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Abstract. Profiling side-channel attacks represent the most powerful
category of side-channel attacks. There, we assume that the attacker has
access to a clone device to profile its leaking behavior. Additionally, we
consider the attacker to be unbounded in power to give the worst-case
security analysis. In this paper, we start with a different premise where
we are interested in the minimum strength that the attacker requires
to conduct a successful attack. To that end, we propose a new frame-
work for profiling side-channel analysis that we call the Efficient Attacker
Framework. With it, we require the attackers to use as powerful attacks
as possible, but we also provide a setting that inherently allows a more
objective analysis among attacks.
We discuss the ramifications of having the attacker with unlimited power
when considering the neural network-based attacks. There, we show that
the Universal Approximation Theorem can be connected with neural
network-based attacks able to break implementations with only a sin-
gle measurement. Those considerations further strengthen the need for
the Efficient Attacker Framework. To confirm our theoretical results, we
provide an experimental evaluation of our framework.

1 Introduction

Side-channel analysis (SCA) is a threat that exploits weaknesses in physical
implementations of cryptographic algorithms rather than the algorithms them-
selves [1]. SCA takes advantage of any unintentional leakage observed in physical
channels like timing [2], power dissipation [3,4], or electromagnetic (EM) radia-
tion [5]. Profiling SCA performs the worst-case security analysis by considering
the most powerful side-channel attacker with access to an open (the keys can be
chosen or are known by the attacker) clone device.

Usually, we consider an attacker in the setting where he has unbounded
power, e.g., he can obtain any number of profiling or attack traces, and he has
unlimited computational power. In the last two decades, besides template at-
tack and its variants [6, 7], the SCA community started using machine learning
to conduct profiling attacks. Those results proved to be highly competitive when
compared to template attack, and, in many scenarios, machine learning methods
surpassed template attack performance [8–10]. Unfortunately, in these scenar-
ios, the experimental setup is often arbitrarily limited, and no clear guidelines



2

on the limitation of profiling traces or the hyperparameter tuning phase are
offered or discussed. More recently, the SCA community also started to exper-
iment with deep learning where the performance of such methods bested both
template attack and other machine learning methods [11, 12]. Again, no clear
guidelines on the number of profiling traces or hyperparameter tuning were given
or investigated. Consequently, there exists an evident lack of evaluation guide-
lines/frameworks in the context of profiled analysis to properly understand the
performance of various attacks or how they compare.

In the machine learning domain, there is a well-known theorem called the
Universal Approximation Theorem [13], which informally states that a feed-
forward neural network with a single hidden layer containing a finite number
of neurons can approximate a wide range of functions to any desired level of
error. With such a theorem, and considering a powerful (“unbounded”) side-
channel attacker, we must assume he can approximate any function describing
the implementation leakage. Since the theorem states that the approximation is
made to any desired level of error, this would result in an attacker able to break
any implementation that leaks exploitable side-channel information. As such
setting may represent an ideal case from the attacker’s perspective, our goal is to
extend the currently used evaluation techniques to a framework that determines
the least powerful attacker that is still able to reveal secret information.

To achieve this, we evaluate the limit on 1) the number of measurements the
attacker can collect in the training phase and 2) the number of hyperparameter
tuning experiments. It could sound counter-intuitive to make such limitations
as one can argue there is no reason why an attacker cannot collect a large
number of measurements or run hyperparameter tuning as long as needed (or
select algorithm that has no hyperparameters to tune). We claim that there are
several reasons for that:

1. By considering a scenario where an unlimited number of measurements are
available, we “allow” less powerful attacks. More precisely, the attacker can
use a larger set of measurements to compensate for less powerful profiling
models.

2. By considering a scenario where a computationally unbounded attacker runs
the analysis, we assume he can always find the best possible attack and that
seldom happens in practice.

3. The device may include a countermeasure that limits the number of ex-
ploitable measurements. The experimental setup can have constraints that
limit the allowed length of the hyperparameter tuning phase.

4. Although taking measurements or running more experiments is “cheap”,
there is always a point where this is more effort than the target/secret is
worth.

5. Having more measurements does not guarantee better results, especially in
realistic scenarios. Consider the case where one device is used for profil-
ing and the other for attacking (a realistic case that is usually simplified
in research works where only a single device is used). Then, adding more
measurements to the profiling phase can cause machine learning methods to
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overfit [14]. The same issue can happen due to a too long tuning phase. Over-
fitting occurs when the learning model learns the data too well and cannot
adapt to previously unseen data. We illustrate this with a simple example of
two AVR Atmega328p 8-bit micro-controllers. There are two devices, where
each has a different key. In Figure 1, we depict the results with 10 000, and
40 000 measurements in the training phase. We see that the guessing entropy
(i.e., the average key rank of the secret key) is much better for 10 000 mea-
surements as less overfitting occurs. With 40 000 measurements, the machine
learning method overfitted on train data and could not adapt to measure-
ments coming from a different device. We emphasize that we do not claim
this behavior must occur anytime different devices are used for profiling and
attacking. Still, there will be overfitting (even if using only a single device),
and additional measurements or hyperparameter tuning may increase this
effect.

Fig. 1: Multilayer perceptron results for two device settings.

In realistic profiling scenarios, training and testing data do not come from the
same distribution (as they come from two devices), so it is clear that the learning
model does not learn on the data that it needs to predict, which makes this a
problem difficult to circumvent. We refer interested readers to related works for
further details on this problem and possible solutions [14,15].

As far as we know, there are no previous works considering profiled and
realistic attacker evaluation frameworks. When the attacker is restricted, it is
usually set as one of several tested scenarios (e.g., testing the performance of a
classifier with specific hyperparameters or a different number of measurements
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in the training phase). Alternatively, it is motivated with some limitations in the
data acquisition or evaluation process.

In this paper, we present the following main contributions:
1. We propose a new framework for profiling side-channel analysis where we

evaluate the minimum strength of an attacker in the profiling phase to still
be successful in the testing phase. As such, we also introduce a new threat
model that differs from a common one by considering a more realistic at-
tacker. Note, the attacker in our threat model is still powerful from the
computational perspective as well as from the perspective of the learning
models he can build. In other words, we move from the problem of simply
breaking the target (which is well-explored and with strong results, espe-
cially when considering machine learning) to a problem where we aim the
break the target with a minimal number of measurements and minimal hy-
perparameter tuning. We consider our framework to be intuitive and easily
adaptable to a plethora of realistic scenarios.

2. With some constraints on the type of SCA leakage, we argue that a neural
network can break the cryptographic implementation with a single measure-
ment.

3. We strengthen our theoretical results with an experimental evaluation con-
ducted on publicly available datasets protected with masking countermea-
sures. We explore two commonly used leakage models and two neural network
types.
The rest of this paper is organized as follows. In Section 2, we discuss the

common methods to conduct profiling SCA. In Section 3, we introduce the cur-
rently used frameworks for profiling SCA. Section 4 introduces our new frame-
work – The Efficient Attacker Framework. In Section 5, we further develop on
the proposed framework, and we show its relevance for neural network-based ap-
proaches. Additionally, by connecting the theoretical results from the machine
learning domain and SCA, we show how neural networks can be even more pow-
erful than one would intuitively assume. In Section 6, we discuss the significance
of our findings and how the Efficient Attacker Framework fits into scenarios
outside of side-channel analysis. Finally, in Section 7, we conclude the paper.

2 On the Methods to Perform Profiling Side-channel
Analysis

In this section, we start by introducing the notation we follow. Next, we discuss
profiling side-channel analysis and related works. Finally, we briefly introduce
multilayer perceptron and convolutional neural networks as the architectures of
choice in our experiments.

2.1 Notation

Let calligraphic letters (X ) denote sets, capital letters (X) denote random vari-
ables over X , and the corresponding lowercase letters (x) denote their realiza-
tions. Let k∗ be the fixed secret cryptographic key (byte), k any possible key
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hypothesis, and the random variable T the plaintext or ciphertext of the cryp-
tographic algorithm that is uniformly chosen.

2.2 Profiling Side-channel Attacks

A powerful attacker has a device (usually called the clone device) with knowledge
about the secret key implemented where he can obtain a set of N profiling traces
X1, . . . , XN . Using the known secret key and N plaintexts or ciphertexts Tp, he
calculates a leakage model Y (Tp, k

∗). In this phase, commonly known as the
profiling phase, the attacker has available N pairs (Xi, Yi) with i = 1, . . . , N ,
which are used to build a profiling model f . The attack can then be carried
out on another device by using the mapping f . For this, the attacker measures
an additional Q traces X1, . . . , XQ from the device under attack to guess the
unknown secret key k∗a. The leakage model is now calculated for all possible key
candidates k ∈ K:

Y (Ta, k1), . . . , Y (Ta, k|K|), (1)

given Q plaintexts or ciphertexts Ta.
In Figure 2, we depict the profiling side-channel attack scenario where we

distinguish between the profiling phase where a machine learning model f is fit-
ted to N measurements and the attack phase where we use the machine learning
model f and Q measurements to predict the secret key on the attacking device.
Throughout the paper, we use the terms of the learning model, machine learning
model, and profiling model interchangeably.

Profiling device Attacking device 

Set of Q attacking 
traces

Set of N profiling 
traces / iputs

profiled model side-channel attack key guess

Fig. 2: The profiling side-channel analysis.

The best-known profiling attack is the template attack [16], which is based
on the Bayesian rule. It works under the assumption that the measurements are
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dependent on the D features given the target class. More precisely, given the
vector of N observed attribute values for x, the posterior probability for each
class value y is computed as:

p(Y = y|X = x) =
p(Y = y)p(X = x|Y = y)

p(X = x)
, (2)

where X = x represents the event that X1 = x1 ∧X2 = x2 ∧ . . . ∧XN = xN .
Note that the class variable Y and the measurement X are not of the same

type: Y is discrete while X is continuous. So, the discrete probability p(Y = y)
is equal to its sample frequency where p(X = x|Y = y) displays a density
function. Mostly in the state-of-the art, p(X = x|Y = y) is assumed to rely on
a (multivariate) normal distribution and is thus parameterized by its mean x̄y
and covariance matrix Σy:

p(X = x|Y = y) =
1√

(2π)D|Σy|
e−

1
2 (x−x̄y)TΣ−1

y (x−x̄y). (3)

In practice, the estimation of the covariance matrices for each class value of
y can be ill-posed mainly due to insufficient traces for each class. The authors
of [7] propose to use only one pooled covariance matrix to cope with statistical
difficulties and thus lower efficiency. Accordingly, Eq. (3) changes to:

p(X = x|Y = y) =
1√

(2π)D|Σ|
e−

1
2 (x−x̄y)TΣ−1(x−x̄y). (4)

The works in e.g., [7, 17] showed that the pooled version can be more efficient,
in particular for a smaller number of traces in the profiling phase.

Profiling side-channel attacks, especially those based on machine learning,
received significant attention in the SCA community in the last decade. There,
researchers reported various scenarios where machine learning can achieve top
results in attacking cryptographic implementations. In the last few years, deep
learning emerged as a powerful alternative where results surpassed template
attack and other machine learning methods.

When considering profiling (or supervised) SCA, the SCA community started
with a template attack and its variants. Afterward, Support Vector Machines
(SVM) [8, 18, 19] and Random Forest (RF) [20, 21] attracted most of the atten-
tion. In the last few years, deep learning, and more precisely, multilayer percep-
tron (MLP) [20,22–24] and convolutional neural networks (CNNs) [10,11,22,23]
are taking the lead in profiled SCAs. The reason for the high popularity of deep
learning can be found in the facts that it performs well 1) even without pre-
processing (e.g., no need for feature selection) and 2) in the presence of counter-
measures (CNNs work well with countermeasures occurring in the time domain
(like random delay interrupts) due to their spatial invariance. At the same time,
MLP combines features to produce a similar effect as higher-order attacks, thus
thwarting masking countermeasures). Interestingly, most of the related works
consider only scenarios to evaluate the influence of the number of testing traces
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in the performance. When there are experiments with different training set sizes,
they do not aim to find the minimum training and testing traces for a certain
level of performance. For the hyperparameter tuning, commonly, the authors de-
note the tested ranges and the best-obtained values. Still, it is far from apparent
how much computational effort was needed or how sensitive are the algorithms
to tuning.

Multilayer Perceptron The multilayer perceptron (MLP) is a feed-forward neural
network that maps sets of inputs onto sets of appropriate outputs. MLP consists
of multiple layers of nodes in a directed graph, where each layer is fully connected
to the next one. The backpropagation algorithm is used to train the neural
network [25]. An MLP consists of three or more layers (since input and output
represent two layers) of nonlinearly-activating nodes [26].

Convolutional Neural Networks Convolutional neural networks (CNNs) com-
monly consist of three types of layers: convolutional layers, pooling layers, and
fully-connected layers. Convolution layer computes the output of neurons con-
nected to local regions in the input, each computing a dot product between their
weights and a small region they are connected to in the input volume. Pooling
decrease the number of extracted features by performing a down-sampling op-
eration along the spatial dimensions. The fully-connected layer (the same as in
MLP) computes either the hidden activations or the class scores.

3 Existing Frameworks for Side-channel Evaluation

In this section, we discuss the currently used frameworks for profiling side-
channel analysis in scientific works and certification.

3.1 Scientific Metrics

The most common evaluation metrics in the side-channel analysis are success
rate (SR) and guessing entropy (GE) [27]. GE states the average number of key
candidates an adversary needs to test to reveal the secret key after conducting
a side-channel analysis. In particular, given Q amount of samples in the attack
phase, an attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing
order of probability with |K| being the size of the keyspace. So, g1 is the most
likely and g|K| the least likely key candidate. The guessing entropy is the average
position of k∗a in g over multiple experiments. The success rate is defined as the
average empirical probability that g1 equals the secret key k∗a.

In practice, one may consider leakage models Y (·) that are bijective functions.
Thus, each output probability calculated from the classifiers for Y (k) directly
relates to one key candidate k. When Y (·) is not bijective, several key candidates
k may get assigned with the same output probabilities, which is why on average,
a single trace attack (Q = 1) may not be possible in case of non-bijective leakage
models. Further, to calculate the key guessing vector g over Q amount of samples,
the (log-)likelihood principle is used.
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Remark 1. SR and GE are used for practical evaluations in both non-profiling
and profiling scenarios. Typically, they are given over a range of traces used
in the attack phase (i.e., for q = 1, 2, . . . , Q). In case these metrics are used in
profiling scenarios, there are no clear guidelines on how to evaluate attacks. Most
of the time, the number of training samples N in the profiling stage is (arbitrary)
fixed, making comparisons and meaningful conclusions on profiling side-channel
attacks or resistance of implementations hard and unreliable in most scenarios.

Whitnall and Oswald introduced a more theoretical framework that aims at
comparing distinguishing powers instead of estimators of attacks [28,29]. Accord-
ingly, the size of the profiling dataset N does not play any role in this framework.
The most popular metrics of the framework are the relative and absolute distin-
guishing margins in which the output score of the correct key and the value for
the highest-ranked alternative are compared.

Another approach to compare side-channel attacks uses closed-form expres-
sions of distinguishers [30], which enables conclusions about distinguishers with-
out the requirement of actual measurements. Unfortunately, only a few closed-
form expressions of distinguishers have been achieved so far.

In the case of masking countermeasures, Duc et al. defined information-
theoretical bounds on the success rate depending on the number of measure-
ments, shares, and independent on the concrete estimated side-channel attack [31].
In [32], the authors provide information-theoretic tools to bound the model er-
rors in side-channel evaluations concerning the choice of the leakage model.

Typically, to assess the performance of the machine learning classifiers, ac-
curacy is used [33]. A detailed comparison between accuracy (but also other
machine learning metrics like precision, recall, F1) and guessing entropy/success
rate is given in [10], which details that such metrics may not always be a proper
choice for side-channel analysis.

3.2 Practical Evaluation Testing

While most of these previous metrics are relevant in some contexts and scenarios,
a different approach is required to make research statements in the context of
profiling attacks. This issue becomes even more evident when looking at practical
evaluation used in standardization processes. In practice, there are two main
practical schemes:
1. Test-based schemes, such as NIST FIPS 140 [34] and its application to the

mitigation of other attacks (part of Appendix F, in particular non-invasive
attacks ISO/IEC 17825 [35]).

2. Evaluation-based schemes, such as Common Criteria (CC, ISO/IEC 15408 [36]).
Interestingly, both FIPS 140 and CC pay attention to the limited amount

of resources spent. When considering FIPS 140 / ISO/IEC 17825, the require-
ment is more on the attack traces, but regarding CC, the evaluation of attacks
is considered under two phases: identification (which matches with the training
phase in the context of profiling side-channel attacks) and exploitation (which
matches with the attack phase in the context of profiling side-channel attacks).
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Strictly speaking, the distinction is for CC version 2, but it still implicitly holds
for version 3. Several factors are considered for the quotation of attacks, namely:
elapsed time, expertise, knowledge of the Target Of Evaluation (TOE), access
to TOE, equipment, open samples. The first factor, elapsed time, has a direct
connection with the acquisition of traces in the profiling phase and the hyper-
parameter tuning. Indeed, according to the guidance “Application of Attack
Potential to Smartcards” [37]), the score is considered:

– 0 if the profiling of the traces can be performed in less than one hour,
– 1 if the profiling of the traces can be performed in less than one day,
– 2 if the profiling of the traces can be performed in less than one week,
– 3 if the profiling of the traces can be performed in less than one month,
– 5 if the profiling of the traces cannot be performed in less than one month.

Accordingly, we see that the CC guidance favors attacks, which are realized
with as little profiling effort as possible. This profiling effort can go into the
direction of the number of required measurements, the number of experiments
in the hyperparameter tuning phase, or both.

3.3 Practical Observations and Effects of Aging

Besides overfitting (see details in the introduction and Figure 1), another diffi-
culty for profiling attacks is that the collection of side-channel traces becomes
less reliable after a long period. Indeed, some trend noise must be added to the
side-channel traces (due to temperature and environmental conditions evolution
over time). This has, for instance, been characterized by Heuser et al. in [38],
where it is proven that trend noise drastically impedes SCA. Similar findings
are confirmed by Cao et al. [39]. Very practical distinguishing situations, such
as that depicted in Figure 3 shows that the best number of traces to estimate a
distinguisher is not always “the maximal”. This is illustrated on a simple “dif-
ference of means” attack representing side-channel attack on DPA contest 4.2
traces.

4 The Efficient Attacker Framework

In this section, we first introduce the threat model we follow. Next, we discuss
the core assumptions for our framework as well as the components of a successful
attack. Finally, we give a formal description of the Efficient Attacker Framework.

4.1 Threat Model

The adversary has access to a clone device running the target cryptographic al-
gorithm. This device can be queried with a known key and plaintext, while cor-
responding leakage measurement is stored. Commonly, the adversary can have
infinite queries to characterize a precise profiling model. There are no limits on
how many experiments he can do to find such a profiling model. In our threat
model, the adversary has a limited number of queries to characterize a profiling
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Fig. 3: Difference of Means (DoM) distinguisher estimation for all key bytes (the
correct one and all incorrect ones).

model. Additionally, he has a limited number of experiments to conduct hyper-
parameter tuning. Next, the adversary queries the attack device with known
plaintext to obtain the unknown key. The corresponding side-channel leakage
measurement is compared to the characterized profiling model to recover the
key. Note, while our framework allows various machine learning tasks, in this
paper, we concentrate on the classification task, as it is common in the profiling
SCA.

4.2 Components of a Successful Attack

Current evaluations for profiling SCA mostly assume that the attacker is un-
bounded in his power. This assumption aims to provide the worst-case scenario
for the designer, which should help in the proper assessment of the risk. Although
the attacker is considered unbounded, he is always bounded, with bounds set
ad-hoc, and there are no clear directions one should follow when modeling the
realistic attacker.

First, we discuss two core assumptions we make in this research. These need
to be fulfilled so that general meaningful comparisons between profiled attacks
can be made, and our framework can provide exploitable results:
1. Attack must be possible. While our framework does not require the attacker

to be always successful, the attack must be possible. For instance, having
measurements completely uncorrelated with the labels will make our frame-
work not useful. Still, if there is no connection between the measurements
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and labels, no side-channel attack can succeed. Consequently, this is not a
drawback of our framework.

2. We consider only profiling (supervised) attacks, and therefore, profiling mea-
surements need to allow learnability about the problem. Profiling measure-
ments that are completely uncorrelated with the attack measurements would
make our framework not usable. The hyperparameter tuning (if possible)
must allow reaching the useful profiling model. Again, the profiling attacks
cannot work if the previous conditions are not fulfilled, so this does not
represent a disadvantage of our framework.

Next, we examine the three components of a successful attack. The worst-
case (strongest) attacker will be unbounded in all three components. At the same
time, fulfilling only one or two of them accounts for more realistic settings one
encounters in practice:

1. Quantity - there must be sufficient measurements in the profiling/testing
phase to conduct the attack, i.e., to build a reliable profiling model that
generalizes to the unseen data. This criterion is a natural one and already
well-known in SCA as researchers usually report the performance of the at-
tack concerning a different number of measurements. At the same time, there
is much less research to determine the minimum number of measurements
for a successful attack.

2. Quality - the measurements need to be of sufficient quality to conduct the at-
tack. This condition could be translated into the requirement that the SNR
should be sufficiently high, or that the data need to have all information
required to model the leakage correctly. Finally, this component includes the
leakage model’s quality, i.e., that the considered leakage model provides suf-
ficient information and the distribution of leakages. Again, like the previous
component, this one is well addressed in the SCA community as researchers
usually conduct various pre-processing steps, e.g., to select/transform fea-
tures or align traces.

3. Learnability - the attacker needs to be able to learn the profiling model. This
perspective also accounts for finding the best possible hyperparameters for
the profiling model. The learnability is naturally connected with the quan-
tity and quality parameters. This component is significantly less addressed
in related work. While the researchers usually conduct various tuning pro-
cedures, they rarely report how difficult it was to find the hyperparameters
used in the end.

We should not limit the quality component: if the attacker can obtain mea-
surements, those measurements should be of the best possible quality. When
discussing the quantity and learnability components, we can (and we must)
evaluate the limit of the number of profiling measurements and experiments in
the tuning phase since:

1. If always considering the extreme case of unbounded measurements in the
profiling phase, we “allow” to utilize weaker attack, which may only work
in this extreme scenario. On the other hand, if we consider the minimum
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number of traces that are available in the profiling phase while still being
able to succeed in the attack phase, we promote efficient attacks.

2. The attacker who is unbounded in his capabilities could break cryptographic
implementations even with a single measurement (under certain assump-
tions) as he can always find the optimal attack. This reasoning suggests that
ultimately, there is nothing the designer can do to stop the attack.

Remark 2. Having a limited number of measurements or time to conduct hyper-
parameter tuning is a realistic occurrence in practical scenarios, as the attacker
may be limited by time, resources, and also face implemented countermeasures,
which prevent him from taking an arbitrarily large amount of side-channel mea-
surements, while knowing the secret key of the device.

To conclude, we need to consider an attacker who can perform a successful
attack with the smallest possible number of measurements N , where success is
defined over a performance metric ρ with a threshold of δ. To reach that success,
the attacker should use the smallest possible number of tuning experiments h.

Example 1. Consider ρ being the guessing entropy < 20, which is a common
threshold value in the side-channel analysis, see, e.g., [10]. Then, the measure of
the attacker’s power is 1) the number of profiling traces he needs to train a pro-
filing model, which is then used on attack traces to break the implementation,
2) the number of experiments conducted before finding the hyperparameters
resulting in a strong attack, or 3) both the number of profiling traces and hy-
perparameter tuning experiments.

4.3 Framework Description

Recall, the goal for machine learning is to learn a mapping (model) f from X to
Y, i.e., Y ← f(X, θ) where X are samples drawn i.i.d. from set X and where the
cardinality of X equals N . Let theta be the parameters of the profiling model
that result in the best possible approximation (and for which we needed to select
one of h hyperparameter combinations). Xp is the input to the profiling model
(measurements), Ya are labels associated with Xa, and c(θ,Xa, Ya) is the cost
used to train the profiling model. Additionally, let gQ,f = [g1, g2, . . . , g|K|] be
the guessing vector from the profiling side-channel attack using Q traces in the
attack phase, and the profiling model f built in the profiling phase as an input.
Then, ρ(gQ, k

∗
a) represents the performance metric of the profiling side-channel

attack using the secret key k∗a to evaluate the success.
The Efficient Attacker Framework aims at minimizing the number of profiling

tracesN and hyperparameter tuning experiments h to model the function f , such
that the performance metric is still below (or above) a certain threshold δ:

min{N,h : ρ(gQ,f , k
∗
a) < δ}, where N, h ≥ 1. (5)

Algorithm 1 gives the pseudocode of the evaluation in the Efficient Attacker
Framework, and a motivating example is given in Example 2. Note that the
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framework allows conducting experiments in parallel to the data acquisition
phase. Indeed, one can start with evaluating the performance regardless of the
number of already acquired measurements. For example, the attacker can assume
the regime where he downloads the new measurements every hour and repeats
the experiments with an always-increasing number of measurements.

Input : Profiling and attacking device to collect traces from
Output : Minimum number of profiling traces N , the minimum number of

hyperparameter experiments h

1 Capture a testing dataset (with secret key k∗a). Its size Q depends on the
expected performance of the attack. For instance, this test dataset can be as
small as one trace!

2 Select a performance metric ρ and a threshold value δ, e.g., GE < 20
3 Training set ← ∅
4 while True do
5 Capture one trace // A speed-up can be obtained by advancing

faster, e.g., 10 by 10 traces

6 Append them to Training set, N = N + 1
7 Perform Training with specific hyperparameters (which yields a model f)
8 Make a key guess k from the Testing set with Q measurements
9 if ρ < δ then

10 break // model is good enough

11 return Minimum number of profiling traces N , minimum number of
hyperparameter experiments h

Algorithm 1: The evaluation procedure in the Efficient Attacker Frame-
work.

Remark 3. The Algorithm 1 considers both the number of profiling traces and
hyperparameter tuning experiments, but this can be easily adjusted for only one
of those options. For instance, if using a template attack, there are no hyper-
parameters to tune, which means that only the number of profiling traces is
relevant. On the other hand, if facing a setting where one cannot obtain enough
measurements to reach δ, then the natural choice is not to limit the number of
measurements even more, but to consider the number of hyperparameter tuning
experiments. While we consider the number of hyperparameter tuning experi-
ments for the learnability perspective in this paper, this could be easily cast, for
instance, to the selection of points of interest with template attack.

Example 2. A standard performance metric used in the side-channel analysis
is guessing entropy with, e.g., a threshold δ = 20. Therefore, in the Efficient
Attacker Framework, one would find the minimum number of profiling traces
N and hyperparameter experiments h to reach a guessing entropy below 20 for
a fixed number of Q attack traces. This setting ensures that key enumeration
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algorithms [40] (when attacking not one but several key bytes, as in the AES-128
where there are 16 bytes of the key that needs to be recovered simultaneously
for a full key recovery attack) are efficient. Typically, Q is ranging over a set of
values. Experimental results are discussed in Section 6.

Remark 4. In practice, Algorithm 1 shall be evaluated several times to get an em-
pirical estimation Ê(N,h) of the minimum number of profiling traces/hyperparameter
tuning experiments. This can be achieved by averaging several evaluations of
Algorithm 1 (as done in non-profiled side-channel attack-oriented frameworks,
see [27, §3.1]).

Remark 5. The Efficient Attacker Framework is attack-oriented and aims at
unleashing profiled attacks even with frugal learning constraints. This reflects
some situations where the number of interactions with the device is limited:

– by design, e.g., owing to enforcement of countermeasures such as limited
number of cryptographic executions until system end-of-life, or

– by certification constraints such as limited “elapsed time” in the Common
Evaluation Methodology (CEM [41, B.4.2.2]) of the Common Criteria.

Remark 6. If two profiling models exhibit very similar performance but require
a radically different amount of resources, then a Pareto front of solutions (i.e., a
set of non-dominated solutions) needs to be given where the designer can decide
on a proper trade-off.

We reiterate that our framework is not designed to force the attacker to
use a small number of measurements in the profiling phase nor to limit the
number of experiments in the hyperparameter tuning phase. Instead, it forces
the attacker to find the smallest number of traces and tuning experiments to
conduct a successful attack.

5 The Efficient Attacker Framework in Neural
Network-based Side-channel Attacks

In this section, we start by discussing the Universal Approximation theorem.
Afterward, we connect the Universal Approximation Theorem and the optimal
side-channel attack.

5.1 Universal Approximation Theorem

The Universal Approximation Theorem proves that for any Borel measurable
function f (where Borel measurable mapping f : X → Y between two topological
spaces has the property that f−1(A) is a Borel set4 for any open set A), there

4 A Borel set is any set in a topological space that can be formed from open sets (a
set S is open if every point in S has a neighborhood lying in the set) through the
operations of countable union, countable intersection, and relative complement.
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exists a feed-forward neural network, having only a single hidden layer with a
finite number of neurons, which uniformly approximates f within an arbitrary
nonzero amount of error ε [13, 42].

For this theorem to hold, we require only mild assumptions on activation
functions (such that they saturate for both very negative and very positive ar-
guments), and naturally, the network needs to have enough hidden units. Note,
the theorem was also proved for a broader class of activation functions, including
rectified linear unit [43].

We know that a multilayer perceptron with enough nodes can represent any
Borel measurable function as a consequence of the Universal Approximation
Theorem. Naturally, there is no guarantee that the machine learning algorithm
will be able to learn such a function. Indeed, if this theorem is correct, the
question is why it is still difficult (in many practical applications) to obtain a
decent performance of a classifier, let alone approximation to an arbitrary ε. For
instance, numerous works used a multilayer perceptron (which is a feed-forward
network), where more than a single hidden layer is used, and yet, the results are
far from optimal.

The main problem is that the Universal Approximation Theorem does not
consider the algorithmic learnability of feed-forward networks. The theorem says
that the number of nodes in the network is finite, but does not specify that num-
ber. There are some results on bounds on the number of nodes, but unfortunately,
in the worst-case scenario, an exponential number of nodes is needed [44]. Ad-
ditionally, from a practical perspective, the learnability of the profiling model
also heavily depends on the quality and quantity of data at disposal. Recall, by
quality, we consider that the data need to have all the information needed to
model the function f correctly. With the notion of quantity, we assume to have
sufficient information to build a reliable profiling model that will generalize to
the unseen data.

Up to now, we mentioned only a multilayer perceptron and how it fits the
Universal Approximation Theorem. At the same time, we stated in Section 1
that convolutional neural networks were recently used to achieve state-of-the-
art performance in the SCA domain. Consequently, the natural question is to
ask whether the Universal Approximation Theorem is also valid for convolutional
neural networks. We give a small example.

Example 3. Let us consider a feed-forward network with a single hidden layer
with A inputs and B outputs. To realize such an architecture, we require a
weight matrix W ∈ RB×A. If we assume that the convolution is applied only to
the input and there is no padding, it is rather straightforward to see that we can
simulate this feed-forward network with only two convolutional layers. In the
first layer, we have B ×A filters of shape A. The element a of filter b, a is equal
to Wb,a with the rest being zeros. This layer transforms the input into a BA-
dimensional intermediate space where every dimension represents a product of
weight and its corresponding input. The second layer contains B filters of shape
BA. The elements bA . . . (b+1)A of filter b are ones while the rest are zeros. This
layer performs the summation of products from the previous layer. Naturally,
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for this construction, we assumed some conditions that are not realistic, but we
show this as a motivating example that the Universal Approximation Theorem
can be applied for other types of neural networks.

We emphasize that various functions can be more efficiently approximated
by architectures with greater depth, which is why deep learning can exhibit
strong performance. More formally, D. Yarotsky showed that any translation
equivariant function can be approximated arbitrarily well by a convolutional
neural network given that it is sufficiently wide [45]. This result has a direct
analogy to the Universal Approximation Theorem.

5.2 From the Universal Approximation Theorem to the Optimal
Side-channel Attack

Here, we present results that connect the Universal Approximation Theorem and
side-channel attacks with optimal performance, i.e., those where the attacker
needs only a single measurement to break the implementation.

Conjecture 1. A side-channel leakage can be modeled by Borel measurable func-
tion.

Recall, Borel measurable function is a mapping f : X → Y between two
topological spaces with the property that f−1(A) is a Borel set. A Borel set is
any set in a topological space that can be formed from open sets (a set S is open
if every point in S has a neighborhood lying in the set) through the operations of
countable union, countable intersection, and relative complement for any open
set A.

Clearly, all continuous functions (i.e., functions defined on R) are Borel func-
tions (but not all Borel functions are continuous). Unfortunately, in SCA, one
uses an oscilloscope in the acquisition process, and they have a finite precision,
which makes the resulting function a discrete one.

Let us consider power or electromagnetic side-channel. As mentioned, the
oscilloscope samples only a discrete-time and quantifies the measurements. Such
measurements are a series of finite values, which may not be Borel measurable
as such. However, before sampling and quantization, the signal was a physical
quantity, which is Borel measurable. Indeed, it is obtained from the RLC-filtering
of some physical quantity [46, Figure 2], itself obtained as the resolution of
differential equations of electronics/mechanisms. It is, therefore, possible, as a
pre-processing step, to interpolate and smooth the SCA measurements to make
them continuous, hence eligible to be Borel measurable. More intuitively, there
are infinitely many continuous functions that can describe a finite number of
samples. Additionally, we can make use of Lusin’s theorem, which states that
every measurable function is continuous on nearly all its domain [47]. More
formally, a function f : X → R is measurable if for every real number a, the set
x ∈ X : f(x) > a is measurable. Practically, this means that any function that
can be described is measurable.
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Lemma 1. If a side-channel leakage is Borel measurable (see Conjecture 1)),
then a feed-forward neural network with a single hidden layer consisting of a
finite number of neurons can approximate any side-channel leakage to a desired
nonzero error.

Proof. Straightforward from the Universal Approximation Theorem.

Lemma 2. A profiling side-channel attack where the Universal Approximation
Theorem holds (i.e., where Lemma 1 holds), can succeed in breaking an imple-
mentation with only a single measurement.

Proof. Trivial. If SCA leakage can be approximated to a desired (nonzero) level
of error, it means (provided that we use the appropriate leakage model) that we
need only a single measurement to obtain the key information.

While the proof is trivial, we note that in practice, we do not expect this
situation to happen often. Since, in practical settings, we need to account for
environmental factors like noise, expecting to break the implementation with a
single measurement is difficult. Nevertheless, this does not contradict our results.
The best possible attack (that an unbounded attacker can always find) needs a
single measurement, while realistic attacks need more measurements (as we do
not know the best possible attack). The core idea is that we always must aim to
find as powerful as possible attack. Such an attack uses the smallest number of
measurements in the profiling phase and requires the smallest hyperparameter
tuning phase to deliver that level of performance.

We note that the breaking of cryptographic implementations in a single mea-
surement is not something possible only in theory, see, e.g., [12, 48] where con-
volutional neural networks and template attack can break different implementa-
tions in a single measurement. Additionally, in Section 6, we give several experi-
ments where we require only a single measurement in the attack phase to break
the target (provided that we allowed for good learnability).

There is also a simple alternative proof for Lemma 2. Since we know that
in the ideal case, template attack can break an implementation with a single
measurement, then it is enough for neural networks to approximate such a pro-
filing model (template) built by the template attack. If a neural network can
approximate a template with a desired nonzero level of error, then such a net-
work can simulate a template attack. We emphasize that for the template attack
to be able to break an implementation in a single measurement, some conditions
must be met. Similar as we discussed the quality and quantity components for
machine learning, we can extend it to a template attack. There, in quality, we
need to account for the level of noise, leakage model, and leakage distribution. In
quantity, we assume to have a sufficient number of measurements for template
attack to work (and break the implementation with a single measurement). Re-
cently, Masure et al. conducted a study of deep learning for SCA, where they
also discussed the Universal Approximation Theorem [49]. While they discuss
the problem in a slightly different way and use a different definition for the
Universal Approximation Theorem, their results do not oppose ours.
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Remark 7. If neural networks can (theoretically and under some assumptions)
break the implementation in a single measurement, how is that aligned with what
we know about template attack? The template attack is the most powerful one
from the information-theoretic point of view, yet we claim that neural networks
can reach the same performance. We believe this not to be in contradiction due
to heavy assumptions on both methods. We require an unlimited number of
traces for a template attack, which is naturally impossible to have. On the other
side, for neural networks, there is the algorithmic learnability, where the learning
process can fail for several reasons [25].

In this paper, we do not discuss machine learning methods except neural net-
works, but other methods would also benefit from the Efficient Attacker Frame-
work. Indeed, we do not require the theoretical promise of being able to break
implementation with a single measurement. Instead, we require a setting that
limits the attacker’s power in the profiling phase, which is independent of the
considered attack.

6 Discussion

In this section, we start by experimentally evaluating our framework in the
context of profiling SCA. Afterward, we discuss how our framework can be used
in other security applications that use a supervised learning paradigm. Finally,
we give several possible future research directions for profiled SCA.

6.1 Datasets

DPAv4 is a publicly available trace set obtained from a masked AES software
implementation [50]. We ignore the knowledge of the masks for labeling the
traces in the profiling phase. Every trace contains 2 000 features, and they cor-
respond to the interval representing the processing of the first S-box in the first
AES encryption round. The full trace set (including profiling and attack traces)
contains a fixed key. There are 30 000 traces for the profiling phase, and 1 000
for the attack phase.

The second implementation refers to the ASCAD database, which is com-
monly used in the side-channel community for deep learning research [51]5.
This dataset corresponds to a masked AES implementation where the masks
are known but also ignored in our analysis. Each trace contains 1 400 features,
which represent the interval corresponding to the processing of the third S-Box
in the first AES encryption round. Profiling traces contain random keys, and the
attack traces have a fixed key. There are 200 000 traces for the profiling phase,
and 100 000 for the attack phase.

5 Trace set publicly available at https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD
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6.2 Efficient Attacker Framework Evaluation

The Efficient Attacker Framework enables us to compare side-channel attacks
but also gives a fair comparison between leakage models. For profiling side-
channel attacks, it is often assumed to consider the most accurate leakage model,
i.e., using the intermediate value as class variables (the identity leakage model),
which results in 2b classes where b is the number of considered bits. In an un-
supervised setting (i.e., non-profiled attacks), using the Hamming weight or the
Hamming distance leakage model is a common choice, which results in b + 1
classes only. Using b+ 1 Hamming weight/distance classes to guess a key value
in {0, . . . , 2b−1} cannot result in a single trace attack on average. However, it is
often overlooked that using the Hamming weight/distance leakage models may
require fewer traces in the profiling phase to gain good quality estimates of the
leakage models. It is, therefore, not straightforward to determine what leakage
model is most suitable. Consequently, to fairly give a comparison, one should
include a dependency on the number of traces in the profiling phase, as done in
the Efficient Attacker Framework.

(a) Results for MLP with the Hamming
weight model.

(b) Results for MLP with the identity
model.

Fig. 4: Profiled SCA on the DPAv4 dataset with MLP.

As a metric, we consider guessing entropy (GE), and in particular, we give
the minimum number of profiling and attack traces to reach GE < 20. For
every training procedure, we randomly define hyperparameters for multilayer
perceptron and convolutional neural networks according to the hyperparameter
ranges provided in Tables 1 and 2. This scenario represents an optimized random
hyperparameter search since the hyperparameters ranges are chosen based on the
optimized minimum and maximum values (the minimal and maximal values are
selected based on related works). The number of epochs is set to 50 (we observed
that the models tend to overfit and degrade the generalization after 50 epochs),
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(a) Results for CNNs with the Hamming
weight model.

(b) Results for CNNs with the identity
model.

Fig. 5: Profiled SCA on the DPAv4 dataset with CNNs.

and the backpropagation algorithm optimizer is Adam. The weights and biases
are initialized in a randomly uniform way. To avoid the overfitting, we use the
batch normalization layer, which normalizes the input layer by adjusting and
scaling the activations.

We do not discuss the time perspective here (e.g., the number of hours or
days needed to conduct the experiments). We leave this out as we consider it to
be hardware dependent. Still, comparing the number of tuning experiments gives
a fair evaluation, regardless of the time needed to run those experiments. We
note that the number of tuning experiments up to 50 is low, although we manage
to break the target. There is no constraint on the number of experiments one can
use with our framework. Additionally, as we work with guessing entropy, each
attack is repeated 100 times, which gives much higher computational complexity
than one could conclude solely based on the number of the tuning experiments.

Figures 4 to 7 illustrate examples using DPAv4 and ASCAD datasets for
profiled attacks with multilayer perceptron (MLP) and convolutional neural net-
works (CNN). Every figure contains results for the Hamming weight and identity
(i.e., intermediate value) leakage models, as AES operates on b = 8 bits. For each
leakage model and a different number of profiling traces, we select the best neural
network model out of 1, 5, 10, 25, or 50 trained profiling models. Here, the main
idea is to demonstrate that the learnability also represents an important dimen-
sion in our framework. In Figure 4a, we examine the orange line, which depicts
the best of 50 different tuning experiments. While the attack performance stays
the same for scenarios between 25 000 and 30 000 profiling traces, our framework
indicates that the more powerful attack is the one that uses 20 000 traces in the
profiling phase (as it requires less training traces while having the same attack
performance). Next, we compare the performance between a different number
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of hyperparameter tuning experiments. Let us consider the case with 20 000 in
the profiling phase. We can see the performance to be similar if we have ten or
more profiling models (tuning experiments). As such, the best attack is the one
that needed the least tuning experiments. For CNN and the Hamming weight
leakage model (Figure 5a, the results are similar, but we can observe some more
influence of the hyperparameter tuning. For most of the considered settings,
we observe the performance difference for both hyperparameter tuning and the
number of profiling traces. An interesting point is 20 000 measurements in the
profiling phase, and the number of models 10 or 25. As there is no difference in
the attack performance, our framework indicates that the better attack is the
one with ten hyperparameter tuning experiments.

Considering the identity leakage model, we observe we need much fewer at-
tack traces to reach GE < 20. For MLP, we need 15 000 profiling traces to reach
GE equal to one with a single attack measurement, and for CNN, for the same
attack performance, we require 20 000 profiling traces. From Figure 4b, the ad-
vantages of the Efficient Attacker Framework are clear. The attack performance
remains the same when using 15 000 profiling traces, or more. Consequently,
solely judging the attack based on the number of attack traces does not give
any differences, while our framework indicates that the most powerful attack is
the one with 15 000 profiling traces. Similar observations can be made, for in-
stance, for the number of tuning experiments (more than five) and 25 000 or more
profiling traces. The experiments for CNNs point to the same conclusions, but
with somewhat more differences in performance concerning a different number
of profiling traces or tuning experiments.

(a) Results for MLP with the Hamming
weight model.

(b) Results for MLP with the identity
model.

Fig. 6: Profiled SCA on the ASCAD dataset with MLP.
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(a) Results for CNNs with the Hamming
weight model.

(b) Results for CNNs with the identity
model.

Fig. 7: Profiled SCA on the ASCAD dataset with CNNs.

Hyperparameter min max step

Learning Rate 0.0001 0.001 0.0001

Mini-batch 100 1 000 100

Dense (fully-connected) layers 2 8 1

Neurons (for dense or fc layers) 500 1 000 100

Activation function (all layers) ReLU, Tanh, ELU, or SELU

Table 1: Hyperparameter search space for multilayer perceptron.

Next, in Figures 6a and 7a, we depict results for the ASCAD dataset and
the Hamming weight leakage model. Again, we can observe the influence of both
profiling traces and the number of tuning experiments on the attack performance.
Note the interesting results for CNN with a smaller number of profiling traces as
the attack performance is relatively bad, and then, with 60 000 profiling traces
or more, it quickly improves for up to five times.

Figures 6b and 7b depict results for the ASCAD dataset in the identity
leakage model. For MLP, we can observe a strong influence of the number of
the tuning experiments and profiling traces up to 60 000 traces. Afterward, the
benefit of more profiling measurements is considerably smaller, where for more
than 80 000 profiling traces, we do not see much improvement. For CNN, an
insufficient profiling traces number significantly influences the performance, and
more tuning experiments cannot circumvent this. What is more, we observe how
for a specific number of profiling traces, the number of tuning experiments plays
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Hyperparameter min max step

Learning Rate 0.0001 0.001 0.0001

Mini-batch 100 1 000 100

Convolution layers 1 2 1

Filters 8 32 4

Kernel Size 10 20 2

Stride 5 10 5

Dense (fully-connected) layers 2 3 1

Neurons (for dense or fc layers) 500 1 000 100

Activation function (all layers) ReLU, Tanh, ELU or SELU

Table 2: Hyperparameters search space for convolutional neural network.

a significant role. More precisely, we can recognize settings where adding more
profiling traces does not help.

On a general level, while not the core research point in this work, we note that
the identity leakage model requires fewer attack traces to reach GE < 20, which
is expected. MLP exhibits somewhat better performance than CNN for a smaller
number of profiling traces, which is again in line with results in related works.
It is important to observe how the learnability constraint directly influences the
required combination of the number of profiling and attack traces to reach a low
guessing entropy. Moreover, one can choose a trade-off between profiling traces
N and attack traces Q while still being able to perform a successful attack.

While our framework aims to find the minimal number of profiling traces
and tuning experiments to mount a successful attack, we never state what those
numbers should be. Indeed, the experiments with only two datasets already de-
pict a radically different number of profiling and attack traces (coupled with the
influence of the number of tuning experiments). Providing actual values makes
sense only when the whole experimental environment is considered (datasets,
algorithms, environmental settings, etc.), and, even more importantly, when one
compares experiments on the same targets but with different settings. All our
experiments strongly confirm that the number of profiling traces and the number
of experiments (complexity) play a paramount role and should be included in
proper performance analysis.

6.3 Advantages of Efficient Attacker Framework

Normally, it is expected that an attacker would make use of the maximum pos-
sible amount of profiling traces to build a model (templates, deep neural net-
works, etc.). Similarly, the amount of attack traces tends to be maximized to
estimate the model exploitation capability better. In cases when the learning
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model is inefficient (i.e., unable to fit existing leakage) and all available side-
channel measurements are used, the attacker or evaluator has a limited view of
which component has a significant impact on the attack results, which can lead
to overestimating the security of the target.

In this case, the reference metric would be the guessing entropy of a sin-
gle experiment (see, for example, the two lines in Figure 1), which say nothing
about the influence of the number of measurements and tuning experiments for
the security of the assessed target. Therefore, the usage of the Efficient Attacker
Framework provides a better representation of the influence of the number of
profiling traces, attack traces, and tuning experiments. Here, we provided anal-
ysis about the efficiency of an attack having GE < 20 as a reference metric. Of
course, the framework can be adapted to any metric that describes the attack’s
efficiency.

While the benefits of depicting the results with our framework are evident,
one can ask whether we lost some information when compared to the traditional
result depiction (e.g., cf. Figures 1 and 4a). We claim this not to be true due to
two reasons. First, all the relevant information is kept so the attacker can still
depict traditional results. Second, once the appropriate performance level is set
(e.g., guessing entropy value equal to δ), it is less relevant to observe how is that
value reached (as values above the threshold are out of the attacker’s reach).

6.4 The Efficient Attacker Framework Beyond Profiling SCA

We discussed our framework for profiling SCA where side-channels are power or
EM radiation. There is no reason not to extend to other types of side-channels
or even entirely different security applications. Indeed, as long as the two core
assumptions for the framework are followed, it can be applied (depending on the
application, the extension to the optimal attack with neural networks may not
be possible). We briefly discuss a few applications where the Efficient Attacker
Framework could be useful. Zhang, Zhang, and Lee analyzed cache side-channels
with deep neural networks. There, they aim to quantitatively evaluate the effec-
tiveness of such attacks and defenses [52]. Continuing with side-channels, Genkin
et al. used machine learning to detect screen content through remote acoustic
side-channels [53]. Sirinam et al. proposed a website fingerprinting attack with
convolutional neural networks [54]. The authors investigated the influence of the
training set size but did not try to find the minimal training and testing set
sizes that result in a specific performance. Shen et al. used recurrent neural net-
works to predict the specific steps taken by an adversary when performing an
attack [55]. We see a place for our framework in the domain of adversarial at-
tacks (e.g., in poisoning attacks) and defenses where it is interesting to consider
the minimum effort (number of measurements, tuning experiments, etc.) needed
for successful attacks and defenses [56,57].
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6.5 Future Directions

Besides using the Efficient Attacker Framework to compare profiling side-channel
attacks and learning models on various implementations, we emphasize the com-
parison of attacks in the presence of various side-channel countermeasures. Such
a study will highlight if different types of side-channel countermeasures differ in
their complexity of profiling, where it may be of particular interest to increase
the profiling phase’s complexity more than the attack phase or find a suitable
trade-off to protect against powerful attackers.

Several papers have recently proposed to conduct data augmentation to con-
struct additional synthetic measurements to be used in the profiling phase [10,
11]. Our framework does not limit the use of such synthetic examples in the
sense that those measurements are not counted in the profiling set N since they
are built from the original measurements. It would be interesting to investigate
the limits of data augmentation in SCA, i.e., can we construct good, synthetic
examples from a limited number of real measurements.

In this paper, we consider only the profiling SCA settings, but there is no
reason not to extend our framework to other scenarios that use profiling (super-
vised learning) methods. We are confident that it would provide similar insights
and fairness in the performance comparison.

7 Conclusions

In this paper, we discuss how to evaluate attacks when considering the profiling
side-channel analysis. We argue that considering only an unbounded attacker
can have negative effects on the way how side-channel analysis is performed in
addition to not being realistic. We propose a new framework, denoted as the
Efficient Attacker Framework, where we explore the number of measurements
and hyperparameter tuning experiments required in the profiling phase such that
an attacker is still successful.

Next, we connect the notion of the unbounded attacker with the Universal
Approximation Theorem, and we show that because of it, the attacker could be
able to break implementations with only a single measurement, provided that
some conditions are met. While this does not often occur in practice, we still
consider the “race” for the most powerful attacks meaningless in the unbounded
scenario if the theory indicates that breaking an implementation in a single
measurement is possible.

We consider our new framework more realistic but also more adept for ex-
perimental evaluations since it allows us to compare different results in a more
unified way. In particular, our framework will trigger more research that is mean-
ingful not only for academia but also for evaluation labs. Finally, our framework
is relevant beyond profiling side-channel analysis and can be used in any super-
vised learning setting.
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