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Abstract. The importance of efficient MPC in today’s world needs no
retelling. An obvious barebones requirement to execute protocols for
MPC is the ability of parties to communicate with each other. Tradi-
tionally, we solve this problem by assuming that every pair of parties
in the network share a dedicated secure link that enables reliable mes-
sage transmission. This assumption is clearly impractical as the number
of nodes in the network grows, as it has today. In their seminal work,
Dwork, Peleg, Pippenger and Upfal introduced the notion of almost-
everywhere secure primitives in an effort to model the reality of large
scale global networks and study the impact of limited connectivity on
the properties of fundamental fault-tolerant distributed tasks. In this
model, the underlying communication network is sparse and hence some
nodes may not even be in a position to participate in the protocol (all
their neighbors may be corrupt, for instance). A protocol for almost-
everywhere reliable message transmission, which would guarantee that
a large subset of the network can transmit messages to each other re-
liably, implies a protocol for almost-everywhere agreement where nodes
are required to agree on a value despite malicious or byzantine behavior
of some subset of nodes, and an almost-everywhere agreement protocol
implies a protocol almost-everywhere secure MPC that is uncondition-
ally or information-theoretically secure. The parameters of interest are
the degree d of the network, the number t of corrupted nodes that can
be tolerated and the number x of nodes that the protocol may give up.
Prior work achieves d = O(1) for t = O(n/ logn) and d = O(logq n) for
t = O(n) for some fixed constant q > 1.
In this work, we first derive message protocols which are efficient with
respect to the total number of computations done across the network.
We use this result to show an abundance of networks with d = O(1) that
are resilient to t = O(n) random corruptions. This randomized result
helps us build networks which are resistant to worst-case adversaries.
In particular, we improve the state of the art in the almost everywhere
reliable message transmission problem in the worst-case adversary model
by showing the existence of an abundance of networks that satisfy d =
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O(logn) for t = O(n), thus making progress on this question after nearly
a decade. Finally, we define a new adversarial model of corruptions that
is suitable for networks shared amongst a large group of corporations
that: (1) do not trust each other, and (2) may collude, and construct
optimal networks achieving d = O(1) for t = O(n) in this model.
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1 Introduction

Many real world applications involve computing functions on large data sets that
are distributed across machines in a global network. In many such applications,
the data held by any particular agent may need to be kept private. For instance,
hospitals across the world have confidential patient data that can be used to cre-
ate accurate disease models and improve treatment plans. The ubiquitous need
for such distributed private computations has motivated research on efficient
multiparty computation (MPC) [28][18][3][12]. MPC protocols enable a set of
parties to compute a joint function on their inputs while keeping them private
[8]. MPC protocols for various important tasks, such as elections, were discov-
ered in the twentieth century, but most of these protocols have not seen practical
application as they were designed for densely connected networks and are often
inefficient. For MPC to see widespread use, it is important for protocols to rely
on only the sparse connectivity that is available in modern large scale networks
while simultaneously meeting the efficiency needs of practice. Several avenues of
theoretical and practical research remain open: Is it possible to get faster pro-
tocols, either through better assumptions, primitives, or special hardware? Is it
possible to reduce the amount of communication in the protocol [20][13][7][9]? Is
it possible to reduce the number of rounds in the protocol [2]? Is it possible to
alleviate the need for synchronicity of nodes in the network? Is it possible to min-
imize the use of physical resources? Indeed, each of these questions have been
considered in the past and remain hotbeds of fruitful research. In this paper,
we focus on designing sparse networks and secure communication protocols for
these networks that are resilient to large fractions of the machines experiencing
byzantine failures, and thereby deviating arbitrarily from the assigned protocols.

All distributed protocols rely on the ability of machines to communicate. In
particular, if A and B are two nodes in the network, A must be able to send
a message to B in way that satisfies the following two properties: (1) reliable
message transmission: B receives the message that A intended to send, and (2)
authentication: B must be able to confirm that A was indeed the sender of the
received message [1]. Efficient reliable message transmission is the primary fo-
cus of our paper. Reliable transmission becomes trivial if we assume every pair
of nodes has a dedicated secure link to pass messages over. However, such an
assumption is impractical in modern large scale practical networks which are
sparsely connected and rely on multi-hop routing. In a seminal work, Dwork,
Peleg, Pippenger and Upfal [16] considered the question of designing sparse net-
works that are tolerant to nodes experiencing byzantine failures—nodes that fail
can deviate arbitrarily from the protocol. The problem is to design a network
G of degree d on n nodes in which honest nodes can continue to communicate
and execute protocols, even after t nodes are corrupted, i.e., experience byzan-
tine failures. The challenge is to make the degree d as small as possible (ideally
constant), while letting t become arbitrarily large—ideally εn for some constant
ε. Since t � d, any set of Ω(t/d) honest nodes can be isolated from the rest
of the nodes if all of their neighbors are corrupted. So, it is impossible for all
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the honest nodes to pairwise communicate with each other. So, apart from the
t corrupted nodes, Dwork et. al. allow x honest nodes to become doomed, and
require only the remaining n − t − x priveleged nodes to successfully partake
in protocols. The class of primitives that work on these privileged nodes in the
presence of byzantine failures are called almost-everywhere (AE) primitives.

The problem of byzantine agreement [25][23] is one where nodes start with an
initial value but wish to agree, at the end of execution of some protocol, on some
value, despite malicious or byzantine behavior of some subset of nodes. Prior to
[16], this problem was considered assuming all pairs of parties had a dedicated
channel for communication [25][23][14]. Dwork et. al. introduced the notion of
almost-everywhere agreement where only privileged nodes need to reach agree-
ment. We note that AE reliable message transmission, which would guarantee
that a large subset of the network can transmit messages to each other reliably,
implies a protocol for AE agreement, and an AE agreement protocol implies a
protocol for AE secure MPC that is unconditionally or information-theoretically
secure as formulated in the work of Garay and Ostrovsky [17]. Thus, our goal is
to design sparse graphs, and efficient protocols for solving AE reliable message
transmission on these graphs.

We consider a network G of degree d on n nodes, and we construct protocols
for reliable message transmission in the presence of t corruptions while dooming
only x honest nodes. Prior to this work, the focus was to make the degree of
the network as small as possible while tolerating a large number t of corrupted
nodes and dooming a small number x of honest nodes. We will be concerned
about a few more metrics in addition to the degree of the network. We define
them below.

1. The round complexity of the protocol is the number of rounds of communi-
cation required by it.

2. The node complexity of the protocol is the number of nodes in the graph
that are required in any point-to-point message transmission.

3. The total work of the protocol is the number computations performed across
all processors in the network in any point-to-point message transmission.

In this work, we obtain results that improve upon all previous works in all
parameters. Table 1 shows our main result and compares it to previous works.

Result Degree Corruptions Doomed Total Work Node Cmplxty Round Cmplxty
[16] O(1) O(n/ logn) O(t) O(n) O(n) O(n)

[27] O(1) O(n) O(t) O
((n
t

))
O(n) O(n)

[10] polylog(n) O(n) O(t/ logn) O(n) O(n) O(n)
Our work O(logn) O(n) O(t/ logn) polylog(n) polylog(n) polylog(n)

Our result improves over the most recent work of Chandran et. al. in each of
the listed metrics. In particular, it is the only work in this line of research to



Efficient Constructions for Almost-everywhere Secure Computation 5

achieve polylogarithmic complexities for the work, node, and round complexity
metrics. We believe that these metrics are pivotal for scalability and real-world
use. In fact, there results enable us to simulate a protocol on a complete graph
with only polylogarithmic multiplicative overhead even though our graph is only
of logarithmic degree, while all previous protocols required at least linear multi-
plicative overhead.

Another approach to obtain more efficient protocols would be to weaken the
adversary model. Most prior work has considered worst-case adversarial corrupt
nodes. While this is the strongest model one can hope for, it does not necessarily
accurately model many real world scenarios. Consider the scenario of a network
that is being hacked. Unless an attacker is privy to certain specifics of the net-
work, it is reasonable to assume that the nodes in the network that finally do get
hacked are in fact random. For instance, password-guessing attacks or phishing
attacks would affect a random subset of the nodes. Ben-or and Ron [4] intro-
duced the random corruption model in which nodes are corrupted independently
and at random. They exhibited a constant degree network that is resilient to a
constant fraction of random corruptions. We show an abundance of graphs with
d = O(1) that are resilient to t = O(n) random corruptions while dooming only
x = O(t) nodes. Our graphs are significantly simpler than those in the prior
work. More significantly, the probability of correctness is substantially large, so
large in fact that these constructions help us construct better worst-case net-
works.

We consider another real world example where the nodes that are trying to
perform a secure computational task can naturally be split into different “cor-
porations”. A natural model of computation is one where we assume that a
certain bounded number of these corporations may be corrupt, while the others
are honest. An example of this model is if several companies want to build a se-
cure computation network together, but some of the companies may collude and
try to corrupt the network after its topology has been fixed. As another example,
the nodes could be routers that are manufactured by different companies, and
the adversary could have discovered how to hack into the routers made by some
subset of the companies. While in the first example it is reasonable to assume
that the network designer knows which nodes belong to which corporation, in
the second example even this information is hard to get. Thus, we assume that
we neither know which corporations may be malicious nor which nodes belong
to which corporations; but we do have a bound on the total number of malicious
nodes. We formally define this corporation corruption model in Section 2, and
give a network topology and protocol that solve this problem near-optimally.

Our contributions

Our first result is a round, node and work efficient protocol.
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Theorem. For the n = m2m-node network GEff = (V,E) and the protocol
ΠEff for message transmission on it there exists constants α and β, such that
whp:

1. The network GEff has degree 11.
2. The total work is O(polylog(n)).
3. The node complexity is O(polylog(n)).
4. The round complexity is O(log n).
5. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ αn/ log n, there exists a

set of nodes S ⊂ V where |S| ≥ n−β|T | log |T | such that every pair of nodes
in S can communicate reliably with each other by invoking ΠEff .

Our three main results are an optimal protocol in the random model, a pro-
tocol worst-case model that improves the current state of the art and a protocol
in the corporation model. We present them below.

Theorem (Random Corruptions). For sufficiently large n, there exists an
n-node network Grand = (V,E), a protocol Πrand for message transmission on
it, and constants α3 and β3, such that:

1. The network Grand is of constant degree.
2. The total work is O(polylogn).
3. The node complexity is polylog(n).
4. The round complexity is polylog(n).
5. If a subset of nodes T ⊂ V is randomly corrupt, where |T | ≤ α3n, with

probability 1 − 2−2t log (n/t)/ logn, there exists a set of nodes S ⊂ V where
|S| ≥ n− β3|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Πrand.

Theorem (Worst-case Corruptions). For the n = m2m-node network Gwc =
(V,E) and the protocol Πwc for message transmission on it there exists constants
α and β, such that whp:

1. The network Gwc has degree O(log n).
2. The total work is polylog(n).
3. The node complexity is polylog(n).
4. The round complexity is polylog(n).
5. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ αn, there exists a set of

nodes S ⊂ V where |S| ≥ n− |T | − β|T |/ log n such that every pair of nodes
in S can communicate reliably with each other by invoking Πwc.

Theorem (Corporation Corruptions). For sufficiently large n, there are
constants ε, β such that, (Gcorp, Πcorp) is resilient to a constant fraction of
corporation-log n corruptions:

1. The network Gcorp is of constant degree.
2. The total work is O(polylogn).
3. The node complexity is polylog(n).
4. The round complexity is polylog(n).
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5. If any subset H ⊂ [h] of corporations is corrupted, i.e., the nodes T = ∪i∈HVi
(for t = |T | ≤ εn) is corrupted, there exists a set of nodes S ⊂ V where
|S| ≥ n− β|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Πcorp with probability 1− 2−t log (n/t)/ logn.

Our techniques

Round, node and work efficient networks All prior works have O(n) round,
node and work complexities (ignoring logarithmic factors). It is easy to see that
the diameter of a graph is a lower bound on the round complexity of a protocol.
We have no reason to believe this cannot be achieved. We begin by examining the
protocol of Dwork et. al. [16] over the butterfly network. In this protocol, every
pair of nodes has an assigned set of paths of size Θ(n/ log n) that one floods with
the message to be transmitted for the other to recieve and decode using a simple
majority. It is the case that for any pair, their paths pass through O(n) many
nodes and this immediately makes the round, node and work complexities O(n) if
we assume that each node can send a single bit per round. To improve upon this,
we show that it is possible to select a much smaller subset of size O(log n) of those
paths for each pair of nodes in the graph that only pass through polylog(n) many
nodes. Repeating the protocol from [16], except now restricted to this special
small subset of the paths enables us to achieve round, node and work complexities
of polylog(n). The part that remains to be seen is what this special subset is.
And in fact, we show that many of them work. If one were to sample uniformly
at random O(log n) paths of the Θ(n/ log n) paths for each pair of nodes and fix
these paths ahead of time as the ones to be used in the message transmission
protocol, with probability 1− n−t, there exists a set of n−O(t log t) nodes that
can reliably communicate with each other in the presence of any adversary that
corrupts t = O(n/ log n) nodes. This shows that there exist an abundance of
such networks that offer the same degree and resiliency properties as in [16]
while also being round, node and work efficient.

Networks resilient to random corruptions The protocol of [10] builds on
the following observation. Consider the protocols of [16] and [27] where if node
A wishes to communicate with node B, A floods all paths from A to B (possibly
of a bounded length) with the message. In [16], the parameters are set to ensure
that a majority of such paths contain no corrupt nodes (for most pairs of nodes
A, B) while [27] employs an exhaustive search to determine which paths may
have contained corrupt nodes. These protocols face the disadvantage that paths
that pass through even one corrupt node are lost. The work of [10] introduced
the idea of local correction through the use of Bracha committees. If we were
able to create committees that had the ability to locally correct the message
transmission, we can potentially tolerate a lot more corruptions than in [16] and
perform the final decoding more efficiently than in [27]. [10] however considers
many overlapping committees in order to ensure that even if a constant fraction
of the nodes are corrupt, a sub-constant fraction of the committees are corrupt,
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where a committee is considered corrupt if a certain fraction of its nodes is
corrupt. This calls for a larger degree. In the model of random corruptions, it
suffices to construct fewer committees to achieve the same goal. In fact, it is
possible to consider non-overlapping committees and since the corruptions are
random, if we corrupt a constant fraction ε of the nodes, by a Chernoff bound,
most committees are going to be about ε-fraction corrupt. For appropriate ε,
this means that most committees in fact work just fine and can perform local
correction. Using this observation, we construct a network of constant degree that
is round, node and work efficient that tolerates a constant fraction of random
corruptions while dooming O(t) nodes.

Logarithmic degree networks in the worst-case model Miraculously, the
network resilient to random corruptions paves the way to a rather simple con-
struction of a network of logarithmic degree that is resilient to a constant fraction
of worst-case corrupt nodes. The key observation is that the network that is se-
cure is against random corruptions works with an extremely high probability,

1 − 2−Õ(n). This allows to create a new network that is simply a combination
of several copies of the network resilient to random corruptions. We then show
that several of these copies in fact work perfectly in the presence of any con-
stant fraction of worst-case corrupt nodes and this suffices to obtain a protocol.
Once again, this construction works with probability 1 − 2−O(n) which shows
that there exist an abundance of such networks that have logarithmic degree
and are resilient to a constant fraction of worst case corruptions while dooming
O(t) nodes. This protocol also turns out to be round, node and work efficient.
This gives us our main result–a protocol that improves the state of the art in
terms of all parameters.

Networks secure in the corporation model We consider the setting in
which the nodes that are part of the network belong to different corporations,
each of which owns a non-negligible share of the nodes of the network. In the
standard adversarial corruption model, each individual node can become corrupt
independently, and thus t corruptions can be realized as an arbitrary subset of
size at most t nodes becoming corrupt. In the corporation corruption model, we
assume that corruptions happen at the level of the corporation, and thus that if
a corporation becomes corrupt, all of its nodes are corrupted. So, t corruptions
can be realized in this model as an adversarial collection of corporations whose
sizes sum up to at most t. If corporations could be arbitrarily small, and simply
own single nodes in the network, this model is precisely equivalent to the worst-
case adversarial corruption model. The model becomes interesting, when the size
of the smallest corporation is Ω(f(n)), for some (slow growing) function f . We
therefore define the parametrized corruption model to be the described corrup-
tion model, when the smallest corporation owns at least f(n) nodes. We show
the abundant existence of constant degree network that is resilient to a constant
fraction of nodes being corrupted in the corporation-log(n) model. We look back
to our constant degree network that is resilient to a constant fraction of random
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corruptions. An arbitrary partitioning of the nodes into non-overlapping com-
mittees sufficed to be resilient to random corruptions. Corporation corruptions
are non-random, and in fact adversarial. We show however, the surprising result
that essentially the same network will achieve resilience to corporation-log n cor-
ruptions, even when a constant fraction of the nodes are being corrupted. The
result is achieved by inserting more randomness into the structure, leveraging
the extremely high probability of success in the random model construction,
and applying, yet again, the probabilistic method. Unsurprisingly, this protocol
is also of constant degree and is round, node and work efficient.

Related work

There have been a plethora of works asking for various different measures of
quality of an agreement or MPC protocol. A sequence of works seek to im-
prove the round complexity of protocols for byzantine consensus [5][6]. Another
goal is to optimize the communication complexity of byzantine agreement pro-
tocols [15][22][21][19]. Another model of corruptions is that of edge corruptions
[11]. As observed in the work of Chandran et. al., an almost-everywhere secure
computation protocol for node corruptions can be readily transformed into a
corresponding almost-everywhere protocol also tolerating edge corruptions, for
a reduced fraction of edge corruptions (by a factor of d, the degree of the net-
work). We note that all our results hence also extend to the edge corruption
model, both worst-case and random.

Organization

We discuss preliminary notations and definitions in Section 2. In Section 3, we
present the construction of a network of constant degree that has logarithmic
round complexity polylogarithmic work and node complexities. In Section 5, we
present the construction of a network achieving d = O(log n) while handling t =
O(n). In Sections 4 and 6, we present our results in the random and corporation
models respectively.

2 Preliminaries

2.1 Notation

For n ∈ N, let [n] = {1, 2, . . . , n}. We assume that all logarithms are taken to
the base 2.

2.2 Chernoff Bounds

Let X be a random variable with E[X] = µ. For all δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ
(1)
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Pr[X ≤ (1− δ)µ] ≤
[

e−δ

(1− δ)1−δ

]µ
(2)

Observing that ln(1 + δ) ≥ 2δ
2+δ for all δ ≥ 0, we have for all δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
2+δ (3)

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2+δ (4)

Furthermore, for 0 ≤ δ ≤ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 (5)

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2 (6)

2.3 Expanders and Compressors

Definition 1. A graph G = (V,E) is an expander if there exists a constant

θ < 1 such that for every subset U ⊂ V of vertices of size |U | ≤ |V |2 , the set of
vertices outside U that have at least one neighbor in U is at least θ|U |.

Constructions of expanders of constant degree are known [24].

Definition 2. A graph G = (V,E) is a compressor if there exists a constant
θ < 1 such that for every subset U ⊂ V of vertices of size |U | ≤ θ|V |, the set of

vertices that have at least half of their neighbors in U is at most |U |2 .

Constructions of compressors of constant degree are known [26][24][16].

2.4 Network Parameters

Given a graph G = (V,E), a message transmission protocol or simply protocol
Π on the graph, is a specification for how messages are routed between every
pair of nodes. In particular, Π(u, v) is the protocol for node u ∈ V to transmit
to node v ∈ V . A protocol is comprised of rounds. In each round, we allow each
node w ∈ V to perform local computations and pass a different one bit message
to each of its neighbors in G.

We call a pair N = (G,Π) a protocoled-network if Π is a protocol for graph
G. We define the following properties of the network, where u and v are two
different nodes in G:

1. Round complexity: The round complexity of Π(u, v) is the number of
rounds, r(u, v), required by Π(u, v). The round complexity of Π is r ,
maxu,v∈V r(u, v).

2. Node complexity: The node complexity of Π(u, v) is the number of nodes,
ν(u, v), in the graph that are required in a transmission from u to v. The
node complexity of Π is ν , maxu,v∈V ν(u, v).
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3. Work complexity, or, Total work: The total work of Π(u, v) is the num-
ber computations, W (u, v), performed across all processors in the network in
a transmission from u to v. The total work of Π is W = maxu,v∈V W (u, v).

4. Graph degree: The degree of u is the number of neighbors, d(u), that u
has in G. The degree of G is d = maxu∈V d(u).

5. Resilience: We say the network is resilient to a set of nodes T , of size
t = |T |, being corrupted while dooming only x nodes if there is a subset
S ⊆ V of n − t − x privileged nodes that can reliably transmit messages
between each other, after the nodes in T experience byzantine failure. Nodes
in set S are called privileged, nodes in X = V − (S ∪T ) are called sacrificed,
and nodes in X ∪ T are called doomed. Informally speaking, a network is
highly resilient if even when t is large, x is not too large, and thus |S| is
large.

Our goal is to design highly resilient low degree networks of low round, node,
and work complexity.

Remark 1. All our networks have node and work complexities that differ by at
most a polylogarithmic factor. This is also true of almost all the previous works
we mention. A notable exception is Upfal’s [27] network on an expander, which
requires exponential work.

2.5 Notion of Almost-everywhere Security

The notion of almost-everywhere secure primitives was introduced by Dwork
et. al. [16]. In this setting, we consider a sparse communication network on
the nodes. We assume a synchronous network and that the communication is
divided into rounds. In every round, each node can send (possibly different)
messages on its incident edges; these messages are delivered before the next
round. Suppose a certain subset of the nodes may be adversarially corrupt, in
particular adaptive, rushing and computationally unbounded. This implies that
a protocol for any task on this network must “give up” a certain number of
honest nodes on account of their poor connectivity to other honest nodes. We
set up the following notation. Consider a network of n nodes connected by a
communication network G = (V,E) of degree d. On executing a protocol Π on
this network in the presence of a subset T ⊂ V of adversarial or corrupt nodes,
let X ⊂ V be the set of honest nodes that are given up, or doomed, and let P ⊂ V
be the set of honest nodes for whom the protocol requirements of correctness
and security hold, or privileged nodes. The nodes that are not privileged are
unprivileged nodes. Let |T | = t, |X| = x and |S| = s. We have t+ x+ s = n.

2.6 Almost-everywhere Reliable Message Transmission

Definition 3. A protocol Π for almost-everywhere reliable message transmis-
sion on an n-node network G = (V,E) is one that satisfies the following require-
ment: If a subset of nodes T ⊂ V is corrupt, there exists a set of nodes S ⊂ V



12 Siddhartha Jayanti, Srinivasan Raghuraman, and Nikhil Vyas

such that every pair of nodes in S can communicate reliably with each other by
invoking Π.

We present prior protocols for almost-everywhere reliable message transmission.

Dwork, Peleg, Pippenger, Upfal [16] Dwork et. al. define the butterfly
protocol-network.

Definition 4. The butterfly network (GBut, ΠBut) is as follows.

Graph: GBut = (VBut, EBut) where VBut = {(i, j)} where 0 ≤ i ≤ m − 1
and j ∈ {0, 1}m is a set of n = m2m nodes, and EBut = {(i, j), (i′, j′)} is
the set of edges where i′ = (i + 1) mod m and j and j′ only possibly differ
in the ith bit.
Protocol: Let u and v be distinct vertices in VBut. There exists as set of
paths Pu,v from u to v such that |Pu,v| = 2m = Θ(n/ log n). The message
transmission protocol Π from u to v in GBut is as follows: u sends the
message along all paths Pu,v, v receives all the messages and takes majority.

Theorem 1 ([16]). For the n = m2m-node network GBut = (V,E) and the
protocol ΠBut for message transmission on it, there exists constants α1 and β1,
such that:

1. The network GBut is of constant degree, namely 11.
2. The node complexity is Õ(n).
3. The round complexity is Õ(n).
4. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ α1n/ log n, there exists

a set of nodes S ⊂ V where |S| ≥ n − β1|T | log |T | such that for every pair
of nodes (u, v) in S, (2/3)rd of the paths in Pu,v have no corrupted nodes
in them which implies that all pairs of nodes in S can communicate reliably
with each other by invoking ΠBut.

Within their construction, Dwork et. al. describe a compressor network G =
(V,E) of constant degree 7 and an associated compression procedure which works
by running the following procedure for log |V | rounds:

1. Each node sends its value to all its neighbours.
2. Each node receives the values of all its neighbors.
3. Each node chooses as its new value the value held by majority of its neigh-

bors.

If the number of corrupt nodes is t ≤ θ|V |
2 for some constant θ, we have the

following lemma [16].

Lemma 1. If there are at least (1−θ)n honest processors which share the same
initial value v, then after applying the compression procedure, at most t+1 honest
nodes will have a value different from v.
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Upfal [27]

Theorem 2. For sufficiently large n, there exists an n-node network GUpfal =
(V,E), a protocol ΠUpfal for message transmission on it, and constants α2 and
β2, such that:

1. The network GUpfal is of constant degree1.

2. The number of rounds of communication in ΠUpfal is O(log n).

3. The local computation time of a node in ΠUpfal is O(2n).

4. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ α2n, there exists a set of
nodes S ⊂ V where |S| ≥ n − β2|T | such that every pair of nodes in S can
communicate reliably with each other by invoking ΠUpfal.

2.7 Almost-everywhere Agreement

Definition 5. A protocol Π for almost-everywhere agreement on an n-node net-
work G = (V,E), where party Pi holds value vi for i ∈ [n], is one that satisfies
the following requirement: If a subset of nodes T ⊂ V is corrupt, there exists a
set of nodes S ⊂ V such that by invoking Π:

1. All nodes in S output the same value.

2. If vi = v for all i ∈ S, then all nodes in S output v.

Protocols for traditional byzantine agreement assume a fully connected network
and require that all honest nodes reach agreement, while in almost-everywhere
agreement, we only require that the privileged nodes reach agreement.

Theorem 3. Let ΠBA be a protocol for traditional byzantine agreement that tol-
erates up to t+x corrupt nodes, and let ΠTS be a protocol for almost-everywhere
reliable message transmission on a network G of degree d that in the presence
of t corrupt nodes gives up x nodes. Then, there exists a protocol Π for almost-
everywhere agreement on G such that:

1. The number of rounds of communication in Π is the product of the number
of rounds of communication in ΠBA and ΠTS.

2. The local computation time of a node in Π is the product of the number of
rounds of communication in ΠBA and ΠTS.

3. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ t, there exists a set of
nodes S ⊂ V where |S| ≥ n− t− x that achieve agreement as in Definition
5.

1 GUpfal is an n node Ramanjuan graph, and we know such graphs with large enough
constant degree.
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2.8 Almost-everywhere Secure Computation

Garay and Ostrovsky [17] showed that if one has a protocol for almost-everywhere
reliable message transmission on a network G, one can obtain a protocol for se-
cure (private) and reliable message transmission over a network G′ whose degree
is more than that of G by only a constant factor. Furthermore, G′ preserves the
set S of privileged nodes in G asymptotically. This allows us to obtain protocols
for almost-everywhere secure computation.

Theorem 4. Let ΠMPC be a protocol for multiparty computation that tolerates
up to t + x corrupt nodes, and let ΠTS be a protocol for almost-everywhere
reliable message transmission on a network G of degree d that in the presence of
t corrupt nodes gives up x nodes. Then, there exists a graph G′ and a protocol
Π for almost-everywhere secure computation on G′ such that:

1. The degree of the network G′ is a constant times the degree of the network
G.

2. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ t, there exists a set of
nodes S ⊂ V where |S| ≥ n− t− x that achieve agreement as in Definition
5.

2.9 Corruption Models

We consider many models where a subset T of size t in the n node network can
be corrupted.

Worst-case Model The worst-case model is the strongest of our adversary
models. In this model, the subset of T corrupt nodes can be chosen adversarially
after the network topology and protocol for communication have been fixed.

Random Model The randomized adversary model assumes that the t cor-
rupted nodes are chosen uniformly at random from the set of n nodes. We call
this model of picking a random subset of size t the Hamming Random Model or
corruption. Alternately, a randomized adversary may make each node corrupt
with probability t/n; we call this the Shannon model. Basic Chernoff bounds
show that the Shannon and Hamming models are equivalent up to a constant
factor difference in t with all but exponentially small probability. Thus, we freely
switch between the two models in our exposition. While this model of corrup-
tion is primarily good for simulating phishing and password guessing attacks,
our probabilistic approaches show that it can be the starting point for state of
the art protocols against corporation and worst-case adversaries.

Corporation Model We consider the setting in which the n nodes that are
part of the network belong to k different corporations, each of which owns a
non-negligible share of the nodes of the network. That is V is the disjoint union
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of V1, . . . , Vk, where the nodes of each Vi belong to the ith corporation. We do
not assume that we know the partition. In the standard adversarial corruption
model, each individual node i ∈ V can become corrupt independently, and thus
an ε-fraction of corruptions can be realized as an arbitrary subset of size at most
εn nodes becoming corrupt. In the corporation corruption model, we assume
that corruptions happen at the level of the corporation, and thus that if the ith
corporation becomes corrupt, all the nodes of Vi are corrupted. So, an ε-fraction
of corruptions can be realized in this model as an adversarial collection of corpo-
rations K ⊂ [k] becoming corrupt, where

∣∣⋃
i∈K Vi

∣∣ ≤ εn. If corporations could
be arbitrarily small, and simply own single nodes in the network, this model is
precisely equivalent to the worst-case adversarial corruption model. The model
becomes interesting, when the size of the smallest corporation is Ω(f(n)), for
some (slow growing) function f . We therefore define the parametrized corrup-
tion model corporation-f(n) to be the described corruption model, when the
smallest corporation owns at least f(n) nodes. This parametrized model is thus
an adversarial model, that smoothly moves from the trivial corporation-n to the
worst-case corruption model, corporation-1. We show the abundant existence of
constant degree network that is resilient to a constant fraction of nodes being
corrupted in the corporation-log(n) model.

3 Low-work Protocols in the Worst-case Model

It is our goal to design low degree graphs with efficient communication protocols
for AE reliable message transmission. Our final networks are constructed by
composing several simpler graph structures. An important graph that our work
builds on is Dwork et. al.’s butterfly network [16]. The diameter of a graph
is a fundamental lower bound on the number of rounds required for message
transmission. Any graph with constant degree will necessarily have a diameter
of length Ω(log n). Thus, the logarithmic diameter of the butterfly network is
optimal up to constant factors. It is thus reasonable to consider fast message
transmission as on which requires a polylogarithmic number of rounds. However,
Dwork et. al.’s protocol requires Ω(n) rounds for a single point to point message
transmission. (This can be improved to polylog(n) only if each process is allowed
to transmit O(n) bits per round.)

Their protocol is also very inefficient in another sense. Dwork et. al.’s message
transmission protocol requires nearly every node of the graph to participate in
every message transmission. This is undesirable for two reasons:

1. High node complexity : It is non-ideal to make every node of a large network
participate in every point to point message transmission. It would aid both
efficiency and parallelizability of higher level protocols to limit the number
of nodes used for a point to point transmission to O(polylog(n)).

2. High work complexity : For a single A to B transmission, the total work is
Ω(n), which is exponentially large in the diameter (which is the fundamental
lower bound on total work).
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We therefore design two transmission protocols that ameliorate these flaws.
To get a protocol that is work and node efficient, we modify the protocol of
Dwork et. al. in the following way. We run over the same butterfly graph, but
show that we need not flood all Θ(n/ log n) paths in the network to ensure
reliable transmission, but rather need to pick a set of Θ(log n) paths between
every pair of vertices. This reduces both the number of nodes used per point to
point transmission and total work to O(log2 n).

Definition 6.

Graph: GEff = (V,E) = GBut as defined in Definition 4 such that |V | =
n = m2m. For every pair u, v of distinct vertices in V , there exists a set of
paths Pu,v as defined in Definition 4 between u and v. Let Qu,v be a random
subset of Pu,v of size Θ(m). The subset Qu,v is sampled before the protocol
and is fixed, in particular it is known to all the nodes as well as the adversary.
Protocol: The message transmission protocol Π from u to v in GEff is
as follows: u sends the message along all paths in Qu,v, v receives all the
messages and takes majority. We call this protocol ΠEff .

Theorem 5. For the n = m2m-node network GEff = (V,E) and the protocol
ΠEff for message transmission on it there exists constants α and β, such that
whp:

1. The network GEff has degree 11.
2. The total work is O(polylog(n)).
3. The node complexity is O(polylog(n)).
4. The round complexity is O(log n).
5. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ αn/ log n, there exists a

set of nodes S ⊂ V where |S| ≥ n−β|T | log |T | such that every pair of nodes
in S can communicate reliably with each other by invoking ΠEff .

Proof. It is clear that the degree of the network is 11 and that the node com-
plexity and the total work in the protocol are O(polylog(n)). To achieve O(log n)
round complexity we will send messages along the ith path in the ith round. By
construction of the butterfly graph, this will ensure that there is no congestion
due to messages from separate paths.

Consider any fixed subset T ⊂ V with t = |T | ≤ αn/ log n. By Theorem 1,
for appropriate constants α, β, we know that there is a set V ′ of size n− βt log t
that can communicate reliably with each other by invoking ΠBut. For any pair of
vertices u, v ∈ V ′, we let Pu,v be the set of paths used in message transmissions
from u to v by protocol ΠBut. From Subsection 2.6 we know that at least a 2/3
fraction of the paths in each Pu,v contain no corrupt node. Let Qu,v be a random
sample of 100 log n paths from Pu,v. The protocol ΠEff to send a message from
u to v is as follows: (1) u sends the message along all the paths Qu,v, (2) v
receives all 100 log n messages that were sent along the paths in Qu,v and takes
the majority.

We first argue correctness of our protocol. For a fixed adversary and for fixed
u, v ∈ V ′, the probability that a majority of the paths Qu,v contain a corrupt



Efficient Constructions for Almost-everywhere Secure Computation 17

node is ≤ 1/n4 by a Chernoff bound. We call a pair of vertices {u, v} corrupted
if a majority of paths between them contain a corrupt node, and uncorrupted
otherwise. So by another Chernoff bound, for a fixed adversary, the probability
that there are more than t corrupted pairs is bounded above by(

n2

t

)(
1

n4

)t
<

(
1

n2

)t
since the probability of pair corruptions is independent conditioned on the ad-
versary. To show that the construction works for an adversarially chosen set of
corruptions, we take a union bound over all adversaries. The probability that
there is an adversary for which the number of corrupt pairs is at least t is
bounded above by: (

n

t

)(
1

n2

)t
<

(
1

n

)t
� 1

So, our network satisfies the part (5) of the theorem as well. Since the prob-
ability is � 1 any graph (with the paths) that we sample will work with high
probability.

Theorem 5 shows that the graph GEff satisfies properties (1-5) with high
probability. The following corollary follows immediately by the probabilistic
method; yet we state it explicitly, because we will use the graph with these
properties in our subsequent constructions.

Corollary 1. There is a fixed graph GEff , and protocol Π which satisfy the
conditions (1-5) of Theorem 5.

4 Constant-degree Networks in the Random Model

In the previous section, we constructed networks that have low degree and are
also node and work efficient. However, they only tolerate a 1/ log n-fraction of
corrupted nodes and O(t log t) nodes are doomed. We now wish to improve these
fault tolerance parameters. We turn our attention to the protocol of [10]. Their
protocol builds on the following observation. Consider the protocols of [16] and
[27] where if node A wishes to communicate with node B, A floods all paths
from A to B (possibly of a bounded length) with the message. In [16], the pa-
rameters are set to ensure that a majority of such paths contain no corrupt
nodes (for most pairs of nodes A, B) while [27] employs an exhaustive search
to determine which paths may have contained corrupt nodes. These protocols
face the disadvantage that paths that pass through even one corrupt node are
lost. The work of [10] introduced the idea of local correction through the use of
Bracha committees. If we were able to create committees that had the ability to
locally correct the message transmission, we can potentially tolerate a lot more
corruptions than in [16] and perform the final decoding more efficiently than in
[27]. [10] however considers many overlapping committees in order to ensure that
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even if a constant fraction of the nodes are corrupt, a sub-constant fraction of
the committees are corrupt, where a committee is considered corrupt if a certain
fraction of its nodes is corrupt. This calls for a larger degree. We show in this
section that in our model of random corruptions, it suffices to construct fewer
committees to achieve the same goal. Going forward, we refer to the networks
(protocol, resp.) of [27] by GUpfal (ΠUpfal resp.) respectively.

Let the set of nodes that wish to communicate be V = [n] for n ∈ N. We
arbitrarily divide the nodes of V into n/s committees of size s = log log n.
Within each committee, we instantiate GUpfal, which is an expander of constant
degree d = O(1). We then connect the n/s committees using the network GEff
from the previous section, where in order to connect two committees, we connect
them by means of a perfect matching between the two sets of s nodes.

Definition 7.

Graph: Our graph that is resistant to random errors is Grand = (V,E),
where V = [n]. The edge set is as follows. Arbitrarily partition the nodes
of V into n/s committees of size s = O(log log n). We let Cv denote the
committee containing node v, where Cu = Cv if u and v are in the same
committee. Within each committee, we instantiate GUpfal, which is an ex-
pander of constant degree d = O(1). We then connect the n/s committees
using the GEff , where in order to connect two committees, we connect them
by means of a perfect matching between the two sets of s nodes.
Protocol: We now describe the communication protocol Πrand over this
network. To this end, we first describe two building block protocols Πedge

and Πmaj.

– Πedge is the protocol that is invoked when we wish to send a message from
one committee, C to another C ′ that are connected in the GEff network
(connected by means of a perfect matching). We will assume that each
node in C is initialized with some message. In the protocol Πedge, each
node in C sends its message to the node it is matched to in C ′.

– Πmaj is a majority protocol invoked within a committee C. We will as-
sume that each node i in C is initialized with some message mi. The goal
of the Πmaj protocol is for each node in C to compute the majority func-
tion m = maj{mi}i. The protocol proceeds as follows: every node in C
invokes ΠUpfal to send its message to every other node in C. Each node
then simply computes (locally) the majority of the messages it received.

Now, if a node A wishes to send a message m to node B:

(a) If A and B are in the same committee C, then A simply sends the mes-
sage to B by invoking ΠUpfal within the committee C.

(b) If A and B are in different committees, CA and CB respectively, then:

i. A invokes ΠUpfal to send m to every other node in its committee
CA.

ii. The committee CA then invokes ΠEff to send a message to the com-
mittee CB. In the invocation of ΠEff , whenever two committees C
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and C ′ connected by GEff wish to communicate with each other,
they invoke Πedge and then C ′ invokes Πmaj.

iii. Finally, every node other than B in committee CB invokes ΠUpfal

to send the message they received to B. B computes (locally) the
majority of the messages it received.

Lemma 2. The network constructed is of constant degree, namely D = d+ 11.

Lemma 3. Protocol Πrand has polylog(n) round complexity and polylog(n) work
complexity.

Proof. The subprotocol Πmaj takes O(2s) = polylog(n) rounds and work by con-
struction of (GUpfal, ΠUpfal) protocol [27].Πedge clearly takesO(1) = polylog(n)
rounds and work. Since the diameter of GEff is O(log n) = polylog(n), and poly-
logarithms are closed under addition, multiplication, and composition, Πrand has
polylog(n) round and work complexity.

We now wish to argue that in the presence of a set T ⊂ V of randomly corrupt
nodes with |T | ≤ α3n, there exists a set S ⊂ V with |S| ≥ n − β3|T | such that
every pair of nodes in S can communicate reliably with each other, for constants
α3, β3. The proof proceeds as follows. We first show that most committees must
in fact contain close to an α3-fraction of corrupt nodes; call such committees as
good committees. For appropriately chosen parameters, this would ensure that
ΠUpfal works successfully for all but an ε-fraction of nodes in these good commit-
tee, for some small ε. We now consider nodes A, B that wish to communicate
with each other, and are also in good committees. Since A is in a good com-
mittee, all but an ε-fraction of the nodes in the committee receive A’s message
correctly. On any execution of Πedge between good committees, all but at most
an ε-fraction of the nodes in the receiving committee receive the correct value.
Now, in an execution of the Πmaj protocol, all but at most a 2ε-fraction of the
nodes begin with the correct value and only and ΠUpfal works successfully for
all but an ε-fraction of nodes. This ensures that as long as ε < 1/4, all but at
most an ε-fraction of the nodes compute the majority of the incoming messages
correctly. Inductively, this would show that at the end of the emulation of the
ΠEff protocol, all but an ε-fraction of the nodes in the committee containing B
receive A’s message correctly and since B is in a good committee and ε < 1/4,
B receives A’s message correctly.

We now formalize this argument. We call a committee good if the fraction of
corrupt nodes in it is at most α2 and bad otherwise. Let T ⊂ V be a set of
randomly corrupt nodes with |T | = t ≤ α3n where α3 = α2/100 where the
constant α2 is from Theorem 2.

Lemma 4. The probability that a committee is good is at least 1−(t/n)10 log logn.

Proof. Using the Chernoff bound from (5), we have the probability that a com-

mittee is bad is at most e
−
(
α2
α3
−1

)2 α3s
3 ≤ (t/n)10 log logn.
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We have that if C is a good committee with t′ ≤ α2s corrupt nodes, from
Theorem 2, there exists a set SC (privileged nodes) of at least s− β2t′ nodes in
C that can communicate reliably with each other.

Lemma 5. The number of bad committees is at most t/s
log(n) with probability at

least 1− 2−2t log (n/t)/ logn.

Proof. Using the Chernoff bound from (1), we have the probability that the

number of bad committees is more than t/s
log(n) is at most e−

δ log δζn
2s where ζ =

(t/n)10 log logn and δ = (t/n)/((t/n)10 log logn log n). On simplification, this gives
e−2t log (n/t)/ logn.

We say that a committee holds value v if all the privileged nodes in the committee
hold value v.

Lemma 6. If C and C ′ are good committees connected by an edge in GEff and
if C holds value v, after invoking Πedge and Πmaj, C

′ holds value v.

Proof. Since C holds value v, at least s− β2α2s nodes in C ′ receive the value v
after invoking Πedge. Hence, at least s− (β2 + 1)α2s nodes in C ′ begin with the
value v while invoking Πmaj in C ′. Consider the set SC′ of privileged nodes in
C ′. We have |SC′ | ≥ s− β2α2s. They receive messages reliably from each other.
Of these messages, at most (β2 + 1)α2s may be unequal to v. Thus each node in
SC′ will receive at least s− (2β2 +1)α2s copies of v. Hence, if (2β2 +1)α2 < 1/2,
the claim follows. We note from [27] that it is possible to take α2 = 1/72 and
β2 = 6 which satisfies (2β2 + 1)α2 < 1/2.

Considering the bad committees as corrupt nodes in GEff , since there are at

most t/s
logn of them (with overwhelming probability), from Theorem 5, there exists

a set of committees P (privileged committees) that can communicate with each
other reliably.

Lemma 7. Let A and B be two nodes in privileged good committees CA ∈ P
and CB ∈ P respectively. If A ∈ SCA and B ∈ SCB , then the above protocol
guarantees reliable message transmission from A to B.

Proof. Note that if CA = CB , we are done. We consider the case CA 6= CB . Since
A ∈ SCA , all nodes in SCA receive A’s message, m, correctly and CA holds m.
Since CA, CB ∈ P , after the invocation of ΠEff , CB holds m. Since B ∈ SCB , it
receives m from each node in SC′ . Hence B will receive at least s−β2α2s copies
of v. If β2α2 < 1/2, the claim follows. We note from [27] that it is possible to
take α2 = 1/72 and β2 = 6 which satisfies β2α2 < 1/2.

Lemma 8. With probability 1 − 2−2t log (n/t)/ logn, there exists a set of nodes
S ⊂ V where |S| ≥ n−β3|T | such that every pair of nodes in S can communicate
reliably with each other.
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Proof. The set S consists of nodes that are privileged nodes in privileged good
committees. Let t′′ denote the number of bad committees. Note that with proba-

bility at least 1−2−2t log (n/t)/ logn, t′′ ≤ t/s
logn . From Theorem 5, number of nodes

in unprivileged committees is bounded by O(st′′ log t′′) = O(t). Finally, we con-
sider the unprivileged nodes in privileged committees. Let ti denote the number
of corrupt nodes in committee Ci for i ∈ [n/s]. The number of unprivileged
nodes in privileged committees is upper bounded by

∑
i

O(ti) = O

(∑
i

ti

)
= O(t)

from Theorem 2. Thus, |S| ≥ n−O(t).

We summarize the result from this section in the theorem below.

Theorem 6. For sufficiently large n, there exists an n-node network Grand =
(V,E), a protocol Πrand for message transmission on it, and constants α3 and
β3, such that:

1. The network Grand is of constant degree.
2. The total work is O(polylogn).
3. The node complexity is polylog(n).
4. The round complexity is polylog(n).
5. If a subset of nodes T ⊂ V is randomly corrupt, where |T | ≤ α3n, with

probability 1 − 2−2t log (n/t)/ logn, there exists a set of nodes S ⊂ V where
|S| ≥ n− β3|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Πrand.

We end this section with the following remark. Let |T | = t. Note that in [10],
the number of nodes that can communicate with each other reliably is n − t −
O(t/ log n), that is, we give up at most O(t/ log n) = o(t) nodes. We remark
that this is not achievable in networks of constant degree even in the random
model. In an adversarial corruption setting, one can corrupt the neighbors of
O(t/d) nodes, and hence if d = O(1), any protocol must give up O(t) nodes.
This is true even in the random corruption model: a node has corrupt neighbors
with some constant probability if t = O(n) and hence any protocol must give up
O(t) nodes. Similarly, in networks of log log n degree, any protocol must give up
O(t/ log n) nodes.

5 Logarithmic degree Networks in the Worst-case Model

In the worst-case model, the current best networks are those constructed by
by Chandran, Garay and Ostrovsky [10]. They construct a graph with degree
d = logq n for some fixed constant q > 1, that is resilient to t = O(n) adversarial
corruptions. We show using a probabilistic argument the existence of a network
of degree O(log n) graph that is resilient to t = O(n) adversarial corruptions.
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Furthermore, the probabilistic construction works with all but negligibly small
probability.

Our construction is also rather simple. We achieve our result by using our
network that is resilient to random errors as a black box, to produce a modi-
fied family of graphs on which we can perform a Chernoff-union type analysis.
The style of our argument provides further motivation for studying the ran-
dom corruption model, even if the ultimate goal is to be resilient to adversarial
corruptions.

Definition 8.

Graph: Let Girand be iid graphs from the distribution Grand all on the same
vertex set for 1 ≤ i ≤ z , 103 log n. Define Gwc ,

⋃z
i=1G

i
rand.

Protocol: We now describe the A to B transmission protocol Πwc over this
network. The protocol proceeds in two steps:
(a) A will invoke protocols Πi

rand which will run on the subgraph Girand.
(b) B receives z messages each corresponding to one Πi

rand. B takes the
majority of all these messages.

Theorem 7. For the n = m2m-node network Gwc = (V,E) and the protocol
Πwc for message transmission on it there exists constants α and β, such that
whp:

1. The network Gwc has degree O(log n).
2. The total work is polylog(n).
3. The node complexity is polylog(n).
4. The round complexity is polylog(n).
5. If a subset of nodes T ⊂ V is corrupt, where |T | ≤ αn, there exists a set of

nodes S ⊂ V where |S| ≥ n− |T | − β|T |/ log n such that every pair of nodes
in S can communicate reliably with each other by invoking Πwc.

It is clear that the degree of the graph is O(log n) and the node complexity,
round complexity and total work are polylog(n).

We proceed to prove resiliency of the protocol. We will first consider a fixed
adversary and perform a union bound over all adversaries in the end. We will
say the the ith layer has failed if the conditions in Theorem 6 do not hold for
Girand. Next, we prove that this happens rarely.

Lemma 9. With probability at least 1 −
(
n
t

)−1.1
at most 1/50 fraction of the

layers fail.

Proof. By Theorem 6 each layer fails with probability ≤ 2−n log (n/t)/ logn. So the
probability that 2 log n out of 103 log n fail is at most

2103 logn
(

2−t log (n/t)/ logn
)2 logn

= poly(n)(n/t)−2t �
(
n

t

)−1.1
for t = ω(1).
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Theorem 7. Assume less than 1/50 layers of the network fail. We disregard all
the layers that have (as we will see later they will not affect the majority). We
still have at least 100 log n layers. Call this new graph G′. Note that we cannot
construct this graph and it is only used in the analysis. Define Bi to be the nodes
which belong to the unprivileged set for Girand. We call a node “give up” for G′

if it belongs to (1/5)th of the Bi’s. By Theorem 6 there are at most β3|T | nodes
which are unprivileged per layer. Due to the permutation randomization of Vi the
distribution of the set of give up nodes (in Girand) is majorized by the distribution
in which each node belongs to the set of give up nodes with probability β3|T |/n.
By Chernoff bound the probability that a particular node(other than bad nodes)
is “give up” is ≤ (O(t/n))logn. The probability that β1t/ log n nodes (other than
bad nodes) are ”give up” is ≤ (O(t/n))(logn)(β1t/ logn) = (O(t/n))β1t. Now we
will do a union bound over all adversaries

(
n
t

)
(O(t/n))β1t � 1 for appropriately

large constant β1.

6 Constant-degree Networks in the Corporation Model

In this section, we show the abundant existence of constant degree networks
that are resilient to corporations comprising a constant fraction of nodes be-
ing corrupted in the corporation-log(n) model. In Section 4 we built a constant
degree graph, Grand, that is resilient to a constant fraction of random corrup-
tions. Grand = (V = [n], E) was constructed by partitioning the nodes of V
into n/s committees C1, . . . , Cn/s (where s = log log n). Notably, an arbitrary

partitioning {Ci}n/si=1 sufficed to be resilient to random corruptions. Corporation
corruptions are non-random, and in fact adversarial. We show however, the sur-
prising result that essentially the same graph Grand will achieve resilience to
corporation-log n corruptions—even when a constant fraction of the nodes are
being corrupted. The result is achieved by inserting more randomness into the
structure, leveraging the extremely high probability of success in the Grand con-
struction, and applying—once again—the probabilistic method. To our knowl-
edge, we are the first to introduce the probabilistic method to the field of AE
Byzantine fault tolerant networks; and the introduction of this method makes
the theorems in this section easy to prove. Surprisingly, we do not know of any
methods to achieve these guarantees using previous methods or explicit deter-
ministic constructions. First we present the network and protocol.

Definition 9.

Graph: The graph Gcorp = (V,E) is defined almost identically to Grand. The
single difference is in how the vertices are partitioned into committees. While
in Grand we partition the nodes into arbitrary committees of size log log n,
in Gcorp we partition the nodes into random committees of the same size.

Protocol: The protocol Πcorp is identical to the protocol Πrand, just tuned
to the new selection of committees.
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Remark 2. By definition, Gcorp is a random variable, since the breakdown of
commitees is defined randomly. However, when it is clear from context, we may
refer to a particular realization of the graph as Gcorp also.

We will refer the to the committees of Gcorp as {Ci}n/si=1 where s = log log n
is the number of committees.

Lemma 10. For sufficiently large n, there is a constant ε such that, if any fixed

set of t ≤ εn nodes are corrupted before the committees {Ci}n/si=1 are picked
at random, then Gcorp is resilient to these corruptions with probability 1 −
2−2t log (n/t)/ logn.

Proof. Since the corrupted nodes are chosen before the randomization, we can
equivalently think of t ≤ εn nodes being corrupted at random after fixing Gcorp.
So, the theorem is an immediate consequence of Theorem 6.

We now think of the nodes [n] of Gcorp as being partitioned among h corpo-
rations, as V1 ∪ · · · ∪ Vh = [n], for some value of h

Theorem 8. For sufficiently large n, there are constants ε, β such that, (Gcorp, Πcorp)
is resilient to a constant fraction of corporation-log n corruptions:

1. The network Gcorp is of constant degree.
2. The total work is polylog(n).
3. The node complexity is polylog(n).
4. The round complexity is polylog(n).
5. If any subset H ⊂ [h] of corporations is corrupted, i.e., the nodes T = ∪i∈HVi

(for t = |T | ≤ εn) is corrupted, there exists a set of nodes S ⊂ V where
|S| ≥ n− β|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Πcorp with probability 1− 2−t log (n/t)/ logn.

Proof. The first four properties follow from the corresponding properties for
Grand in Theorem 6. So, the third property remains to be proved.

Assuming that all the corporations have size at least k log n, the total number
of sets H such that |∪i∈HVi| ≤ εn is at most

` =

t
k log(n)∑
j=0

( n
k log(n)

j

)

since the number of indices h is at most n/(k log n) and at most t
k log(n) corpo-

rations can be corrupted if the total number of nodes corrupted is at most εn.

We notice that, ` ≤
(

(e+1)n
t

) t
k logn

by Stirling’s approximation. The previous

lemma shows that the probability of correctness of Gcorp for t corruptions is
1 − 2−2t log (n/t)/ logn. So, using the union bound, we see that making k suffi-
ciently large ensures that the probability of Gcorp being resilient to t corruptions
for all possible adversarial corruptions is at least 1− 2−t log (n/t)/ logn.
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Since, the random network Gcorp has the properties of the preceding theorem
with high probability, it follows by the probabilistic method that there is a fixed
graph that has all the properties in the theorem. We distill this straightforward
consequence into a concrete corollary.

Corollary 2. For sufficiently large n, there are constants ε, β and a networked
protocol (G,Π) that is resilient to a constant fraction of corporation-log n cor-
ruptions:

1. The network G is of constant degree.
2. The total work is polylog(n).
3. The node complexity is polylog(n).
4. The round complexity is polylog(n).
5. If any subset H ⊂ [h] of corporations is corrupted, i.e., the nodes T = ∪i∈HVi

(for t = |T | ≤ εn) is corrupted, there exists a set of nodes S ⊂ V where
|S| ≥ n− β|T | such that every pair of nodes in S can communicate reliably
with each other by invoking Π.
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