
Understanding Optimizations and
Measuring Performances of PBKDF2 ?

Andrea Francesco Iuorio and Andrea Visconti??

Department of Computer Science,
Università degli Studi di Milano

andreafrancesco.iuorio@studenti.unimi.it
andrea.visconti@unimi.it

http://www.di.unimi.it/visconti

Abstract. Password-based Key Derivation Functions (KDFs) are used
to generate secure keys of arbitrary length implemented in many security-
related systems. The strength of these KDFs is the ability to provide
countermeasures against brute-force/dictionary attacks. One of the most
implemented KDF is PBKDF2. In order to slow attackers down, PBKDF2
uses a salt and introduces computational intensive operations based on
an iterated pseudo-random function. Since passwords are widely used
to protect personal data and to authenticate users to access specific re-
sources, if an application uses a small iteration count value, the strength
of PBKDF2 against attacks performed on low-cost commodity hardware
may be reduced. In this paper we introduce the cryptographic algorithms
involved in the key derivation process, describing the optimization tech-
niques used to speed up PBKDF2-HMAC-SHA1 in a GPU/CPU context.
Finally, a testing activities has been executed on consumer-grade hard-
ware and experimental results are reported.

Keywords: passwords , PBKDF2 , HMAC-SHA1 , optimizations , CPU-intensive
operations , performance testing

1 Introduction

Although user-chosen passwords are often too short and lack enough entropy
[1], they are still widely used for authentication purposes, thus making them
vulnerable to brute force or dictionary attacks. A possible solution to this issue
is to adopt a Key Derivation Function (KDF) which inputs a key material and
generates a secure key [2]. In particular, [3] provides recommendations for the
implementation of PBKDF2, a KDF which inputs a user-chosen password.
? A slightly different version of this paper appeared in the Proceedings of the 2nd
International Conference on Wireless, Intelligent and Distributed Environment
for COMmunication (WIDECOM 2019), Springer International Publishing, Lec-
ture Notes on Data Engineering and Communications Technologies, Vol. 27, 2019,
https://doi.org/10.1007/978-3-030-11437-4.

?? Corresponding author

http://www.di.unimi.it/visconti

2 Andrea F. Iuorio and Andrea Visconti

Even though in 2015 the Password Hashing Competition [4] selected a number
of hashing schemes — e.g., Argon2 [5] (the winner of the competition), Catena
[6], Lyra2 [7], yescrypt [8], and Makwa [9] — currently, PBKDF2 [3] still remains
the most widely implemented and used in practice. For example, it is used in
WiFi Protected Access [10], iOS passcodes [11], LUKS [12], and many others.
In addition, KDF has been usesd in Mobile Adhoc Network for securing the
Zone Routing Protocol [13]. In the Internet of Things (IoT) era users want to
be able to access to their accounts on all their devices, thus adopting password
managers to remember and secure user-chosen passwords. Notice that several
password manager applications [14,15,16,17,18] are based on PBKDF2 and a
number of security and privacy concerns have to be addressed [19,20,21].

For slowing attackers down, PBKDF2 uses a random salt and an iteration
count. The latter specifies the number of times a pseudo-random function (PRF)
is iterated to generate a key of appropriate size. The iteration count is one of
the most important parameters of PBKDF2. The choice of a high value slows
attackers down but may negatively affect usability. In [22], NIST recommends
a minimum of 1,000 iterations for general purpose applications but suggests to
select the iteration count value as large as possible. Interestingly, many applica-
tions define such a value a priori — for example, WPA2 sets the iteration count
value to 4096 [10] — while others do not — e.g., the iteration count associated
with iOS passcodes is calibrated to take about 80 milliseconds [11].

In this paper, we focus on PBKDF2-HMAC-SHA-1, presenting the state-of-
the-art research results achieved in the last five years. In particular, we introduce
all cryptographic algorithms involved in the key derivation process. Then, we
describe the optimization techniques used to speed up PBKDF2, HMAC and
SHA-1 in a GPU/CPU context. Finally, in order to measure the contributions
provided by these optimizations, we develop an implementation of PBKDF2-
HMAC-SHA-1 from scratch, execute our testing activities on consumer-grade
hardware, and present the experimental results found.

The paper is organized as follows. In Section 2 we introduce the crypto-
graphic algorithms involved in the key derivation process. In Section 3, we
describe several optimizations published in literature that can be used to speed
up a PBKDF2 implementation. In Section 4, we present our testing activities,
describing both CPU and GPU implementations and showing the experimental
result found. Finally, conclusions are drown in Section 5.

2 Cryptographic preliminaries

2.1 PBKDF2

PBKDF2 is a password-based key derivation function: starting from a password,
the algorithm generates a key of fixed length. PBKDF2 can be described as a
chain of several instances of a pseudorandom function. In this paper we focus on
PBKDF2-HMAC-SHA-1. Although in 2017 first practical technique for gener-
ating a collision of SHA-1 has been presented, HMAC-SHA-1 is still considered
secure.

Understanding Optimizations and Measuring Performances of PBKDF2 3

PBKDF2 is a Password-Based Key Derivation Function described in PKCS
#5 [3], [22]. For providing better resistance against brute force attacks, PBKDF2
introduces CPU-intensive operations. These operations are based on an iterated
pseudorandom function (PRF) which maps input values to a derived key. The
most important properties to assure is that the iterated pseudorandom function
is cycle free. If this is not so, a malicious user can avoid the CPU-intensive
operations and, as described in [23,?], get the derived key by executing a set of
functionally-equivalent instructions.

PBKDF2 inputs a pseudorandom function PRF , the user password p, a
random salt s, an iteration count c, and the desired length len of the derived
key. It outputs a derived key DerKey.

DerKey = PBKDF2(PRF, p, s, c, len) (1)

More precisely, the derived key is computed as follows:

DerKey = T1||T2|| . . . ||Tlen, (2)

where
T1 = Function(p, s, c, 1),

T2 = Function(p, s, c, 2),

...

Tlen = Function(p, s, c, len).

Each single block Ti — i.e., Ti = Function(p, s, c, i) — is computed as

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc, (3)

where
U1 = PRF (p, s||i),

U2 = PRF (p, U1),

...

Uc = PRF (p, Uc−1).

The PRF adopted can be a hash function [24], cipher, or HMAC [25], [26], and
[27]. In the sequel, we will refer to HMAC as PRF.

2.2 HMAC

An Hash-based Message Authentication Code (HMAC) is an algorithm for com-
puting a message authentication code based on any iterated cryptographic hash
function. The definition of HMAC [27] requires

– H: a cryptographic hash function;
– K: the secret key;

4 Andrea F. Iuorio and Andrea Visconti

Fig. 1. A graphical representation of the SHA-1 algorithm

– text: the message to be authenticated.

As described in RFC 2104 [27], an HMAC can be defined as follows:

HMAC = H(K ⊕ opad,H(K ⊕ ipad, text)) (4)

where H is the chosen hash function, K is the secret key, and ipad, opad are
constant values — respectively, the byte 0x36 and 0x5C repeated 64 times. Recall
that, Equation 4 can be expanded in the form:

h = H(K ⊕ ipad || text)
HMAC = H(K ⊕ opad || h)

In our performance tests, the hash function adopted will be SHA-1, thus making
HMAC-SHA-1 the default pseudorandom function.

2.3 SHA-1

SHA-1 is a cryptographic hash function that inputs an arbitrarily long message
M and outputs a 160-bit digestH. In order to provide the message digest, SHA-1
operates eighty times on five 32-bit words A, B, C, D, and E as shown in Figure
1. Notice that Ft is defined by

F0 = (B ∧ C) ∨ ((¬B) ∧D) t ∈ [0 . . . 19]

F1 = (B ⊕ C ⊕D) t ∈ [20 . . . 39]

F2 = (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) t ∈ [40 . . . 59]

F3 = (B ⊕ C ⊕D) t ∈ [60 . . . 79]

and Kt assume four constants value1.
1 In this section, we partially describe the SHA-1 algorithm. Further details can be
found in [24]

Understanding Optimizations and Measuring Performances of PBKDF2 5

Message M is processed in blocks of the size of 512 bits, namely, sixteen
32-bit words W0, . . . ,W15, eventually padding the last block. More precisely,
the last block is padded with one bit 1 first then, zero or more bits 0 so that
its length is congruent to 448, modulo 512. The remaining 64 bits of the last
512-bit block represent the message length L. The SHA-1 algorithm expands
32-bit words W0, . . . ,W15 into eighty words using the follow message scheduling
function:

Wi = ROTL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) i ∈ [16 . . . 79] (5)

where ROTL(x, n) is the left rotation of x by n bits. Notice that Equation 5
requires to store eighty 32-bit words. If memory is limited (e.g. embedded devices
and GPUs), an alternative method should be adopted. NIST suggests to regard
W0, . . . ,W15 as a circular queue [24] and substitute the Equation 5 with the
following:

{
s = i ∧MASK i ∈ [16 . . . 79]

Ws = ROTL1(Ws ⊕W(s+2)∧MASK ⊕W(s+8)∧MASK ⊕W(s+13)∧MASK)

(6)
where MASK is set to the value 0x0F in Hex. Equation 6 requires only sixteen
words, thus saving sixty-four 32-bit words of storage.

Further improvements have been presented in [28]. In particular, the authors
suggest to replace Equation 5 with

W [i] =

ROTL1(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) i ∈ [16 . . . 31]

ROTL2(Wi−6 ⊕Wi−16 ⊕Wi−28 ⊕Wi−32) i ∈ [32 . . . 63]

ROTL4(Wi−12 ⊕Wi−32 ⊕Wi−56 ⊕Wi−64) i ∈ [64 . . . 79]

(7)

and then replace W29, W30, W31, W60, and W62 with the following and less
expensive (we are reducing the number of XORs) equations:

W29 = ROTL2(W23)⊕ k[29]

W30 = ROTL2(W24 ⊕ k[16])

W31 = ROTL2(W25 ⊕ k[17])⊕ k[31]

W60 = ROTL4(W48 ⊕W28 ⊕W0)

W62 = ROTL4(W50 ⊕W30 ⊕W0)

(8)

where k[29] = ROTL2(W5)⊕ROTL1(W15), k[16] = W0 ⊕W2 (previously com-
puted in W16), k[17] = W1 ⊕ W3 (previously computed in W17), and finally
k[31] = ROTL1(W15)⊕ROTL2(W15).

6 Andrea F. Iuorio and Andrea Visconti

In addition, [28] states that Equation 6 can be replaced with the unfolded
version:

W16 = W 1
0 ⊕W 1

2 ⊕W 1
8 ⊕W 1

13

W17 = W 1
1 ⊕W 1

3 ⊕W 1
9 ⊕W 1

14

W18 = W 1
2 ⊕W 1

4 ⊕W 1
10 ⊕W 1

15

W19 = W 2
0 ⊕W 2

2 ⊕W 1
3 ⊕W 1

5 ⊕W 2
8 ⊕W 1

11 ⊕W 2
13

W20 = W 2
1 ⊕W 2

3 ⊕W 1
4 ⊕W 1

6 ⊕W 2
9 ⊕W 1

12 ⊕W 2
14

W21 = W 2
2 ⊕W 2

4 ⊕W 1
5 ⊕W 1

7 ⊕W 2
10 ⊕W 1

13 ⊕W 2
15

W22 = W 3
0 ⊕W 3

2 ⊕W 2
3 ⊕W 2

5 ⊕ · · · ⊕W 2
11 ⊕W 3

13 ⊕W 1
14

W23 = W 3
1 ⊕W 3

3 ⊕W 2
4 ⊕W 2

6 ⊕ · · · ⊕W 2
12 ⊕W 3

14 ⊕W 1
15

. . .

W79 = W 8
0 ⊕W 22

0 ⊕W 7
1 ⊕ · · · ⊕W 14

15 ⊕W 17
15 ⊕W 18

15

(9)

where W j
i = ROTLj(Wi). Notice that, although Equation 9 increases the total

number of XOR operations, if we compute PBKDF2-HMAC-SHA-1, it requires
to store only five 32-bit words, namely W0, . . . ,W4, because W6, . . . ,W14 are
equal to zero, and W5,W15 are constant value. Therefore, this approach might
be exploited by GPGPU programming.

3 Understanding Optimizations

PBKDF2 applies a pseudorandom function to generate cryptographically secure
keys. Since in this process different cryptographic algorithms are involved (see
Section 2), the optimization of one of these algorithms usually leads to inter-
esting performance improvements in the key derivation process. But this is not
always true. Indeed, some optimizations described in this section affect SHA-1
or HMAC-SHA-1 but have no effect on PBKDF2-HMAC-SHA-1. A crucial role
is played by the context in which the code will be run, namely a GPU or CPU
context. In fact, a specific algorithmic optimization may have no impact on GPU
performances, while it has on CPU ones. Interestingly, however, the opposite is
true as well.

Focusing on the state of the art of PBKDF2, HMAC, and SHA-1, in this sec-
tion we briefly present the optimizations resulting to significant improvements.

3.1 PBKDF2 optimizations

[OPT–01] Early exit: The execution time spent for computing a derived key
does not only depend on the iteration count values. Indeed, also the number of
fingerprints Ti required to compute a single iteration affects the total execution
time. Assuming that we require a 256-bit derived key, two SHA-1 fingerprints are
necessary — i.e., DerKey = T1||T2, with T1 and T2 160-bit length each. Since
blocks Ti are independent of each other, firstly we generate a block T1 and then
we compute the second if and only if T1 is equal to the first part of the 256-bit

Understanding Optimizations and Measuring Performances of PBKDF2 7

Fig. 2. PBKDF2-HMAC-SHA-1 optimizations

derived key. If not so, the chosen password p is certainly wrong. Therefore, the
check of first 160 bits of the key is enough to discard the majority of invalid
candidate passwords [29].

3.2 HMAC optimizations

[OPT–02] Block reduction: Since password p is an input parameter and it is
not modified during the computation of PBKDF2, it is possible to precompute
the first message block of a keyed hash function (light gray rectangles of Figure 2)
and reuse such a value in all the subsequent HMAC invocations. Thus, the num-
ber of blocks that have to be computed is reduced from “4 ∗ iteration count” to
“2+2∗iteration count”. This simple optimization saves about 50% of PBKDF2’s
CPU intensive operations [30,23,29].

[OPT–03] Input size: A generic HMAC implementation has to address the
problems of the size of password p and message text. If the password length is
bigger than 512 bits, it has to be reduced. Therefore, a hash algorithm is ap-
plied, namely p = SHA−1(p), and then it is padded with enough zeros to reach
a 512-bit length [31]. In addition, we have to address also the problem of the
message size. If the message to be authenticated is bigger than 512 bits, it has to
be split in several blocks and then each block managed separately. In PBKDF2,
excluding the computation of U1 (see Figure 2), we have not a generic HMAC
implementation but a specific one. Indeed, we know in advance the computation
of the first message block (see [OPT–02] Merkle-Damgard block reduction), and
we have to manage only the second one. Since the second message block always

8 Andrea F. Iuorio and Andrea Visconti

inputs a 160-bit message, namely SHA-1(M) or Ui (see Figure 2), we have not
to split the message to be authenticated in blocks. Therefore, this optimization
provides us the possibility to avoid length checks and the chunk splitting opera-
tions during the computation of U2,. . . ,Uc, thus reducing the overhead necessary
to compute an HMAC implementation [30].

3.3 SHA-1 optimizations

[OPT–04] Word expansion phase: Instead of using eighty 32-bit words for
the word expansion phase (see Equation 5), SHA-1 can be implemented using a
circular queue [24] of sixteen words (see Equation 6). This approach reduces the
amount of memory required by the implementation, thus making this optimiza-
tion a desirable feature in a GPU context.

A different approach has been introduced in [28], where the authors suggest
the possibility to unfold the SHA-1 message scheduling function (see Equation
9). Although this approach increases the total number of XOR operations to be
executed, it drastically reduces the amount of memory required to perform the
SHA-1 message scheduling function, i.e., only five 32-bit words. Therefore, also
this optimization may have an impact on GPU performances.

In addition, Visconti and Gorla [28] have also shown that Equation 5 can be
replaced with Equation 7. This new approach does not reduce the amount of
memory required to compute the word expansion phase but can be exploited to
reduce the total number of XORs in a CPU context as suggested by [OPT–05].

[OPT–05] Zero-based optimization: Due to a long run of several consecu-
tive zeros, namely 287 bits, a number of 32-bit word Wt are set to zero. Since
zero-based operations do not provide any contribution, they can be easily omit-
ted. Therefore, exploiting Equations 7 and 8, we can avoid 66 out of 192 XOR
operations [28].

The same approach can be adopted to reduce the number of constant XORed
twice — i.e., 0x36 and 0x5C — when passwords p are short. We recall that
XORing the same value twice does not provide any contribution and can be
omitted [23].

[OPT–06] Three-round optimization: During the computation of the mes-
sage digest, SHA-1 operates on several 32-bit words such as constants Kt, regis-
ters A,B,C,D,E, functions ft and Wt too. However, in the first three rounds a
number of these words are known a priori and some operations can be omitted
[30]. For example, in the first round we have to compute the following equation:
f0+E+ROTL(A, 5)+W0+K0 (see Figure 1). The content of 32-bit word W0

is unknown but those of f0, E, the circular shift of A, and K0 are not. Therefore,
we can precompute f0 +E +ROTL(A, 5) +K0 = 0x9FB498B3 and reduce the
first round to a single operation, namely W0 + 0x9FB498B3, thus saving 3 op-
erations out of 4. This approach can be also applied to second and third round,
where the unknown values are A,W1, and A,B,W2, respectively.

Understanding Optimizations and Measuring Performances of PBKDF2 9

Fig. 3. PBKDF2 GPU implementation

4 Measuring Performances

To evaluate the contribution of the optimizations described in Section 3, we
(a) implemented from scratch both CPU and GPU version of PBKDF2, (b)
performed our testing activities, measuring PBKDF2 performances, and finally
(c) compared our results with well-known implementations — e.g. OpenSSL
version 1.1.0e [32], libgcrypt version 1.7.6 [33], hashcat 3.5.0 [34].

4.1 GPU testing

In order to run the same code on several devices with different architectures, our
implementation has been written using the OpenCL framework [35]. The im-
plementation uses a classic host-device approach. The host (a CPU) generates
a set of passwords and sends them to the device (a GPU). In order to exploit
[OPT–03], our code executes PBKDF2 as a two-step process (see Figure 3):
firstly it computes U1, storing the intermediate results (hipad and hopad) of
the compression function — i.e., we are computing the light gray rectangles of
Figures 2 and 3 — and secondly computes the remaining U2, . . . , Uc. Doing so,
we can compute U1 with a generic HMAC implementation and the remaining
Ui with a specific one, thus avoiding length checks and the chunk splitting op-
erations. In addition, after the computation of U1, the CPU is able to transfer
(asynchronously) a new set of candidate passwords to the GPU, reducing the
overhead generated by read/write memory operations.

10 Andrea F. Iuorio and Andrea Visconti

Table 1. Number of Kilohashes per second (KH/s) on different GPUs

GPU Naive [OPT–4]
only

All SHA-1
opt.

All HMAC,
SHA-1 opt. Full version hashcat

AMD R9 390 244.72 359.56 377.73 755.57 1553.34 1469.6
AMD HD6870 7.32 98.16 99.18 198.45 398.15 156.4
Nvidia GTX 670 75.28 84.14 90.06 191.20 393.83 410.7
Nvidia GTX 960 180.32 206.41 212.62 504.06 1048.44 992.2
Nvidia GTX 1060 324.26 351.64 381.34 1048.40 1678.30 1710.2

Fig. 4. Number of hashes per second on GPU

All the tests were executed on a machine equipped with an AMD FX 8320
4GHz processor, 8 GB RAM, Microsoft Windows 10 Home 64-Bit Operating
System. In addition, we installed five consumer-grade GPUs with different ar-
chitectures, memory structures and price ranges: AMD R9 390, AMD HD6870,
Nvidia GTX 960, Nvidia GTX 1060, and Nvidia GTX 670.

In order to show the contribution of the optimizations described in Section
3, we implement four different versions of our code:

1. based on [OPT–04];
2. based on all SHA-1 optimizations ([OPT–04], [OPT–05], [OPT–06]);
3. based on all HMAC and SHA-1 optimizations ([OPT–02], . . . , [OPT–06]);
4. full version ([OPT–01], . . . , [OPT–06]);

Then, we set the following PBKDF2 input parameters:

– iteration count c = 1, 000 (the minimum value suggested in [22]);

Understanding Optimizations and Measuring Performances of PBKDF2 11

Table 2. Number of Kilohashes per second (KH/s) on CPU

Library Naive [OPT–4]
only

All SHA-1
opt.

All HMAC,
SHA-1 opt. Full version

Our version 0.797 0.974 1.005 1.761 1.791
OpenSSL ver.1.1.0e - - - - 0.851
Libgcrypt ver.1.7.6 - - - - 0.683

Fig. 5. Number of hashes per second on AMD FX 8230

– derived key length derkey = 256 bits;
– a random salt s.

Finally, we run our implementations and collected data. Testing results are shown
in Table 1 and Figure 4. Then, we compare the performance of our code with a
well-known password recovery utility [34].

4.2 CPU testing

Since real-world applications may define an appropriate iteration count value at
runtime by executing a CPU-test performance — e.g. LUKS [12,36] — we also
implemented a CPU-based version of PBKDF2. The main difference between a
CPU and GPU implementation is that, in the first one, we have not to transfer
a set of candidate passwords from host to device, hence we have not to split the
algorithm in two phases as shown in Figure 3. In addition, the CPU version
implements Equations 7 and 8 as [OPT–4] instead of Equation 6. In this case, the
circular queue used to implement the word expansion phase of the GPU version
does not provide any performance improvement. Indeed, a CPU-based approach
has no memory constraints, while GPU-based has. Therefore, the circular queue
is a desirable feature only in a GPU context.

Our testing activities were executed on an AMD FX-8320 8-Core 4 Ghz,
setting iteration count c, derived key length derkey, and salt s as described in

12 Andrea F. Iuorio and Andrea Visconti

Section 4.1. Table 2 and Figure 5 show the data collected by running our
implementation, OpenSSL version 1.1.0e [32], and Libgcrypt ver.1.7.6 [33].

5 Conclusions

User-chosen passwords are widely used to protect our sensitive information and
to gain access to specific resources. They should be strong enough to prevent dic-
tionary and brute-force attacks but usually are short and lack enough entropy
and cannot be directly used as keys. A possible solution to these issues is to
adopt a password-based Key Derivation Functions. Although Argon2 [5], Catena
[6], Lyra2 [7], yescrypt [8], Makwa [9] and scrypt [37] are expected to supersede
PBKDF2 in the next years, currently PBKDF2 is still widely used to derive keys
in many security applications. In this paper we described the state-of-the-art of
PBKDF2 with the aim to raise the reader’s awareness of security issues facing
new applications — for example, it is not difficult to find apps on Android mar-
ket which implement PBKDF2 with poor security parameters. Thus, focusing
on PBKDF2-HMAC-SHA-1, we described and tested a number of optimization
techniques used by malicious users to speed up PBKDF2, HMAC and SHA-1. In
addition, we showed that these optimizations should be implemented in crypto
libraries in order to speed up the performances, and accordingly, increasing the
level of security of those applications which define the iteration count at runtime.

An interesting future work will be to analyse the performance of these op-
timizations on several graphics cards equipped with different chips from fastest
to slowest.

References

1. Shannon, C.E.: Prediction and entropy of printed english. Bell system technical
journal 30(1), 50–64 (1951)

2. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme.
Cryptology ePrint Archive, Report 2010/264 (2010)

3. Moriarty, K., Kaliski, B., Rusch, A.: PKCS# 5: Password-Based Cryptography
Specification Version 2.1. RFC 8018 (2017)

4. Password hashing competition. https://password-hashing.net/. Cited 10 Nov
2018

5. Biryukov, A., Dinu, D., , Khovratovich, D.: Argon2 (version 1.2). University
of Luxembourg, Luxembourg. https://password-hashing.net/submissions/
specs/Argon-v3.pdf. Cited 10 Nov 2018

6. Forler, C., Lucks, S., Wenzel, J.: Catena : A memory-consuming password-
scrambling framework. Cryptology ePrint Archive, Report 2013/525 (2013)

7. Simplicio Jr, M.A., Almeida, L.C., Andrade, E.R., dos Santos, P.C., Barreto, P.S.:
Lyra2: Password Hashing Scheme with improved security against time-memory
trade-offs. Cryptology ePrint Archive, Report 2015/136 (2015)

8. Peslyak, A.: yescrypt – password hashing scalable beyond bcrypt and
scrypt. Openwall, Inc. (2014). http://www.openwall.com/presentations/
PHDays2014-Yescrypt/. Cited 10 Nov 2018

https://password-hashing.net/
https://password-hashing.net/submissions/specs/Argon-v3.pdf
https://password-hashing.net/submissions/specs/Argon-v3.pdf
http://www.openwall.com/presentations/PHDays2014-Yescrypt/
http://www.openwall.com/presentations/PHDays2014-Yescrypt/

Understanding Optimizations and Measuring Performances of PBKDF2 13

9. Pornin, T.: The MAKWA Password Hashing Function (2015). http://www.bolet.
org/makwa/makwa-spec-20150422.pdf. Cited 10 Nov 2018

10. Wi-Fi Alliance: Discover Wi-Fi: Specifications. https://www.wi-fi.org/
discover-wi-fi/specifications. Cited 10 Nov 2018

11. iOS Security Guide (2017). https://www.apple.com/business/docs/iOS_
Security_Guide.pdf. Cited 10 Nov 2018

12. Fruhwirth, C.: LUKS On-Disk Format Specification Version 1.2.2 (2016).
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/
on-disk-format.pdf. Cited 10 Nov 2018

13. Rahman, M.T., Mahi, M.J.N.: Proposal for SZRP protocol with the establishment
of the salted SHA-256 Bit HMAC PBKDF2 advance security system in a MANET.
In: 2014 International Conference on Electrical Engineering and Information Com-
munication Technology, pp. 1–5 (2014)

14. Enpass. https://www.enpass.io. Cited 10 Nov 2018
15. F-Secure Key. https://www.f-secure.com/en/web/home_global/key. Cited 10

Nov 2018
16. AgileBits: How PBKDF2 strengthens your Master Password. https://support.

1password.com/pbkdf2/. Cited 10 Nov 2018
17. LassPass: Password Iterations (PBKDF2). https://helpdesk.lastpass.com/

account-settings/general/password-iterations-pbkdf2/. Cited 10 Nov 2018
18. Keeper: Keeper’s Best-In-Class Security. https://keepersecurity.com/

security.html. Cited 10 Nov 2018
19. Belenko, A., Sklyarov, D.: "Secure Password Managers" and "Military-Grade En-

cryption" on Smartphones: Oh, Really? Blackhat Europe (2012)
20. Casati, L., Visconti, A.: Exploiting a Bad User Practice to Retrieve Data Leakage

on Android Password Managers. In: Proceedings of the 11th International Confer-
ence on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS
2017. Springer (2017)

21. Casati, L., Visconti, A.: The Dangers of Rooting: Data Leakage Detection in An-
droid Applications. Mobile Information Systems, Article ID 6020461 (2018). DOI
10.1155/2018/6020461

22. Turan, M.S., Barker, E.B., Burr, W.E., Chen, L.: SP 800-132. Recommendation
for Password-Based Key Derivation. Part 1: Storage Applications (2010). http://
nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf.
Cited 10 Nov 2018

23. Visconti, A., Bossi, S., Ragab, H., Caló, A.: On the weaknesses of PBKDF2. In:
Proceedings of the 14th International Conference on Cryptology and Network Se-
curity, CANS 2015. Springer International Publishing, LNCS 9476 (2015)

24. NIST: FIPS PUB 180-4. Secure Hash Standard (SHS) (2012). http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf. Cited 10 Nov 2018

25. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message au-
thentication. In: Proceedings of Advances in Cryptology—CRYPTO96, pp. 1–15.
Springer (1996)

26. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash
functions—the HMAC construction. RSA Laboratories CryptoBytes 2(1), 12–15
(1996)

27. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104

28. Visconti, A., Gorla, F.: Exploiting an HMAC-SHA-1 optimization to speed up
PBKDF2. IEEE Transactions on Dependable and Secure Computing (2018). DOI
10.1109/TDSC.2018.2878697

http://www.bolet.org/makwa/makwa-spec-20150422.pdf
http://www.bolet.org/makwa/makwa-spec-20150422.pdf
https://www.wi-fi.org/discover-wi-fi/specifications
https://www.wi-fi.org/discover-wi-fi/specifications
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://www.enpass.io
https://www.f-secure.com/en/web/home_global/key
https://support.1password.com/pbkdf2/
https://support.1password.com/pbkdf2/
https://helpdesk.lastpass.com/account-settings/general/password-iterations-pbkdf2/
https://helpdesk.lastpass.com/account-settings/general/password-iterations-pbkdf2/
https://keepersecurity.com/security.html
https://keepersecurity.com/security.html
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

14 Andrea F. Iuorio and Andrea Visconti

29. Ruddick, A., Yan, J.: Acceleration attacks on PBKDF2: or, what is inside the black-
box of oclHashcat? In: Proceedings of the 10th USENIX Workshop on Offensive
Technologies (2016)

30. Steube, J.: Optimising Computation of Hash-Algorithms as an Attacker. https:
//hashcat.net/events/p13/js-ocohaaaa.pdf. Cited 10 Nov 2018

31. NIST: FIPS PUB 198-1. The Keyed-Hash Message Authentication Code (HMAC)
(2008). http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_
final.pdf. Cited 10 Nov 2018

32. Openssl, version: 1.1.0e. https://www.openssl.org/. Cited 10 Nov 2018
33. Libgcrypt, version 1.7.6. https://www.gnupg.org/software/libgcrypt/index.

html. Cited 10 Nov 2018
34. hashcat, version 3.30. https://hashcat.net/hashcat/. Cited 10 Nov 2018
35. OpenCL. https://www.khronos.org/opencl/. Cited 10 Nov 2018
36. Bossi, S., Visconti, A.: What users should know about Full Disk Encryption based

on LUKS. In: Proceedings of the 14th International Conference on Cryptology
and Network Security, CANS 2015. Springer International Publishing, LNCS 9476
(2015)

37. Percival, C.: Stronger key derivation via sequential memory-hard functions (2009).
https://www.tarsnap.com/scrypt/scrypt.pdf. Cited 10 Nov 2018

https://hashcat.net/events/p13/js-ocohaaaa.pdf
https://hashcat.net/events/p13/js-ocohaaaa.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://www.openssl.org/
https://www.gnupg.org/software/libgcrypt/index.html
https://www.gnupg.org/software/libgcrypt/index.html
https://hashcat.net/hashcat/
https://www.khronos.org/opencl/
https://www.tarsnap.com/scrypt/scrypt.pdf

	Understanding Optimizations and Measuring Performances of PBKDF2
	Introduction
	Cryptographic preliminaries
	PBKDF2
	HMAC
	SHA-1

	Understanding Optimizations
	PBKDF2 optimizations
	HMAC optimizations
	SHA-1 optimizations

	Measuring Performances
	GPU testing
	CPU testing

	Conclusions

