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Abstract

We finally close the long-standing problem of constructing a noninteractive zero-knowledge (NIZK)
proof system for any NP language with security based on the plain Learning With Errors (LWE) problem,
and thereby on worst-case lattice problems. Our proof system instantiates the framework recently
developed by Canetti et al. [EUROCRYPT’18], Holmgren and Lombardi [FOCS’18], and Canetti et
al. [STOC’19] for soundly applying the Fiat–Shamir transform using a hash function family that is
correlation intractable for a suitable class of relations. Previously, such hash families were based either on
“exotic” assumptions (e.g., indistinguishability obfuscation or optimal hardness of certain LWE variants)
or, more recently, on the existence of circularly secure fully homomorphic encryption (FHE). However,
none of these assumptions are known to be implied by plain LWE or worst-case hardness.

Our main technical contribution is a hash family that is correlation intractable for arbitrary size-S
circuits, for any polynomially bounded S, based on plain LWE (with small polynomial approximation
factors). The construction combines two novel ingredients: a correlation-intractable hash family for
log-depth circuits based on LWE (or even the potentially harder Short Integer Solution problem), and
a “bootstrapping” transform that uses (leveled) FHE to promote correlation intractability for the FHE
decryption circuit to arbitrary (bounded) circuits. Our construction can be instantiated in two possible
“modes,” yielding a NIZK that is either computationally sound and statistically zero knowledge in the
common random string model, or vice-versa in the common reference string model.
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1 Introduction

A zero-knowledge (ZK) proof system [GMR85] is a protocol by which a prover can convince a verifier
that a particular statement is true, while revealing nothing more than that fact. Such a system is nonin-
teractive [BDMP88] (NIZK) if both parties have access to some common string (e.g., a public source of
randomness), and the prover just sends a single message to the verifier. In the three decades since the
introduction of NIZK, several works have constructed such protocols for arbitrary NP languages based
on various cryptographic structures (such as quadratic residuosity, bilinear pairings, and code obfusca-
tion) [BFM88, GO94, FLS90, GOS06, SW14], and used them in a variety of important cryptographic set-
tings, like encryption that withstands chosen-ciphertext attacks [BFM88, NY90], digital signatures [BG89],
ZAPs [DN00] cryptocurrencies [BCG+14], and low-interaction protocols in general.

In recent years, cryptography based on lattices has seen enormous growth. Among its attractions are appar-
ent resistance to quantum attacks, advanced functionality like fully homomorphic encryption (FHE) [Gen09],
and strong theoretical guarantees like security under worst-case hardness assumptions, usually via the
well-known Short Integer Solution (SIS) [Ajt96] and Learning With Errors (LWE) problems [Reg05]. Yet
while (non-)interactive zero-knowledge protocols for specific lattice problems have been known for some
time [MV03, PV08, CDLP13, APS18], the goal of obtaining NIZK for general NP languages based on
standard, worst-case lattice assumptions (which was explicitly posed in [PV08]) has frustratingly remained
out of reach. The past year has seen impressive progress toward this goal [KW18, CCRR18, CCH+19], but
the current constructions either satisfy a relaxed notion of NIZK or are based on assumptions that are not yet
known to be implied by LWE or worst-case hardness.

More specifically, a fascinating recent line of research [KRR17, CCRR18, HL18, CCH+19] develops a
framework for instantiating the Fiat–Shamir transform [FS86], which removes interaction from a public-coin
protocol by replacing each random verifier message with a hash of the transcript so far. In particular, these
works show that if the hash function satisfies a property called correlation intractability [CGH98], then the
Fiat–Shamir transform can be applied soundly to many interactive protocols, including some zero-knowledge
ones. Roughly speaking, a hash family H is correlation intractable for a relation R if, given a hash key k, it is
hard to find an input-output pair (x,Hk(x)) ∈ R. In the context of Fiat–Shamir, this ensures that a cheating
prover cannot find a message that hashes to a verifier message that admits an accepting transcript.

The works [CCRR18, HL18, CCH+19] construct correlation-intractable hash functions for various sparse
relations, and use them to soundly instantiate the Fiat–Shamir transform, obtaining NIZK proofs for all of NP
(among other results). Of particular interest is the beautiful work of [CCH+19], which shows that for this
purpose, it suffices to have correlation intractability for arbitrary (bounded) polynomial-time computations,
i.e., for the special class of efficiently searchable relations. These are relations where each input has at most a
single output (witness) that is computable within some desired polynomial time bound.

The hash families constructed in [CCRR18, CCH+19] are proved to be correlation intractable under
various lattice-related assumptions. However, these assumptions are somehow non-standard, involving either
“optimal hardness” (e.g., of LWE with uniform error in an interval) against polynomial-time attacks [CCRR18,
CCH+19], or the existence of circularly secure FHE [CCH+19]. Although the latter assumption seems
tantalizingly close to plain LWE (and remains the only known way of obtaining FHE that supports unbounded,
as opposed to just leveled, homomorphic computations), none of these assumptions are known to be supported
by the hardness of LWE, nor the conjectured worst-case hardness of lattice problems.
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1.1 Contributions

Our main result is a noninteractive zero-knowledge proof system for any NP language, based on the plain LWE
problem with (small) polynomial approximation factors. This finally closes (following much recent progress)
the central open problem of basing NIZK for NP on worst-case lattice assumptions. Our system instantiates
the NIZK framework recently developed in [CCRR18, CCH+19], but with a new primary ingredient: a
correlation-intractable hash family for arbitrary size-S circuits (i.e., relations searchable in size S), for any
desired S = poly(λ), based on plain LWE with small polynomial factors.

Just like the correlation-intractable hash family constructed in [CCH+19], ours also can be instantiated
in two “intractability modes,” computational and statistical, by constructing the hash key in one of two
computationally indistinguishable ways. In the statistical mode, input-output pairs that satisfy the relation
simply do not exist (so obviously one cannot be found); in the computational mode, the hash key is uniformly
random and security can be based merely on SIS, a potentially harder problem for which we have even
stronger worst-case hardness theorems than for LWE. In either case, this is the first known construction
of CI hash families for “rich” functions from plain LWE/SIS, or any worst-case lattice assumption. As
shown in [CCH+19], the choice of intractability mode determines the precise properties of the NIZK system:
the computational mode yields a statistically zero knowledge, (selectively) computationally sound (i.e.,
argument) system in the common random string model, while the statistical mode yields a computationally
zero knowledge, statistically sound (i.e., proof) system in the common reference string model.

Our correlation-intractable hash family for bounded circuits is obtained by combining two new ingredients
that are interesting in their own right:

1. a correlation-intractable hash family for bounded circuits based on plain SIS/LWE, where in particular
for log-depth circuits the associated approximation factor is a (small) polynomial; and

2. a “bootstrapping” transform that uses (leveled) fully homomorphic encryption to promote CI for the
FHE decryption circuit to CI for arbitrary bounded circuits. (This transformation is inspired by other
bootstrapping techniques for code obfuscation [GGH+13], and is in some sense dual to Gentry’s
bootstrapping technique for FHE [Gen09].)

In particular, a suitable FHE scheme having log-depth decryption can be instantiated based on plain LWE
with small polynomial factors [BV14, AP14], which yields our ultimate LWE-based CI hash family.

1.2 Techniques

Here we summarize the main ideas and techniques underlying our constructions.

1.2.1 Bootstrapping Correlation Intractability

In Section 4 we give a generic transform that uses (leveled) fully homomorphic encryption to convert a
correlation-intractable hash family for “simple” relations related to the FHE decryption function, into one for
complex relations induced by circuits of any size S. For simplicity, here we focus on correlation intractability
for functions f , i.e., for searchable relations Rf = {(x, f(x))}, but everything easily generalizes to more
general relations.

Let FHE = (Gen,Enc,Dec,Eval) denote a (symmetric-key) fully homomorphic encryption scheme.1

Let CIH = (Gen,Hash) denote a hash family that is correlation intractable for the class {Decsk(·)} of
1For simplicity, here we assume that FHE supports unbounded, not just leveled, homomorphic evaluation. Adapting the

construction to leveled FHE is straightforward because Eval is used only on circuits of bounded depth.
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FHE decryption functions, taken over all valid “hard-wired” secret keys. We define a new hash family
CIH′ = (Gen′,Hash′) for circuits of size S as follows:

• Gen′(1λ) generates a CIH key k ← CIH.Gen(1λ), an FHE key pair (sk, ek)← FHE.Gen(1λ), and a
“dummy” ciphertext c← Enc(sk, 0S). It outputs the hash key k′ = (k, ek, c).

• Hash′(k′ = (k, ek, c), x) outputs Hash(k,Eval(ek, Ux, c)), where Ux(·) = U(·, x) is a universal
circuit for size-S circuits with x “hard-coded” in.

In words, Hash′ homomorphically evaluates an encrypted (dummy) circuit on the input x, then hashes the
resulting ciphertext using the underlying Hash algorithm.

We now sketch why CIH′ is correlation intractable for any function f having circuit size S. As a thought
experiment, imagine replacing the “dummy” ciphertext with c← Enc(sk, f). By the security of the FHE
scheme, this does not noticeably change the probability that the adversary, given the key k′ = (k, ek, c), can
find an input x that violates correlation intractability of Hash′(k′, ·) for f , i.e.,

Hash′(k′, x) = Hash(k,Eval(ek, Ux, c)︸ ︷︷ ︸
cx

) = f(x).

Suppose for the purpose of contradiction that the adversary is able to find such an x. Then because cx is an
FHE encryption of f(x) by construction, we have Hash(k, cx) = f(x) = Decsk(cx). Therefore, we have
found an input cx that violates the correlation intractability of Hash(k, ·) for the function Decsk, which is the
desired contradiction.2

1.2.2 Correlation Intractability from SIS/LWE

In Section 3 we construct a public-coin, correlation-intractable hash family for arbitrary functions of bounded
circuit size based on plain SIS, with a complementary statistically intractable mode based on LWE. Our
construction works for arbitrary functions, and the circuit size, depth, and output length induce corresponding
SIS/LWE parameters. More specifically, the dimension n grows linearly in the output length, and the
approximation factor (and hence modulus q) grows exponentially with the depth and polynomially with the
size. Due to our bootstrapping transformation, the main parameterization of interest is log-depth circuits, for
which the approximation factors can be made (small) polynomials. In addition, for the NIZK application,
log-depth circuits are sufficient even without using bootstrapping (see Remark 5.5).

Our construction is based upon the fully homomorphic commitment scheme implicit in GSW homo-
morphic encryption [GSW13], which was made explicit in subsequent work on fully homomorphic signa-
tures [GVW15], and is inspired by the construction based on circularly secure FHE from [CCH+19]. The
construction works as follows:

• A hash key is a commitment k = D̂ to a “dummy” circuit D of the desired output length L and size S.

• To evaluate the hash function at an input x:

1. First, homomorphically evaluate a commitment D̂(x) of D(x).

2The reader might notice that the specific function Decsk is not fixed in advance, but is instead chosen at random by the reduction.
This is addressed in the non-uniform setting by “fixing coins” for FHE.Gen that maximize the attacker’s success probability, or in the
uniform setting by adopting a security definition that lets the adversary declare a (valid) target function before receiving the hash key.
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2. Then, homomorphically apply a certain special, public linear function G from {0, 1}L to the
SIS/LWE range Znq , to get an “inert commitment” cx = G(D(x)) that itself belongs to Znq .
The name “inert,” and the different notation for it, reflect that it is a different kind of commitment
that (i) does not appear to support full homomorphism, and (ii) hides a value from the same
domain Znq as the commitment itself; this turns out to be central to the security argument.

3. Finally, output bin(cx), the binary representation (in {0, 1}L) of cx.

The special linear function G just needs to satisfy G(bin(u)) = u for all u ∈ Znq . (This implies that G is
surjective, so the circuit output length L must be at least n log q.) For example, G can map each of n groups
of ` = dlg qe bits to the mod-q integers they represent in binary.3

Relation to [CCH+19]. We now summarize the main similarities and differences between our construction
and proof, and those based on circularly secure FHE from [CCH+19]. In [CCH+19], the hash key is an FHE
encryption D̂ of a “dummy” circuit D, along with an FHE encryption ŝk of the secret decryption key sk; this
is what requires the circularity assumption. Our construction elides this second component, and since it has
no need for a decryption key at all, fully homomorphic commitment suffices.

For hash evaluation, Step 1 is the same in both constructions, but then they diverge. In [CCH+19], one
uses ŝk to homomorphically evaluate (the complement of) the decryption circuit on D̂(x), yielding the hash
output y = Decsk(D(x))⊕ 1
∧

. The security proof employs a clever diagonalization argument: using the
FHE’s security, it replaces D̂ in the hash key with f̂ for the function f of interest. This makes it so that there
does not exist any x that hashes to y = f(x). For if there were, then by applying Decsk to both sides and by
the FHE’s correctness, we would get Decsk(y) = Decsk(f(x))⊕ 1 = Decsk(f(x)), a contradiction.

Our construction after Step 1 proceeds quite differently: it homomorphically applies the special public
function G : {0, 1}L → Znq , which has a large range (not just a single bit, as for FHE decryption), and just as
importantly, it “collapses” the result to an inert commitment G(D(x)) ∈ Znq that lies in the same domain as
G(D(x)) ∈ Znq itself. As we will see next, in the security proof this allows us to directly compare the inert
commitment to the value it hides, rather than only reasoning about the latter (as in [CCH+19]).

Security. Security is argued as follows, where for the moment we focus on the proof from SIS. Suppose
that an adversary is able to violate correlation intractability for some function f of size S and output length L,
i.e., given a hash key it finds an input x that hashes to f(x). By the (statistical) security of the commitment
scheme, the adversary has essentially the same probability of succeeding if the hash key is a commitment f̂
to f . When it does succeed we have bin(G(f(x))) = f(x), and so by applying G to both sides we get

G(f(x)) = G(f(x)) ∈ Znq . (1.1)

To see why this yields an SIS solution, we need to understand the particular form of the commitments in
a little more detail. All commitments are with respect to a random SIS matrix A over Zq. The commitment
scheme has the property that, given the randomness used to form the original commitment f̂ , it is possible to
efficiently compute randomness that is consistent with the homomorphically evaluated commitment f̂(x),
and likewise for the inert commitment cx = G(f(x)). Concretely, this derived randomness is a short integer
vector r such that

G(f(x)) = Ar +G(f(x)) (mod q).

3Those familiar with the literature will recognize this as the linear transform induced by the “gadget” matrix G.
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But because G(f(x)) = G(f(x)) by Equation (1.1), it follows that Ar = 0 ∈ Znq . Therefore, the short
vector r is a solution to the SIS problem for the random instance A, as desired. (We also need to ensure that r
is nonzero; this is easily done via standard techniques.)

To get statistical correlation intractability based on LWE, we need to slightly tweak the construction,
defining the hash function to evaluate an inert commitment cx = G(D(x)) + bq/2cun, where un is the nth
standard basis vector.4 For a particular f of interest, we again replace the commitment to D with one to f .
Then, to get a hash key for which an x that hashes to f(x) simply does not exist, we switch A to be an LWE
matrix whose bottom row bt is a noisy linear combination of the others, i.e., bt = stA′ + et where A′

consists of the top n − 1 rows of A and e is a “short” error vector; by the LWE assumption, this change
is unnoticeable by the attacker.5 Much like above, a hypothetical input x which hashes to f(x) now yields
Ar = −bq/2cun, which implies that A′r = 0 and hence

−bq/2c = bt · r = (stA′ + et)r = st(A′r) + et · r = 〈e, r〉 (mod q).

But because both e and r are relatively short, by taking q to be large enough this equation simply cannot hold,
hence no such x exists.

1.3 Discussion and Open Problems

We conclude this introduction with a few additional remarks about our constructions and their implications,
and list some open problems for further research.

Other applications. Our NIZK implies the first entirely LWE-based, standard-model construction of
an encryption scheme that is secure for key-dependent messages and under chosen-ciphertext attacks
(called KDM-CCA), by applying the generic transform from [CCS09] to the LWE-based KDM-CPA-
secure construction from [ACPS09] and any of the known LWE-based IND-CCA-secure constructions of,
e.g., [PW08, Pei09, MP12]. Just as in [CCH+19], our CI hash family also suffices for proving that the
parallelized quadratic residuosity protocol of [GMR85] is not zero knowledge (assuming that QR is not in
BPP), but now under plain SIS/LWE assumptions instead of circularly secure FHE.

Compact hashing. We emphasize that our CI hash family is non-compact: the size of the hash key,
and hence the evaluation time as well, grow with the description size S of the circuits for which it is
correlation intractable. This property is shared by all other prior constructions except those based on highly
“exotic” assumptions like indistinguishability obfuscation or optimal key-dependent message security, e.g.,
[KRR17, CCRR18, CCH+19]. A compact construction based on more standard assumptions would be very
interesting, and presumably quite powerful.

SIS versus LWE. Our SIS-based CI hash family works for circuits of any depth, but is only supported
by polynomial SIS factors for log-depth circuits. Dealing with deeper circuits while retaining polynomial
approximation factors requires us to use our bootstrapping theorem with (leveled) FHE, which brings in the
LWE assumption. (In addition, the NIZK construction also uses LWE for lossy encryption.) It is an interesting
open problem to get a CI hash family for super-logarithmic depth based on just SIS with polynomial factors.

4With this change, the SIS-based proof still goes through, thanks to the technique for ensuring that r 6= 0.
5This change also turns the fully homomorphic commitment scheme into the GSW FHE scheme [GSW13, GVW15], but we do

not need its decryption capability.
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Multi-theorem (statistical) zero knowledge. The zero-knowledge property of our NIZK constructions
holds for a single statement and proof. We can use the generic “OR” trick from [FLS90] to convert our single-
theorem NIZK systems to multi-theorem ones. However, the resulting NIZK systems are computational zero
knowledge, even if the original ones are statistical zero knowledge. Therefore, an interesting open problem
is to construct a noninteractive, multi-theorem, statistical zero-knowledge system based on LWE. We note
that such NIZK systems, having an even stricter perfect zero-knowledge property, can be constructed from
bilinear pairings [GOS06].

Compact proofs. A final interesting open problem is to construct a noninteractive statistical zero-knowledge
argument system with compact proofs, i.e., with proof size that is longer than the NP witness size by only an
additive polynomial term independent of the size of the NP verifier circuit. Assuming leveled or unbounded
FHE, such compact proofs having computational zero knowledge exist [GGI+15]. In the construction based
on leveled FHE (and hence based only on LWE), the proof size exceeds the witness length by poly(λ, d),
where d is the depth of verifier circuit. Unbounded FHE yields proofs that are longer than the witness by only
an additive poly(λ) term.

Acknowledgments. We thank Alex Lombardi and Daniel Wichs for useful comments.

2 Preliminaries

We denote column vectors by lower-case bold letters, e.g., a. We denote matrices by upper-case bold letters,
e.g., A. For integral vectors and matrices (i.e., those over Z), we use the notation |r|, |R| to denote the
maximum absolute value over all the entries.

The Kronecker product A ⊗ B of two matrices (or vectors) A and B is obtained by replacing each
entry ai,j of A with the block ai,jB. This obeys the mixed-product property: (A ⊗ B)(C ⊗ D) =
(AC)⊗ (BD) for any matrices A,B,C,D with compatible dimensions.

2.1 Noninteractive Zero Knowledge

Definition 2.1. Let R be a relation. A noninteractive proof system for R is a tuple of PPT algorithms
(Setup,Prove,Verify) having the following interfaces (where 1n, 1λ are implicit inputs to Prove, Verify):

• Setup(1n, 1λ), given a statement length n and a security parameter λ, outputs a string σ.

• Prove(σ, x, w), given a string σ and a statement-witness pair (x,w) ∈ R, outputs a proof π.

• Verify(σ, x, π), given a string σ, a statement x, and a proof π, either accepts or rejects.

Definition 2.2. Let Π = (Setup,Prove,Verify) be a noninteractive proof system for a relation R, and let L
be the language defined by R. In this work we focus on systems that satisfy some subset of the following
properties:

1. Completeness: for every (x,w) ∈ R and every λ ∈ N, Verify(σ, x, π) accepts with probability 1, over
the choice of σ ← Setup(1|x|, 1λ) and π ← Prover(σ, x, w).

2. Common random string: Setup(1n, 1λ) simply outputs a uniformly random string.
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3. Statistical soundness: there exists a negligible function ν(λ) such that for any n ∈ N,

Pr
σ←Setup(1n,1λ)

[∃(x, π∗) s.t. Verify(σ, x, π∗) accepts ∧ x /∈ L] ≤ ν(λ).

4. Computational soundness: for every non-uniform polynomial-size “cheating” prover P ∗ = {P ∗λ} there
exists a negligible function ν(λ) such that for any n ∈ N and any x /∈ L,

Pr
σ←Setup(1n,1λ)
π∗=P ∗λ (σ,x)

[Verify(σ, x, π∗)] ≤ ν(λ).

5. Statistical zero knowledge: there exists a PPT simulator S such that for every (x,w) ∈ R the following
two distribution ensembles are statistically indistinguishable:

{S(1λ, x)}λ
s
≈ {(σ,Prover(σ, x, w)) : σ ← Setup(1|x|, 1λ)}λ .

6. Adaptive (computational) zero knowledge: there exists a PPT simulator S = (S1,S2) such that for every
non-uniform polynomial-size “cheating” verifier V ∗ = (V ∗1 , V

∗
2 ), for every n ∈ N the probabilities

Pr[V ∗2 (σ, x, π, ζ) = 1 ∧ (x ∈ L)]

in the following two experiments differ only by negl(λ):

• in the “real” experiment, σ ← Setup(1n, 1λ), (x,w, ζ)← V ∗1 (σ), π ← Prove(σ, x, w);

• in the “simulation” experiment, (σ, τ)← S1(1λ), (x,w, ζ)← V ∗1 (σ), π ← S2(σ, x, τ).

2.2 Correlation Intractability

As in [CCH+19] we define efficiently searchable relations and recall the definitions of correlation intractability,
in their computational and statistical versions.

Definition 2.3. We say that a relationR ⊆ X ×Y is searchable in size S if there exists a function f : X → Y
that is implementable as a boolean circuit of size S, such that if (x, y) ∈ R then y = f(x). (In other words,
f(x) is the unique witness for x, if such a witness exists.)

Definition 2.4. Let R = {Rλ} be a relation class, i.e., a set of relations for each λ. A hash function
family (Gen,Hash) is correlation intractable (CI) forR if for every non-uniform polynomial-size adversary
A = {Aλ} there exists a negligible function ν(λ) such that for every R ∈ Rλ

Pr
k←Gen(1λ)
x=Aλ(k)

[(x,Hash(k, x)) ∈ R] ≤ ν(λ) .

Definition 2.5. Let R = {Rλ} be a relation class. A hash function family (Gen,Hash) with a fake-key
generation algorithm StatGen is somewhere statistically correlation intractable forR if

1. StatGen(1λ, z), where z is an auxiliary input, outputs a key k,

2. there exists a negligible function ν(λ) and a class of auxiliary inputs Z = {Zλ} such that
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• the distribution ensembles {StatGen(1λ, zλ)} and {Gen(1λ)} are computationally indistinguish-
able for every sequence of zλ ∈ Zλ, and

• for every R ∈ Rλ there exists zR ∈ Zλ such that

Pr
k←StatGen(1λ,zR)

[∃x s.t. (x,Hash(k, x)) ∈ R] ≤ ν(λ) .

We call zR the intractability guarantee for R.

2.3 (Leveled) Fully Homomorphic Encryption

We recall the notion of leveled FHE from [Gen09].

Definition 2.6. A leveled fully homomorphic encryption scheme is a tuple of algorithms (Gen,Enc,Dec,Eval)
with the following interfaces (we use only a symmetric-key version, which is sufficient for our purposes):

• Gen(1λ, 1d) outputs a secret key sk and an evaluation key ek.

• Enc(sk,m ∈ {0, 1}∗), where m is a message, outputs a ciphertext c.

• Eval(C, c), where C is a boolean circuit of depth (at most) d, deterministically outputs a ciphertext c′.

• Dec(sk, c) outputs a message (deterministically).

It should satisfy the following properties:

1. Completeness: For any circuit C of depth at most d and message m, Dec(sk,Eval(C, c)) = C(m)
with probability 1, over the random choice of sk ← Gen(1λ, 1d) and c← Enc(sk,m).

2. CPA security: for any sequence of message pairs {(m0,λ,m1,λ)}λ where |m0,λ| = |m1,λ|, and any
sequence {dλ}, the distribution ensembles

{Enc(sk,mb,λ) : sk ← Gen(1λ, 1dλ)}λ

are computationally indistinguishable for b = 0, 1.

3. Compactness: the complexity of Dec is a fixed polynomial in λ alone. (This implies that the output of
Eval has a fixed polynomial size in λ alone, and does not depend on the evaluated circuit or d.)

2.4 Branching Programs

A width-w boolean permutation branching program BP of length L with input space {0, 1}` consists of 2L
permutations {πi,b : [w]→ [w]}i∈[L],b∈{0,1} along with an index-to-input map v : [L]→ [`]. To compute the

output of BP on an input x ∈ {0, 1}` we first initialize a state variable st0 = 1. Then, for each i ∈ [L] we set
sti = πi,xv(i)(sti−1). Finally, if stL = 1 we output 1; otherwise, we output 0. More generally, a branching
program can have multi-bit output by just having a separate branching program for each output bit; its length
is the maximum length of all the component programs.

Barrington’s theorem [Bar86] states that every depth-d boolean circuit can be efficiently converted into a
width-5 permutation branching program of length 4d. In particular, any NC1 circuit can be converted into a
polynomial-length, constant-width permutation branching program.
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2.5 Short Integer Solution and Learning With Errors

We recall the Short Integer Solution (SIS) and Learning With Errors (LWE) problems, and their hardness
based on worst-case lattice problems.

Definition 2.7. The SISn,m,q,β problem is: given a uniformly random matrix A ∈ Zn×mq , find a non-zero
integral vector z ∈ Zm such that A · z = 0 mod q and ‖z‖ ≤ β.

We sometimes drop the subscript m when it is an unspecified polynomial in n and log q. When
q ≥ β · Õ(

√
n), solving SISn,q,β is at least as hard as approximating certain worst-case lattice problems on

n-dimensional lattices to within a β · Õ(
√
n) factor [MR04].

For a positive integer dimension n and modulus q, and an error distribution χ over Z, the LWE distribution
and decision problem are defined as follows. For an s ∈ Zn, the LWE distributionAs,χ is sampled by choosing
a uniformly random a ← Znq and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Zn+1

q . If we
have m such samples (ai, bi), we can gather them as a uniformly random matrix A ∈ Zn×mq and vector
bt = stA + et ∈ Zmq .

Definition 2.8. The LWEn,m,q,χ problem is to distinguish, with non-negligible advantage, between m
independent samples drawn from As,χ for a single s ← Znq , and m uniformly random and independent
samples over Zn+1

q .

(As with SIS, we sometimes drop the subscript m.) A standard instantiation of LWE is to let χ be a
discrete Gaussian distribution over Z with parameter r = 2

√
n. A sample drawn from this distribution

has magnitude bounded by, say, r
√
n = Θ(n) except with probability at most 2−n, and hence this tail

of the distribution can be entirely removed. For this parameterization, it is known that LWE is at least
as hard as quantumly approximating certain “short vector” problems on n-dimensional lattices, in the
worst case, to within Õ(q

√
n) factors [Reg05, PRS17]. Classical reductions are also known for different

parameterizations [Pei09, BLP+13]. It is also well-known folklore that for such parameters, LWEn,m,q,χ
reduces to SISn,m,q,β for every β ≤ q/r.

2.6 Lattice Gadgets

Here we recall lattice “gadgets” [MP12] over Zq. For a positive integer modulus q, let ` = dlg qe. The
“gadget” vector over Zq is defined as

gt = (1, 2, 4, . . . , 2`−1) ∈ Z`q.

For every u ∈ Zq, there is an efficiently computable binary vector g−1[u] ∈ {0, 1}` such that 〈g,g−1[u]〉 =
u (mod q). Specifically, g−1[u] corresponds to the binary representation of the distinguished representative
of u in {0, 1, . . . , q − 1}. We stress that g−1 : Zq → {0, 1}` is a function; its name reflects the essential
property 〈g,g−1[u]〉 = u.

For a dimension n, the gadget matrix is defined as

Gn = In ⊗ gt ∈ Zn×mq ,

where m = n`. We often drop the subscript n when it is clear from context. Similarly to above, we define the
function G−1 = (I⊗ g−1) : Znq → {0, 1}

m, which applies g−1 to each coordinate and appends the results.
This has the essential property, which is also reflective of the mixed-product property, that for every u ∈ Znq ,

G ·G−1[u] = (I⊗ gt) · (I⊗ g−1)[u] = u.
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2.7 Fully Homomorphic Commitments

Here we recall the relevant homomorphic properties of gadgets, some of which were implicit in [GSW13],
and which were developed and exploited further in [BGG+14, BV14, AP14, GVW15]. We particularly focus
on their application to fully homomorphic commitments, as laid out in [GVW15], and refer to that work for
full details.

Let A ∈ Zn×wq be an arbitrary matrix for some dimension w. Let Ci = ARi + xiG for some integral
matrix Ri ∈ Zw×m and scalar xi ∈ Zq for i = 1, 2. We view Ci as a commitment (relative to A) to xi under
randomness Ri. Observe that these commitments satisfy the following homomorphic properties:

G−C1 = A(−R1) + (1− x1)G
C+ := C1 + C2 = A(R1 + R2︸ ︷︷ ︸

R+

) + (x1 + x2)G

C× := C1 ·G−1[C2] = A(R1 ·G−1[C2]) + x1G ·G−1[AR2 + x2G]

= A(R1 ·G−1[C2] + x1R2︸ ︷︷ ︸
R×

) + x1x2G .

In words, G−C1,C+,C× are commitments to 1− x1, x1 + x2, x1x2 under randomness −R1,R+,R×,
respectively. Moreover, if the original committed values xi and randomness Ri are “small” in norm, then so
are the new values and randomness (though they are somewhat larger), because G−1[C2] is small.

In particular, if the original committed values xi ∈ {0, 1} are restricted to bits, then the above homo-
morphic operations yield a complete set of logical gates with which we can homomorphically evaluate any
boolean circuit. For example, we can implement NAND(x, y) = 1− xy using the third equation, then the
first one. Of course, the size of the randomness in the final committed result depends on the depth and size
of the circuit. Similarly, as shown in [BV14, AP14], the asymmetric factors applied to the commitment
randomness R1 versus R2 in R× can be exploited to implement other models of computation, like branching
programs, with tighter control over the magnitude of the derived randomness. In particular, the magnitude
can be limited to just polynomial in the length of the branching program.

For our purposes, we need one more simple homomorphic property. Suppose we have a commitment

C = AR + xt ⊗G = AR + xt ⊗ In ⊗ gt

to a vector x ∈ ZLq . (Observe that the ith m-column chunk of C is Ci = ARi + xiG ∈ Zn×mq , where Ri

is the analogous chunk of R.) Any matrix M ∈ Zn×Lq can be “vectorized” as an m ∈ ZnLq , so that
(xt ⊗ In) ·m = Mx. Then

cM := C ·G−1Ln[m] = A(R ·G−1Ln[m]︸ ︷︷ ︸
rM

) + (xt ⊗ In ⊗ gt) · (IL ⊗ In ⊗ g−t)[m]

= ArM + (xt ⊗ In) ·m
= ArM + Mx ∈ Znq .

We view cM as an “inert commitment” to Mx ∈ Znq , under randomness rM, which is small if R is small.
(We call it an inert commitment because it does not appear to support any nonlinear homomorphic operations.)

We summarize all of the above in the following fully homomorphic commitment scheme.
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Construction 2.9. The commitment scheme FHC is parameterized by n and q, and is defined as follows.
Each input in square brackets is optional, and when provided, the algorithm also produces the additional
described output. The algorithm’s main output is the same whether or not the optional input is provided.

• Gen chooses a uniformly random A← Zn×wq , where w = 2m = 2n`.

• Com(A ∈ Zn×wq ,x ∈ ZSq ;R ← Zw×Sm) outputs a commitment C = AR + xt ⊗G ∈ Zn×Smq . If
the randomness R is not provided explicitly, it is chosen uniformly from {0, 1}w×Sm (but note that it
is not required to be binary in general).

• CircuitEval(C,C ∈ Zn×Smq [,R ∈ Zw×Sm]), for a boolean circuit C : {0, 1}t → {0, 1}L, deterministi-
cally outputs a commitment matrix CC ∈ Zn×Lm [and additionally an integral matrix RC ∈ Zw×Lm].

• BranchEval(B,C ∈ Zn×Smq [,R ∈ Zw×Sm]), for a branching program B : {0, 1}S → {0, 1}L,
deterministically outputs a commitment matrix CB ∈ Zn×Lm [and additionally an integral matrix
RB ∈ Zw×Lm].

• InertEval(M ∈ Zn×Lq ,C ∈ Zn×Lmq [,R ∈ Zw×Lm]) deterministically outputs an “inert commitment”
vector cM ∈ Znq [and additionally an integral vector rM ∈ Zw].

Proposition 2.10. The above commitment scheme FHC satisfies the following properties:

1. By the leftover hash lemma, for any x ∈ Zpoly(m)
q the distribution of (A,C) has negl(m) statistical

distance from uniformly random, where A← Gen(1n) and C← Com(A,x).

2. For any boolean circuit C : {0, 1}S → {0, 1}L of depth d, any x ∈ {0, 1}S , any A ∈ Zn×wq and any
R ∈ Zw×Sm, for commitment C = Com(A,x;R) we have

CircuitEval(C,C) = Com(A, C(x);RC) ,

where RC ∈ Zw×Lm is the additional output of CircuitEval(C,C,R), and |RC | = |R| ·mO(d).

3. For any branching program B : {0, 1}S → {0, 1}L of length D, any x ∈ X , any A ∈ Zn×wq and any
R ∈ Zw×Sm, for commitment C = Com(A,x;R) we have

BranchEval(B,C) = Com(A, B(x);RB) ,

where RB ∈ Zw×Lm is the additional output of BranchEval(B,C,R), and |RB| = |R| ·mO(1)D.

4. For any matrix M ∈ Zn×Lq , any x ∈ {0, 1}L, any A ∈ Zn×wq and any R ∈ Zw×Lm, for commitment
C = AR + xt ⊗G we have

InertEval(M,C) = ArM + Mx ,

where rM ∈ Zw is the additional output of InertEval(M,C,R), and |rM| ≤ |R| · Lm.

3 Correlation-Intractable Hashing from SIS/LWE

In this section we construct correlation-intractable hash families for (searchable relations defined by) arbitrary
functions of bounded complexity, based on SIS. Particular cases of interest are functions computable by
log-depth (i.e., NC1) circuits, and polynomial-length branching programs, either of which are sufficient to
invoke our bootstrapping transform in Section 4.
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3.1 Construction for Circuits

Let FHC be the fully homomorphic commitment scheme from Section 2.7. Recall that FHC is parameterized
by an SIS dimension n and a modulus q, which we instantiate below as functions of the security parameter λ
based on the targeted class of functions. Our hash families work for functions of arbitrary input length, and
output length exactly m = n` = ndlog qe. Correlation intractability immediately extends to functions of
output length greater than m, simply by appending zeros to the length-m hash output.

We start with a construction that is correlation intractable for boolean circuits.

Construction 3.1 (CIH for circuits). The hash family CIH = (Gen,Hash) with fake-key generation algo-
rithm StatGen is parameterized by an arbitrary circuit size S = S(λ) = poly(λ) and depth d = d(λ) ≤ S(λ).
Let U(C, x) = C(x) denote a depth-universal circuit for size-S circuits.

• Gen(1λ): generate A ← FHC.Gen and C ← Com(A, 0S(λ)), choose a uniformly random a ← Znq ,
and output the hash key k = (a,C).

• StatGen(1λ, C): given a circuit C of size S, choose a uniformly random Ā ← Z(n−1)×m
q and

ā← Zn−1q . Choose s← Zn−1q , e← χm and e← χ, where χ is an LWE error distribution. Let

A :=

[
Ā

stĀ + et

]
∈ Zn×mq , a :=

[
ā

st · ā + e− bq/2c

]
∈ Znq .

Compute C← Com(A, C) and output the hash key k = (a,C).

• Hash(k = (a,C), x): let circuit Ux(·) = U(·, x), and output

G−1n [a + InertEval(Gn,CircuitEval(Ux,C))] ∈ {0, 1}m.

Remark 3.2. By Item 1 of Proposition 2.10, the hash key k = (a,C) produced by Gen is statistically close
to uniformly random, so CIH is public coin.

Remark 3.3. In Construction 3.1, the circuit “size” means the length of a bit string required to describe a
member of the particular circuit family C = {Cλ} for which we seek correlation intractability. In more detail,
we assume that every circuit C ∈ Cλ can be efficiently described by a S(λ)-bit string sC , and that there is a
(uniformly generated) depth-universal circuit family U = {Uλ} for C for which Uλ(sC , x) = C(x) for every
C ∈ Cλ and input x. For certain circuit families there may be more compact ways of specifying a member of
the family than the general circuit representation; this can yield more compact hash keys.

3.2 Correlation Intractability

We now prove that Construction 3.1 is computationally correlation intractable under an appropriate SIS
assumption (Theorem 3.4), and statistically correlation intractable under an appropriate LWE assumption
(Theorem 3.5).

Theorem 3.4. Assuming the hardness of SISn,m+1,q,β for a sufficiently large β = mO(d), Construction 3.1
is correlation intractable for the class of functions with output length m that can be implemented by size-S,
depth-d boolean circuits.
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Proof. Let A = {Aλ} be any non-uniform polynomial-size adversary, and fix any sequence of functions
{fλ}, where fλ has output length m = m(λ) and can be implemented by a circuit of size S = S(λ) and
depth d = d(λ). To show that Construction 3.1 is correlation intractable with respect to f , we first define a
hybrid experiment and show that it is statistically indistinguishable from the real experiment. Then we show
that in this hybrid, it is hard for an adversary to break correlation intractability against {fλ}.

In the hybrid experiment we merely modify how C is generated, letting it be C ← Com(A, f) for
f = fλ. By Item 1 of Proposition 2.10, this experiment is within statistical distance negl(m) = negl(λ)
from the real one, so A’s success probability can differ by at most this much between the real and hybrid
experiments.

We now show that under the hardness hypothesis, ν(λ) := Prk[x = Aλ(k) : Hash(k, x) = f(x)] is
a negligible function that depends only on A (not {fλ}). To do this we use A to construct a non-uniform
polynomial-size attacker S = {Sλ} against SIS that also has success probability ν(λ), as follows.

The attacker Sλ, given an SIS instance A′ = [a | A] ∈ Zn×(m+1)
q , generates C ← Com(A, f) and

retains the commitment randomness R ∈ {0, 1}w×Sm. It defines a hash key k = (a,C) and lets x = Aλ(k).
If Hash(k, x) = f(x), then S lets (Cx,Rx) = CircuitEval(Ux,C,R) and then lets rx be the additional
output of InertEval(Gn,Cx,Rx). It outputs zx = (1, rx) ∈ Zm+1 as the nonzero SIS solution.

We now analyze S. First observe that the distribution of the hash key k it provides to Aλ is exactly
as in the hybrid experiment, by the uniform distribution of the SIS instance A′ = [a | A]. We claim that
zx = (1, rx) is a valid SIS solution whenever Hash(k, x) = f(x). To see this, observe that this condition
implies that

Gn · f(x) = Gn · Hash(k, x)

= a + InertEval(Gn,CircuitEval(Ux,C))

= a + (Arx + Gn · f(x))

= A′zx + Gn · f(x)

and that ‖zx‖ = mO(d) ≤ β, both by Item 2 and Item 4 of Proposition 2.10. Therefore, A′zx = 0 and zx
satisfies the norm bound, as desired.

Theorem 3.5. Assuming the hardness of LWEn−1,m+1,q,χ for a poly(n)-bounded χ and a sufficiently large
q = mO(d), Construction 3.1 is somewhere statistically correlation intractable for the class of functions
with output length m that can be implemented by size-S, depth-d boolean circuits; each circuit serves as the
intractability guarantee for itself.

Proof. First, it follows immediately from the LWE assumption that the outputs of Gen(1λ) and Gen(1λ, Cλ)
are computationally indistinguishable for any sequence of circuits Cλ of size S.

Now fix any sequence of functions {fλ}, where fλ has output length m = m(λ) and can be implemented
by a circuit of size S = S(λ) and depth d = d(λ). We will show that

Pr
k←StatGen(1λ,fλ)

[∃x s.t. Hash(k, x) = f(x)] = 0 .

Using the notation from StatGen, let A′ = [a | A] ∈ Zn×(m+1)
q and let Ā′ = [ā | Ā] ∈ Z(n−1)×(m+1)

q

be its top (n − 1) rows. Similarly, let e′ = [e | e] ∈ Zm+1. For any hash input x, define rx and
zx = (1, rx) ∈ Zm+1 exactly as in the proof of Theorem 3.4 above. Now, notice that if Hash(k, x) = f(x)
then as above we have

Gn · f(x) = A′zx + Gn · f(x).
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This implies that [
Ā′ · zx

st · Ā′ · zx + e′t · zx

]
=

[
0
bq/2c

]
and hence 〈e′, zx〉 = bq/2c. But this is impossible because |〈e′, zx〉| ≤ ‖e′‖·‖zx‖ = nO(1) ·mO(d) = mO(d),
which is smaller than q/2 for a sufficiently large choice of q = mO(d).

3.3 Construction for Branching Programs

We now describe a correlation-intractable hash family for branching programs of arbitrary length D(λ) =
poly(λ). By Barrington’s Theorem [Bar86] this is sufficient for evaluating log-depth (i.e., NC1) circuits, and
in particular the decryption functions of known FHE schemes. (It is also possible to express the decryption
functions more efficiently, directly using branching programs [AP14].)

The construction is almost identical to Construction 3.1, except that it uses a universal branching program
(in place of the universal circuit U ) and BranchEval (in place of CircuitEval). The proof of security is also
essentially identical to those above, but due to Item 3 of Proposition 2.10, the derived randomness for the
ultimate inert commitment grows only polynomially, as mO(1) ·D. This yields the following two security
theorems.

Theorem 3.6. Assuming the hardness of SISn,m+1,q,β for a sufficiently large β = mO(1) · D, the above-
described construction is correlation intractable for the class of functions with output length m that can be
implemented by length-D branching programs.

Theorem 3.7. Assuming the hardness of LWEn−1,m,q,χ for a poly(n)-bounded χ and a sufficiently large
q = mO(1) ·D, the above-described construction is somewhere statistically correlation intractable for the
class of functions with output length m that can be implemented by length-D branching programs; each
branching program serves as the intractability guarantee of itself.

3.4 Parameter Instantiations

Here we show how the parameters n, q (with ` := dlog qe and m := n`) can be chosen, with a focus on the
SIS problem and the branching program instantiation; a very similar process can be followed for LWE and/or
circuits. For a branching program of length D = λd and desired output size of (at most) L = λc for some
constants c, d > 0, let β = mc1 ·D for the (small) constant c1 > 0 be the norm bound given by Theorem 3.6.
To invoke worst-case hardness theorems, we can take some q = β · Õ(

√
n) and n = bL/`c, so that the true

output size m = n` ≤ L.
With these choices, we have q = poly(λ), n = L/Θ(log λ) = λc−o(1), and D = nd/c+o(1). This

corresponds to a worst-case approximation factor

γ(n) = β · Õ(
√
n) = nc1+d/c+1/2+o(1) = poly(n)

for the underlying n-dimensional lattice problem.
Two noteworthy extremes are as follows. We can obtain a very short hash output length of λc for arbitrarily

small c > 0, where security is supported by (large) poly(n)-approximate lattice problems in n = λc−o(1)

dimensions, which are plausibly subexponentially hard. On the other extreme, in our NIZK application using
the bootstrapping transform, the value of d is fixed by the FHE scheme and we may choose L = λc freely.
So, by taking a large enough constant c, security is supported by (small) nc1+1/2+ε approximation factors for
any desired constant ε > 0.
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4 Bootstrapping Correlation Intractability

In this section we present our bootstrapping theorem for correlation-intractable hash functions.

Construction 4.1. Let C = {Cλ} be a circuit class and Uλ(C, x) = C(x) denote a universal circuit for Cλ.
Let FHE = (Gen,Enc,Dec,Eval) be a (symmetric-key) encryption scheme supporting homomorphic com-
putation of the class {Ux(·) = Uλ(·, x)}λ. Let CIH = (Gen,Hash) be a hash function family with fake-key
generation algorithm StatGen. Define a new hash family CIH′ = (Gen′,Hash′) with fake-key generation
algorithm StatGen′ as follows:

• Gen′(1λ): generate k ← CIH.Gen(1λ) and (sk, ek)← FHE.Gen(1λ). Generate c← Enc(pk,D) for
some arbitrary “dummy” circuit D ∈ Cλ, and output hash key k′ = (k, ek, c).

• StatGen′(1λ, C ∈ Cλ): generate (sk, ek) ← FHE.Gen(1λ) and k ← StatGen(1λ,FHE.Dec(sk, ·)).
Generate c← Enc(pk,C) and output hash key k′ = (k, ek, c).

• Hash′(k′ = (k, ek, c), x): output Hash(k,Eval(ek, Ux, c)).

Remark 4.2. Observe that if the original CIH family has (pseudo)random hash keys, and FHE has jointly
pseudorandom evaluation keys and ciphertexts, then CIH′ has pseudorandom hash keys as well.

Let R = {Rλ = {Rλ}} be a class of relations. For each Rλ ∈ Rλ, each secret key sk that may be
output by FHE.Gen(1λ), and each circuit C ∈ Cλ, define the associated relations

Rλ,sk = {(c, y) : (FHE.Dec(sk, c), y) ∈ Rλ}
Rλ,C = {(x, y) : (C(x), y) ∈ Rλ} .

Essentially, these relations first apply some computation (either decryption with a certain fixed secret key, or
some circuit C) to the input, then check whether the provided witness is valid (under the original relation) for
the result. They naturally yield the associated relation classesRDec := {RDec

λ = {Rλ,sk : Rλ ∈ Rλ}} and
RC := {RCλ = {Rλ,C : Rλ ∈ Rλ, C ∈ Cλ}}.

Remark 4.3. Similar to Remark 3.3, the size of the CIH′ hash key is affected by the choice of FHE and the
description size of members of the circuit family {Cλ}. To analyze the size of the hash key k′ = (k, ek, c),
first notice that as shown below in Theorem 4.4, the underlying hash function CIH need only be CI for a
circuit class whose members can be described by FHE secret keys. With a (leveled or unbounded) FHE,
secret keys have a fixed poly(λ) length, regardless of the supported family C. But depending on the FHE
scheme, the size of the evaluation key ek and the ciphertext c can have various dependencies on the circuit
family C. Specifically, with an unbounded FHE, the size of ek is a fixed polynomial in λ independent of the
circuit family, and the size of c is a fixed polynomial in λ and the description size of members of C. In a
leveled FHE, the sizes of ek and c may additionally depend (polynomially) on the depth of the supported
circuit class.

Theorem 4.4. If FHE is CPA-secure (for the sequence of message spaces {Cλ}) and CIH is correlation
intractable for the relation classRDec, then CIH′ is correlation intractable for the relation classRC .

Proof. Let A′ = {A′λ} be a non-uniform polynomial-size adversary against the correlation intractability of
CIH′ forRC , and fix any sequence of relations {Rλ,Cλ} for some choice of Cλ ∈ Cλ for each λ.
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We first define a hybrid experiment and show that it is computationally indistinguishable from the real
experiment. In the hybrid experiment we modify only how the c component of the hash key is generated,
letting c ← Enc(pk, Cλ). By the CPA-security of FHE, the success probability of A′ can differ by only a
negligible amount between the real and the hybrid experiments. (The reduction showing this is straightforward,
because sk is not used in the experiment.)

Our goal is prove that in the hybrid experiment,

ν(λ) := Pr
k′

[x← A′(k′) : (x,Hash′(k′, x)) ∈ Rλ,Cλ ]

is a negligible function that depends only on A′ (and not Rλ,Cλ). First, observe that by construction of CIH′,

Pr


k ← CIH.Gen(1λ)

(sk, ek)← FHE.Gen(1λ)
c← Enc(ek, Cλ)

x = A′λ(k′ = (k, ek, c))
cx = Eval(ek, Ux, c)

∣∣∣∣∣∣∣∣∣∣
(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

 = ν(λ) .

By an averaging argument, there exists (skλ, ekλ) in the support of FHE.Gen(1λ) such that

Pr


k ← CIH.Gen(1λ)
c← Enc(ekλ, Cλ)

x = A′λ(k′ = (k, ekλ, c))
cx = Eval(ekλ, Ux, c)

∣∣∣∣∣∣∣∣ (Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

 ≥ ν(λ) . (4.1)

We useA′ to construct a non-uniform polynomial-size attackerA = {Aλ} against the correlation intractability
of CIH for RDec, and specifically the sequence of relations {Rλ,skλ}. Given a CIH key k, Aλ generates
c← Enc(ekλ, Cλ), lets x = A′λ(k′ = (k, ekλ, c)), and outputs cx = Eval(ekλ, Ux, c).

We now prove that Aλ succeeds with probability at least ν(λ), hence ν(λ) is a negligible function (that
does not depend on the choice of relations). First, notice that the distribution of k′ that Aλ passes to A′λ
is exactly as in Equation (4.1). Next, observe that by the correctness of FHE, we have Dec(skλ, cx) =
Cλ(x). Therefore, whenever (Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ we have (x,Hash(k, cx)) ∈ Rλ and hence
(cx,Hash(k, cx)) ∈ Rλ,skλ , as needed.

Theorem 4.5. If FHE is CPA-secure (for the sequence of message spaces {Cλ}) and CIH is somewhere
statistical correlation intractable for the relation classRDec, where for eachRλ,sk the intractability guarantee
is the description of the circuit FHE.Dec(sk, ·), then CIH′ is somewhere statistical correlation intractable for
the relation classRC , and for each Rλ,C the intractability guarantee is the circuit C.

Proof. First we have to argue that the outputs of Gen′(1λ) and StatGen′(1λ, Cλ) are computationally indis-
tinguishable for any Cλ ∈ Cλ. This follows immediately from the CPA-security of FHE and the fact that CIH
is somewhere statistically correlation intractable with fake-key generation StatGen.

Now fix any sequence of relations {Rλ,Cλ} for some choice of Cλ ∈ Cλ for each λ. We need to show that

ν(λ) := Pr
k′←StatGen′(1λ,Cλ)

[∃x s.t. (x,Hash′(k′, x)) ∈ Rλ,Cλ ]

is a negligible function (that does not depend on Rλ,Cλ). First, observe that by construction of CIH′,

Pr

 (sk, ek)← FHE.Gen(1λ)
k ← StatGen(1λ,FHE.Dec(sk, ·))

c← Enc(ek, Cλ)

∣∣∣∣∣∣
∃x s.t.

(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ where
cx = Eval(ek, Ux, c)

 = ν(λ) .
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By an averaging argument, there exists (skλ, ekλ) in the support of FHE.Gen(1λ) such that

Pr

 k ← StatGen(1λ,FHE.Dec(skλ, ·))
c← Enc(ekλ, Cλ)

∣∣∣∣ ∃x s.t.
(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ where

cx = Eval(ekλ, Ux, c)

 ≥ ν(λ) . (4.2)

Next, observe that by the correctness of FHE, we have Dec(skλ, cx) = Cλ(x). Therefore, whenever
(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ we have (x,Hash(k, cx)) ∈ Rλ and hence (cx,Hash(k, cx)) ∈ Rλ,skλ . So,
Equation (4.2) implies that

Pr
k←StatGen(1λ,Dec(skλ,·))

[∃cx s.t. (cx,Hash(k, cx)) ∈ Rλ,Cλ ] ≥ ν(λ).

The theorem follows by the somewhere statistical correlation intractability of CIH.

5 Putting it All Together

In this section we assemble the components from the previous sections and prior works to obtain correlation-
intractable hash families for all bounded circuits, and our main result of noninteractive zero knowledge for
all of NP. (Throughout this section, for simplicity we assume the standard LWE error distribution χ, i.e., a
discrete Gaussian of parameter r = 2

√
n for LWE dimension n.)

5.1 Correlation-Intractable Hashing for all Circuits

In this subsection let L = L(λ), S = S(λ), and d = d(λ) be arbitrary poly(λ)-bounded functions, and define
the relation class RL,S,d = {Rλ,L,S,d}, where Rλ,L,S,d = {Rf = {(x, f(x))}} is the set of all efficiently
searchable relations whose search functions f can be computed by a circuit with output lengthL(λ), size S(λ),
and depth d(λ).

Let FHE be a leveled fully homomorphic encryption scheme instantiated to support circuits of depth at
most d = d(λ), with decryption circuit having size SDec(λ) and logarithmic depth dDec(λ) = O(log λ). Let
CIH denote Construction 3.1 for circuit size S = L · SDec(λ) (allowing for the decryption of L ciphertexts)
and depth d = dDec(λ), and with FHC parameters n, q satisfying L ≥ ndlg qe.

Theorem 5.1. Assuming the hardness of SISn,q,β for a suitable β = poly(S) (respectively LWEn−1,q,χ for a
poly(n)-bounded χ and a suitable q = poly(S)) and the CPA-security of FHE, Construction 4.1 instantiated
with FHE and CIH is correlation intractable with respect to RL,S,d (respectively, somewhere statistically
correlation intractable with respect toRL,S,d, where for each Rf ∈ RL,S,d the intractability guarantee is f ).

Proof. Let I = {Iλ = {(x, x) : x ∈ {0, 1}L(λ)}} be the class of equality relations. Because FHE.Dec
has circuit depth dDec = O(log λ), by Theorem 3.6 CIH is correlation intractable (respectively, somewhere
statistically correlation intractable) for the relation class IDec (as defined in Section 4). The theorem
follows by noticing that RL,S,d = IC where C is the class of circuits used to define RL,S,d, and applying
Theorem 4.4.

Using any known leveled FHE scheme based on LWE with polynomial factors that has jointly pseudoran-
dom evaluation keys and ciphertexts (e.g., [BV14]), we get the following corollary.

Corollary 5.2. Assuming the hardness of LWE with suitable polynomial factors, there exists a somewhere
statistically correlation-intractable hash family (with pseudorandom hash keys) forRL,S,d, where for each
Rf ∈ RL,S,d the intractability guarantee is f .
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5.2 Noninteractive Zero Knowledge for NP

We are now ready to instantiate the noninteractive zero-knowledge protocol from [CCH+19] with our
correlation-intractable hash functions. We first recall the following theorem; see Definition 2.2 for a reminder
of the NIZK modifiers.

Theorem 5.3 ([CCH+19]). Assuming the existence of

• a lossy public-key encryption scheme with uniformly random lossy public keys (respectively, an ordinary
CPA-secure public-key encryption scheme), and

• a hash family with (pseudo)random keys which is CI for all circuits of output length L(λ) ≥ λc for
some constant c > 0 and size bounded by some sufficiently large S(λ) = poly(λ) (respectively, a
hash family that is somewhere statistically correlation intractable for all such circuits, where the
intractability guarantee for each circuit is itself),

there exists a computationally sound, statistically zero-knowledge noninteractive argument system with
common random string for any NP language (respectively, a statistically sound, adaptively computational
zero-knowledge noninteractive proof system with common reference string).

A lossy encryption scheme satisfying the requirements of Theorem 5.3 can be constructed based on LWE
with polynomial factors (see, e.g., [Reg05, PVW08]). So, by Corollary 5.2 we get our main result:

Theorem 5.4. Assuming the hardness of LWE with suitable polynomial factors, for any NP language there
exists

• a computationally sound, statistically zero-knowledge noninteractive argument system having a com-
mon random string, and

• a statistically sound, adaptively computational zero-knowledge noninteractive proof system having a
common reference string.

Remark 5.5. We remark that intractability bootstrapping and leveled FHE are not actually necessary for
the NIZK construction, because we just need a hash family that is correlation intractable for the class of
“bad challenge” functions of the underlying graph-Hamiltonicity protocol of [FLS90]. As pointed out by
Alex Lombardi, a trick from [CCH+19] allows the bad-challenge functions to be implemented in NC1 (i.e.,
logarithmic depth), so we can obtain the required correlation intractability merely from SIS with small
polynomial factors. (However, we still use LWE for the lossy encryption ingredient.)

In short, the bad-challenge function decrypts the prover’s ciphertexts to recover a graph, then checks
whether the graph is a cycle. Decryption of LWE-based lossy encryption in NC1 is standard. To implement
the cycle check, we additionally require the prover to (de)commit to a permutation between its committed
graph and a canonical cycle graph. The bad-challenge function (and verifier) performs the appropriate checks,
which can be done in logarithmic depth by brute force. (Without the explicit permutation, the best known
parallel complexity for cycle checking is NC2, which is not good enough for the present purpose.)

Remark 5.6. When using a CI hash family arising from our bootstrapping transform of Construction 4.1,
either NIZK system of Theorem 5.4 can have a compact common random/reference string, i.e., a string whose
length does not depend on the size of the statement being proved. In fact, the CRS generation algorithm does
not need to get the size (or any other parameter) of the statement as an input.
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To see this, we first observe that for any statement length, the “bad challenge” circuits making up the
family C for which Theorem 5.3 needs correlation intractability can be represented by strings of a fixed
poly(λ) length. Specifically, these circuits can be fully specified by the secret key of the (lossy) public-
key encryption scheme used in Theorem 5.3. We next observe that the universal circuit U(·, ·) for this
representation (and a given statement length) is uniformly generated and has a fixed logarithmic depth in its
input length. Therefore, it suffices to instantiate the FHE in Construction 4.1 using any leveled FHE scheme
(e.g., [BGV12, GSW13]) for some arbitrary ` = ω(log(λ)) levels. Then, by Remark 4.3 the hash key and
hence the CRS is completely independent of the statement size.

For comparison, we also point out that there is a generic transformation from [GGI+15] which converts
any NIZK to one with a compact CRS. However, this transformation does not preserve statistical zero
knowledge, i.e., the resulting NIZK system is always computational zero knowledge. On the other hand, our
construction has a compact CRS and is also statistical zero knowledge.
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