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Abstract. Recently, Cramer et al. (CRYPTO 2018) presented a protocol, SPDZ2k, for actively secure
multiparty computation for dishonest majority in the pre-processing model over the ring Z2k , instead
of over a prime field Fp. Their technique used oblivious transfer for the pre-processing phase, more
specifically the MASCOT protocol (Keller et al. CCS 2016). In this paper we describe a more efficient
technique for secure multiparty computation over Z2k based on somewhat homomorphic encryption.
In particular we adapt the Overdrive approach (Keller et al. EUROCRYPT 2018) to obtain a protocol
which is more like the original SPDZ protocol (Damg̊ard et al. CRYPTO 2012). To accomplish this we
introduce a special packing technique for the BGV encryption scheme operating on the plaintext space
defined by the SPDZ2k protocol, extending the ciphertext packing method used in SPDZ to the case
of Z2k . We also present a more complete pre-processing phase for secure computation modulo 2k by
adding a new technique to produce shared random bits.

1 Introduction

The last ten years have seen a remarkable advance in practical protocols and systems to perform
secure Multi-Party Computation (MPC). A major pillar of this advance has been in the case of a
dishonest majority, in which one can obtain so-called active-security-with-abort. In this situation
one is interested in MPC protocols for n parties, where n ≥ 2, which are practical even for values of n
in the tens (or potentially hundreds). Following the initial work of Bendlin et al. [BDOZ11], the main
breakthrough came with the SPDZ protocol by Damg̊ard et al. [DPSZ12] and its improvements,
e.g. [DKL+13]. This protocol works in an offline/online manner over finite fields. In the offline phase,
function-independent pre-processing is performed, typically to generate Beaver triples [Bea92]. In
the online phase, this pre-processing is consumed as the desired function is securely evaluated.
Active security is obtained by parties not only sharing data, but also sharing a linear MAC on this
data together with a share of the MAC key. Validation of correct behavior is done via a MAC check
protocol which verifies that all opened data shares and all privately held MAC and key shares are
consistent.

Over the previous decade there has been a multitude of methods to produce the offline data
needed for the SPDZ protocol. The initial protocol, [BDOZ11], in this family used a linearly ho-
momorphic encryption scheme, and pairwise zero-knowledge proofs to correctly generate the offline
data. This approach works well for a small number of parties, but does not scale for larger values
of n. The linearly homomorphic encryption method was replaced in the SPDZ paper [DPSZ12]
by a level-one Somewhat Homomorphic Encryption (SHE) scheme. The main efficiency improve-
ment came from using the BGV [BGV12] SHE scheme, and making extensive use of the packing
technique of Smart and Vercauteren [SV14]. On the other hand, the main inefficiency was that, to



obtain active security, one needed to prove knowledge of plaintexts and correctness of ciphertexts.
These zero-knowledge proofs can (currently) only be done in a non-tight manner, and with a rela-
tively large soundness error. This inefficiency in soundness error is usually overcome using standard
amortization techniques. In [DKL+13], a different zero-knowledge proof was utilized which, whilst
asymptotically better than that of [DPSZ12], turned out to be impractical.

Attention then switched to Oblivious Transfer (OT) based pre-processing, such as the Tiny-
OT [NNOB12] and MASCOT [KOS16] protocols. Finally, in the last two years attention switched
back to homomorphic encryption based protocols with the Overdrive paper by Keller et al. [KPR18].
Overdrive gives two variants of the SPDZ protocol: Low-Gear and High-Gear. The Low-Gear variant
uses the original linearly homomorphic encryption based methodology of [BDOZ11], but implements
it using a level-zero LWE-based SHE scheme (in this instance, BGV). The resulting method is very
efficient for a small number of parties due to the inherent packing one can use. For two parties the
authors of [KPR18] suggest it is six to fourteen times faster than MASCOT [KOS16][Table 2 and
4] (with the precise figure depending on the network latency).

In the High-Gear variant of Overdrive the authors return to the original zero-knowledge proofs
of [DPSZ12], and make improvements by both reducing the lack of tightness (although not totally
eliminating it), and enabling batching of the zero-knowledge proofs across all n parties on top of
the usual amortization techniques. This last optimization results in an immediate improvement by
a factor of n. Thus, for larger values of n, High-Gear is currently the best method for SPDZ-family
style pre-processing over finite fields. In [KPR18][Table 2 and 4] the High-Gear protocol for two
parties is shown to be up to six times faster than MASCOT (again depending on the network
latency); whilst for 100 parties, [KPR18][Table 7] implies a 13 fold improvement over MASCOT.

Very recently a new protocol was introduced to the SPDZ family in the work of Cramer et
al. [CDE+18], referred to there, and here, by the shorthand SPDZ2k. Instead of defining MPC
protocols over a finite field, SPDZ2k defines MPC protocols over a ring Z2k . Designing MPC pro-
tocols over rings Z2k is potentially useful in many applications, and could significantly simplify
implementations, such as in the case of evaluations of functions containing comparisons and bit-
wise operations. To enable computation over such rings, SPDZ2k makes changes to the way MACs
are held, and verified, and more generally to how the pre-processing works. The paper [CDE+18]
bases its pre-processing on a MASCOT-style methodology, hence the two protocols are inherently
very similar. Indeed, recent work by D̊amgard et al. [DEF+19] implemented the SPDZ2k protocol
showing that its performance is comparable to the MASCOT one.

Establishing whether an efficient pre-processing for MPC over Z2k can be provided via ho-
momorphic encryption was left as an open problem by the authors of SPDZ2k. A quick naive
investigation seems to imply that this is a non-starter. The main reason the SHE-based approach
(either Low-Gear or High-Gear) is efficient is in the possibility of packing data into ciphertexts and
performing many operations in parallel. For SPDZ over finite prime fields one selects the under-
lying ring in BGV (of degree N) to completely split over the finite field, thus one obtains N -fold
parallelism. When extending the SHE schemes to work with a plaintext modulus of 2k, instead of a
prime p, the packing capacity decreases dramatically and one cannot approach anything like N -fold
parallelism.

Our Contribution. In this paper we revisit the idea of using a SHE-based pre-processing, i.e.
Overdrive-based, for the SPDZ2k family. We show that the above naive analysis, which would
discount its applicability, is actually wrong.
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Our first contribution is a new packing methodology which is particularly tailored to the pre-
processing phase of SPDZ2k. In particular, we obtain (roughly speaking) a N/5 fold parallelism for
High-Gear when mapped to working modulo 2k. Since the High-Gear protocol is the state-of-the-art
for the SPDZ family protocols in terms of efficiency for large numbers of parties, we focus our work
on the High-Gear of Overdrive3.

Using our new packing technique comes with difficulties. The main issue is that the packing for
level-zero ciphertexts of a plaintext message is different from the packing used at level one. Thus
there is a need to modify the distributed decryption procedure in one important case, namely when
one needs to obtain a fresh encryption of the underlying plaintext rather than an additive secret
sharing of it. This in turn raises another problem: the distributed decryption protocol requires
pairs of ciphertexts with special properties associated to the packing. A party needs to generate
two ciphertexts, one at level zero and one at level one, which encrypt the same value, but with
different packings. Since parties could be adversarial, this means that we also need to adapt the
zero-knowledge proofs associated with the High-Gear protocol to enable such pairs of ciphertexts
to be produced correctly. Some of our amortized zero-knowledge proofs need to prove a more
complex statement associated to our packing tecniques, with an overall estimated factor 2/3 loss
in performance compared to HighGear.

Given that Overdrive is up to fourteen times faster that MASCOT, depending on the number of
parties, and that MASCOT and SPDZ2k perform very similarly, we expect that our protocol is up
to two times more efficient than the OT-based protocols in the two party setting. As the number of
parties grows this gap will increase. Whilst these only indicate rough expected performance figures,
we give a more concrete estimation of the communication complexity of our protocol in Section 7.

Our second contribution is in the construction of a more complete preprocessing phase for
SPDZ-like protocols modulo 2k, with active security in the dishonest majority setting. Other than
a protocol for producing multiplication triples, we show how to efficiently produce random shared
bits in the SPDZ2k framework using a trick similar to the one used in the SPDZ protocol over
Fp. Protocols over fields make use of the squaring operation over finite fields of odd characteristic
which is a 2-to-1 map, whereas, modulo 2k, this operation is a 4-to-1 map. We show a simple trick
that permits to use essentially the same technique used mod p in the modulo 2k setting.4

Related works. Recently, we have seen a renewed interest in secure computation protocols over
rings. Besides the well-known protocols given in [CFIK03] and [BLW08] that are restricted to the
honest-majority case, and the SPDZ2k protocol mentioned above, there are several new protocols
that have appeared in the last couple of years. Araki et al. [AFL+16] recently improved the effi-
ciency of Sharemind [BLW08] with active security but in the honest-majority setting. In [DOS18],
Damg̊ard et al. describe a compiler that transforms a semi-honest protocol with t corruptions into
a maliciously secure protocol with a smaller number of corruptions, i.e.

√
t < n/2, where n is the

total number of parties. The work of Catalano et al. [CRFG19] uses the Joye-Libert homomor-
phic cryptosystem to design a maliciously secure two-party protocol for the pre-processing phase
of SPDZ2k. Rathee et al. [RSS19] described a protocol, again in the 2-party case, based on RLWE-
based additively homomorphic encryption and with passive security. This protocol is very efficient,

3 Whilst writing this paper the TopGear [BCS19] variant of High-Gear was published on e-print. This essentially
allows the High-Gear protocol to be run at higher security levels for roughly the same performance. The TopGear
improvements cannot be applied directly to our work, since the zero-knowledge proofs here require challenge spaces
to be in Fq to ensure correctness.

4 A similar trick for random shared bit generation is described in a concurrent and independent work [DEF+19].
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but extending it to the malicious setting would require expensive zero-knowledge proof of correct
multiplication. In [DEF+19], SPDZ2k has been implemented showing that the efficiency of the OT-
based protocol over the ring Z2k is comparable with MASCOT, i.e. the most efficient OT-based
protocol over finite fields. However, like in MASCOT, the communication complexity , that is most
of the time the main bottleneck of secure MPC protocols, is much higher than in Overdrive. More
precisely, this work shows that SPDZ2k is only slightly slower than Overdrive in a LAN setting
with a small number of parties, but several times slower in a WAN setting and when the number of
parties increases. It is there left as future research the construction of a SHE-based pre-processing
for secure computation over rings to close the performance gap between SPDZ2k and Overdrive.

2 Preliminaries

In this section we introduce some important notation, describe the security model, recap on the
SPDZ2k paper’s requirements for the offline phase [CDE+18], plus the necessary background on
the BGV Somewhat Homomorphic Encryption (SHE) scheme [BGV12]. By way of notation we let
a← A denote randomly assigning a value a from a set A, where we assume a uniform distribution
on A. If A is an algorithm, we let a ← A denote assignment of the output, where the probability
distribution is over the random coins of A; we also let a ← b be a shorthand for a ← {b}, i.e. to
denote normal variable assignment. We denote by [d] the set of integers {1, . . . , d}.

Security Model. We prove security of our protocols in the universal composition (UC) framework
of Canetti [Can01], and assume familiarity with this. Our protocols work with n parties, P1, . . . , Pn,
and we consider security against malicious, static adversaries, i.e. corruption may only take place
before the protocols start, corrupting up to n− 1 parties. Informally, when we say that a protocol
Π securely implements a functionality F with computational (resp. statistical) security parameter
κ (resp. s), our theorems guarantee that the advantage of any environment Z in distinguishing the
ideal and real executions is in O(2−κ) (resp. O(2−s)).

In some of our protocols we will need a coin-tossing functionality FRand, which given a set D,
outputs a uniformly random element r from D. This functionality can be efficiently implemented
in the random oracle model as described in [CDE+18].

Functionality FRand

On input (Rand,D) from all parties, sample r ← D, and output r to all parties.

Figure 1. Coin-tossing functionality

2.1 The SPDZ2k Protocol

The SPDZ2k protocol [CDE+18] is parametrized by two integers k and s, where k defines the
modulus 2k over which the MPC protocol will run, and s is a statistical security parameter, for
simplicity of exposition we will set t = k + s. For the reader who is new to the SPDZ2k protocol
think of k = s = 64. As we are mainly focusing on the offline phase our complexity does not depend
on whether k < s or k ≥ s, it only depends on the value of t = k + s.
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The protocol performs MPC over the underlying ring Z2k , however each value x ∈ Z2k is secret
shared amongst the n parties via values [x]i ∈ Z2t , such that x =

∑n
i=1[x]i (mod 2k). By abusing

notation we also think of x as the sum
∑n

i=1[x]i (mod 2t), since in the main SPDZ2k online protocol
the upper s bits of x will be ignored.

Sometimes we will use [x]i to denote additive sharings of values x ∈ Z2t , and sometimes with
domains different from Z2t . We will explicitly point this out when we do such alterations to the
basic sharing.

Each of the n parties also holds a share [α]i ∈ Z2s of a global MAC key α =
∑n

i=1[α]i (mod 2t).
The global MAC key is used to authenticate the shares held by a party, in particular each party
holds a value [γx]i = [α · x]i ∈ Z2t such that

γx =

n∑
i=1

[α · x]i = α · x (mod 2t).

A secret value x ∈ Z2t shared in this way is represented by 〈x〉 = {[x]i, [γx]i}i∈[n], and we let 〈x〉i
denote the pair of values ([x]i, [α · x]i) held by party Pi in this sharing.

Using this secret sharing scheme any linear function can be computed locally by the parties,
i.e. without any interaction. This is done using the method in Figure 2. We denote the process of
executing this operation for a specific linear function as

〈y〉 ← c0 +
k∑
i=1

ci · 〈xi〉.

Procedure LinearFuncShares

This procedure allows the computation of an arbitrary linear function y = c0 +
∑k
j=1 cj ·xj mod 2t given public

inputs c0, c1, . . . , ck and the parties shares 〈xj〉i = {[xj ]i, [γxj ]i}kj=1, i ∈ [n]. The output are the shares of 〈y〉.

1. Each Pi, i 6= 1, sets [y]i =
∑k
j=1 cj · [xj ]i (mod 2t)

2. Party P1 sets [y]1 = c0 +
∑k
j=1 cj · [xj ]1 (mod 2t)

3. Each party Pi sets [α · y]i = [α]i · c0 +
∑k
j=1 cj · [α · xj ]i (mod 2t)

4. Each party Pi sets 〈y〉i = {[y]i, [α · y]i}

Figure 2. Procedure to locally compute linear functions on shares

To perform non-linear operations the SPDZ2k protocol makes use of the offline-online paradigm.
In the offline phase various generic pre-processed data items are produced which allow the online
phase to proceed as a sequence of linear functions and opening operations. Each opening operation
in the online phase needs to be checked for consistency, which can be done via the method introduced
in [CDE+18] (which we recap on in the Appendix B). The overall protocol achieves actively secure
MPC with abort, with a statistical error probability of roughly 2−s+log2 s (see [CDE+18][Lemma 1]
for more details).

2.2 The BGV SHE Scheme and Associated Number Theory

In this section we outline the details of what we require of the BGV encryption scheme. Most of
the details can be found in [BGV12, GHS12b, GHS12c, GHS12a], although we will only require a
variant, which supports circuits of multiplicative depth one.
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Fig. 3. Summary of the maps we use between different rings and representations

The Rings: The BGV encryption scheme, as we will use it, is built around the arithmetic of
the cyclotomic ring R = Z[X]/(Φm(X)), where Φm(X) is the m-th cyclotomic polynomial. For an
integer q > 0, we denote by Rq the ring obtained as reduction of R modulo q. In this work we
will be taking m to be a prime p, and not the usual power of two as in most other papers. This
is because we require that R factors modulo 2t into a number r of distinct irreducible polynomials
of degree d. To ensure better underlying geometry of the ring, i.e. the ring constant cm is small
(see [DPSZ12]), we then select m to be prime.

Our main optimization to enable an efficient offline phase for SPDZ2k will rely on us looking at
the plaintext space in different ways. The main plaintext space P we will use is equivalent to the
2-adic local ring, approximated to the t-th coefficient, namely

P = Z2t [X]/(Φp(X)).

As can be found in [Cas86], and used extensively in [GHS12a], the ring P decomposes into r
irreducible factors each of degree d, as

P ∼= (Z2t [X]/F1(X))× . . .× (Z2t [X]/Fr(X)) = P,

where deg(Fi(X)) = d is the order of the element 2 in F∗p, and each Fi(X) is the Hensel lift
of the associated factor fi(X) of the factorization Φp(X) ≡ f1(X) · · · fr(X) (mod 2). We write
N = deg(Φp(X)) = φ(p) = p− 1 and so N = r · d. We will denote by Γ : P −→ P the map which
takes elements in P and maps them to the slot representation P, and by Ψ2t the map from the
global polynomial ring R representation to the slot P representation, i.e.

Ψ2t : R −→ P.

Note that this map takes a polynomial f in R, maps it to P, via reduction modulo 2t, and then
turns the resulting polynomial into its slot representation, thus Ψ2t(f) = Γ (f (mod 2t)). We also
let Γ−1 denote the inverse map of Γ , which maps an element in P to its equivalent element in P.
See Figure 3 for a summary of these, and other maps, we will be using 5.

It is well known that the number of monic irreducible polynomials of degree d over a finite field
Fq is equal to

1

d

∑
i|d

µ(d/i) · qi,

5 We will define the maps ΘI, ΘJ and χI, χJ in Figure 3 in the next section.
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where µ(·) is the Möbius function. This means that the number of SIMD “slots” r, using the packing
technique of Smart and Vercauteren [SV14], is bounded by this value. In particular r < 2d, and
hence as N gets bigger we get progressively less efficient if we perform packing in a naive manner.

The problem occurs because we are interested in the plaintext space Z2t , but the packing
technique of [SV14] will only use the degree zero coefficient of each slot. Thus as d becomes larger
for large N , the density of useful packing becomes smaller, and the ratio of data to plaintext space
from this naive packing is r/N = 1/d.

The Distributions: Following [GHS12c] [Full version, Appendix A.5] and [ACK+19] [Documen-
tation] we need different distributions in our protocol.

- HWT(h,N): This generates a vector of length N with elements chosen at random from {−1, 0, 1}
subject to the condition that the number of non-zero elements is equal to h.

- ZO(0.5, N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that
the probability of each coefficient is p−1 = 1/4, p0 = 1/2 and p1 = 1/4.

- dN(σ2, N): This generates a vector of length N with elements chosen according to an approxi-
mation to the discrete Gaussian distribution with variance σ2.

- RC(0.5, σ2, N): This generates a triple of elements (v, e0, e1) where v is sampled from ZOs(0.5, N)
and e0 and e1 are sampled from dNs(σ

2, N).
- U(q,N): This generates a vector of length N with elements generated uniformly modulo q.

In the Appendix A we present the traditional noise analysis for the BGV scheme adapted to our
specific application; this is adapted from [GHS12c], using the above distributions.

The Two Level BGV Scheme: We consider a two-leveled homomorphic scheme, given by
three algorithms/protocols EBGV = {BGV.KeyGen, BGV.Enc, BGV.Dec}, which is parametrized by a
security parameter κ, and defined as follows. First we fix two moduli q0 and q1 such that q1 = p0 ·p1

and q0 = p0, where p0, p1 are prime numbers. Encryption generates level one ciphertexts, i.e. with
respect to the largest modulo q1, and level one ciphertexts can be moved to level zero ciphertexts
via the modulus switching operation. We require

p1 ≡ 1 (mod 2t) and p0 − 1 ≡ p1 − 1 ≡ 0 (mod p).

The first condition is to enable modulus switching to be performed efficiently, whereas the second
is to enable fast arithmetic using Number Theoretic Fourier Transforms.

- BGV.KeyGen(1κ): It outputs a secret key sk which is randomly selected from a distribution
with Hamming weight h, i.e. HWT(h,N), much as in other systems, e.g. HELib [HS14] and
SCALE [ACK+19] etc. The public key, pk, is of the form (a, b), such that

a← U(q1, N) and b = a · sk + 2t · ε (mod q1),

where ε← dN(σ2, N). This algorithm also outputs the relinearisation data (ask,sk2 , bsk,sk2) [BV11],
where

ask,sk2 ← U(q1, N) and bsk,sk2 = ask,sk2 · sk + 2t · esk,sk2 − p1 · sk2 (mod q1),

with esk,sk2 ← dN(σ2, N). We fix σ = 3.16 in what follows.
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- BGV.Enc(m, r; pk): Given a plaintextm ∈ P, the encryption algorithm samples r = (v, e0, e1)←
RC(0.5, σ2, n), i.e.

v ← ZO(0.5, N) and e0, e1 ← dN(σ2, N),

and then sets

c0 = b · v + 2t · e0 +m (mod q1), c1 = a · v + 2t · e1 (mod q1).

Hence the initial ciphertext is ct = (1, c0, c1), where the first index denotes the level (initially
set to be equal to one). We define a modulus switching operation which allows us to move from
a level one to a level zero ciphertext, without altering the plaintext polynomial, that is

(0, c′0, c
′
1)← SwitchMod((1, c0, c1)), c′0, c

′
1 ∈ Rq0 .

- BGV.Dec((c0, c1); sk): Decryption is obtained by switching the ciphertext to level zero (if it is
not already at level zero) and then decrypting (0, c0, c1) via the equation

(c0 − sk · c1 (cmod q0)) (mod 2t),

which results in an element of P. The notation cmod refers to centered modular reduction,
i.e. the resulting coefficients are taken in the interval (−q/2, q/2]. In the next sections, we will
extend the decryption algorithm to enable distributed decryption.

- Homomorphic Operations: Ciphertexts at the same level ` can be added,

(`, c0, c1)� (`, c′0, c
′
1) = (`, (c0 + c′0 (mod q`)), (c1 + c′1 (mod q`)),

with the result being a ciphertext, which encodes a plaintext that is the sum of the two plaintexts
of the initial ciphertexts.
Ciphertexts at level one can be multiplied together to obtain a ciphertext at level zero, where
the output ciphertext encodes a plaintext which is the product of the plaintexts encoded by the
input plaintexts. We do not present the method here, although it is pretty standard consisting
of a modulus-switch, tensor-operation, then relinearization. We write the operation as

(1, c0, c1)� (1, c′0, c
′
1) = (0, c′′0, c

′′
1), with c′′0, c

′′
1 ∈ Rq0 .

3 Modified SHE Scheme

In this section we present a modified form of the previously presented “standard” BGV scheme.
The main difference is that we introduce a new form of packing, where at each ciphertext level we
interpret the naive BGV plaintext space P in a different manner. This modification enables us to
obtain a final pre-processing phase for our MPC protocol which is less inefficient than one would
naively expect.

3.1 Our New Packing Technique

The standard packing method of using only the degree zero coefficient in each slot will result in a
very inefficient use of resources, as we have already mentioned. Thus we introduce a new packing
technique which uses more coefficients in each slot. To do so, we first define two sets I = {i1, . . . , i|I|}
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and J = {j1, . . . , j|I|}, such that |I| = |J|, and j` = 2 · i`, for all ` = 1, . . . , |I|. The idea is to encode
(in each slot) |I| messages as coefficients of the powers Xi, with i ∈ I, as follows. We define a map
ωI for the set I, as

ωI :

{
(Z2t)

|I| −→ Z2t [X]

(m1, . . . ,m|I|) 7−→m1 ·Xi1 + . . .+m|I| ·Xi|I| ,

and a similar one ωJ for the set J. The reason why we require j` = 2 · i`, for all ` = 1, . . . , |I|, is
that the J-encoding will typically be used to hold the result of a product of two I-encodings. As
such we are only interested in the product of two terms of the same degree (giving rise to the 2 · i`)
and will ignore all other cross-products that appear in the product of two I-encodings (all terms of
degree ij + ik for j 6= k ∈ [|I|]). For level one ciphertexts (namely fresh ciphertexts), we will pack a
message value from M = (Z2t)

r×|I| into the plaintext space P as follows

χI :

{
M −→ P

(m1, . . . ,mr) 7−→ (ωI(m1), . . . , ωI(mr)),

with a similar map being defined for the set J. It is straightforward to see that this is a valid
packing, and will be consistent for all ciphertexts at level one, since linear operations on elements
in Im(χI) also lie in Im(χI).

For ease of convenience, we also define an “inverse” map, χ−1
I , of the map above, which is

defined on P and simply selects the correct coefficients, producing a final output in M. We also
define Supp(I), to be the set of (potentially) non-zero coefficients in each slot in the image of ωI, in
particular elements in Supp(I) are the only values which affect the value of χ−1

I . Thus we have

Supp(I) = {(1, i1), . . . , (1, i|I|), (2, i1), . . . , (r, i|I|)},

where the first element of each pair refers to which slot we are considering and the second element
to the power of X in that particular slot. Given an element u in the global polynomial ring R we
can define an element in M by reducing the polynomial u modulo 2t then taking its image under
one of the inverse maps above. Thus we have the map

ΘI :

{
R −→ M
u 7−→ χ−1

I (Ψ2t(u))

Given an element m ∈M, there are infinitely many preimages under the map ΘI. At various points
we will need to select one subject to a given bound B on the coefficients of the polynomial in R.
We therefore define, in Figure 4, a procedure which outputs an element in R, uniformly at random,
subject to the constraint that its image under ΘI is equal to a given element m ∈ M and its
coefficients are bounded by B. Clearly, all of the above considerations apply also to the set J.

3.2 The BGV Encryption Scheme with Double Packing Set

We are now ready to define our modified BGV scheme, EmBGV = {mBGV.KeyGen, mBGV.Enc,
mBGV.Dec}, which uses plaintext spaceM = (Z2t)

r×|I|. The key generation algorithm mBGV.KeyGen
is the same as in the original BGV scheme presented earlier, i.e. given a security parameter κ, it
outputs a public/private key pair (pk, sk) and the relinearisation data.

The encryption algorithm differs as it now encrypts using one of the two sets I or J. To make
the dependence clear on which set we are encrypting a message under, we write either

ctI = (1, c0, c1)I = mBGV.Enc(m, r; I, pk) = BGV.Enc(Γ−1(χI(m)), r; pk)

9



The Function Θ−1
I (m,B)

1. Compute mP ∈ P, the image of m under the map χI.
2. For all entries not in Supp(I), replace the zero coefficient in each slot by a uniformly random element selected

from [0, . . . , 2t], resulting in a uniformly random element m′P ∈ P whose image under χ−1
I is also m.

3. Pull back m′P to R by computing the element m′R ← Ψ−1
2t

(m′P) subject to all coefficients lying in [0, . . . , 2t].
4. Select a uniformly random polynomial u ∈ R whose coefficient infinity norm is bounded by B/2t.
5. Output mR ← m′R + 2t · u.

Figure 4. The procedure Θ−1
I (m, B) from R to M

or
ctJ = (1, c0, c1)J = mBGV.Enc(m, r; J, pk) = BGV.Enc(Γ−1(χJ(m)), r; pk),

where m ∈M. Similarly, the decryption algorithm is defined as

m = mBGV.Dec(ctI; sk) = χ−1
I (Γ (BGV.Dec(ctI; sk)))

and
m = mBGV.Dec(ctJ; sk) = χ−1

J (Γ (BGV.Dec(ctJ; sk))).

Addition and multiplication of ciphertexts are accomplished as in the “standard” BGV scheme,
but with some notable differences. Notice we can now only add ciphertexts at the same level when
they are with respect to the same encoding. Thus we have (say)

(1, c0, c1)I � (1, c′0, c
′
1)I = (1, c′′0, c

′′
1)I.

The idea is that the I encoding is used for messages at level one, and the J encoding is used for
messages at level zero, typically obtained as the result of multiplying two level one ciphertexts.
In the following sections we will use the bracked exponent ct(`) on a ciphertext to denote the “level”
which the ciphertext is at, with fresh ciphertext always being at level one. Hence, following the
discussion above we will usually have:

ct(1) = (1, c0, c1)I = ctI and ct(0) = (0, c0, c1)J = ctJ.

However we might need to encrypt some messages using index set J, for example if we wish to
encrypt a fresh message and then move it directly to level zero using a SwitchMod operation, as
in (0, c′0, c

′
1)J ← SwitchMod((1, c0, c1)J), where (1, c0, c1)J = Enc.mBGV(m, r; J, pk). The reason we

switch encodings as we transfer between level one and level zero is that when two ciphertexts are
multiplied at level one to produce a level zero ciphertext, the I packing will no longer be valid. So
we switch to index set J at this point. Our multiplication is now an operation of the form

(1, c0, c1)I � (1, c′0, c
′
1)I = (0, c′′0, c

′′
1)J.

We will clarify the dependence on I or J and the encryption level ` when it is not clear from
the context. More formally, in our MPC protocol, we will denote addition and multiplication of
ciphertexts as follows:

ct
(`, · )
m1+m2

← ct
(`, · )
m1 � ct

(`, · )
m2 ,

ct
(`, · )
a·m ← a� ct

(`, · )
m , for a ∈M,

ct
(0,J)
m1·m2 ← ct

(1,I)
m1 � ct

(1,I)
m2 .
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Correctness. To have correctness we need to ensure that multiplication of two elements in Im(χI)
results in something correct when we restrict P to the image of the χJ map, i.e. by ignoring
coefficients which are not in the image of χJ. This is because a product of two elements in Im(χI) is
not an element of Im(χJ). Looking ahead, when we use this packing technique in our MPC protocol
we need to ensure that ignoring coefficients that are not in Im(χI) does not leak information. We
shall deal with this security issue in the next sections, so for now we consider only the correctness
concern.

To select I we have two conditions: The first obvious correctness guarantee is that the product
term does not wrap around modulo each factor Fi(X), so that we require

∀i ∈ I, 2 · i < d.

Secondly, we need that any cross-product terms do not interfere with any of the desired slot terms.
This is implied by the equation

∀i1, i2, j ∈ I, i1 + i2 6= 2 · j, with i1 6= j, i2 6= j.

In Figure 5 we plot the growth of the maximum size of |I| versus the size of d. As one can see, it
grows in a step wise manner, looking like about d0.6 in the range under consideration here.

0 200 400 600 800 1,000
0

20

40

60

d

|I|

Fig. 5. Growth of |I| with d

This analysis gives the amount of packing we can produce in a given standard slot. To see what
is the total packing ratio we can achieve, we need to look at the number theoretic properties of the
polynomials Φp(X) for p prime. As remarked earlier these factor modulo 2 into r factors of degree
d, where d is equal to the order of the element 2 in F∗p. We can then take the maximum value of |I|
from the above calculations and compute the ratio of “useful” slots, in our application, as

πp =
r · |I|
p− 1

.

For security reasons in our MPC applications we will be taking p in the range 8192 < p < 65536,
so in Table 1 we present the prime values in this range which give us a ratio greater than 0.15. We
see that it is possible to select p so that the packing ratio πp approaches 0.2. Thus we can obtain
an efficiency of packing of around φ(p)/5, as mentioned in the introduction. All that remains is to
adapt the MPC protocols to deal with this new packing methodology.
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p r d |I| r · |I| πp
9719 226 43 8 1808 .186
11119 218 51 8 1744 .156
11447 118 97 16 1888 .164
13367 326 41 8 2608 .195
14449 172 84 16 2752 .190
20857 316 66 12 3792 .181
23311 518 45 8 4144 .177
26317 387 68 12 4644 .176
29191 278 105 16 4448 .152
30269 329 92 16 5264 .173
32377 568 57 10 5680 .175
38737 538 72 13 6994 .180
43691 1285 34 8 10280 .235
61681 1542 40 8 12336 .200

Table 1. Primes with a packing density ratio greater than 0.15 in the range 8192 < p < 65536

4 OverDrive Global ZKPoKs

Given a SHE scheme (in our case either EmBGV or EBGV), we denote by C the set of admissible
circuits for the SHE scheme, the exact choice of C will depend on the underlying construction.
In our protocol the decryption function will be always correct assuming the input ciphertext is
the evaluation of an admissible circuit from C applied to ciphertexts which are marked “correct
enough”. We shall call a ciphertext valid if it is either “correct enough”, or is the output of a circuit
in C applied to “correct enough” ciphertexts.

Looking ahead, in Section 5 we will extend the scheme EmBGV, introduced in the previous
section, to allow distributed decryption. The reason for using the term “correct enough” is that our
distributed decryption protocol will be proved correct even if some ciphertexts are not completely
valid, namely they are not generated using the standard encryption algorithm.

In describing our protocol, we assume a key generation functionality FKeyGenas described in
Figure 6. It runs BGV.KeyGen and outputs for each party Pi the public key pk and an additive
share [sk]i of sk for performing distributed decryption. This means that given a public ciphertext,
parties can use their shares of the sk and collaborate to decrypt it. Just as in Overdrive, SPDZ
and SCALE [KPR18, DPSZ12, ACK+19], we will assume a trusted dealer that implements the
distributed key generation, possibly in practice via HSMs. Our goal here is to focus on the main
part of the protocol and not on set-up assumptions, thus we do not discuss how to securely realise
the ideal functionalityFKeyGen, as was done in the aforementioned works.

Functionality FKeyGen

Let A be the set of corrupt parties.

1. On receiving (Init) from all honest parties run (pk, sk)← mBGV.KeyGen(1κ). Send pk to the adversary.
2. Receive shares [sk]j , j ∈ A, from the adversary.
3. Construct a complete set of shares {[sk]1, . . . , [sk]n} consistent with the adversary’s choices and such that

sk =
∑n
i=1[sk]i

4. Send pk to all parties, and [sk]i to each honest party Pi.

Figure 6. The functionality FKeyGen for distributed key generation
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4.1 Bounded Linearly Homomorphic Predicates

Here we show how to ensure that all the ciphertexts used in our protocol are valid. Compared to
similar protocols in previous works, other than prove that our ciphertexts decrypt correctly, we
also need to show that the underlying plaintexts satisfy a given predicate P which we call bounded
linearly homomorphic.

Definition 4.1. We say that a given predicate P is bounded linearly homomorphic if, given a
bound B and values x1, . . . ,xν , where

x1 = (x1,1, . . . , xu,1) ∈ Ru, . . . ,xν = (x1,ν , . . . , xu,ν) ∈ Ru,

such that

1. ∀j ∈ [u], P(xj,1, . . . , xj,ν) = true, and

2. the coefficient norm of each xj,k is bounded by B,

then, for all a ∈ {0, 1}u, P(a · x1, . . . ,a · xv) = true.

We will give two different instantiations of this definition. The first one is with the diagonal
predicate P = Diag also used in [DPSZ12]. This takes as input a single element x1 ∈ Ru, i.e.
ν = 1, and checks whether each of the slot entries in x1 (when mapped to P via the map Ψ2b for
b = dlog2(u · B)e), are identical to each other. Clearly if the predicate holds for input ciphertexts
with plaintext coefficient norms bounded by B, then it also holds for a sum of u ciphertexts with
plaintext coefficient norms bounded by u ·B.

The second instantiation works with ν = 2. We recall from Section 3 that the maps ΘI and ΘJ
map an element x ∈ R to an element in M according to χI and χJ, respectively. The predicate
P = Pack is then defined as follows:

- Let mI = ΘI(x1, B) and mJ = ΘJ(x2, B). The elements in Supp2b(mI), for b = dlog2(u · B)e,
are indexed by Supp(I).

- If Supp2b(mI) = {ci,ij}, for i ∈ [r] and ij ∈ I, then the coefficients in Ψ2b(mJ) indexed by (i, 2 ·ij)
are equal to ci,ij , and are uniformly random elsewhere. Being uniformly random in locations
not indexed by J will be important for security of our distributed decryption protocol later.

Again it is straightforward to prove that this predicate is bounded linearly homomorphic.

4.2 Amortized Zero Knowledge Proof

Given the definition of a bounded linearly homomorphic predicate on the plaintexts, we are now
ready to define what we mean by a valid ciphertext which encrypts such a plaintext. We recall
that a ciphertext ct = BGV.Enc(x, r; pk) encrypts a plaintext value x ∈ P under randomness
r = (v, e0, e1) ∈ R3. In our protocol we assume that x = Θ−1

I (m), for some m ∈M. In a legitimate
ciphertext, the plaintext x lies in P and the randomness values come from specific distributions
(see Section 3). An adversarially chosen ciphertext may not be generated in this way, however,
as long as the adversarial plaintexts and random coins are selected from some restricted set, the
ciphertexts will correctly decrypt. A ciphertext which comes from this restricted set (no matter
how it is generated) is said to be valid.
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Protocol Πν,flag
gZKPoK - Part I

Parameters: an integer ν, u = ZK sec, V = 2 ·ZK sec− 1, a flag ∈ {Diag,Pack,⊥} such that if flag = Diag then
P = Diag; if flag = Pack then P = Pack and if flag =⊥ then P = ∅.
Input: Each Pi inputs u · ν BGV ciphertexts ctij,k, j ∈ [u], k ∈ [ν], such that

‖vij,k‖∞ ≤ ρ1, ‖ei0,j,k‖∞, ‖e
i
1,j,k‖∞ ≤ ρ2, ‖xij,k‖∞ ≤ τ,

where xij,k ∈ R is the plaintext corresponding to ctij,k, satisfying P(xij,1, . . . , x
i
j,ν) = true, and for each k ∈ [ν],

set:

rik = (vi1,k, . . . , v
i
u,k, e

i
0,1,k, . . . , e

i
0,u,k, e

i
1,1,k, . . . , e

i
1,u,k) ∈ Ru×3,

xik = (xi1,k, . . . , x
i
u,k) ∈ Ru

cik = ctik = (cti1,k, . . . , ct
i
u,k) ∈ Ru×2.

gZKPoK: If flag ∈ {Diag,⊥} parties execute the following steps.
- For each k ∈ [ν] execute:
Commit:

- Each Pi broadcasts cik = BGV.Enc(xik, r
i
k; pk)

- Each party Pi samples a new set of “plaintexts” yik ∈ RV and “randomness vectors” r̄ik ∈ RV×3, such
that, for j ∈ [u] and P(yj,1, . . . , yj,ν) = true,

‖yij,k‖∞ ≤ 2ZK sec · τ, ‖v̄ij,k‖∞ ≤ 2ZK sec · ρ1,

‖ēi0,j,k‖∞, ‖ē1,j,k‖∞ ≤ 2ZK sec · ρ2.

- Each Pi computes and broadcasts aik ← BGV.Enc(yik, r̄
i
k; pk), for k ∈ [ν].

Challenge: Parties call FRand to get a random êk = (êk,1, . . . , êk,u) ∈ {0, 1}u.
Prove:

- Parties define Mêk ∈ {0, 1}
V×u to be the matrix such that (Mêk )r,c = êk,r−c+1, for 1 ≤ r − c + 1 ≤ u,

and 0 in all other entries.
- Each Pi computes and broadcasts the values (zik, T

i
k), where zik

ᵀ = yik
ᵀ+Mêk ·x

i
k
ᵀ and T ik = r̄k+Mêk ·r

i
k.

Verify:
- Each party Pi computes dik = BGV.Enc(zik, T

i
k; pk) and then stores the sum dk =

∑n
i=1 dik.

- The parties compute the values

ck =
∑
i∈[n]

cik, ak =
∑
i∈[n]

aik, zk =
∑
i

zik, Tk =
∑
i∈[n]

T ik,

and conduct the following checks, where ti,j,k is the (i, j)-th element of Tk,

dᵀ
k = aᵀ

k + (Mêk · ck), ‖zk‖∞ ≤ 2 · n · 2ZK sec · τ (1)

‖ti,1,k‖∞ ≤ 2 · n · 2ZK sec · ρ1, ‖ti,2,k‖∞, ‖ti,3,k‖∞ ≤ 2 · n · 2ZK sec · ρ2.
- If P = Diag the proof is rejected if P(zij,1) 6= true for any j ∈ [u].
If the check passes, the parties output

∑
i∈[n] c

i
1, . . . ,

∑
i∈[n] c

i
ν .

Figure 7. Protocol for global proof of knowledge of a ciphertext - Part I
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Suppose we have u · ν BGV ciphertexts ctj ← BGV.Enc(xj , rj , pk), j ∈ [u · ν], such that

ctj =
∑
i∈[n]

ctij , xj =
∑
i∈[n]

xij , rj =
∑
i∈[n]

rij , ∀j ∈ [u · ν],

i.e. ctij ← BGV.Enc(xij , r
i
j , pk), x

i
j and rij are respectively the ciphertext, the plaintext and the

randomness held by party Pi. The protocol Πν,flag
gZKPoK (Figure 7, Figure 8) guarantees that each

ciphertext ctj is both valid and satisfies the bounded linearly homomorphic predicate P. Our zero-
knowledge proof is very similar to the one given in [KPR18], with some modifications due to our
new packing technique, and it is a generalization to the multiparty setting of the amortized proof
described in [DPSZ12] and [CD09]. Note that as done in Overdrive, our protocol does not check
the correctness of every single share ctij , but just of their sum since it is sufficient for our purpose.

To understand the proof Πν,flag
gZKPoK, first, let us assume ν = 1 and flag = Diag. Following Cramer

et al. [CD09]’s blueprint, the protocol Π1,Diag
gZKPoK simultaneously tries to prove that u ciphertexts ctj

are generated such that:

‖vj‖∞ ≤ n · ρ1, ‖e0,j‖∞, ‖e1,j‖∞ ≤ n · ρ2, ‖xj‖∞ ≤ n · τ, ∀j ∈ [u], (2)

for τ = 2t−1, ρ1 = 1 and ρ2 = 20. This is done using an amortized Σ protocol that samples
commitments c̄tj ← BGV.Enc(yj , r̄j , pk), j ∈ [u], r̄j = (v̄j , ē0,j , ē1,j), such that

‖v̄j‖∞ ≤ n · 2
ZK sec · ρ1,

‖ē0,j‖∞, ‖ē1,j‖∞ ≤ n · 2
ZK sec · ρ2,

‖yj‖∞ ≤ n · 2
ZK sec · τ, ∀j ∈ [u],

for some large enough 2ZK sec. In this way we can form the responses z and T such that the terms
y and r̄ statistically hide Me ·x and Me · r respectively, for some challenge matrix Me. The bounds
on z and T imply bounds on x and r. This implies that, instead of obtaining a proof that the input
ciphertexts satisfy Equation 2, we get a proof that those values satisfy the following relationships:

‖vj‖∞ ≤ n · S · ρ1, ‖ej,0‖∞, ‖ej,1‖∞ ≤ n · S · ρ2, ‖xj‖∞ ≤ n · S · τ, ∀j ∈ [u], (3)

where S = 2·23·ZK sec/2+1. These bounds are clearly not tight and the value S is called the soundness
slack .

When ν = 2 and P = Pack, we need to repeat the above proof twice, or equivalently sample
the challenge in {0, 1}2·ZK sec, and add the proof for the predicate P. Line 2 of Figure 8 is checked
by a verifier only that required equality between coefficients in the predicate holds. That the other
coefficients are unformly distributed is not checked, indeed this is impossible to do. However, if the
other coefficients are not uniformly distributed then the prover will loose the desired zero-knowledge
property, thus it is not in the provers interest to produce values which are not uniformly distributed.
In the case of our application an honest verifier is actually one of the n provers, and this is enough
to ensure the desired uniform property holds on the required subset of coefficients.

Thus in both cases the protocol Πν,flag
gZKPoK is an honest-verifier zero-knowledge proof of knowledge

for the relation

RgZKPoK =
{

(x,w) |x = (c, pk), w = ((x1, r1) . . . , (xν·u, rν·u))
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: {u = ZK sec, ‖xj‖∞ ≤ n · S · τ,mj = ΘI(xj) ∈M,

c = (ct1, . . . , ctu), ‖vj‖∞ ≤ n · S · ρ1, ‖e0,j‖∞, ‖e1,j‖∞ ≤ n · S · ρ2}
∧ {P(xj,1, . . . , xj,ν) = true,∀j ∈ [u]}

}

Protocol Πν,flag
gZKPoK - Part II

If flag = Pack then apply the proof for flag =⊥ above, making sure the sampling in Step 4.1 follows the predicate
P for Pack. Then, perform the following steps (using the values obtained whilst executing the above proof).

1. Each Pi computes and broadcasts the values

zi2
ᵀ = yi2

ᵀ +Mê2 · x
i
2
ᵀ ∈ RV .

2. The proof is rejected if P(zij,1, z
i
j,2) 6= true for any j ∈ [u]. If the check passes, the parties output∑

i∈[n] c
i
1, . . . ,

∑
i∈[n] c

i
ν .

Figure 8. Protocol for global proof of knowledge of a ciphertext - Part II

Theorem 4.1. The protocol Πν,flag
gZKPoK is an honest-verifier zero-knowledge proof of knowledge for

the relation RgZKPoK with error probability 2−ZK sec and soundness slack S = 2 · 23·ZK sec/2+1.

We do not follow the Overdrive proof approach in our MPC protocol, i.e. we do not give an ideal
functionality for Πν,flag

gZKPoK. The reason is that a security proof for Πν,flag
gZKPoK would require rewinding

the adversary to extract corrupt parties’ inputs in the simulation, breaking the UC security of the
protocol. Instead, we will use Πν,flag

gZKPoK inside our MPC protocol, as done in [DPSZ12], and prove
UC security for this latter protocol. The complete proof of the theorem above is however still similar
to the one in [KPR18].

Proof. We suppose that ν = 1 and P = Diag, as the proof is similar in the other cases.

Correctness. Assume that all parties are honest. The equalities (1) and Prep = true follow trivially
from the homomorphic property of the encryption and the predicate. It remains to check the
probability that honest parties will fail the bounds check on ‖z‖∞ and ‖ti,j‖∞. Remember that the
honestly generated cti are ciphertexts generated according to the true distribution (i.e. without the
slack).

The bound check for the plaintext component will succeed if the infinity norm of
∑n

i=1(yi +∑ZK sec
k=1 (Mêjk · xi)) is at most 2 · n · τ · 2ZK sec. This is always true because yi is sampled such that

‖yi‖∞ ≤ 2ZK sec · τ and ‖Mê · x(i)‖∞ ≤ sec · τ ≤ 2ZK sec · τ . A similar argument holds regarding the
three randomness components.

Special soundness. Given two accepting transcripts (x,a, ê, (z, T )) and (x,a, ê′, (z′, T ′)), ê 6= ê′,
we have to extract a valid witness (x, r) for c. Recall that each party has a different secret xi ∈ Ru.
Because both challenges have passed the equality check during the protocol, we obtain

(Mê −Mê′) · cᵀ = (d− d′)ᵀ (4)

To find (x, r) such that c ← Encpk(x, r), we first solve equation 4 for c. Since ê 6= ê′, let j be the
highest index such that êj 6= êj

′ and consider the ZK sec× ZK sec sub-matrix matrix of Mê −Mê′

16



consisting of rows between j and j+ZK sec−1 (both included). This matrix is invertible, it is then
possible to find a solution for c. Since the cryptosystem is linearly homomorphic and the values
z, z′ and T, T ′ are publicly known, it is possible to solve the system for x and r from the bottom
equation to the one in the middle with index ZK sec/2. To establish the bounds, recall that the
plaintexts z, z

′
have norms less than 2 ·n · 2ZK sec · τ and the randomness used for encrypting them,

tk, t
′
k, have norms less than 2 · n · ρ1 · 2ZK sec in the first coordinate and 2 · n · ρ2 · 2ZK sec in the last

two coordinates where k ranges through 1, . . . , sec.
Solving the linear system from the bottom row to the middle row via substitution we obtain in

the worst case: ‖xk‖∞ ≤ 2k · 2ZK sec · n · τ and the infinity norm of yk is less than 2k · n · 2ZK sec · ρ1

in the first coordinate and less than 2k · 2ZK sec · n · ρ2 in the last two coordinates, where k ranges
through 1, . . . , sec/2.

To solve for ctZK sec/2, . . . ct1 consider the lowest index j such that êj 6= êj
′ and construct a lower

triangular matrix, and solve as we did above for the case of the upper triangular sub-matrix. The
bound on the resulting values is similarly obtained.

Thus we obtain overall bounds of (2 · 2ZK sec/2 ·n · 2ZK sec · τ, 2 · 2ZK sec/2 ·n · 2ZK sec · ρ1, 2
ZK sec/2 ·

2 · n · 2ZK sec · ρ2), i.e. (S · n · τ, S · n · ρ1, S · n · ρ2) with S = 2 · 23ZK sec/2+1.
Finally, if P = Diag, then parties accept if all the zi decode to diagonal values.

Honest verifier zero-knowledge: Here we give a simulator S for an honest verifier (each party
Pi acts as one at one point during the protocol). The simulator’s purpose is to create a transcript
with the verifier which is indistinguishable from the real interaction between the prover and the
verifier. To achieve this, S samples uniformly ê ← {0, 1}ZK sec and then creates the transcript
accordingly: sample zi and T i with respect to the bounds in the final check. The simulator then
fixes ai = Encpk(z

i, T i) − (Mê · ci), where the encryption is applied component-wise. Clearly the
produced transcript (ai, êi, zi, T i) passes the final checks and the statistical distance to the real one
is 2−ZK sec, which is negligible with respect to ZK sec. ut

5 Distributed Somewhat Homomorphic Encryption

We are now ready to describe and implement the functionality FDistrDec (Figure 9) that extends
the scheme EmBGV introduced in the previous sections to allow distributed decryption. It will be
the main building block of our MPC protocol in the next section.

As mentioned before, our protocol ensures that all the ciphertexts that are input of FDistrDec

correctly decrypt. For this purpose we use the ideal functionality Fν,flag
GenValidCiph (see Figure 15). Given

the procedures Γ I and Γ J described in Figure 10, and on inputs [m]i ∈ M from each Pi, where

M = Zr×|I|2t is the plaintext space of our encryption scheme, and r× |I| is the number of supported

slots, the functionality Fν,flag
GenValidCiph returns:

- If ν = 1 and flag =⊥, a valid ciphertext ctIm ← BGV.Enc(Γ
−1
I (χI(m)), r; pk), such that m =∑

i∈[n][m]i; If ν = 1 and flag = Diag a valid ciphertext computed as before and satisfying the
predicate P = Diag;

- If ν = 2 and flag = Pack, two ciphertexts ctIm ← BGV.Enc(Γ
−1
I (χI(m)), r; pk) and ctJm ←

BGV.Enc(Γ
−1
J (χJ(m)), r; pk) satisfying the predicate P = Pack.

The ideal functionality Fν,flag
GenValidCiph is implemented by Πν,flag

GenValidCiph (see Figure 16 later in this
section ).
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Functionality FDistrDec

Let A be the set of corrupt parties.
Parameters: BDDec, a bound on the coefficients of the mask values, and Bnoise a bound on the noise of ciphertexts
before decryption.
Common input: A single valid level-zero ciphertext ct

(0,J)
m = (0, c0, c1)J from all the parties.

Initialize: On receiving (Init) from all parties the functionality, run (pk, sk)← mBGV.KeyGen(1κ), sending the
value pk to the adversary and all the parties.

D1: On receiving the public input (D1, ct
(0,J)
m ) from all the parties, where ct

(0,J)
m is valid level-zero ciphertext,

the functionality performs the following steps.
- Execute m← Dec(ct

(0,J)
m ; sk) and handle this value to the adversary.

- If P1 is honest : Wait for the adversary to input either abort or δ. If abort, then forward abort to the
honest parties and halt. Otherwise sample the honest shares [m]i ←M, i 6∈ A, i 6= 1, at random and set
[m]1 = −

∑
i 6∈A,i 6=1[m]i + m + δ. Send [m]i to Pi, ∀i 6∈ A.

- If P1 is corrupt : Send m to the adversary. Wait for an input from the adversary. If this input is abort,
then forward abort to the honest parties and halt. Otherwise receive b. Sample the honest shares [m]i ←
M, i 6∈ A, at random but subject to the condition

∑
i 6∈A[m]i = b. Send these values mi, i 6∈ A to the

honest parties.
D2: On receiving (D2, ct

(0,J)
m ) from all parties, the functionality performs the following steps.

- Execute m← Dec(ct
(0,J)
m ; sk) and send m to the adversary.

- Wait for an input from the adversary: if abort is received, then abort.
- Otherwise receive m′ and {[m′]i}i∈A. Sample random shares {[m′]i}i 6∈A such that

∑
i∈[n]{[m

′]i} = m′.

- Output {[m′]i}i 6∈A to honest parties and ĉt
(1,I)
m′ to all parties.

Figure 9. The functionality for distributed decryption

The Procedures Γ
−1
I (m) (resp. Γ

−1
J (m))

1. If computing Γ
−1
I (m) set all entries in m not in Supp(I) to zero.

2. If computing Γ
−1
J (m) set all entries in m not in Supp(J) to a uniformly random element selected from

[0, . . . , 2t].
3. Output Γ−1(m).

Figure 10. The procedure Γ
−1
I (m) (resp. Γ

−1
J (m)) from P to P

5.1 Distributed Decryption Protocols

Here we give two distributed decryption protocols, ΠDistrDec1 and ΠDistrDec2, in Figure 11 and
Figure 13, respectively. The protocols ΠDistrDec1 and ΠDistrDec2 implement the functionality FDistrDec

(Figure 9) on commands D1 and D2, respectively. Notice that we do not perform a proper full
distributed decryption, because the way we pack entries into a ciphertext would result in information
leakage if we allowed all the parties to recover the plaintext corresponding to the public input

ciphertext ct
(0,J)
m , but both our protocols output to each party Pi an additive share [m]i of m. Both

protocols depend on a constant Bnoise which represents a bound on the ciphertext noise before a
decryption occurs. For example, in case of fresh ciphertexts we have that Bnoise = Bdishonest

clean (see
Section A in the Appendix).

There are two main differences between the two protocols. The first one is in the way the
shares [m]i are computed. The protocol ΠDistrDec2 is essentially the same as the Reshare protocol
of [DPSZ12, DKL+13], where a masking ciphertext is used before the distributed decryption is

performed. More precisely, parties call the functionality F2,Pack
GenValidCiph which produces two ciphertexts
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(ct
(1,I)
f , ct

(1,J)
f ), with f =

∑
i∈[n][f ]i; then they decrypt ct

(0,J)
m+f = ct

(0,J)
m ⊕ ct

(0,J)
f , where ct

(0,J)
f =

SwitchMod(ct
(1,J)
f ), so that each Pi can compute a share [m + f ]i − [f ]i of m.

On the other hand, the protocol ΠDistrDec1 uses random masks fi, i ∈ [n], inside the actual
decryption to mask the decryption shares, so it does not require to perform any expensive zero-
knowledge proof. Note that this approach cannot be used if the parties need to generate a new
fresh ciphertext of m after the decryption, as happens in ΠDistrDec2, where this fresh encryption is

computed using the first ciphertext ct
(1,I)
f given by F2,Pack

GenValidCiph.

Protocol ΠDistrDec1

Parameters: The protocol is parametrized by two bounds: BDDec, a bound on the coefficients of the mask values,
and Bnoise a bound on the noise of ciphertexts before decryption.
Common input: A single valid level-zero ciphertext ct

(0,J)
m = (0, c0, c1)J.

Initialize: Each party Pi calls FKeyGen receiving (pk, [sk]i).

D1: On input (D1, ct
(0,J)
m ), where ct

(0,J)
m = (0, c0, c1)J is a (single) ciphertext, parties do as follows.

1. Each Pi samples fi ← [0, BDDec]
N (i.e. a polynomial in R with bounded coefficients).

2. P1 computes v1 ←
(
(c0 − [sk]1 · c1) + f1 (cmod q0)

)
= w1 + f1 (cmod q0).

Each Pi, i 6= 1 computes vi ←
(
−[sk]i · c1 + fi (cmod q0)

)
= wi + fi (cmod q0). All parties broadcast

these values.
3. Parties check that (

∑
i vi (cmod q0)) is bounded by Bnoise + n ·BDDec, if not abort.

4. P1 computes u1 ← (
∑n
i=1 vi (cmod q0))− f1 (mod 2t).

Each Pi, i 6= 1 computes ui ← −fi mod 2t.
5. Each Pi, i ∈ [n], sets [m]i ← χ−1

J (Γ (ui)).

Figure 11. Protocol implementing the command D1 on FDistrDec

Protocol ΠDistrDec1. Given a public input ciphertext ct
(0,J)
m , each party Pi samples a random

polynomial fi in R, with coefficients bounded by some fixed, large enough value BDDec to avoid
any leakage of information in the secret key, which is used to mask the decryption share.

Note that the correctness holds only if the values fi introduced by the parties during the
protocol are sampled from the right set, i.e. ‖fi‖∞ < BDDec, and ‖

∑
i∈[n] vi (cmod q0)‖∞ <

Bnoise + n ·BDDec < q0/2. We will derive the precise value BDDec in the security proof.
In terms of protocol security, the intuition is that the polynomial fi masks not only the values

in Supp(J) which contain information, but also values not in Supp(J) which could contain residual
information from prior homomorphic operations. So, the fact that the honest party effectively
“forgets” the values corresponding to slot terms not in Im(ωJ) results in the protocol not leaking
information on these terms. A complete proof of this intuition can be found below.

Theorem 5.1. The protocol ΠDistrDec1 (Figure 11) implements the functionality FDistrDec.D1 (Fig-
ure 9) against any static, active adversary corrupting up to n − 1 parties in the FKeyGen-hybrid
model with statistical security 2−DDec if

(
Bnoise + 2DDec · n · (Bnoise + 2t)

)
< q0/2.

Proof. First we show correctness. We have to prove that the value m shared by the protocol equals

the value χ−1
J (Γ (BGV.Dec(ct

(0,J)
m , sk))). But this is immediate, from the equations

m =
∑
i

[m]i =
∑
i

χ−1
J (Γ (ui)) = χ−1

J (Γ (
∑
i

ui))
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= χ−1
J

(
Γ
((∑

i

vi − f1 (cmod q0)
)
−
∑
i 6=1

fi mod 2t
))

= χ−1
J

(
Γ
((∑

i

wi (cmod q0)
)

mod 2t
))

+ χ−1
J

(
Γ
((∑
i 6=1

fi − f1 (cmod q0)
)
−
∑
i 6=1

fi mod 2t
))

= χ−1
J

(
Γ
(
(c0 −

∑
i

[sk]i · c1 (cmod q0)) mod 2t
))

+ χ−1
J

(
Γ
((
f̃ − f̃1 −

∑
i 6=1

fi mod 2t
))

= χ−1
J (Γ (BGV.Dec(ct(0), sk))),

where we denote f̃ =
∑

i fi (mod q0) and f̃1 = f1 (mod q0). Note that the correctness holds only
if the values fi introduced by the parties during the protocol are sampled from the right set, i.e.
‖fi‖∞ < BDDec, and ‖

∑
i∈[n] vi mod q0‖∞ < Bnoise + n ·BDDec < q0/2.

Let A be a static real world adversary corrupting up to n − 1 parties, we construct an ideal
world adversary S (Figure 12) interacting with FDistrDec.D1, and show that no environment Z can
distinguish between an interaction with A in the protocol ΠDistrDec1 and an interaction with S and
FDistrDec.D1 in the ideal world.

To argue indistinguishability between the ideal and real execution to an environment Z, recall

that Z can choose the common input ct
(0,J)
m , and that its view consists of this input, all the messages

received by the adversary, namely the public key pk, {vi}i 6∈A, other than all the adversary random
tapes, and all the outputs [m]i, i ∈ [n].

The simulator starts by emulating the FKeyGen functionality, obtaining the actual [sk]i, i ∈ A,
from the adversary and creates honest shares [sk]i, i 6∈ A, such that the sum of all the secret key
shares is a valid secret key. The distribution of the public key pk that S sends to the adversary
is exactly the same as in a real execution, as it is obtained by running KeyGen as in the real
protocol. Using these sk’s shares the simulator can compute wi = −[sk]i · c1, ∀i ∈ [n], i 6= 1, and
w1 = c0 − [sk]1 · c1. After that we need to distinguish between the cases P1 honest and P1 corrupt.

First we recall that given a value m ∈ M, Θ−1
J (m, BDDec) is computed as follows: 1) First

compute mP̄ ∈ P using the map χ−1
J 2) For each entry not in Supp(J), sample a uniformly random

element in [0, . . . , 2t], so to obtain a uniform random element m′P ∈ P such that χJ(m
′
P) = m 3)

Compute m′R ← Ψ−1
2t (m′P) with coefficients in [0, . . . , 2t]. 4) Sample u ← R uniformly at random

whose coefficient infinity norm is bounded by BDDec/2
t 5) Output mR ← m′R + 2t · u. So if BDDec

is large enough, the output value mR is within statistical distance from the uniform distribution in
[0, BDDec].

If P1 is honest : S generates all the vi’s, i 6= 1, honestly, so from the discussion above we have
that these values are perfectly simulated because they are obtained using shares of a possible secret
key and random masks fi ← [0, BDDec]

N , for large enough BDDec. The value v1 = (−
∑

i 6=1wi +

Θ−1
J
(
m, BDDec

)
(cmod q0)) generated by the simulator is also statistical indistinguishable from

the real word value v1 = w1 + f1 (cmod q0) except with negligible probability 2−DDec, since f1

has coefficients bounded by BDDec in both executions, and hence, using the smudging lemma, the
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two distributions are both within statistical distance from the uniform in [0, BDDec], as long as
BDDec ≥ 2DDec ·Bnoise.

It remains to prove indistinguishability of the outputs. The environment sees the honest shares.
These values are random but consistent with the actual plaintext m, some adversarial chosen value
δ and the simulated vi, i 6∈ A. More in particular, indistinguishability for shares [m]i, i 6∈ A, i 6= 1,
is straightforward. The simulated value [m]1 is such that: [m]1 = −

∑
i 6∈A,i 6=1[m]i + m + δ, with

δ ← χ−1
J (Γ ((E +

∑
i∈A fi (cmod q0)) mod 2t)) and in the real execution:

[m]1 = χ−1
J

(
Γ
(
u1

))
= χ−1

J

(
Γ
(
(
∑
i∈[n]

vi (cmod q0)
)

mod 2t)
)

= χ−1
J

(
Γ
(
(
∑
i∈[n]

wi (cmod q0)
)

mod 2t)
)

+ χ−1
J
(
Γ
(
(E (cmod q0)) mod 2t

))
+ χ−1

J
(
Γ
(
(
∑
i∈n

fi (cmod q0))− f1 mod 2t
))

= m + χ−1
J
(
Γ
(
(
∑
i 6∈A

fi (cmod q0) mod 2t
))

+ χ−1
J
(
Γ
(
(E +

∑
i∈A

fi (cmod q0)) mod 2t)),

so the two values are indistinguishable.

If P1 is corrupt : The indistinguishability argument is similar to the previous case. Compared
to that, we need to show that the value vj computed in the ideal world is indistinguishable from
the random value sampled in the real protocol. It is easy to see that this is the case as long as
BDistrDec1 > 2sec · (Bnoise +2t). It is also easy to verify, similarly to the previous case that the honest
output values are random and consistent with the vi, i 6∈ A, generated by the simulator and sent to
the adversary. ut

Protocol ΠDistrDec2. Given a public ciphertext ct
(0,J)
m , the protocol ΠDistrDec2 outputs a share [m]i

of the plaintext m and a fresh ciphertext ct
(1,I)
m to each party Pi. The protocol makes use of the

command Gen-2 of the functionality F2,Pack
GenValidCiph (Figure 15), which is implemented in Figure 16.

This command outputs two level-1 ciphertexts ct
(1,I)
f and ct

(1,J)
f of the same plaintext f corresponding

to the set I and J, respectively.

The ciphertext ct
(1,J)
f , corresponding to the set J, is used as a mask in the distributed decryption,

and ct
(1,I)
f , corresponding to the set I, is used to create a fresh encryption ĉt

(1,I)
m of m.

The proof of security for this protocol is similar to the corresponding protocol in SPDZ [DPSZ12].
The major changes from SPDZ are that we need to produce two auxiliary ciphertexts per party

(ct
(1,I)
fi

, ct
(1,J)
fi

), since we have different encodings at level zero and level one of the underlying mes-
sage space. Intuitively, the protocol reveals no more information about the BGV plaintext inside

ct
(0,J)
m because the honest parties are masking the coefficients not in Supp(J) using the coefficients

from the plaintext inside ct
(1,J)
fi

, which have been chosen to be uniformly random for coefficients

not in Supp(J), using the procedure Γ
−1
J . A proof for this result is given below.
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Theorem 5.2. The protocol ΠDistrDec2 implements the functionality FDistrDec.D2 (Figure 9) against

any static, active adversary corrupting up to n−1 parties in the (FKeyGen,F2,Pack
GenValidCiph)-hybrid model

with statistical security 2−DDec if (Bnoise + 2DDec · n · (Bnoise + 2t)) < q0/2

Proof. The proof is essentially the same given in [DPSZ12]. Let A be a static real world adversary
corrupting up to n − 1 parties, we give an ideal world adversary S (Figure 14) interacting with
FDistrDec.D2, and show that no environment Z can distinguish between an interaction with A in
the protocol ΠDistrDec2 and an interaction with S and the functionality in the ideal world. To
prove the property of the simulation, essentially we need to prove that the simulated value vj is
indistinguishable from the real value. Again we can use the Smudging lemma, so the two values
are indistinguishable from a uniform value in [0, BDDec] as long as 2DDec−t · (Bnoise + 2t) ≥ BDDec

with negligible probability 2−DDec. The shares [m]i are also indistinguishable because in the real

protocol the values ct
(1,J)
fi

and ct
(1,J)
f are obtained by using the Γ

−1
J procedure that chooses the

coefficients not in Supp(J) uniformly at random. ut

5.2 Generating Valid Ciphertexts

Here we implement the ideal functionality Fν,flag
GenValidCiph to create valid ciphertexts, see Figure 16.

To prove the security of Πν,flag
GenValidCiph we proceed like in [DPSZ12], that is we assume that the

encryption scheme EmBGV has an additional key generation algorithm K̃eyGen() that outputs a
meaningless public key p̃k such that

- Enc(m, p̃k))
s
≈ Enc(0, p̃k), i.e. an encryption of any message m is statistically indistinguishable

from an encryption of 0;

- If p̃k ← K̃eyGen() and (pk, sk) ← KeyGen(), then pk
c
≈ p̃k, namely the two public keys are

computationally indistinguishable.

In EBGV the algorithm K̃eyGen() just samples p̃k = (ã, b̃) uniformly at random mod q1.
The high level idea of the proof is then the following. We describe a simulator S and show

that if an environment Z can distinguish the simulation from the real protocol execution, then we
can construct a distinguisher that by rewinding the environment togheter with the adversary can
distinguish between a public key pk generated by KeyGen and a meaningless p̃k with non negligible
probability. To this purpose we need to generalise the proof in [DPSZ12] to our multiparty global
zero knowledge of plaintext knowledge.

Theorem 5.3. The protocol Πν,flag
GenValidCiph securely implements the functionality Fν,flag

GenValidCiph (Fig-
ure 9) against any static, active adversary corrupting up to n − 1 parties in the (FKeyGen,FRand)-
hybrid model.

Proof. We describe a simulator S (Figure 17) and show that any environment Z who can distinguish
between the real and ideal execution of the protocol can be used to construct a distinguisher D which
breaks the computational indistinguishability assumption between any normal pk← KeyGen() and

meaningless p̃k← ˜KeyGen().
First, the simulator emulates FKeyGen by running KeyGen() to generate (pk, sk), sends pk to all

parties and stores the secret key sk. So the simulator can decrypt all the received ciphertexts since
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they know sk. Then they run the protocol honestly computing all the corrupt parties’ plaintexts by
decrypting.

We now show that no environment Z can distinguish between the real and ideal process. Using
the standard UC notation, we let REALΠ,A,Z denote the random variable describing the output
of Z in a real execution of Π with adversary A. Similarly, we let IDEALF,S,Z denote the random
variable describing the output of Z after interacting with the ideal execution with adversary S and
functionality F . We assume the output of Z to be a single bit, considered as a guess at one of the
two executions REAL or IDEAL. The advantage of Z is then given by:

Adv(Z) = |Pr[REALΠ,A,Z = 1]− Pr[IDEALF,S,Z = 1]|.

Now, suppose there exists a set of inputs for which Z distinguishes between the two worlds with
noticeable advantage, δ. We prove that there exists a distinguisher D, which breaks the indistin-

guishability assumption of the output of KeyGen and K̃eyGen. D sets up a copy of Z and, on input

pk∗, it goes through the protocol with Z. Note pk∗ is either the output of KeyGen() or ˜KeyGen().

Then it uses the output of this simulation to guess if pk∗ was generated by KeyGen() or ˜KeyGen().
D runs the protocol in the same way the simulator would do, with some exceptions, as explained
in the following.

- Use pk∗ as described above, instead of generating the public key using KeyGen()
- To extract corrupt parties’ input, sample e ∈ {0, 1}u and use the zero-knowledge proof. Receive
{zik, T ik}i∈A, and rewind the adversary. Sample ē 6= e and receive back {z̄z, T ik}i∈A. Use the
knowledge extractor to compute {xik}i∈A

- To simulate honest parties’ transcripts use the honest-verifier zero knowledge and generate
{aik, e, zik, T ik}i 6∈A.

D uniformly chooses to output a simulated (as described above) or a real view. We denote these
views by DIDEAL and DREAL, respectively. Now we distinguish two different cases:

- If pk∗ ← KeyGen: In this case the view generated by D is statistically indistinguishable to either
the view generated by the simulator S or the one produced in the real protocol. So in this case
Z is able to distinguish between DIDEAL and DREAL with advantage δ.

- If pk∗ ← K̃eyGen: Since the key is meaningless and the encryptions contain statistically no

information about the corresponding plaintexts, DIDEAL
s
≈ DREAL and Z can only guess between

the two with probability 1/2.

Summing up:
Adv(D) ≥ Adv(Z)/2− ε = δ/2− ε,

for some negligible value ε. ut
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Simulator SDistrDec1

Let A be the set of corrupt parties.

- Emulate FKeyGen receiving (pk, sk) and {[sk]i}i∈A from A.
Sample {[sk]i}i6∈A consistently. Send pk to the adversary.

- Receive m← χ−1
J
(
Γ (BGV.Dec(ct

(0,J)
m , sk))

)
from the functionality.

P1 is honest:
- Compute wi = −[sk]i · c1, ∀i 6= 1
- Sample random {fi}i6∈A
- Compute vi honestly for each Pi, i 6∈ A, except for honest P1

- Set
v1 = −

∑
i6=1

wi +Θ−1
J (m, BDDec) (cmod q0).

- Send {vi}i 6∈A to A and receive {v∗i }i∈A from A
- If (

∑
i∈[n] vi (cmod q0)) is not bounded by the value Bnoise + n · BDDec send abort to the functionality,

otherwise compute ∑
i∈A

(v∗i − w
)
i =

∑
i∈A

f̃i = E +
∑
i∈A

fi,

where {wi}i∈A are honestly computed (i.e. computed used the actual secret keys obtained by A), and
{fi}i∈A and E is an adversarial chosen value. Send

δ ← χ−1
J (Γ ((

∑
i∈A

f̃i (cmod q0)) mod 2t))

to the functionality.
P1 is corrupt:

- Compute wi = −[sk]i · c1, ∀i ∈ [n]
- Sample random {fi}i6∈A for honest parties
- Compute vi honestly for each Pi, i 6∈ A, except for a honest Pj
- Set

vj = −
∑
i6=1

wi + fj + Γ−1
(
χJ
(
m
))

(cmod q0).

- Send {vi}i 6∈A to A and receive {v∗i }i∈A from A
- If (

∑
i∈[n] vi (cmod q0)) is not bounded by Bnoise + n · BDDec send abort to the functionality, otherwise

compute
bi ← −fi mod 2t and [b]i ← χ−1

J (Γ (bi)), ∀i 6∈ A.
Send b =

∑
i 6∈A[b]i to the functionality.

Figure 12. Simulator for D1
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Protocol ΠDistrDec2

Parameters: The protocol is parametrized by BDDec.
Common input: A single valid level-zero ciphertext ct

(0,J)
m = (0, c0, c1)J.

Initialize: Each party Pi calls FKeyGen receiving (pk, [sk]i)

D2: On input (D2, ct
(0,J)
m ) from all parties, where ct

(0)
m = (0, c0, c1)J is a (single) ciphertext.

1. Parties call the functionality F2,Pack
GenValidCiph on input [f ]i, ∀i ∈ [n], which returns the ciphertexts

(ct
(1,I)
f , ct

(1,J)
f ) to all parties.

2. All the parties locally compute ct
(0,J)
f = SwitchMod(ct

(1,J)
f ).

3. The parties homomorphically compute ct
(0,J)
m+f = ct

(0)
m ⊕ ct

(0,J)
f , and let ct

(0,J)
m+f be (0, c0, c1).

4. P1 computes v1 ← (c0 − sk1 · c1) (mod q0) ∈ Rq0 .
5. Pi, i 6= 1 computes vi ← −ski · c1 (mod q0) ∈ Rq0 .
6. All parties compute and broadcast ti = vi + 2t · ri for some random element ri ∈ Rq0 with infinity norm

bound BDDec.
7. The parties compute (m + f) = χ−1

J (Ψ2t(
∑
ti (cmod q0))) ∈M.

8. Party P1 sets [m]1 ← (m + f)− [f ]1, party Pi, i 6= 1 sets [m]i ← −[f ]i.
9. All parties compute, using some default value 0 for the randomness,

ĉt
(1,I)
m ← BGV.Enc(Ψ−1

2t (χI(m + f)),0, pk)	 ct
(1,I)
f .

Figure 13. Protocol implementing the command D2 on FDistrDec

Simulator SDistrDec2

- Emulate FKeyGen receiving {[sk]i}i∈A from A and pk.
Sample {[sk]i}i6∈A at random, but such that

∑
i∈[n][sk]i = sk, and send pk to A.

- Emulate F2,Pack
GenValidCiph to get ct

(1,I)
f and ct

(1,J)
f with inputs {fi}i∈A from the adversary. If the output is abort,

send abort to the functionality and halt.
- Compute ct

(0,J)
f = SwitchMod(ct

(1,J)
f ) and ct

(0,J)
f+m = (0, c0, c1)

- Compute all the v′is honestly and m + f , where f =
∑
i fi

- Compute ti honestly for each Pi, i 6∈ A, except for honest Pj
- Sample random rj with infinity norm bounded by BDDec and set

t̃j = −
∑
i∈[n]

vi + 2t · rj + (m+ f) (mod q0),

where m+ f = χJ(ψ
−1
2t

(m + f)).
- Send {ti}i 6∈A to A and receive {t∗i }i∈A from A
- Let T =

∑
i6∈A ti + t̃j +

∑
i∈A t

∗
i and compute (m + f)′ = χ−1

J (ψ2t(T )) ∈M.

- Compute δm ← (m + f)′ − (m + f)
- Compute and store [m]1 ← (m + f)′ − f1 and [m]i ← −fi, i 6= 1
- Perform the last step honestly. Send {[m]i}i∈A and m′ =

∑
i∈[n][m]i to the functionality.

Figure 14. Simulator for D2
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Functionality Fν,flag
GenValidCiph

Let A be the set of corrupt parties.
Parameters: an integer ν, a security parameter ZK sec, a flag ∈ {Diag,Pack,⊥} such that: If flag = Diag, then
P = Diag; If flag = Pack, then P = Pack and if flag =⊥, then P = ∅.

Initialize: On receiving (Init) from all parties run (pk, sk) ← BGV.KeyGen(1κ), sending the value pk to the
adversary and all the parties.

Gen-1: On input (Gen-1, flag, [m]i) from all parties Pi, i ∈ [n], do the following:
- If the adversary sends abort, return abort
- Otherwise receive ct

(1,I)
m and send this value to the parties

Gen-2: On input (Gen-2, flag, [m]i) from all parties, proceed as follows:
- If the adversary sends abort, return abort
- Otherwise receive ct

(1,I)
m and ct

(1,J)
m′ and send these values to all parties

Figure 15. The functionality Fν,flag
GenValidCiph to generate valid ciphertexts

Protocol Πν,flag
GenValidCiph

Parameters: an integer ν, a security parameter ZK sec, a flag ∈ {Diag,Pack,⊥} such that: If flag = Diag, then
P = Diag; If flag = Pack, then P = Pack and if flag =⊥, then P = ∅.

Initialize: Each party Pi calls FKeyGen receiving (pk, [sk]i).
Gen-1: Each Pi inputs (Gen-1, flag, [m]i), where flag ∈ {Diag,⊥} and [m]i are private inputs and if flag = Diag

then all slots of [m]i are equal.

1. Each Pi sets [mI]i ← χI([m]i) ∈ P and computes ctImi
← BGV.Enc(Γ

−1
I ([mI]i), ri; pk).

2. Parties run the protocol Π1,flag
gZKPoK receiving either ctIm or abort.

Gen-2: Each Pi inputs (Gen-2, flag, [m]i), where flag = Pack and [m]i are private inputs :
1. Each Pi sets [mI]i ← χI([m]i) ∈ P and [mJ]i ← χJ([m]i) ∈ P, then they compute ctImi

←
Enc.BGV(Γ

−1
I ([mI]i), ri; pk) and ct

′J
mi
← Enc.BGV(Γ

−1
J ([mJ]i), r

′
i; pk).

2. Parties run the protocol Π1,flag
gZKPoK receiving either (ctIm, ct

′J
m) to all the parties or abort.

Figure 16. Protocol for generating valid encryption on random shared values

Simulator SGenValidCrt

Initialize: Emulate FKeyGen to obtain (pk, sk) and send pk to A
Gen-1: Perform the first step according to the protocol, with values [m]i∈A received from A. Run Π1,flag

gZKPoK

honestly receiving {ctmi}i∈A from the adversary. Decrypt every broadcast ciphertext. Send abort or ctIm
accordingly.

Gen-2: Perform the first step according to the protocol, with values [m]i∈A received from A. Run Π2,flag
gZKPoK hon-

estly with the inputs {ctmi}i∈A and {ct′mi
}i∈A provided by A and decrypting all the broadcast ciphertexts.

Send abort or (ctm, ct
′
m) accordingly.

Figure 17. Simulator for GenValidCrt
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6 SPDZ2k from Somewhat Homomorphic Encryption - Pre-processing Phase

Functionality FPrep

Let A be the set of corrupt parties. The functionality generates shares of the global MAC key, it then provides
an interface to enable the generation of authenticated (potentially correlated) random shared values.

Initialize: On command (Init), wait for an input from the adversary, if it sends abort, return abort. Otherwise
receive {[α]i}i∈A ∈ Z2t and sample {[α]i}i6∈A ← Z2t uniformly at random. Store α =

∑
i∈[n][α]i.

Input: On receiving (Input, Pi) from all parties, this command produces ξ input masks. If the adversary sends
abort, return abort. Otherwise

- If i ∈ A: Receive m ∈ (Z2t)
ξ and all the shares [m]i ∈ (Z2t)

ξ, i ∈ [n], and {[γm]i}i∈A, from the
adversary. Sample honest shares [m]i and [γm]i such that m =

∑
i∈[n][m]i and γm = m ·α

- If i 6∈ A: Receive from the adversary only the values [m]i ∈ (Z2t)
ν and {[γm]i} for i ∈ A. Sample honest

shares at random but such that γm = m ·α.
- Output 〈m〉

Triple: On input (Triple) from all parties, this command produces ξ random authenticated triples.
- Sample honest shares ([a]i, [b]i) ∈ (Z2t)

2·ξ, i 6∈ A, at random
- Wait for an input from the adversary, if it sends abort return abort.

Otherwise receive ([a]i, [b]i, [c]i) ∈ (Z2t)
3·ξ and ([γa]i, [γb]i, [γc]i) ∈ (Z2t)

3·ξ, i ∈ A
- Sample {[c]i}i6∈A ∈ (Z2t)

ξ at random such that c = a · b, and {[γa]i, [γb]i, [γc]i}i6∈A such that, for each
x ∈ {a,b, c}, γx = x ·α.

- Output 〈a〉, 〈b〉, 〈c〉
Square: On input (Square) from all parties, this command produces ξ random authenticated squares Proceed

like in the Triple command, but with a · a = b. Output 〈a〉, 〈b〉
Bit: On input (Bit) from all parties, this command produces ξ random authenticated bits

- If the adversary sends abort, return abort Otherwise receive [b]i ∈ {0, 1}ξ and [γb]i ∈ (Z2t)
ξ, i ∈ A

- Sample {[b]i}i 6∈A at random in {0, 1}ξ and {[γb]i}i 6∈A at random but such that γb = b ·α
- Output 〈b〉

Figure 18. Offline Functionality FPrep

We now present our offline protocol based on the homomorphic scheme EmBGV described in
Section 3. Even if the online computation is assumed to be performed over Z2k , we produce random
authenticated data over Z2k+s . We use the same MAC scheme (and MACCheck procedure) used in
SPDZ2k, with the difference that in our protocol also the shares [α]i, i ∈ [n], of the secret global
key α are in Z2k+s . We set k + s = t and M = (Z2t)

ρ, where ρ is the number of packing slots.

The main task of the pre-processing protocol, which implements the ideal functionality FPrep,
(given in Figure 18) is to produce the following type of random authenticated values:

Input masks: (〈r〉, Pi), with the authenticated shared valued r known by Pi.

Triples: (〈a〉, 〈b〉, 〈c〉), where a, b, c ∈ Z2t are random shared values and c = a · b.
Squares: (〈a〉, 〈b〉), where a ∈ Z2t is a random secret shared value and b = a2.

Bits: 〈b〉, where b is a random secret shared bit.

We first implement a weaker form of pre-processing functionality FwPrep (Figure 20 and Fig-
ure 21), that might output incorrect values. After that, in protocol ΠPrep (Figure 19), we will
bootstrap outputs from FwPrep to implement the desired functionality preprocessing functionality
FPrep which returns different types of correct random authenticated values to be used in the online
evaluation.
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Protocol ΠPrep

Initialize: Same as in ΠwPrep

Input: Call the command (wInput, Pi) of FwPrep to generate ξ input mask 〈r〉 . Parties check a random linear
combination of these input masks as follows:
1. Parties run FRand to obtain random values χ1, . . . χξ in Z2s

2. Pi computes y =
∑
k∈ξ χk · rk and broadcasts this value

3. Each party Pj computes a random linear combination of their MAC shares [γy]j =
∑
k χ · [γrk ]i

4. Run MACCheck on y and γy, if the check fails, output abort
Triple:

1. Call the command (wTriple) of FwPrep to obtain a (weak) shared triple (〈a〉, 〈b〉, 〈c〉).
2. Parties call the same command again, but using the same value a as in the previous step, so to get a

(weak) shared triple (〈a〉, 〈b̂〉, 〈ĉ〉).
3. Parties call FRand to obtain r ∈ Z2s .
4. Parties execute the Sacrifice step as follows:

(a) Parties compute and run Open on 〈ρ〉 ← r · 〈b〉 − 〈b̂〉
(b) Parties compute and open 〈τ〉 ← r · 〈c〉 − 〈ĉ〉 − ρ · 〈a〉.
(c) If τ 6= 0 (mod 2t) then abort.

5. The parties run MACCheck, if the check fails, then abort, else output (〈a〉, 〈b〉, 〈c〉).
Square:

1. Call (wSquare) on FwPrep 2 times so as to obtain a (weak) pair of shared squares (〈a〉, 〈b〉), (〈â〉, 〈b̂〉).
2. Parties execute the Sacrifice step as follows:

(a) The parties call FRand to obtain a random r ∈ Z2s .
(b) Parties compute 〈ρ〉 ← r · 〈a〉 − 〈â〉 and run Open on this value
(c) Parties compute and open 〈τ〉 ← r2 · 〈b〉 − 〈b̂〉 − ρi · (r · 〈a〉+ 〈â〉).
(d) If τ 6= 0 (mod 2t) then abort.

3. The parties call MACCheck if the check fails, then abort, else output (〈a〉, 〈b〉).
Bit: 1. Parties call (wBit) and (wSquare) on FwPrep 2 times so to obtain a (weak) shared square (〈a〉, 〈b〉) and

a (weak) shared bit 〈c〉.
2. The parties call FRand to obtain a random r ∈ Z2s .
3. Parties execute the Sacrifice step as follows:

(a) Parties compute and open 〈ρ〉 ← r · 〈c〉 − 〈a〉
(b) Parties compute and open 〈τ〉 ← r2 · 〈c〉 − 〈b〉 − ρ · (r · 〈c〉+ 〈a〉).
(c) If τ 6= 0 (mod 2t) then abort.

4. Parties call the MACCheck if the check fails, then abort, else output 〈a〉.

Figure 19. Offline protocol ΠPrep

6.1 Weak Offline Protocol

We only describe our new protocol for producing random authenticated bits, the remaining com-
mands are implemented similarly to the SPDZ2k paper. In all steps we produce ρ = r · |I| random
pre-processed values at a time, since values are produced in the set M. As before, given m ∈ M
we write [m]i to denote an additive share of m and [α ·m]i to denote an additive share of the
scalar multiplication of m by the scalar α, and reserve the notation 〈x〉 for authenticated sharings
of values x ∈ Z2t .

On input of a random private value [α]i from each party Pi, the command Initialize outputs
a public ciphertext ctα, where α =

∑
i=n[α]i, that is used to authenticate secret values calling the

subprotocol ΠAuth (Figure 23). The commands wInput, wTriple and wSquare, output shares
of input masks, triples and squares, respectively. These are very similar to the ones in [DPSZ12]
and [DKL+13], and are described in Figure 22 In what follows we are going to describe the command
wBit, which implements our new technique to produce random authenticated bits.
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Functionality FwPrep- Part 1

Let A be the set of corrupt parties. The functionality generates shares of the global MAC key, it then provides an
interface to enable the generation of authenticated (potentially correlated) random shared values. Let ρ = r×|I|.

Initialize: On command (Init) do as follows.
1. Wait for an input from the adversary, if it sends abort, return abort. Otherwise receive {[α]i}i∈A ∈ Z2t

and sample {[α]i}i 6∈A ← Z2t uniformly at random. Store α =
∑
i∈[n][α]i.

wInput: On input (wInput, Pi) do as follows.
1. If i ∈ A, receive m ∈ (Z2t)

ρ and all the shares [m]i ∈ (Z2t)
ρ, i ∈ [n], from the adversary. Otherwise,

receive from the adversary the values [m]i ∈ (Z2t)
ρ, for i ∈ A.

2. Receive an error value δm ∈ (Z2t)
ρ and a MAC error value δγ from the adversary and sample [m]i ∈

(Z2t)
ρ, for i 6∈ A, random but subject to m + δm =

∑
i∈[n][m]i (mod 2t).

3. Run the macro 〈m〉 ← Auth([m]1, . . . , [m]n, δγ).
4. Output 〈m〉i to party Pi

wTriple: On input (wTriple) do as follows.
1. Sample random shares ([aj ]i, [bj ]i) ∈ (Z2t)

2 for i 6∈ A, j ∈ [ρ].
2. Wait to receive values ([aj ]i, [bj ]i, [cj ]i) ∈ (Z2t)

3, j ∈ [ρ] for i ∈ A. Set a ←
∑n
i=1[a]i (mod 2t) and

b←
∑n
i=1[b]i (mod 2t), where a = (a1, . . . , aρ) and b = (b1, . . . , bρ).

3. Receive a set of MAC offsets (δγa , δγb , δγc) and δc ∈ (Z2t)
ρ from the adversary.

4. Set c← a · b + δc (mod 2t), and sample [c]i ∈ (Z2t)
ρ for i 6∈ A such that

∑n
i=1[c]i = c (mod 2t).

5. Run 〈a〉 ← Auth([a]1, . . . , [a]n, δγa), 〈b〉 ← Auth([b]1, . . . , [b]n, δγb), and 〈c〉 ← Auth([c]1, . . . , [c]n, δγc).
6. Output (〈a〉i, 〈b〉i, 〈c〉i) to party Pi.

Figure 20. Weak offline functionality FwPrep - Part 1

Functionality FwPrep- Part 2

Let A be the set of corrupt parties. The functionality generates shares of the global MAC key, it then provides an
interface to enable the generation of authenticated (potentially correlated) random shared values. Let ρ = r×|I|.

wSquare: On input (wSquare) do as follows.
1. Randomly sample shares [aj ]i ∈ (Z2t)

2 for i 6∈ A, j ∈ [ρ].
2. Wait to receive values ([aj ]i, [bj ]i) ∈ (Z2t)

2 for i ∈ A, j ∈ [ρ]. Set a←
∑n
i=1[a]i (mod 2t)

3. Receive a set of MAC offsets (δγa , δγb) and an offset value δb ∈ (Z2t)
ρ from the adversary.

4. Set b← a · a + δb (mod 2t).
5. Sample [b]i ∈ (Z2t)

ρ for i 6∈ A such that
∑n
i=1[b]i = b (mod 2t).

6. Run 〈a〉 ← Auth([a]1, . . . , [a]n, δγa
) and [b]← Auth([b]1, . . . , [b]n, δγb

).
7. Output (〈a〉i, 〈b〉i) to party Pi.

wBit: On input (wBit) do as follows.
1. Sample a random bit dj ∈ {0, 1}, j ∈ [ρ]. Set d = (d1, . . . , dρ).
2. Wait to receive values [dj ]i ∈ Z2t for i ∈ A.
3. Receive a MAC offset δγd

and an offset value δd ∈ (Z2t)
ρ from the adversary.

4. Run 〈d〉 ← Auth([d]1, . . . , [d]n, δγd).
5. Output 〈d〉i to party Pi.

Macro Auth([x]1, . . . , [x]n, δγ): This is an internal subroutine. Let x = (x1, . . . , xν) ∈ (Z2)ν .
1. Set x←

∑n
i=1[x]i (mod 2t) .

2. Set γx ← α · x + δγ (mod 2t).
3. Wait to receive [γx]i ∈ (Z2t)

ρ for i ∈ A from the adversary.
4. Select [γx]i ∈ (Z2t)

ρ for i 6∈ A subject to
∑n
i=1[γx]i = γx (mod 2t).

5. Return 〈x〉 =
(
([x]1, [γx]1), . . . , ([x]n, [γx]n)

)
.

Figure 21. Weak offline functionality FwPrep - Part 2
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Protocol ΠwPrep - Part 1

Parameters: Let ρ = r × |I| be the number of random authenticated data we produce for each call of the
following commands.

Initialize: On command (Init) the parties do as follows.
1. Call FDistrDec.Init to obtain pk
2. Parties sample random [α]i ← Z2t , i ∈ [n]. Let [α]i ← M denote a plaintext with all the slots set to

[α]i. Set α =
∑
i∈[n][α]i.

3. The parties call the functionality F1,Diag
GenValidCiph on private inputs [α]i so that each party Pi receives ctα.

Input: On input (Input, Pi) from all other parties, this commands produces ρ random masks for Pi.
1. Pi samples a random r ∈M, creates random additive shares [r]j of r and sends them to the designated

party Pj

2. Parties call the functionality F1,⊥
GenValidCiph on input (Gen-1,⊥, [r]i), ∀i ∈ [n], receiving ct

(1,I)
r

3. Parties call the subprotocol ΠAuth on input ct
(1,I)
r , so to obtain 〈γr〉.

wTriple: On input (wTriple), this command produces ρ triples in one execution.
1. The parties call F1,⊥

GenValidCiph on random inputs [a]i, [b]i, so that each party receives cta and ctb.
2. Parties locally compute ctc ← cta � ctb
3. The parties call FDistrDec.D2 on input ctc, so that each Pi receives [c]i and a fresh ciphertext ct′c
4. Parties run ΠAuth on inputs cta, ctb, ct

′
c to obtain 〈γa〉, 〈γb〉, 〈γc〉.

wSquare: On input (wSquare), this command produces ρ random authenticated squares.
1. This is exactly the same as wTriple above, except that we only sample the messages/ciphertexts for a

and then set b = a2.

Figure 22. Weak offline protocol ΠwPrep - Part 1

Subprotocol ΠAuth

On input (Auth, ctx), where ctx is a public valid ciphertext

1. Parties locally compute ctα·x = ctx � ctα
2. Parties call FDistrDec.D1 on input ctα·x, so that each Pi receives [γx]i = [α · x]i.

Figure 23. Subprotocol ΠAuth

Note that, as said before, the outputs of ΠwPrep might be incorrect. This is because the dis-
tributed decryption, needed to produce and authenticate pre-processing data, allows the adversary
to introduce errors in both the shares and MACs. In ΠPrep we will check the correctness of these
values using the standard techniques of sacrificing ( [DPSZ12] and [CDE+18] in the Z2k setting).

Authenticated Bits. The standard trick in the modulo p setting, see [DKL+13], is to use the
2-to-1 map induced by squaring modulo p, inverting it, and taking an element in the kernel by
dividing the initial value by the obtained square root, i.e. x/

√
x2 ∈ {−1, 1}. When working modulo

2t this is no longer possible, as the squaring map is 4-to-1. However, by temporarily working modulo
2t+1 and then reducing the roots modulo 2t we can again obtain a 2-to-1 map. Furthermore, since
we need to be able to divide by the

√
x2, we will limit ourselves to invertible x’s, i.e. such that

x = 1 (mod 2). The protocol to generate a random element in {−1, 1} is therefore as follows:

1. Given a← Z2t , compute b← 1 + 2a (mod 2t+1) (b is determined mod 2t+1)

2. v ← b2 (mod 2t+2) (note that v is determined modulo 2t+2 since b+ 2t+1 has the same square
as b).

3. b̂ ←
√
v (mod 2t+1) (A fixed square root is taken. Notice since v is a square, square roots

exist, and there are four such square roots modulo 2t+2, namely: b, −b, b+ 2t+1 and −b+ 2t+1.
However, when reduced modulo 2t+1 there are only two possibilities, namely b and −b.
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4. d← b/b̂ (mod 2t+1) ∈ {−1, 1}.

Since we are interested in sharing bits in {0, 1}, not in {−1, 1}, we have to convert d. To perform
the conversion in the large prime case of “standard” SPDZ, one can simply add one and then divide
by two, but in our case division by two is impossible. However, we have a well defined division-by-2
map from Z2t+1 to Z2t that maps x ∈ Z2t+1 with x = 0 (mod 2) to x/2 ∈ Z2t , losing one bit of
precision in the process. As such we can replace step 5 by:

5. d← (b/b̂+ 1)/2 (mod 2t) = (a/b̂+ (1 + b̂)/2b̂) (mod 2t) ∈ {0, 1}.

Note that since b̂ is odd, the expression (1 + b̂)/2 is well defined modulo 2t. We are now ready to
give the wBit procedure of ΠwPrep, where we map these operations to the ciphertext space and the
shares of a so as to produce shared bits in {0, 1}. In particular, given a sharing [a]i of a, it is easy to

compute a sharing of d by defining [d]1 = [a]1/b̂+ (1 + b̂)/(2b̂) (mod 2t) and [d]i = [a]i/b̂ (mod 2t)
for i > 1.

Protocol ΠwPrep - Part 2

Parameters: Let ρ = r × |I| be the number of random authenticated data we produce for each call of the
following commands.

wBit: This command produces ρ random authenticated bits in one execution.
1. Parties call F1,⊥

GenValidCiph on command (Gen-1,⊥) with random inputs [a]i ∈ M, i ∈ [n], so that each Pi
receives cta. Parties locally compute ctb = cta � cta � ct1, where ct1 a trivial encryption of the all one
vector.

2. Parties set ctv ← ctb � ctb.
3. The parties call FDistrDec.D1 on input ctv and so each party Pi obtains [v]i ∈M′. Note M′ is mod 2t+2.
4. The parties broadcast [v]i and set v← [v]1 + . . .+ [v]n (mod 2t+2).
5. Parties set b̂ ←

√
v (mod 2t+1), where a fixed square root value is taken in each slot position modulo

2t+1. If a square root does not exists, abort.
6. Parties locally set

ctd ← cta/b̂� ct(b̂+1)/2b̂,

[d]1 ← [a]1/b̂ + (b̂ + 1)/2b̂ (mod 2t),

[d]i ← [a]i/b̂ (mod 2t), for i > 1,

where ct(b̂+1)/2b̂ is a deterministic encryption of the public value (b̂ + 1)/2b̂.

7. Parties run ΠAuth on input ct
(1,I)
d , so to obtain [γd]i, ∀i ∈ [n], i.e. each party Pi obtains [α · d]i.

8. For each slot in the plaintext space M each party Pi can obtain a value of 〈dj〉i , j ∈ [ρ], (a sharing
modulo 2t) from the plaintexts ([d]i, [α · d]i).

9. Each party Pi’s output is 〈dj〉i, j ∈ [ρ].

Figure 24. Weak offline protocol ΠwPrep - wBit

Note that since we do not expose a direct distributed decryption operation on the FDistrDec

functionality we need to obtain the clear value of v via sharing and opening, unlike in [DKL+13].
Also note again unlike [DKL+13], we produce exactly the given number of slots in each call to Bit,
as we do not need to cope with the case of square roots of zero in this method.

Theorem 6.1. The Protocol ΠwPrep (Figure 22 and Figure 24) securely realises the ideal function-
ality FwPrep in the (FGenValidCiph,FDistrDec)-hybrid model.
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Proof. We construct a simulator SwPrep (Figure 25 and Figure 26), such that no environment Z
can distinguish between a real execution with the adversary A and ΠwPrep and an ideal execution
with the simulator SwPrep and FwPrep.

Simulator SwPrep - Part I

Let A be the set of corrupt parties.

Initialize: 1. Emulate FDistrDec.Init and send pk to the adversary
2. Emulate F1,Diag

GenValidCiph on inputs {[α]i}i∈A specified by A and random {[α]i}i6∈A for honest parties. Send
the output of FGenValidCiph to A. If FGenValidCiph returns abort, send abort to the functionality.

Input: 1. If Pi honest : Sample a random r ∈ M and shares {[r]i}i∈[n]. Send {[r]i}i∈A to A. If Pi corrupt :
Receive r ∈M and shares {[r]i}i∈[n] from the adversary.

2. Emulate the functionality F1,⊥
GenValidCiph with inputs [r∗]i, i ∈ A, specified by the adversary. If the output

is abort, send abort to the functionality. Otherwise, compute δr =
∑
i∈A([r]i− [r∗]i) and send ctr∗ to A,

where r∗ = r + δr.
3. Compute ctα·r∗ and emulate FDistrDec.D1.
4. Send {[r∗]i,γi = γ[r∗]i

}i∈A, δr, δγ to the functionality. If Pi is corrupt send also r and {[r]i}i 6∈A.
wSquare: Simulate this command similarly to the previous one

Figure 25. Simulator for the weak-preprocessing protocol - Part I

Simulator SwPrep - Part II

Let A be the set of corrupt parties.

wTriple: 1. Emulate F1,⊥
GenValidCiph on input {[a]i, [b]i}i∈A specified by A. If abort, return abort to the function-

ality, otherwise send cta, ctb to the adversary.
2. Compute ctc and emulate FDistrDec.D2. Send ctc∗ to the advesary, where c∗ = c + δc.
3. Compute ctα·c∗ , ctα·a, ctα·b, and emulate FDistrDec.D1 on these inputs.
4. Send {[a]i, [b]i, [c∗]i}i∈A, {[γa]i, [γb]i, [γc∗ ]i}i∈A, δc, δγa

, δγb
, δγc∗ to the functionality.

wSquare: Simulate this command similarly to the previous one. Send δa, δb, δγa
, δγb

to the functionality.

wBit: 1. Run the protocol honestly with corrupt shares specified by A when emulating F1,⊥
GenValidCiph and

FDistrDec.D1.
2. Receive {[v∗]i}i∈A from A and send honest shares to A. Compute δv =

∑
i∈A([v]i − [v∗]i). Compute

v∗ =
∑
i∈A[v∗]i +

∑
i 6∈A[v]i. If b̂ does not exist, send abort to the functionality. Otherwise go to the

next step.
3. Simulate the rest of the protocol honestly and send δd, δγd to the functionality

Figure 26. Simulator for the weak-preprocessing protocol - Part II

First, we note that the simulator generates (pk, sk) emulating FDistrDec.Init, and that indistin-
guishability of ciphertexts, for example in the Initialize step, follows from the CPA-security of
the underlying homomorphic scheme. In the wInput step, if Pi is honest, the values {[r]i}i∈A are
uniformly random in both executions; if Pi is corrupt, the shares are entirely specified by A. Then
the simulator honestly emulates the functionality F1,⊥

GenValidCiph with corrupt inputs specified by the
adversary and honest random inputs, so the output of this command has exactly the same distribu-
tion in both worlds, and if abort occurs in the real execution, so it does in the ideal one except with
negligible probability. The same arguments hold for the commands wTriple and wSquare. In the
wBit command the {[v]i}i∈A values sent to the adversary are obtained by emulating FDistrDec.D1,
so have the same distribution of real ones. And, if the sum of these shares with those provided
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by the adversary results in a value for which the square root does not exist, then both executions
abort. Note that this happens independently of the honest shares. The rest of the protocol does
not require further communication, other than in the emulation of FDistrDec.D1. ut

6.2 From FwPrep to FPrep - Sacrificing

We can now show how to turn theΠwPrep protocol into a protocol which realises the FPrep functional-
ity. As said before, the authenticated shared data generated by FwPrep are incorrect if corrupt parties
cheated in the distributed decryption, i.e. the output of FwPrep is a set of sharings {〈a〉, 〈b〉, 〈c〉}
(resp. {〈a〉, 〈b〉} or {〈a〉}) where we have c = a · b+ δc (resp. b = a2 + δb or a ∈ {a, a+ δa}) for some
adversarially chosen error value δ ∈ Z2t and shared values a, b, c ∈ Z2t . In a nutshell, the protocol of
ΠPrep takes the output of ΠwPrep and ensures that the adversarially chosen values δ’s are all equal
to zero using the standard technique of sacrificing.

However, also the MACs on these values might be incorrect, i.e. we might have γa =
∑

i[α ·
a]i + δγa for each authenticated value a. We can check the MAC on all the opened values at the
end of the offline phase, and also check that the input masks are correctly MAC’d, by performing
a MACCheck on a random linear combination of them. We add these checks in our preprocessing
protocol, but in practice we do no worry about the errors δγ ’s on the MAC equations, since they
can be dealt with later during the online phase, when all the values opened during the circuit
evaluation are checked.

Theorem 6.2. The protocol ΠPrep securely implements the ideal functionality FPrep against any
static, active adversary corrupting up to n− 1 parties in the (FwPrep,FRand)-hybrid model.

Proof. The proof is essentially the same as in [DPSZ12] and [DKL+13]. The high level idea is that
the simulator emulates the weak pre-processing functionality FwPrep with corrupt shares provided
by the adversary. Note that when the protocol calls the command Open, it refers to the command
described in the MACCheck procedure given in Figure 27.

Therefore, to simulate the Input command, first the simulator emulates the FwPrep with corrupt
inputs provided by A and then the FRand functionality, giving the random output values to A. If Pi
is corrupt, S receives the value y from the adversary and, if this value is inconsistent with previously
computed values, it sends abort to the functionality. If Pi is honest, S sends y to A and waits for
a reply. If A sends abort, S forwards abort to the functionality.

The simulation for the commands Triple, Square and Bit is similar: S emulates FwPrep and
FRand, then during the sacrifice step it opens a random value in Z2t and, if the output of FwPrep was
incorrect, it sends abort to the functionality. Otherwise it checks the consistency of opened values,
sending abort to the functionality in the case the check fails.

To argue indistinguishability between the real and ideal executions, we recall that in the real-
world execution the probability of passing the sacrificing step with incorrect values is negligible, in
particular this happens with probability 2−s [CDE+18][Claim 4]. While the probability of passing
the MAC Check on inconsistent values is bounded by 2−2+log(s+1) [CDE+18][Theorem 1], which is
again negligible for large enough s. ut

7 Communication Efficiency Analysis

Here we analyse the communication efficiency of our preprocessing protocol, when compared to
the method of [CDE+18]. To simplify matters we focus just on the cost of our triple generation
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Protocol N log2 q k s sec Triple Cost

This paper 14449 270 32 32 26 72.8
SPDZ2k - - 32 32 26 79.87

This paper 32377 520 64 64 57 153.3
SPDZ2k - - 64 64 57 319.488

This paper 32377 720 128 64 57 212.2
SPDZ2k - - 128 64 57 557.06

Table 2. Amortized communication cost (in kbit) of producing triples of our protocol and SPDZ2k

procedure as it is the most expensive step of the preprocessing phase. The entire protocol we want
to maintain the same level of statistical security, which is equal to sec = s− log2 s.

The most expensive step in our protocol is the zero-knowledge proof that proves that ZK sec
ciphertexts are valid with ZK sec bits of statistical security. Once this parameter is fixed, to sec,
the protocol Π1,flag

gZKPoK requires 2 × ZK sec broadcasts of ciphertexts in R2 and the broadcast of zi

and Ti, which gives a total cost of 4 · ZK sec ·N · log(q) + 8 · ZK sec ·N − 4 ·N · ZK sec bits.

To generate ZK sec · ρ triples 〈a〉, 〈b〉, 〈c〉 we need two calls to F1,⊥
GenValidCiph, to create ZK sec

ciphertexts cta, ctb, after that one call to FDistrDec.D2, to produce shares of ctc and ZK sec fresh
ciphertexts ct′c. These are used later to produce the MAC shares [γa]i, [γb]i, [γc]i, obtained by
running 3×ZK sec times the subprotocol ΠAuth. Notice that, as done in [CDE+18], we are ignoring
here the cost of the MACCheck, as it can be done in the online phase and, in any case, it is
independent of the number of generated triples, and the cost of FRand and sacrificing, as it is
negligible compared to the cost of the rest of the protocol. This gives a total cost (amortized) of
roughly 4 · (12 · log(q) ·N/ρ+N/ρ · q) bits per triple,where ρ is the amount of packing in a single
ciphertext.

We then estimate for various values of (k, s) the values of N and q which satisfy the bounds in
Appendix A, and which give the best values for packing from Table 1. We select parameters which
give us roughly 128 bits of computational security according to the tool obtained from https://

bitbucket.org/malb/lwe-estimator. This allows us to give an estimation of the communication
complexity of our protocol and SPDZ2k in the case of two parties creating one triple, see Table 2.
In the important cases of statistical security of 64 bits in SPDZ2k over 64 and 128-bit data types
we have a reduction in communication of over a half. In addition our protocol will get progressively
more efficient than the OT-based pre-processing of SPDZ2k as the number of parties increases.
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A BGV Noise Analysis

Here we present the noise analysis for the scheme. There is nothing here which has not appeared
in other works, in fact we simply replace the bound p on the message coefficients for the BGV
scheme with 2t. However, we present the noise bounds here for completeness, and because they
are important when analysing the zero-knowledge proofs in the paper. Our analysis follows closely
that described in [GHS12c], and [ACK+19]: the reader is referred to those papers for a complete
explanation of the notation. The analysis here is to convince the reader that no additional surprises
occur due to moving from working with a plaintext mod p to one mod 2t, and in our modified
protocol for shared bit creation.

We first define a number of parameters:

- ZK sec: This defines the soundness error of the zero-knowledge proofs.
- DD sec: This defines the closeness of the distribution produced in the distributed decryption

protocol below to the uniform distribution.
- ε: This defines the noise bounds for the FHE scheme below in the following sense. A FHE

ciphertext in the protocol is guaranteed to decrypt correctly, even under adversarial inputs
assuming the ZKPoKs are applied correctly, with probability 1− 2−ε. In fact this is an under-
estimate of the probability. From ε we define ei such that erfc(ei)

i ≈ 2−ε and then we set ci = eii.
In [GHS12c] this parameter is implicitly set to be 55.

- σ: The standard deviation for our approximate discrete Gaussians, we implicitly assume σ =
3.17 =

√
10 below (as proposed by [GHS12c]), and we utilize the NewHope [ADPS16] method

of approximating the discrete Gaussian (and hence all samples are bounded in size by 20 in
absolute value).

- h: This defines the number of non-zero coefficients in the FHE secret key as used in [GHS12c].

A.1 Noise for Fresh Ciphertexts

We calculate a bound (with high probability) on the output noise of an honestly generated cipher-
text to be

‖c0 − sk · c1‖∞ = ‖((a · sk + 2t · ε) · v + 2t · e0 +m− (a · v + 2t · e1) · sk‖can
∞
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= ‖m+ 2t · (ε · v + e0 − e1 · sk)‖
can
∞

≤ ‖m‖can
∞ + 2t · (‖ε · v‖can

∞ + ‖e0‖can
∞ + ‖e1 · sk‖can

∞ )

≤ φ(p) · 2t−1

+ 2t · σ ·
(
c2 · φ(p)/

√
2 + c1 ·

√
φ(p) + c2 ·

√
h · φ(p)

)
= Bclean.

Note this is a probabilistic bound and not an absolute bound.

However, below we will only be able to guarantee m, v, e0 and e1 are selected subject to

‖v‖∞ ≤ 23·ZK sec/2+1 · n
‖e0‖∞, ‖e1‖∞ ≤ 20 · 23·ZK sec/2+1 · n

‖m‖∞ ≤ 23·ZK sec/2+1 · n · 2t−1,

where sec is our statistical security parameter. In this situation we obtain the bound, using the
inequality above between the infinity norm in the polynomial embedding and the infinity norm in
the canonical embedding,

‖c0 − sk · c1‖can
∞ ≤ ‖m‖

can
∞ + 2t · (‖ε · v‖can

∞ + ‖e0‖can
∞ + ‖e1 · sk‖can

∞ )

≤ ‖m‖can
∞ + 2t · (‖ε‖can

∞ · ‖v‖
can
∞ + ‖e0‖can

∞ + ‖e1‖can
∞ · ‖sk‖

can
∞ )

≤ φ(p) · 23·sec/2+1 · n · 2t

·
(

1/2 + 20 · c1 · σ ·
√
φ(p) + 20 + 20 · c1 ·

√
h
)

= Bdishonest
clean

Again this is a probabilistic bound (assuming validly distributed key generation), but assumes the
worst case for the ciphertext bounds.

A.2 Noise After SwitchMod

This takes as input a ciphertext modulo q1 and outputs a ciphertext mod q0. The initial ciphertext
is at level q1 = p0 ·p1, with q0 = p0. If the input ciphertext has noise bounded by ν in the canonical
embedding then the output ciphertext will have noise bounded by ν ′ in the canonical embedding,
where

ν ′ =
ν

p1
+Bscale.

The value Bscale is an upper bound on the quantity ‖τ0 + τ1 · sk‖can
∞ , where τi is drawn from a

distribution which is close to a complex Gaussian with variance φ(p) · 22·t/12. Therefore, we can
(with high probability) take the upper bound to be

Bscale = c1 · 2t ·
√
φ(p)/12 + c2 · 2t ·

√
φ(p) · h/12.

This is again a probabilistic analysis, assuming validly generated public keys.

A.3 Noise After Addition

Noise from an addition operation is purely additive.
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A.4 Noise After Multiplication

Multiplication is performed by first switching modulus/levels down to level zero (whose noise we
analysed above), we then tensor the resulting ciphertext (which results in a degree two ciphertext
whose noise is a product of the noise of the input level zero ciphertexts), we then need to relinearize
(to produce a degree one ciphertext again).

In order to estimate the output noise term in the canonical embedding for the relinearization
operation we need first to estimate the size of the term (again probabilistically, assuming validly
generated public keys)

‖2t · d2 · esk,sk2‖
can

∞ ≤ 2t · c2 ·
√
q2

0/12 · σ2 · φ(m)2

= 2t · c2 · q0 · σ · φ(m)/
√

12

= BKS · q0.

Then if the input to relinearization has noise bounded by ν then the output noise value in the
canonical embedding will be bounded by

ν +
BKS · q0

p1
+Bscale.

Combining all the above, if we take two ciphertexts of level one with input noise in the canonical
embedding bounded by ν and ν ′, the output noise level from multiplication will be bounded by

ν ′′ =

(
ν

p1
+Bscale

)
·
(
ν ′

p1
+Bscale

)
+
BKS · p0

p1
+Bscale.

This provides a suitable bound for the “circuit” used to produce multiplication triples. It is easily
seen, by examining the calculations used to produce the shared random bits, that the same bound
holds in this case as well. This is because, apart from a small amount of additions of ciphertexts,
we replace the multiplication of ciphertexts above with a multiplication of a ciphertext and a scalar
ring element. This last operation produces less noise than the former, and so the above bound will
hold in this case as well.

A.5 Valid Decryption

A ciphertext, with noise ν ′′, will decrypt validly if we have cm · ν ′′ < q0/2. However, as we always
take prime cyclotomics we have cm = 1.2732, [DPSZ12].

B MACCheck Procedure

In this section we recall the MACCheck procedure over Z2k introduced by Cramer et al. in
[CDE+18]. When a secret shared value 〈x〉 is opened, i.e. the parties broadcast their shares xi = [x]i
mod 2k, the parties need to check the MAC on this value. Note that for security reasons the parties
do not send the upper bits of their shares.

The procedure in Figure 27 consists of three different commands: the Open command that
given a secret shared value 〈x〉 outputs a value x′ ∈ Z2t such that x ≡ x′ mod 2k; the Single
Check command that checks the MAC on a single shared value 〈x〉; the Batch Check command
that checks the MACs on m shared values 〈x1〉, . . . , 〈xm〉. In the last two commands we assume the
parties have access to a random secret shared value 〈r〉, with r ∈ Z2s .
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Procedure MACCheck

Open: Given a secret shared values 〈x〉, do the following.
1. Each party Pi broadcast their share xi = [x]i mod 2k

2. The parties reconstruct the value x̃ =
∑
i∈[n] x

i mod 2t.

Single Check: Given an opened value x̃ ∈ Z2t and a random secret shared value 〈r〉, parties proceed as follows.
1. Compute 〈y〉 = 〈x̃+ 2k · r〉
2. Each party broadcasts their shares [y]i and reconstructs y′ =

∑
i∈[n][y]i mod 2t

3. Each Pi commits to [z]i = [γy]i − y′ · [α]i
4. All parties open their commitments and check that

∑
i∈[n][z]i ≡ 0 mod 2t

5. If the check passes then outputs y′ mod 2k, otherwise output abort.
Batch Check: Given opened values x̃1, . . . , x̃m ∈ Z2t and a random secret shared value 〈r〉, r ∈ Z2s , parties

proceed as follows.
1. Parties call the functionality FRand to obtain t random values χ1, . . . , χm ∈ Z2s , and compute

ỹ =
∑
j∈[m]

χj · x̃j mod 2t.

2. Each party Pi computes pi =
∑
j∈[m] χj · p

i
j , where pij =

[xj ]i−xij
2k

, and broadcasts p̃i = pi + [r]i mod 2s

3. Parties compute p̃ =
∑
i∈[n] p̃

i mod 2s

4. Each party Pi computes γi =
∑
j∈[m] χj · [γxj ]i mod 2t and

zi = γi − [α]i · ỹ − 2k · p̃ · [α]i + 2k · [γr]i mod 2t.

Then it commits to zi

5. Parties open their commitments and verify that
∑
i∈[n] z

i ≡ 0 mod 2t. If the check passes output x̃j

mod 2k, otherwise output abort.

Figure 27. Procedure for opening secred shared values and checking MACs

Theorem B.1 ( [CDE+18]).

1. If the Single Check passes, the opned value x̃ is correct, i.e. x̃ = x mod 2k, except with
probability 2−s.

2. If the Batch Check passes, the opned values {x̃i}i∈[m] are correct, i.e. x̃i = xi mod 2k, ∀i ∈
[m], except with probability 2−s+log(s+1).
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