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Abstract. Error-correcting codes can be useful in reducing decryption failure rate of
several lattice-based and code-based public-key encryption schemes. Two schemes,
namely LAC and HQC, in NIST’s round 2 phase of its post-quantum cryptography
standardisation project use the strong error-correcting BCH code. However, direct
application of the BCH code in decryption algorithms of public-key schemes could open
new avenues to the attacks. For example, a recent attack exploited non-constant-time
execution of BCH code to reduce the security of LAC.
In this paper we analyse the BCH error-correcting code, identify computation steps
that cause timing variations and design the first constant-time BCH algorithm. We
implement our algorithm in software and evaluate its resistance against timing attacks
by performing leakage detection tests. To study the computational overhead of the
countermeasures, we integrated our constant-time BCH code in the reference and
optimised implementations of the LAC scheme as a case study, and observed nearly
1.1 and 1.4 factor slowdown respectively for the CCA-secure primitives.
Keywords: Post-quantum cryptography · Decryption failures · Error-correcting codes
· Constant-time implementation

1 Introduction
With large-scale quantum computers likely to be realised in the next 20 years [11], current
widely implemented public-key schemes such as RSA and Elliptic-Curve Cryptography
(ECC) are soon theorised to be obsolete as the computationally hard problems underpinning
their security may be solvable in a post-quantum scenario [24], completely compromising
the schemes. Lattice-based problems such as Learning with Errors (LWE) [22] or Learning
with Rounding (LWR) [1], including their ring and module variants, have been very
popular for constructing efficient public-key, post-quantum secure, cryptosystems. The
LWE assumption underpinning their security states that it is computationally infeasible,
theoretically even in a quantum scenario, to distinguish with non-negligible advantage
between samples from a LWE distribution As,χ and samples drawn uniformly from Znq ×Zq.
For secret s ∈ Znq , the LWE distribution As,χ consists of tuples (a, a·s+e) ∈ Znq ×Zq, where
a ∈ Znq is uniformly-random and e ∈ Z is an error coefficient from the error distribution χ.

Through the process of encryption and then decryption, cryptosystems based on LWE or
LWR problems have non-zero decryption failure rate. To reduce this failure rate, typically
two mechanisms are used in the literature. Most schemes use ‘reconciliation’ mechanisms
that involve transmission of additional information so that the two communicating parties
can agree on a common key with higher success probability. An alternative approach
is to use an error-correcting code to reduce the failure probability [6, 14] to a negligible
level. Lattice-based schemes Round5 [23] and ThreeBears [12] use simple repetition codes
for error correction, whereas LAC [16] uses strong error-correcting BCH code due to its
aggressive design choices.
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Error-correcting codes have applications in code-based public-key cryptography. For
example, Hamming Quasi-Cyclic (HQC) [21] uses Tensor Product Codes (BCH codes and
repetition codes) during its decryption operation.

Error-correcting codes are of two main categories: block codes and convolution codes.
When the block-size is fixed, which is the case in our research, block codes perform very well
as they can be hard-decoded in polynomial time. Convolution codes are more appropriate
when the bit streams are of arbitrary length.

Having been studied for several decades in the context of communication, direct
application to cryptography would result in the correction of decryption failures but
also could introduce cryptographic weakness to otherwise theoretically strong and secure
schemes. Recently D’Anvers et al. [7] devised a method for failure boosting decryption
failures in LWE-based schemes, and by using a timing side-channel built a statistical model
around the amount of information leaked by these failures. Subsequently, an estimation of
the secret could be derived from the model which could be used to construct an easier
problem for an attacker to solve to eventually break the entire secret. As a result the
authors showed that an attacker could significantly reduce the security of LWE-based
schemes that utilise error-correcting codes by using a timing side-channel found in BCH.

By eliminating the timing side-channel from BCH, both LAC and HQC can be made
resistant to timing attacks. We propose the first constant-time implementation of the BCH
error-correcting algorithm. We start with identifying the steps that lead to non-constant-
time execution and design countermeasures by introducing algorithmic tweaks.

Contributions: The aim of this paper is to implement a constant-time variant of BCH,
which can be placed as the error-correcting component of a cryptographic scheme to harden
the error-correcting element from attacks which aim to exploit timing side-channels, and
in turn strengthen the overall scheme.

This paper analyses the Simplified Inversion-less Berlekamp-Massey Algorithm (SiBMA)
[6] for error-location polynomial computation often used during the decoding process of
BCH. By analysing this algorithm for features which result in non-constant-time execution,
and extrapolating observations to the entire encoding and decoding processes of BCH, we
can develop countermeasures which will result in constant time execution.

The developed software implementation runs in a constant time and this claim is
additionally supported by leakage-detection tests. BCH code has been applied in the LAC
scheme and as such the LAC scheme is used in this research as a case study for analysing
the performance overhead resulting from implementing the countermeasures. Source code
is available from https://github.com/mjw553/Constant_BCH.

Organisation: The rest of the paper is organised as follows: Sec. 2 has the related
mathematical background on BCH codes. Sec. 3 analyses the vulnerability of BCH codes to
timing side-channel attacks and introduces methods to prevent against such vulnerabilities.
Sec. 4 evaluates the proposed countermeasures. The performance overheads are discussed
in Sec. 5. The final section concludes this work.

2 Background
In this section we describe the BCH error-correcting code. For their conciseness and
clarity, the description of BCH codes below is heavily influenced by the Han lecture notes
[13], themselves drawing from the explanations of Costello and Lin [6]. For a greater and
well-presented description of the mathematical primitives referenced (such as Finite Fields
or Primitive Elements), we draw the attention of the reader to the work of Huffman and
Pless [14]. For work that has been done on the efficient implementation of software-based
BCH, we draw the attention of the reader to the work of Cho and Sung [5].

https://github.com/mjw553/Constant_BCH
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2.1 Definition:
Due to the nature of our work, we only consider binary BCH codes. For any positive integers
m ≥ 3 and t < 2m−1 (error-correcting capability), there exists a binary t-error-correcting
BCH code, denoted BCH(n, k, d), with the following parameters:

• Block length: n = 2m − 1

• Number of parity-check bits: n− k ≤ mt

• Minimum distance: dmin ≥ 2t+ 1

where n is the size of the codeword, k is the length contribution in the codeword of the
message, and d is the minimum distance (dmin) between codewords.

Let α be a primitive element in GF (2m). The generator polynomial g(x) of the code of
length 2m − 1 is the lowest-degree polynomial over GF (2) which has α, α2, . . . , α2t as its
roots. Therefore, g(αi) = 0 for 1 ≤ i ≤ 2t and g(x) has α, α2, . . . , α2t and their conjugates
as roots.

Let φi(x) be the minimal polynomial of αi, where φ1(x) is the primitive polynomial
from which all elements can be generated. Then g(x) must be the least common multiple
of φ1(x), φ2(x), . . . , φ2t(x), i.e.

g(x) = LCM{φ1(x), φ2(x), . . . , φ2t(x)} (1)

However, if i is an even integer, it can be expressed as i = i
′2l where i′ is odd and

l > 1. Then αi = (αi
′

)2l is a conjugate of αi
′

. Hence φi(x) = φi′ (x), and therefore

g(x) = LCM{φ1(x), φ3(x), . . . , φ2t−1(x)} (2)

This property is useful for efficiency, reducing the number of calculations required for
BCH decoding.

Since α is a primitive element, the BCH codes defined are usually called primitive (or
‘narrow-sense’) BCH codes.

2.2 Encoding
To transmit the whole codeword, data symbols are first transmitted and then followed by
the parity symbols. This can be represented as

C(x) = xn−kM(x) + P (x), (3)

where M(x) is the original source message and P (x) is the parity, given

P (x) = xn−kM(x) mod g(x) (4)

where g(x) is the generator polynomial.

2.3 Decoding
Decoding of BCH codes occurs over three major steps as follows.

1. Syndrome generation of 2t syndromes from the received codeword.

2. Error-locator polynomial, Λ, calculation.

3. Solve Λ, the roots of which point to the error locations, and correct the received
codeword.

These steps are described in detail in the following part of this section.
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Figure 1: BCH error-correction using the Berlekamp-Massey Decoding algorithm [9]

2.3.1 Syndrome Generation

Let
r(x) = r0 + r1x+ r2x

2 + · · ·+ rn−1x
n−1 (5)

be the received codeword. We expect r(x) to be a combination of the actual codeword v(x)
and error e(x) from a noisy channel,

r(x) = v(x) + e(x). (6)

The syndrome is a 2t-tuple,
S = (S1, S2, . . . , S2t), (7)

where
Si = r(αi) = r0 + r1α

i + · · ·+ rn−1α
(n−1)i (8)

for 1 ≤ i ≤ 2t.
Dividing r(x) by the minimal polynomial φi(x) of αi, we have

r(x) = αi(x)φi(x) + bi(x), (9)

where bi(x) is the remainder,

bi(x) = r(x) modφi(x). (10)

Since φi(αi) = 0, we have
Si = r(αi) = bi(αi). (11)

Finally, as α1, α2, . . . , α2t are roots of each code polynomial, v(αi) = 0 for 1 ≤ i ≤ 2t.

If all elements of S are 0, there are no errors and therefore decoding can stop here.
As described in the definition of BCH codes, if i is an even integer it can be expressed as
i = i

′2l where i′ is odd and l > 1. We can therefore compute the odd-numbered syndromes
by calculating Si for i = 1, 3, 5, . . . , 2t− 1, and then easily compute the even-numbered
syndromes from the relation S2i = S2

i for a more efficient approach to syndrome generation.

2.3.2 Error-location polynomial calculation

Any method for solving S is a decoding algorithm for BCH codes. Developed in 1967
[2, 19], the Berlekamp-Massey method is an efficient algorithm for solving the syndromes,
S. In this section we will describe both the original Berlekamp Massey algorithm and a
more efficient variant, the Simplified Inversion-less Berlekamp-Massey Algorithm (SiBMA),
as described by Costello et al. [6]. The simplified version is outlined in Algorithm 1 and is
considered advantageous because of its reduction in iterations by one-half when considering
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Algorithm 1 SiBMA for calculating error-locator polynomials [6]
1: INPUT: S[2t] = S[1],S[2],. . . ,S[2t] // array of calculated syndromes
2: INPUT: t // error-correcting capability of the code
3: OUTPUT: Ct+1(x) // error-location polynomial (elp) after t iterations
4:
5: /* Initialise arrays */
6: C [t+2][t + 1](x) // current elps with each iteration, t+1 coefficients
7: // must initialise t + 2 of these
8: D[t+1] // current discrepancy value with each iteration
9: L[t+1] // corresponding degree of C[ ](x) with each iteration

10: UP[t+1] // value of 2(i-1)-L[i] with each iteration
11:
12: /* Assign Initial Values */
13: C0[0] = 1, C1[0] = 1, D[0] = 1, D[1] = S[1], L[0] = 0, L[1] = 0, UP[0] = -1
14: upMax = -1, p = -1, pVal = 0
15:
16: /* Main Algorithm */
17: for i = 1; i <= t; i++ do
18: UP[i] = 2·(i - 1) - L[i]
19: if D[i] == 0 then
20: Ci+1(x) = Ci(x)
21: L[i+1] = L[i]
22: else
23: /* Find another row, p, prior to ith row such that D[p] != 0 and UP[p] has largest value */

24: for j = 0; j < i; j++ do
25: if D[j] != 0 && UP[j] > upMax then
26: upMax = UP[j], p = j, pVal = j
27: end if
28: end for
29: if p == 0 then
30: pVal = 1

2
31: end if
32: Ci+1(x) = Ci(x) + (D[i] · (D[p])−1 · x2·((i-1)-(pVal-1)) · Cp(x))
33: L[i+1] = max( L[i] , L[p] + 2 · ((i - 1) - (pVal-1)) )
34: end if
35: if i != t then
36: D[i + 1] = S[2i + 1] +

∑L[i+1]
j=1 (Ci+1[j] · S[2i + 1 − j] )

37: end if
38: end for
39: return Ct+1(x)
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binary BCH codes, iterating for t instead of 2t. All arrays are zero-indexed except for
syndromes, S, which is one-indexed for consistency with definitions above.

Considering first the original Berlekamp Massey algorithm, it builds up the error-locator
polynomial by requiring that its coefficients satisfy a set of equations known as the Newton
identities [20]. In the initial (0th) state, we initialise all values in their respective arrays.
We then start and iterate until we calculate the minimum-degree polynomial C2(x) which
satisfies the first Newton identity. We then check if the coefficients also satisfy the second
Newton identity by calculating the discrepancy, representing the difference between the
identity and the current representation C3(x). If it does (the discrepancy is 0), we precede
iterating over the syndromes, otherwise we alter C3(x) so that it does, and then precede
until C2t+1(x) is obtained and all 2t Newton Identities are satisfied. We then take the
error-location polynomial C(x) (represented as Λ(x) in the other algorithms) to be the
state after the 2t-th iteration.

Let the minimal-degree polynomial determined at the end of kth step of iteration,
1 ≤ k ≤ 2t, whose coefficients satisfy the first k Newton identities for L[k + 1] presumed
errors be

Ck+1(x) = Ck+1[0] + Ck+1[1] · x+ Ck+1[2] · x2 + · · ·+ Ck+1[L[k + 1]] · xL[k+1] (12)

where Ck+1[0] = 1.

At the end of iteration k, excluding the last iteration, the discrepancy between the
current representation Ck+1(x) and the k + 1’st Newton identity, represented by Ck+2(x),
is calculated as

D[k + 1] = S[k + 1] + ΣL[k+1]
j=1 (Ck+1[j] · S[k + 1− j]) (13)

When updating during iteration k, we consider:

1. If D[k] == 0, then Ck+1(x) = Ck(x) and L[k + 1] = L[k].

2. If D[k] 6= 0, find iteration p prior to the kth iteration, 0 ≤ p < k, such that D[p] 6= 0
and (p− 1)− L[p] has the largest value. Then

Ck+1(x) = Ck(x) + (D[k] ·D[p]−1 ·X((k−1)−(p−1)) · Cp(x)) (14)

L[k + 1] = max(L[k], L[p] + (k − 1)− (p− 1)) (15)

and in either case, if k 6= 2t (protecting against out-of-bounds access to S):

D[k + 1] = S[k + 1] + ΣL[k+1]
j=1 (Ck+1[j] · S[k + 1− j]) (16)

For SiBMA, we make minor alterations for updating with each successive iteration,
now only iterating for 1 ≤ k ≤ t. When updating during iteration k, we consider:

1. If D[k] == 0, then Ck+1(x) = Ck(x) and L[k + 1] = L[k].

2. If D[k] 6= 0, find iteration p prior to the kth iteration, 0 ≤ p < k, such that D[p] 6= 0
and (if p == 0, set pV al = 1

2 , or pV al = p otherwise) 2(pV al − 1) − L[p] has the
largest value. Then

Ck+1(x) = Ck(x) + (D[k] ·D[p]−1 ·X2((k−1)−(pV al−1)) · Cp(x)) (17)

L[k + 1] = max(L[k], L[p] + 2((k − 1)− (pV al − 1))) (18)

and in either case, if k 6= t (protecting against out-of-bounds access to S):

D[k + 1] = S[2k + 1] + ΣL[k+1]
j=1 (Ck+1[j] · S[2k + 1− j]) (19)



Matthew Walters and Sujoy Sinha Roy 7

2.3.3 Solving the error-locator polynomial and correcting errors

We must solve the error-location polynomial, Λ(x), for its roots to determine the locations
of errors in the received codeword. These roots are the inverse of the error-locations, and
as we are considering the binary case, we simply flip the bits in these positions.

It is common to use Chien Search [4] to solve the polynomial. A brute-force substitution
method, the algorithm examines whether αi is a root of Λ(x) for i = 1, . . . , n− 1. That is
to say that for all primitive elements α1, α2, . . . , αn−1, we select all αi for which

Λ(αi) = 0 (20)

3 Analysing and securing the SiBMA algorithm
In this section we explore the vulnerability of BCH codes to timing side-channel attacks.
We start by introducing typical algorithmic changes which can translate a variable-time
algorithm into a timing-attack resistant, constant-time equivalent. SiBMA is used as a
case study for this work as it contains many of the algorithmic features which are typically
attributed to variable-time algorithms and present in the other parts of the BCH process.
This work can then be extrapolated to the entire encoding and decoding BCH process.
Programming features which appear in common implementations which should be handled
to ensure an effective, secure, implementation are then also noted. Finally, a timing
side-channel resistant variant of SiBMA, ConSiBMA, is then presented.

3.1 Analysis and design
3.1.1 Constant-execution FOR loops

We consider the two FOR loops in the SiBMA algorithm:

17: for i = 1; i <= t; i++
...
24: for j = 0; j < i; j++

As the first loop on line 17 iterates from 1 to t (the error-correcting capability of the
code), this will iterate a constant number of times irrespective of input length. As the
second loop on line 24 iterates from 0 to the iterator of the first loop, i, this will also run
irrespective of input length, and given there are no terminating statements inside such as
break or exit, the algorithm already has loops which iterate a constant number of times.

Although these are presented as constant time in the SiBMA algorithm and there are
no terminating statements, implementations [16] may attempt to reduce the iterations
based on the input, such as by using a loop of the form for(i=0;i<in_length;i++)
(iterating over an input), for efficiency reasons and as a result would be vulnerable to
timing side-channel attacks.

To address this we must first fix the iteration length, setting it to the theoretical
maximum value based on the algorithm, and ensure that there are no early-termination
statements such as break or exit. Loops that need to be altered to always run their
maximum number of iterations must be careful to not perform any actions such as variable
assignment with a variable value whilst executing an iteration of the loop that would
otherwise not be executed to ensure program correctness is maintained. This can be done
in a constant-time approach using a bounds determiner to indicate whether a variable
assignment should persist through the given iteration (i.e. whether there should be an
effect to running the iteration). For example, an assignment to a variable in a non-constant
approach may be v = x;, where in a constant approach it becomes

v = x * determiner + v * !determiner;
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where v evaluates to x if determiner evaluates to 1 (indicating the iteration should persist
effects), and the original value v otherwise (no affect on the overall algorithm). The value
of the determiner itself can be calculated in a constant time by checking whether the
current iteration value is accepted by the loop condition which was initially in place, for
example:

int j = 4;
for(i = 0; i < j; i++)

...

will become

int max_value = 6;
int j = 4;
for(int i = 0; i < max_value; i++)

determiner = ((i - j) & mask) >> 31;
...

where the difference between the current iteration i and the original bound j is determined,
and then bitwise AND’d with a mask representing the largest negative number for the
representation of numbers being used inside the loop, finally bit-shifting to the most
significant bit to determine if the difference is positive or negative, representing whether
the condition is met (with a value of 1) or not (with a value of 0).

3.1.2 Constant-execution branching statements

SiBMA has four branching statements which span the lines 19 to 37. Many processors will
perform optimisation methods such as Branch Prediction to improve execution performance
of branching statements. Also, branches of unequal operations will execute differently,
leaking execution information to an observer. Therefore these must be handled to ensure
that the same number of operations are carried out and execution is consistent irrespective
of the evaluation of a statement’s condition.

Cross-Copying vs Conditional Assignment methods
Two methods for translating non-constant to constant-execution branching statements
are considered, Cross-Copying and Conditional Assignment. Both approaches attempt to
obfuscate to an observer how a branching statement executes. They were chosen as they
formed part of the evaluation conducted by Mantel and Starostin on timing side-channel
countermeasure techniques (of which Conditional Assignment evaluated the best) [18] and
were later considered, and shown to be successful, by Mantel et al. as countermeasures
against power side-channel attacks [17].

Cross-Copying balances out the branching statement to ensure that an equal number of
operations are executed irrespective of which branch was taken. In the case of a one-branch
statement (i.e. an IF statement with no ELSE), a branch can be created to balance out
the original. This is normally implemented by using a dummy variable so that no effect of
extra operations propagate through the function.

Unfortunately this method is susceptible to fault attacks, which have been contextualised
in both hardware [3] and software [15] environments. An attacker may inject a program
with ‘faults’ in an attempt to see how various parts of the program affect the output. If a
fault were to be injected into a dummy variable the overall output would not be affected
and as a result an attacker may determine the use of dummy variables. As a result we
propose Conditional Assignment as a viable, tested [17, 18], alternative.

Conditional Assignment removes the branching statement entirely, and instead utilises
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a determiner similar to before to control whether a particular value gets updated or not.

Four key features to altering the branching statements of the SiBMA algorithm which
must be considered can now be noted:

1. As the branching statement on line 19 is an IF-ELSE statement, care must be taken
to evaluate the execution determiner to True before the ELSE if the condition was
met, but after the ELSE if it was not.

2. Assignments of the form A[i+1] = A[i] or A[i+1] = b, such as the one on lines
18 and 21, where the iterator (i) is increasing and indexing to unassigned elements,
one can simply evaluate to the correct value or 0.

3. Branching statements (nested) inside of branching statements, such as the one
starting on line 25 inside of the statement starting on line 19, are conditional on the
surrounding statement and should be adjusted.

4. When variables are being overwritten, such as those on line 26, they must take either
the new value or their existing value dependant on the execution determiner value.

3.1.3 Uniform array access

The SiBMA algorithm has many array accesses. Although arrays are stored in contiguous
memory blocks, data-dependent access (accessing arrays based on the evaluation of input
data resulting in different indexes) can result in timing variations.

For example, the array accesses on line 18, UP[i] = 2 · (i-1) - L[i], is only depen-
dent on the overarching iterator i and as such executes in a predictable manner which
would not leak information to an attacker and therefore does not need to be altered.
However, the array access S[2i+1-j] must be altered on line 36 as it is dependant on j,
itself dependent on L[i+1], itself dependent on the value of D[i], itself dependent on the
values of S[ ], which is data-dependent.

To translate a variable-time array access into one which executes in a constant time we
consider two methods - blinded array access and full table scan.

Blinded array access
Instead of accessing only one element in the array, we access all elements and perform
arithmetic operations using the elements, but only return the element with which we were
looking to access initially. This way there is no timing difference when a specific index is
requested. Implementation wise, for every possible index we mask it to a value of all 0s if
it isn’t the required index, or all 1s if it is. We then AND this mask with the value read
from the array at the current index. As a result, at the end of iterating, sum will contain
the value of the array at the required index. This is given in Algorithm 2. Similarly for
writing (Algorithm 3), we alter the array value access to instead write to the indexed
position either the new value or original, controlled by a determiner. In the algorithms,
{x} denotes the setting all bits up to the highest currently set bit to the value x (set_bits
function), whereas [x] denotes the setting of all bits in the word to x.

Full table scan
It is easy to see that running an algorithm for the maximum number of operations for every
input will induce overhead. Whilst some techniques can be implemented to reduce the
factor of overhead, there is inherently more computational effort required for a constant-
time implementation. This therefore represents a fine trade-off between computational
efficiency and computational security.

As a consequence, a more efficient variant of BCH is implemented, but with resultant
weaker security guarantees, by replacing the computationally taxing blinded array access
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Algorithm 2 Blinded array reading
1: INPUT: index // index of array value
2: INPUT: size // length of array
3: INPUT: arr[ ] // array to access
4: OUTPUT: sum // value of array at index position
5:
6: /* Initialise Variables */
7: xorVal, anyOnes, flipExpand, j, sum = 0
8: one = 1 // representation of 1 in array type
9: /* Main Algorithm */

10: for j = 0; j < size; j++ do
11: xorVal = j ⊕ index // XOR potential index with required index
12: anyOnes = set_bits(xorVal) // anyOnes = {0} if j = index, {1} otherwise
13: flipExpand = (anyOnes & 1) - one // flipExpand = [1] if anyOnes = {0}, [0] otherwise
14: sum = sum + (flipExpand & arr[j]) // flipExpand = [0] except if j = index
15: end for
16: return sum

Algorithm 3 Blinded array writing
1: INPUT: index // index of array value
2: INPUT: size // length of array
3: INPUT: arr[ ] // array to access
4: INPUT: val // value to place into array
5:
6: /* Initialise Variables */
7: xorVal, anyOnes, flipExpand, j, sum = 0
8: one = 1 // representation of 1 in array type
9: /* Main Algorithm */

10: for j = 0; j < size; j++ do
11: xorVal = j ⊕ index // XOR potential index with required index
12: anyOnes = set_bits(xorVal) // anyOnes = {0} if j = index, {1} otherwise
13: flipExpand = (anyOnes & 1) - one // flipExpand = [0] if anyOnes = {1}, [1] otherwise
14: arr[j] = (arr[j] & ∼ flipExpand) + (val & flipExpand)
15: // flipExpand = {0} except if j = index
16: end for

with full table scan array access. This method first accesses every element sequentially in
an array and then reads/writes at the intended index. This limits access timing variations
due to the table being completely read into the cache before accessing the desired index.
This alternative algorithm is presented for reading arrays in Algorithm 4.

The weakness in security is attributed to an attacker being able to manipulate the
cache. As an example, let A be the array we wish to access, and i be the index of the
value we wish to retrieve from A. If we read the entirety of A into the cache and then
access A[i], time to access will be uniform for all possible i, provided the entirety of A
can be read into the cache. However, if an attacker manages to replace what is in the
cache in the location where A[i] was stored, it will trigger a cache miss which results in
the value of A[i] needing to be fetched from other, slower, areas of memory, which will
be noticeably slower than if another, non replaced, index was requested. Therefore an
attacker can determine the specific indexes being read by the program and can as such
learn information about the program input if these are input-dependant.
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Algorithm 4 Full table scan read
1: INPUT: index // index of array value
2: INPUT: size // length of array
3: INPUT: arr[ ] // array to access
4: OUTPUT: val // value of array at index position
5:
6: /* Initialise Variables */
7: val = 0, i;
8: /* Main Algorithm */
9: for i = 0; i < size; i++ do

10: val = arr[i] // Read all elements into cache
11: end for
12: val = arr[index] // Access required element from cached array
13: return val

3.2 Implementation considerations
The open-source BCH library by Parrot for Developers, made available on GitHub [8],
was used as a base implementation to apply the devised countermeasures to and evaluate
their success. It uses the SiBMA variant for error-locator polynomial calculation and is
integrated into the LAC scheme as its method of error correction. This conveniently allows
for LAC to be used as a case study for the security improvements to BCH codes and
requires few adjustments to LAC-specific code. This section notes some considerations
which had to be made to translate the library into a constant-time equivalent.

3.2.1 Structures

The reference base implementation utilises a large structure, bch_control, to store the
current state of the program at various stages of execution. It stores key attributes (such as
elp representing the error-locator polynomial once calculated, ecc_bits storing the size of
the error-correcting code and a_pow_tab/a_log_tab storing table-lookups for Galois field
values), and ‘scratch’ spaces (such as cache storing temporary values used during Chien
Search and poly_2t representing temporary polynomials used in Berlekamp Massey).

For security, large structures are typically avoided due to reduced programmatic control.
Constant integers such as t and ecc_bits are replaced with global constants MAX_ERROR
and ECC_BITS respectively. Variables such as elp and syn are then locally, statically,
allocated in the appropriate locations with appropriate scope to avoid the need to include
them entirely in the structure. Once all of these changes have been appropriately made,
the use of the bch_control structure can be removed entirely from the code and as a
result greater control over the implementation is achieved.

3.2.2 Large data-dependent look-up arrays

During initialisation of the original bch_control structure, the large arrays a_pow_tab
and a_log_tab, used to store values of αi and logα(x) respectively, were populated at
run-time by the method build_gf_tables. Unlike other data-dependent array accesses,
these arrays can be more efficiently handled then by just making them global and accessing
with blinded access due to the values for each index already being known. This section
explores two potential methods for handling these large look-up arrays more efficiently
than standard blinded access - bit-sliced access, and blinded access with array packing.

Bit-sliced access
As all values (excluding the duplicate 1’s in a_pow_tab and duplicate 0’s in a_log_tab,
which can be explicitly handled) are unique, a truth table can be generated to map how
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index bits contribute to output bits. Therefore the output can be presented as a function
of the bit-represented index and this can be mapped into a set of bitwise operations which
will run in constant time. However, as we treat the output as a function of input, it is
difficult to parallelise and make more efficient than a basic implementation.

Blinded access with array packing
In the original implementation, the arrays a_pow_tab and a_log_tab both contain 512
elements. If using blinded array access this will take a considerable amount of time to
cycle through and there will be significant overhead. As indexes are not dependent on
one-another we can utilise Bit Packing to pack arrays. Modern 64-bit machines are capable
of performing operations on values up to 64-bits, so programs can be optimised to make
use of this, performing a single operation on a 64-bit value rather than lots of operations
on values represented by few bits. Bit Packing provides a mechanism for this by using
bit-shifting to represent multiple small-bit values in one 64-bit value.

As both arrays are indexed by a maximum value of 511 (as C is 0-indexed), all values
stored are below 512, and these can be represented by 9 bits, we can therefore pack
floor(64/9) = 7 indexed values into one larger 64-bit value, therefore representing the
values of the original array at the 7 indexes in one value (see Figure 2). 512/7 = 73.1...
means that we will have 73 full 64-bit values each representing the value of 7 indexes and
one with only 512− 73 ∗ 7 = 1 value represented.

Figure 2: Packing 9-bit values into 64-bit value

For a section of seven indexes, starting at position j, we can therefore pack the values
which they index in the array a in the following way:

a[j] + (a[j + 1] � 9) + (a[j + 2] � (9 ∗ 2)) + (a[j + 3] � (9 ∗ 3))
+(a[j + 4] � (9 ∗ 4)) + (a[j + 5] � (9 ∗ 5)) + (a[j + 6] � (9 ∗ 6))

(21)

We can then pack the index required in a similar manner to determine which index
in the new array of 64-bit values the packed original array value should be extracted
from. The algorithm then proceeds similar to normal blinded array access until the correct
bit-packed value is located. It must then be unpacked to get the specific value. Before
unpacking the result will only contain 1s in one of the seven 9-bit segments of the 64-bit
value, representing the value to be extracted, the rest will be 0s. Therefore this 64-bit
value can be successively split and OR’d with the opposite half to end up efficiently with
the correct original value which is to be returned.

As seven chunks of 9-bits can be packed into one 64-bit value, the use of Bit Packing
in this way on large arrays can therefore theoretically improve the efficiency of the blinded
array access to read these look-up tables by seven times.

Comparison of techniques
In Figure 3 we compare the CPU cycles taken to return the value at random indexes in
the a_pow_tab look-up table for all three implementations. Each method is tested with
the same index for each test, repeating for 10,000 tests. As expected the packed variant
of the blinded array access implementation performs seven times faster than the original.
Although bit-slicing is faster than the original blinded implementation, it is approximately
five times slower than the packed blinded implementation. Consequently, packed blinded
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array access will be used for large look-up arrays in the implementation. Notable are
five accesses for the packed blinded implementation ‘spiking’ at around 7000 CPU cycles.
We attribute this to the testing process being momentarily interrupted by other system
processes and as such these anomalies should not be considered a weakness in the access
method itself and we discuss mitigations in Section 4.2.1.

Figure 3: Comparison of blinded vs bit-sliced implementations

3.3 Constant-time SiBMA algorithm (ConSiBMA)
After analysing the SiBMA algorithm, a timing side-channel attack-resistant algorithm can
now be proposed which runs in a constant time using Conditional Assignment and (Packed)
Blinded Array Access. This algorithm, ConSiBMA, is presented in full in Algorithm 5.
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Algorithm 5 Constant-time SiBMA (ConSiBMA)
1: INPUT: S[2t] = S[1], S[2], . . . , S[2t] // array of calculated syndromes
2: INPUT: t // error-correcting capability of the code
3: OUTPUT: Ct+1(x) // error-location polynomial (elp) after t iterations
4: /* Initialise arrays */
5: C [t+2][t + 1](x) // current elp with each iteration, t+1 coefficients
6: // must initialise t + 2 of these
7: D[t+1] // current discrepancy value with each iteration
8: L[t+1] // corresponding degree of C(x) with each iteration
9: UP[t+1] // value of 2(i-1)-L[i] with each iteration

10: /* Assign Initial Values */
11: C0[0] = 1, C1[0] = 1, D[0] = 1, D[1] = S[1], L[0] = 0, L[1] = 0, UP[0] = -1
12: upMax = -1, p = -1, pVal = 0
13: mask = maskGen() // function to generate mask based on data types
14: /* Main Algorithm */
15: for i = 1; i <= t; i++ do
16: UP[i] = 2·(i-1) - L[i]
17: flag1 = ((0 - D[i]) & mask) � 31 // determiner equiv. to if D[i] == 0
18: Ci+1(x) = Ci(x) · flag1
19: L[i+1] = L[i] · flag1 // as L[i+1] is unassigned can set to value or 0
20: /* Here we look for !flag1 to perform operation as we are in the Else condition */
21: /* Find another row, p, prior to ith row such that D[p] != 0 and UP[p] has largest value */

22: for j = 0; j < i; j++ do
23: flag2 = ((0 - D[i]) & mask) � 31; // determine whether D[j]!=0
24: flag2 = flag2 · ((upMax - UP[j]) & mask) � 31
25: // determine whether D[j]!=0 && UP[j]>upMax
26: flag2 = flag2 · !flag1 // flag2 is dependent on flag1 condition
27: upMax = UP[j] · flag2 + upMax · !flag2// set values if flag evaluates, otherwise set to current
28: p = j · flag2 + p · !flag2
29: pVal = j · flag2 + p · !flag2
30: end for
31: flag2 = !(((0 - p) & mask) � 31) // determine whether p==0
32: pVal = 1

2 · flag2 + p · !flag2 // set pVal = 1
2 if p = 0

33: Ci+1(x) = (Ci(x) + (D[i] · (blinded(p, t + 1, D))−1 · x2·((i-1)-(pVal-1)) · Cp(x)))· !flag1
34: L[i+1] = (max( L[i] , blinded(p, t + 1, L) + 2 · (i-1)-(pVal-1) )) · !flag1
35: flag2 = (((i - t) & mask) � 31) // determine whether i != t
36: D[i+1] = (blinded(2(i · flag2) + 1 − j, t, S) +

∑L[i+1]
j=1 ( blinded(j, t + 1, Ci+1) · blinded(2i +

1 − j, t, S)) ) · flag2
37: // use flag2 to ensure S isnt out-of-bounds
38: end for
39: return Ct+1(x)

4 Evaluation

We evaluated the proposed countermeasures with BCH definition BCH(511,264,59) and
t = 29. For each test, for each distinct number of fixed errors (limited by the error-
correcting capability t of the code), the generation of a random message (seeded at the
beginning for consistency and replication), encoding it into a codeword, adding the errors
in random positions, and then decoding the codeword into the original message, was
repeated 10,000 times. As encoding does not contain any data-dependent array accesses
only one implementation was tested, although it does contain data-dependent operations.
For simplicity encoding was tested in the same way as decoding, however as encoding is
independent of the number of fixed errors in a codeword (it occurs before the addition
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of error) we are testing for the countering of timing variations caused by data-dependent
operations which were counteracted similarly using the techniques described in Section 3.
For decoding, both the (packed) blinded and full table scan methods of array access were
tested. As with encoding, syndrome generation and Chien search decoding sub-processes
were also made constant-time by altering their implementations according to the features
identified by securing the SiBMA algorithm for error-locator polynomial calculation in
Section 3. The total number of CPU cycles taken to execute the individual encode and
decode processes from start to finish were recorded to provide a good representation of
computational effort and execution timing. For each test this then gave t+1 sample classes
each with 10,000 measurements for the processes, which unpaired t-tests on every possible
pair of fixed errors and ANOVA could then be performed against. We set a maximum
t-score of 4.5 to indicate a program runs in constant time [10]. We report the ANOVA
result as

[F (dfparam, dfresiduals) = fvalue, P = pvalue] (22)

where dfparam are the degrees of freedom (d.f.) for the groups (number of groups −1),
dfresiduals are the d.f. for the residuals (number of observations − number of groups),
fvalue is the test statistic, and pvalue is the probability of observing the test statistic.

Experiments were ran on an Intel i5-6500 desktop CPU running at 3.2 GHz with Linux
operating system (OS). As raw CPU cycles are being measured there are noticeable ‘spikes’
in the data. This is explainable as being either when a machine is performing another user
process or when our test program switches between operations, for example from input
preparation to gathering measurements. These variances can lead to inaccurate results.

To limit the variance incurred from the first issue a machine was used with no other user
process running, and to limit the second issue measurements were increased by 20% and
the first 2,000 measurements were discarded before performing t-tests. Hyperthreading on
the machine, designed to improve the instruction throughout by assigning virtual (logical)
cores per CPU, can understandably result in unwanted effects on the test procedure, and
as such was disabled on the test machine to ensure accurate results.

4.1 Evaluation of the original BCH implementation
In Table 1 minimum, average and maximum t-scores are provided, and in Figure 4 reference
average CPU cycle and pairwise t-test graphs for the distinct errors tested are provided for
the original BCH (reference) implementation. As all t-scores are below 4.5 for encoding
we say that it is already a constant-time implementation. However, as most t-scores are
above 4.5 for decoding we say that it is variable-time. ANOVA results are reported for
encoding as [F(29,299970) = 8.319, P = <2e-16], suggesting at a significant result
and therefore variable-time implementation, and for decoding as [F(29,299970) = 39972,
P = <2e-16], suggesting at a significant result and therefore variable-time implementation.

Table 1: t-score range for reference BCH encoding and decoding
t-score

Process Minimum Average Maximum
Encoding 0.0032 0.9142 2.4520
Decoding 0.0274 18.8223 78.2366

Although encoding appears to execute in constant time from its t-score, it fails ANOVA.
Looking at the CPU cycle graph for encoding (a) in Figure 4, although there is little slope,
the encoding algorithm does appear to be variable-time, indicating at the data-dependent
operations referred to in Section 5.3. As such, t-test values are included in the subsequent
evaluations for added certainty but conclusions are drawn only from ANOVA results.
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(a) Encoding: Average CPU cycles (b) Encoding: Pairwise t-tests

(c) Decoding: Average CPU cycles (d) Decoding: Pairwise t-tests

Figure 4: Statistical tests of BCH reference implementation

4.2 Evaluation of the proposed implementation
4.2.1 Evaluation of the proposed implementation on Desktop

BCH encoding: No pair of fixed errors has a t-score greater than 4.5 (Minimum = 0,
Average = 0.6092, Maximum = 1.6590). ANOVA reports [F(29,299970) = 1.023, P =
0.43]. As P > 0.05, there is no significance. Encoding therefore runs in a constant time.

(a) Average CPU cycles
(b) Pairwise t-tests

Figure 5: Evaluation of BCH encoding on Desktop computer
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BCH decoding: Performing t-tests between all possible pairwise combinations of fixed
errors for both the blinded and full table scan implementations of decoding no pair is
found to have a t-score smaller than 4.5, indicating that both perform in constant time
irrespective of the number of fixed errors present in a received codeword.

Table 2: t-score range for BCH decoding on Desktop
t-score

Implementation Minimum Average Maximum
Blinded 0.0002 0.5748 2.0297

Full Table Scan 0.0025 0.8112 3.1881

ANOVA reports [F(29,299970) = 0.747, P = 0.834] for blinded and [F(29,299970)
= 0.938, P = 0.561] for full table scan implementations. As P > 0.05 for both, no sig-
nificance between results, and as such both implementations perform in a constant time.

It is noticeable here that although the Full Table Scan CPU cycle graph appears
constant (as much as any other graph in this evaluation), its t-score is quite high (although
not above the 4.5 threshold) and its ANOVA P value is quite low (although not near the
0.05 threshold) compared to other results. This is most likely attributed to underlying
variation caused by the OS despite the mitigation which was put in place, which would
have a greater affect on this implementation causing greater cycle count variation than
the Blinded (which is approximately 100 times slower). Although the encoding process
does not seem to be affected by this variation, it is approximately 200 times faster and
therefore it may be hypothesised that it executes fast enough to not be interrupted.

(a) Blinded: Average CPU cycles (b) Blinded: Pairwise t-tests

(c) Full Table Scan: Average CPU cycles (d) Full Table Scan: Pairwise t-tests

Figure 6: Evaluation of BCH decoding on Desktop computer
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4.2.2 Evaluation of the proposed implementation on bare metal ARM microcontroller

To further support the claims of a constant time implementation of BCH decoding,
experiments were performed on a bare metal ARM Cortex M4 processor residing on
a STM32F4-discovery board from STMicroelectronics. With no overarching OS and
data-cache, process and memory-access fluctuations are eliminated. Experiments were
performed in a similar fashion to the ones previously, except that 100 measurements were
taken per fixed error instead of 10,000. This is due to the consistency offered by ARM and
also the slowdown as a result of less hardware resources and slower UART communication.
Experiments were only performed on the decoding process in this way due to the magnitude
of CPU cycle values. As there is no data cache on the targeted ARM platform, there are
no timing variations for array accesses for attackers to exploit. Therefore, an additional
implementation with no table access countermeasures, i.e. with direct table access, was
also evaluated on the ARM platform.

Table 3: t-score range for BCH decoding on ARM
t-score

Implementation Minimum Average Maximum
Blinded Table Scan 0.0042 0.3570 1.0363
Full Table Scan 0 0.1893 0.5147

Direct Table Access 0 0.2335 0.9857

Table 3 shows the results of the pairwise t-test scores for all three implementations.
We find that no pair have a t-score greater than 4.5, indicating that all implementations
execute in constant time on the ARM platform irrespective of the number of fixed errors
present in a received codeword.

ANOVA reports [F(29,2970) = 0.187, P = 1] for blinded, [F(29,2970) = 0.064,
P = 1] for full table scan and [F(29,2970) = 0.097, P = 1] for direct table access
implementations. As P > 0.05, there is no significant difference between results, and as
such the implementations execute in a constant time on the ARM Cortex M4 platform.

4.2.3 Conclusions from experimental results

Statistical results from ANOVA, supported by visual average CPU cycle plots and indica-
tions from t-tests, confirm that the implementation of the entire BCH process, secured by
the extrapolation of countermeasures to variable-time features identified in the SiBMA
algorithm, performs in constant time. The use of ARM is evidence for the general correct-
ness of the implementation (achieving very low t-scores and the highest P values possible
for ANOVA) whilst Desktop tests show that this implementation is usable in real-world
scenarios (achieving slightly higher t-scores and non-significant but not outstanding P val-
ues for ANOVA). A greater spread in CPU cycles for Desktop tests than ARM is observed
and is a likely reason for less optimal statistics compared to ARM. It is hypothesised
that this can be attributed to the underlying OS on the machine running Desktop tests.
With other processes requiring usage of the CPU, the test process can be interrupted or
otherwise adversely affected which as a result will cause fluctuations in measurements.
Although steps were taken to mitigate the interference of User Processes and the OS
when performing Desktop tests, this does not impact on the usability of this solution in
real-world scenarios, as the mitigation was only performed so-that accurate cycle count
results could be obtained, and induced variability in a real-world scenario would actually
aid in obfuscation further, reducing the chances of a successful timing side-channel attack.
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(a) Blinded: Average CPU cycles (b) Blinded: Pairwise t-tests

(c) Full Table Scan: Average CPU cycles (d) Full Table Scan: Pairwise t-tests

(e) Direct Table Access: Average CPU cycles
(f) Direct Table Access: Pairwise t-
tests

Figure 7: Evaluation of BCH decoding on ARM Cortex M4 microcontroller

4.3 Application to post-quantum public-key encryption

We now provide performance overhead as a result of the application of the proposed
constant-time BCH error-correcting code in public-key cryptography. Two cryptosystems,
HQC [21] and LAC [16], which reached the Round 2 phase of NIST’s Post-Quantum
Standardisation project, utilise BCH code for their error correction. In this research, we
restrict to the application of the constant-time BCH error-correcting code to LAC.
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CPU cycle counts for both the reference and optimised variants of the LAC decoding
implementation were gathered and then the constant-time BCH implementation was inte-
grated to determine the performance costs of the countermeasures implemented. LAC offers
three choices of security parameter (128, 192, 256) which satisfy various security categories
in the NIST documentation and are documented to use various different definitions of
BCH. LAC-128, using the definition BCH(511,385,29) and an error-correction capability
of 20 errors, was used for these tests.

Table 4 shows performance overhead across all four primitives of LAC. For the CCA-
secure decapsulation operation, using the full table scan access implementation, we ob-
served an average 1.1-factor slowdown against the reference implementation and an average
1.4-factor slowdown against the optimised implementation. With the blinded access im-
plementation, the CCA-secure decapsulation operation becomes around 3.7-factor slower
than the reference implementation and around 41-factor slower than the optimised imple-
mentation. The table details both the average CPU cycles taken to execute the respective
LAC primitive with either the original or modified BCH implementation, and the relative
slowdown factors incurred. Although these are averages, the modified BCH variant always
runs in constant-time and variation may be attributed to the OS or other factors.

Given the experimentally confirmed constant-time performance of the full table scan
implementation, 1.1 and 1.4 factor slowdowns for reference and optimised implementations
respectively is a good result, showing that improved security can come with little overhead.
The more secure blinded access implementation understandably induces greater overhead.

Code-based public-key scheme HQC [21] uses a variant of BCH and is a relatively
slower scheme compared to LAC. Hence, we anticipate that the our constant-time BCH
code will result in smaller performance overhead when integrated in HQC.

Table 4: Average cycle counts and slowdown factors when constant-time BCH is used in LAC
Reference Optimised

CPU Cycles CPU Cycles
Scan Primitives Orig. Mod. Slow. Orig. Mod. Slow.

Full

CPA.DEC 1428429 1869943 1.3 91501 180244 2.0
CCA.DEC 3501441 3954968 1.1 238632 329064 1.4
KE.DEC 1436207 1878500 1.3 94037 184652 2.0

AKE.DEC 3974442 5854306 1.5 349271 527466 1.5

Blinded

CPA.DEC 1428429 10974346 7.7 91501 9634475 105.3
CCA.DEC 3501441 13081239 3.7 238632 9818436 41.1
KE.DEC 1436207 10993750 7.7 94037 9644891 102.6

AKE.DEC 3974442 24122748 6.1 349271 19514431 55.9

5 Conclusions
In this paper we analysed the BCH error-correcting code and proposed the first constant-
time implementation of BCH decoding algorithm by introducing algorithmic tweaks in
the low-level building blocks. Our constant-time BCH algorithm makes post-quantum
public-key schemes that rely on powerful BCH code for error correction, such as LAC
and HQC, more resistant against simple timing side-channel attacks. We have considered
overhead as an issue with the constant-time transformation of existing implementations
and have discussed methods to reduce these at the expensive of security.

Potential future works include a more in-depth algorithm analysis to further improve
efficiency and reduce overhead, and an investigation into our implementation’s security
against Power Side-Channel Attacks [17].
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