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Abstract. Horizontal attacks are a suitable tool to evaluate the (nearly)
worst-case side-channel security level of ECC implementations, due to
the fact that they allow extracting a large amount of information from
physical observations. Motivated by the difficulty of mounting such at-
tacks and inspired by evaluation strategies for the security of symmetric
cryptography implementations, we derive shortcut formulas to estimate
the success rate of horizontal differential power analysis attacks against
ECSM implementations, for efficient side-channel security evaluations.
We then discuss the additional leakage assumptions that we exploit for
this purpose, and provide experimental confirmation that the proposed
tools lead to good predictions of the attacks’ success.
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1 Introduction

Elliptic curve cryptography (ECC) relies on the intractability of the elliptic curve
discrete logarithm problem. Due to the efficiency of elliptic curve based cryp-
tosystems in comparison to other public-key cryptosystems such as RSA, they
have been widely deployed in modern information systems, and thus are targeted
by Side-Channel Attacks (SCAs). One of the most important ingredients of ECC
protocols is the Elliptic Curve Scalar Multiplication (ECSM). As a result, various
types of SCAs have been introduced against their implementations.

First, Simple Power Analysis (SPA) [17] exploits the fact that the sequence
of operations depends on the secret scalar. A regular execution can thwart these
attacks [15]. Next, Differential Power Analysis (DPA) [16, 8] recovers the secret
scalar from multiple side-channel traces, and thus can be prevented by scalar
randomization [8]. Template Attacks (TA) [6] have also been used to break ECC
implementations [21]. They rely on the knowledge of the input point and can
be thwarted by point randomization [8, 14]. Attacks against ECSM algorithms



additionally include Horizontal Collision Attacks (HCA) [5] which take advan-
tage of the observation that for a certain scalar bit value, identical operands
are manipulated at different instants of the execution. These attacks can be
hindered by the shuffling countermeasure [18] or randomization techniques [14].
Finally, Horizontal DPA (HDPA) [7] exploits multiple time samples of one side-
channel trace, as opposed to the classical vertical DPA described above. Besides,
attacks against ECSM algorithms usually follow one out of two standard strate-
gies: divide-and-conquer or extend-and-prune. In a divide-and-conquer attack,
the bits of the scalar are recovered independently, while in an extend-and-prune
attack they are recovered recursively.

We are particularly interested in HDPA following an extend-and-prune strat-
egy. Attacks such as in [22] are powerful and suitable for (nearly) worst-case
side-channel security assessments, since their horizontal nature allows extract-
ing most of the information from a leakage trace. However, they are intricate to
mount, due to the fact that they rely on the knowledge of the implementation,
and the exploitation of many time samples from one single noisy side-channel
trace. As a result, and inspired by evaluation strategies considered for implemen-
tation security in symmetric cryptography (e.g., [24, 11, 13]), we propose shortcut
formulas and derive an efficient approximation of the Success Rate (SR) of an
HDPA as function of the number of leaking registers exploited and the noise
level of the implementation. For this purpose, we first describe our method and
its underlying assumptions, and then confirm its practical relevance based on an
experimental case study.

The rest of the paper is organized as follows. Section 2 introduces our nota-
tions and background on ECC and the extend-and-prune HDPA by Poussier et
al. [22]. Section 3 explains the rationale behind our approach and the goal of our
research. Section 4 details the efficient derivation of the success rate. Section 5
reports results from simulated experiments and Section 6 shows the relevance of
the proposed approach on a real target.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We use sans serif font for functions (e.g., F). We denote the conditional prob-
ability of a random variable A given B with Pr [A|B]. We use U(F) to denote
the uniform distribution over a field F and N (µ, σ2) to denote the Gaussian
distribution with mean µ and variance σ2. We use ∼ to denote that a random
variable follows a given distribution (e.g., A ∼ N (µ, σ2)). We also denote by Φ
the Cumulative Distribution Function (CDF) of the normal distribution.

2.2 Elliptic curve scalar multiplication

We denote by Fp a finite field of characteristic p > 3 and E(Fp) the set of
points (x, y) ∈ F2

p that satisfy the elliptic curve with the Weierstrass equation:



y2 = x3+ax+b along with the point at infinity O. For a scalar k ∈ Fp we denote
by (k0, k1, ..., kn−1) its binary representation where k0 is the most significant
bit. For P,Q ∈ E(Fp), P +Q denotes the point addition, and kP the k-repeated
addition P+...+P , i.e., the ECSM. Elliptic curve cryptosystems (such as ECDH
and ECDSA [23]) require to perform a scalar multiplication kP where k is a
secret and P a public curve point. A popular method to implement ECSM
securely consists in using the Montgomery ladder [15], shown in Algorithm 1.
Its regular operation flow makes it naturally resistant against SPA [15].

Algorithm 1 Montgomery ladder

Input P , k = (k0, ..., kn−1)
Output kP

1: R0 ← O
2: R1 ← P
3: for i = 0 to n− 1 do
4: R1−ki ← R1−ki + Rki

5: Rki ← 2Rki

6: end for
7: return R0

2.3 Horizontal differential power analysis

As shown by Algorithm 1, the Montgomery ladder ECSM processes the bits
of k iteratively, updating the internal state (R0 and R1) of the algorithm ac-
cordingly. At bit position i of k, the internal state depends on bits {0, ..., i} of
k. As a result, attacks against Montgomery ladder ECSM implementations are
naturally performed by using an extend-and-prune strategy, and recovering the
key bits in a recursive manner: the recovery of the i-th bit relies on the correct
recovery of the previous bits {0, ..., i− 1} in order to make a hypothesis on the
state [4, 7]. Following this strategy, the HDPA attack presented in [22] divides a
constant time ECSM execution into a sequence of predictable operations at each
abstraction level of the ECSM as shown in Figure 1. The last layer consists of
n×N register multiplications, where N is the number of register multiplications
required to process one scalar bit1. We consider the same reference Montgomery
ladder ECSM as in [22] on a 32-bit device, using Jacobian coordinates and the
point addition and doubling routines given in Appendix A on the NIST P-256
curve [23]. This implementation requires 25 field multiplications per scalar bit
and they are performed with a Long Integer Multiplication (LIM) followed by
a reduction. Knowing the i previous bits of k and the input point P , the at-
tacker succeeds if he can infer the correct sequence of register values (rj)0≤j<N
out of the two possibilities for ki. For efficiency reasons, the attack assumes the
Independence of the Operations’ Leakages (IOL) [13]. Besides, a leakage of the

1 While we only consider register multiplications, the framework can be applied to
any operation



form lj(rj) = δj(rj) + bj , where δj is the leakage function of rj . The term bj
represents the noise and is distributed according to N (0, σ2) is usually assumed
for simplicity [20] (yet, any noise distribution could theoretcially be analyzed in
a maximum likelihood manner). The correct bit value is then recovered as the
one maximizing the product of the probabilities of the register leakages:∏

j

Pr[lj | (rj |ki, P )] =
∏
j

N (lj | (rj |ki, P ), σ2).

k0 k1

EJ addition EJ doubling EJ addition EJ doubling

Fp mult Fp mult Fp mult ... Fp mult Fp mult Fp mult ...

r00 r01 r02 r03 r04 ... r10 r10 r10 r10 r10 ...

l00 l01 l02 l03 l04 ... l10 l11 l12 l13 l14 ...

Fig. 1: Leveled view of a regular scalar multiplication. First level (top): scalar
bit handling. Second: elliptic curve arithmetic. Third: Field arithmetic. Fourth:
register operations. Fifth: leakages on register operations. (Taken from [22]).

3 Problem statement and challenges

One recurrent problem of side-channel security evaluations is the large amount
of different state-of-the-art attacks [26] which makes it prohibitive to try all of
them: ECC implementations are no exception to this issue. In this context, the
HDPA described above is an interesting one to investigate, since it belongs to the
most powerful type of attacks against ECC implementations. However, it comes
at the cost of a complicated instantiation. First, it requires a precise knowledge
of the implementation under attack. Second, it requires to profile every single
operation of the ECSM. This step is computationally intensive and requires
several manual optimizations in order to process the large ECSM traces in a
reasonable time. In the following, we describe how this generic framework can be
used for systematizing security evaluations and reducing their cost, by providing
shortcut formulas to estimate the success rate of HDPA without performing it.

For this purpose, we draw our inspiration from the associated literature on
symmetric cryptography. Indeed, shortcut formulas for success rate estimation



in the case of block ciphers are already a deeply investigated topic. In the sim-
pler case of unprotected (more precisely, unmasked) implementations, efficient
approximations of the success rate can typically rely on easy-to-compute met-
rics such as the Signal-to-Noise Ratio (SNR) [24, 11]. By contrast, for masked
implementations, additional assumptions and/or metrics (e.g., the mutual infor-
mation) are needed [19, 9, 10]. Since considering unprotected ECC implementa-
tions, we will next be in the former case and additionally exploit some of the
ideas used in [13] for the analysis of multivariate/horizontal attacks. Precisely,
we will adapt the SNR metric to the context of ECSM implementations and
exploit it for the estimation of the success rate as a function of the number of
targeted register leakages and the noise level.

3.1 SNR definitions

In general, the SNR of a device depends on the size of the bus (which defines
the maximum signal), the adversary’s guessing power (which defines the part of
the bus that generates exploitable signal and the part that generates algorithmic
noise) and the physical noise. It is defined as the variance of the (exploitable)
signal divided by the noise variance. In this paper, we consider a 32-bit device and
therefore assume that all the bits of the bus can be predicted (so no algorithmic
noise). In the context of a standard DPA attack where the full bus is targeted [20],
this would lead to an SNR32 defined for a register indexed j as:

SNR32j =

var
rj∈F232

δj(rj)

σ2
, (1)

where δj is the deterministic (noise-free) part of the leakage function for a register
rj , as introduced in Section 2.3, and σ2 is the noise variance. Further assuming
an Hamming-weight leakage function for illustration, this leads to SNR32 = 8

σ2

(with 8=32/4 the variance of a random 32-bit Hamming weight).
When considering a 32-bit implementation of the Montgomery ladder ECSM,

the situation slightly differs from this standard DPA context. Indeed, in this case
the register content typically depends on a single key bit (rather than 32 ones
in the standard DPA case). Therefore, each target register can only take two
values instead of every value of F232 . A vertical DPA against an ECSM therefore
boils down to distinguishing the leakage of two 32-bit values, whereas a HDPA
tries to exploit multiple registers. Concretely, this means that certain registers
lead to easier-to-distinguish leakages. Yet, in order to improve the efficiency
of the security evaluations, we will also use an average metric to estimate the
success rate (and track the distance between this estimate and the success rate
of concrete attacks). For this purpose, a first natural idea would be to consider
a modified SNR2j that captures the difference between the (noise-free) leakages
of a register rj for two scalar bit values:

SNR2j =

E
P∈E(Fp)

(δj(rj |ki = 0, P )− δj(rj |ki = 1, P ))2

σ2
· (2)



3.2 Preliminary observations and caveats

HDPA aims at exploiting the leakages of a large number of leaking registers
for a single key bit. In the symmetric case, this can be viewed as targeting
several leakage samples for a single subkey (e.g., both the input and the output
of a S-box). As a result, in this case we have that δi = δj trivially implies
SNR32i = SNR32j . This basically means that under the assumption δi = δj ,
the estimation of the SNR32 is only required for a single register. Grosso and
Standaert use this same assumption (of similar leakage functions for all their
target intermediate computations) to speed up the computation of a multivariate
mutual information to an univariate one [13].

Following this approach, a tempting strategy for ECSM evaluation would
thus be to also assume that the leakage functions are similar for all the regis-
ters, leading to a constant SNR2. To evaluate the soundness of this approach,
Figure 2 illustrates the SNR2j for each register rj corresponding to the high 32-
bit words of multiplication results. Our reference implementation introduced in
Section 2 requires N = 1600 register multiplications to process one key bit. The
SNR2 is evaluated for a Hamming weight leakage model, so exactly fulfilling the
assumption of identical leakage functions, and averaged over 10,000 randomly
sampled elliptic curve points. We observe that SNR2j is not constant even when
the leakage function is the same for all registers. These differences can be ex-
plained by the algebraic relations between the values computed when the scalar
bit equals 0 and the values when this bit equals 1. For example, the regions of
high SNR2 on Figure 2 observed in the register index intervals [512,576] and
[704,768] respectively correspond to the 9th and 12th field multiplication in the
point addition algorithm described in appendix A. For a bit value, it performs
the operations E2 and H2 or the operations (−E)2 and (−H)2 when the bit is
flipped. This leads to bigger differences in the side-channel leakage, as the bits of
the opposite of a field element modulus the NIST P-256 prime [23] are almost all
flipped. The peaks of zero SNR2 in register index interval [896,960] correspond
to the 15th field multiplication in the point addition algorithm. It performs the
operation Z1Z2 or Z2Z1 when the bit is flipped. Since the same elements are
multiplied in both cases, 8 equal cross products appear during the computation
of the Long Integer Multiplication, thus leading to no information (SNR2 = 0).

These observations imply that, as opposed to the symmetric case, a single
register cannot be used to evaluate the security of ECSM implementations with
respect to vertical DPA, even if the leakage function is the same for all the
registers. This variation of the SNR2 highlights the fact that when performing
these attacks, some leakage points are more interesting than others. So strictly
speaking, such a simple evaluation is not possible for HDPA either.

3.3 The single trace attack scenario

Besides the previous caveat, another difficulty arises from the contradiction be-
tween HDPA that are essentially designed to succeed in a single-trace attack
context (e.g., against a randomized key or an unknown scalar nonce) and the



Fig. 2: Average SNR2 for the 1600 targeted registers of field multiplications in
the Montgomery ladder.

SNR2 metric which corresponds to an average amount of information collected
over multiple points (and is therefore more in line with a vertical DPA).

In order to deal with this issue, we therefore start by defining the register-
specific amount of information that corresponds to the distance between a reg-
ister value when the scalar bit equals 0 and its value when the scalar bit equals
1, for a fixed EC point. For register rj and a point P , we denote this distance
by dj(P ), whose definition is given by Equation 3:

dj(P ) = (δj(rj |ki = 0, P )− δj(rj |ki = 1, P ))2. (3)

Perfectly characterizing the security of an ECSM against HDPA naturally re-
quires characterizing all the distances dj(P ). Yet, and interestingly, we will next
show that the two challenges described in this section (i.e., the fact that the
SNR2 metric is register-dependent and that HDPA is primarily designed for
single-trace attacks) can be mitigated concurrently. For this purpose, the main
observation is that in view of the number of registers in ECSM implementations,
it seems reasonable that the success of an attack targeting all the registers at
once actually gets close to the average one. We next formalize this idea and
describe the additional assumptions it requires.

4 Efficient success rate approximation

In this section, we show how to derive an approximation of the success rate with
respect to the HDPA framework for one scalar bit recovery. Since we consider
two equally likely Gaussian hypotheses, the SR when targeting a single register
rj for a given point P is computed as in [6] and given by Equation 4:



SR = Φ

(√
(δj(rj |ki = 0, P )− δj(rj |ki = 1, P ))2

2σ

)
· (4)

We recall that the HDPA described in the previous section assumes IOL for
computational efficiency. It was also noted by Poussier et al. [22] that fully
characterizing the traces’ covariance does not improve the attack results in case
of profiling with bounded number of measurements. So we next leverage this
assumption and recall that it is a conservative one (deviations can only reduce
the attack effectiveness). It allows us to easily extend the previous formula to
the case where an attacker would exploit N registers at once. Interestingly, it
also re-enforces the analogy between vertical and horizontal DPA. Indeed, the
IOL assumption divides the side-channel trace into N univariate samples, which
roughly corresponds to a vertical DPA using N traces. As a result, similarly to
the vertical DPA case [9], the SR of the horizontal DPA exploiting N samples,
denoted by SRN , is given by Equation 6.

SRN = Φ

(√N · E
j

(δj(rj |ki = 0, P )− δj(rj |ki = 1, P ))2

2σ

)
, (5)

= Φ

(√N · E
j
dj(P )

2σ

)
· (6)

As shown by Figure 2, the vertical signal SNR2 is not constant across all regis-
ters as opposed to the symmetric case. This is also true for the horizontal signal
dj(P ), which will inevitably vary depending on the point and the targeted reg-

ister. As a result, a strict approximation of the SRN using Equation 6 would
require to compute dj(P ) for every single register. This requires a first step of
leakage characterization [6, 25]. This step is quite intensive and the most time
and data consuming in HDPA. Using Equation 6, the SR approximation is just
as complex and tedious as performing HDPA. This observation shows the need
of additional assumptions in order to simplify the security evaluation.

4.1 Additional assumptions

Identical Leakage Functions assumption (ILF): We first assume that the
leakage function is identical across all registers: δi = δj = δ, for i, j ∈ [0, N − 1].
Note that this is a common assumption that is also used in the security evaluation
of masked implementations of block ciphers [13].

Asymptotic Uniformity assumption (AU): We define the notion of ideal
distance did as the square difference between the noise-free leakages of two uni-
formly distributed values V1, V2 ∼ U(F2|r|). More formally, given a leakage func-
tion δ, the ideal distance is given by Equation 7:

did = E
v1,v2

(δ(v1)− δ(v2))2. (7)



Naturally, did can be seen as the vertical information provided by a register
whose values are uniformly distributed when the input point varies. Our main
assumption, the AU, states that the mean of the distances dj(P ) over a large
number of registers tends towards did, as given by Equation 8. Informally, it
means that the average horizontal information dj(P ) for a fixed point P of a
big enough number of registers is equal to the vertical information of a single
uniformly distributed register:

N−1
E
j=0

dj(P ) −−−−−−−→
N→+∞

did. (8)

4.2 Efficient success rate approximation

Using the two assumptions introduced in the previous subsection, we can effi-
ciently estimate the SR of HDPA against an ECSM implementation. For the AU
assumption, we further assume that the number N of exploited registers is big
enough so that E

j
dj(P ) is close to did. As a result, the SRN approximation is

boiled down to the computation of did and the estimation of the noise level σ.
The success rate formula of Equation 6 is then trivially adapted to did as:

SRN = Φ

(√
N · did
2σ

)
· (9)

Hamming weight leakage example: We illustrate this formula with an
example based on a Hamming weight leakage function HW. The HW of a uniform

random variable on F2|r| is approximately distributed as N ( |r|2 ,
|r|
4 ). For U1, U2 ∼

U(F2|r|), we have HW(U1) − HW(U2) ∼ N (0, |r|2 ) and (HW(U1) − HW(U2))2 ∼
Γ ( 1

2 , |r|), where Γ denotes the Gamma distribution, here with shape parameter
1
2 and scale parameter |r|. If the AU assumption holds, then the ideal distance

did is equal to |r|2 . The corresponding success rate is given by Equation 10:

SRN = Φ

(√
N · |r|

2
√

2σ

)
· (10)

4.3 Potential invalidation of the assumptions

The previous equations express the SR of a HDPA as a function of its main
parameters, which allows gaining intuition about how the complexity of such
attacks scales. Yet, the concrete correctness of this proposal depends on the ILF
and AU assumptions. In this subsection, we discuss how realistic these assump-
tions are, and identify issues that may contradict them in practice.

Algorithmic issue. Even if the leakage model is the same for all targeted reg-
isters, the SNR2 is not identical for all registers, as seen on Figure 2. The SNR2



and the distances dj(P ) depend on the distribution of the intermediate values,
the ECSM algorithm, the curve representation and the finite field arithmetic.

Physical issue. While commonly used in SCAs, the ILF assumption is never
fully verified in practice [12]. We might observe δi 6= δj when i 6= j. This can
introduce additional discrepancies among the registers’ distances. It can impact
the convergence of the mean distance to the ideal distance and thus the accuracy
of the SR approximation using the AU assumption.

In the next sections, we show the validity of our approximations with respect
to both issues. First, in section 5, simulations are used to show that the AU as-
sumption provides a valid approximation of the behavior of ECSM intermediate
values. Next, in section 6, we use real measurements to show that the physical
errors are not too problematic for the accuracy of the SR approximation.

5 Simulated experiment: the algorithmic issue

In this section, we tackle the algorithmic issue due to the distribution of the
intermediate values of the ECSM and to what extent it deviates from a uni-
form distribution. For that purpose we use a perfect setting with a HW leakage
function using simulated traces, to fulfill the ILF assumption so that conclusions
are not affected by any physical aspect of a real device’s leakages. We consider
our reference implementation of the Montgomery ladder described in Section 2.
We consider an attacker targeting all the N = 1600 multiplication results. For
each execution with a random point P and a random scalar bit ki, we are pro-
vided with the register values (rij)0≤j<1600 along with their simulated leakages

lij = HW(rij) + bj where bj ∼ N (0, σ2). The noise level is chosen to replicate the

target device in Section 6: σ2 = 440.

Convergence towards the ideal distance: On Figure 3 we plot the evolu-
tion of the average distances of 1000 elliptic curve points. The y axis corresponds
to the mean distance computed over the registers indexed by the x axis. Each
colored curve corresponds to one randomly chosen elliptic curve point. The hor-
izontal black line represents the ideal distance did = 16. We can observe that
even though we only consider 1600 registers over the large number of leaking reg-
isters of an ECSM execution, for different points P of the elliptic curve E(Fp),

the average distances 1
N

N−1
E
j=1

dj(P ) = 1
N

N−1
E
j=1

(δ(rj |ki = 0, P ) − δ(rj |ki = 1, P ))2

tends towards the ideal distance did when N gets larger2. This result shows that
the AU assumption can roughly describe the behavior of the ECSM intermedi-
ate values’ leakages, and the approximation is more and more accurate as the
number of registers required for the success of the attack increases.

Success rate approximation: The perfect simulated setting allows us to in-
vestigate the impact of the AU assumption on the SR approximation. Namely

2 Note that attacking several scalar bits at the same time would also result in increasing
the number of registers, thus positively impacting the convergence.



Fig. 3: Convergence of the average HW distances towards the ideal distance.

the real success rate is only biased by the distances of register values. The results
of the simulated experiments are illustrated in Figure 4. Each of the 20 colored
curves corresponds to the SR of HDPA evaluated for one elliptic curve point
(repeated 100 times), and the orange curve is the SR approximation using did.
Knowing the noise variance σ2, the later is computed using Equation 10. The
figure suggests that the approximation predicts well enough the real SR, showing
that the algorithmic issue is not problematic for this particular implementation.

Impact of the noise: We performed the attack multiple times for different
SNR32 values. First, the SNR32 of the target device in Section 6 (SNR32 =
0.0182), and additionally for SNR32 ∈ {0.1, 0.5, 1}. The results are depicted in
Figure 5. The solid curves represent the SR of HDPA as function of the number
of registers, and the dashed curves the corresponding approximations using the
AU assumption. We draw attention to the gap between the real SR (solid line)
and the SR approximation (dashed line) computed using Equation 10, which gets
tighter as the SNR32 decreases. The bias introduced by the intermediate values
of the ECSM makes the average distance over the small number of registers
required for the success of HDPA for high SNR32 slightly deviate from the ideal
distance. As the SNR32 decreases, this bias becomes smaller compared to the
variance of the noise. Moreover, HDPA requires more registers to succeed, and
thus requires to sum the distances over multiple registers which would tend
towards the ideal distance as shown by Figure 3. This is an interesting result
as we are mainly interested in the low SNR32 case, as it corresponds to high
security devices that require worst-case analysis.



Fig. 4: Comparison of the SR and its approximation on simulated HW leakages.

6 Real experiment: the physical issue

In this section, we investigate the impact of the ILF assumption on the accuracy
of the SR approximation using the AU assumption. We use real measurements,
where a different leakage function δj is expected for each leaking register rj .
Our experiments target our reference implementation similarly to the simulated
case. The target device is a 32-bit ARM Cortex-M4 micro-controller from the
Atmel SAM4C-EK evaluation kit [2, 1] running at 100 MHz. We monitored the
voltage variation using a 4.7 Ω resistor inserted in the power supply circuit of
the chip. We performed the trace acquisition using a Lecroy WaveRunner HRO
66 ZI oscilloscope running at 200 megasamples per second. We recorded the
execution of 10,000 scalar multiplications. For each of them, we triggered the
measurement at the beginning of the execution and recorded the processing of
one scalar bit. We performed HDPA such as described in Section 2 but assuming
two different leakage models. First, a linear regression taking as a basis the
Hamming Weight of the leaking registers, similarly to the simulated experiment
in the previous section. This yields for every register rj , a leakage function of the
form δj(rj) = aj + bj · HW(rj). Additionally, we performed HDPA for a linear
regression based leakage model using a 32-bit basis, such as described by the
original attack by Poussier et al [22].

Hamming weight linear regression: We study the influence of the physical
issue on the convergence of the average distance across multiple registers towards
the ideal distance. We start by evaluating the distance dj(P ) for each register:
dj(P ) = b2j (HW(rj |ki = 0, P ) − HW(rj |ki = 1, P ))2. We aim to compare the
ideal distance to the mean distance for multiple different elliptic curve points.



Fig. 5: Impact of the noise on the SR approximation.

We evaluated the leakage model for the ideal distance using 20 random regis-
ter leakages. Figure 6 depicts the convergence of the average distance over the
leaking registers for 1000 random elliptic curve points towards the ideal distance
did. We observe that the distances indeed converge towards the ideal distance
similarly to the simulated case in Figure 3 despite different leakage models for
each individual register. Additionally, Figure 7 shows the comparison between
the real SR in blue of HDPA on real traces acquired from the target device
previously described and its approximation in orange given by Equation 9. We
averaged the SR over multiple points, so that conclusions are not affected by the
algorithmic issue. We note that the approximation is still satisfactory but less
accurate than in the simulated case. This is expected as the attack is performed
on real side-channel measurements and the HW is not the most accurate leakage
modeling strategy for this device, while the SR approximation assumes that the
leakage model has been perfectly characterized.

32-bit linear regession: We plot the convergence towards the ideal distance on
Figure 8 for 1000 random elliptic curve points. We evaluated again the leakage
model for the ideal distance using 20 random register leakages. We notice that
despite having different leakage coefficients for each individual bit of the 1600 reg-
isters, the average distances still tend towards the ideal distance. This additional
result further highlights the soundness of the AU assumption. Figure 9 shows
the comparison between the SR of the HDPA in blue and its approximation in
orange evaluated using Equation 9. First, we notice that the SR approximation
for a full basis linear regression attack is more accurate compared to the HW
model case. This is due to the fact that the leakage of the considered device is
best estimated by the second model.



Fig. 6: Convergence towards the ideal distance of the average distances with
different HW based real leakage models for each register.

7 Conclusion

Assessing the SCA security of an implementation is a tedious task. This is par-
ticularly true for complex cryptosystems for which numerous attack paths are
possible. In this paper, we described a first methodology for analyzing the secu-
rity of ECSM implementations against (close to) worst-case HDPA It allows us
to express the success rate of such attacks based on an easy-to-estimate (ideal
distance) metric, in function the number of leakage samples exploited by the ad-
versary (which depends on the register size, the field size and the number of field
operations) and the noise level. This shortcut formula trades a bit of accuracy
in the success rate estimation for considerable efficiency gains. It could be easily
extended to windowed algorithms and to the SR approximation of a full scalar
recovery. Future works might investigate the application of this methodology to
other implementations of public-key cryptosystems.

Acknowledgement. François-Xavier Standaert is a senior research associate
of the Belgian Fund for Scientific Research. This work has been funded in part
by the European Commission through the H2020 project 731591 (acronym RE-
ASSURE) and by the ERC Consolidator Grant 724725 (acronym SWORD).
The authors acknowledge the support from the ’National Integrated Centre of
Evaluation’ (NICE), a facility of Cyber Security Agency, Singapore (CSA). The
authors would like to thank Vincent Verneuil for the valuable comments and the
fruitful discussions.



Fig. 7: Comparison of the SR of HDPA and its approximation assuming a HW
based linear leakage model.

References

1. Atsam4c-ek user guide : http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel_11251_SmartEnergy_ATSAM4C-EK-User_Guide_SAM4C8-SAM4C16_

User-Guide.pdf.

2. Cortex-m4 technical reference manual : http://infocenter.arm.com/help/

topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf.

3. Lejla Batina and Matthew Robshaw, editors. Cryptographic Hardware and Em-
bedded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer
Science. Springer, 2014.
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19. Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and Adrian
Thillard. How to estimate the success rate of higher-order side-channel attacks. In
Batina and Robshaw [3], pages 35–54.

20. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for all -
all for one: unifying standard differential power analysis attacks. IET Information
Security, 5(2):100–110, 2011.

21. Marcel Medwed and Elisabeth Oswald. Template attacks on ecdsa. In Kyo-Il
Chung, Kiwook Sohn, and Moti Yung, editors, Information Security Applications,
pages 14–27, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.



22. Romain Poussier, Yuanyuan Zhou, and François-Xavier Standaert. A systematic
approach to the side-channel analysis of ECC implementations with worst-case hor-
izontal attacks. In Cryptographic Hardware and Embedded Systems - CHES 2017
- 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings, pages 534–554, 2017.

23. NIST FIPS PUB. 186-2: Digital signature standard (dss). National Institute for
Standards and Technology, 2000.

24. Matthieu Rivain. On the exact success rate of side channel analysis in the gaussian
model. In Selected Areas in Cryptography, 15th International Workshop, SAC 2008,
Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers, pages
165–183, 2008.

25. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In CHES 2005, pages 30–46, 2005.

26. Mathias Wagner. 700+ attacks published on smart cards: The need for a systematic
counter strategy. In Werner Schindler and Sorin A. Huss, editors, Constructive
Side-Channel Analysis and Secure Design, pages 33–38, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.



A Addition and doubling formulas

Algorithm 2 Point addition using Jacobian coordinates

Input P = (X1, Y1, Z1) , Q = (X2, Y2, Z2)
Output P + Q = (X3, Y3, Z3)

A← Z2
1 , B ← Z2

2 , C ← X1B , D ← X2A , E ← C−D , F ← Y1BZ2 , G← Y2AZ1

, H ← F −G , I ← E2 , J ← IE , K ← CI
X3 ← H2 + J − 2K
Y3 = H(K −X3)− FJ
Z3 = Z1Z2E
return (X3, Y3, Z3)

Algorithm 3 Point doubling using Jacobian coordinates

Input P = (X1, Y1, Z1)
Output P + P = (X2, Y2, Z2)

A← X2
1 , B ← Y 2

1 , C ← Z2
1 , D ← 3A + aC2 , E ← B2 , F ← 4X1B

X2 ← D2 − 2F
Y2 ← D(F −X2)− 8E
Z2 = 2Y1Z1

return (X2, Y2, Z2)

In the point doubling algorithm described above, the multiplication by a = −3
is done using field subtraction, leading to one less field multiplication.


