al. [HHNR17] present an improved framework of black-box accumulation (BBA+)
based on the framework introduced in [JR16]. In [HHNR17], BBA is extended with offline double-
spending prevention (on which we base our offline double-spending mechanism) and other desirable
features. Because of efficiency reasons, users needs to reveal their point count whenever they spend
points. Their efficiency problems mainly stem from the use of Groth-Sahai proofs. Note that the use
of Groth-Sahai is inherent in their approach (because their proof statements are mostly about group
elements). It is unclear whether their construction can be made more efficient by exchanging the
proof system without changing the approach. In contrast, our incentive system can be instantiated
in a Schnorr proof setting (with proof statements mostly about discrete logarithms). Because the
Schnorr setting allows for very efficient proofs [BBB+18, CCs08], our incentive system is also very
efficient.

What prior work does not handle is the conjunction of offline-double spending prevention and
partial spending (even when disregarding efficiency concerns). If a spend operation is later detected
as double-spending, the remainder token still remains valid in prior constructions. Our construction
solves this, allowing the provider to trace all tokens derived from double-spent transactions to a
user. The price of this solution is forward and backward privacy as defined in [HHNR17], which our
scheme does not offer.

Overall, with the UACS-based incentive system approach, we improve upon the current state-of-
the-art [HHNR17] (from 2017 ACM CCS) in two ways: (1) efficiency (mostly because our approach
allows us to avoid Groth-Sahai proofs), and (2) we enable the combination of offline double-spending
prevention and partial spending. It is an interesting open question whether or not our remainder
token tracing mechanism can be combined with forward and backward privacy as in [HHNR17].

A basic version of the idea of using updates on credentials for incentive systems has been informally
considered in a 2005 technical report [DDD05] before.

Our contribution and structure of this paper. We introduce UACS formally in Section 3
and define its security properties. In Section 4, we construct UACS generically from blind signature
schemes and in Section 5, we sketch how to efficiently instantiate UACS using the generic framework.
We define formal requirements for incentive systems in Section 6, modeling our double-spend
prevention mechanism and defining security. In Section 7, we construct an incentive system from a
UACS. Finally, we practically evaluate our incentive system in Section 8.

2 Preliminaries

Throughout the paper, we refer to a public-parameter generation ppt G that outputs public parameters
pp given unary security parameter 1λ. A function f : N → R is negligible if for all c > 0 there is
an x0 such that f(x) < 1/xc for all x > x0. We refer to a negligible function as negl. We write
outputA[A↔ B] for interactive algorithms A,B to denote the output of A after interacting with B.
The support of a probabilistic algorithm A on input x is denoted by [A(x)] := {y | Pr[A(x) = y] > 0}.
The expression ZKAK[(w); (x,w) ∈ R] denotes a zero-knowledge argument of knowledge protocol
where the prover proves knowledge of w such that (x,w) is in some NP relation R. The zero-
knowledge argument of knowledge can be simulated perfectly given a trapdoor [Dam00] and there
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exists an expected polynomial-time extractor that, given black-box access to a successful prover,
computes a witness w with probability 1 [Dam00].

We define security with an oracle-based notation, where an adversary A gets oracle access to
some methods or protocols. Some oracles are interactive, i.e. they may send and receive messages
during a call. We distinguish between the oracle’s (local) output, which is generally given to the
adversary, and the oracle’s sent and received messages. The notation Oracle(·) denotes that A
chooses x, then oracle Oracle(x) is run interacting with A. A is given the output of the oracle
(if any). The notation (x, y) 7→ Oracle0(x) ↔ Oracle1(y) denotes that the adversary A chooses
inputs x, y, then Oracle0(x)↔ Oracle1(y) are run, interacting with one another. A is given the
output of both oracles, but not the messages sent or received by the oracles.

For blind signatures, we require that the blind signing protocol is of the form “commit to the
message(s) to sign, then jointly compute the signature“. As such, we model the commitment step
and the “receive a signature on the committed value” step separately.

Definition 1. A blind signature scheme for signing committed values Πsig consists of the following
(ppt) algorithms:

KeyGensig(pp, 1n)→ (pk, sk) generates a key pair (pk, sk) for signatures on vectors of n messages.
We assume n can be efficiently derived from pk.

Commitsig(pp, pk, ~m, r)→ c given messages ~m ∈Mn and randomness r, deterministically computes
a commitment c.

BlindSignsig(pp, pk, sk, c)↔ BlindRcvsig(pp, pk, ~m, r)→ σ with
common input pp, pk is an interactive protocol. The signer’s input is sk, c. The receiver’s input
consists of the messages ~m and commitment randomness r. The receiver outputs a signature σ.

Vrfysig(pp, pk, ~m, σ)→ b deterministically checks signature σ and outputs 0 or 1.

A blind signature scheme is correct if for all λ, n ∈ N and all pp ∈ [G(1λ)], (pk, sk) ∈ [KeyGen(pp, 1n)],
all ~m ∈Mn, and for every commitment randomness r, it holds that

Pr[BlindSign(pp, pk, sk,Commit(pp, pk, ~m, r))
↔ BlindRcv(pp, pk, ~m, r)→ σ :

Vrfy(pp, pk, ~m, σ) = 1] = 1

�

We require for a blind signature scheme unforgeability and perfect message privacy, cf. Appendix A,
Definitions 17 and 18. Definition 1 can be instantiated by Pointcheval Sanders signatures [PS16].

We furthermore need public-key encryption with the property that the key generation KeyGenenc
first generates a secret key sk, from which the corresponding public key pk = ComputePK(pp, sk)
can be deterministically computed. For example, for ElGamal encryption with fixed base g, we have
that sk ← Zp and the public key is ComputePK(pp, sk) = gsk .

Definition 2. A public-key encryption scheme Πenc consists of four ppt algorithms KeyGenenc,
ComputePKenc,Encryptenc,Decryptenc such that Decryptenc and ComputePKenc are deterministic and
for all pp ∈ [G(1λ)], all sk ∈ [KeyGenenc(pp)], and all messages m it holds that Pr[Decryptenc(pp, sk,
Encryptenc(pp,ComputePKenc(pp, sk),m)) = m] = 1. �

For the sake of privacy in our constructions, we will later demand key-indistinguishable CPA
security. This notion requires that, in addition to CPA-security, ciphertexts cannot be linked to
their public key (cf. Appendix A, Definition 19). This is the case for ElGamal encryption. Finally,
we use an additively malleable commitment scheme.
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Definition 3. A malleable commitment scheme Πcmt consists of four ppt algorithms (KeyGen,
Commit,Vrfy,Add) s.t. for all pp ∈ [G(1λ)], all pk ∈ [KeyGen(pp)], all m ∈ Mpp, and all (c, o) ∈
[Commit(pp, pk,m)]

• The message space Mpp is an (additive) group,

• Vrfy and Add are deterministic,

• Vrfy(pp, pk, c, o,m) = 1, and

• For c′ = Add(pp, pk, c, k), it holds that (c′, o) ∈ [Commit(pp, pk,m+ k)].

We require the commitment to be perfectly binding and computationally hiding, cf. Appendix A,
Definitions 20 and 21. Definition 3 can be instantiated by ElGamal encryption.

3 Updatable Anonymous Credentials

In UACS, there are three roles: issuers, users, and verifiers. Each role can be instantiated arbitrarily
many times. Issuers hold keys to issue credentials to users. Credentials are certificates that are
parameterized with attributes. Users can prove possession of a credential to verifiers. Users can
interact with their credential’s issuer to change its attributes.

3.1 Algorithms of UACS

A UACS consists of ppt algorithms Setup, IssuerKeyGen, and interactive protocols Issue↔ Receive,
Update↔ UpdRcv, and ShowPrv↔ ShowVrfy. We explain them in the following:

Setup We assume that some trusted party has already generated public parameters pp ← G(1λ).
pp may, for example, contain a description of a group, which can also be used for any number
of other cryptographic applications. To set up a UACS, a trusted party generates UACS-specific
parameters cpp ← Setup(pp). cpp may, for example, contain pp and parameters for a zero-knowledge
proof system. The distinction between G and Setup is made to enable formal compatibility of UACS
with other primitives, as long as they use the same pp. cpp is published and we assume that an
attribute universe A is encoded in cpp (e.g., A = Zp).

Key generation Whenever a new issuer wants to participate in the UACS, he first chooses an
attribute vector length n ∈ N and then generates a key pair (pk, sk)← IssuerKeyGen(cpp, 1n). The
secret key sk will be used to issue and update credentials, the public key pk will be used to identify
the issuer and to verify credentials issued by him. Credentials by this issuer will be parameterized
with a vector ~A ∈ An.

In a UACS, users do not generally need keys. This is in contrast to the usual definitions of
anonymous credentials, in which users explicitly generate a secret identity. We generalize that
approach for UACS and leave the implementation of user identities to the application, if desired (see
Section 3.3).

Issuing and updating credentials Users have two ways to receive new credentials: receive a
fresh credential from an issuer, or update an old one.

Assume the user holds a credential cred with attributes ~A and wants to update it. User and issuer
first agree on an update function ψ : An × {0, 1}∗ → An ∪ {⊥}, and the user secretly chooses a
hidden parameter α s.t. ψ( ~A, α) 6=⊥. The issuer and user then engage in an interactive protocol:
the issuer runs Update(cpp, pk, ψ, sk) while the user runs UpdRcv(cpp, pk, ψ, α, cred). Afterwards,
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UpdRcv outputs a new credential cred∗ with attributes ~A∗ = ψ( ~A, α) or the failure symbol (e.g., if
ψ( ~A, α) =⊥).

Furthermore, Update outputs a bit b to the issuer, which informally serves as an indicator whether
or not the update was successful. In particular b = 1 guarantees that ψ( ~A, α) 6=⊥. This effectively
means that, with an appropriately chosen ψ, a credential update implicitly includes a check of the
old credential’s attributes.

We model issuing a new credential essentially as an update of an “empty” credential: User and
issuer first agree on an update function ψ : {⊥} × {0, 1}∗ → An ∪ {⊥}, and the user secretly chooses
a hidden parameter α s.t. ψ(⊥, α) 6=⊥. Then the issuer runs Issue(cpp, pk, ψ, sk) while the user runs
Receive(cpp, pk, ψ, α). Afterwards, Receive outputs a credential cred with attributes ~A = ψ(⊥, α) or
the failure symbol (e.g., if ψ(⊥, α) =⊥).

In contrast to the usual definition of anonymous credentials, the issuer does not necessarily know
the exact attributes he is issuing (he does not know the input to the update function ψ). To issue
attributes ~A fully known to the issuer, the update function ψ can be set to ψ(⊥, α) = ~A (i.e. ψ
ignores α and outputs a constant). An example for an update function hiding some attributes from
the issuer is ψ(⊥, α = (a, b)) = (0, a, b, a+ b), where the user’s first attribute would be 0 (which the
issuer knows), but the user may freely choose a, b. To restrict the user’s choice of α, the update
function ψ(⊥, α) can output ⊥, in which case the issuance should fail (e.g., define ψ(⊥, α = (a, b)) =⊥
if a+ b > 20).

Showing credentials To prove possession of a credential cred with attributes ~A from some
issuer with public key pk, the user and the verifier first agree on a predicate φ : An × {0, 1}∗ →
{0, 1}. The user chooses a hidden parameter α such that φ( ~A, α) = 1. Then the user runs
ShowPrv(cpp, pk, φ, α, cred), interacting with the verifier running ShowVrfy(cpp, pk, φ). Afterwards,
ShowVrfy outputs a bit b. If b = 1, the verifier knows that the user possesses a credential, issued by
pk, with attributes ~A s.t. ∃α : φ( ~A, α) = 1.

Formal definition We now formally define UACS. First, we need the notion of valid credentials:
the predicate ValidCred(cpp, pk, cred, ~A) defines whether cred is considered a valid credential with
attributes ~A for issuer pk under UACS public parameters cpp. Intuitively, we want all credentials out-
put by Receive and UpdRcv to be valid with the attributes the user expects. Formally, ValidCred(cpp,
pk, cred, ~A) is recursively defined as follows:

• if ⊥6= cred ∈ [Receive(cpp, pk, ψ, α)], then ValidCred(cpp, pk, cred, ψ(⊥, α)) = 1.

• if ⊥6= cred∗ ∈ [UpdRcv(cpp, pk, ψ, α, cred)], and ValidCred(cpp, pk, cred, ~A) = 1, then it holds
that ValidCred(cpp, pk, cred∗, ψ( ~A, α)) = 1.

In all other cases, ValidCred(. . . ) = 0. ValidCred is not necessarily efficiently computable, but serves
a purpose in our definitions.

Definition 4 (Updatable anonymous credential system). An updatable anonymous credential system
Πuacs (UACS) consists of the ppt algorithms Setup, IssuerKeyGen, Issue,Receive,Update,UpdRcv,
ShowPrv, and ShowVrfy. Let Φ be a set of supported predicates φ, and let Ψ be a set of supported
update functions ψ (Φ and Ψ may depend on cpp and pk).
A UACS is correct, if whenever ValidCred((cpp, pk, ~A, cred)) = 1:

• if φ ∈ Φ and φ( ~A, α) = 1, then ShowVrfy(cpp, pk, φ) accepts after interacting with algorithm
ShowPrv(cpp, pk, φ, α, cred).

• if ψ ∈ Ψ, α ∈ {0, 1}∗ and ψ( ~A, α) 6=⊥, then after interacting with one another, Update(cpp, pk,
ψ, sk) outputs 1, and UpdRcv(cpp, pk, ψ, α, cred) does not output ⊥. �
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3.2 Security of UACS

On a high level, a UACS has two security goals: (1) Anonymity: honest users’ privacy should
be protected (even against malicious issuers and verifiers), meaning that user actions should be
unlinkable and hide as much data as possible. (2) Soundness: malicious users should not be able to
show or update a credential they have not obtained by the issuer. These are explained next.

3.2.1 Anonymity

Our anonymity definition follows a simulation approach. This means that we require existence of
simulators that can simulate the user’s role of the show, issue, and update protocols. For this, the
input for the simulators is exactly the information that the issuer/verifier should learn from the
interaction (plus a trapdoor to enable simulation). The issuer/verifier cannot learn the user’s private
information because the protocols can be simulated without it, hence its transcripts effectively do
not contain information about private information. This makes it easy to succinctly express exactly
what the issuer/verifier learns and enables use of the UACS in larger contexts (for example, for our
incentive system, an indistinguishability definition would not suffice).

More specifically, for an anonymous UACS, there exists an efficient algorithm SSetup(pp) that
outputs cpp (like Setup) and a simulation trapdoor td. Then the following simulators simulate a
user’s protocols: SReceive(td, pk, ψ) simulates receiving a credential (note that this means that the
issuer learns only ψ, but not α). SUpdRcv(td, pk, ψ) simulates having a credential updated (meaning
the issuer only learns ψ, but not α or the old attributes ~A, nor any information about the specific
credential-to-be-updated). Finally, SShowPrv(td, pk, φ) simulates showing a credential (the verifier
only learns φ, not ~A or α).

In the real world, the issuer will usually learn whether or not a credential issuing or update has
worked, meaning whether or not the user’s protocol side outputs a non-error value 6=⊥ (e.g., because
the user would immediately ask to run failed protocols again). To make sure that the issuer cannot
learn anything from this bit of information, we make this part of the simulation: SReceive actually
simulates a protocol Receive′, which behaves like Receive, but after the interaction sends a bit b to
the issuer, indicating whether or not Receive outputs the error symbol or a credential. Analogously,
SUpdRcv simulates UpdRcv′.

Definition 5 (Simulation Anonymity). A UACS Πuacs has simulation anonymity if there exist ppt
simulators SSetup,SReceive,SShowPrv,SUpdRcv such that for all (unrestricted) adversaries A and all
pp ∈ [G(1λ)]: If (cpp, td) ∈ [SSetup(pp)], then

• Pr[Setup(pp) = cpp] = Pr[SSetup(pp) = (cpp, ·)]

• outputA[SReceive(td, pk, ψ)↔ A] is distributed exactly like outputA[Receive′(cpp, pk, ψ, α)↔
A] for all pk, α∈ {0, 1}∗, and ψ ∈ Ψ with ψ(⊥, α) 6=⊥.

• outputA[SUpdRcv(td, pk, ψ) ↔ A] is distributed exactly like outputA[UpdRcv′(cpp, pk, ψ, α,
cred) ↔ A] for all pk, ψ ∈ Ψ and cred, ~A such that ValidCred(cpp, pk, cred, ~A) = 1 and
ψ( ~A, α) 6=⊥.

• outputA[SShowPrv(td, pk, φ) ↔ A] is distributed exactly like outputA[ShowPrv(cpp, pk, φ, α,
cred) ↔ A] for all pk, φ ∈ Φ and cred, ~A, α such that ValidCred(cpp, pk, cred, ~A) = 1 and
φ( ~A, α) = 1 �

3.2.2 Soundness

Informally, soundness should enforce that users cannot show or update credentials they have not
obtained from the issuer. Soundness protects issuers and verifiers against malicious users. The
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challenge in defining soundness is that because of anonymity in UACS, issuers and verifiers do not
know what attributes result from Issue and Update operations, so they cannot easily check whether or
not security was broken. For this reason, we intuitively say that soundness is broken if an adversary
can run a series of issue/update/verify protocols, for which there is no reasonable explanation given
the update functions for which the issuer has issued/updated credentials.

The soundness definition is game-based: an adversaryA is run through an experiment (cf. Figure 1).
The experiment simulates an honest issuer and honest verifier. A can ask to be issued credentials,
to have them updated, or to show them, choosing the update functions ψ and show-predicates
φ that the issuer/verifier shall use. Eventually, A halts. Now, to judge whether or not A won,
the experiment runs an extractor E (whose existence we require from sound UACS). E outputs an
explanation list L, which conjectures what hidden parameters A used in each issue/update/verify
protocol. If E fails to produce an explanation list L that is consistent with what we’ve observed
during the experiment, then A wins. Consistency mainly hinges on the bit output by ShowVrfy and
Update: If ShowVrfy(cpp, pk, φ) outputs 1, then we expect that L shows a series of issue/update
operations that explains why A possesses a credential with attributes ~A for which there exists an α
that satisfies φ( ~A, α). Similarly, if Update(cpp, pk, ψ, sk) outputs 1, then L should show that A has
a credential with attributes ~A for which there exists an α with ψ( ~A, α) 6=⊥.

Formally, an explanation list L contains one entry per operation that A requested during the
experiment.

• For ShowVrfy or Update operations, the ith entry is a tuple ( ~Ai, αi).

• For Issue operations, the entry is some hidden parameter αi.

These entries naturally induce sets Ei of attribute vectors that we expect A to have after the ith
operation. Initially, E0 = ∅. Then inductively:

• if the ith operation is ShowVrfy, no credentials are issued, i.e. Ei = Ei−1.

• if the ith operation is Issue(cpp, pk, ψ, sk), we expect A to now have a credential with attributes
ψ(⊥, αi), i.e. Ei = Ei−1 ∪ {ψ(⊥, αi)} if ψ(⊥, αi) 6=⊥.

• if the ith operation is Update(cpp, pk, ψ, sk) (and Update output 1), we expect A to now have
a credential with attributes ψ( ~Ai, αi), i.e. Ei = Ei−1 ∪ {ψ( ~Ai, αi)} if ψ( ~Ai, αi) 6=⊥. If Update
output 0, we expect no new credential to have been issued, i.e. Ei = Ei−1.

We say that an explanation list L is consistent if it explains all the instances where ShowVrfy or
Update output 1:

• if the ith operation was ShowVrfy(cpp, pk, φ) with output 1, then the list’s ( ~Ai, αi) fulfills φ
(i.e. φ( ~Ai, αi) = 1) and ~Ai is the result of an earlier issue/update operation (i.e. ~Ai ∈ Ei−1).

• if the ith operation was Update(cpp, pk, ψ, sk) with output 1, then the list’s ( ~Ai, αi) fulfills ψ
(i.e. ψ( ~Ai, αi) 6=⊥) and ~Ai is the result of an earlier issue/update operation (i.e. ~Ai ∈ Ei−1).

Definition 6 (Soundness). We say that Π is sound if there exists an expected polynomial time
algorithm E (probability for runtime is over A’s randomness rA and E ’s randomness), such that for
all ppt adversaries A, there exists a negligible function negl with

Pr[Expsound(Π,A, E , λ) = 1] ≤ negl(λ)

for all λ. �
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Expsound(Π,A, E , λ):
cpp ← Setup(G(1λ)), (1n, st)← A(cpp), for some n ∈ N
(pk, sk)← IssuerKeyGen(cpp, 1n)
Run AIssue(cpp,pk,·,sk),Update(cpp,pk,·,sk),ShowVrfy(cpp,pk,·)(pk, st)
Let rA be the randomness of A
Let rIssue, rUpdate, rShowVrfy be the oracles’ randomness.
Run L ← EA(cpp, rA, rIssue, rUpdate, rShowVrfy).
Output 0 if L is consistent, otherwise output 1

Figure 1: Soundness experiment for UACS

A few technical notes: the randomness rA, rIssue, rUpdate, and rShowVrfy together with oracle access
to A can be used by E to effectively re-run the experiment exactly as it happened before. It can then
use, for example, forking techniques to extract relevant witnesses from A. The requirement that
E must be efficient (expected polynomial time) is somewhat arbitrary at this point: the definition
would still make sense if E ’s runtime were unrestricted, since E is just a way to express that there
must exist a consistent explanation. However, for constructions that use UACS as a primitive (such
as in Section 3.3 and in our incentive system later), E must often be efficient so that an efficient
reduction can run E to obtain A’s hidden values. This effectively implies that in a sound UACS, A
must know (in the sense of an argument of knowledge) the values ~A, α it uses for issue/update/show.

3.3 A Note on User Secrets and Pseudonyms

Usually, users in a credential system have a personal key usk that is embedded in their credentials.
They can derive any number of unlinkable pseudonyms N from usk. UACS generalize this: usk and
pseudonyms are not immediate part of the definition, but because UACS naturally supports hidden
attribute issuing, usk can be seen as just another UACS attribute.

To implement user keys and pseudonyms in UACS, one can use the following template: The user
chooses usk randomly from a superpolynomial-size domain. Pseudonyms N are commitments to usk,
i.e. (N, o)← Commit(pp, pk, usk). The user privately stores the open value o for the pseudonym.

Assume the user identified himself with the pseudonym N . To receive a credential on attributes
~A, the user sets his hidden parameter to α = (usk, o) and the update function (1) checks if N opens
to usk using o and then (2) embeds usk as an attribute into the credential:

ψ(⊥, α) =
{

(usk, ~A) if Vrfy(pp, pk, N, o, usk) = 1
⊥ otherwise

This ensures that only the user who created N can receive the credential and that the usk embedded
into it is consistent with N .

Similarly, show predicates φ can be modified such that the user supplies the additional hidden
parameter α = o and φ additionally checks that the commitment N opens to the user secret
embedded in the credential (ensuring that the credential actually belongs to the user behind N).
When updating a credential, the update function ψ should always leave the usk attribute intact.

As a technical note on security, if the commitment is computationally hiding, then simulation
anonymity can be used to argue that anonymity is preserved: the protocols can be simulated without
usk or o. This also motivates why we chose a simulation-based anonymity definition: a reduction to
the commitment hiding property would have to embed a challenge commitment N into some UACS
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protocol, which it then needs to be able to simulate because without an open value, it cannot run
the protocol honestly. If the commitment is computationally binding, then soundness implies that E
can extract an open value o. For example, in a scenario where a user can use the same pseudonym
for two different usk, a consistent explanation would contain two open values to break the binding
property of the commitment. This motivates the choice of restricting the UACS extractor E to
(expected) polynomial time, as otherwise, the reduction to the commitment binding property would
not be efficient.

4 Generic Construction of UACS

An UACS can be generically constructed from any blind signature scheme Πsig = (KeyGensig,
Commitsig,BlindSignsig,BlindRcvsig) (Definition 1) as follows:

Keys The public parameters cpp of the UACS are the public parameters of Πsig plus a zero-
knowledge argument common reference string (this will later allow us to simulate zero-knowledge
arguments). For the issuer, IssuerKeyGen(cpp, 1n)] generates the key pair (pk, sk) by running the
blind signature scheme’s key generation KeyGensig(pp, 1n) to get a key for blocks of n messages.

Showing credentials A credential cred with attributes ~A is simply a signature σ on ~A under the
issuer’s pk. Showing a credential (ShowPrv(cpp, pk, φ, α, cred = σ)↔ ShowVrfy(cpp, pk, φ)) simply
has the user run a zero-knowledge argument of knowledge

ZKAK[( ~A, α, σ); Vrfysig(pp, pk, ~A, σ) = 1 ∧ φ( ~A, α) = 1]

proving that he is in possession of a valid signature on hidden attributes ~A and knows α such that φ
is satisfied. ShowVrfy outputs 1 if and only if the proof is accepted.

Updating and issuing credentials For Update(cpp, pk, ψ, sk)↔ UpdRcv(cpp, pk, ψ, α, cred), the
user has a credential cred = σ, which is a signature on ~A, and wants a signature on ~A∗ := ψ( ~A, α).
He computes a commitment c to ~A∗. He proves that c is well-formed and that he possesses a
signature σ on ~A:

ZKAK[( ~A, σ, α, r); c = Commitsig(pp, pk, ψ( ~A, α), r)
∧ Vrfysig(pp, pk, ~A, σ) = 1 ∧ ψ( ~A, α) 6=⊥].

If the proof is rejected, the issuer outputs 0 and aborts (this ensures that the user can only update
if he possesses an old credential with ψ( ~A, α) 6=⊥). Otherwise, the issuer will output 1 after the rest
of the protocol. The issuer runs BlindSignsig(pp, pk, sk, c), while the user runs BlindRcvsig(pp, pk, ~A∗,
r). For the user, BlindRcvsig outputs a new signature σ∗. The user checks that σ∗ is valid signature
Vrfysig(pp, pk, ~A∗, σ∗) != 1. If so, he knows that σ∗ is a valid credential on his expected attributes
and outputs cred∗ = σ∗. Otherwise, he outputs ⊥.

Issuing a credential (Issue(cpp, pk, ψ, sk) ↔ Receive(cpp, pk, ψ, α)) works similarly, but the user
commits to ψ(⊥, α) and he omits the part about σ in the ZKAK (only proves that c is well-formed
and ψ(⊥, α) 6=⊥).

Construction 7. Let Πsig be a blind signature scheme. We define an updatable credential system
Πuacs as described above.

A full formal description can be found in Appendix B.
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Correctness and security Correctness of the above construction follows immediately from
correctness of the underlying blind signature scheme Πsig. For security, we have the following two
theorems:

Theorem 8. If the underlying blind signature scheme has perfect message privacy (Definition 18),
then Construction 7 has simulation anonymity (Definition 5).

Theorem 9. If the underlying blind signature scheme is unforgeable (Definition 17), then Construc-
tion 7 is sound (Definition 6).

The proofs of the above theorems are straight-forward reductions to the corresponding blind
signature properties. They are presented in Appendix C.

5 Efficient Instantiation of UACS

Since there exist zero-knowledge arguments of knowledge for all of NP, almost arbitrary update
functions are supported by this construction. Because those generic zero-knowledge arguments are
not necessarily considered practically efficient, in practice one usually wants to restrict the class of
update functions. For example, a large class of statements is supported by Sigma protocols (such as
generalizations of Schnorr’s protocol), which are very efficient (see, for example, [BBB+18]). The
blind signature scheme by Pointcheval and Sanders [PS16] is a good candidate to use in conjunction
with Sigma protocols. If the update function is sufficiently “simple” (i.e. the check ψ( ~A, α) != ~A∗

can be efficiently implemented as a Sigma protocol), our construction is efficient.

6 Incentive Systems

In an incentive system, there are two roles: users and the provider. The provider operates a point
collection system in order to incentivize certain user behavior. Users gain points for certain actions
(e.g., buying something), which they later want to redeem for some bonus item (e.g., a frying pan).
A user privately stores his points in a token. We will usually talk about multiple users and a single
provider.

6.1 Structure of an Incentive System

An incentive system Πinsy consists of the following ppt algorithms Setup,KeyGen, IssuerKeyGen,
Link,VrfyDs,Trace, as well as interactive protocols Issue↔ Join, Credit↔ Earn, and Spend↔ Deduct.
We explain them in the following.

Setup and key generation We assume that a trusted party has already generated public
parameters pp ← G(1λ) (like in UACS). To set up an incentive system, a trusted party generates
incentive-system-specific parameters ispp ← Setup(pp). We assume that some maximum point score
vmax is encoded in ispp and that this limit is large enough never to be hit in practice.

To join the system, a provider runs IssuerKeyGen(ispp) to obtain a key pair (pk, sk). He publishes
pk and distributes sk to all store terminals that can issue points to users (these can be, for example,
distributed over multiple physical stores). For the sake of this explanation, we will distinguish the
provider and individual store terminals.

When users want to join the system, they run KeyGen(ispp) and store the resulting key pair
(upk, usk) (e.g., on their smartphone).
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Obtaining a token To obtain a token with balance 0 from the provider (or store terminal), the
user sends his upk to the provider and identifies himself (this is out of the scope of the incentive
system. For example, the user could sign upk with some signature key stored on their digital
passport). The provider associates upk to the user’s real identity (so that in case of dispute, the
user can be identified from upk). Then, the provider runs Issue(ispp, pk, upk, sk) interacting with the
user running Join(ispp, pk, upk, usk). Afterwards, Join outputs a token token and a double-spending
identifier dsid to the user (these are hidden from the provider). The user stores his current token
token, its current dsid and value v (for this fresh token, v = 0, i.e. no points have been collected yet).
dsid can be seen as a random ID for the token, which will play a role in preventing double-spending.

Earning and spending points After obtaining a token token from the provider, the user can
start collecting points. Assume the user buys something in a store, for which he should receive k
points. To grant the points, the store terminal runs Credit(ispp, pk, k, sk) interacting with the user
running Earn(ispp, pk, k, usk, token). Afterwards, Earn outputs a new token token∗ to the user. If
token∗ 6=⊥, the user deletes his old token token and replaces it with the new token token∗ (the dsid
does not change between token and token∗). If the old token token had the value v, then the new
token has value v + k.

After earning enough points, the user may want to spend some of them in exchange for some
reward (e.g., spend 100 points to obtain a frying pan). For this, user and the store terminal agree
on a number k ≤ v of points to spend. Then the user reveals his dsid to the store terminal. The
terminal keeps a local database DBlocal of dsid it has already seen (more details later). If dsid is
present in DBlocal (meaning the user is trying to spend a token that has already been spent before),
the terminal rejects the transaction. Otherwise, the store terminal runs Deduct(ispp, pk, k, dsid, sk)
interacting with the user running Spend(ispp, pk, k, dsid, usk, token).

Spend outputs a new token token∗ and a new dsid∗ for the new token (since the old dsid has been
revealed, token∗ needs a new one). The new token holds the remainder amount v − k of points left
after the spend operation. The user updates its current token, dsid, and v with the new values (and
deletes the old values).

Deduct outputs a bit b to the terminal and, if b = 1, a double-spend tag dstag. If b = 0, the
transaction has failed (e.g., the user does not have enough points). In that case, the store terminal
does nothing. If b = 1, the transaction is considered successful and the reward is given to the user.
The terminal stores the transaction data together with dsid and dstag in its local database DBlocal.
This data will be used to handle offline double-spending.

Handling offline double-spending Because the local databases DBlocal of each store are not
necessarily in sync (stores are not required to be always online), users can (potentially) spend the
same token in two offline stores. This is because if the first store is offline, it cannot (in time)
communicate to the second store that the token’s dsid has already been spent. This way, the user
may receive rewards for which he does not have sufficient points.

To deal with this, an incentive system offers the following mechanism: assume there was a spend
transaction t in which a user spends his token. Associated with t are the token’s id dsid and a tag
dstag (as described above). If there is another spend transactions t× that is associated with the
same dsid and some tag dstag×, then double spending occurred. t× should be considered invalid
and the provider should try to undo all consequences of t×. To undo rewards gained fraudulently
by the user as the result of t×, the provider would first run the algorithm Link(ispp, dstag, dstag×),
which outputs (1) the double-spending user’s public key upk, and (2) linking information dslink.
With upk, the provider can identify the user, while dslink serves as publicly verifiable proof that the
user has indeed double-spent. This can be verified by anyone using VrfyDs(ispp, dslink, upk), which
outputs a bit indicating whether or not dslink is a valid proof of double-spending for user upk. With
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Figure 2: Example DB. Double-struck spend operations are invalid. All dashed lines are added when
t2 is synchronized into DB. The user has double-spent dsid1 (and t′1 is marked invalid
because of this). When t2 is synchronized into DB, it is immediately marked invalid, dsid3
is revealed to be its successor and as a consequence, t3 is marked invalid and its successor
dsid4 is computed.

this mechanism, the provider can recoup any losses (e.g., through a legal process).
The second consequence of transaction t× is that the user gained a remainder token from it,

which also never should have happened. dslink as computed above can also be used to deal with
this: the incentive system provides the method Trace(ispp, dslink, dstag×) which outputs the dsid
of the remainder token that resulted from t×. This can be iterated: if Trace(ispp, dslink, dstag×)
uncovers dsid0 and dsid0 has also been already spent in transaction t0 with tag dstag0, then
Trace(ispp, dslink, dstag0) will uncover some dsid1, etc.

To be more concrete, we imagine the provider sets up a central database DB. The database is a
directed bipartite graph, which contains (1) one token node dsid for each dsid the provider received,
and (2) one transaction node ti for each spend transaction. Edges establish known consume/produce
relations for transactions: every transaction ti effectively consumes exactly one dsid (which the user
reveals), inducing an edge dsid → ti. If double-spending occurs, Trace may uncover the remainder
token’s dsid∗ produced by ti, in which case the graph would contain an edge ti → dsid∗. Figure 2
depicts an example database DB.

Stores periodically send their observed transactions ti (together with their k, dsid, and dstag)
to the central database. If dsid is not yet in the database, the database simply adds dsid → ti to
the graph. If dsid was already in the database, then it has already been spent in a transaction tj .
ti is marked invalid and Link,Trace are used to find ti’s successor dsid∗. If dsid∗ is already in the
database, any transaction descendants of dsid∗ are marked invalid and the process repeats. The
exact algorithm DBsync(k, dsid, dstag,DB) to add a transaction ti to the graph is given in Figure 3.

If desired, the provider can periodically send all or some spent dsids known in DB to the store
terminals so that they can immediately reject future double-spending transactions. This is especially
useful for dsid∗s that were revealed through Trace and have not been spent yet (but we already know
that they will ultimately be revealed as double-spending after the next database synchronization).

6.2 Formal definition

We now formally define incentive systems. For this, we define a set of oracles with shared state that
formally represent the behavior of honest parties in the processes explained above. These oracles
will allow us to the correctness and security definitions (we will allow an adversary A to query a
selection of these oracles in subsequent security games). For these definitions, we assume that ispp
has been generated honestly.
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DBsync(k, dsid, dstag,DB):
• Add new spend operation node ti to DB, associate it with k, dstag.

• If dsid is not in DB, add the node dsid and an edge from dsid to ti.

• Otherwise, add the edge from dsid to ti, and:

– If dsid has no (upk, dslink) associated with it, then there exist two outgoing edges from dsid to
transactions ti, tj . In this case, compute (upk, dslink) = Link(ispp, dstag′i, dstag′j) using the two tags
dstag′i, dstag′j associated with ti and tj , respectively. Associate (upk, dslink) with dsid.

– Mark ti invalid (this triggers the steps below).

• Whenever some node ti with incoming edge from some dsid is marked invalid

– Use (upk, dslink) associated with dsid and dstag associated to ti to compute dsid∗ =
Trace(ispp, dslink, dstag). Add dsid∗ to the graph (if it does not already exist), associate (upk, dslink)
with dsid∗, and add an edge from ti to dsid∗. If there is an edge from dsid∗ to some tj , mark tj

invalid (if it was not already marked). This triggers this routine again.

Figure 3: DBsync algorithm

Honest users To model honest users, we define the following oracles:

• Keygen() chooses a new user handle u, generates key pair (upk, usk) ← KeyGen(ispp), and
stores for reference (upku, usku, vu, pku, tokenu, dsidu) ← (upk, usk, 0,⊥,⊥,⊥). It outputs
u, upk.

• Join(u, pk) given handle u runs (token, dsid) ← Join(ispp, pk, upku, usku). If token =⊥, the
oracle outputs ⊥. Otherwise, it stores pku ← pk, tokenu ← token, and dsidu ← dsid. This
oracle can only be called once for each u. It must be called before any calls to Earn(u, ·) and
Spend(u, ·).

• Earn(u, k) given handle u and k ∈ N with vu + k ≤ vmax , the oracle runs token∗ ←
Earn(ispp, pku, k, usku, tokenu). If token∗ =⊥, the oracle outputs ⊥. Otherwise, it updates
tokenu ← token∗ and vu ← vu + k.

• Spend(u, k) given handle u and k ∈ N with vu ≥ k, the oracle first sends dsidu to its
communication partner and then runs (token∗, dsid∗)← Spend(ispp, pku, k, dsidu, usku, tokenu).
It updates tokenu ← token∗, dsidu ← dsid∗ and vu ← vu− k. If token∗ =⊥, the oracle outputs
⊥ and all further calls to any oracles concerning u are ignored.1

Honest Provider To model an honest provider, we define the following oracles:

• IssuerKeyGen() generates (pk, sk)← IssuerKeyGen(ispp). It stores pk and sk for further use.
It initially sets the set of users U ← ∅ and sets the double-spend database DB to the empty
graph. Furthermore, initially vearned, vspent ← 0. Further calls to this oracle are ignored. This
oracle must be called before any of the other provider-related oracles. The oracle outputs pk.

• Issue(upk) if upk ∈ U , the request is ignored. Otherwise, the oracle runs Issue(ispp, pk, upk, sk)
and adds upk to U .

• Credit(k) for k ∈ N, runs Credit(ispp, pk, k, sk) and sets value vearned ← vearned + k.
1Spending the same token twice would be considered double-spending, even if one of the Spend operations fails. Hence

after a failed Spend operation, the user must not attempt to use her old token.
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• Deduct(k) for k ∈ N, waits to receive dsid. It then runs algorithm Deduct(ispp, pk, k, dsid,
sk)→ (b, dstag). If b = 0, it outputs ⊥. Otherwise, it chooses a fresh spend handle s and stores
(dsids, dstags, ks)← (dsid, dstag, k). Then it outputs s and increments vspent ← vspent + k.

• DBsync(s) runs DB′ ← DBsync((dsids, dstags, ks),DB). Then, it updates DB ← DB′ and
recomputes vinvalid as the sum of values k associated with invalid transactions within DB′.

Syntax and correctness We are now prepared to define incentive systems and their correctness.
For this, consider an experiment Expcorrect(Πinsy,A, λ), where A is an algorithm. The experiment
first runs IssuerKeyGen to receive pk. The adversary A is then given pk and access to the
following oracles (see Section 2 for oracle notation): Keygen(), u 7→ Issue(upku) ↔ Join(u, pk),
(u, k) 7→ Earn(u, k)↔ Credit(k), (u, k) 7→ Spend(u, k)↔ Deduct(k), and s 7→ DBsync(s). The
experiment outputs fail if something goes wrong, i.e. if one of the oracles outputs ⊥ or if DB
contains a transaction marked as invalid. Note that in this experiment, all protocols are followed
honestly and A effectively just chooses a polynomial-length sequence of actions that users or the
provider take.

Definition 10 (Incentive System). An incentive system Πinsy consists of ppt algorithms Setup,
KeyGen, IssuerKeyGen, Issue, Join,Credit,Earn,Spend,Deduct, Link,VrfyDs, Trace, where Link, VrfyDs,
and Trace are deterministic. It is correct if for all ppt A, there exists a negligible function negl such
that

Pr[Expcorrect(Πinsy,A, λ) = fail] ≤ negl(λ). �

6.3 Security Definitions of Incentive Systems

With regards to security, an incentive system should protect honest users’ privacy. The provider
wants to be sure that users cannot spend more points than the provider issued. If they do (e.g.,
in offline stores), the provider needs to be able to uncover all illegal transactions and prove the
double-spending user’s guilt. We will now define these properties formally.

6.3.1 Anonymity

For anonymity, we want that a malicious provider is unable to learn which user belongs to which
earn/spend transaction. In reality, this protects users, for example, from having their shopping
history linked to their identity. Users are not anonymous when registering for the incentive system
(Join) because the provider needs to learn their real identity to identify double-spending users.
However, if users are honest and do not double-spend, the provider should not be able to link a
user’s registration to any other action they do.

More formally, a malicious provider should not be able to distinguish two users running the Earn
or the Spend protocol. We define this with a game-based approach: we define two experiments,
Expano-Earn and Expano-Spend, which treat anonymity for the Earn and Spend operation, respectively
(cf. Figure 4). In the first phase of the experiments, the adversary A plays the role of a malicious
provider: A publishes some public key pk and interacts with honest users. Note that by design of
the honest user oracles, honest users never double-spend. A then chooses two users u0, u1. The
experiment makes one of the users run Earn (or Spend) with A. A should not be able to distinguish
u0 running Earn (or Spend) from u1 running the protocol.

There are two exceptions to this: First, if u0 has a valid token tokenu0 6=⊥, while u1 does not (e.g.,
because the provider sabotaged an earlier spend operation), then certainly u0 can be distinguished
from u1. Second, if u0 or u1 do not have sufficiently many points to spend k, or, analogously, if u0
or u1 has too many points to receive k additional points without hitting the vmax limit. Since it is
functionally desired to be able to distinguish users in these cases, the experiment accounts for this.
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Expano-X
b (Πinsy,A, λ):

ispp ← Setup(G(1λ))
(pk, st)← A(ispp)
(u0, u1, k, st)← AKeygen(),Join(·,pk),Earn(·,·),Spend(·,·)(st)
If ⊥∈ {tokenu0 , tokenu1}, output 0
If X = Earn and vu0 , vu1 ≤ vmax − k

output b̂← AEarn(ub,k)(st), where A may only query once
Else if X = Spend and vu0 , vu1 ≥ k

output b̂← ASpend(ub,k)(st), where A may only query once
Else

output 0

Figure 4: Anonymity experiments

Expfram-res(Πinsy,A, λ):
ispp ← Setup(G(1λ))
(pk, st)← A(ispp)
(u, dslink)← AKeygen(),Join(·,pk),Earn(·,·),Spend(·,·)(st)
If VrfyDs(ispp, dslink, upku) = 1

output 1
Else output 0

Figure 5: Framing resistance experiment

Definition 11 (Anonymity). The experiment Expano-X is presented in Fig. 4 and defined for
X ∈ {Earn,Spend}. We say that an incentive system Πinsy is anonymous if for bothX ∈ {Earn, Spend}
and for all ppt A it holds that

|Pr[Expano-X
0 (Π,A, λ) = 1]− Pr[Expano-X

1 (Π,A, λ) = 1]| ≤ negl(λ)

for all λ. �

6.3.2 Framing resistance

To deal with double-spending users, the provider wants to be able to convincingly accuse users
of double-spending. Framing resistance guarantees that honest users cannot be falsely accused of
double-spending by a malicious provider. This is a positive for honest users (as they can repudiate
double-spending claims) and for the provider (a double-spending proof holds more weight in court if
the provider cannot possibly frame innocent users).

We define framing resistance with an experiment, in which the adversary A plays the role of a
malicious provider, who publishes some pk and interacts with honest users (which by definition do
not double-spend). Ultimately, A tries to compute a value dslink that is accepted by VrfyDs as proof
of double-spending for some honest user. The chances of him succeeding must be negligible.

Definition 12 (Framing resistance). We define experiment Expfram-res in Fig. 5. We say that
incentive system Πinsy is framing resistant if for all ppt A, there exists a negligible function negl s.t.
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Expsound(Πinsy,A, λ):
ispp ← Setup(G(1λ))
pk ← IssuerKeyGen()
Run AIssue(·),Credit(·),Deduct(·),DBsync(·)(ispp, pk)
If vspent − vinvalid > vearned and A has queried DBsync(s) for all
spending record handles s output by the Deduct oracle

output 1
If DB contains some (upk, dslink) associated with some dsid
such that VrfyDs(ispp, dslink, upk) 6= 1 or upk /∈ U ,

output 1
Else output 0

Figure 6: Soundness experiment

Pr[Expfram-res(Π,A, λ) = 1] ≤ negl(λ) for all λ. �

6.3.3 Soundness

For soundness, we ideally want to ensure that malicious users cannot spend more points than the
honest provider has issued. Of course, in the presence of offline double-spending, this statement
cannot be true: users can certainly spend their tokens twice in offline stores. Hence we need to be
more precise. We keep count of three kinds of points (as can be seen in the oracle definitions on
page 16): vearned counts how many points the provider has issued. vspent counts how many points
users have spent (in the sense of successful Deduct runs). vinvalid counts how many points were
spent in transactions that have been marked invalid in the provider’s database DB. Soundness will
guarantee that vspent − vinvalid ≤ vearned, i.e. users cannot spend more then they have earned if you
deduct transactions the provider discovers to be invalid. This means that while users may be able to
double-spend, they cannot do so undetected.

Furthermore, soundness guarantees that double-spending transactions can be traced to users, i.e.
whenever DB contains some upk, dslink annotated to some double-spent token node dsid, then upk
is one of the registered users and dslink is valid proof of double-spending.

The experiment has an adversary A play the role of an arbitrary number of malicious users, while
the experiment simulates an honest provider. A can interact with the honest provider for the usual
user operations. Additionally, A can control the order in which his transaction data is added to the
central database DB. A wins if either vspent − vinvalid > vearned (even though all transactions have
been synchronized to DB, i.e. all offline double-spending detection should have already happened)
or if the database holds some invalid tracing data upk, dslink.

Definition 13 (Soundness). We define the experiment Expsound in Fig. 6. We say that incentive sys-
tem Πinsy is sound if for all ppt A, there exists a negligible function negl with Pr[Expsound(Π,A, λ) =
1] ≤ negl(λ) for all λ. �

7 Construction of an Incentive System from UACS

For our construction of an incentive system, we use a UACS Πuacs (Definition 4), a public-key
encryption scheme Πenc (Definition 2), and an additively malleable commitment scheme Πcmt
(Definition 3). At its core, the users’ tokens will be credentials encoding their points. They are
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updated whenever the user earns or spends points. Most of the other mechanisms in place deal with
double-spending prevention, as we’ll explain below.

Key generation The system is set up using Setup(pp), which outputs ispp = (pp, cpp, pkcmt)
consisting of public parameters pp (e.g., the elliptic curve group), credential public parameters
cpp ← Setupuacs(pp), and a commitment key pkcmt ← KeyGencmt(pp). pp fixes an attribute space A
for the credential system and a message space Menc for the encryption scheme. We assume A = Zp
for some super-poly p and set the point maximum to vmax = p− 1.

The key pair (pk, sk)← IssuerKeyGen(ispp) for a provider is simply a credential key pair (pk, sk)←
IssuerKeyGenuacs(cpp, 1n) for n = 4 (i.e. all our attribute vectors will have length 4). They will use
sk to issue and update credentials.

Users generate a key pair (upk, usk)← KeyGen(ispp), which is simply an encryption key pair, i.e.
usk ← KeyGenenc(pp) and upk = ComputePKenc(pp, usk). As a rough idea, the user’s key will be used
to (1) identify the user, and (2) encrypt tracing data. If double-spending occurs, our mechanisms
will ensure that usk is revealed, allowing the provider to access the tracing data.

Obtaining a token A token token = (dsid, dsrnd, v, cred) consists of its identifier dsid, some
randomness dsrnd used for double-spending protection, its current value v, and a credential cred
with attributes (usk, dsid, dsrnd, v).

The provider wants the dsid for each token to be uniformly random, so that users cannot
maliciously provoke dsid collisions (which, at first glance, would not actually benefit the user.
However, dsid collisions between otherwise unrelated tokens would hinder tracing). Furthermore,
the provider should not be able to learn dsid, because he would otherwise be able to recognize the
user when he spends the token and reveals dsid. For this reason, the first step of the token-obtaining
protocol Issue(ispp, pk, upk, sk)↔ Join(ispp, pk, upk, usk)→ (token, dsid) has the user and provider
compute a commitment to dsid such that dsid is guaranteed to be uniformly random in Zp if
either the user or the provider is honest, and only the user knows dsid. To ensure this, both
parties contribute a random share for dsid. The user privately picks a random share dsidusr ← Zp,
and the provider does the same for his share dsidprvdr ← Zp. Then the user commits to his
share (Cusr, open)← Commitcmt(pp, pkcmt, dsidusr) and sends the commitment Cusr to the provider.
The provider replies with his share dsidprvdr ← Zp (in plain). Using additive malleability of the
commitment scheme, both parties can compute the commitment Cdsid = Addcmt(pp, pkcmt, Cusr,
dsidprvdr) to dsid := dsidusr + dsidprvdr. Intuitively, if the provider is honest, then dsidprvdr is
uniformly random, and hence dsid is random. If the user is honest, dsidusr is uniformly random and
hidden within the commitment, so the provider will not be able to choose dsidprvdr adaptively, hence
overall, dsid in that case should also be uniformly random (and hidden from the provider).

Now the provider issues a credential to the user. For this, the user’s hidden parameter is
α = (usk, dsid, dsrnd, open), where the user privately chooses dsrnd ← Zp. The update function is

ψ(⊥, α) =
{

(usk, dsid, dsrnd, 0) if ψchk

⊥ otherwise

where ψchk is true if and only if

• The user secret to be written into the credential is consistent with the user’s public key
(upk = ComputePKenc(pp, usk)), and

• dsid is committed (Vrfycmt(pp, pkcmt, Cdsid, dsid, open) = 1).

The two parties run Issueuacs(cpp, pk, ψ, sk) ↔ Receiveuacs(cpp, pk, ψ, α) → cred, where the user
receives his credential cred. The user outputs his token token = (dsid, dsrnd, v = 0, cred).
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Earning points The protocol Credit(ispp, pk, k, sk)↔ Earn(ispp, pk, k, usk, token), where the user
receives a new token token∗ with value v + k is very simple: the provider and the user simply run a
credential update that adds k to v, i.e. with update function ψ((usk, dsid, dsrnd, v), ·) = (usk, dsid,
dsrnd, v + k). The user stores the new token token∗ = (dsid, dsrnd, v + k, cred∗), where cred∗ is the
result of the credential update.

Spending points Spending k ≤ v points of a token token = (dsid, dsrnd, v, cred) is the most
complicated operation, as most of the double-spending protection happens here. Before the protocol,
the user reveals dsid, which (with overwhelming probability) uniquely identifies token. Then, the
parties run Spend(ispp, pk, k, dsid, usk, token)↔ Deduct(ispp, pk, k, dsid, sk), which works as follows:

For the remainder token, the user and the provider jointly compute a commitment Cdsid
∗ on a

guaranteed random dsid∗ as in the “Obtaining a token” protocol. From this, the user obtains Cdsid
∗,

dsid∗, open∗ and the provider obtains Cdsid
∗.

To enable the provider to reveal the user’s identity in case of double-spending, the provider sends
a random challenge γ ← Zp to the user and the user replies with c = usk · γ + dsrnd (using dsrnd of
the token he’s spending). Intuitively, if this is the first time this token is spent, dsrnd is uniformly
random and the provider has never seen the value, hence to the provider, c is just some uniformly
random value. The idea is that if the user tries to spend the same token a second time, he will be
forced to reveal c′ = usk · γ′ + dsrnd for some (likely different) challenge γ′, from which the provider
would be able to compute usk = (c− c′)/(γ − γ′), clearly identifying the user.

In case the user double-spends, the provider needs to be able to find the dsid∗ of the remainder
token that is going to be issued. To enable this, the user encrypts dsid∗ under his own public key:
ctrace ← Encryptenc(pp, upk, dsid∗) and sends ctrace to the provider. The idea is that if usk is ever
revealed because the user double-spends, then the provider can use it to decrypt ctrace and uncover
the remainder token’s identifier dsid∗.

Finally, user and provider run a credential update on the user’s current token to become the
remainder token. This includes a check whether or not the data sent by the user is formed correctly.
The user’s hidden parameter is α = (dsid∗, dsrnd∗, open∗), where dsid∗, and open∗ are as above and
the user secretly chooses dsrnd∗ ← Zp. The update function is

ψ((usk, dsid, dsrnd, v), α) =
{

(usk, dsid∗, dsrnd∗, v − k) if ψchk

⊥ otherwise

where ψchk is true if and only if

• dsid in the credential is the same as the user has revealed to the provider,

• the user has sufficient points, i.e. v ≥ k,

• the commitment to dsid∗ is well-formed, i.e. 1 = Vrfycmt(pp, pkcmt, Cdsid
∗, dsid∗, open∗),

• c is well-formed to reveal usk upon double-spending, i.e. c = usk · γ + dsrnd, and

• ctrace can be decrypted with usk, i.e. dsid∗ = Decryptenc(pp, usk, ctrace).

From the credential update, the user receives a credential cred∗. If cred∗ 6=⊥, Spend outputs
token∗ = (dsid∗, dsrnd∗, v − k, cred∗) and its dsid∗. The provider receives a bit b from the update,
intuitively indicating whether or not the user had sufficient points and that the data he sent
will enable correct tracing of the user and this transaction. Deduct outputs b and, if b = 1, the
double-spending tag dstag = (c, γ, ctrace).
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Handling offline double-spending Tracing double-spending users and their dsids works as
follows:

For two tags dstag = (c, γ, ctrace = usk · γ + dsrnd) and dstag′ = (c′, γ′, ctrace′ = usk · γ′+ dsrnd),
we can compute Link(ispp, dstag, dstag′) = (upk, dslink) as dslink = usk = (c − c′)/(γ − γ′), and
upk = ComputePK(pp, dslink).

Then, dslink can be used to trace that user’s transactions by decrypting ctrace as Trace(ispp,
dslink, dstag) := Decryptenc(pp, dslink, ctrace) = dsid∗.

Finally, clearly we can establish a user’s guilt by revealing the secret key usk = dslink to his public
key upk. To verify a user’s key, VrfyDs(ispp, dslink, upk) checks that ComputePK(pp, dslink) = upk.

Correctness A more compact representation of this construction can be found in Appendix D. It
is easy to check correctness given that dsids are by definition uniformly random in Zp if both user
and provider behave honestly.

7.1 Security

We state the following theorems:

Theorem 14. If Πuacs has simulation anonymity (Definition 5), Πenc is key-ind. CPA secure
(Definition 19), Πcmt is computational hiding, then Πinsy (Construction 23) guarantees anonymity
(Definition 11).

Proof sketch. The adversary A is asked to distinguish if it talks to user u0 or u1 in the challenge
phase. Both users are determined by A. We will first handle the easy case of Expano-X

b (Πinsy,A, λ)
for X = Earn: everything that the adversary A sees perfectly hides the user’s secret usk and
dsid. For the case X = Spend and user ub, let i be the spend operation in the challenge
phase and i − 1 the previous spend operation in the setup phase. During spend i − 1, the ad-
versary A gets Encryptenc(pp, upkb, dsidi) and can compute Commitcmt(pp, pkcmt, dsidi) from the
commitment to dsidusr that he receives. In spend i, A gets (1) Encryptenc(pp, upkb, dsidi+1), (2)
Commitcmt(pp, pkcmt, dsidi+1), and (3) dsidi. For (2), observe that Commitcmt(pp, pkcmt, dsidi+1)
has no influence on A’s advantage since it is independent of b. If we look at (1), we observe
that the encryption is generated under upkb. Therefore, in addition to CPA security, we need
that the keys of the users are indistinguishable. Considering (3), observe that the commitment to
dsidi (in spend i− 1) is computationally hiding. Furthermore, to link Encryptenc(pp, upkb, dsidi) or
Commitcmt(pp, pkcmt, dsidi) from spend i− 1 to dsidi revealed in spend i, A has to break (key-ind.)
CPA security of Πenc or comp. hiding of Πcmt.

The full proof can be found in Appendix F.2.

Theorem 15. If Πuacs is sound (Definition 6), Πcmt is perfectly binding (Definition 20), and
ComputePKenc(pp, ·) is injective, then the incentive system Πinsy (Construction 23) is sound (Defini-
tion 13).

Proof sketch. The proof is a reduction to soundness of the underlying updatable credential system.
Let A be an attacker against incentive system soundness. We construct B. B simulates A’s view
perfectly by replacing Issueuacs and Updateuacs calls with calls to the corresponding UACS oracles.
Let error be the event that (1) B has output the same challenge δ in two different Deduct runs, or (2)
there were two commitments Cdsid, Cdsid

′ in two runs of Deduct or Issue such that the commitments
can be opened to two different messages. (1) happens with negligible probability (δ ← Zp), so does
(2) because dsidprvdr, dsid∗prvdr ← Zp and the commitment scheme Πcmt is perfectly binding. It then
remains to show that if error does not happen and there exists a consistent explanation list L, then
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Table 1: Avg. performance of our implementation over 100 runs in milliseconds. Emphasized: typical
execution platform for each algorithm.

Device Issue Join Credit Earn Deduct Spend
Google Pixel (Phone, Snapdragon 821) 56 76 122 110 353 390

Surface Book 2 (Laptop, i7-8650U) 10 13 17 18 64 69

A cannot win (implying that unless error, if A wins, then B wins as there is no L that would make
it lose). The proof of this is somewhat technical, but essentially, we look at each user individually.
For this user, there exists some “canonical” sequence of spend and earn operations in L that does
not involve any spend operations marked as invalid (in the double-spending database DB). From
the design of update functions and consistency of L, it is clear that in such a sequence, the value
accumulated by earn operations cannot be smaller than the value spent through spend operations,
i.e. the desired property vearned ≥ vspent−vinvalid holds if we only consider these canonical operations.
The rest of the proof deals with ensuring that spend operations that are not part of the canonical
sequence have all been marked invalid in DB (such that removing all non-canonical operations
from consideration does not change vspent − vinvalid and only decreases vearned). Because of ¬error,
challenges γ do not repeat and any two attribute-vectors that share the same dsid have the same
usk, dsrnd. This implies that extracting usk from two transactions with the same dsid works without
error (given c = usk · γ + dsrnd and the definition of Link). Since any extracted usk is correct in this
sense, the tracing of dsid as in DBsync works as intended, i.e. all invalid transactions will be marked
as such in DB as required.

The full proof can be found in Appendix F.3.

Theorem 16. If encryption scheme Πenc is CPA-secure and Πuacs has simulation anonymity, then
Πinsy (Construction 23) is framing resistant.

Framing resistance follows easily via reduction to Πenc’s (key-ind.) CPA security: An adversary
who can frame an honest user needs to be able to compute the secret key usk for the user’s
upk = ComputePKenc(pp, usk). The proof can be found in Appendix F.4

8 Instantiation and Performance of our Incentive System

We instantiated Construction 23 using the signature scheme by Pointcheval and Sanders [PS16]
for the UACS, and ElGamal as the public-key encryption scheme and malleable commitment. A
concrete description of the instantiated scheme can be found in Appendix E. Using the open-source
Java library upb.crypto and the bilinear group provided by mcl (bn256)2 we implemented this
instantiation and ran it on a phone (typical user device) and a laptop (approximate provider device).
In Table 1 we focus on the execution time (in ms) of the protocols, excluding communication cost.
The numbers illustrate that our scheme is practical. They are better or comparable to the BBA+
performance [HHNR17], who do not offer partial spending (the user needs to reveal point count
when spending) and hence can avoid expensive range proofs.
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A Security Definitions for Building Blocks

Definition 17 (Unforgeability). Consider the following unforgeability game Expblind-uf(Π,A, λ) for
a blind signature scheme Π:

• The experiment runs pp ← G(1λ) and hands pp to A. A responds with 1n for some n ∈ N.
The experiment generates (pk, sk)← KeyGen(pp, 1n) and hands pk to A.

• A can query signatures by announcing c, ~m ∈Mn and r such that c = Commit(pp, pk, ~m, r).
The experiment then runs BlindSign(pp, pk, sk, c) interacting with A and records ~m.

• Eventually, A outputs ~m∗ and σ∗. The experiment outputs 1 iff Vrfy(pp, pk, ~m∗, σ∗) = 1 and
~m∗ was not recorded in any query.

Π has blind unforgeability if for all ppt A there exists negl such that Pr[Expblind-uf(Π,A, λ) = 1] ≤
negl(λ) for all λ. �

Definition 18 (Perfect msg privacy). We say that a blind signature scheme has perfect message
privacy if

• “the commitment scheme is perfectly hiding” : For all ~m0, ~m1 ∈Mn, Commit(pp, pk, ~m0, r0) is
distributed exactly the same as Commit(pp, pk, ~m1, r1) over the random choice of r0, r1.

25

https://www.payback.net/


• “BlindRcv does not reveal the message” : for any two messages ~m0, ~m1 ∈ Mn and all (unre-
stricted) A:

(outputA[A(C0)↔ BlindRcv(pp, pk, ~m0, r0)], χ0)
is distributed exactly like
(outputA[A(C1)↔ BlindRcv(pp, pk, ~m1, r1)], χ1)

where r0, r1 is chosen uniformly at random, Cj = Commit(pp, pk, ~mj , rj) and χj is an indicator
variable with χj = 1 if and only if Vrfy(pp, pk, ~mj , σj) = 1 for the local output σj of BlindRcv
in either case. �

While this definition may seem strong, it is satisfied, for example, by the Pointcheval Sanders blind
signature scheme [PS16], where Commit is a effectively a (perfectly hiding) Pedersen commitment,
Their BlindRcv (in our formulation without zero-knowledge proof) does not send any messages
(meaning the output of A is clearly independent of ~m), and the χj bit (validity of the resulting
signature) is also independent of the committed message.

Definition 19 (Key-indistinguishable CPA). Let Πenc be a public-key encryption scheme. Consider
the following experiments Expkey-ind

b (Πenc,A, λ) for b ∈ {0, 1}.

• The experiment generates public parameters pp ← G(1λ) and two keys KeyGenenc(pp) →
sk0, sk1, hands A the pp and the two public keys (pk0, pk1) = (ComputePKenc(pp, sk0),
ComputePKenc(pp, sk1)).

• A outputs two messages m0,m1 ∈Mpp.

• A gets Encryptenc(pp, pkb,mb) from the experiment and outputs a bit b̂.

We say that Πenc is key-ind. CPA secure if for all ppt A, there exists a negligible function negl s.t.
|Pr[Expkey-ind

0 (Πenc,A, λ) = 1]− Pr[Expkey-ind
1 (Πenc,A, λ) = 1]| ≤ negl(λ)

Definition 20 (Perfectly binding commitment). A (malleable) commitment scheme is perfectly
binding if for all pp ∈ [G(1λ)], pk ∈ [KeyGen(pp)] and all (c, o) ∈ [Commit(pp, pk,m)], there exists no
m′, o′ such that m′ 6= m and Vrfy(pp, pk, c, o′,m′) = 1.

Definition 21 (Comp. hiding commitment). Let Πcmt be a malleable commitment scheme. Consider
the following experiment Exphid

b (Πcmt,A, λ).

• pp ← G(1λ), pk ← KeyGen(pp), (m0,m1, st)← A(pp, pk), m0,m1 ∈Mpp

• b̂← A(c, st) where c = Commit(pp, pk,mb)

We say that Πcmt is computational hiding if for all ppt A, there exists a negligible function negl s.t.
|Pr[Exphid

0 (Πcmt,A, λ) = 1]− Pr[Exphid
1 (Πcmt,A, λ) = 1]| ≤ negl(λ)

B Formal Description of the Generic Construction of UACS

Construction 22. Let Πsig be a blind signature (Definition 1). We construct UACS:

Setup(pp)→ cpp generates public parameters cpp consisting of pp and a zero-knowledge argument
common reference string. The attribute space A is the signature scheme’s message spaceMsig.

IssuerKeyGen(cpp, 1n)→ (pk, sk) generates keys by running algorithm KeyGensig(pp, 1n)→ (pk, sk).
The update function universe Ψ consists of all ψ : (Mn

sig ∪ {⊥})× {0, 1}∗ →Mn
sig ∪ {⊥} that

are supported by the zero-knowledge arguments below.
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Issue(cpp, pk, ψ, sk)↔ Receive(cpp, pk, ψ, α)→ cred for ψ ∈ Ψ works as follows:
• The receiver computes ~A = ψ(⊥, α) and commits to ~A by computing c = Commitsig(pp,

pk, ~A, r) for random r and sends c to the issuer.
• Receiver proves ZKAK[(α, r); c = Commitsig(pp, pk, ψ(⊥, α), r)]
• If the proof accepts, issuer runs BlindSignsig(pp, pk, sk, c) and receiver runs BlindRcvsig(pp,

pk, ~A, r)→ σ.
• The receiver checks if Vrfysig(pp, pk, ~A, σ) = 1. If so, it outputs cred = ( ~A, σ), otherwise

it outputs ⊥.

b← Update(cpp, pk, ψ, sk)↔ UpdRcv(cpp, pk, ψ, α, cred)→ cred∗ works as follows:
• The receiver parses cred = ( ~A, σ) and computes ~A∗ = ψ( ~A, α).
• The receiver commits to ~A∗ by computing the commitment c = Commitsig(pp, pk, ~A∗, r)

for random r and sends c to the issuer.
• Then, the receiver proves ZKAK[( ~A, σ, α, r); Vrfysig(pp, pk, ~A, σ) = 1 ∧ c = Commitsig(pp,

pk, ψ( ~A, α), r)].
• If the proof rejects, the issuer outputs 0 and aborts.
• Otherwise, issuer runs BlindSignsig(pp, pk, sk, c) while receiver runs BlindRcvsig(pp, pk, ~A∗,
r)→ σ∗.
• The receiver checks if Vrfysig(pp, pk, ~A∗, σ∗) = 1. If so, it outputs cred∗ = ( ~A∗, σ∗),

otherwise it outputs ⊥. The issuer outputs 1.

ShowPrv(cpp, pk, φ, α, cred)↔ ShowVrfy(cpp, pk, φ)→ b works as follows: the prover parses cred =
( ~A, σ). If φ( ~A, α) = 0, the prover aborts and the verifier outputs 0. Otherwise, the prover runs
the proof ZKAK[( ~A, α, σ); Vrfysig(pp, pk, ~A, σ) = 1 ∧ φ( ~A, α) = 1]. If the proof succeeds, the
verifier outputs 1, otherwise 0.

C Security Proof for Updatable Credentials

In this section, we sketch the security proofs for Construction 7.

Theorem 8: Anonymity. We define the simulators as follows:

• SSetup(pp) runs the trapdoor generator of the ZKAK and outputs cpp (which contains pp and
the ZKAK common reference string from the trapdoor generator), and the simulation trapdoor
td.

• SReceive(td, pk, ψ) and SUpdRcv(td, pk, ψ) work very similarly to one another: they both commit
to ~0 as c = Commitsig(pp, pk,~0, r) with random r and send c toA. They then simulate the ZKAK
proof (in Receive or UpdRcv) using td. Finally, they both run BlindRcvsig(pp, pk,~0, r)→ σ and
compute the bit b = Vrfysig(pp, pk,~0, σ). They send b to A.

• SShowPrv(td, pk, φ) simulates the ZKAK.

Given that Πsig has perfect message privacy by assumption, the commitment c and the bit b
computed by the simulator have the same distribution as in Receive or UpdRcv. Simulation of the
zero-knowledge arguments produces the correct view for A by assumption.

Theorem 9: Soundness. We define the algorithm E that is supposed to extract an explanation list L
as follows:
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• On input (cpp, rA, rIssue, rUpdate), the extractor EA first runs A with randomness rA and cpp
until A halts.

• For the ith query to Issue, Update, or ShowVrfy in this run, E does the following:
– if it is a query to Issue and the proof of knowledge within Issue is accepting, then E uses

the proof of knowledge extractor to obtain a witness (α, r). It stores αi := α on L. If the
proof of knowledge is not accepting, it stores some arbitrary αi ∈ {0, 1}∗ on L.

– if it is a query to Update and the proof of knowledge within Update is accepting, then E uses
the proof of knowledge extractor to obtain a witness ( ~A, σ, α, r). It stores ( ~Ai, αi) := ( ~A, α)
on L.

– if it is a query to ShowVrfy and the proof of knowledge within ShowVrfy is accepting, then
E uses the proof of knowledge extractor to obtain a witness ( ~A, σ). It stores ~Ai := ~A on
L.

• E outputs L.

Since the argument of knowledge extractor runs in expected polynomial time, E runs in expected
polynomial time, too (probability over rA and E ’s random coins).

With this E , the soundness of our updatable credential construction can be reduced to unforgeability
of the underlying blind signature scheme sig (Definition 17). Let E be as above. Let A be an attacker
against Expsound. We construct B against Expblind-uf :

• B runs A with randomness rA

• B receives pp from the unforgeability experiment. B generates cpp from pp and hands cpp to
A. A responds with 1n for some n ∈ N. B hands 1n to its challenger, receiving pk. B hands
pk to A.

• Whenever A queries Issue with update function ψ, B checks the proof of knowledge. If it accepts,
B uses the proof of knowledge extractor to obtain a witness (α, r). B submits ~m := ψ(⊥, α), r,
and c := Commitsig(pp, pk, ~m, r) to its challenger, who starts running BlindSignsig(pp, pksk, c).
B relays the messages for BlindSignsig between its challenger and A.

• Whenever A queries Update with update function ψ, B checks the proof of knowledge. If it
accepts, B uses the proof of knowledge extractor to obtain a witness ( ~A, σ, α, r). If B has
not queried its challenger for ~A before, it outputs ~m := ~A and σ as a forgery. Otherwise, B
submits ~m := ψ( ~A, α), r, and c := Commitsig(pp, pk, ~m, r) to its challenger, who starts running
BlindSignsig(pp, pk, sk, c). B relays the messages for BlindSignsig between its challenger and A.

• Whenever A queries ShowVrfy with predicate φ, B checks the proof of knowledge. If it accepts,
B uses the proof of knowledge extractor to obtain a witness ( ~A, α, σ). If B has not queried its
challenger for ~A before, it outputs ~m := ~A and σ as a forgery.

• Eventually, A and halts. B runs EA(cpp, rA, rIssue, rUpdate) (using the same random coins for E
that B used for its extraction of proofs of knowledge, ensuring that the output of E will be
consistent with the values extracted by B before) to obtain L.

• Then B halts.

Analysis: Whenever B outputs a signature forgery, it is guaranteed that the signature is valid
(since they are valid witnesses in a proof of knowledge for a relation that requires signature validity).
If B outputs a forgery during an Update or ShowVrfy query, by construction it has never asked for
the message to be signed before.
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It is easy to see that the simulation is perfect. If B does not halt before A halts, the output L
of E necessarily fulfills argument consistency: Suppose for contradiction that L is not consistent,
i.e. there is some index i such that L is inconsistent for that index. Let Ei be as prescribed in the
soundness experiment given L. Note that before the ith query, B has only queried its oracle for
signatures on messages ~A ∈ Ei−1.

• Assume i belongs to an Issue query. By definition i cannot have caused the inconsistency.

• Assume i belongs to an Update query with update function ψi. Then the entry on L is some
( ~Ai, αi). Because i caused the inconsistency, Update has output 1 (implying that B runs the
proof of knowledge extractor and obtained the witness ( ~A, σ, α, r)) and (1) ψi( ~Ai, αi) =⊥ or (2)
~Ai /∈ Ei−1. (1) can be ruled out since ψi( ~Ai, αi) 6=⊥ is guaranteed by the proof of knowledge
statement and hence by its extractor. If (2) happens, then B halts and claims a forgery (as it
has not queried ~Ai to its oracle before), contradicting that B does not halt before A halts.

• Assume i belongs to a ShowVrfy query with predicate φi. This case is handled analogously to
Update.

So we know that if B does not halt before A halts, then E outputs a consistent L, implying that
Pr[Expblind-uf(Πsig,B, λ)] ≥ Pr[Expsound(Π,A, E , λ) = 1]. So if for E as defined above, there exists
an adversary A with non-negligible success probability, then there exists B (as defined above) with
non-negligible success probability against the blind signature scheme. By assumption, such a B does
not exist, hence the updatable credential system is sound. (Note that B runs in expected polynomial
time. This can be converted to polynomial time by trading off success probability using Markov’s
inequality.)

D Compact Description of the Incentive System Construction

We list the generic incentive system construction, as explained in Section 7, in a more compact and
formal manner.

Construction 23. Let Πuacs be an UACS, Πenc be a public-key encryption scheme, and let Πcmt
be an additively malleable commitment scheme. We define the incentive system Πinsy as follows:

Setup(pp)→ ispp runs cpp ← Setupuacs(pp). pp fixes an attribute space A and message space Menc
for the encryption scheme. We assume A = Zp for some super-poly p and set vmax = p − 1.
Setup chooses a commitment key pkcmt ← KeyGencmt(pp). It outputs ispp = (pp, cpp, pkcmt).

KeyGen(ispp)→ (upk, usk) generates an encryption key uskenc ← KeyGenenc(pp) and upkenc =
ComputePKenc(pp, uskenc). It outputs upk = upkenc and usk = uskenc.

IssuerKeyGen(ispp)→ (pk, sk) outputs a credential issuer key pair (pk, sk)← IssuerKeyGenuacs(cpp,
1n) for n = 4.

Issue(ispp, pk, upk, sk)↔ Join(ispp, pk, upk, usk)→ (token, dsid)
the user picks dsidusr ← Zp and computes commitment and open value (Cusr, open) ←
Commitcmt(pp, pkcmt, dsidusr). The user sends Cusr to the provider. The provider replies with
dsidprvdr ← Zp. Both parties compute Cdsid = Addcmt(pp, pkcmt, Cusr, dsidprvdr). Then the user
sets dsid = dsidusr+dsidprvdr, chooses dsrnd ← Zp, and sets α = (usk, dsid, dsrnd, open). Then
the provider runs Issueuacs(cpp, pk, ψ, sk) and the user runs Receiveuacs(cpp, pk, ψ, α) → cred.
Here, the update function is set to ψ(⊥, (usk, dsid, dsrnd, open)) = (usk, dsid, dsrnd, 0), if
user public key upk = ComputePKenc(pp, usk) and it holds that Vrfycmt(pp, pkcmt, Cdsid, dsid,
open) = 1. Otherwise, set ψ(⊥, α) =⊥. If cred 6=⊥, the user outputs token = (dsid,
dsrnd, v = 0, cred) and dsid. Otherwise, the user outputs ⊥.
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Credit(ispp, pk, k, sk)↔ Earn(ispp, pk, k, usk, token)→ token∗ the user parses token = (dsid, dsrnd,
v, cred) and checks that v + k ≤ vmax . The protocol then works as follows: The provider runs
Updateuacs(cpp, pk, ψ, sk), interacting with the user running UpdRcvuacs(cpp, pk, ψ, α, cred)→
cred∗ with α =⊥. Here, the update function is set to ψ((usk, dsid, dsrnd, v), ·) = (usk, dsid,
dsrnd, v + k). If cred∗ 6=⊥, the user outputs token∗ = (dsid, dsrnd, v + k, cred∗).

(token∗, dsid∗)← Spend(ispp, pk, k, dsid, usk, token)↔ Deduct(
ispp, pk, k, dsid, sk)→ (b, dstag) first has the user parse token as token = (dsid, dsrnd, v, cred)
and check that v ≥ k. Then:
• The user chooses dsid∗usr ← Zp and generates (Cusr

∗, open∗) ← Commitcmt(pp, pkcmt,
dsid∗usr). He sends Cusr

∗ to the provider.
• The provider chooses a random challenge γ ← Zp and a random dsid∗prvdr ← Zp, and

sends both to the user.
• Issuer and user each compute Cdsid

∗ = Addcmt(pp, pkcmt, Cusr
∗, dsid∗prvdr).

• The user prepares values dsid∗ = dsid∗usr + dsid∗prvdr and dsrnd∗ ← Zp for his next token
and sets α = (dsid∗, dsrnd∗, open∗).
• The user computes c = usk · γ + dsrnd.
• The user encrypts dsid∗ as ctrace ← Encryptenc(pp, upk, dsid∗).
• The user sends c, ctrace to the provider.
• The provider runs b ← Updateuacs(cpp, pk, ψ, sk) and the user runs algorithm cred∗ ←

UpdRcvuacs(cpp, pk, ψ, α, cred). Here, the update function is ψ((usk, dsid, dsrnd, v),
(dsid∗, dsrnd∗, open∗)) = (usk, dsid∗, dsrnd∗, v − k) if

– dsid is the same as in the Deduct input,
– v ≥ k,
– Vrfycmt(pp, pkcmt, Cdsid

∗, dsid∗, open∗),
– c = usk · γ + dsrnd, and
– Decryptenc(pp, usk, ctrace) = dsid∗.

Otherwise, ψ(. . . ) =⊥.
• If cred∗ 6=⊥, the user outputs (token∗ = (dsid∗, dsrnd∗, v − k, cred∗), dsid∗).
• The provider outputs b and, if b = 1, dstag = (c, γ, ctrace).

Link(ispp, dstag, dstag′)→ (upk, dslink) with dstag = (c, γ, ctrace), dstag′ = (c′, γ′, ctrace′), outputs
dslink = (c− c′)/(γ − γ′) (the intent is that dslink = usk) and upk = ComputePK(pp, dslink).

Trace(ispp, dslink, dstag)→ dsid∗ for dstag = (c, γ, ctrace) retrieves dsid∗ by decrypting ctrace, i.e.
dsid∗ = Decryptenc(pp, dslink, ctrace).

VrfyDs(ispp, dslink, upk)→ b outputs 1 iff ComputePK(pp, dslink) = upk.

E Concrete Construction from Pointcheval Sanders Blind
Signatures

We present a concrete construction based on Pointcheval Sanders blind signatures [PS16] for the
UACS and ElGamal encryption for the public-key encryption scheme and the additively malleable
commitment. For this, we follow the generic construction of UACS (Construction 7) and the
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incentive system (Construction 23) closely with one change: We sign dsid ∈ Zp, but we encrypt
Dsid = wdsid ∈ G1. Hence, when tracing double-spent transactions, one only learns Dsid∗ = wdsid∗

instead of dsid∗. This is not a restriction since the output of Trace is only needed to quickly find the
corresponding transaction to dsid∗. So in practice, the issuer would store Dsid instead of dsid for
every transaction that he observes, and then use Dsid to quickly find the transaction pointed at
by Trace. Note that the security of the construction is not impacted (the same security proofs still
apply almost verbatim).

Construction 24 (Inc. system from Pointcheval Sanders signatures). Let (KeyGenPS,CommitPS,
BlindSignPS,BlindRcvPS,VrfyPS) denote the Pointcheval Sanders signature scheme [PS16].

G(1λ)→ pp generates and outputs a type 3 bilinear group pp = (G1,G2,GT, p, e) of prime order p.

Setup(pp)→ ispp and chooses a random w ← G1 as a shared base for ElGamal encryption Πenc
and g, h ← G1 for the malleable commitment Πcmt (also ElGamal). Setup also generates a
Pedersen commitment key gDamg̊ard, hDamg̊ard ← G1 and a collision-resistant hash function H,
both for Damg̊ard’s technique [Dam00], enabling efficient simulation of ZKAK protocols. We
omit these values in the following. It outputs ispp = (pp, w, g, h). The maximum point score is
vmax = p− 1.

KeyGen(ispp)→ (upk, usk) generates an encryption key pair by choosing a random usk ← Zp and
computing upk = wusk . It outputs (upk, usk).

IssuerKeyGen(ispp)→ (pk, sk) generates (pkPS, skPS)← KeyGenPS(pp, 1n=4). We write the keys as
skPS = (x, y1, . . . , y4) and pkPS = (g, gy1 , . . . , gy4 , g̃, g̃x, g̃y1 , . . . , g̃y4). IssuerKeyGen outputs
pk = pkPS and sk = skPS.

Issue(ispp, pk, upk, sk)↔ Join(ispp, pk, upk, usk)→ (token, dsid) works as follows:
• The user chooses random dsidusr ← Zp and computes the commitment Cusr = (gdsid

usr ·
hopen , gopen) for a random open ← Zp. It sends Cusr to the issuer.
• The issuer replies with a random dsidprvdr ← Zp. Both issuer and user compute Cdsid =

(gdsid
usr · hopen · gdsid

prvdr, g
open).

• The user sets dsid = dsidusr + dsidprvdr and chooses random dsrnd, r ← Zp, computes
Dsid = wdsid and sends c = (gy1)usk · (gy2)dsid · (gy3)dsrnd · gr to the issuer.
• The user proves ZKAK[(usk, dsid, dsrnd, r, open); c = (gy1)usk · (gy2)dsid · (gy3)dsrnd · gr ∧

upk = wusk ∧ Cdsid = (gdsid · hopen , gopen)].
• If the proof is accepted, the issuer sends σ′PS = (σ′0, σ′1) = (gr′ , (c · gx)r′) for a random
r′ ← Z∗p to the user.
• The user unblinds the signature as σPS = (σ′0, σ′1 · (σ′0)−r).

• The user checks VrfyPS(pp, pkPS, (usk, dsid, dsrnd, 0), σPS) != 1. If the checks succeed, it
outputs token = (dsid, dsrnd, v = 0, σPS) and Dsid, otherwise it outputs ⊥.

Credit(ispp, pk, k, sk)↔ Earn(ispp, pk, k, usk, token)→ token∗ where token = (dsid, dsrnd, v, σPS =
(σ0, σ1)) works as follows:
• The user computes randomized signatures (σ′0, σ′1) = (σr0, (σ1 · σr

′
0 )r) for r ← Z∗p, r′ ← Zp.

He sends σ′0, σ′1 to the issuer.
• The user proves ZKAK[(usk, dsid, dsrnd, v, r′); VrfyPS(pp, pkPS, (usk, dsid, dsrnd, v), (σ′0,
σ′1 · (σ′0)−r′)) = 1]
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• If the proof accepts, the issuer sends (σ′′0 , σ′′1) = ((σ′0)r′′ , ((σ′1) · (σ′0)y4·k)r′′) for a random
r′′ ← Z∗p to the user.

• The user unblinds the signature as σ = (σ∗0, σ∗1) = (σ′′0 , σ′′1 · (σ′′0 )−r′) and checks VrfyPS(pp,
pkPS, (usk, dsid, dsrnd, v + k), σ∗PS) != 1. If the check succeeds, it outputs token∗ =
(dsid, dsrnd, v + k, σ∗PS), otherwise it outputs ⊥.

(token∗,Dsid∗)← Spend(ispp, pk, k, dsid, usk, token)↔ Deduct(ispp, pk, k, dsid, sk)→ (b, dstag) where
token = (dsid, dsrnd, v, cred) works as follows:
• The user chooses random dsid∗usr ← Zp and computes the commitment Cusr

∗ = (gdsid∗usr ·
hopen∗ , gopen∗) for a random open∗ ← Zp. It sends Cusr

∗ to the issuer.
• The issuer replies with a random dsid∗prvdr ← Zp and a random challenge γ ← Zp. Both

issuer and user compute Cdsid
∗ = (gdsid∗usr · hopen∗ · gdsid∗prvdr , gopen∗).

• The user prepares new values dsid∗ = dsid∗usr + dsid∗prvdr and dsrnd∗ ← Zp for his next
token and computes Dsid∗ = wdsid∗ and C = (gy1)usk · (gy2)dsid∗ · (gy3)dsrnd∗ · (gy4)v−k ·grC

for a random rC ← Zp.
• The user computes c = usk · γ + dsrnd.
• The user encrypts Dsid∗ as ctrace = (wr, (wr)usk ·Dsid∗) for a random r ← Zp.
• The user randomizes his credential (σ′0, σ′1) = (σr′′0 , (σ1 · σr

′
0 )r′′) for r′′ ← Z∗p, r′ ← Zp

• The user sends C, c, ctrace, σ′0, σ′1 to the issuer and proves

ZKAK[(usk, dsrnd, v, dsid∗, dsrnd∗, r′, r, rC , open∗);
c = usk · γ + dsrnd

∧VrfyPS(pp, pkPS, (usk, dsid, dsrnd, v), (σ′0, σ′1 · (σ′0)−r′)) = 1
∧v ≥ k

∧ctrace = (wr, (wr)usk · wdsid∗)
∧C = (gy1)usk · (gy2)dsid∗ · (gy3)dsrnd∗ · (gy4)v−k · grC

∧Cdsid
∗ = (gdsid∗ · hopen∗ , gopen∗)]

If the proof fails, the issuer aborts and outputs (0,⊥).
• If the proof accepts, the issuer sends σ′′PS = (σ′′0 , σ′′1) = (gr′′′′ , (C · gx)r′′′′) for a random
r′′′′ ← Z∗p to the user and outputs (1, dstag = (c, γ, ctrace)).
• The user unblinds the signature as σ∗PS = (σ′′0 , σ′′1 · (σ′′0)−rC ).

• The user checks VrfyPS(pp, pkPS, (usk, dsid∗, dsrnd∗, v−k), σ∗PS) != 1. If the check succeeds,
it outputs token∗ = (dsid∗, dsrnd∗, v − k, σ∗PS) and Dsid∗, otherwise it outputs ⊥.

Link(ispp, dstag, dstag′)→ (upk, dslink) given dstag = (c, γ, ctrace) and dstag′ = (c′, γ′, ctrace′), out-
puts dslink = (c− c′)/(γ − γ′) and upk = wdslink .

Trace(ispp, dslink, dstag)→ Dsid∗ for dstag = (c, γ, (ctrace0, ctrace1)) computes Dsid∗ = ctrace1 ·
ctrace−dslink

0 .

VrfyDs(ispp, dslink, upk)→ b outputs 1 iff wdslink = upk.
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F Security Proofs for the Incentive System

F.1 Correctness in the Presence of Adversarial Users

For completeness, we define correctness in the presence of adversarial users, which rules out that
adversarial users can interfere with operations between honest users and an honest provider.

Definition 25 (Correctness in the presence of adversarial users). Let Π be an incentive system.
Consider the following experiment Expadv-corr(Π,A, λ):

• The experiment sets up ispp ← Setup(G(1λ)) and calls the oracle pk ← IssuerKeyGen(). It
hands ispp and pk to A.

• A may query the following oracles
– Issue(·)
– Credit(·)
– Deduct(·)
– DBsync(·)

– Keygen()
– u 7→ Join(u, pk)↔ Issue(upku)
– (u, k) 7→ Earn(u, k)↔ Credit(k)
– (u, k) 7→ Spend(u, k)↔ Deduct(k)

• Eventually, A halts.

• The experiment outputs 1 iff DB contains some current dsidu of some honest user u (i.e. user
u’s next spend operation would be detected double-spending as dsidu is already in DB).

We say that Π has correctness in the presence of adversarial users if for all ppt A, there exists a
negligible function negl s.t. Pr[Expadv-corr(Π,A, λ) = 1] ≤ negl(λ) for all λ.

Note that correctness in the presence of adversarial users is not implied by correctness, soundness
and framing resistance. Correctness does not imply anything for the case in which there are
adversarial users. Framing resistance implies that u cannot be blamed for the double-spending (it
may still happen that the online double-spending prevention prevents u from spending his coins).
Soundness implies that after u spends his coin, someone can be blamed for it. This does not rule
out that a corrupted user is able to inject u’s dsid into DB while taking the blame. However, this
would essentially constitute a denial of service attack on u, which is why correctness in the presence
of adversarial users is a desirable property.

Theorem 26. If Zp is super-poly, then Πinsy (Construction 23) is correct in the presence of adversarial
users (Definition 25).

Proof. Assume there are k dsid entries in DB and ` honest users u at the point where A halts. For
honest users, dsidu is uniformly random in Zp by construction. Furthermore, A’s view is independent
of the current (dsidu)u honest as none of the oracles output any information about them. So the
probability that some dsidu is one of the k dsid in DB is at most ` · k/|Zp|, which is negligible as `
and k are polynomial and |Zp| is super-poly.

F.2 Incentive System Anonymity

In the following we proof Theorem 14. For the proof of the theorem we have to look at the experiment
Expano-X (Fig. 4) instantiated for the incentive system Πinsy. On a high level, in Πinsy the important
information for anonymity are the user specific values. Ignoring the commitments and ciphertexts,
we could solely rely on the simulatability of the protocols to proof the theorem. However, the
commitment and encryption scheme only guarantees computationally hiding and key-ind. CPA
security.
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Lemma 27. If Πuacs has simulation anonymity (Definition 5), then for all ppt algorithms A it holds
that |Pr[Expano-Earn

0 (Πinsy,A, λ) = 1]− Pr[Expano-Earn
1 (Πinsy,A, λ) = 1]| = 0.

Proof. We have to show that we can simulate the experiment and especially the challenge phase
independent of b. Since Πuacs satisfies simulation anonymity (Definition 5), there are ppt algorithms
SSetup,SReceive,SShowPrv,SUpdRcv. Therefore, we can perfectly simulate the setup by running SSetup.
Next, observe that we can honestly execute the oracles as in the experiment, since we know all
inputs of the users. In the challenge phase the experiment executes Earn↔ A, where Earn is an
execution of UpdRcvuacs ↔ A. We can perfectly simulate Earn in the challenge phase independent
of b by running SUpdRcv ↔ A.

In the Spend case of experiment Expano-Spend
b (Πinsy,A, λ) we have to look at the Spend↔ Deduct

protocol of Πinsy (Construction 23), since the setup and challenge phase of Expano-Spend
b executes

Spend(ub, k)↔ A. In the challenge phase the adversary A is asked to guess which of the users u0, u1
that he picked before executed the Spend protocol.

Let us first state where Πcmt and Πenc are used. During Spend ↔ Deduct the provider (in
Expano-Spend

b the adversary) gets commitments (generated with Πcmt) from the users during the
combined generation of a fresh dsid∗ = dsid∗usr + dsid∗prvdr, where the user commits to a dsid∗usr ← Zp
and the provider provides his dsid∗prvdr ∈ Zp.

Also during Spend ↔ Deduct, the user encrypts dsid∗ under his user public key upkenc as
ctrace ← Encryptenc(pp, upkenc, dsid∗). Here the adversary could break anonymity by distinguishing
which user public key was used to encrypt or the breaks CPA security.

Remember that the adversary A in Expano-Spend
b (Πinsy,A, λ) can query the spend oracle Spend(u,

k) for user u and spend value k in the setup and challenge phase. In each of the oracle executions he
learns the dsid of the token that the user spends. This means that Spend executions in the setup
phase and the execution in the challenge phase are implicitly linked. In detail, A chooses users u0, u1
in the challenge phase. Then in the challenge phase Spend, A learns the dsid∗b to a commitment C∗b
and encryption ctraceb he received during the last Spend execution in the setup phase with either u0
or u1. If he could link the information, he would break anonymity. Let us quickly deal with the easy
case where A never triggered a spend operation during the setup phase, then the dsid∗ that he gets
during the challenge Spend is a fresh random value from Zp w.h.p..

For the rest of the proof we will change the challenge phase. In detail, we change in the challenge
Spend execution which dsid∗b the adversary A gets (index i in the following) and how the encryption
ctrace that A receives is generated (index j in the following). Therefore, we define experiments Hi,j

where i, j ∈ {0, 1}.
Let H0,0 = Expano-Spend

0 (Πinsy,A, λ) and H1,1 = Expano-Spend
1 (Πinsy,A, λ). In H0,0 the adversary

gets in the challenge phase one execution of Spend with user u0 where A receives dsid∗0 (j = 0).
Therefore, the only important Spend execution of the setup phase is the last execution with user
u0 (i = 0) where A gets the commitment C∗0 = Commitcmt(pp, pkcmt, dsid∗usr) and encryption
ctrace0 = Encryptenc(pp, upkenc,0, dsid∗0), where dsid∗0 = dsid∗usr + dsid∗prvdr. H1,1 is analogous. To
show |[Pr[H0,0 = 1] − Pr[H1,1 = 1]]| ≤ negl we also define an intermediate experiment H0,1 and
prove that |Pr[H0,0 = 1]−Pr[H0,1 = 1]| ≤ negl and |Pr[H0,1 = 1]−Pr[H1,1 = 1]| ≤ negl. In H0,1 we
output dsid∗0 in the challenge Spend execution, where dsid∗0 was determined and used in the previous
Spend execution (part of the setup phase) with user u0. The change is that we no longer also output
an encryption of dsid∗0 under upkenc,0. Instead, we output ctrace′ = Encryptenc(pp, upkenc,1, dsid∗1),
where dsid∗1 was determined and used in the previous Spend execution (part of the setup phase)
with user u1. The public key upkenc,1 is also the one of user u1.

Lemma 28. If Πuacs has simulation anonymity and Πenc is key-ind. CPA secure, then for all ppt A,
|(Pr[H0,0(A) = 1]− Pr[H0,1(A) = 1])| = negl(λ) for all λ ∈ N.
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Proof. Assume that adversary A distinguishes H0,0, H0,1 with non-negligible probability. We give a
reduction B using A to key-indistinguishable CPA security (Definition 19) of Πenc. In the reduction
B we get from Expkey-ind

b (Πenc,A, λ) (b ∈ {0, 1}) two public keys that B injects as two user public
keys upkenc,0 and upkenc,1 by guessing one pair of the users that A can choose in the challenge phase
of H0,b. Since Πuacs guarantees simulation anonymity (Definition 5) and c = usk · γ + dsrnd is
perfectly hiding, the reduction B can simulate the setup of the incentive system and the oracles
Keygen,Join,Earn,Spend of H0,b for two users u0, u1 that we choose before. For all other users
B executes the oracles honestly as in the experiment. If A outputs two users that are not our guess
u0, u1, then B aborts. This happens with probability 1− 1

poly(λ)2 . Otherwise, in the challenge phase
with A, Spend is changed in B as described above. In detail, B gives the Expkey-ind

b challenger dsid∗0
and dsid∗1 (both from the latest token of the users u0, u1 from the setup phase) and outputs the answer
of the challenger as the encryption for A. Eventually, A outputs his guess b̂ which B outputs to the
Expkey-ind

b challenger. Consequently, |Pr[Expkey-ind
0 (Πenc, B, λ) = 1] − Pr[Expkey-ind

1 (Πenc, B, λ) =
1]| = 1

poly(λ)2 · |(Pr[H0,0(A) = 1]− Pr[H0,1(A) = 1])|.

Next, we look at |Pr[H0,1 = 1] − Pr[H1,1 = 1]|. From H0,1 to H1,1 we change which dsid∗b the
adversary receives during the challenge Spend execution. Either dsid∗0 that is part of the latest token
of the user u0 or dsid∗1 from the latest token of user u1. As described above the adversary receives
commitments and encryptions for dsid∗b corresponding to the latest token of the users. Remember,
H1,1 = Expano-Spend

1 (Πinsy,A, λ).

Lemma 29. If Πuacs guarantees simulation anonymity, Πenc is key-indistinguishable CPA secure,
Πcmt is computational hiding, then for all ppt adversaries A it holds that |(Pr[H0,1(A) = 1] −
Pr[H1,1(A) = 1])| = negl

Lemma 29 follows from the following lemmas. First, we define a helper experiment Gbu,v,x,y(D,λ)
for u, v, x, y ∈ {0, 1} that we will use in the following lemmas.

Gb
u,v,x,y(D, λ) :
• pp ← G(1λ)
• pkcmt ← KeyGencmt(pp)
• sk0, sk1 ← KeyGenenc() and pk0, pk1 ← ComputePKenc(pp)
• Hand D pp, pkcmt, pk0, and pk1

• Choose two messages m0,m1 ←Mpp

Phase 1:
• Hand D the commitment Cu where Commitcmt(pp, pkcmt,mu)→ (Cu,Open)
• Receive share ∈Mpp from D

• Hand D the encryption Sv ← Encryptenc(pp, pkv,mv + share)
Phase 2:
• Hand D the commitment Cx where Commitcmt(pp, pkcmt,mx)→ (Cx,Open)
• Receive share′ ∈Mpp from D

• Hand D the encryption Sy ← Encryptenc(pp, pky,my + share′)
Challenge:
• Hand D message mb

• Receive b̂ from D

• Output 1 iff b̂ = b

Lemma 30. If Πuacs guarantees simulation anonymity, Πenc is key-indistinguishable CPA secure,
Πcmt is computational hiding, then there is an ppt reduction D such that for all ppt adversaries A it
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holds that |Pr[G0
0,0,1,1(D,λ) = 1]−Pr[G1

0,0,1,1(D,λ) = 1]| = 1
polyλ · |Pr[H0,1(A) = 1]−Pr[H1,1(A) =

1]|.

Proof. Assume that an adversary A distinguishes H0,1 and H1,1, then we can give an reduction D
that distinguishes G0

0,0,1,1(D,λ) and G1
0,0,1,1(D,λ).

In the following we define D against Gb0,0,1,1(D,λ) using A. To shorten the proof, in D the guessing
of two users u0, u1 to inject the public keys given by Gb0,0,1,1(D,λ) and the handling of the oracle
queries is analogous to B. The last Spend query by A for user u0 is answered with the help of
Phase 1 in Gb0,0,1,1(D,λ) and the rest of Spend simulated. From Phase 1 D uses the commitment
Cu instead of generating a commitment to a fresh dsidusr. In Spend, A hands D (acting as the
user) a dsidprvdr that D hands itself to Gb0,0,1,1(D,λ) (Phase 1) as share. The encryption that D
gets from Phase 1 is used as the encryption ctrace in Spend. For the last Spend query by A for
user u1 reduction D acts analogous with the difference that D uses Phase 2. Eventually A enters
the challenge phase and outputs two user handles. If the handles are not the one that D guessed,
then abort. Otherwise, D simulates a Spend with A where D is supposed to send A the dsid of
the latest token of the challenged user. Hence, D sends the message mb that D received in the
challenge phase of Gb0,0,1,1(D,λ) instead. If A outputs b̂, D also outputs b̂ to Gb0,0,1,1(D,λ). Overall,
|Pr[G0

0,0,1,1(D,λ) = 1]− Pr[G1
0,0,1,1(D,λ) = 1]| = 1

polyλ · |Pr[H0,1(A) = 1]− Pr[H1,1(A) = 1]|.

It is left to show that for all ppt algorithms E it holds that |Pr[G0
0,0,1,1(E, λ) = 1]−Pr[G1

0,0,1,1(E,
λ) = 1]| ≤ negl. Remember, in Gbu,v,x,y(D,λ) the bits (u, v) determine Phase 1, (x, y) Phase 2, and
b determines the output message mb at the end of the experiment. In detail, the bits u and x
determine the messages for the commitments; the bits v and y determine the messages and public
keys for the encryption. In Figure 7 we show an overview of the following proof steps, where Phase 1
and Phase 2 points to the point where we introduce a change to the previous game and “key-ind.
CPA” respectively “comp. hiding” is the security guarantee that we use in the reduction.

Lemma 31. It holds that G0
1,1,0,0 = G1

0,0,1,1.

Proof. This is the last step presented in Figure 7. The lemma follows from the following observation.
Since the experiment Gu,v,x,y chooses the challenge messages itself, the order of the Phases can be
switched without changing the game while also changing the challenge message from m0 to m1.
Changing order of the Phases is the same as replacing mu,mv,mx, and my by m1−u, m1−v,m1−x,
and m1−y.

Lemma 32. If Πenc is key-indistinguishable CPA secure, then for all ppt adversaries E it holds that
|Pr[G0

0,0,1,1(E, λ) = 1]− Pr[G0
0,1,1,1(E, λ) = 1]| = negl(λ).

Proof. We show that if there is an adversary E s.t. |Pr[G0
0,0,1,1(E, λ) = 1]− Pr[G0

0,1,1,1(E, λ) = 1]|
is non-negligible, than we can give an reduction RPhase 1

ki-cpa that breaks key-ind. CPA (Definition 19,
Expkey-ind

b (Πenc, R
Phase 1
ki-cpa , λ)) using E.

RPhase 1
ki-cpa gets from its experiment Expkey-ind

b public parameters pp and two encryption scheme
public keys pk0, pk1. RPhase 1

ki-cpa generates honestly a commitment public key pkcmt and hands E pkcmt
and the received pp, pk0, pk1 as in G0

0,v,1,1. Next, RPhase 1
ki-cpa chooses two messages m0,m1 ← Mpp,

G0
0,0,1,1 G0

0,1,1,1 G0
0,1,1,0 G0

1,1,1,0 G0
1,1,0,0 G1

0,0,1,1Phase 1

key-ind. CPA

Phase 2

key-ind. CPA

Phase 1

comp. hiding

Phase 2

comp. hiding ≡

Figure 7: Sequence of games for anonymity proof
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generates a commitment to m0 for Phase 1 as in G0
0,v,1,1. RPhase 1

ki-cpa sends the Phase 1 commitment
to E and gets share ∈ Mpp back. Next, RPhase 1

ki-cpa hands m∗0 = m0 + share and m∗1 = m1 + share to
Expkey-ind

b and gets S ← Encryptenc(pp, pkb,m∗b) back. Phase 2 is executed by RPhase 1
ki-cpa as in the

experiment G0
0,v,1,1 (commitment to m1 and encryption of m1 + share′). In the challenge phase,

RPhase 1
ki-cpa hands the message m0 to E and receives E’s guess b̂ that RPhase 1

ki-cpa also outputs to Expkey-ind
b .

Observe that RPhase 1
ki-cpa perfectly simulates the view of E in G0

0,0,1,1 if RPhase 1
ki-cpa acts in the experiment

Expkey-ind
0 . The same holds for the view of E in G0

0,1,1,1 if RPhase 1
ki-cpa acts in the experiment Expkey-ind

1 .
Consequently, it holds that |Pr[Expkey-ind

0 (Πenc, R
Phase 1
ki-cpa , λ) = 1]−Pr[Expkey-ind

1 (Πenc, R
Phase 1
ki-cpa , λ) =

1]| = |Pr[G0
0,0,1,1(E , λ) = 1]− Pr[G0

0,1,1,1(E , λ) = 1]|.

Lemma 33. If Πenc is key-indistinguishable CPA secure, then for all ppt adversaries E it holds that
|Pr[G0

0,1,1,1(E, λ) = 1]− Pr[G0
0,1,1,0(E, λ) = 1]| = negl(λ).

The reduction RPhase 2
ki-cpa to show the above lemma works analogous to RPhase 1

ki-cpa with the difference
that in RPhase 2

ki-cpa we use the encryption challenge of Expkey-ind
b (Πenc, R

Phase 1
ki-cpa , λ) in Phase 2.

Lemma 34. If Πcmt is comp. hiding, then for all ppt adversaries F it holds that |Pr[G0
0,1,1,0(F, λ) =

1]− Pr[G0
1,1,1,0(F, λ) = 1]| = negl.

Proof. In the following we show that if there is an adversary F such that |Pr[G0
0,1,1,0(F, λ) =

1]−Pr[G0
1,1,1,0(F, λ) = 1]| is non-negligible, than we can give an reduction RPhase 1

hiding that breaks comp.
hiding of the commitment scheme Πcmt (Definition 21, Exphid

b (Πcmt, R
Phase 1
hiding , λ)) using F .

RPhase 1
hiding gets from its experiment Exphid

b public parameters pp and a commitment scheme public
key pkcmt. RPhase 1

hiding generates honestly two encryption public keys pk0, pk1 as in G0
u,1,1,0. hands F

pk0, pk1 and the received pp, pk as in G0
u,1,1,0. Next, RPhase 1

hiding chooses two messages m0,m1 ←Mpp,
hands both to Exphid

b , and gets Cb ← Commitcmt(pp, pkcmt,mb) back. RPhase 1
hiding outputs Cb as the

Phase 1 commitment to F . The rest of Phase 1 and Phase 2 are executes by RPhase 1
hiding honestly as in

the experiment G0
u,1,1,0. In the challenge phase, RPhase 1

hiding hands F the message mb and receives F ’s
guess b̂. RPhase 1

hiding also outputs b̂ to Exphid
b . Observe that RPhase 1

hiding perfectly simulates the view of F
in Exphid

b . Consequently, |Pr[Exphid
0 (Πcmt, R

Phase 1
hiding , λ) = 1] − Pr[Exphid

1 (Πcmt, R
Phase 1
hiding , λ) = 1]| =

|Pr[G0
0,1,1,0(F, λ) = 1]− Pr[G0

1,1,1,0(F, λ) = 1]|.

Lemma 35. If Πcmt is comp. hiding, then for all ppt adversaries F it holds that |Pr[G0
1,1,1,0(F, λ) =

1]− Pr[G0
1,1,0,0(F, λ) = 1]| = negl.

The reduction RPhase 2
hiding to show the above lemma works analogous to RPhase 1

hiding with the difference
that in RPhase 2

hiding we use the commitment challenge of Exphid
b (Πenc, R

Phase 2
hiding , λ) in Phase 2.

This concludes the proof of Lemma 29 and therefore of Theorem 14.

F.3 Incentive System Soundness

Theorem 15. Let A be an attacker against incentive system soundness of Construction 23. We
construct B against updatable credential soundness of Πuacs.

• B receives cpp from its challenger. B replies with 14 to receive pk. It completes the setup
by choosing pkcmt ← KeyGencmt(pp). Then B simulates the query to IssuerKeyGen():
instead of running IssuerKeyGen, B uses its challenger’s key pk as the query result. B outputs
ispp = (pp, cpp, pkcmt) and pk to A.
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• Oracle queries by A are simulated by B as prescribed by the protocol with one exception:
whenever the original protocol would run Issueuacs or Updateuacs, B instead queries its challenger
for the corresponding operation and relays protocol messages between the challenger and A.

• Eventually A halts. Then B halts as well.

Obviously, the view of A is the same whether it interacts with the incentive system soundness
challenger or with B.

Let error be the event that (1) B has output the same challenge δ in two different Deduct
runs, or (2) there were two commitments Cdsid, Cdsid

′ in two runs of Deduct or Issue such that
the commitments can be opened to two different messages. Note that cmt is perfectly binding
by assumption and so every commitment opens to at most one value (which B cannot necessarily
efficiently compute, but as an event, this is well-defined).

It holds that Pr[error] ≤ negl(λ) because (1) in each Deduct query, δ is chosen uniformly random
by B from the super-poly size set Zp, and (2) Cdsid is the result of an Addcmt operation with a
uniformly random value dsidprvdr ← Zp chosen by B, hence it opens (only) to a uniformly random
value.

Let Awinstrace be the event that DB contains some (upk, dslink) s.t. VrfyDs(ispp, dslink, upk) 6= 1
or upk /∈ U . Let Awinsoverspend be the event that vspent − vinvalid > vearned and DBsync(s) has
been queried for all spend handles s. Let Awins be the event that A wins the game, Awinstrace ∨
Awinsoverspend. Lemma 36 will show that if Awins ∧ ¬error occurs, then there exists no explanation
list L that is consistent, implying Pr[Expsound(Π,B, E , λ) = 1 | Awins ∧ ¬error] = 1. Overall, let E
be an algorithm, then

Pr[Expsound(Πuacs,B, E , λ) = 1]
≥Pr[Expsound(Πuacs,B, E , λ) = 1 | Awins ∧ ¬error]
· Pr[Awins ∧ ¬error]

=1 · Pr[Awins ∧ ¬error] ≥ Pr[Awins]− Pr[error]
= Pr[Expsound(Πinsy,A, λ) = 1]− Pr[error].

Consequently, because Pr[Expsound(Πuacs,B, E , λ) = 1] is negligible by assumption, it follows that
Pr[Expsound(Πinsy,A, λ) = 1] must be negligible.

Lemma 36. If Awins ∧ ¬error, then no explanation list is consistent (cf. Theorem 15 and Defini-
tion 6).

Proof. We prove the statement by showing that if ¬error and there exists a consistent explanation
list L, then ¬Awins. Let L be a consistent explanation list and let Ei be the corresponding sets of
explained attribute vectors (cf. Definition 6).

For ease of reasoning in all the following lemmas, we represent the explanation list as a bipartite
directed graph G (cf. Figure 8). The graph contains (1) one node ~A for every explained attribute
vector ~A ∈

⋃
iEi and (2) nodes for Issue,Credit,Deduct queries: If the ith query is an Issue(upk)

query, there is a node i. If the ith query is a Credit(k) query for which the Updateuacs operation
outputs 1 for the provider, there is a node i. If the ith query is an s← Deduct(k) query for which
the Updateuacs operation outputs 1 for the provider, there is a node i.

An Issue node i has an outgoing edge to the attribute vector ψi(⊥, αi), where ψi is the update
function used within the ith query and αi is as supplied by L. A Credit or Deduct node i has an
incoming edge from attribute vector ~Ai and an outgoing edge to ψi( ~Ai, αi), where ψi is the update
function used within this query and ~Ai, αi are as supplied by L. We call ~Ai the predecessor and
ψi( ~Ai, αi) the successor of a Credit Deduct node i.
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We say that a Deduct node i is marked invalid if its corresponding transaction in the double-spend
database DB is marked invalid. Otherwise, the node is valid.

Lemma 37 shows that ¬Awinstrace and Lemma 38 shows that ¬Awinsoverspend. Hence ¬Awins.

For all of the following lemmas, we are in the setting of Lemma 36, i.e. we assume that ¬error
happens and L is consistent.

Lemma 37. ¬Awinstrace holds (i.e. DB contains no (upk, dslink) with VrfyDs(ispp, dslink, upk) 6= 1
or upk /∈ U)

Proof. First, note that any output (upk, dslink) of Link by definition fulfills the VrfyDs check. The
“upk ∈ U” part remains to be shown. Assume that at some point, (upk, dslink) was associated with
dsid in DB. Lemma 46 states there exists a node ~A = (usk, dsid, dsrnd, ·) in G with usk = dslink.

Lemma 42 implies that ~A is reachable from some Issue node. Let upk ′ be the public key added
to U by the Issue oracle call. Let ~A′ = (usk ′, dsid ′, dsrnd ′, 0) be the successor to that Issue node.
Since ~A is reachable from ~A′, we have usk ′ = usk (no update function ever changes the user secret).
Because the Issue update function checks ComputePKenc(pp, usk ′) != upk ′, and upk = ComputePK(pp,
dslink) = ComputePK(pp, usk) by definition of DBsync we have upk = upk ′. So it holds that upk was
added to U .

Lemma 38. ¬Awinsoverspend holds (i.e. vspent − vinvalid ≤ vearned).

Proof. Assume that DBsync(s) has been queried for all spend handles s. For any subgraph H
of G, we first define vspent(H) =

∑
(i,Deduct)∈H ki, vearned(H) =

∑
(i,Credit)∈H ki, and vinvalid(H) =∑

(i,Credit)∈H;i invalid ki. Note that these are consistent with vspent, vearned, vinvalid in the incentive
system soundness game, i.e. vspent = vspent(G), vearned = vearned(G), and vinvalid = vinvalid(G).

Every weakly connected component of G contains a simple path starting at an Issue node that
contains all valid Deduct nodes within that component and no invalid Deduct nodes (Lemma 39).
We obtain the subgraph G′ of G as the (disjoint) union of these paths (one for each weakly connected
component). As we have removed all invalid Deduct nodes but preserved all valid ones, we have
vspent(G′) = vspent(G)− vinvalid(G). Because every weakly connected component G′′ in G′ is a path
starting at an Issue node, we have that vspent(G′′) ≤ vearned(G′′) (Lemma 47). Because this holds
for every weakly connected component G′′ of G′, we have vspent(G′) ≤ vearned(G′). Also, obviously
vearned(G′) ≤ vearned(G) by the subgraph property.

0 : Issue (usk0, dsid0, dsrnd0, 0) 1 : Credit (usk0, dsid0, dsrnd0, v1)

4 : Credit (usk0, dsid0, dsrnd0, v4)

2 : Deduct

(usk0, dsid2, dsrnd2, v2) (usk0, dsid3, dsrnd3, v3)

3 : Deduct
(invalid in DB)

Figure 8: Example explanation graph G as in Lemma 36 (but with only one user).
The bold graph elements form the “canonical” path (Lemma 39) containing all valid deduct
operations; all other nodes are removed in Lemma 38, ensuring vspent(G′) = vspent(G)− vinvalid(G)
and vearned(G′) ≤ vearned(G).
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Overall, vspent(G)− vinvalid(G) = vspent(G′) ≤ vearned(G′) ≤ vearned(G)

Lemma 39. Every weakly connected component of G contains a simple path containing all valid
Deduct nodes within that component and no invalid Deduct nodes.

Proof. Let G′ be a weakly connected component in G. G′ contains a single Issue node by Lemma 42.
Let j be the numerically largest index such that j ∈ G′ is a valid Deduct node (if no such j exists,
the lemma’s statement holds trivially). Because of Lemma 42, there exists a path P from the Issue
node to j. We show that P contains all valid Deduct nodes and no invalid nodes.

Assume for contradiction that P contains an invalid node. Then j would be invalid as well
(Lemma 43), as it is reachable from that invalid node. Hence P does not contain invalid nodes.

Assume for contradiction that some Deduct node j′ is valid but not on P . j′ is reachable from
the Issue node (Lemma 42) via some path P ′. P and P ′ start at the same node but j is not on P ′
(because j′ < j by maximal choice of j and operation indices are monotonously increasing on any
path (Lemma 40). Because j′ is not on P and j is not on P ′, neither path is a prefix of the other,
so there exists a node that differs on the two paths. Let ~A be the last node on P and P ′ before
the first node that differs (note that this must be an attribute vector node as the operation nodes
have out-degree 1 by definition). Let i be the first Deduct node after ~A on P and let i′ be the
first Deduct node after ~A on P ′. Because i and i′ are the first Deduct operation on each path (i.e.
only Credit operations happen between ~A and i or i′), we have that dsidi = dsidi′ (where dsid` is
the dsid that was revealed during the `th query). From the definition of DBsync, it is easy to see
that i or i′ must have been marked invalid (at most one transaction per dsid is valid). Since i is on
P , it is valid. Hence i′ must be invalid. Because j′ is reachable from i′ (via P ′), j′ must be invalid
(Lemma 43)

Lemma 40. For any path in G, the indices of Issue and Deduct nodes on the path are strictly
monotonously increasing.

Proof. Let P be a path and let j and i be Deduct nodes on the path in that order (in the following,
j could also be an Issue node) so that there are no other Deduct nodes between them on the path.
Assume for contradiction that i ≤ j. Let ψi, ~Ai = (uski, dsidi, dsrndi, vi), αi be the “input” values
for query i (as defined by L). Because L is consistent, there is some Issue or Deduct node i′ < i
that creates attribute vectors with dsidi. However, there is a path from j to i that involves only
Credit and attribute vector nodes. This implies that the dsid in j’s successor node is dsidi. This
means that j 6= i′ are associated with the same dsid, contradicting ¬error (cf. Lemma 36).

Lemma 41. G is acyclic.

Proof. Assume there exists a cycle C. C cannot contain Issue nodes as they have in-degree 0.
Because of Lemma 40, C cannot not contain any Deduct nodes. This means that the only oracle
nodes on the cycle are Credit nodes. In turn, this implies that all ~A = (usk, dsid, dsrnd, v) nodes
on the cycle share the same usk, dsid, dsrnd (as those are not changed by Credit). Credit strictly
increases v, but on a cycle we would have to see a Credit node that decreases v or leaves it unchanged.
Hence there are also no Credit on the cycle. Overall, there are only attribute vector nodes on the
cycle, but there are no edges between attribute vector nodes, contradicting the existence of the
cycle.

Lemma 42. Every weakly connected component of G contains exactly one Issue node. Furthermore,
every node in G is reachable from (exactly one) Issue node.

Proof. Let v be a node in G. Because G is acyclic (Lemma 41), the process of walking edges
backwards from v eventually stops. It cannot stop at an attribute vector node (since every attribute

40



vector node has in-degree at least 1 by consistency of L) and it cannot stop at a Credit or Deduct
node (as those have in-degree 1), hence it must stop at an Issue node. So v can be reached from
some Issue node.

Assume for contradiction that some weakly connected component contains two Issue nodes v0, v1.
By choice of our update functions, all attribute vector nodes ~A = (usk, dsid, dsrnd, v) reachable
from a Issue node have the same usk (because no update ever changes usk). Furthermore, there
are no two Issue nodes with the same usk (since Issue(upk) can only be called once per upk and
ComputePK is injective). As a consequence, every node is reachable from exactly one Issue node.

If we partition the attribute vector nodes in the weakly connected component into those that
are reachable from v0 and those that are reachable from v1, there must be some path (of the form
~A0 → i→ ~A1) from some ~A0 reachable from v0 to some ~A1 reachable from v1 or vice versa (otherwise
the graph cannot be weakly connected). However, then ~A1 (or ~A0) is reachable from v0 and from v1,
contradicting our previous result. This implies that every weakly connected component contains at
most one Issue node. Furthermore, every weakly connected component contains at least one node,
which is reachable from some Issue, meaning that it also contains at least one Issue node.

Lemma 43. If DBsync(s) has been queried for all spend handles s, then every Deduct node that
is reachable from an invalid Deduct node is invalid.

Proof. Let i, j be Deduct nodes such that i is invalid and j is reachable from i with no further
Deduct nodes on the path P between i and j. If we can show that j is invalid, transitivity implies
the statement for all j′ reachable from i.

Because P does not contain (intermediate) Deduct nodes, all attribute vector nodes on P have
the same usk, dsid, dsrnd. dsid is input to j’s oracle query. Let dstagi = (c, γ, ctrace) be the double-
spend tag output by Deduct in query i. Because of the update function used in query i, it holds
that Decryptenc(pp, usk, ctrace) = dsid.

We distinguish two cases: ti is marked invalid before tj was added to DB or vice versa. Assume ti
was marked invalid before tj was added to the graph. When ti was marked invalid, the successor
node dsid is added to DB (Lemma 44). When tj is added to the database afterwards, its input dsid
is already in the database, hence tj is immediately marked invalid. Assume that ti was marked
invalid after tj was added to DB. When tj is added, dsid and an edge (dsid, tj) is added to DB.
Afterwards, at some point ti is marked invalid. During this process, the edge (ti, dsid) is added to
DB (Lemma 44) and because (dsid, tj) is in the graph, tj is marked invalid.

Hence in both cases, tj is marked invalid at some point.

Lemma 44. Let ti be some transaction node in DB and let i be the corresponding Deduct node
in G with successor ~A∗ = (usk∗, dsid∗, dsrnd∗, ·). After ti is marked invalid, the successor of ti in
DB is dsid∗.

Proof. Since ti is marked invalid, ti’s predecessor dsid in DB is correctly associated with some
(upk, dslink) (Lemma 46). In particular, i’s predecessor ~A = (usk, dsid, dsrnd, v) in G must have
dslink = usk. Let ~A∗ = (usk∗, dsid∗, dsrnd∗, v∗) be i’s successor. Let dstag = (c, γ, ctrace) be the
dstag associated with i’s oracle query. Because of consistency of L, we have Decryptenc(pp, usk,
ctrace) = dsid∗. When ti is marked invalid, DBsync computes dsid∗ = Trace(pp, dslink, dstag) =
Decryptenc(pp, usk, ctrace) = dsid∗ and makes dsid∗ the successor to ti.

Lemma 45. For any two attribute vectors ~A0 = (usk0, dsid0, dsrnd0, v0) and ~A1 = (usk1, dsid1,
dsrnd1, v1) in G, it holds that if dsid0 = dsid1, then usk0 = usk1 and dsrnd0 = dsrnd1.

Proof. Because of ¬error, there is a unique Issue or Deduct node i whose successor ~A∗ = (usk∗,
dsid∗, dsrnd∗, v0) contains dsid∗ = dsid0 = dsid1. Because i is unique in this regard, both ~A0 and ~A1
are reachable from i on paths P0, P1 that contains only Credit and attribute vector nodes. Since

41



Credit does not change usk or dsrnd, we get that usk0 = usk1 = usk∗ and dsrnd0 = dsrnd1 =
dsrnd∗.

Lemma 46. We say that a node dsid in DB is “correctly associated” with (upk, dslink) if there
exists (usk ′, dsid ′, dsrnd ′, ·) in G with dsid ′ and dslink = usk ′ and for all (usk ′, dsid ′, dsrnd ′, ·) in G
with dsid ′, we have that dslink = usk ′. All nodes dsid in DB that have some value associated with
them are correctly associated.

Proof. Let dsid be some node in DB that has been associated with some value (upk, dslink). We
prove the claim essentially via induction: We first show that if (upk, dslink) was computed when
adding a second transaction to dsid to DB, then it is correctly associated. We then show that if dsid
has been correctly associated with (upk, dslink), then copying the value to some dsid∗ in the “when
ti is marked invalid” trigger correctly associated (upk, dslink) to dsid∗. In each case, it suffices to
show that dslink = usk for some (usk, dsid, dsrnd, ·) in G, as Lemma 45 then implies that this holds
for all attribute vector nodes with dsid.

To show the first statement, let ti be a transaction node in DB with predecessor dsid and assume tj
with the same predecessor is added to DB by DBsync. Let dstagi, dstagj be their dstags. Let i, j be the
Deduct nodes in G corresponding to ti and tj , respectively3. Let ~Ai = (uski, dsidi, dsrndi, vi) and
~Aj = (uskj , dsidj , dsrndj , vj) be the predecessors of i and j in G, respectively. It holds that dsidi =

dsidj = dsid by consistency of L (since equality with dsid is checked by the update function). Because
dsidi = dsidj , we get uski = uskj and dsrndi = dsrndj (Lemma 45). Because of consistency of L,
necessarily dstagi = (ci = uski ·γi+dsrndi, γi, ctrace) and dstagj = (cj = uskj ·γj+dsrndj , γj , ctrace)
(as enforced by the update function). Since uski = uskj and dsrndi = dsrndj and γi 6= γj (as implied
by ¬error), we get dslink = (ci − cj)/(γi − γj) = uski. Hence dslink = uski for our attribute vector
(uski, dsidi, dsrndi, vi) in G.

To show the second statement, let ti be a transaction that is marked invalid. Let dsid be its
predecessor (which is by assumption correctly associated with (upk, dslink)). Let dstag = (c, γ, ctrace)
be the associated dstag for ti. Let dsid∗ = Trace(ispp, dslink, dstag) = Decryptenc(pp, dslink, ctrace)
be ti’s successor. We show that dsid∗ is correctly associated with (upk∗, dslink∗). Let (usk, dsid,
dsrnd, ·) be the predecessor of i in G. By assumption it dsid is correctly associated, hence usk = dslink.
Let (usk ′, dsid ′, dsrnd ′, ·) be the successor of i in G. By consistency of L, Decryptenc(pp, usk =
dslink, ctrace) = dsid ′ as guaranteed by the update function ψ. Hence dsid ′ = dsid∗. Because
usk = usk ′ = dslink, we have that (usk, dsid∗, dsrnd ′, ·) in G contains dsid∗ and dslink = usk,
implying that dsid∗ is correctly associated with (upk, dslink).

Lemma 47. On every path P in G starting at some Issue node, it holds that vspent(P ) ≤ vearned(P ).

Proof. Let (usk, dsid, dsrnd, v) be the successor (in G) of the last Deduct node on P . By design
of our update functions, it is easy to see that v ≤

∑
i∈P is Credit node ki −

∑
j∈P is Deduct node kj =

vearned(P ) − vspent(P ). (the inequality is usually an equality, assuming that there is no Credit
operation where adding k to the current v exceeds vmax = p− 1. If the latter happens, the integers
will wrap around and result in the smaller v′ = v+ k mod p) Also by design of the update functions,
it holds that v ≥ 0. Hence vearned(P )− vspent(P ) ≥ 0.

F.4 Incentive System Framing Resistance

Theorem 16. Let A be a ppt adversary against framing resistance of our incentive system. Without
loss of generality, we assume that A always outputs some actual user’s handle u in the challenge

3This is a slight abuse of notation as the index i of ti does not necessarily correspond to node i in G, which is
associated with the ith oracle query.
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phase. Let k be a (polynomial in λ) upper bound for the number of Keygen calls that A may make.
We construct B against CPA-security of Πenc.

• B gets pp, pk∗ from its challenger. It finishes the incentive system setup by simulating the
UACS setup cpp ← SSetup(pp) and computing pkcmt as usual. It hands ispp = (pp, cpp, pkcmt)
to A.

• B randomly chooses an index j ≤ k. For the jth Keygen query, B responds with upk = pk∗
and some handle u∗.

• Any queries involving u∗ are run honestly by B except that it uses the UACS simulators to
simulate the Receive and Update protocols without usk.

• Eventually, A enters the challenge phase and outputs some dslink and a user handle u.

• If u 6= u∗, B aborts.

• If upk∗ 6= ComputePKenc(pp, dslink), B aborts.

• Otherwise, B uses dslink as the secret key to pk∗ to break its CPA challenge with probability
1.

The view of A in the framing resistance game is simulated perfectly and independently of j. We have
that Pr[B wins the CPA game] = Pr[Expfram-res(Π,A, λ) = 1] · Pr[u = u∗]. By assumption, Πenc is
CPA-secure. It holds that Pr[u = u∗] is non-negligible, hence Pr[Expfram-res(Π,A, λ) = 1] must be
negligible.
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