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Abstract

We introduce a new variant of decentralised, trustless, permissionless blockchain. The main
novelty is that the proof-of-work for mining a block is divided into multiple stages. An appropriate
linkage structure is defined so that it becomes possible to simultaneously work on various stages of
different blocks. The overall effect is an improvement in the transaction processing rate and the time
for confirming a transaction. These are achieved without compromising on security. The division
of the proof-of-work into several stages also divides the block reward into an equal number of stage
rewards. Once a block gets onto the blockchain, the miner which successfully completed a particular
stage can claim the reward for that stage. This ensures a more equitable distribution of the reward
for successfully mining a block.
Keywords: blockchain, proof-of-work, pipelining, mining, Bitcoin.

1 Introduction

Bitcoin was launched by Satoshi Nakamoto in 2009 [11]. It is a form of currency which operates in a
decentralised, trustless and permissionless environment. It is decentralised in the sense that there is no
central authority which issues or manages the currency; it is trustless in the sense that users do not
require to trust any entity to use the currency; and it is permissionless in the sense that anybody can
join the community of users of the currency without requiring any kind of permission. The creation
of such a currency is a fascinating technological feat. Starting from its obscure origin a decade ago,
Bitcoin is presently an internationally well known invention with a market capitalisation of more than
170 billion US Dollars1.

Bitcoin is based on the blockchain technology which combines ideas from cryptography and dis-
tributed computing. Since cryptography plays an essential role, Bitcoin is called a cryptocurrency. We
refer to [8] for an exposition of Bitcoin and the problem it solves.

A blockchain is a method to implement what is called a distributed ledger, i.e., a ledger whose
entries are immutable and which is stored in a distributed fashion. The creation of Bitcoin kick-started
an immense amount of activity in cryptocurrency in particular and more generally on the blockchain
technology and distributed ledger. Over the course of time, several problems have been identified with
the performance of Bitcoin. We discuss some of these below.

1https://coinmarketcap.com/, accessed on 21 February, 2020.
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A major issue is that of scalability. The throughput of Bitcoin is less than 10 transactions per
second [3]. In Bitcoin, blocks are created at the rate of one block in 10 minutes. Bitcoin suggests that
for a transaction to be considered confirmed, it is desirable to wait until five blocks have been added
to the blockchain after the block containing the transaction has been mined. Consequently, the time
for a transaction to be confirmed is about an hour from the time that the transaction is considered for
inclusion in the blockchain. The slow rate of transaction processing and the long time for confirmation
of transactions make Bitcoin difficult to use for payment systems which produce transactions at a much
faster rate and also require a shorter time for confirmation of an individual transaction.

A second major issue is the distribution of block rewards. The Bitcoin protocol follows a ‘winner
takes all’ approach to allocating block rewards, i.e., the entity which is the first to successfully complete
the proof-of-work for a block gets the entire reward for creating the block. Other entities which put
in a significant amount of computation towards the proof-of-work, but, were beaten by the winner, get
nothing. This approach leads to an intense competition among miners for block mining. A result of such
competition has been the formation of mining pools. Miners with moderate computational resources
pool their resources together for block mining. Mining pools have been viewed by several authors as a
move towards centralisation which cuts at one of the basic premises of Bitcoin.

Our Contributions

This work describes a modification of the proof-of-work blockchain used by Bitcoin. Broadly speaking
the idea is the following. The proof-of-work to be done for mining a block is divided into stages.
Suppose there are k stages. Consider a block Bi for i ≥ k. Stage number 0 of the proof-of-work for
mining Bi depends upon block Bi−k; stage number 1 of the proof-of-work for mining Bi depends upon
block Bi−k+1 and the completion of stage number 0; and so on until stage number k − 1 of the proof-
of-work is taken up after mining of block Bi−1 and the completion of stage number k − 2. An effect
of the multi-stage structure of the proof-of-work is that the following tasks are independent and can
be performed simultaneously: proof-of-work of stage number 0 of block Bi+k, proof-of-work of stage
number 1 of block Bi+k−1, . . ., proof-of-work of stage number (k − 1) of block Bi+1. This leads to a
situation where separate groups of miners can simultaneously proceed on the proof-of-work of various
stages of different blocks. The block reward is divided into stages. Upon successful completion of the
proof-of-work of a particular stage, a miner can release the incremental information. Once the entire
proof-of-work is completed, the block is added to the blockchain. At this point, the miners who had
completed proof-of-work for the various stages can claim the rewards for the stages they had completed.

We introduce a new notion of mining permit to boost cooperative behaviour among the miners. The
top-level idea is the following. Before attempting a proof-of-work for a particular stage, miners have to
generate a random number. It is viable for a miner to embark on mining only if the generated random
number satisfies a pre-defined condition. Miners who are successful in generating such random numbers
start on the proof-of-work of the next stage, while miners who are unsuccessful do not do so. We refer to
the pre-defined condition as a mining permit. Once a miner completes the proof-of-work of a particular
stage, it is incentivised to release the incremental information, since this miner is not sure that it will
be able to obtain a mining permit for the next stage. Such release of incremental information promotes
cooperative behaviour among the miners.

The new proposal offers two advantages over the Bitcoin blockchain.

Improved transaction processing: Using a k-stage proof-of-work blockchain and without changing the
total time for mining a block, the rate at which transactions are processed increases by a factor
of k compared to a usual blockchain. The time required for a transaction to be confirmed also
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goes down substantially. The improved rate of transaction processing and the lower time for
confirmation mitigates the scalability problem to some extent.

More equitable distribution of block rewards: Successful completion of the proof-of-work of a block
provides rewards to all the miners who have contributed by successfully completing the proof-of-
work of the various stages. So, unlike a ‘winner takes all’ policy, more entities benefit from the
successful mining of a block. Since the blockchain itself provides opportunities for cooperative
behaviour, the formation of mining pools becomes redundant. Also, the greater opportunity for
receiving rewards will incentivise entities with lesser computational power to participate in block
mining thus encouraging a move towards decentralisation.

Previous and Related Works

There have been a number of works which have tried to alleviate the problems of Bitcoin blockchain.
We discuss some of these along with the relevance to multi-stage proof-of-work blockchain.

A line of works [13, 9, 14] have proposed the replacement of a linear blockchain by a directed acyclic
graph (DAG). This leads to faster processing times for transactions. A basic problem in DAG based
schemes is to obtain an ordering of the blocks. This requires a careful analysis. DAG based schemes
are quite far from the notion of multi-stage blockchain that we introduce.

A concept called Fruitchain [12] has been proposed to address some of the problems with the Bitcoin
blockchain. In a Fruitchain, the blocks contain fruits, where each fruit contains a list of transactions.
Fruits refer to a recently mined block. Both fruits and blocks are to be mined. The concept of Fruitchain
is complementary to that of a multi-stage proof-of-work blockchain. Later we indicate how the two
concepts may be combined.

In a usual blockchain, all the miners simultaneously compete with each other in the mining of the
next block. There have been proposals which partition the set of entities such that each group of entities
work in parallel on different sets of transactions. Such a strategy has been called sharding and leads
to improvement of transaction processing [10, 1, 15]. Later we indicate the possibility of combining
sharding strategies with multi-stage proof-of-work blockchain.

Computing proof-of-work can be an energy intensive procedure. There have been several suggestions
to replace proof-of-work by proof-of-stake [7, 6, 2]. The idea is that holder of a certain amount of currency
has a stake in the currency. Such a holder provides a proof-of-stake and obtains a chance to create a
new block. There is no competition for block creation. Some kind of distributed consensus mechanism
is followed to determine the entity which will create the new block. A proof-of-stake based currency
provides fast transaction processing and avoids wastage of energy required for block mining. On the
downside, proof-of-stake schemes tend to favour the richer entities which again moves away from the
goal of decentralisation. So, while proof-of-stake is an important concept, we expect proof-of-work based
schemes to co-exist in the cryptocurrency space in the forseeable future.

2 Background on Blockchain

In this section, we provide a brief overview of blockchain. Our description is based on the Bitcoin
blockchain.

Two basic cryptographic primitives are required to implement a blockchain.

Hash function: A hash function is a map H : D → R where D and R are finite non-empty sets with
#D > #R. Typically, D is the set of all binary strings having some maximum possible length and R
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is the set of all binary strings of some fixed length.

• H is said to be collision resistant, if it is computationally difficult to find distinct x, x′ ∈ D such
that H(x) = H(x′).

• H is said to be pre-image resistant (or, one-way) if given y ∈ R, it is computationally difficult to
find x ∈ D such that H(x) = y.

• H is said to be second pre-image resistant if given x ∈ D, it is computationally difficult to find
x′ ∈ D such that x 6= x′ and H(x) = H(x′).

Digital signature scheme: A digital signature scheme is a triplet of algorithms: (setup, sign, verify).

• An entity executes the algorithm setup to obtain a signing-verification key pair (sk, pk).

• Algorithm sign is applied to a message M and the signing key sk to produce a signature σ.

• The verification algorithm runs on a message-signature pair (M,σ) and the verification key pk
and returns true (indicating that the pair is valid) or false (indicating that the pair is invalid).

For setting up the blockchain, two hash functions H0 and H are chosen. By n1 we will denote the
length of the outputs of H0 and by n2 we will denote the length of the outputs of H. Bitcoin uses
SHA-256 (with n1 = 256) to instantiate H0 and a combination of SHA-256 and RIPEMD-160 (with
n2 = 160) to instantiate H. Additionally, an appropriate digital signature scheme (setup, sign, verify) is
fixed. Bitcoin uses the elliptic curve digital signature algorithm (ECDSA).

Address: Addresses are computed by applying the hash function H to a public key pk, i.e., a is an
address if a = H(pk). Amounts of the cryptocurrency are assigned to addresses. An entity which pos-
sesses the signing key sk corresponding to the verification key pk can spend the amount of cryptocurrency
associated to the address a = H(pk).

Transactions: A record of an interaction between two or more parties is called a transaction. A trans-
action will be considered valid only if it is signed by the relevant parties. More formally, a transaction
T is a tuple (IL,OL, σ) where

• IL = ((pk1, c1), . . . (pks, cs)), s ≥ 1. Here pk1, . . . , pks are public keys and for i = 1, . . . , s, ci is the
amount of currency associated with H(pki).

• OL = ((a1, d1), . . . (at, dt)), t ≥ 1. Here a1, . . . , at are addresses and for j = 1, . . . , t, dj is the
amount of currency to be associated to the address aj .

•
∑s

i=1 ci ≥
∑t

j=1 dj . The difference (
∑s

i=1 ci)−
(∑t

j=1 dj

)
is the transaction fee.

• σ consists of the signature(s) on (IL,OL) constructed using the signing key(s) corresponding to
the public key(s) pk1, . . . , pks.

A special kind of transaction, called a coinbase transaction, does not have input public keys, i.e., IL is
empty and so, there is no signature component σ in such a transaction. It simply consists of a pair
(a, d) indicating that an amount d is assigned to the address a. Successful creation of a block generates
new amounts of the cryptocurrency. Such newly created cryptocurrency along with the sum of all the
transaction fees in the block is the block reward and is assigned to a particular address using a coinbase
transaction.
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Root hash tree of a list of transactions: Let L be a list of transactions. These are hashed together
using a tree structure. For example, Bitcoin uses the Merkle hash tree to stitch together the hashes of
the transactions in the list. The final output of the hash tree will be called the root hash and denoted
as RH(L).

Blockchain: A blockchain is a sequence of blocks B0, B1, . . . , Br−1. The first block B0 is special since
it has no previous block. It is sometimes called the genesis block. The block Br−1 is called the header
of the blockchain.

A block contains a list of transactions, chaining information and metadata. In the following descrip-
tion, we omit the metadata component of a block. The i-th block Bi of the blockchain can be formally
considered to be a tuple Bi = (i, bdigesti,Li, ti, ηi), where

• i is a non-negative integer denoting the block number;

• Li is the list of transactions in the block where the first transaction in Li is a coinbase transaction;

• ti is a positive integer which denotes the target value for the block and is specified by the rules
for the blockchain;

• ηi is a positive integer providing a proof-of-work done in creating the block;

• bdigesti is computed as follows:

bdigesti =

{
H0 (i,RH(Li), ti, ηi) if i = 0,
H0

(
bdigesti−1, i,RH(Li), ti, ηi

)
if i > 0.

The quantity bdigesti is called the digest of the block Bi and has to satisfy the following condition.

bdigesti < ti. (1)

Ensuring that the condition (1) holds requires performing a computation. While computing bdigesti,
i > 0, the input to H0 is (bdigesti−1, i,RH(Li), ti, ηi). Of these, the only flexibility is in choosing the
value ηi, since the other components are fixed. Since H0 is pre-image resistant, the only way to ensure
that (1) holds, is to repeatedly apply H0 with various values of ηi until a value is obtained for which (1)
holds. On an average, about 2n1/ti applications of the hash function H0 will be required to ensure
that (1) holds. So, the particular value of ηi provided as part of the block is a proof that a certain
amount of work has been done.

Pictorially, a blockchain may be viewed in the following manner.

B0 ← B1 ← B2 ← · · · ← Br−1.

The arrows in the blockchain point in the backward direction indicating that for i > 0, Bi is computed
from Bi−1, i.e., bdigesti−1 is part of the input to H0 while computing bdigesti.

The blockchain grows in the forward direction. Suppose the present blockchain is B0, . . . , Br−1.
A list of transactions Lr is chosen and a suitable value ηr is obtained such that bdigestr is equal
to H0(r, bdigestr−1,RH(Lr), tr, ηr) and bdigestr < tr. Then the block Br = (r, bdigestr,Lr, tr, ηr) is
appended to the blockchain resulting in the new blockchain B0, . . . , Br−1, Br. Creation of the new
block Br by finding the proof-of-work value ηr is called the mining of the block Br. Entities whose goal
is to create new blocks are called miners. A miner which successfully creates a block obtains the block
reward for creating the block.
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Difficulty: The difficulty parameter of a blockchain determines how difficult it is to mine blocks. The
blockchain design specifies how the difficulty parameter is to be determined for a particular block. The
difficulty parameter in turn defines the target value ti of the block Bi. The difficulty of a blockchain is
the sum of difficulties of all the blocks in the blockchain. It is a measure of the amount of work that
has been put in to create the blockchain.

Block Completion Time: As explained above, creating a new block requires obtaining a proof-of-
work. This requires a certain amount of time. An overall goal of the blockchain is to ensure that blocks
are created at a constant rate. Let T be the time in seconds such that blockchain ensures that on an
average a new block is created every T seconds. For example, in Bitcoin, blocks are created at a rate of
one block in about 10 minutes, i.e., T = 600 seconds.

The proof-of-work essentially consists of repeatedly applying the hash function H0. The target
value determines the number of times H0 needs to be applied to obtain a suitable proof-of-work. In a
competitive environment, many miners are simultaneously attempting to create the next block. The
hash rate of the whole network is the number of times H0 is applied each second by all the miners. As
more miners join and/or employ special purpose hardware for computing H0, the hash rate increases. As
a result, new blocks would be mined faster. Creation of new blocks results in creation of new amounts
of cryptocurrency. So, speeding up the block mining time can lead to an inflationary situation. To
prevent this, the blockchain specifies rules for adjusting the difficulty and hence the target value, of
mining a block. If the block mining time tends to decrease below T, then the difficulty for the next
blocks is increased. Conversely, if for some reason, the block mining time tends to increase above T,
then the difficulty for the next blocks is decreased. The difficulty adjustment procedure ensures that
on an average the block mining time equals T.

Peer-to-peer network: The blockchain considered in this work operates in a trustless, permissionless
and decentralised environment. Entities are nodes of a peer-to-peer network. Transactions are generated
by the interaction of these entities among themselves. The generated transactions are broadcast over
the network using a gossip protocol. The goal is to include such transactions in a block and append to
the blockchain. The work of creating new blocks is done by the miners. Each miner maintains a list
of transactions which have not yet been included in the blockchain. For creating a new block, a miner
chooses a list of transactions from amongst those that are not part of the blockchain and attempts to
mine a new block. If it is successful, it propagates the newly created block to the network using the
gossip protocol.

Before relaying any information, a node in the network will perform validation checks on the in-
formation it relays. This will include verification of formatting, signature, proof-of-work and other
consensus rules of the network. Such rules include verification of timestamps and the rules for updating
the targets.

Each entity participating in the network maintains a copy of the blockchain. Whenever, an entity
creates a new block or receives one from one of its peers, it appends the block to the copy of the
blockchain that it maintains. Assuming that all entites have the same copy of the blockchain and all
of them receive the same new block, the new copy of the blockchain maintained by all the entities will
also be the same. It is, however, possible that two (or, more) miners almost simultaneously create a
new block and propagate to the network. This may result in a particular entity receiving two blocks
both of which are compatible with the copy of the blockchain that it maintains. More generally, the
following situation may arise. Suppose that the blockchain is B0, . . . , Bi−1, Bi, . . . , Br−1. An entity
receives blocks B′i, . . . , B

′
r′ such that B0, . . . , Bi−1, B

′
i, . . . , B

′
r′ is a valid blockchain. The blockchain
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rules specify a conflict resolution mechanism to determine which blockchain to retain. Basically, the
rule is to retain the blockchain having higher difficulty among the two possible chains. Following this
rule may lead the entity to discarding the blocks Bi, . . . , Br and keeping B0, . . . , Bi−1, B

′
i, . . . , B

′
r′ as its

copy of the blockchain. Such discarding of blocks is a transient effect and eventually all entities in the
network have the same copy of the blockchain.

Confirmation of a transaction: Once a transaction is part of a block which is included in the
blockchain, it may be considered to be partially confirmed. For full confirmation, due to the transitory
effect discussed above, it may be a good idea to wait until a few more blocks have been appended to the
blockchain. Once the block containing the transaction gets buried sufficiently deep in the blockchain, it
is extremely unlikely that this block will be discarded later. Suppose that ν further blocks are required
to achieve full confirmation. Then the average time for confirmation is about T(ν + 1) seconds.

Transaction Processing Rate: The maximum size of a block is fixed. Depending on their complex-
ities, transactions on the other hand, can have variable sizes. Suppose that on an average, the number
of transactions that can be accommodated in a block is m. The block completion time is T seconds. So,
on an average, about m/T transactions are added to the blockchain in one second. The quantity m/T
is the transaction processing rate of the blockchain.

51% Attack: Suppose an adversary has a hash rate of ρa, i.e., it can perform ρa applications of H0

per second. Further, let ρ be the hash rate of all the other honest miners in the network. Assume that
the target for a block is t so that about 2n1/t applications of H0 are required to mine the block. So,
the expected time for the adversary to mine the block is 2n1/(tρa) and the expected time for all the
honest miners together to mine the block is 2n1/(tρ). The expected mining time for the adversary is
less than the expected mining time of the honest miners if 2n1/(tρa) < 2n1/(tρ) which holds if and only
if ρ < ρa, i.e., the hash rate of the adversary is higher than the hash rate of the honest miners. Let
fa = ρa/(ρ + ρa) denote the fraction of the total hash rate of the network which is controlled by the
adversary. The condition ρ < ρa is equivalent to fa > 1/2. So, if the adversary controls more than half
the hash rate of the entire network, then with high probability it can mine blocks faster than the all
the honest miners in the network. This provides the adversary with a great degree of control over the
blockchain with a good chance of erasing a previously added block from the blockchain. An adversary’s
ability to control more than half the hash rate is called the 51% attack.

Selfish mining: Suppose an adversary is able to mine a block ahead of the public blockchain. It can
then withold the block and keep on privately mining on top of it while it is still ahead of the public
blockchain. At a later stage, it releases the blocks it has mined. At this point, the honest miners must
discard the blocks they have mined and replace them with the blocks mined by the adversary. This
strategy has been called selfish mining and analysed in details [5].

3 A New Blockchain Proposal

The envisaged blockchain will operate in a decentralised, trustless, permissionless environment which is
same as the one described in Section 2. Users of the blockchain will be nodes in a peer-to-peer network
and will communicate using the gossip protocol of the network. Each node will maintain its own local
copy of the blockchain. Interactions between the users will create transactions. These transactions
will be relayed to the whole network. Miners will perform the task of creating new blocks. The new
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blocks will also be relayed to the whole network. Nodes will append new blocks to the local copies of
the blockchain that they maintain. This may lead to conflicts as explained in Section 2. The conflict
resolution mechanism will be similar to that mentioned in Section 2, namely to retain the blocks which
required a greater amount of work to be created and in case of ties to retain the blocks which were
received earlier.

3.1 Structure of the Proposed Blockchain

For setting up a multi-stage blockchain, hash functions H0, . . . ,Hk−1 and H are chosen. The parameter
k denotes the number of stages in the proof-of-work. Also, a digital signature scheme (setup, sign, verify)
is selected. The digital signature scheme will be used for signing transactions in the manner described
in Section 2. The hash functions H0, . . . ,Hk−1 will be used for proof-of-work computations while the
hash function H will be used for address computation by applying H to public keys as described in
Section 2. The structure of transactions are the same as in Section 2 and the definition of the root hash
of a list of transactions also remains unchanged. In a multi-stage blockchain, there will be no coinbase
transactions.

The blockchain will chain together blocks. A general block of the blockchain contains the following
information.

bn,
bdigest,
L,
t0, η0, τ0, a0, c0
t1, η1, τ1, a1, c1
...
tk−1, ηk−1, τk−1, ak−1, ck−1

Here:

• bn is the block number.

• bdigest is the block digest. We later explain the computation of the block digest.

• L is the (possibly empty) list of transactions in the block.

• For j = 0, . . . , k − 1,

– tj is the target for stage j;

– ηj is the nonce corresponding to the proof-of-work for stage j;

– τj is the timestamp for the completion of stage j;

– aj is the address to which the reward for completing stage j is to be assigned;

– cj is the reward for completing stage j; the block assigns cj coins to the address aj .

The block reward consists of the new coins that is created on successful mining of the block and the
sum of all the transactions fees in the block. We denote the block reward of a block B by BR(B). We
do not specify any particular monetory policy for creating new coins. All that we require is that given
a block number, it should be possible to determine the number of coins that is created on the successful
mining of that block.
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There has to be a policy for distributing BR(B) to the k addresses corresponding to the successful
completion of the k stages. The simplest would be c0 = · · · = ck−1 = BR(B)/k. We will assume this
distribution.

The blockchain is a sequence of blocks:

B0, B1, . . . , Bk−1, Bk, Bk+1 . . .

Blocks B0, B1, . . . , Bk−1 are start-up (or genesis) blocks while later blocks, i.e., Bk, Bk+1, . . . are general
blocks. The descriptions of general and start-up blocks are separately given below.

General blocks: For i ≥ 0,

Bi+k =

i+ k,
bdigesti+k,
Li+k,
ti+k,0, ηi+k,0, τi+k,0, ai+k,0, ci+k,0
ti+k,1, ηi+k,1, τi+k,1, ai+k,1, ci+k,1
...
ti+k,k−1, ηi+k,k−1, τi+k,k−1, ai+k,k−1, ci+k,k−1

The proof-of-work of the various stages and the final block digest bdigesti+k of block Bi+k are defined
as follows.

gi+k,0 = H0 (bdigesti, i+ k,RH(Li+k), ti+k,0, ai+k,0, ci+k,0, τi+k,0, ηi+k,0) ;
gi+k,1 = H1

(
bdigesti+1, gi+k,0, ti+k,1, ai+k,1, ci+k,1, τi+k,1, ηi+k,1

)
;

· · · · · · ·
gi+k,k−1 = Hk−1

(
bdigesti+k−1, gi+k,k−2, ti+k,k−1, ai+k,k−1, ci+k,k−1, τi+k,k−1, ηi+k,k−1

)
.

 (2)

Finally, bdigesti+k is set to be equal to gi+k,k−1.
Block Bi+k depends upon k previous blocks, namely blocks Bi, . . . , Bi+k−1. The proof-of-work

required to create (or, mine) block Bi+k comes in k stages. Essentially, the values ηi+k,0, . . . , ηi+k,k−1
are the proof-of-work of the individual stages. For j = 0, . . . , k − 1, the nonce ηi+k,j is used to obtain
gi+k,j such that gi+k,j < ti+k,j .

A schematic diagram explaining the multi-stage nature of the proof-of-work is shown in Figure 1 for
k = 3. It shows the dependence structure of block Bi+3 on the three previous blocks, namely, Bi, Bi+1

and Bi+2. The proof-of-work has three stages shown as Stage-0, Stage-1 and Stage-2 in the figure. The
arrow from Stage-0 to Bi indicates that bdigesti is provided as part of the input of the hash function H0

while computing gi+3,0 for Stage-0. From Stage-1, there are two arrows, one to Stage-0 and the other
to Bi+1 indicating that gi+3,0 and bdigesti+1 are provided as part of the input of the hash function H1

while computing gi+3,1 for Stage-1. Similarly, from Stage-2, there are two arrows, one to Stage-1 and
the other to Bi+2 indicating that gi+3,1 and bdigesti+2 are provided as part of the input of the hash
function H2 while computing gi+3,2 for Stage-2.

Verification conditions for the different stages of block Bi+k are the following.

Verification of mining permits:

H0(bdigesti, ai+k,0) mod 2p = 0,
H1(gi+k,0, ai+k,1) mod 2p = 0,

· · · · · · ·
Hk−1(gi+k,k−2, ai+k,k−1) mod 2p = 0.

 (3)
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Stage−2

Stage−1

Block i+3Block i+2Block i+1Block i

Stage−0

Figure 1: Schematic diagram of a 3-stage proof-of-work blockchain.

Here the parameter p determines the condition for mining permit. We discuss this in more details
below.

Verification of proof-of-work:

gi+k,0 < ti+k,0,
gi+k,1 < ti+k,1,
· · · · · · ·

gi+k,k−1 < ti+k,k−1.

 (4)

A miner working on stage number j of block Bi+k (j = 0, . . . , k−1, i ≥ 0), chooses an address ai+k,j
for which it knows the corresponding signing key. It starts the proof-of-work on stage number j by first
assigning ci+k,j coins to the address ai+k,j . If the miner is successful in completing the proof-of-work of
stage number j of block Bi+k, then once the block gets on to the blockchain, the miner can use ci+k,j
coins which is associated to the address ai+k,j .

Mining permits: Obtaining mining permit for stage number j of block Bi+k requires the miner to
compute yj = Hj(x, ai+k,j), where x is the digest of the previous proof-of-work computation (see (3)).
The mining permit condition checks that yj mod 2p = 0. So, a miner proceeds as follows. It first
generates an address a to which it would like the reward of ci+k,j coins to be assigned. Then it computes
y = Hj(x, a) and checks whether y mod 2p = 0. If the condition holds, then the miner sets ai+k,j to be
equal to a and tries to complete the proof-of-work of stage number j. Assuming that Hj behaves like
a random oracle, the value y is random. So, to obtain a mining permit, a miner generates a random
number (based on x and a) and checks whether the mining permit condition holds. If the condition
does not hold, then the miner can try to generate other random numbers with different values of a,
until it obtains a y such that y mod 2p = 0.

The value of the permit parameter p determines the chance of the mining permit condition being
satisfied. On an average, generating about 2p random numbers will yield one for which the mining
permit condition holds. So, a single miner has to apply Hj about 2p times to ensure the satisfaction
of the mining permit condition. On the other hand, if around 2n miners are simultaneously trying to
satisfy the mining permit condition, then after each miner applies Hj about 2p−n times, it is expected
(under the simplifying assumption that the hash rates of the miners are more or less equal) that some
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miner will have satisfied the mining permit condition. So, if an individual miner is unable to satisfy the
mining permit condition in about 2p−n trials, it might as well give up, since it is likely that some other
miner would have already satisfied this condition.

The parameter p needs to be judiciously chosen. The goal is to ensure that for each stage at least one
of the miners is able to satisfy the condition of mining permit within a few trials of the corresponding
hash function. So, a good choice is to have 2p to be equal to the number of miners in the system. The
number of miners, though, is not available from the blockchain. Instead, one may use the block number
to define p, i.e., one may set p = dlog2 bne/c for some constant c ≥ 1.

Start-up blocks: For the blockchain to start, the initial k blocks B0, . . . , Bk−1 need to be defined.
For 0 ≤ i ≤ k − 1,

Bi =
i,
bdigesti,
ti, ηi, τi, ai, ci

The quantities bdigest0, . . . , bdigestk−1 are defined as follows.

bdigest0 = H0 (0, t0, a0, c0, τ0, η0) ;
bdigesti = Hi

(
bdigesti−1, i, ti, ai, ci, τi, ηi

)
, 1 ≤ i ≤ k − 1.

}
(5)

Verification conditions for the proof-of-work of blocks B0, . . . , Bk−1 are the following.

bdigesti < ti. (6)

For i = 0, . . . , k − 1, block Bi assigns ci coins to address ai. Note that we do not define k-stage proof-
of-work for the start-up blocks. This can be done, but, does not seem to be useful. The blockchain
would become operational only after the start-up blocks have been prepared. The issue of k-stage
proof-of-work becomes relevant only after the blockchain becomes operational.

Stage completion time SCT: For i ≥ k, the proof-of-work of block Bi has k stages. Each stage of
the total proof-of-work has an independent target. The value of this target and the hash rate for the
hash function used for the particular stage determine the time required to complete the proof-of-work
of the stage. The total time to complete a stage is the sum of the times to obtain the mining permit
and complete the proof-of-work of the stage. The goal is to ensure that all the stages require about the
same time for the two tasks. We denote this as the stage completion time (SCT) which is defined to be
T seconds. The value of T is to be defined as part of the design rules for the blockchain.

The parameters of the blockchain are to be chosen so that the main component of T is the time to
complete the proof-of-work of the stage. The targets for the various stages are to be updated at regular
intervals so that SCT of T seconds is maintained. For updating the target for stage j, 0 ≤ j ≤ k−1, the
actual times to complete stage j in a fixed number of previous blocks which are already in the blockchain
are considered. We do not specify any particular rule for updation of the targets of the various stages.
As long as the updation rule is able to ensure that each stage requires about T seconds, it can be fitted
into our framework.

For a k-stage proof-of-work blockchain having T as the SCT, the block completion time T for general
blocks equals kT , i.e., the time to complete all the proof-of-work of the k stages in a general block is
kT .
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Difficulty: The difficulty of completing the proof-of-work of a stage of a block is a parameter which
is computed as a function of the target for that particular stage of the block. We do not specify the
exact method of computing difficulty. The only thing important is that given a value of the target for
the stage, it should be possible to obtain the difficulty of the stage. The difficulty of a block is the sum
of difficulties of the k stages in the block. This is a rough measure of the amount of work that has been
put in to mine the block. Further, the difficulty of a contiguous sequence of blocks in the blockchain is
the sum of the difficulties of all the blocks in the sequence.

The difficulty parameters for the various stages are dynamic quantities. Increasing or decreasing the
difficulty parameter for any particular stage modifies the target value for that stage. Correspondingly,
the time to complete the proof-of-work of that stage also changes. The protocol specifies the method of
adjusting the difficulty parameter so that the stage completion time remains T seconds. If more miners
begin to work on a particular stage, then the time to complete that stage would decrease. The difficulty
parameter for that stage would be appropriately increased so that the SCT becomes T . Similarly, the
difficulty parameter for a stage would be decreased if the time to complete that stage increases.

We note that the difficulty of the stages of a multi-stage blockchain cannot be directly compared
to the difficulty of a single-stage blockchain. Rather, the goal of the difficulty parameters is to control
the time to complete the proof-of-work, which is the SCT for a multi-stage blockchain and the time to
mine a block for a single-stage blockchain. So, the meaningful comparison is between the time to mine
a block for both types of blockchains. For a k-stage blockchain with SCT T seconds, the total time to
mine a block is kT . One may compare such a blockchain with a single-stage blockchain whose block
completion time is kT seconds.

3.2 Creation of New Blocks

For the blockchain to start operating, the initial k blocks, namely blocks B0, . . . , Bk−1 will have to
be created. These start-up blocks can be used for creating some initial amounts of currency so that
transactions become possible. The amounts of currency created during the preparation of the start-up
blocks can be offered as initial coin offerings to prospective entities.

After the k start-up blocks have been created, general blocks can be created and added to the
blockchain. General blocks can accommodate transactions. So, processing of transactions can proceed
after the start-up blocks have been mined. Creating a general block requires completing all the proof-
of-work of the k stages. The division of the proof-of-work into various stages gives rise to a cooperative
way of creating blocks.

The mining of a general block can be completed in an incremental manner. To describe how this
can be done, for block Bi+k, i ≥ 0, we define the notion of incremental block information, IBIi+k,j ,
j = 0, . . . , k − 2.
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IBIi+k,0 =

(i+ k, 0),
gi+k,0,
Li+k,
ti+k,0, ηi+k,0, τi+k,0, ai+k,0, ci+k,0

IBIi+k,1 =
(i+ k, 1),
gi+k,1,
ti+k,1, ηi+k,1, τi+k,1, ai+k,1, ci+k,1

...
...

...

IBIi+k,k−2 =
(i+ k, k − 2),
gi+k,k−2,
ti+k,k−2, ηi+k,k−2, τi+k,k−2, ai+k,k−2, ci+k,k−2

1. Given bdigesti (from block Bi), it is possible to create IBIi+k,0.

2. For j = 0, . . . , k − 2, given IBIi+k,j and bdigesti+j+1 (from block Bi+j+1), it is possible to create

• IBIi+k,j+1 if j is in {0, . . . , k − 3}; and

• block Bi+j+2 if j = k − 2.

For j = 0, . . . , k− 2, the verification of the proof-of-work for IBIi+k,j consists of verifying that gi+k,j has
indeed been correctly computed as given by (2) and that the verification of mining permit given in (3)
and the verification of proof-of-work given in (4) hold.

The IBIi+k,j ’s are created and relayed by miners to the whole network. So, along with transactions
and completed blocks, the nodes in the network are also responsible for relaying the IBI’s. However,
the nodes do not add the IBIi+k,j ’s to the local copies of the blockchain. Once a miner completes the
proof-of-work of the entire block Bi+k, it relays the block to the entire network. Nodes in the network
then append the newly found block to the local copies of their blockchain. So, the blockchain consists
of only complete blocks and the blockchain does not keep track of incremental block information of
different stages.

Let us now consider how miners can cooperate amongst themselves in creating a block. Recall
that the SCT is T seconds. Consider the creation of the first general block Bk after the initial blocks
B0, . . . , Bk−1 have been created and added to the blockchain. The proof-of-work for the first stage of
Bk depends upon B0 and is completed in about T seconds. After the proof of work of the first stage
of Bk is complete, the miner which successfully completes this stage may release the incremental block
information IBIk,0 to the network. This miner as well as other miners can then build upon IBIk,0 to
try and complete the proof-of-work of the second stage which depends upon B1. Simultaneously, other
miners can start creating the proof-of-work for the first stage of block Bk+1, which also depends upon
B1. After T more seconds, both IBIk,1 and IBIk+1,0 will be available. At this point, work on creating the
proof-of-work for the third stage of Bk, the second stage of Bk+1 and the first stage of Bk+2 can start
simultaneously. Continuing in this fashion, the complete proof-of-work for block Bk will be completed
in about kT seconds. Since the mining of block Bk+1 started T seconds after block Bk and the complete
proof-of-work for block Bk+1 also requires about kT seconds, at the end of (k+1)T seconds, the mining
of block Bk+1 will be completed. Similarly, at the end of (k + 2)T seconds, the mining of block Bk+2

will be completed and so on.
From the structure of the k-stage blockchain, we have that for i ≥ 0, bdigesti+k is required for

completing stage number k− 1 of block Bi+k+1, stage number k− 2 of block Bi+k+2, . . ., stage number
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0 of block Bi+2k. So, after the completion of block Bi+k (which provides the value of bdigesti+k), the
following activities can start simultaneously.

• Creation of proof-of-work for stage number k−1 of block Bi+k+1; on completion, Bi+k+1 is added
to the blockchain.

• Creation of proof-of-work for stage k − 2 of block Bi+k+2; on completion, IBIi+k+2,k−2 is released
to the network.

• . . .

• Creation of proof-of-work for stage 0 of block Bi+2k; on completion, IBIi+2k,0 is released to the
network.

The above description is reminiscent of typical pipelining scenario in hardware architectures. In fact,
the goal of the multi-stage design is to translate benefits of pipelining to block mining. For k = 3 and
i ≥ 3, the quantities which can be simultaneously computed are shown in Figure 2.

IBIi+3,0 IBIi+3,1

IBIi+4,0

Bi+3

IBIi+4,1

IBIi+5,0

Bi+4

IBIi+5,1

IBIi+6,0

Bi+5

IBIi+6,1

IBIi+7,0

· · ·

· · ·

· · ·

Bi

?

Bi+1

?

Bi+2

?
- -

?
- -

?
- -

?
- -

-

Figure 2: Illustration of quantities which can be computed simulatenously for k = 3.

Incentive for incremental mining: Suppose a miner M is able to complete stage 0 of block i+ k.
It has the option of immediately releasing IBIi+k,0. If it does this, other miners can possibly work on
IBIi+k,0 and build the proof-of-work for the subsequent stages and eventually complete the block. As
part of IBIi+k,0, miner M has also provided the address ai+k,0. This address has been computed by
applying the hash function H to a verification key whose signing key is known toM. If the part IBIi+k,0
gets completed to block Bi+k, then ci+k,0 coins will be assigned to the address ai+k,0. Since M knows
the signing key corresponding to the address ai+k,0, it will obtain control of ci+k,0 coins. So, by releasing
IBIi+k,0, miner M has locked in a certain amount of coins which it has a chance of obtaining in the
future.

There is nothing special about IBIi+k,0. The above argument applies to IBIi+k,j for all i ≥ 0 and
j = 0, . . . , k − 2. If a miner is able to complete the proof-of-work for stage j of block Bi+k, then it has
the option of immediately releasing IBIi+k,j . This contains the address ai+k,j whose secret key is known
to M. If IBIi+k,j gets completed to a block Bi+k, then ci+k,j coins gets assigned to ai+k,j giving M
control over these coins.
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Alternatively, miner M could withold IBIi+k,j and try to complete the mining of the entire block
Bi+k by itself. The use of mining permits disincentivises such behaviour. To complete the proof-of-work
of the other stages,M would need to satisfy the mining permit conditions for each of these stages. For
each stage, it would require about 2p invocations of the hash function of that stage to satisfy the mining
permit condition. This puts a significant hurdle upon M to proceed over all the stages. So, M runs
the risk that the other miners can together mine block Bi+k earlier. Then, the entire work done by M
will be wasted and result in no return. It would be better for M to release stage-wise proof-of-work.

The above combination of incentive and disincentive mechanisms encourage miners to cooperate to
mine a complete block. More accurately, the above scenario captures both competitive and cooperative
behaviour. Miners compete with each other to complete the mining of the individual stages. By releasing
the proof-of-work of the individual stages, the miners cooperate with each other to complete the mining
of an entire block.

Cooperative block mining: Assuming that an individual miner will aim to complete the proof-of-
work for a single stage, in the steady state, one may expect the miners to get divided into k groups and
work simultaneously as follows.

• A group working on obtaining a proof-of-work for stage k − 1 of block Bi;

• A group working on obtaining a proof-of-work for stage k − 2 of block Bi+1;

• . . .

• A group working on obtaining a proof-of-work for stage 0 of block Bi+k−1;

The formation of the groups is not imposed extraneously. The cooperative process of the multi-stage
mining will itself incentivise miners to work on individual stages, thus leading to the formation of
the groups. For k = 3, the above grouping is illustrated in Figure 3. In contrast, for a single stage
blockchain, all miners would be competing with each other to mine block Bi.

�

�

�

�
G0

�

�

�

�
G1

�

�

�

�
G2

Blockchain

-. . . , Bi+2, Bi+1, Bi -. . . , Bi+3, Bi+2, Bi+1 -. . . , Bi+4, Bi+3, Bi+2 -. . . , Bi+5, Bi+4, Bi+3

�

-. . . , IBIi+5,0, IBIi+4,0, IBIi+3,0 -. . . , IBIi+5,1, IBIi+4,1, IBIi+3,1

Figure 3: For k = 3, the implicit partitioning of the set of miners into groups G0, G1 and G2.
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3.3 Hardware Incompatible Hash Functions

Hash functions H0, . . . ,Hk−1 are to be used for generating the proof-of-work of the k stages. It is possible
to choose all of these hash functions to be the same function. Our analysis of improved transaction
processing in Section 4 does not require the hash functions to be different. Also, we perform a security
analysis of a k-stage blockchain under the assumption that all the hash functions are same. So, benefits
of using a multi-stage blockchain can be obtained by using a single hash function for obtaining proof-
of-work of all the stages. On the other hand, having access to multiple hash functions can accentuate
the cooperative nature of a multi-stage blockchain. Below we explain this further.

We say that two hash functions G and G′ are hardware incompatible if it is not possible to easily
modify or reconfigure a fast hardware for computing one of the functions to obtain a fast hardware for
computing the other function. A set of hash functions is said to be hardware incompatible if the hash
functions in the set are pairwise hardware incompatible. Consider the following set of hash functions.

{SHA-2,BLAKE,Grøstl, JH,Keccak,Skein}.

SHA-2 has been standardised by NIST and is used in Bitcoin. Keccak has also been standardised by
NIST and named SHA-3. The other hash functions in the above list are the finalists in the NIST hash
function competition. There are no known security flaws in any of these functions. Each of the above
hash functions follows a different design strategy. This makes their designs fundamentally different.
Consequently, a dedicated special purpose hardware for one of the hash functions cannot be easily
modified to compute another hash function. So, the above provides a set of hardware incompatible
hash functions. If it is desired to extend this list, then one may consider the hash functions that were
considered in Round 2 of the NIST hash function competition. Again, there are no known security flaws
in the Round 2 hash functions and the designs are also different. So, for a value of k around 10, it is
possible to obtain a set containing k hardware incompatible hash functions.

Suppose, a set of µ hardware incompatible hash functions G0, . . . , Gµ−1 is available and it is desired
to have the number of stages k to be greater than µ. Then one may set Hi = Gi mod µ for i = 0, . . . , k−1.

In the context of multi-stage blockchain, the advantage of using hardware incompatible hash func-
tions is that it would require a huge investment from an individual miner to obtain very fast special
purpose hardware for all the hash functions H0, . . . ,Hk. What is more likely is that individual miners
will focus on obtaining special purpose hardware for one hash function. This will provide it with a
computational leverage over some of the stages, but, not all the stages.

In such a situation, a miner will focus on completing the proof-of-work of the stages for which it
has special hardware. Since, other miners have special hardware for other stages, this will incentivise
a miner to release proof-of-work of individual stages thus promoting the cooperative behaviour in the
mining of a block.

4 Improved Transaction Processing

We state results which show how a blockchain with a k-stage proof-of-work processes transactions faster
than a blockchain with a single-stage proof-of-work.

Proposition 1. A blockchain with a k-stage proof-of-work processes transactions about k times faster
than a blockchain with a single-stage proof-of-work under the assumption that the block completion times
for both blockchains are equal.
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Proof. First consider the blockchain with a k-stage proof-of-work. We consider a steady state scenario,
i.e., the scenario where the blockchain has been initialised with the start-up blocks and further suffi-
ciently many blocks have been added to the blockchain. At such a point of time, proof-of-work for any
stage of a block takes about T seconds and the block completion time is T = kT , where T is the SCT.

For i ≥ 0, the work on creating block Bi+k+1 starts about T seconds after the work on creating
block Bi+k starts. Since completing both blocks require kT seconds, block Bi+k+1 will be added to the
blockchain about T seconds after block Bi+k is added to the blockchain. So, blocks will be added to
the blockchain at the rate of one block in about T seconds.

Assume that on an average, m transactions are accommodated in a block. So, the rate at which
transactions get added to the blockchain is m/T transactions per second.

Recall that for a single stage blockchain, the rate at which transactions are added to the blockchain
is about m/T = m/(kT ) seconds. So, the rate at which a k-stage blockchain adds transactions to the
blockchain is about k times faster than the rate at which a single-stage blockchain adds transaction to
the blockchain.

Suppose that the block completion time T is fixed. A theoretical consequence of Proposition 1 is
that the rate of transaction processing can be improved to a great degree by choosing a very high value
of k. There is, however, the issue of network delays. Since T = kT , increasing k decreases the value
of T . The blocks and the IBI’s which are released by miners require a certain amount of time to reach
the entire network. This time is the network latency. The SCT T cannot be lower than the network
latency. This puts a restriction on the maximum value of k and hence the extent to which transaction
processing can be improved by using a k-stage proof-of-work blockchain.

Proposition 2. Suppose that a transaction is considered confirmed if ν blocks are added to the blockchain
after the block containing the transaction. The confirmation time for a blockchain with a k-stage proof-
of-work is a fraction (k + ν)/(k(ν + 1)) of the confirmation time for a blockchain with a single-stage
proof-of-work under the assumption that the block completion times for both blockchains are equal.

Proof. As in the proof of Proposition 1, we consider the steady state scenario where T is the SCT and
the block completion time is T = kT . So, blocks are added to the blockchain at the rate of about one
block every T seconds.

Consider the block containing the transaction. Completing the proof-of-work for this block requires
about kT seconds. Once this block is added to the blockchain, the next ν blocks are added to the
blockchain in about νT seconds. So, the total time for confirmation of the block is about kT + νT
seconds.

For the blockchain with the single-stage proof-of-work, completing the proof-of-work for the block
containing the transaction takes T seconds. Each of the ν further blocks require about T seconds to
be added to the blockchain. So, the total time for confirmation of the transaction is about (ν + 1)T =
k(ν + 1)T .

So, the confirmation time for a transaction on a k-stage blockchain is a fraction (k + ν)/(k(ν + 1))
of the confirmation time for a transaction on a single-stage blockchain.

Energy consumption: The amount of energy consumption per transaction is an important param-
eter. Note that the number of transactions that can be accommodated depends upon the size of the
block and is independent of the number of stages. Further, the total energy required to mine a block is
determined by the block completion time T and the hash rate. The block completion time is independent
of the number of stages. Under the simplifying assumption that the hash rate does not depend upon
the number of stages, the energy consumption per transaction is independent of the number of stages.
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By incentivising cooperative behaviour among the miners, a multi-stage blockchain has the potential
to reduce the overall energy requirement for mining a block. In this case, the energy consumption per
transaction may actually reduce compared to a single-stage blockchain.

5 Security

Suppose that H0 = · · · = Hk−1. The following result shows that the condition for a 51% attack on a
multi-stage blockchain is the same as that for a single-stage blockchain.

Proposition 3. Consider a blockchain with a k-stage proof-of-work where H0 = · · · = Hk and the
targets for all the stages of a block are equal to t. Suppose there is an adversary with hash rate ρa
and the hash rate for all the honest miners is ρ. Suppose that block Br is the current header of the
blockchain, where r is sufficiently greater than k so that steady state behaviour of the blockchain may be
assumed. Let ta be the expected time required for the adversary to replace block Br and t be the expected
time required by the honest miners to add the next block to the blockchain. Then ta < t if and only if
ρa > ρ.

Proof. Since the target for all the stages is t, the number of hash function calls to complete the proof-
of-work of any particular stage is about 2n1/t, where n1 is the size of the digest for the hash function
H0. Also, to satisfy the condition for mining permit for each stage, about 2p hash function calls are
required.

The adversary’s goal is to replace the block Br which is the present header of the blockchain. Let
the new block be B′r. To mine B′r, the adversary will have to satisfy the conditions of mining permit
and complete the proof-of-work of all the k stages. Since a single stage requires about 2p + 2n1/t calls,
the k stages of B′r will require about k (2p + 2n1/t) hash function calls. The hash rate of the adversary
is ρa and so the adversary can complete the mining of the block B′r in expected time k (2p + 2n1/t) /ρa.

While the adversary is trying to mine the block B′r, the honest miners are trying to add the next
block Br+1 to the blockchain. Due to the multi-stage nature of the blockchain, at the time block Br
was added to the blockchain, the proof-of-work of the stages numbered 0 to (k − 2) of block Br+1

have already been completed. So, the honest miners are trying to complete the proof-of-work of stage
numbered (k − 1) of block Br+1. This requires about 2p calls to satisfy the mining permit condition
and about 2n1/t hash function calls for the proof-of-work.

The hash rate of all the honest miners is ρ. Again due to the multi-stage nature of the blockchain,
this hash rate is distributed more or less equally to k tasks, namely, the proof-of-work of the stage
number k − 1 of block Br+1, the proof-of-work of stage number k − 2 of block Br+2, . . ., the proof-of-
work of stage numbered 0 of block Br+k. So, the effective hash rate that is employed to complete the
proof-of-work of stage numbered (k − 1) of block Br+1 is ρ/k. With a hash rate of ρ/k, the expected
time to complete the 2n1/t hash function calls is (2p + 2n1/t) /(ρ/k).

So, the condition required for the expected time for the adversary to mine block Br to be less than
the expected time for the honest miners to add block Br+1 to the blockchain is k (2p + 2n1/t) /ρa <
(2p + 2n1/t) /(ρ/k) which holds if and only if ρa > ρ.

The result and the proof assume that the hash functions of all the stages are the same. If a set of
hardware incompatible hash functions is used, then the adversary’s task becomes more difficult, since in
this case the adversary will have to obtain significant computational capability for all the hash functions.
So, using hardware incompatible hash functions can actually lead to security improvement.
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5.1 Selfish Mining

Let us consider the possibility of selfish mining in the context of multi-stage blockchain. Suppose a
miner successfully completes stage number (k− 1) of the present block Br before other miners. At this
point, stage number (k − 2) of block Br+1 has been mined by the honest users and IBIr+1,k−2 has been
made publicly available. To complete the proof-of-work of stage number (k−1) of block Br+1, the block
Br (in particular, bdigestr) is required. So, the selfish miner can adopt the following strategy. Instead
of releasing block Br, it keeps this block private and attempts to complete stage number (k−1) of block
Br+1 ahead of the honest miners. If it is successful, then by the time it completes stage number (k− 1)
of block Br+1, the honest miners have completed the proof-of-work of stage number (k − 2) of block
Br+2 and made IBIr+2,k−2 public. The selfish miner can continue with this strategy. The following
result puts a bound on the number of such blocks that the selfish miner can privately mine before being
forced to release its private chain.

Proposition 4. The selfish mining strategy for a k-stage blockchain can continue consecutively for up
to k blocks.

Proof. Assume that selfish mining strategy is employed for i blocks, i.e., a selfish miner completes stage
number (k− 1) of blocks Br, . . . , Br+i−1 ahead of the honest miners. The honest miners instead obtain
blocks B′r, . . . , B

′
r+i−1.

From the definition of k-stage blockchain, the block Br is required to complete the proof-of-work of
stage number 0 of block Br+k. Since Br is not released by the selfish miner, the honest miners cannot
use Br to complete the proof-of-work of stage number 0 of block Br+k. Instead, the honest miners use
block B′r, for the proof-of-work of stage number 0 of block Br+k. Similarly, the honest miners use block
B′r+j for the proof-of-work of stage number j of block Br+k.

If i > k, then following the selfish mining strategy, the selfish miner would have to complete the
proof-of-work of stage number (k − 1) of block Br+k. For this, it has to use IBIr+k,k−2 that has been
obtained and made public by the honest miners. Note however, that IBIr+k,k−2 has been prepared using
blocks B′r, . . . , B

′
r+k−2 which are different from the blocks Br, . . . , Br+k−2 that the selfish miner has

already mined privately. Since the selfish miner plans to release blocks Br, . . . , Br+k−2, it is useless to it
to use the publicly available IBIr+k,k−2. So, it cannot employ the selfish mining strategy to complete the
proof-of-work of stage number (k−1) of block Br+k. Consequently, the maximum number of consecutive
blocks for which the selfish mining strategy can be employed is k.

Mining permit as a deterrent for selfish mining: Consider the situation where the selfish miner
witholds block Br and attempts to complete the proof-of-work of stage number (k − 1) of block Br+1.
To do this, it first needs to satisfy the condition of mining permit for this stage. This requires the selfish
miner to expend about 2p calls of Hk−1. During the time the selfish miner spends in these calls, there is
a good chance that one of the honest miners completes block Br and releases it to the network. In that
case, the selfish miner can no longer claim the coins for having successfully completed block Br earlier.
More generally, to successfully carry out a selfish mining strategy for i blocks, the selfish miner has to
satisfy the mining permit conditions for the last stages of these i blocks. This will require it to expend
about i2p calls of Hk−1. Such a requirement provides a deterrent for the selfish mining strategy.

6 Comparison and Discussion

The major goal of multi-stage blockchain is to speed-up transaction processing and the confirmation time
for transactions. Propositions 1 and 2 quantify the speed-ups of a multi-stage proof-of-work blockchain
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over a single-stage proof-of-work blockchain. Let us take some concrete figures to understand the extent
of the speed-up.

Example 1: As mentioned earlier, in Bitcoin, the time to mine a block is designed to be about 600
seconds, i.e., T = 600 seconds. So, blocks are added to the Bitcoin blockchain at the rate of one block
per ten minutes. Bitcoin suggests that a transaction may be considered to be confirmed if five further
blocks have been added to the blockchain, i.e., ν = 5. This means that Bitcoin requires about one hour
for a transaction to be confirmed. Suppose that in a multi-stage setting, the values of T and ν are kept
unchanged. For a k-stage proof-of-work blockchain and SCT T , we have kT = T = 600. Suppose, we
choose k = 10. Then T = 60 seconds. So, blocks will be added to the blockchain at the rate of one
block per minute. This is ten-fold improvement over the Bitcoin blockchain. With ν = 5, the time for
confirming a transaction is kT + νT = 600 + 300 = 900 seconds, i.e., a transaction will be considered
to be confirmed in about 15 minutes. This is a four-fold improvement over the confirmation time for
Bitcoin.

Example 2: In Litecoin, the time to mine a block is designed to be about 150 seconds, i.e., T = 150
seconds. So, blocks are added to Litecoin at the rate of one block per two-and-half minutes. Suppose
that a transaction is considered to be confirmed if nine further blocks have been added to the blockchain,
i.e., ν = 9. So, a transaction will be confirmed after about 150×10 = 1500 seconds (25 minutes). Again,
suppose that in a multi-stage setting, the values of T and ν are kept unchanged. For a k-stage proof-
of-work blockchain and SCT T , we have kT = T = 150. Suppose we choose k = 5 so that T = 30.
Then blocks will be added to the blockchain at the rate of one block per half-minute. This is a five-fold
improvement. The time for confirmation of a transaction is kT + νT = 150 + 270 = 420 seconds (7
minutes). This is about a four-fold improvement in confirmation time.

The parameters T and ν determine security. So, using a multi-stage blockchain speeds up both
confirmation time for transactions and the overall rate at which transactions are processed by the
blockchain without reducing security.

In the above analysis, we have taken T = 60 and T = 30 for Bitcoin and Litecoin respectively. A
lower bound on the value of T is given by the network delay. A comprehensive work on network delay
for Bitcoin has been done [4] and the site http://bitcoinstats.com/network/propagation/ provides
statistics of delay in the Bitcoin network. The value of T = 60 for Bitcoin respects these network delays.
We note that multi-stage blockchain does not provide a method for handling network delays. If it can
be ensured that network delay is small, then T can be taken to be much smaller leading to further
increase in the rate of transaction processing and lowering of the time for transaction confirmation.

A number of proposals have been put forward for improving various aspects of a proof-of-work
blockchain. Some of these ideas are complementary to the idea of using a multi-stage proof-of-work.
In particular, we mention two previous ideas and indicate how a multi-stage proof-of-work can be
incorporated into these ideas.

Fruitchain: The concept of Fruitchain was suggested in [12]. The main goal is to ensure a fair share of
reward to the miners, i.e., a miner possessing a fraction f of the total hash capability, obtains essentially
a fraction f of the total reward and so disincentivises selfish mining. Additionally, the protocol ensures
that miners get paid more often so that mining pools become redundant.

A multi-stage blockchain also disincentivises selfish mining. Further, by dividing the block reward
into several parts a multi-stage blockchain ensures that a greater number of participants receives pro-
ceeds from the mining of a block. The cooperative behaviour of the miners in a multi-stage blockchain
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also makes mining pools unnecessary.
A closer look at the structure of Fruitchain shows that it consists of two kinds of mining activity,

namely mining blocks and mining fruits. The fruits are parts of a block and occupy about 8% to 10% of
the space of a block. The difficulties of fruit and block minings are independent. It is conceivable that
the task of block mining in a Fruitchain can be decomposed into multiple stages. This would lead to a
multi-stage proof-of-work Fruitchain. Such a protocol has the potential to combine the benefits of both
the Fruitchain structure along with that of multi-stage proof-of-work. Exploring such a combination is
a possible future work.

Sharding: The goal of sharding based blockchain is to improve transaction processing. See for ex-
ample [10, 15]. A sharding protocol provides facility for multiple committees of nodes to process trans-
actions in parallel. The selection of committees take place autonomously and in a verifiable manner.
Since transactions are processed in parallel, the overall rate of transaction processing improves.

In the steady state, the miners in a k-stage blockchain get divided (also autonomously) into k
groups with one group working on a particular stage. The formation of the groups is an outcome of the
cooperative process of a multi-stage blockchain and is helped by the requirement of obtaining mining
permits. This can also be considered to be a form of sharding. The sharding is over the various stages
required for completing the proof-of-work for a whole block.

The idea of a multi-stage blockchain is complementary to sharding protocols where transactions
are processed in parallel. In sharding protocols, blocks are still required to be mined. A combination
of sharding protocol and multi-stage blockchain would require the block mining process to be multi-
stage while the top level sharding of transaction processing is inherited from the sharding protocol.
Potentially such a combination will combine the benefits of both transaction level sharding and multi-
stage blockchain. Again, exploring this idea is a possible future work.

7 Concluding Remarks

This paper has introduced a variant of decentralised, trustless, permissionless blockchain where the
proof-of-work for mining a block is divided into multiple stages. Several advantages, including improved
transaction processing and a more equitable distribution of rewards, have been highlighted.

The discussion in the paper has been theoretical. It is of interest to know how the concept actually
performs in practice. This would require actually implementing a cryptocurrency based on a multi-stage
proof-of-work blockchain and placing it in the public domain for real world adoption. Such a work would
require a major effort by implementors. We hope that the idea of multi-stage proof-of-work blockchain
will be found interesting enough by practitioners to motivate them to implement such a cryptocurrency.

We recall an observation from [3] which mentions that major advances in improving transaction
processing rate and confirmation time of proof-of-work blockchain require a “basic rethinking of technical
approaches”. The idea of multi-stage proof-of-work blockchain may be considered to be one such
approach.
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