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Abstract. Based on the identity-based encryption (IBE) from lattices by Agrawal et al. (Euro-
crypt’10), Micciancio and Peikert (Eurocrypt’12) presented a CCA1-secure public-key encryption (PKE),
which has the best known efficiency in the standard model and can be used to obtain a CCA2-secure
PKE from lattices by using the generic BCHK transform (SIAM J. Comput., 2006) with a cost of
introducing extra overheads to both computation and storage for the use of other primitives such as
signatures and commitments. In this paper, we propose a more efficient standard model CCA2-secure
PKE from lattices by carefully combining a different message encoding (which encodes the message
into the most significant bits of the LWE’s “secret term”) with several nice algebraic properties of
the tag-based lattice trapdoor and the LWE problem (such as unique witness and additive homomor-
phism). Compared to the best known lattice-based CCA1-secure PKE in the standard model due to
Micciancio and Peikert (Eurocrypt’12), we not only directly achieve the CCA2-security without using
any generic transform (and thus do not use signatures or commitments), but also reduce the noise
parameter roughly by a factor of 3. This improvement makes our CCA2-secure PKE more efficient in
terms of both computation and storage. In particular, when encrypting a 256-bit (resp., 512-bit) mes-
sage at 128-bit (resp., 256-bit) security, the ciphertext size of our CCA2-secure PKE is even 33-44%
(resp., 36-46%) smaller than that of their CCA1-secure PKE.

1 Introduction

In the seminal work of [25], Diffie and Hellman introduced the concept of public-key cryptography. Soon
afterwards, Rivest, Shamir and Adleman [56] proposed the first public-key encryption (PKE), which is known
as RSA. Since then, PKE has aroused widespread public attention from the community, and has become
one of the most fundamental and widely used cryptographic primitives. The basic security notion for PKE
(i.e., CPA-security) which was formalized by Goldwasser and Micali [33] roughly requires that it should
be computationally infeasible for a passive adversary to obtain any useful information from a honestly
generated challenge ciphertext. Later, this notion was enhanced by Naor and Yung [46] to deal with the
“lunchtime attack”. Specifically, they [46] considered the security against non-adaptive chosen ciphertext
attacks (i.e., CCA1-security) for PKE, where the adversary can access a decryption oracle to decrypt any
ciphertext of his choice before seeing the challenge ciphertext. Now, the de facto standard security for PKE
is CCA2-security [54], where the adversary can adaptively access the decryption oracle during the whole
attack period (with a restriction that the decryption oracle cannot be directly used to decrypt the challenge
ciphertext). For example, the National Institute of Standards and Technology (NIST) considered CCA2-
security as a basic security requirement for the PKE submissions to the post-quantum cryptography (PQC)
standardization [47].

By definition, CCA2-security is stronger than CCA1-security, which in turn is stronger than CPA-security.
One of the main problems in this area is to construct CCA2-secure PKEs from primitives as weak as possible
(e.g., a CPA-secure one). Using the Random Oracle (RO) heuristic, one can efficiently boost a CPA-secure
PKE into a CCA2-secure one [30,53,65]. However, a scheme provably secure in the RO model may not be
secure in the real world [19], and it is of great theoretical and practical interest to construct CCA2-secure



PKE in the standard model. But this task becomes very challenging and highly non-trivial. In fact, Gertner
et al. [32] showed that it is hard, if not impossible, to even construct a CCA1-secure PKE solely from a
CPA-secure one in the standard model.

By relying on primitives with “stronger” functionality or security, there are roughly four approaches
to CCA2-secure PKEs in the standard model. The first one is due to Naor and Yung [46], who showed
a paradigm for transforming CPA-secure PKEs into CCA1-secure ones by using the non-interactive zero-
knowledge (NIZK) proofs, which was further extended to achieve CCA2-security [58,26]. The second one
is a framework under the name of hash proof systems (HPS) or extractable HPS [24,67], which essentially
stems from high-level abstraction of some existing schemes. The third one is the BCHK transform [12]
from identity-based encryption (IBE), which was later extended to the more general tag-based encryption
(TBE) by Kiltz [37]. The last one follows the generic constructions from special types of injective trapdoor
functions [52,57,38], such as lossy trapdoor functions [52] and adaptive trapdoor functions [38].

The above approaches have been shown very useful in constructing CCA2-secure PKEs from various
hardness assumptions, but most of the instantiations were based on traditional number theoretic problems
such as discrete logarithm and integer factorization, which are not quantum resistant [60]. Compared to
the big success in the traditional setting, the progress on designing lattice-based CCA2-secure PKE in the
standard model was relatively slow. For example, many practical CCA2-secure PKEs in the traditional
setting were obtained by using the generic framework from HPS (e.g., [23]), but it is still hard to construct
an HPS from lattices [36,51,11]. Moreover, it is also unclear how to obtain NIZKs from lattices in the standard
model [11,72,39]. This means that we currently cannot use the first two approaches to construct standard
model CCA2-secure PKEs from lattices.

In fact, almost all existing standard model CCA2-secure PKEs from lattices are, to the best of our knowl-
edge, obtained either by using the techniques from special types of injective trapdoor functions [52,48,68,64]
which are typically very inefficient (e.g., having large public key and ciphertext sizes due to the use of Dolev-
Dwork-Naor like technique [26,28]), or by applying the BCHK transform from IBEs/TBEs [1,2,21,69,71,70,27].
Based on the standard model IBE from lattices due to Agrawal et al. [1], Micciancio and Peikert [45] pre-
sented the best known standard model (tag-based) CCA1-secure PKE from lattices by using a more efficient
trapdoor technique and a new message encoding. They [45] also mentioned that the CCA2-security can be
achieved by using the generic BCHK transform [12], which has two modes: BCHK-SIG [20] and BCHK-
MAC [14]. BCHK-SIG requires (one-time) signatures, and typically incurs noticeable overheads to both
computation and storage [12]. This becomes even worse on lattices, since the resulting ciphertext should
include a verification key of the (one-time) signature, which, to the best of our knowledge, has at least one
matrix [43]. In contrast, BCHK-MAC [14] makes use of message authentication codes (MAC) and commit-
ments, and thus can reduce the extra overheads, e.g., it only adds a MAC tag and a commitment to the
resulting ciphertext.

Given the difficulties in adapting traditional techniques to the lattice setting, and the insufficiencies of
existing CCA2-secure PKEs from lattices, it is natural to ask: Can we directly construct a standard model
CCA2-secure PKE from lattices (possibly by carefully exploiting the rich algebraic properties of lattices), such
that it has better performance than those following the generic approaches?

1.1 Our Results

In this paper, we construct a standard model CCA2-secure PKE from lattices, which does not follow the
generic approaches mentioned above. Technically, our PKE is obtained by carefully combining a different
message encoding with several nice algebraic properties of the tag-based lattice trapdoor and the learning
with errors (LWE) problem (e.g., unique witness and additive homomorphism). Unlike previous LWE-based
PKEs which typically encode the message into the LWE’s “error term”, we encode the message into the most
significant bits of the LWE’s “secret term”, which not only provides a better way to control the error size in
the decryption, but also allows us to directly achieve CCA2-security. Compared to the best known standard
model CCA1-secure PKE [45], our CCA2-secure PKE reduces the noise parameter for encryption roughly
by a factor of 3, and thus improves the efficiency in both computation and storage. In the supplemental
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Table 1. A concrete comparison of the ciphertext size of our CCA2-secure PKE and the CCA1-secure one in [45] for
encrypting a 256-bit (resp., 512-bit) message at 128-bit (resp., 256-bit) security.

Schemes
LWE Parameter

Ciphertext Sizes
Decryption Security

(n,m, q, αq) Error Strength

MP12 [45]
(450, 11905, 310, 2.45) 24.74 KB (20.89 KB†) 2−88 2128

(660, 19041, 311, 5.2) 44.19 KB (37.10 KB†) 2−115 2257

This paper
(450, 10740, 39, 1.5) 13.80 KB (33-44% ↓) 2−100 2131

(660, 17333, 310, 3.1) 23.47 KB (36-46% ↓) 2−138 2260

material, we also extend our techniques to a special type of rings and obtain an efficient CCA2-secure PKE
from ring-LWE in the standard model.

In Table 1, we give a concrete comparison of the ciphertext size of our CCA2-secure PKE and the best
known standard model CCA1-secure PKE from lattices [45] (note that the authors of [45] only mentioned to
achieve CCA2-security by using generic approaches such as the BCHK transform [12]). For better efficiency,
we set q as a power of 3 for both schemes. The LWE parameter (n,m, q, αq) was chosen by taking account of
the probability of decryption error and the security strength, where n is the LWE dimension, m is the number
of LWE samples, q is the LWE modulus and αq is the LWE Gaussian parameter. Since the noise parameter of
our encryption algorithm is equal to the underlying LWE Gaussian parameter αq and that of their encryption
algorithm is about 3 times larger than αq (as we will discuss later), we have to choose different parameter sets
to roughly achieve the same degree of correctness and security. The concrete decryption error and security
strength for the parameter sets given in Table 1 is estimated by using a Python script and the online LWE
estimator [4], respectively. The ciphertext sizes at rows 1 and 3 (resp., rows 2 and 4) correspond to encrypting
a 256-bit message at 128-bit security (resp., a 512-bit message at 256-bit security). We also apply known
ciphertext compressing techniques to the PKE in [45], and estimate the final ciphertext sizes (marked by
‘†’).4 Since the key sizes and the computational costs of both schemes are essentially dominated by the LWE
parameter (n,m, q, αq), our PKE also has advantages in these two aspects due to the smaller m and αq. For
example, the public key size of the PKE in [45] for 128-bit security is about 3.86 MB, while ours for 131-bit
security is about 3.26 MB (i.e., a 15% reduction). In all, our CCA2-secure PKE is more efficient than the
CCA1-secure PKE in [45].

1.2 Overview of Techniques

As the lattice-based CCA2-secure PKEs in the standard model [48,1,45,68], our scheme also relies on the
lattice trapdoor technique, which dates back to the seminal work of Ajtai [3]. In 2008, Gentry et al. [31] first
showed how to combine the lattice trapdoor technique and the LWE problem in designing encryption schemes.
Technically, they [31] introduced the dual variant of the first LWE-based encryption due to Regev [55], which
is nicely compatible with the trapdoor technique. Briefly, the public key of the dual encryption consists of two
matrices pk = (A,U) ∈ Zn×m

q × Zn×ℓ
q . In order to encrypt a message µ ∈ {0, 1}ℓ, the encryption algorithm

randomly chooses s
$← Zn

q , e1
$← DZm,αq, e2

$← DZℓ,αq, and computes the ciphertext C = (c1, c2), where
DZm,αq is the Gaussian distribution with parameter αq (and we call αq the noise parameter for encryption),
and

c1 = AT s+ e1 ∈ Zm
q , c2 = UT s+ e2 + µ · q

2
∈ Zℓ

q.

As Regev’s LWE-based PKE [55], the message µ ∈ {0, 1}ℓ is encoded into the most significant bits of the
LWE’s “error term”. In this case, the secret key can either be a small norm matrix E ∈ Zm×ℓ satisfying
AE = U, or a trapdoor of the matrix A which can be used to extract a required matrix E, so that one can

4 Note that [45] actually did not give a concrete choice of parameters, and did not consider any ciphertext compressing
technique.

3



recover the message from the most significant bits of the noise vector c2−ET c1 = µ · q2 + e2−ETe1 as long
as the l∞ norm ∥e2 −ETe1∥∞ < q/4.

The dual encryption [31] was latter employed by Peikert [48] to construct a standard model CCA2-secure
PKE from lattices with similar techniques in spirit to the ones in[52,57], and by Agrawal et al. [1] to construct
an efficient IBE which can be transformed into a CCA2-secure by using the generic approaches such as the

BCHK transform [12]. Specifically, Agrawal et al. [1] proved that the matrix (A∥AR+CB) ∈ Zn×(m1+m2)
q is

a trapdoor matrix if 1) A ∈ Zn×m1
q is a trapdoor matrix, or 2) B ∈ Zn×m2

q is a trapdoor matrix, R ∈ Zm1×m2

is a small norm matrix and C ∈ Zn×n
q is invertible. By combining this technique with a full-rank difference

(FRD) encoding FRD : {0, 1}κ → Zn×n
q , Agrawal et al. [1] obtained an efficient IBE secure against selective

identity and chosen ciphertext attacks, where the public key has four matrices pk = (A1,A2,B,U), and the
ciphertext C = (c1, c2, c3) under a user identity id ∈ {0, 1}κ has three vectors:

c1 = AT
1 s+ e1 ∈ Zm1

q , c2 = (A2 + FRD(id)B)T s+RTe1 ∈ Zm2
q ,

c3 = UT s+ e2 + µ · q2 ∈ Zℓ
q,

where s
$← Zn

q , e1
$← DZm1 ,αq,R

$← DZm1×m2 ,ω(
√
logn) and e2

$← DZℓ,αq. The secret key is a trapdoor of the
matrix A1, which can used to extract a small norm matrix E satisfying AidE = (A1∥A2+FRD(id)B)E = U.
In the security proof, the matrix A1 is uniformly chosen at random, while the matrix A2 is set to be A2 =

A1R−FRD(id∗)B for a small norm matrixR
$← DZm1×m2 ,ω(

√
logn) and a challenge identity id∗

$← {0, 1}κ. By
doing this, on the first hand, we have that Aid = (A1∥A2 + FRD(id)B) for any id ̸= id∗ is trapdoor matrix,
and thus any ciphertext associated with identity id ̸= id∗ can be decrypted by using R and the trapdoor of
B. On the other hand, we have that Aid∗ = (A1∥A1R) and the distribution of c∗2 of the challenge ciphertext
C∗ = (c∗1, c

∗
2, c
∗
3) is essentially statistically close to the distribution of RT c∗1. Thus, in the security proof

one can safely replace c∗2 with RT c∗1, and base the security of the IBE scheme on the hardness of the LWE
instances (A1, c

∗
1 = AT

1 s
∗ + e∗1) and (U,UT s∗ + e∗2).

Let G ∈ Zn×nk
q be the public known primitive matrix [45], and S ∈ Znk×nk

q be any basis of the lattice

Λq(G) = {y ∈ Znk
q : y = GTx mod q,x ∈ Zn

q }, where k = ⌈log2 q⌉. By improving the tag-based trapdoor

technique in [1] with the public known matrix G ∈ Zn×nk
q and using a new message encoding, Micciancio and

Peikert [45] further improved the IBE scheme in [1] and obtained the best known CCA1-secure (tag-based)
PKE which saves two matrices in the public key and a vector in the ciphertext (note that an IBE can be
naturally treated as a tag-based PKE). Formally, the public key of the PKE in [45] only has two random
matrices pk = (A1,A2) ∈ Zn×m1

q × Zn×m2
q , and for a message µ ∈ {0, 1}nk, the ciphertext C = (tag, c1, c2)

consists of two vectors:

c1 = 2(AT
1 s mod q) + e1 mod 2q ∈ Zm1

2q ,

c2 = 2((A2 + FRD(tag)G)T s mod q) + e2 + Sµ mod 2q ∈ Zm2
2q ,

where tag
$← {0, 1}κ, s $← Zn

q , e1
$← DZm1 ,α′q and e2

$← DZnk,
√
∥e1∥2+m1(α′q)2·ω(

√
logn)

. The secret key is a

small norm matrix R satisfying A2 = −A1R, which can be used to run a trapdoor inversion algorithm to
recover the message µ ∈ {0, 1}nk as long as ∥e1∥ and ∥e2∥ are small. Although this encoding allows to save a
matrix U in the public key and a vector in the ciphertext, it only works when the modulus in the encryption
is changed from previous q to 2q, which in turn requires a larger noise parameter α′q = 3αq for lifting the
LWE problem with Gaussian parameter αq and modulus q to modulus 2q in the security proof (see [45,
Theorem 6.3] for details).

We first note that the trapdoor inversion algorithm [45] crucially depends on the size of the LWE’s “error
term” (i.e., it only works when the error size is small), but does not care about the size of the LWE “secret

term” s
$← Zn

q . Furthermore, by the fact that the HNF variant [8] of the LWE problem where the secret

s
$← DZn,αq is as hard as the standard LWE problem where s

$← Zn
q , we can safely replace s

$← Zn
q with

s
$← DZn,αq in the encryption. Note that for fixed αq ∈ R and randomly chosen s

$← DZn,αq, we have that
∥s∥∞ ≤ B holds for some constant B > 0 with overwhelming probability by the Gaussian tail inequality.
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Thus, for B ≪ q (as is usually the case), if we encode the secret s = (s0, . . . , sn−1)
T as an element of Zn

q , the
most significant bits of each si in the binary representation are “not used” (i.e., those bits are always zeros
with overwhelming probability). Our starting point is to encode the message into those “unused” bit-slots.
Formally, we introduce a pair of message encode/decode algorithms (encoded : Zn

d → Zn
q , decoded : Zn

q → Zn
d )

for some integer d ≥ 2 (see Sec. 3.1 for more details) such that for any v ∈ Zn
d and 0 < B ≪ q, we have

decoded(s + encoded(v)) = v as long as ∥s∥∞ ≤ B. By doing this, we can keep the advantage of the PKE
in [45] (i.e., only having two matrices in the public key pk = (A1,A2) and two vectors in the ciphertext
C = (tag, c1, c2)) without lifting the modulus in the encryption from q to 2q, and thus reduce the noise
parameter for the encryption from α′ = 3α in [45] to the LWE Gaussian parameter α. Specifically, given a
message µ ∈ Zn

d , our new encryption algorithm first computes ŝ = s + encoded(µ), and then computes the
ciphertext C = (tag, c1, c2) as follows:

c1 = AT
1 ŝ+ e1 ∈ Zm1

q , c2 = (A2 + FRD(tag)G)T ŝ+ e2 ∈ Zm2
q ,

where tag
$← {0, 1}κ, s $← DZn,αq, e1

$← DZm1 ,αq and e2
$← DZnk,αq

√
2m1·ω(

√
logn). The secret key is still

a small norm matrix R satisfying A2 = −A1R. In the security proof, given an LWE tuple (A1,b) ∈
Zn×m1
q × Zm1

q , one can set the public key pk = (A1,A2) with A2 = −A1R − FRD(tag∗)G ∈ Zn×nk
q

for R
$← DZm1×nk,ω(

√
logn) and tag∗

$← {0, 1}κ, and simulate the challenge ciphertext C∗ = (tag∗, c∗1 =

b + AT
1 encoded(µδ), c

∗
2 = −RT c1 + e′2) by using the additive homomorphism of the LWE problem (i.e.,

AT
1 ŝ + e1 = AT

1 s + e1 + AT
1 encoded(µ)) and an independently chosen e′2

$← DZnk,αq
√
m1·ω(

√
logn), where

(µ0, µ1) is the challenge message pair and δ
$← {0, 1}. Note that c∗2 in the challenge ciphertext C∗ =

(tag∗, c∗1, c
∗
2) is directly generated from c∗1, which relies on the fact that the distribution of −RTe∗1 + e′2

for e∗1
$← DZm1 ,αq,R

$← DZm1×nk,ω(
√
logn) and e′2

$← DZnk,αq
√
m1·ω(

√
logn) is statistically close to e∗2

$←
DZnk,αq

√
2m1·ω(

√
logn) (see Lemma 3). In other words, the simulated C∗ = (tag∗, c∗1, c

∗
2) is statistically close

the distribution of the real challenge ciphertext if (A1,b) is a real LWE instance, and perfectly hides the
message µδ if (A1,b) is uniformly random.

Our second observation is that under appropriate choice of parameters, the first ciphertext part c1 =
AT

1 ŝ+ e1 ∈ Zm1
q essentially uniquely fixes ŝ (see Lemma 6) and thus the message µ ∈ Zn

d . By applying some
necessary checks in the decryption algorithm, we can be assured that there is only a single valid message
µ for all ciphertexts C = (∗, c1, ∗) which share the same first ciphertext part c1, i.e., conditioned on that
the decryption algorithm does not return a failure symbol ⊥, its output is essentially independent from
the choice of the tag and the second ciphertext part c2. This feature basically says that the ciphertext is
(partially) non-malleable, and our idea is to extend this non-malleability to the whole ciphertext (which is
required for achieving CCA2-security). For this, we further modify the encryption algorithm. Formally, given

a message µ ∈ F2κ , it first chooses x, y, z
$← F2κ from the finite field F2κ , and interpret the bit-concatenation

of (x, y, z) ∈ (F2κ)
3 as a vector v = x∥y∥z ∈ Zn

d (which can always be done if n log2 d ≥ 3κ). Then, it
computes ŝ = s+ encoded(v) and the ciphertext C = (c1, c2, c3, c4) as follows:

c1 = AT
1 ŝ+ e1 ∈ Zm1

q , tag = H(c1) ∈ F2κ

c2 = (A2 + FRD(tag)G)T ŝ+ e2 ∈ Zm2
q , c3 = x+ µ ∈ F2κ ,

τ = H(c2, c3) ∈ F2κ c4 = τy + z ∈ F2κ ,

where s
$← DZn,αq, e1

$← DZm1 ,αq, e2
$← DZnk,αq

√
2m1·ω(

√
logn) and the function H : {0, 1}∗ → F2κ is a

collision resistant hash function. Technically, the third part c3 is a one-time padding encryption which is
used to ensure that we can generate c1 and thus the tag before seeing the challenge message pair in the
security proof. The last part c4 is a Carter-Wegman style one-time MAC, which is used to ensure the integrity
of (c2, c3) when c1 (and thus y, z) is fixed.

At first glance, the above construction seems to raise a circularity issue: the MAC key (y, z) is used to
authenticate c2 which depends on the MAC key. However, the key point is that we will only invoke the security
of the MAC to reject the decryption query with C = (c1 = c∗1, c2, c3, c4 ̸= c∗4), where c∗1 uniquely fixes and
computationally hides the real MAC key (y∗, z∗) for the challenge ciphertext C∗ = (c∗1, c

∗
2, c
∗
3, c
∗
4). Namely,
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we will only rely on the security of the MAC when the key (y∗, z∗) is not determined by the adversary’s
choice of c2. Thus, in order to ensure that the adversary cannot find a valid MAC tag c4 ̸= c∗4 under the key
(y∗, z∗) and thus cannot make a valid decryption query with C = (c∗1, c2, c3, c4), we only have to show that
(c∗1, c

∗
2) leaks no information of (y∗, z∗), which in turn can be proven by using the pseudorandomness of the

LWE problem and the fact that c∗2 can be generated by directly using c∗1.
We now give a sketch of the security proof. Formally, given an LWE tuple (A1,b), the reduction first

randomly chooses x∗, y∗, z∗
$← F2κ , and interpret the bit-concatenation of (x∗, y∗, z∗) ∈ (F2κ)

3 as a vector
v∗ = x∗∥y∗∥z∗ ∈ Zn

d . Then, it computes c∗1 = b + AT
1 encoded(v),A2 = −A1R − FRD(tag∗)G, c∗2 =

−RT c∗1 + e′2 and sets the public key pk = (A1,A2), where tag∗ = H(c∗1),R
$← DZm1×nk,ω(

√
logn), and e′2

$←
DZnk,αq

√
m1·ω(

√
logn). Given a challenge message pair (µ0, µ1), the reduction randomly chooses δ

$← {0, 1},
computes c∗3 = x∗ + µδ, c

∗
4 = τ∗y∗ + z∗ ∈ F2κ , and returns the challenge ciphertext C = (c∗1, c

∗
2, c
∗
3, c
∗
4).

By the pseudorandomness of (A1,b), we have that (x∗, y∗, z∗) is computationally hidden in (c∗1, c
∗
2), which

means that µδ is computationally hidden in the ciphertext. Thus, it suffices to show that the adversary
cannot obtain non-negligible advantage from the decryption query. Note that for a decryption query C =
(c1 ̸= c∗1, c2, c3, c4), we have that tag = H(c1) ̸= H(c∗1) = tag∗ holds by the collision-resistant of H, which
means that the ciphertext C can be correctly decrypted by using R. As for a decryption query C = (c1 =
c∗1, c2, c3, c4) ̸= C∗, the reduction will directly return ⊥, since by the unique witness of the LWE problem,
such a ciphertext C ̸= C∗ is valid if and only if (c2, c3) ̸= (c∗2, c

∗
3) and c4 = τy∗ + z∗, where τ = H(c2, c3).

By the collision resistant of H, we have that τ ̸= τ∗ = H(c∗2, c3) and c4 ̸= c∗4 hold. In other words, if the
adversary can output a valid decryption query C = (c1 = c∗1, c2, c3, c4) ̸= C∗, it must be able to uniquely
determine the one-time MAC key (y∗, z∗) (since given c∗4 = τ∗y∗ + z∗ and c4 = τy∗ + z∗ ̸= c∗4, one can
efficiently recover the pair (y∗, z∗)), which contradicts the facts that (y∗, z∗) are uniformly chosen at random
and are computationally hidden in the challenge ciphertext C∗.

Finally, we emphasize that our message encoding is very crucial for our construction because: 1) the
trapdoor inversion algorithm will not work if one encodes the message into the most significant bits of
the “error term” of c1 or c2; 2) it would require a large noise parameter and thus increase the error size in
decryption if one encodes the message into the “error term” of c2 as that in [45]; and 3) most importantly, the
above proof of the CCA2-security will not work if one encodes the message into the “error term” of c2 as that
in [45] since we cannot rely on the MAC security to reject a decryption query C = (c∗1, c2, c3, c4) ̸= C∗ when
the MAC key is determined by c2 which itself is chosen by the adversary (i.e., there is a circularity issue).
Besides, as an independent of interest, this message encoding may also be very useful in other applications
such as lattice-based IBEs and attribute-based encryptions (ABEs).

1.3 Related Work, and Discussion

Along with the introduction of the LWE problem, Regev [55] proposed the first LWE-based PKE, which can
only encrypt a 1-bit message. Later, several works were extended to support longer messages (e.g., [51]). At
STOC 2008, Gentry et al. [31] gave a “dual” variant of Regev’s scheme, which was used to construct the first
identity-based encryption (IBE) from lattices. Lindner and Peikert [42] gave a more compact LWE-based
PKE, which almost reduces all the parameters by a factor of log q. At CCS 2016, Bos et al. [15] proposed a
practical public key-encapsulation mechanism (KEM). The ring-LWE was considered in [63,44] to construct
PKE with small key and ciphertext sizes. Stehlé and Steinfeld [62] gave a variant of the NTRU cryptosystem,
which has a security proof based on the ring-LWE assumption. Recently, several practical PKEs/KEMs
from ring-LWE were proposed, e.g., NewHope [6,5]. All the above PKEs only have CPA-security, but can
be boosted into CCA2-secure ones by applying the Fujisaki-Okamoto transform in the random oracle (RO)
model. However, a RO-based solution may not be always satisfiable in the real world [19]. In the post-
quantum setting, this becomes more subtle since a classic RO-based scheme may even not be secure against
adversaries who can query the RO with quantum state [13]. This is why some NIST PQC submissions also
provide security arguments in the quantum RO model [13]. Unfortunately, the PKEs in the quantum RO
model typically have large security reduction loss (e.g., at least a quadratic security loss [34]) w.r.t. the
underlying hard assumptions [65,59,34], which has become one of the main concerns when estimating the
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actual security of a scheme with given concrete parameters. We note that this security reduction loss is
solely introduced by the security arguments in the quantum RO model, and is irrelevant to the possibly
generic speedup of the quantum algorithm in solving hard problems (namely, if the underlying hard problem
also suffers from a generic quadratic speedup, e.g., by applying the Grover algorithm, the resulting scheme
will suffer from a quartic security loss in the quantum setting). In contrast, a standard model PKE scheme
usually has much tighter security reduction, and is thus relatively more interesting in the post-quantum era.

As an instantiation of the generic framework from lossy trapdoor functions (LTDF), Peikert and Wa-
ters [52] gave the first standard-model CCA2-secure PKE from LWE. The LTDF techniques were later ex-
tended to construct several standard model CCA2-secure PKE from lattices [48,68,64,41]. However, they are
relatively inefficient (e.g., having large public-key and ciphertext sizes) due to the use of Dolev-Dwork-Naor
like technique [26,28] and signatures. By applying the BCHK transform [12], one can obtain CCA2-secure
PKEs from IBEs or TBEs on lattices in the standard model [1,2,21,69,71,70,27]. In this setting, Micciancio
and Peikert [45] improved the standard model IBE in [1], and presented the best known CCA1-secure PKE
from lattices. Unlike many existing LWE-based PKEs which encode the messages into the “error term”, we
encode the messages into the most significant bits of the “secret term”, which is very crucial to our CCA2-
secure PKE construction, and might be of independent interest. We also note that the recent independent
work [59] constructed a deterministic PKE by simply encoding the message as the “secret term” and the
“error term” of the LWE problem, which is very different from ours from the perspective of both techniques
and functionalities.

2 Preliminaries

2.1 Notation

Denote the natural logarithm (resp., the logarithm with base b) as log (resp., logb). The standard notations
O,ω are used to classify the growth of functions. A function f(n) is negligible in n if for every positive c, we
have f(n) < n−c for sufficiently large n. By negl(n) we denote an arbitrary negligible function. A probability

is said to be overwhelming if it is 1− negl(n). The notation
$← denotes randomly choosing elements from a

distribution (or the uniform distribution over a finite set). By x ∽ D we mean the random variable x follows
a distribution D.

Denote R (resp., Z) as the set of real numbers (resp., integers). Vectors are column vectors and denoted
by bold lower-case letters (e.g., v), and vT denote the transpose of v. Matrices are the sets of column vectors
and denoted by bold capital letters (e.g., X). The concatenation of a matrix X ∈ Rn×m followed by another
matrix Y ∈ Rn×m′

is denoted as (X∥Y) ∈ Rn×(m+m′). By ∥ · ∥ and ∥ · ∥∞ we denote the ℓ2 and ℓ∞ norm,
respectively. The largest singular value of X is s1(X) = maxu ∥Xu∥, where the maximum is taken over all
unit vector u.

2.2 Public-Key Encryption

A public-key encryption (PKE) Π with message space P consists of three probabilistic polynomial time
(PPT) algorithms (KeyGen, Enc, Dec):

– KeyGen(1κ) is a PPT algorithm that takes a security parameter κ as input, and outputs a pair of public
and secret keys (pk,sk).

– Enc(pk, µ) is a PPT algorithm that encrypts a message µ ∈ P under the public key pk and outputs the
corresponding ciphertext C.

– Dec(sk, C) is an efficient deterministic algorithm that decrypts a ciphertext C using the secret key sk
and outputs a message µ (or a symbol ⊥).

We say that a PKE scheme Π = (KeyGen,Enc,Dec) is correct, if for any µ ∈ P, (pk, sk) ← KeyGen(1κ)
and C ← Enc(pk, µ), the probability that Dec(sk, C) ̸= µ is negligible over the random coins used in both
KeyGen and Enc. The de facto standard security notion for PKE is (adaptively) chosen-ciphertext security,
which is modeled by a game between a challenger C and an adversary A.
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KeyGen. The challenger C first computes (pk, sk) ← KeyGen(1κ). Then, it gives the public key pk to the
adversary A, and keeps sk secret.

Phase 1. The adversary A is allowed to make any polynomial number of decryption queries by using any
(different) ciphertext C of his choice. The challenger C computes µ← Dec(sk, C), and returns µ to A.

Challenge. The adversary A outputs two equal-length messages (µ0, µ1). The challenger C chooses a bit

δ∗
$← {0, 1}, and computes C∗ ← Enc(pk, µδ∗). Finally, it returns the challenge ciphertext C∗ to A.

Phase 2. The adversary is allowed to make more decryption queries with any ciphertext C ̸= C∗. The
challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess δ ∈ {0, 1}. If δ = δ∗, the challenger C outputs 1, else outputs 0.

Definition 1 (CCA2-Security). We say that a PKE scheme Π is CCA2-secure if for any PPT adversary
A, its advantage

Advind-cca2Π,A (κ) = |Pr[δ = δ∗]− 1

2
|

in the above game is negligible in security parameter κ.

The CPA-security and CCA1-security can be defined via modified games. Concretely, the CPA-security
game does not allow the adversary to make any decryption queries, while the CCA1-security game only
allows the adversary to make decryption queries before the challenge phase.

2.3 Gaussian, Learning with Errors and Trapdoors

Gaussian. The Gaussian function ρs,c(x) over Rm centered at c ∈ Rm with parameter s > 0 is defined as
ρs,c(x) = exp(−π∥x− c∥2/s2). For lattice Λ ⊆ Rm, let ρs,c(Λ) =

∑
x∈Λ ρs,c(x), and define the discrete

Gaussian distribution over Λ as DΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ) , where y ∈ Λ. We omit the subscript c in the above

notations if c = 0.

Lemma 1 ([10,42]). For any real s, t > 0, c ≥ 1, C = c · exp( 1−c
2

2 ) < 1, integer m > 0, and any y ∈ Rm

we have the followings hold:

– Pr
x

$←DZm,s

[∥x∥∞ > t · s] ≤ 2e−πt
2

– Pr
x

$←DZm,s

[∥x∥ > c · 1√
2π
· s
√
m] ≤ Cm

– Pr
x

$←DZm,s

[|⟨x,y⟩| > t · s∥y∥] ≤ 2e−πt
2

Lemma 2 ([45]). Let integer n > 0, and q a power of some prime p ≥ 2. Let integer m ≥ n log2 q+ω(log n).
Then, for any ℓ = poly(n) and real r ≥ ω(

√
logn), the distribution (A,AR) is statistically close to uniform

over Zn×m
q × Zn×ℓ

q , where A
$← Zn×m

q and R
$← (DZm,r)

ℓ.

The following lemma is implicit in the proof of [45, Theorem 6.3], which can be proven by combining [49,
Theorem 3.1] and [55, Corollary 3.10].

Lemma 3 ([45]). Let r ≥ ω(
√
logn). Then, for any vectors v ∈ Zm and c ∈ Zm, any matrix r

$← DZm,r,c,

and e
$← DZ,αqr·

√
m, the distribution rTv + e is statistically close to DZ,s, where s = r ·

√
∥v∥2 +m(αq)2.

Following [45,29], we say that a random variable X over R is subgaussian with parameter s if for all t ∈ R,
the (scaled) moment-generating function satisfies E(exp(2πtX)) ≤ exp(πs2t2). For any lattice Λ ⊂ Rm and
s > 0, DΛ,s is subgaussian with parameter s. Besides, any B-bounded symmetric random variable X (i.e.,
|X| ≤ B) is subgaussian with parameter B

√
2π [45]. For random subgaussian matrix, we have the following

result from the non-asymptotic theory of random matrices [66].

Lemma 4. Let X ∈ Rn×m be a random subgaussian matrix with parameter s. There exists a universal
constant C ≈ 1/

√
2π such that for any t ≥ 0, we have s1(X) ≤ C · s · (

√
m+

√
n+ t) except with probability

at most 2 exp(−πt2).
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Learning with Errors. For any positive integers n, q ∈ Z, real α > 0 and vector s ∈ Zn
q , define As,α =

{(a,aT s+ e mod q) : a
$← Zn

q , e
$← DZ,αq}. For m independent samples (a1, y1), . . . , (am, ym) from As,α, we

denote it in a matrix form (A,y) ∈ Zn×m
q × Zm

q , where A = (a1, . . . ,am) and y = (y1, . . . , ym)T . We say

that a PPT algorithm solves the LWEn,m,q,α problem if, for uniformly random s
$← Zn

q , given m samples
from As,α it outputs s with non-negligible probability. The decisional LWE is asked to distinguish As,α

from the uniform distribution over Zn
q × Zq (with only polynomial samples). For certain parameters, the

decisional LWE problem is polynomially equivalent to its search version, which in turn is provably at least as
hard as quantumly approximating SIVP on n-dimensional lattices to within polynomial factors in the worst
case [55,50]. A variant of the LWE problem (known as the Hermite normal form) where the secret s ∈ Zn

q is

chosen from the error distribution (i.e., s
$← DZn,αq) is also polynomially equivalent to the standard LWE

problem [8].

q-ary Lattices and Trapdoors. Let A ∈ Zn×m
q , define two q-ary lattices

Λ⊥q (A) = {e ∈ Zm s.t. Ae = 0 mod q} ,
Λq(A) = {y ∈ Zm s.t. ∃s ∈ Zn, Ats = y mod q}.

We have PPT algorithms [3,7,45] to generate an essentially uniform matrix A together with a trapdoor (or
a short basis of Λ⊥q (A)). We will use the trapdoor notion in [45]. Formally, let Gb ∈ Zn×nk

q be the public
primitive matrix with base integer b ≥ 2 in [45, Theorem 4.1], where k = ⌈logb q⌉. We usually omit the
subscript b if b = 2, and denote G = G2 in brief. As shown in [45], there exists a PPT algorithm that
inverts y = GT

b s+ e as long as ∥e∥ < q

2
√
b2+1

. Moreover, if q = bk, the algorithm can invert y = GT
b s+ e if

∥e∥∞ < q
2b . The following lemma is implicit in [45, Theorem. 5.4].

Lemma 5 ([45]). Let Ink be the nk × nk identity matrix. For any matrices A ∈ Zn×m
q , R ∈ Z(m−nk)×nk

q

and invertible matrix S ∈ Zn×n
q satisfying A

(
R
Ink

)
= SGb, there exists a PPT algorithm Solve(A,R,y)

that given any y = AT s+

(
e1
e2

)
∈ Zm

q satisfying ∥RTe1+e2∥ < q

2
√
b2+1

, outputs s ∈ Zn
q , where e1 ∈ Zm−nk

and e2 ∈ Znk.

Moreover, if q = bk, the algorithm Solve(A,R,y) can invert any y = AT s +

(
e1
e2

)
∈ Zm

q satisfying

∥RTe1 + e2∥∞ < q
2b .

We also need the following useful lemma, which is important for our CCA2-secure PKE construction,
and may be of independent interest.

Lemma 6 (Unique Witness). Let n, k > 0 be integers. Let q = pk for some prime p ≥ 2, and let
m ≥ n log2 q + ω(log n). Then, for all but a negligible fraction of A ∈ Zn×m

q , and for any u ∈ Zm
q , there

exists at most one pair (s, e) ∈ Zn
q × Zm such that ∥e∥∞ < q/8 and u = AT s+ e.

Proof. The proof is adapted from [31, Lemma 5.3]. For any u ∈ Zm
q , we assume that there exist two tuples

(s, e) ̸= (s′, e′) ∈ Zn
q × Zm, such that ∥e∥∞, ∥e′∥∞ < q/8 and u = AT s+ e = AT s′ + e′. Letting s̃ = s− s′

and ẽ = e′ − e, we have that AT s̃ = ẽ for some s̃ ̸= 0 and ∥ẽ∥∞ < q/4. Now, it suffices to show that for all
but an at most 2−ω(logn) = negl(n) fraction of A ∈ Zn×m

q , the vector AT s̃ has norm ∥AT s̃∥∞ ≥ q/4 for any
s̃ ∈ Zn

q \{0}.
Formally, consider the open ℓ∞ “cube” V of radius q/4 (i.e., each edge has length q/2). Denote (Zn

q )
∗ ⊆

Zn
q as the set of vectors such that each vector has at least one coordinate which is invertible in Zq. For

any fixed nonzero s̃ ∈ Zn
q , we can write s̃ = pk

′
s̃′ for some integer k′ ∈ {0, . . . , k − 1} and s̃′ ∈ (Zn

q )
∗.

Then, for a uniformly random choice of A ∈ Zn×m
q , we have that AT s̃′ is uniformly over Zm

q , and that

AT s̃ = pk
′
AT s̃′ is uniformly over Zm

q ∩ pk
′Zm. Denote Sk′ = V ∩ pk′Zm, which contains at most (pk−k

′
/2)m
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points. Thus, over the uniformly random choice of A ∈ Zn×m
q , the probability that AT s̃ ∈ Sk′ is at most

(pk−k
′
/2)m/p(k−k

′)m ≤ 2−m. Taking a union bound over all nonzero s̃ ∈ Zn
q , the probability that AT s̃ ∈ S0

is at most 2−ω(logn) (note that Sk−1 ⊂ · · · ⊂ S0 = V ∩Zm by definition). Since S0 contains all integer vectors
with ℓ∞ norm < q/4, we have that for all but an at most 2−ω(logn) fraction of A ∈ Zn×m

q , and for any

non-zero s̃ ∈ Zn
q , the vector AT s̃ has norm ∥AT s̃∥∞ ≥ q/4. □

3 CCA2-Secure PKE from Lattices

In this section, we first introduce some ingredients for our construction.

3.1 Some Ingredients

Collision-resistant hash function. We say that H : X → Y is a collision resistant hash (CRH) if given a
security parameter κ and a description of H as inputs, no PPT algorithm F can find two elements x1 ̸= x2 ∈ X
such that H(x1) = H(x2) holds except with negligible probability, where the probability is over the random
coins used by F . Namely, if H : X → Y is a CRH, we have that

Pr[(x1, x2)← F(1κ,H) : x1 ̸= x2 ∧ H(x1) = H(x2)] ≤ negl(κ)

holds. Note that CRH exists under the LWE assumption [52], and it suffices to use the standard SHA3 in
practice.

Full-rank difference encoding. Let κ be the security parameter. We say that FRD : {0, 1}κ → Zn×n
q is an

encoding with full-rank differences (FRD) if the following two conditions hold: 1) for any u ̸= v, the matrix
FRD(u−v) = FRD(u)−FRD(v) ∈ Zn×n

q is invertible over Zn×n
q ; and 2) FRD(·) is computable in polynomial

time in n log q. As shown in [1,22,45], FRD encodings over {0, 1}κ can be efficiently constructed for any
κ ≤ n and q a power of some prime p ≥ 2.

Message Encoding. We define a pair of algorithms (encoded, decoded), which are parameterized by positive
integers (n, q, d). Formally, given any v ∈ Zn

d , the algorithm encoded : Zn
d → Zn

q is defined as encoded(v) =
(v1 · ⌊ qd⌉, . . . , vn · ⌊

q
d⌉), where v = (v1, . . . , vn) ∈ Zn

d . For any u ∈ Zn
q , the algorithm decoded : Zn

q → Zn
d is

defined as decoded(u) = (⌊u1 · dq ⌉, . . . , ⌊un · dq ⌉), where u = (u1, . . . , un) ∈ Zn
q .

Lemma 7. Let n, q be positive integers, and integer 2 ≤ d <
√
q. Then, for any v ∈ Zn

d , any e ∈ Zn

satisfying ∥e∥∞ < q−(d−1)d
2d , and w = encoded(v) + e, we have that v = decoded(w) always holds.

Proof. Since both algorithms simply apply the same operations on their inputs in a coordinate-wise way,

it suffices to show that for any v ∈ Zd, any e ∈ Z satisfying |e| < q−(d−1)d
2d and w = v · ⌊ qd⌉ + e, we alway

have v = ⌊w · dq ⌉. By definition, we have w = v · ( qd + x) + e holds for some x satisfying |x| ≤ 1/2. Thus,

w · dq = v+(vx+e) · dq . Since |(vx+e) · dq | ≤ (|vx|+ |e|) · dq <
(

d−1
2 + q−(d−1)d

2d

)
· dq = 1/2 holds by assumption,

we have v = ⌊w · dq ⌉. This completes the proof. □

3.2 The Construction

Let κ be the security parameter. Let n, m̄ > 0 be integers, and let q be a prime or a power of prime b ≥ 2. Let
k = ⌈logb q⌉ and m = m̄+nk. Let (encoded, decoded) be the pair of encode/decode algorithms parameterized
by (n, q, d) satisfying that n log2 d ≥ 3κ. Let F2κ be a finite field of order 2κ. Let H : {0, 1}∗ → F2κ\{0} be a
collision-resistant hash function (Namely, we assume that the output of H does not contain the zero element
in F2κ for simplicity). Let FRD : F2κ → Zn×n

q be an FRD encoding. Our CCA2-secure PKE with parameters
(n, m̄, q, b, d, α) is given as follows.
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– KeyGen(1κ): randomly choose A
$← Zn×m̄

q ,R
$← (DZm̄,ω(

√
logn))

nk, and compute B = −AR. Return the
pair of public and secret keys (pk, sk) = ((A,B),R).

– Enc(pk, µ ∈ F2κ): first randomly choose s
$← DZn,αq, e1

$← DZm̄,αq, e2
$← DZnk,γ , and x, y, z

$← F2κ ,

where γ =
√
∥e1∥2 + m̄(αq)2 · ω(

√
log n). Then, interpret the bit-concatenation of (x, y, z) ∈ (F2κ)

3 as a
vector v = x∥y∥z ∈ Zn

d (which can always be done since n log2 d ≥ 3κ), and compute

s̃ = s+ encoded(v), c1 = AT s̃+ e1,
c2 = (B+ FRD(tag)Gb)

T s̃+ e2, c3 = x+ µ ∈ F2κ ,
c4 = τy + z ∈ F2κ ,

where tag = H(c1) ∈ F2κ and τ = H(c2, c3) ∈ F2κ . Finally, return the ciphertext C = (c1, c2, c3, c4) ∈
Zm1
q × Znk

q × F2κ × F2κ .
– Dec(sk, C = (c1, c2, c3, c4)): first compute tag = H(c1),

Atag = (A∥B+ FRD(tag)Gb), and u =

(
c1
c2

)
.

Then, compute s̃ ← Solve(Atag,R,u), v = decoded(s̃) ∈ Zn
d , and parse v = ∥x∥y∥z, where (x, y, z) ∈

(F2κ)
3. Let e1 = c1−AT s̃ and e2 = c2−(B+FRD(tag)Gb)

T s̃. Return ⊥ if one of the following conditions
holds:
• ∥e1∥ > αq

√
m̄, or

• ∥e2∥ > γ
√
nk for prime q (or ∥e2∥∞ > γ · ω(

√
log n) for q = bk a power of prime b), or

• c4 ̸= H(c2, c3)y + z ∈ F2κ .
Otherwise, return µ = c3 − x ∈ F2κ .

Correctness. Note that c1 = AT s̃+e1 and c2 = (B+FRD(tag)Gb)
T s̃+e2, the algorithm Solve(Atag,R,u)

can invert s̃ ∈ Zn
q if ∥RTe1+e2∥ < q

2
√
b2+1

by Lemma 5. Because s̃ = s+encoded(v), one can correctly recover

v ∈ Zn
d if ∥s∥∞ < q−(d−1)d

2d by Lemma 7. Note that s
$← DZn,αq, e1

$← DZm̄,αq, and e2
$← DZnk,γ , we have

that ∥s∥∞ ≤ αq ·ω(
√
log n), ∥e1∥ ≤ αq

√
m̄, ∥e2∥∞ ≤ γ ·ω(

√
log n) and ∥e2∥ ≤ γ

√
nk hold with overwhelming

probability by Lemma 1. Since R
$← (DZm̄,ω(

√
logn))

nk, the inequality s1(R) ≤
√
m̄ · ω(

√
log n) holds with

overwhelming probability by Lemma 4. Since γ =
√
∥e1∥2 + m̄(αq)2 · ω(

√
logn), we have ∥RTe1 + e2∥ ≤

αqm̄ · ω(
√
log n). Besides, we need αq ≥ 2

√
n for the hardness of the LWE problem [55]. We also need

Lemma 2 and Lemma 6 in the security proof, which require m̄ ≥ (n+ 1) log2 q+ ω(log n) and ∥e1∥∞ < q/8.
In all, for the case where b = 2 and q is a prime, the decryption algorithm is correct if we set the

parameters m̄, α, q such that

m̄ = (n+ 1) log2 q + ω(log n), 1/α = m̄ · ω(
√
log n), αq = 2

√
n, (1)

which means that m = m̄+ nk = Õ(n), 1/α = Õ(n) and q = Õ(n1.5).
To obtain better efficiency, one can set q as a power of a small prime b (e.g., b = 3), which allows us

to use the inequality ∥RTe1 + e2∥∞ ≤ αq
√
m̄ · ω(

√
log n)2 < q

2b in the correctness analysis. In this case, it
suffices to set the parameters m̄, α, q such that

m̄ = (n+ 1) log2 q + ω(log n), 1/α =
√
m̄ · ω(

√
log n)2, αq = 2

√
n, (2)

which means thatm = m̄+nk = Õ(n), 1/α = Õ(
√
n) and q = Õ(n). In both cases, we can set 2 ≤ d ≤ Õ(

√
n).

As commented in [42,4], the requirement αq ≥ 2
√
n used for the theoretical worst-case reduction [55]

is not tight, and it is better to mainly consider concrete hardness against known attacks when choosing
actual parameters. For example, one can set n = 450, m̄ = 6690,m = 10740, q = 39 ≈ 214.27, αq = 1.5
to achieve a decryption error rate less than 2−100, and a security level about 131-bit by the online LWE
estimator [4]. In this case, the sizes of the public key and the secret key are about nm⌈log2 q⌉ ≈ 8.64 MB, and
m̄nk(log2(αq ·ω(

√
log n)) + 1) ≈ 16.15 MB, respectively. For 128-bit security, we set κ = 256, the ciphertext

size for encrypting a 256-bit message is m⌈log2 q⌉+512 bits ≈ 19.73 KB. By using the compressing technique
in Section 4, we can reduce the size of the public key, the secret key and the ciphertext to 3.26 MB, 32 bytes
and 13.80 KB, respectively.
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3.3 The Security

In this section, we show that the above PKE is CCA2-secure. Formally, we have the following theorem.

Theorem 1. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy Equation (1) or (2). If
LWEn,m̄,q,α is hard and H is a collision-resistant hash function, then the above PKE scheme is CCA2-secure
in the standard model.

Our proof uses a sequence of games G1, . . . , G11, with G1 being the real CCA2-security game (where the

challenge ciphertext C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) is honestly generated by first randomly choosing δ∗

$← {0, 1} and
then encrypting µδ∗) and G11 a random game (where the challenge ciphertext C∗ is essentially uniformly
random, and thus the adversary’s advantage in game G11 is negligible). The security is established by showing
that G1 and G11 are computationally indistinguishable in the adversary’s view. We outline the changes of
game Gi with respect to its previous game Gi−1 in Table 2.

Proof. We now give the formal proof of Theorem 1. Let A be an adversary which can break the CCA2-security
of our PKE with advantage ϵ. Let Fi be the event that A correctly guesses δ = δ∗ in game i ∈ {1, . . . , 11}.
By definition, the adversary’s advantage Advind-cca2PKE,A (κ) in game i is exactly |Pr[Fi]− 1/2|.

Game G1 This game is the real security game as defined in Section 2.2. Formally, the challenger C works as
follows:

KeyGen. first randomly choose A
$← Zn×m̄

q , R
$← (DZm̄,ω(

√
logn))

nk, and compute B = −AR. Then, return
the pair of public key pk = (A,B) to the adversary A, and keeps the secret key R private.

Phase I. Upon receiving a decryption query C = (c1, c2, c3, c4), first compute

Atag = (A∥B+ FRD(tag)Gb), and u =

(
c1
c2

)
,

where tag = H(c1). Then, compute s̃← Solve(Atag,R,u), v = decoded(s̃), and parse v = x∥y∥z, where
(x, y, z) ∈ (F2κ)

3. Let e1 = c1 −AT s̃ and e2 = c2 − (B+ FRD(tag)Gb)
T s̃. Return ⊥ to the adversary A

if one of the following conditions holds:

– ∥e1∥ > αq
√
m̄, or

– ∥e2∥ > γ
√
nk for prime q (or ∥e2∥∞ > γ · ω(

√
log n) for q = bk a power of prime b), or

– c4 ̸= H(c2, c3)y + z ∈ F2κ .

Otherwise, return µ = c3 − x ∈ F2κ to the adversary A.
Challenge. Upon receiving two challenge messages (µ0, µ1) ∈ F2κ × F2κ from the adversary A, first ran-

domly choose δ∗
$← {0, 1}, s∗ $← DZn,αq, e

∗
1

$← DZm̄,αq, e∗2
$← DZnk,γ and x∗, y∗, z∗

$← F2κ , where

γ =
√
∥e∗1∥2 + m̄(αq)2 · ω(

√
log n). Then, interpret the bit-concatenation of (x∗, y∗, z∗) ∈ (F2κ)

3 as a
vector v∗ = x∗∥y∗∥z∗ ∈ Zn

d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = AT s̃∗ + e∗1,

c∗2 = (B+ FRD(tag∗)Gb)
T s̃∗ + e∗2, c∗3 = x∗ + µδ∗ ∈ F2κ ,

c∗4 = τ∗y∗ + z∗ ∈ F2κ

where tag∗ = H(c∗1) ∈ F2κ and τ∗ = H(c∗2, c
∗
3) ∈ F2κ . Finally, return the challenge ciphertext C∗ =

(c∗1, c
∗
2, c
∗
3, c
∗
4) to A.

Phase II. Upon receiving a decryption query C = (c1, c2, c3, c4), directly return ⊥ to the adversary A if
C = C∗, otherwise answer this query as in Phase I.

By definition, we have the following lemma.

Lemma 8. |Pr[F1]− 1/2| = ϵ.

12



Table 2. Outline of the game sequences for proving Theorem 1 (where µ0 and µ1 are the challenge messages. We use
c
≈ and

s
≈ to represent the computational indistinguishability and statistical indistinguishability between two games,

respectively.)

Games Changes w.r.t. Previous Game Note

G1

Public key: pk = (A,B = −AR),

Secret key: sk = R,

Challenge C∗: C∗ = (c∗
1 , c

∗
2 , c

∗
3 , c

∗
4),

where

c∗
1 = AT s̃∗ + e∗

1 ,

c∗
2 = (B + FRD(tag∗)Gb)

T s̃∗ + e∗
2 ,

c∗3 = x∗ + µδ∗ ∈ F2κ

c∗4 = τ∗y∗ + z∗ ∈ F2κ , for some

s∗
$← DZn,αq

e∗
1

$← DZm̄,αq

e∗
2

$← D
Znk,

√
∥e∗1∥2+m̄(αq)2·ω(

√
log n)

x∗, y∗, z∗ $← F2κ

v∗ = x∗∥y∗∥z∗ ∈ Zn
d

s̃∗ = s∗ + encoded(v
∗),

tag∗ = H(c∗
1),

τ∗ = H(c∗
2 , c3).

δ∗
$← {0, 1},

Dec. query C: run Dec(sk, C) for any C ̸= C∗

real game

G2
generate (c∗

1 , c
∗
2 , x

∗, y∗, z∗) before giving pk to the adversary (i.e., in the
KeyGen phase)

The change is conceptual: G2 = G1

G3
immediately return ⊥ to the decryption query with C = (c1, c2, c3, c4) if

c1 ̸= c∗
1 ∧ H(c1) = H(c∗

1)

By the collision resistance of H:

G3
c
≈ G2

G4
immediately return ⊥ to the decryption query with C = (c1, c2, c3, c4) if

(c2, c3) ̸= (c∗
2 , c

∗
3) ∧ H(c2, c3) = H(c∗

2 , c
∗
3)

By the collision resistance of H:

G4
c
≈ G3

G5
immediately return ⊥ to the decryption query with C = (c1, c2, c3, c4) in

Phase I if c1 = c∗
1

By the high min-entropy of c∗
1 : G5

s
≈ G4

G6

immediately return ⊥ to the decryption query with C = (c1, c2, c3, c4) in
Phase II if (c1, c2, c3) = (c∗

1 , c
∗
2 , c

∗
3) or

c1 = c∗
1 ∧ (c2, c3) ̸= (c∗

2 , c
∗
3) ∧ c4 ̸= H(c2, c3)y

∗ + z∗

By the unique witness of LWE (i.e.,
Lemma 6) and the definition of Dec:

G6
s
≈ G5

G7
immediately return ⊥ to the decryption query with C = (c1, c2, c3, c4) in

Phase II if c1 = c∗
1

By the pseudorandomness of LWE and

the definition of Dec:⋆ G7
c
≈ G6

G8

set pk = (A,B = −AR′ − FRD(tag∗)Gb) and use R′ to answer the
decryption query C = (c1, c2, c3, c4) if C does not satisfy the
“immediate rejection” rules in game G7 (which means that

tag = H(c1) ̸= H(c∗
1) = tag∗)

By the properties of trapdoor generation
and inversion algorithms, and the

definition of Dec: G8
s
≈ G7

G9

use R′ and c∗
1 to generate

c∗
2 = (−R′)T c∗

1 + e′
2 = (B + FRD(tag∗)Gb)

T s̃∗ + (−R′)T e∗
1 + e′

2, where

e′
2

$← DZn̄k,αq
√

m̄·ω(
√

log n)

By Lemma 3 and the definition of Enc:

G9
s
≈ G8

G10 choose c∗
1

$← Zm̄
q at random

By the pseudorandomness of LWE:

G10
c
≈ G9

G11 choose c∗
2

$← Znk
q at random By Lemma 2: G11

s
≈ G10

⋆ The proof of this claim is relatively involved, and we will use the proof technique of game transitions based on
failure events in [61].
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Game G2 This game is similar to game G1 except that the challenger C changes the KeyGen and Challenge
phases as follows:

KeyGen. first randomly choose A
$← Zn×m̄

q , R
$← (DZm̄,ω(

√
logn))

nk, s∗
$← DZn,αq, e

∗
1

$← DZm̄,αq, e
∗
2

$←
DZnk,γ and x∗, y∗, z∗

$← F2κ , where γ =
√
∥e∗1∥2 + m̄(αq)2·ω(

√
logn). Then, interpret the bit-concatenation

of (x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗∥y∗∥z∗ ∈ Zn

d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = AT s̃∗ + e∗1,

B = −AR c∗2 = (B+ FRD(tag∗)Gb)
T s̃∗ + e∗2,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to the adversary A, keep the secret sk = R
and (c∗1, c

∗
2, x
∗, y∗, z∗) secret.

Challenge. Upon receiving two challenge messages (µ0, µ1) ∈ F2κ×F2κ from the adversary A, first choose a
bit δ∗

$← {0, 1} and retrieve (c∗1, c
∗
2, x
∗, y∗, z∗). Then, compute c∗3 = x∗+µδ∗ ∈ F2κ , c

∗
4 = τ∗y∗+z∗ ∈ F2κ ,

where τ∗ = H(c∗2, c
∗
3). Finally, return the challenge ciphertext C∗ = (c∗1, c

∗
2, c
∗
3, c
∗
4) to A.

Lemma 9. Games G2 and G1 are identical in the adversary’s view. Moreover, Pr[F2] = Pr[F1].

Proof. This lemma follows from the fact that (c∗1, c
∗
2, x
∗, y∗, z∗) is independent from the adversary’s choices

of the challenge messages, and game G2 is essentially a conceptual change of game G1 in the adversary’s
view. □

Game G3 This game is similar to game G2 except that the challenger C immediately returns ⊥ to the
decryption query C = (c1, c2, c3, c4) from the adversary A if c1 ̸= c∗1 ∧ H(c1) = H(c∗1).

Lemma 10. If H is a collision-resistant hash function, then games G3 and G2 are computationally indis-
tinguishable. Moreover, |Pr[F3]− Pr[F2]| ≤ negl(κ).

Proof. Let E be the event that the adversary makes a decryption query C = (c1, c2, c3, c4) in Phase I such
that c1 ̸= c∗1 ∧ H(c1) = H(c∗1). Note that if E can only happen with negligible probability, then games G3

and G2 are computationally indistinguishable in the adversary’s view. Now, we show that if there is a PPT
adversary A that makes E happen with non-negligible probability, there is a PPT adversary F that finds
a collision of H with the same probability by honestly simulating the attack environment for A as in game
G3. Whenever A outputs a ciphertext C = (c1, c2, c3, c4) such that c1 ̸= c∗1 ∧H(c1) = H(c∗1) at some time in
Phase I, F returns the pairs (c1, c

∗
1) as its own output and aborts. Obviously, the probability that F succeeds

is equal to the probability that A makes E happen. Thus, under the assumption that H is collision-resistant,
the probability that E happens is negligible, which completes the proof. □

Game G4 This game is similar to game G3 except that the challenger C immediately returns ⊥ to the
decryption query C = (c1, c2, c3, c4) from the adversary A if (c2, c3) ̸= (c∗2, c

∗
3) ∧ H(c2, c3) = H(c∗2, c

∗
3).

Lemma 11. If H is a collision-resistant hash function, then games G4 and G3 are computationally indis-
tinguishable. Moreover, |Pr[F4]− Pr[F3]| ≤ negl(κ).

Proof. The proof is the same to that of Lemma 10, we omit the details. □

Game G5 This game is similar to game G4 except that the challenger C immediately returns ⊥ to the
decryption query C = (c1, c2, c3, c4) from the adversary A in Phase I if c1 = c∗1.

Lemma 12. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy Equation (1) or (2). Then,
games G5 and G4 are statistically indistinguishable. Moreover, |Pr[F5]− Pr[F4]| ≤ negl(κ).
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Proof. Let E be the event that the adversary makes a decryption query C = (c1, c2, c3, c4) in Phase I such
that c1 = c∗1. Note that if E does not happen, then games G5 and G4 are identical in the adversary’s
view. Thus, it is enough to show that Pr[E ] is negligible for any (unbounded) adversary A making at
most a polynomial number of decryption queries in Phase I. Note that in both games G4 and G5, the

ciphertext part c∗1 = AT s̃∗ + e∗1 is always generated by using s̃∗ = s∗ + encoded(v
∗) and e∗1

$← DZm̄,αq,

where s∗
$← DZn,αq, x

∗, y∗, z∗
$← F2κ and v∗ = x∗∥y∗∥z∗ ∈ Zn

d . By the high min-entropy of the Gaussian
distribution, we have that c∗1 has min-entropy at least κ, where κ is the security parameter. In other words,
the probability that for any (unbounded) adversary to output c1 = c∗1 in Phase I (i.e., before seeing c∗1) is
negligible. This means that if A can make E happen with non-negligible probability, which completes the
proof. □

Game G6 This game is similar to game G5 except that the challenger C immediately returns ⊥ to the
decryption query C = (c1, c2, c3, c4) from the adversary A in Phase II if (c1, c2, c3) = (c∗1, c

∗
2, c
∗
3) or c1 =

c∗1 ∧ (c2, c3) ̸= (c∗2, c
∗
3) ∧ c4 ̸= H(c2, c3)y

∗ + z∗, where C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) is the challenge ciphertext.

Lemma 13. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy Equation (1) or (2), then games
G6 and G5 are statistically indistinguishable. Moreover, |Pr[F6]− Pr[F5]| ≤ negl(κ).

Proof. It suffices to show that the challenger C in game G5 will always return ⊥ to a decryption query
C = (c1, c2, c3, c4) ̸= C∗ = (c∗1, c

∗
2, c
∗
3, c
∗
4) from the adversary A in Phase II if (c1, c2, c3) = (c∗1, c

∗
2, c
∗
3) or

c1 = c∗1 ∧ (c2, c3) ̸= (c∗2, c
∗
3) ∧ c4 ̸= H(c2, c3)y

∗ + z∗ in Phase II except with negligible probability. Note
that given a decryption query C = (c1, c2, c3, c4) ̸= C∗, the challenger C in game G5 will first compute
tag = H(c1), and

Atag = (A∥B+ FRD(tag)Gb), and u =

(
c1
c2

)
.

Then, compute s̃ ← Solve(Atag,R,u), v = decoded(s̃), and parse v = x∥y∥z, where (x, y, z) ∈ (F2κ)
3. Let

e1 = c1−AT s̃ and e2 = c2− (B+FRD(tag)Gb)
T s̃. Finally, return ⊥ to the adversary if one of the following

conditions holds:

– ∥e1∥ > αq
√
m̄, or

– ∥e2∥ > γ
√
nk for prime q (or ∥e2∥∞ > γ · ω(

√
log n) for q = bk a power of prime b), or

– c4 ̸= H(c2, c3)y + z ∈ F2κ .

Otherwise, return µ = c3 − x ∈ F2κ .
Clearly, the challenger C in Game G5 will not return ⊥ to the decryption query C = (c1, c2, c3, c4) ̸= C∗

only when ∥e1∥∞ ≤ ∥e1∥ ≤ αq
√
m̄ and c4 = H(c2, c3)y + z. In addition, given c∗1 = AT s̃∗ + e∗1 for e∗1

$←
DZm̄,αq, the challenger C in Game G5 will not return ⊥ to a decryption query C = (c1 = c∗1, c2, c3, c4) only
if c4 = H(c2, c3)y

∗+ z∗ except with negligible probability, since in this case we always have (s̃, e1) = (s̃∗, e∗1)
with overwhelming probability by the unique witness property in Lemma 6, which in turn implies that v = v∗

and (x, y, z) = (x∗, y∗, z∗) by the correctness of decoded. In other words, the challenger C in Game G5 will
always return ⊥ to a decryption query C = (c1 = c∗1, c2, c3, c4) ̸= C∗ = (c∗1, c

∗
2, c
∗
3, c
∗
4) from the adversary A

in Phase II if (c1, c2, c3) = (c∗1, c
∗
2, c
∗
3) or c1 = c∗1 ∧ (c2, c3) ̸= (c∗2, c

∗
3) ∧ c4 ̸= H(c2, c3)y

∗ + z∗ holds, except
with negligible probability. This completes the proof. □

Game G7 This game is similar to game G6 except that the challenger C immediately returns ⊥ to the
decryption query C = (c1, c2, c3, c4) from the adversary A in Phase II if c1 = c∗1.

Note that our goal is to show games G7 and G6 are computationally indistinguishable under the LWE
assumption, but for technical reason it is difficult to do this in game G7. Fortunately, we can still continue the
game sequences by using the proof strategy (i.e., game transitions based on failure events) in [61]. Formally,
for i ∈ {6, 7, 8, . . . , 11}, let Ei be the failure event in game Gi that the adversary makes a decryption query
with C = (c∗1, c2, c3, c4) such that τ = H(c2, c3) ̸= τ∗ ∧ c4 = τy∗ + z∗.
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Lemma 14. If E7 and E6 do not happen, then games G7 and G6 are identical in the adversary’s view.
Moreover, Pr[F7|¬E7] = Pr[F6|¬E6] and Pr[E7] = Pr[E6].

Proof. Let C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) be the corresponding challenge ciphertext, where τ∗ = H(c∗2, c

∗
3), and c∗4 =

τ∗y∗ + z∗ for some y∗, z∗ ∈ {0, 1}κ. Note that upon receiving a decryption query with C = (c1, c2, c3, c4)
in Phase II, the challenger C in both games will always return ⊥ if (c2, c3) ̸= (c∗2, c

∗
3) ∧ τ = H(c2, c3) = τ∗.

Moreover, the challenger C in game G6 will return ⊥ if (c1, c2, c3) = (c∗1, c
∗
2, c
∗
3) or c1 = c∗1 ∧ (c2, c3) ̸=

(c∗2, c
∗
3) ∧ c4 ̸= H(c2, c3)y

∗ + z∗ holds. In other words, the only difference between games G7 and G6 is
that the challenger C in game G7 also returns ⊥ to the decryption query C = (c∗1, c2, c3, c4) ̸= C∗ even if
τ = H(c2, c3) ̸= H(c∗2, c

∗
3) = τ∗ ∧ c4 = τy∗ + z∗. Clearly, if E7 and E6 do not happen, then both games

are identical in the adversary’s view. In particular, the adversary’s view in game G7 before E7 happens is
essentially identical to that in game G6. Thus, we have Pr[F7|¬E7] = Pr[F6|¬E6] and Pr[E7] = Pr[E6]. □

Game G8 This game is similar to game G7 except that the challenger C changes the KeyGen phase and
handles the decryption queries as follows:

KeyGen. first randomly choose A
$← Zn×m̄

q , R′
$← (DZm̄,ω(

√
logn))

nk, s∗
$← DZn,αq, e

∗
1

$← DZm̄,αq, e
∗
2

$←
DZnk,γ and x∗, y∗, z∗

$← F2κ , where γ =
√
∥e∗1∥2 + m̄(αq)2·ω(

√
logn). Then, interpret the bit-concatenation

of (x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗∥y∗∥z∗ ∈ Zn

d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = AT s̃∗ + e∗1,

B = −AR′ − FRD(tag∗)Gb,
c∗2 = (B+ FRD(tag∗)Gb)

T s̃∗ + e∗2 = −(R′)TAT s̃∗ + e∗2,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to the adversary A, and keep (R′, c∗1, c
∗
2, x
∗,

y∗, z∗) secret.
Decryption Query. Upon receiving a decryption query C = (c1, c2, c3, c4) from the adversary A, return ⊥

to A if this query can be immediately responded with ⊥ using the rules in previous games. Otherwise,
first set

Atag = (A∥B+ FRD(tag)Gb), and u =

(
c1
c2

)
,

where tag = H(c1). Then, compute s̃← Solve(Atag,R
′,u), v = decoded(s̃), and parse v = x∥y∥z, where

(x, y, z) ∈ (F2κ)
3. Let e1 = c1 −AT s̃ and e2 = c2 − (B+ FRD(tag)Gb)

T s̃. Return ⊥ to the adversary A
if one of the following conditions holds:
– ∥e1∥ > αq

√
m̄, or

– ∥e2∥ > γ
√
nk for prime q (or ∥e2∥∞ > γ · ω(

√
log n) for q = bk a power of prime b), or

– c4 ̸= H(c2, c3)y + z.
Otherwise, return µ = c3 − x to the adversary A.

Lemma 15. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy Equation (1) or (2). Then,
games G8 and G7 are statistically indistinguishable. Moreover, |Pr[F8|¬E8] − Pr[F7|¬E7]| ≤ negl(κ) and
|Pr[E8]− Pr[E7]| ≤ negl(κ).

Proof. Note that the only differences between games G8 and G7 are the generation of the public key pk =
(A,B) and the responses to the decryption queries. Concretely, in game G7 the matrix B = −AR is

generated by using R
$← (DZm̄,ω(

√
logn))

nk, while in game G7 the matrix B = −AR′ − FRD(tag∗)Gb, where

R′
$← (DZm̄,ω(

√
logn))

nk. Since A ∈ Zn×m̄
q is always uniformly chosen at random in both games, we have that

−AR and −AR′ are statistically close to uniform distribution over Zn×nk
q by Lemma 2. Namely, the public

keys in games G8 and G7 are statistically close (and tag∗ is statistically hidden in game G8).
It suffices to show that in the adversary’s view, the responses to the decryption queries are indistin-

guishable in games G8 and G7. Since for a decryption query C = (c1, c2, c3, c4), the challenger will use
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the same rules to check if the query can be immediately responded with ⊥ in both games, we only have
to consider the decryption query C = (c1, c2, c3, c4) that needs the challenger C to perform the decryption
operation. By the definition of game G7, we must have that tag = H(c1) ̸= tag∗ holds for such decryp-
tion query C = (c1, c2, c3, c4). Note that in game G7, the challenger has the real secret key sk = R, and
can run the decryption algorithm to handle this query. We now show that the challenger C in game G8

can almost perfectly simulate the decryption operation. Recall that pk = (A,B = −AR′ − FRD(tag∗)Gb),
conditioned on tag = H(c1) ̸= tag∗ we have that R′ is a valid trapdoor for Atag = (A∥B + FRD(tag)Gb),
and thus can be used to compute s̃ ← Solve(Atag,R

′,u). Now, either there exists a tuple (s̃, e1, e2) such

that ∥e1∥ ≤ αq
√
m̄, ∥e2∥ ≤ γ

√
nk for prime q (or ∥e2∥∞ ≤ γ · ω(

√
log n) for q = bk), c1 = AT s̃ + e1

and c2 = (B + FRD(tag)Gb)
T s̃ + e2, or there does not. For the latter case, the challenger will always re-

turn ⊥ in both games. While for the former case, the challenger C in game G8 can recover s̃ as long as
∥(R′)Te1 + e2∥ < q

2
√
b2+1

for prime q (or ∥(R′)Te1 + e2∥∞ < q
2b for q = bk), which is essentially the same

constraint for a correct decryption using sk = R in game G7. Since both R and R′ are chosen from the
same Gaussian distribution, by Lemma 1 we have that the inequality will holds with the same overwhelming
probability conditioned on ∥e1∥ ≤ αq

√
m and ∥e2∥ ≤ γ

√
nk for prime q (or ∥e2∥∞ ≤ γ · ω(

√
log n) for

q = bk). By the fact that the challengers in both games will perform the same operations after obtaining
s̃, we have that the responses to such kind of decryption queries are identical in both games except with
negligible probability. This finishes the proof. □
Remark 1. Note that the challenger in game G8 actually does not have the “real” secret key, which implies
that the adversary cannot obtain extra information about the secret key from the decryption queries (except
what is obtained from the public key pk = (A,B)). This fact will be used in our later proofs.

Game G9 This game is similar to game G8 except that the challenger C changes the KeyGen phase as follows:

KeyGen. first randomly choose A
$← Zn×m̄

q , R′
$← (DZm̄,ω(

√
logn))

nk, s∗
$← DZn,αq and e∗1

$← DZm̄,αq, e
′
2

$←
DZnk,r and x∗, y∗, z∗

$← F2κ , where r = αq
√
m̄ · ω(

√
log n). Then, interpret the bit-concatenation of

(x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗∥y∗∥z∗ ∈ Zn

d , and compute

s̃∗ = s∗ + encoded(v
∗), c∗1 = AT s̃∗ + e∗1,

B = −AR′ − FRD(tag∗)Gb, c∗2 = (−R′)T c∗1 + e′2

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to A, and keep (R′, c∗1, c
∗
2, x
∗, y∗, z∗) secret.

Lemma 16. Let positive integers n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy Equation (1) or (2). Then,
games G9 and G8 are statistically indistinguishable. Moreover, |Pr[F9|¬E9] − Pr[F8|¬E8]| ≤ negl(κ) and
|Pr[E9]− Pr[E8]| ≤ negl(κ).

Proof. Note that the only difference between games G9 and G8 is the generation of c∗2. In game G8, c
∗
2 = (B+

FRD(tag∗)Gb)
T s̃∗+e∗2 = −(R′)TAT s̃∗+e∗2 is generated by using e∗2

$← DZnk,γ where γ =
√
∥e∗1∥2 + m̄(αq)2 ·

ω(
√
logn), while in game G9, c

∗
2 = (−R′)T c∗1 + e′2 is generated by using e′2

$← DZnk,r. Since c∗1 = AT s̃∗+ e∗1
for some e∗1

$← DZm̄,αq, we have that c
∗
2 = (−R′)T c∗1 + e′2 = (−R′)TAT s̃∗+ ẽ2 for some ẽ2 = (−R′)Te∗1 + e′2

which is distributed statistically close to DZnk,γ by applying Lemma 3 nk times using a standard hybrid
argument. Thus, the distributions of c∗2 in games G9 and G8 are actually statistically close, which in turn
shows that both games are statistically indistinguishable in the adversary’s view. □

Game G10 This game is similar to game G9 except that the challenger C changes the KeyGen phase as
follows:

KeyGen. first randomly chooseA
$← Zn×m̄

q ,b
$← Zm1

q ,R′
$← (DZm̄,ω(

√
logn))

nk, e′2
$← DZnk,r and x∗, y∗, z∗

$←
F2κ , where r = αq

√
m̄ · ω(

√
log n). Then, compute

c∗1 = b, B = −AR′ − FRD(tag∗)Gb,
c∗2 = (−R′)T c∗1 + e′2
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where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to A, and keep (R′, c∗1, c
∗
2, x
∗, y∗, z∗) secret.

Lemma 17. If LWEn,m̄,q,α is hard, then games G10 and G9 are computationally indistinguishable. Moreover,
|Pr[F10|¬E10]− Pr[F9|¬E9]| ≤ negl(κ) and |Pr[E10]− Pr[E9]| ≤ negl(κ).

Proof. We prove this lemma by showing that if there is a PPT adversary A that distinguishes game G10

from G9 with non-negligible advantage, then there is an efficient algorithm B that solves the LWEn,m̄,q,α

problem with the same advantage by interacting with A.
Formally, given an LWE challenge tuple (A,b) ∈ Zn×m̄

q ×Zm̄
q , B randomly choosesR′

$← (DZm̄,ω(
√
logn))

nk,

e′2
$← DZnk,r and x∗, y∗, z∗

$← F2κ , where r = αq
√
m̄ ·ω(

√
log n). Then, it interprets the bit-concatenation of

(x∗, y∗, z∗) ∈ (F2κ)
3 as a vector v∗ = x∗∥y∗∥z∗ ∈ Zn

d , and computes

c∗1 = b+AT encoded(v
∗), B = −AR′ − FRD(tag∗)Gb,

c∗2 = (−R′)T c∗1 + e′2

where tag∗ = H(c∗1). Then, B sets the public key pk = (A,B), and keeps (R′, c∗1, c
∗
2, x
∗, y∗, z∗) private.

Finally, B gives pk to the adversary A, simulates the attack environment the same as in game G9, and
returns whatever A outputs as its own output.

Now, if (A,b) ∈ Zn×m̄
q × Zm̄

q is a valid LWE tuple, i.e., b = AT s∗ + e∗ for some s∗
$← DZn,αq and

e∗
$← DZm̄,αq, then we have that c∗1 = b + AT encoded(v) = AT s̃∗ + e∗, where s̃∗ = s∗ + encoded(v

∗). In
this case, B perfectly simulates the attack environment in game G9 for A. Else if (A,b) ∈ Zn×m̄

q × Zm̄
q is

uniformly random, then c∗1 = b + AT encoded(v
∗) is also uniformly random over Zm̄

q . This means that B
perfectly simulates the attack environment in game G10 for A. Thus, if A can distinguish game G10 from
G9 with non-negligible advantage, then B can solve the LWEn,m̄,q,α problem with the same advantage. □

Game G11 This game is similar to game G10 except that the challenger C changes the KeyGen phase as
follows:

KeyGen. first randomly choose A
$← Zn×m̄

q , R′
$← (DZm̄,ω(

√
logn))

nk, b
$← Zm̄

q ,d
$← Znk

q and x∗, y∗, z∗
$←

F2κ . Then, compute

c∗1 = b, B = −AR′ − FRD(tag∗)Gb,
c∗2 = d,

where tag∗ = H(c∗1). Finally, give the public key pk = (A,B) to A, and keep (R′, c∗1, c
∗
2, x
∗, y∗, z∗) secret.

Lemma 18. Let positive n, m̄, b, d, q ∈ Z and real α ∈ (0, 1) satisfy Equation (1) or (2), then games G11 and
G10 are statistically indistinguishable. Moreover, |Pr[F11|¬E11] − Pr[F10|¬E10]| ≤ negl(κ) and |Pr[E11] −
Pr[E10]| ≤ negl(κ).

Proof. Note that the only difference between games G11 and G10 is the generation of c∗2 in the challenge
ciphertext. Thus, it is enough to show that c∗2 in game G11 is actually statistically close to that in game
G10. Note that c∗1 = b is uniformly chosen from Zm̄

q at random in both games, and c∗2 = (−R′)T c∗1 + e′2

in game G10. Using the facts that m̄ ≥ (n + 1) log2 q + ω(log n) and R′
$← (DZm̄,ω(

√
logn))

nk, we have that

(A,AR′,b, (R′)Tb) is statistically close to uniform by Lemma 2. In other words, c∗2 in game G10 is essentially
statistically close to uniform over Znk

q , which completes the proof. □

Lemma 19. Pr[F11] = 1/2 and Pr[E11] = negl(κ).
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Proof. Since x∗
$← {0, 1}ℓ is uniformly chosen at random, µδ∗ ∈ {0, 1}ℓ is perfectly hidden in the challenge

ciphertext C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4), where c∗3 = x∗ + µδ∗ ∈ F2κ . Thus, Pr[F11] = Pr[δ = δ∗] = 1/2, where

δ ∈ {0, 1} is output by the adversary A for the guess of δ∗ in game G11.

As for the second claim, since y∗, z∗ ∈ {0, 1}κ are uniformly chosen at random in game G11, given
c∗4 = τ∗y∗ + z∗ ∈ F2κ there are still 2κ possible choices of (y∗, z∗). Thus, for any adversary A with the
knowledge of c∗4 = τ∗y∗ + z∗, the probability that it outputs c4 = τy∗ + z∗ for any τ ̸= τ∗ is at most 1/2κ

(because the adversary can uniquely determine (y∗, z∗) if he can output a valid c4 = τy∗+ z∗), which means
that Pr[E11] ≤ Qdec/2

κ, where Qdec is the maximum number of decryption queries made by A. □
In all, we have that Pr[F1] ≤ 1/2 + negl(κ) by Lemma 9∼19. This completes the proof of Theorem 1. □

4 Optimizations

4.1 Encrypting long message

In the description of our PKE, we only consider to encrypt a κ-bit message for simplicity. Although it
suffices for many applications where a PKE is typically used to encrypt a session key for some symmetric
encryption such as AES, our PKE can essentially encrypt messages of bit length up to O(n log n)− 2κ. Note
that in order to recover v ∈ Zn

d from s̃ = s + encoded(v) ∈ Zn
q , it is enough to set the parameters such

that ∥s∥∞ < q−(d−1)d
2d by Lemma 7. For any n, m̄, q ∈ Z and real α ∈ R satisfying Equation (1) or (2),

we always have ∥s∥∞ ≤ αq · ω(
√
log n) < q/Õ(

√
n). This makes it possible to set d = Õ(

√
n) and encrypt

messages of bit length up to O(n log n)− 2κ (since one can encode n log2 d = O(n log n)-bit information into
the vector v ∈ Zn

d ). Concretely, for the choice of (n,m, q, αq) = (450, 10740, 39, 1.5), we have that ∥s∥∞ ≤ 9
holds except with probability less than 2−162, which allows us to set d = 128 and encrypt messages of size
up to 2638-bit. We also note that one can use a pseudorandom generator PRG to encrypt any polynomial
long messages by replacing c3 = x+ µ with c3 = PRG(x)⊕ µ.

4.2 Compressing the Ciphertext

As many lattice-based PKEs in the literature (e.g., [48,17,5]), it is possible to discard some lower bits of the
ciphertext (and thus reduce the ciphertext size) without affecting the correctness of the PKEs (because those
lower bits mainly carry noise). This can be seen as a modulus switch technique. Concretely, let Switchq,p(·) :
Zq → Zp be a function defined as Switchq,p(x) = ⌈p/q · x⌋ mod p. It is easy to check that for any x ∈ Zq,
x − Switchp,q(Switchq,p(x)) ≤ ⌈ q

2p⌋. Thus, for p < q, one can use Switchq,p(·) to compress the ciphertext

in the encryption algorithm (i.e., applying to vectors in a coordinate-wise way), and use Switchp,q(·) to
approximately recover the original ciphertext in the decryption algorithm. This can be simply seen as adding
a noise of size at most ⌈ q

2p⌋ to each coordinate of the lattice vectors in the ciphertext.

In our case, we cannot simply apply Switchq,p(·) to the ciphertext in a black-box way, since this will affect
both the correctness and the security of our PKE. Instead, we have to plug it into the encryption algorithm
to generate the ciphertext C = (c1, c

′
2, c3, c

′
4) as follows (where p is an integer, and other notations are the

same as before):

c1 = AT s̃+ e1, tag = H(c1)
c′2 = Switchq,p((B+ FRD(tag)Gb)

T s̃+ e2), c3 = x+ µ
τ ′ = H(c′2, c3), c′4 = τ ′y + z.

For the choice of (n,m, q, αq) = (450, 10740, 39, 1.5), we can set p = 8 to compress the ciphertext from
previous 19.73 KB to 13.80 KB, while still keep the decryption error rate less than 2−100. Note that we do
not use this technique to compress c1, because unlike the error in c2, any error in c1 will be sharply amplified
by a factor of s1(R) in decryption.
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4.3 Compressing the Keys

The key sizes of LWE-based PKEs (e.g., [52,48,1,45,68]) are usually very large due to consist of big matrices in
both the public keys and the secret keys. For example, under the choice of (n,m, q, αq) = (450, 10740, 39, 1.5),
the public key and secret key sizes of our PKE are about 8.64 MB and 16.15 MB, respectively. However, the
first element in the public key is essentially a uniformly random matrix which can be treated as a system
parameter and shared among all users. By doing this, one can reduce the sizes of the public key from previous
8.64 MB to 3.26 MB. Besides, one can also use a PRG with a 256-bit random seed to deterministically generate
the secret key matrix R, and reduce the secret key size from 16.15 MB to 32 Bytes. As we will show in the
supplemental material, one can also reduce the key sizes by adapting our construction to the ring setting.
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A CCA2-secure PKE from Ring-LWE

In this section, we adapt our construction in Section 3 to the ring setting. We begin with the introduction
of some necessary backgrounds.

A.1 Rings, Ring-LWE and Trapdoors

Rings. Let n be a power of 2, and consider the cyclotomic ring R = Z[X]/(Xn + 1). For any integer q > 0,
define Rq = Zq[X]/(Xn + 1) analogously. As in [62,29], we require that f(X) = Xn + 1 does not split into
low degree polynomials modulo the prime factors of q. For simplicity, we let q be a power of 3. In this case,
f(X) = Xn + 1 mod 3 will split into two irreducible polynomials with degree n/2 in Z3[X].

Lemma 20 ([29]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and Rq = Zq[X]/(Xn + 1). Then, any
nonzero polynomial t ∈ Rq of degree d < n/2 and coefficients in {-1,0,1} is invertible in Rq.

For any element a ∈ R (or Rq), we identify a with its coefficient vector in Zn (or Zn
q ). Formally, we let

ϕ : R → Zn be the coefficient embedding that maps a polynomial into its coefficient vector (in the column
form). Then, we define the norm of a polynomial as the (Euclidean) norm of its coefficient vector, i.e.,
∥a∥ = ∥ϕ(a)∥. By identifying R with Zn under the map ϕ, the discrete Gaussian distribution over the ring
R can be defined as DR,s = DZn,s. We also identity R with the sub-ring of anti-circulant matrices in Zn×n

by viewing each ring element a ∈ R as a linear transformation r → a · r over the coefficient embedding of R,
i.e., by treating a as a matrix in Zn×n such that the i-th column is the coefficient of a ·Xi mod f(X) where
i ∈ {0, . . . , n − 1}. Formally, we let Rot : R → Zn×n be the ring homomorphism that maps a polynomial
into its anti-circulant matrix, i.e., Rot(a) = (ϕ(a), ϕ(aX), . . . , ϕ(aXn−1)) ∈ Zn×n. The definition of ϕ and
Rot can be naturally extended to vectors and matrices over R (over Rq) in a coordinate-wise way.

Lemma 21 ([29]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, Rq = Zq[X]/(Xn + 1), and constant
c > 0. Let integers m̄ ≥ 2 log2 q + c, k = poly(n) and real s ≥ ω(

√
log nm̄). With overwhelming probability

over the choice of a
$← (Rq)

m̄, if R
$← (DR,s)

k×m̄, then Ra is within negligible statistical distance 2−cn/2

from uniform distribution over Rk
q .

Lemma 22 ([29]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and Rq = Zq[X]/(Xn + 1). Let

m, k > 0 be integers, and let s > 0 be a real. Then, if R
$← (DR,s)

k×m, with overwhelming probability we

have s1(Rot(R)) ≤ s
√
n ·O(

√
k +
√
m+ ω(

√
log n)).

We also need the following lemma from [35].

Lemma 23 ([35]). Let n,m, q > 0 be integers. Let b ∈ Zm
q be arbitrary and x

$← DZm,r with r ≥
max{ω(

√
log n), ω(

√
logm)}. Then, for any matrix R ∈ Zm×n and real σ > s1(R), there exists a PPT

algorithm ReRand(R,b+x, r, σ) that outputs b′ = RTb+x′ ∈ Zn
q where x′ is distributed statistically close

to DZn,2rσ.

By combining the results in Lemma 23 and Lemma 22 we have the following corollary, which has been
implicitly used in [35] and will be used to replace Lemma 3 in the security proof.
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Corollary 1. Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and Rq = Zq[X]/(Xn +1). Let integers ℓ ≤ m̄

be integers. Let b ∈ Rm̄
q be arbitrary and x

$← (DR,r)
m̄ with r ≥ ω(

√
log nm̄). Then, for randomly chosen

matrix R
$← (DR,ω(

√
lognm̄))

ℓ×m̄, there exists a PPT algorithm ReRand′(R,b + x, r,
√
nm̄ · ω(

√
lognm̄))

that outputs b′ = Rb+ x′ ∈ Rℓ
q, where x′ is distributed statistically close to (DR,r

√
nm̄·ω(

√
lognm̄))

ℓ.

Proof. The algorithm ReRand′(R,b + x, r, σ) first runs the algorithm v ← ReRand(Rot(R)T , ϕ(b +
x), r, σ) ∈ Znℓ in Lemma 23, and then outputs ϕ−1(v) ∈ Rℓ. It suffices to show that the above ReRand′

satisfy the requirement. Since R
$← (DR,ω(

√
lognm̄))

ℓ×m̄, we have that s1(Rot(R)T ) ≤
√
nm̄ · ω(

√
log nm̄)

by Lemma 22. By Lemma 23, we have v = Rot(R)ϕ(b) + u for some u is distributed statistically close to
DZnℓ,r

√
nm̄·ω(

√
lognm̄). Since ϕ(Rb) = Rot(R)ϕ(b), we have that ϕ−1(v) = Rb+ ϕ−1(u). Let b′ = ϕ−1(v) ∈

Rℓ
q and x′ = ϕ−1(u) ∈ Rℓ, we have that x′ is distributed statistically close to (DR,r

√
nm̄·ω(

√
lognm̄))

ℓ, which
completes the proof. □

Ring-LWE. Let n be a power of 2, and let q be a positive integer. Define Rq = Zq[X]/(Xn + 1). We tailor

the ring-LWE to our particular setting, and refer to [44,50] for more information. Let s
$← Rq and real α > 0.

Define As,α as the distribution of (a, as+ e) ∈ Rq ×Rq, where a
$← Rq and e

$← DR,αq are randomly chosen.
The (decisional) RLWEℓ,q,β problem was first considered in [63,44], which informally asks a PPT algorithm
to distinguish the distribution As,α from uniform over Rq × Rq with ℓ = poly(n) samples. We have the
following improved hardness result in [50].

Lemma 24 (A special case of [50]). Let n be a power of 2. Let real β ∈ (0, 1), and integers ℓ =
poly(n), q ≥ 2 such that βq > ω(1). Define Rq = Zq[X]/(Xn + 1). Then, there exists a polynomial time
quantum reduction from γ-SIVP in the worst case on ideal lattices to average-case RLWEℓ,q,α, where α =
βn3/4 · (ℓ/ log(nℓ))1/4 and γ ≤ max{ω(

√
n log n/β),

√
2n}.

It has been proven that the ring-LWE assumption still holds even if the secret s is chosen according to
the error distribution DR,αq rather than uniformly [8,44]. This variant is known as the Hermite normal form
of ring-LWE, and is preferable for controlling the size of the error term [18,16].

q-ary Lattices over Rings and Trapdoors. Let n be a power of 2, and let q be an integer. Define R =
Z[X]/(Xn+1) and Rq = Zq[X]/(Xn+1). Let a ∈ Rm̄

q , define two lattices Λ⊥q (a) =
{
e ∈ Rm̄ s.t. aTe = 0

}
and Λq(a) = {y ∈ Rm̄ s.t. ∃s ∈ Rq, as = y}. The following lemma is implicit in the proof of [29, Lemma.
7].

Lemma 25 ([29]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and Rq = Zq[X]/(Xn + 1). Let integer

m̄ ≥ 2 log2 q + c for some constant c > 0. Then, for all but an at most 2−cn/2 fraction of a
$← (Rq)

m̄, the
shortest vector (in the ℓ∞ norm) of Λq(a) has ℓ∞ norm at least q/12.

As shown in [45,29], the trapdoor notion in [45] can be easily extended to the ring setting. Formally, let
k be an integer and let q = 3k. Let g = (1, 3, . . . , 3k−1)T ∈ Rk

q be the public primitive vector.

Lemma 26 (implicit in [45]). Let n ≥ 4 be a power of 2, and let k be an integer. Let q = 3k and let

Rq = Zq[X]/(Xn + 1). Let Ik is the k × k identity matrix over Rq. For any a ∈ Rm
q , R ∈ R

k×(m−k)
q and

invertible t ∈ Rq satisfying (R∥Ik)a = gt, there exists an efficient algorithm Solve′(a,R,y) that given any

y = as+

(
e1
e2

)
∈ Rm

q satisfying ∥Re1 + e2∥∞ < q/6, outputs s ∈ Rq, where e1 ∈ Rm−k and e2 ∈ Rk.
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Proof. First, we note that given any y′ = gs′ + e′ ∈ Rk
q , we have ϕ(y′) = Rot(g′)ϕ(s′) + ϕ(e′). By the

construction of g, we have that Λ⊥q (g) has a short basis B such that the norm of its Gram-Schmidt orthog-

onalization B̃ = 3Ink. By using the algorithms in [9,40,45,49], the basis B can be used to invert the function
ϕ(y′) = Rot(g)ϕ(s′) + ϕ(e′) as long as ∥e′∥∞ < q/(2∥B̃∥) = q/6. Thus, there exists an algorithm Invert(y′)
which takes as input y′ = gs′ + e′ ∈ Rk

q satisfying ∥e′∥∞ < q/6, outputs s′ ∈ Rq.

Now, given y = as +

(
e1
e2

)
∈ Rm

q , the Solve′(a,R,y) algorithm first computes y′ = (R∥Ik)y = gts +

Re1 + e2. Then, it runs the above invert algorithm to recover s′ = Invert(y′). Finally, it returns s = s′t−1.
Note that if the ∥Re1 + e2∥∞ < q/6, we must have s′ = ts ∈ Rq by the correctness of Invert. Since t is
invertible by assumption, we have that s = s′t−1 is exactly the desired solution, which completes the proof.

□
We also need the following lemma for constructing standard model PKE from ring-LWE, which may be

of independent interest.

Lemma 27. Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and Rq = Zq[X]/(Xn + 1). Let integer

m̄ ≥ 2 log2 q + c for some constant c > 0. Then, for all but an at most 2−cn/2 fraction of a
$← (Rq)

m̄, for
any u ∈ Rm̄

q there exists at most one pair (s, e) ∈ Rq ×Rm̄ such that ∥e∥∞ < q/24 and u = as+ e.

Proof. The proof is similar to that of Lemma 6. For any u ∈ Rm̄
q , we assume that there exist two tuples

(s, e) ̸= (s′, e′) ∈ Rq ×Rm̄, such that ∥e∥∞, ∥e′∥∞ < q/24 and u = as+ e = as′ + e′. Letting s̃ = s− s′ and
ẽ = e′ − e, we have that as̃ = ẽ for some s̃ ̸= 0 and ∥ẽ∥∞ < q/12. By Lemma 25, for all but an at most
2−cn fraction of a ∈ Rm̄

q , the vector as̃ has ℓ∞ norm ∥as̃∥∞ ≥ q/12 for any non-zero s̃ ∈ Rq. This shows
that there exists at most one pair (s, e) ∈ Rq ×Rm̄ such that ∥e∥∞ < q/24 and u = as+ e. □

A.2 The Construction

Let n ≥ 4 be a power of 2, and let q = 3k be a power of 3. Let Rq = Zq[X]/(Xn+1). Let integer m̄ ≥ 2 log2 q+c
for some constant c > 0, and m = m̄ + k. Let (encoded, decoded) be the pair of encode/decode algorithm
parameterized by (n, q, d). Let F2κ be a finite field of order 2κ. Let H : {0, 1}∗ → F2κ\{0} be a collision-
resistant hash function, where κ ≤ n/2. Let ϕ : R → Zn be the bijective coefficient embedding, which can
naturally map an element x ∈ {0, 1}κ as a degree κ− 1 polynomial ϕ−1(x) ∈ R. Our CCA-secure PKE from
ring-LWE is given as follows.

– KeyGen(1κ): randomly choose a
$← Rm̄

q and R
$← (DR,ω(

√
lognm̄))

k×m̄. Then, compute b = −Ra, and
return (pk, sk) = ((a,b),R).

– Enc(pk, µ ∈ F2κ): first randomly choose x, y, z
$← F2κ , s

$← DR,αq, e1
$← (DR,αq)

m̄, and e2
$← (DR,γ)

k

where γ = αq
√
nm̄ · ω(

√
log nm̄). Then, interpret the bit-concatenation of (x, y, z) ∈ (F2κ)

3 as a vector
v = x∥y∥z ∈ Zn

d , and compute

s̃ = s+ ϕ−1(encoded(v)), c1 = as̃+ e1,
c2 = (b+ gt)s̃+ e2, c3 = x+ µ,
c4 = τy + z,

where t = ϕ−1(H(c1)) and τ = H(c2, c3). Return the ciphertext C = (c1, c2, c3, c4) ∈ Rm1
q ×Rk

q×F2κ×F2κ .
– Dec(sk, (c1, c2, c3, c4)): first compute t = ϕ−1(H(c1)),

at =

(
a
b+ gt

)
, u =

(
c1
c2

)
.

Then, compute s̃← Solve′(at,R,u), v = decoded(s̃), and parse v = x∥y∥z, where (x, y, z) ∈ (F2κ)
3. Let

e1 = c1−as̃ and e2 = c2− (b+gt)s̃. If ∥e1∥ > αq
√
nm̄, or ∥e2∥∞ > γ ·ω(

√
log n), or c4 ̸= H(c2, c3)y+z,

return ⊥, else return µ = c3 − x ∈ F2κ .
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Correctness. Since c1 = as̃ + e1 and c2 = (b + gt)s̃ + e2, the algorithm Solve′(at,R,u) can correctly
recover s ∈ Rq if ∥Re1 + e2∥∞ < q/6 by Lemma 26. Because s̃ = s+ encoded(v), one can correctly recover

v ∈ Zn
d if ∥s∥∞ < q−(d−1)d

2d by Lemma 7. Since s
$← DR,αq, e1

$← (DR,αq)
m̄ and e2

$← (DR,γ)
k, we have that

∥s∥∞ ≤ αq · ω(
√
log n), ∥e1∥ ≤ αq ·

√
nm̄ and ∥e2∥∞ ≤ γ · ω(

√
log n) hold with overwhelming probability by

Lemma 1. Using the fact that R
$← (DR,ω(

√
lognm̄))

k×m̄, we have that ∥Re1+e2∥∞ ≤ αq
√
nm̄ ·ω(

√
log nm̄)2

holds with overwhelming probability. Besides, for the worst-case hardness of the ring-LWE problem, we need
αq ≥ n3/4 · (m̄/ log(nm̄))1/4 · ω(1). We will also use Lemma 21 and Lemma 27 in the security proof, which
require m̄ ≥ 2 log2 q + c for some constant c > 0 and ∥e1∥∞ < q/24.

In all, for both the correctness and the security, it suffices to set the parameters α, m̄, q such that :

m̄ = 2 log2 q + c, 1/α =
√
nm̄ · ω(

√
lognm̄)2,

αq = n3/4 · (m̄/ log(nm̄))1/4 · ω(1), (3)

which means that m̄ = O(log n), 1/α = Õ(
√
n) and q = Õ(n1.25). As before, one may prefer to consider

the concrete hardness against known attacks when choosing the parameters, and put aside the constraint
αq ≥ n3/4 · (m̄/ log(nm̄))1/4 · ω(1) used for the worst-case reduction [44,50]. For example, one can set
n = 512, m̄ = 36, q = 311, αq = 4.0 for a decryption error rate less than 2−81, and a security level about
149-bit given by the online LWE estimator [4].1 In this setting, the public key and secret key sizes are
about nm log q ≈ 52.88 KB (or 12.38 KB when all users share the first element a of the public key) and
m̄nk(log2(αq · ω(

√
log n)) + 1) ≈ 148.5 KB (or 32 KB when using a PRG to sample the secret key). For

128-bit security, we set κ = 256, the ciphertext for a 256-bit message is about nm log q + 512 bits ≈ 52.94
KB. This parameter also allows us to compress c2 with a modulus as small as 16 (i.e., using Switchq,16(c2)
before applying the hash function τ = H(c2, c3) as discussed in Section 4), and reduce the ciphertext size to
44 KB.

Security. As for security, we have the following theorem.

Theorem 2. Let integers n, m̄, q > 0 and real α > 0 satisfy Equation (3). If RLWEm̄,q,α is hard and H is a
collision-resistant hash function, then the above PKE scheme is CCA2-secure in the standard model.

Proof. Given the ring-version Lemma 20∼ 27, the theorem can be easily proven by adapting the proof of
Theorem 1 to the ring setting. We omit the details. □

1 Note that the best known lattice algorithms do not make use of the ring structure [6].
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