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Abstract. The Keccak hash function is the winner of the SHA-3 compe-
tition (2008 – 2012) and became the SHA-3 standard of NIST in 2015. In
this paper, we focus on practical collision attacks against round-reduced
SHA-3 and some Keccak variants. Following the framework developed
by Dinur et al. at FSE 2012 where 4-round collisions were found by
combining 3-round differential trails and 1-round connectors, we extend
the connectors to up to three rounds and hence achieve collision attacks
for up to 6 rounds. The extension is possible thanks to the large de-
gree of freedom of the wide internal state. By linearizing S-boxes of the
first round, the problem of finding solutions of 2-round connectors is con-
verted to that of solving a system of linear equations. When linearization
is applied to the first two rounds, 3-round connectors become possible.
However, due to the quick reduction in the degree of freedom caused by
linearization, the connector succeeds only when the 3-round differential
trails satisfy some additional conditions. We develop dedicated strate-
gies for searching differential trails and find that such special differential
trails indeed exist. To summarize, we obtain the first real collisions on
six instances, including three round-reduced instances of SHA-3, namely
5-round SHAKE128, SHA3-224, and SHA3-256, and three instances of Kec-
cak contest, namely Keccak[1440, 160, 5, 160], Keccak[640, 160, 5, 160]

⋆ This paper is prepared based mainly on [24] and [26]. The work was done when all
the authors were working with Nanyang Technological University in Singapore.



and Keccak[1440, 160, 6, 160], improving the number of practically at-
tacked rounds by two. It is remarked that the work here is still far from
threatening the security of the full 24-round SHA-3 family.

Keywords: Cryptanalysis, hash function, SHA-3, Keccak, collision, lin-
earization, differential, GPU.

1 Introduction

The Keccak hash function [3] was a submission to the SHA-3 competition [22]
in 2008. After four years of intensive evaluation, it was selected as the winner of
the competition in 2012. It was then formally standardized in 2015 by the Na-
tional Institute of Standards and Technology (NIST) of the U.S. as Secure Hash
Algorithm-3 (SHA-3) [27]. The SHA-3 family has four instances with fixed digest
lengths, namely, SHA3-224, SHA3-256, SHA3-384 and SHA3-512, which correspond
to Keccak[c] , Keccak[r = 1600 − c, c] where c ∈ {448, 512, 768, 1024}. The
SHA-3 family also has two eXtendable-Output Functions (XOFs) SHAKE128 and
SHAKE256. To promote cryptanalysis of the Keccak hash function, the Keccak
designers proposed variants with lower security levels in the Keccak Crunchy
Crypto Collision and Pre-image Contest (the Keccak contest for short) [2], for
which the digest lengths are 80 and 160 bits for pre-image and collision resis-
tance, respectively. For clarity, these variants are denoted by Keccak[r, c, nr, d]
with parameters {r, c, nr, d} to be specified later.

Since the Keccak hash function was made public in 2008, there have been
intensive cryptanalysis from the public research community [1, 9, 10, 11, 12,
13, 14, 16, 17, 21]. In this paper, we mainly investigate collision attacks on the
Keccak hash function, in particular, those with practical attack complexities.
In collision attacks, the aim is to find two distinct messages which lead to the
same hash digest. Up to date, the best practical collision attacks against Kec-
cak[448]/Keccak[512] is of 4 (out of 24) rounds found by Dinur et al. [10] in
2012 and later furnished in the journal version [12]. These 4-round collisions
were generated by combining a 1-round connector and a 3-round differential
trail. The same authors presented practical collision attacks on 3-round Kec-
cak[768]/Keccak[1024], and theoretical collision attacks (with complexities be-
yond the reach of practical resources) on 5/4-round Keccak[512]/Keccak[768]
in [11] using internal differentials. For the Keccak contest, the best solutions
reached up to 4 rounds in [12, 18]. To the best of our knowledge, there exist
neither practical collision attacks against 5-round Keccak[448]/Keccak[512]/
Keccak[768]/Keccak[1024], nor for any 5-round instances of the Keccak con-
test.

Our contributions. Following the framework of Dinur et al. [10], we develop a
new algebraic and differential hybrid method to launch collision attacks on Kec-
cak family and present seven real collisions on six Keccak variants, including
5-round SHAKE128, 5-round SHA3-224, 5-round SHA3-256, and 5-round as well as
6-round instances of the Keccak collision contest.
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These results are obtained by combining a differential trail and a connector
which links the initial state of Keccak to the input difference of the trail. Pre-
viously, connectors of Keccak covered one round [10], while in this paper we
propose new connectors of up to three rounds. The improvements on connectors
are possible mainly due to S-box linearizations of Keccak, i.e., the linearization
of the nonlinear layer of Keccak. Specifically, we linearize the first round for
constructing 2-round connectors for Keccak. When the degree of freedom of
a 2-round connector is sufficiently large, it can be extended to three rounds by
further linearizing (part of) the second round.

In this paper, two types of S-box linearizations are proposed, i.e., full lin-
earization and non-full linearization, which are achieved based on several crucial
observations. First, we observe that the Keccak S-box can be re-expressed with
linear transformations when the input is restricted to certain affine subspaces.
Daemen et al. [4, 8] and Dinur et al. [10] have already noted that when the input
and output differences of the Keccak S-box are fixed, the solution set forms
an affine subspace of dimension up to 3. In this work, we show that the max-
imum subspaces allowing linearization of the S-box is of dimension 2 and any
2-dimensional affine subspace allows S-box linearization. For affine subspaces of
dimension 3, six 2-dimensional affine subspaces out of it could allow the lineariza-
tion. However, we do not have to fully linearize all S-boxes of the first round
if only partial output bits of them need to be linear for constructing 2-round
connectors. We further observe that non-full S-box linearizations help to save
some degrees of freedom. More specifically, when linearizing part (not all) of the
output bits of a non-active S-box (defined by whether there is any difference in
the input and output), at most 2 degrees of freedom are consumed by specifying
2 binary linear equations over the input bits. For an active S-box whose entry in
the differential distribution table (DDT) is 8, 4 out of 5 output bits are already
linear when the input is chosen from the solution set. Note that to restrict the
input to the solution set for such an S-box, 2 binary linear equations should be
specified over the input bits. Therefore, for both non-active and active S-boxes,
two or fewer degrees of freedom may be enough to linearize part of the output
bits, while fully linearizing an S-box consumes at least 3 degrees of freedom.

With these properties in mind, we linearize S-boxes of the first round such
that their output bits which affect the input difference of the trail that our
connector tries to link to become linear. Therefore the first round function of
the Keccak permutation is transformed into a (partial) linear one. Combining
with an inversion method of the S-box layer of the second round, we convert
the problem of finding 2-round connectors into that of solving a system of linear
equations. Solving the system produces sufficiently many solutions so that at
least one pair of them will follow the differential trails over the last rounds.
To extend the connector to 3 rounds, we first construct a 2-round connector
where the first round is fully linearized by enforcing full S-box linearizations.
Then upon the 2-round connector, 3-round connectors are obtained through
constructing 2-round connectors over the second and third round, where non-
full S-box linearizations are applied to the second round.
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A side effect of S-box linearization is a quick reduction in the degree of free-
dom which in turn determines the existence of 2-round or 3-round connectors.
To address this problem, we aim to find differential trails that impose the least
possible conditions on the connectors. We design dedicated strategies to find suit-
able differential trails of 3 and 4 rounds. Our GPU implementations confirmed
the correctness of this idea, and successfully found desirable differential trails for
our collisions attacks.

Results obtained in this paper are listed in Table 1, compared with the best
previous practical collision attacks and related theoretical attacks. In brief, we
obtain actual collisions on three 5-round instances of SHA-3, i.e., SHAKE128, and
SHA3-224, SHA3-256, and three instances of Keccak contest. The number of
practically attacked rounds of Keccak instances now is increased to 6. For the
instance of contest Keccak[1440, 160, 6, 160], an inner collision [3] on the last
160-bit of the output state is mounted to construct collisions from messages of
any block length.

Table 1: Summary of our attacks and comparison with related works

Target[r, c, d] nr Complexity Reference
Keccak[1024] 3 Practical

[11]Keccak[768] 3 Practical
Keccak[768] 4 2147

Keccak[512] 5 2115

Keccak[512] 4 Practical
[10, 12]Keccak[448] 4 Practical

Keccak[1440, 160, 160] 4 Practical

SHAKE128 5 Practical†

Sect. 6

SHA3-224 5 Practical
SHA3-256 5 Practical
Keccak[1440, 160, 160] 5 Practical
Keccak[ 640, 160, 160] 5 Practical
Keccak[1440, 160, 160] 6 Practical
Keccak[1440,160,160⊣]‡ 6 Practical
† For exact complexities, refer to Table 6.
‡ 160⊣ corresponds to the last 160-bit collision rather than
the general digest collision.

Organization. The rest of the paper is organized as follows. In Section 2, a
brief introduction to the SHA-3 hash function is given. Section 3 first presents the
notations used in this paper and subsequently provides a synopsis of the collision
attacks against SHA-3 and Keccak instances. The properties of S-box lineariza-
tion and non-full linearization are illustrated in Section 4, followed by detailed
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explanations over how the 2-round and 3-round connectors are constructed. Sec-
tion 5 outlines the search for differential trails as well as the highly efficient GPU
implementations of Keccak. In Section 6, the experimental results of collision
attacks are given. We conclude the paper in Section 7. Details of the differential
trails and actual collisions are postponed to the Appendix.

2 Description of SHA-3

2.1 The Sponge Function

The sponge construction is a framework for constructing hash functions from per-
mutations, as depicted in Fig. 1. The construction consists of three components:
an underlying b-bit permutation f , a parameter r called rate and a padding rule.
The value c = b−r is called capacity. A hash function following this construction
takes in a message M as input and outputs a digest of d bits. Given a message
M , it is first padded and split into r-bit blocks. The b-bit state is initialized to be
all zeros. The sponge construction then proceeds in two phases. In the absorbing
phase, each message block is XORed into the first r bits of the state, followed
by application of the permutation f . This process is repeated until all message
blocks are processed. Then, the sponge construction switches to the squeezing
phase. In this phase, each iteration returns the first r bits of the state as (part
of) the output and then applies the permutation f to the current state. This
repeats until all d bits digest are obtained.

digest

d

Figure 1: Sponge Construction [3]

2.2 The Keccak Hash Function

The Keccak hash function follows the sponge construction. The underlying
permutation of Keccak is chosen from a set of seven Keccak-f permutations,
denoted by Keccak-f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width
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of the permutation in bits. The default Keccak employs Keccak-f [1600]. The
1600-bit state can be viewed as a 3-dimensional 5× 5× 64 array of bits, denoted
as A[5][5][64]. Let 0 ≤ i, j < 5, and 0 ≤ k < 64, A[i][j][k] represents one bit of
the state at position (i, j, k). Defined by the designers of Keccak, A[∗][j][k] is
called a row, A[i][∗][k] a column, and A[i][j][∗] a lane. Note the lane size is b

25
which varies according to b.

The Keccak-f permutation has 12 + 2l rounds (l = log2
b

25 ), each of which
consists of five mappings R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

θ: A[i][j][k]← A[i][j][k] +
∑4

j′=0 A[i− 1][j′][k] +
∑4

j′=0 A[i + 1][j′][k − 1].

ρ: A[i][j]← A[i][j] ≪ T (i, j), where T (i, j)s are constants.

π: A[j][2i + 3j]← A[i][j].

χ: A[i][j][k]← A[i][j][k] + (A[i + 1][j][k] + 1) ·A[i + 2][j][k].

ι: A[0][0]← A[0][0] + RCir
, where RCir

is the ir-th round constant.

Here, the additions and multiplications between the terms are in GF(2). As ι
plays no essential role in our attacks, we will ignore it in the rest of the paper
unless otherwise stated.

2.3 Instances of Keccak and SHA-3

There are four instances of Keccak, denoted by Keccak[c] , Keccak[r =
1600 − c, c], where the capacity c ∈ {448, 512, 768, 1024} and the digest length
d is half of c. To promote cryptanalysis against Keccak, the Keccak design
team also proposed variants with lower security levels in the Keccak contest,
where b ∈ {1600, 800, 400, 200}, (d = 80, c = 160) for pre-image contest and
(d = 160, c = 160) for collision contest. In this paper, we follow the designers’
notation Keccak[r, c, nr, d] for the instances in the contest, where r is the rate,
c = b− r is the capacity, d is the digest size, and nr is the number of rounds the
underlying permutation Keccak-f is reduced to.

The Keccak hash function uses the multi-rate padding rule which appends
to the original message M a single bit 1 followed by the minimum number of bits
0 and a single bit 1 such that the length of the resulted message is a multiple of
the block length r. Namely, the padded message M is M∥10∗1.

The SHA-3 standard adopts the four Keccak instances and names them
SHA3-224, SHA3-256, SHA3-384 and SHA3-512, respectively. In these four instances
of SHA-3, the message is appended ‘01’ first. After that, the multi-rate padding
is applied. The SHA-3 standard also contains two extendable-output functions
named SHAKE128 and SHAKE256, which are defined from two instances of Kec-
cak with the capacity c being 256 and 512 respectively and the digest of any
length. For SHAKE, a four-bit suffix ‘1111’ is added to the original message M
before applying the multi-rate padding.
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3 Notations and Overview

3.1 Notations

We summarize the major notations to be used in this paper here.

c Capacity of a sponge function
r Rate of a sponge function
b Width of a Keccak permutation in bits, b = r + c
d Length of the digest in bits
d⊣ Length of collision on the last bits
p Number of fixed bits in the initial state due to padding
nr Number of rounds
θ, ρ, π, χ, ι The five mappings that comprise a round. A subscript i denotes the

mapping at the i-th round, e.g., χi denotes the χ layer at the i-th
round for i = 0, 1, 2, · · · .

L Composition of θ, ρ, π and its inverse denoted by L−1

RCi Round constant for the i-th round, i = 0, 1, 2, · · ·
Ri(·) Keccak permutation reduced to the first i rounds
S(·) 5-bit S-box operating on each row of Keccak state
δin, δout 5-bit input and output differences of an S-box,
DDT Differential distribution table, and DDT(δin, δout) = |{x : S(x)+S(x+

δin) = δout}| , where | · | denotes the size of a set.
αi Input difference of the i-th round function, i = 0, 1, 2, · · ·
βi Input difference of χ in the i-th round, i = 0, 1, 2, · · ·
wi Weight of the i-th round, wi, i = 0, 1, 2, · · ·
DF Degree of freedom of the solution space of connectors
M Padded message of M . Note that M is of one block in our attacks.
M1||M2 Concatenation of strings M1 and M2

3.2 Overview of the Attack

In this subsection, we give an overview of our collision attacks. Following the
framework by Dinur et al. [10], as well as many other collision attacks utilizing
differential trails, our collision attacks consist of two parts, i.e., a high probability
differential trail and a connector linking the differential trail with the initial state,
as depicted in Fig. 2. Let ∆SI and ∆SO denote the input and output differences
of the differential trail, respectively. A connector covering nr1 rounds produces
message pairs (M, M ′) such that

Rnr1 (M ||0c) + Rnr1 (M ′||0c) = ∆SI

always holds, i.e., the difference after nr1 rounds is always ∆SI . The differen-
tial trail is then fulfilled probabilistically with many such message pairs, and
collisions can be found if the first d bits of ∆SO are zero.

Given an nr2 -round differential of probability 2−w, our (nr1 + nr2)-round
collision attack proceeds in two stages:
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∆M

r

c

∆SO∆SI

d

nr2-round differentialnr1-round connector

Stage 1
Stage 2

Figure 2: Overview of (nr1 + nr2 )-round collision attacks

• Stage 1 — Connecting stage: Construct an nr1-round connector and get a
subspace of messages bypassing the first nr1 rounds.

• Stage 2 — Brute-force searching stage: By brute force, find a colliding pair
following the nr2 -round differential trail from the subspace found in stage 1.
The time complexity of this stage is 2w.

The brute-force searching stage is simple, though it may be time-consuming.
Therefore, the core steps of the attack are finding good differentials and con-
structing connectors. In [10], Dinur et al. explored a method, which they call
target difference algorithm, to construct 1-round connectors, namely, to find mes-
sage pairs (M, M ′) such that the output difference after one round permutation
is ∆SI . In the next section, we show an algebraic method to extend this connec-
tor to two and three rounds, followed by details of the differential trail search in
Section 5.

Without further specification, we assume in this paper the messages used are
of one block after padding. To fulfil the Keccak padding rule, one needs to fix
the last bit of the padded message to be “1”, hence the first r − 1 bits of the
state are under the full control of the attacker through the message bits, and
the last c bits of the state are fixed to zero as in the initial state specified by
Keccak. When applied to SHA3-d, d ∈ {224, 256, 384, 512} (resp. SHAKE), there
are r − 4 (resp. r − 6) free bits under control, by setting the last 4 (resp. 6)
bits of the padded message to be ‘1110’ (resp. ‘111111’) so to be compatible
with the specific padding rule. For convenience, the number of extra fixed bits is
denoted by p, and only r − p bits are under control. Overall, the constraints of
nr1-connectors are that the last c + p bits of the initial state are fixed, and that
the output difference after nr1 rounds is given and fixed (this is determined by
the differential trail to be used). We are to utilize the degree of freedom from the
first r−p bits of the initial state to find solutions efficiently. As we are aiming at
low complexity attacks, finding solutions of connectors should be practical. For
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the same reason, the probability of the differential trail should be sufficiently
high.

4 S-box Linearization and Connectors

We observe that the number of degrees of freedom for Keccak instances is r−p
which is large for instances like Keccak[1440, 160, 5, 160]. One can then choose
some message subsets with special properties such that the starting difference of a
given trail is fulfilled deterministically. Since we intend to extend the connector to
more than one round, it is natural to consider linearizing the nonlinear mapping
χ of the first round by exploiting degrees of freedom, i.e., the expression of each
S-box in the first round can be re-written as a linear transformation when the
input is restricted to certain subsets. Once χ is linearized, the entire first round
becomes linear and then 2-round connectors are possible by applying the core
ideas of Dinur et al.’s target difference algorithm [10] to the second round.

In this section, we elaborate on techniques for linearizing the Keccak S-box,
both fully and partially, based on which 2-round and 3-round connectors are
achieved.

4.1 S-box Linearization

It is obvious that the Keccak S-box is non-linear when the entire 25-sized input
space is considered. However, affine subspaces of size up to 4, as to be shown
below, could be found so that the S-box can be linearized. Note that the S-box
is the only nonlinear mapping of the Keccak round function. Hence, the entire
round function becomes linear when all S-boxes are restricted to such subspaces.
Formally, we define:
Definition 1 (Linearizable affine subspace). Linearizable affine subspaces
are affine input subspaces on which S-box substitution is equivalent to a linear
transformation. If V is a linearizable affine subspace of an S-box operation S(·),
then ∀x ∈ V, S(x) = A ·x + b, where A is a 5× 5 matrix and b is a 5-bit constant
vector.
For example, when input is restricted to the affine subspace {00000, 00001, 00100,
00101} ({00, 01, 04, 05} in hex), where the bits are written as x4x3x2x1x0, the
corresponding output set of the Keccak S-box is {00000, 01001, 00101, 01100}
({00, 09, 05, 0C} in hex), and the expression of the S-box can be re-written as a
linear transformation:

y =


1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1

 · x
where x and y are bit vector representations of input and output values of the
Keccak S-box with x0 at the top. By rotation symmetry, four more linearizable
affine subspaces can be deduced from the one above.
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Exhaustive search for the linearizable affine subspaces of the Keccak S-box
shows:

Observation 1 Out of the entire 5-dimensional input space,

a. there are totally 80 2-dimensional linearizable affine subspaces, as listed in
Table 7 in Appendix A.

b. there does not exist any linearizable affine subspace with dimension 3 or
more.

For completeness, any 1-dimensional subspace is always linearizable.
Since the affine subspaces are to be used together with differential trails, we

are especially interested in linearizable affine subspaces with fixed input and
output differences, which is more relevant with the differential distribution table
(DDT) of the S-box. We observe:

Observation 2 Given a 5-bit input difference δin and a 5-bit output difference
δout such that DDT(δin, δout) ̸= 0, i.e., the solution set V = {x : S(x)+S(x+δin) =
δout} is not empty, we have

a. if DDT(δin, δout) = 2 or 4, then V is a linearizable affine subspace.
b. if DDT(δin, δout) = 8, then there are six 2-dimensional subsets Vi ⊂ V, i =

0, 1, · · · , 5 such that Vi(i = 0, 1, · · · , 5) are linearizable affine subspaces.

It is interesting to note the 2-dimensional linearizable affine subspaces obtained
from the analysis of DDT cover all the 80 cases in Observation 1. It is already noted
in [15] there is one-to-one correspondence between linearizable affine subspaces
and entries with value 2 or 4 in DDT. As for the DDT entries of value 8, there
are 6 choices of 2-dimensional linearizable affine subspaces. As an example, the
3-dimensional affine subspace corresponding to DDT(01, 01), i.e., with both input
and output differences being 01, is {10, 11, 14, 15, 18, 19, 1C, 1D} and the six 2-
dimensional linearizable affine subspaces from it are

{10, 11, 14, 15}, {10, 11, 1C, 1D}, {14, 15, 18, 19},
{10, 11, 18, 19}, {18, 19, 1C, 1D}, {14, 15, 1C, 1D}.

When projected to the whole Keccak state, the direct product of affine
subspaces of each individual S-box form affine subspaces of the entire state with
larger dimensions. In other words, when all the S-boxes in the round function
are linearized, the entire round function becomes linear.

4.2 Non-full S-box Linearization

Suppose we are to construct a connector of two rounds. Given the input difference
∆SI of the differential trail, i.e., the output difference of the connector α2, it
may be the case that some output bits of the S-boxes in the first round of the
connector do not influence ∆SI . The S-boxes with such output bits do not need
full linearizations. That is, it is enough to restrict the input to certain subsets
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such that only the output bits of the first round affecting ∆SI are to be expressed
with a linear relation with input bits. Such linearization is called non-full S-box
linearization and may contribute to a lower consumption of degree of freedom,
as to be shown in Observation 3 and 4 below.

Before presenting the two observations, let us introduce some notations. Let
the input and output value of χ0 (the χ mapping of the first round) be x and y
respectively. Let u = (u0, u1, · · · , ub−1) be a flag vector where ui = 1 (0 ≤ i < b)
if yi influences ∆SI , otherwise ui = 0. Let U = (U0, U1, · · · , Ub/5−1) where
Ui = u5iu5i+1u5i+2u5i+3u5i+4, 0 ≤ i < b/5. For the i-th S-box of χ0, if Ui is not
00000, aka. some bits of the corresponding S-box will influence ∆SI , this S-box
should be fully or partially linearized. The value of u is determined by β1 and α2
(∆SI), which will be further illustrated in the next subsection. In this subsection,
we suppose u is already known and focus on non-full S-box linearizations.

Observation 3 For a non-active Keccak S-box, when Ui is not 11111,

a. if Ui = 00000, it does not require any linearization;
b. if Ui ∈ {00001, 00010, 00100, 01000, 10000, 00011, 00110, 01100, 11000, 100

01}, at least 1 degree of freedom is consumed to linearize the output
bit(s) of the S-box marked by Ui;

c. otherwise, at least 2 degrees of freedom are consumed to linearize
the output bits of the S-box marked by Ui.

This observation comes from the algebraic relation between the input and output
of χ. Suppose the 5-bit input of the S-box is x4x3x2x1x0 and the 5-bit output
y4y3y2y1y0. Then the algebraic normal forms of the S-box are as follows.

y0 = x0 + (x1 + 1) · x2,

y1 = x1 + (x2 + 1) · x3,

y2 = x2 + (x3 + 1) · x4,

y3 = x3 + (x4 + 1) · x0,

y4 = x4 + (x0 + 1) · x1.

Take Ui = 00001 as an example. It indicates that y0 should be linearized. As can
be seen, the only nonlinear term in the expression of y0 is x1 ·x2. Fixing the value
of either x1 or x2 makes y0 linear. Without loss of generality, the value of x1 is
assumed to be fixed to 0 or 1. When x1 = 0, we have y0 = x0 + x2; otherwise
y0 = x0. When Ui = 01111, it maps to 4 output bits y0, y1, y2, y3 which should
be linearized. We can fix the value of two bits x2 and x4 only. Once x2 and x4 are
fixed, the nonlinear terms in the algebraic form of all y0, y1, y2, y3 will disappear.
Other cases work similarly. If Ui = 11111, a full linearization is required by
fixing the value of any three input bits which are not cyclically continuous, e.g.,
(x0, x2, x4).

As noted in Observation 1 and 2, it costs at least three degrees of freedom
to fully linearize an S-box, even if it has DDT entry of 8. However, Observation 4
shows that two degrees of freedom may be enough to partially linearize an S-box
of DDT entry 8, and thus 1 bit degree of freedom could be saved.
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Observation 4 For a 5-bit input difference δin and a 5-bit output difference
δout such that DDT(δin, δout) = 8, 4 out of 5 output bits are already linear if the
input is chosen from the solution set V = {x : S(x) + S(x + δin) = δout}.

Take DDT(01, 01) = 8 as an example (see Table 6 of [24]). The solution set is
V = {10, 11, 14, 15, 18, 19, 1C, 1D}. We re-write these solutions in the following
5-bit strings where the bits are written as x4x3x2x1x0.

10 : 10000, 11 : 10001, 14 : 10100, 15 : 10101,

18 : 11000, 19 : 11001, 1C : 11100, 1D : 11101.

It is easy to see for the values from this set, x1 = 0 and x4 = 1 always hold,
making y0, y2, y3, y4 linear since their algebraic forms could be rewritten as

y0 = x0 + x2,

y1 = (x2 + 1) · x3,

y2 = x2 + x3 + 1,

y3 = x3,

y4 = 1.

If the only nonlinear bit y1 does not influence ∆SI , setting x1 = 0 and x4 = 1
(consuming two degrees of freedom) is enough for linearizing the remaining four
bits.

Therefore, for an S-box, both active and non-active, it may consume less than
three degrees of freedom for non-full linearizations, which allows to producing
relatively large message spaces for the brute-force collision searching stage.

4.3 2-Round Connector

The core idea of our 2-round connector is to convert the problem to that of
solving a system of linear equations. Note the first two rounds of Keccak per-
mutation can be expressed as χ1◦L◦χ0◦L (omitting the ι), as depicted in Fig. 3.
Using the techniques discussed above, χ0 which has fixed input and output dif-
ferences can be (partially) linearized, i.e., the first three operations L ◦ χ0 ◦ L
become (partially) linear. For convenience, the differential transition of the i-th
round is denoted by αi−1

L−→ βi−1
χ−→ αi, where i = 1, 2, · · · . We will give details

of the method how input and output differences of χ0, i.e., β0 and α1, are se-
lected later. Now, we show how the χ1 can be inverted by adding more linear
equations of constraints.

In the setting of a 2-round connector, the output difference of χ1, i.e., α2 is
given as ∆SI — the input difference of the differential trail. It is not necessary
that all S-boxes of χ1 are active, i.e., with a non-zero difference. Here only active
S-boxes are concerned, and each of them is inverted by randomly choosing an
input difference with a non-zero number of solutions which is called compatible
input difference. Formally, given the output difference δout for the Keccak S-
box, its compatible input differences are from the set {δin : DDT(δin, δout) ̸= 0}.
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Figure 3: The first two rounds of Keccak permutation

As noted previously in [4, 8, 10], for any pair of (δin, δout), the solution set
V = {x : S(x) + S(x + δin) = δout} forms an affine subspace. In other words,
V can be deduced from the set {0, 1}5 by setting up i constraints that turn
out to be binary linear equations, when the size of the solution set V is 25−i.
For example, corresponding to DDT(03, 02) is the 2-dimensional affine subspace
{14, 17, 1C, 1F} which can be formulated by the following three linear equations
as the constraints: 0 0 1 0 0

1 1 0 0 0
0 0 0 0 1

 · x =

1
0
1

 .

It is important to note, under the i linear equations or set V , δin propagates to
δout deterministically. Hence, each active S-box in χ1 is inverted by a choice of
compatible input difference together with the corresponding i linear equations on
the input values. Once the input difference and linear equations for all active S-
boxes of χ1 are enforced and fulfilled together with the linearization of the first
round, solutions of the 2-round connector are found. Note that a compatible
input difference of χ1 is a choice of β1, and α1 can be uniquely determined by
the relation α1 = L−1(β1). In the remaining part of this subsection, more details
on the implementation of this idea are given.

Generation of linear equations. As depicted in Fig. 3, the variables of the
equation system are the bit values before χ0 denoted by vector x. Additionally,
y and z are bit vectors of intermediate values for further interpretation where y
represents the output after χ0 and z the bits before χ1. The main task is to derive
all constraints on differences and affine subspaces into that on the variables x.
Suppose β1 and β0 (details will be given in Section 4.6) are fixed, and ∆SI (aka.
α2) is given, we show how the system of equations could be set up.

With the input difference β1 and output difference α2 of χ1, all the linear
equations on the input affine subspaces of the active S-boxes in the second round
can be derived and expressed as

B · z = tB , (1)

where B is a block-diagonal matrix in which each diagonal block together with
corresponding constants in tB formulates the equations of one active S-box.
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A similar procedure can be done for input affine subspaces of the first round
given β0 and α1, and the corresponding linear equations on x is denoted by

A1 · x = tA1 . (2)

Note an additional constraint x needs to fulfill is that the last (c+p)-bit of initial
state are pre-fixed, which can be expressed as

A2 · x = tA2 . (3)

where A2 is a submatrix of L−1 and tA2 is the preset value. Apart from Eq.
(2) and (3), some extra equations are imposed to linearize χ0. To derive these
equations, we need to specify the flag vector u identifying the output bits of χ0
which affect ∆SI and should be linearized. In fact, the value of u is determined
by Eq. (1) which can be re-expressed as

B · L · (y + RC0) = tB , (4)

since z = L · (y + RC0). Then ui = 1 if yi appears in Eq. (4) with a non-
zero coefficient, otherwise ui = 0. Recall that U = (U0, U1, · · · , Ub/5−1) where
Ui = u5iu5i+1u5i+2u5i+3u5i+4, 0 ≤ i < b/5. According to Observation 2, S-boxes
with DDT entry being 2 or 4 are already linearized due to the fact that the input is
confined to the solution set V = {x : S(x)+S(x+δin) = δout} by linear equations
in (2). So we only need to handle non-active S-boxes and active S-boxes with
DDT entry 8.

Full S-box linearization. Ui = 11111 indicates that fully linearizing the i-th
S-box is required.

• For non-active S-boxes, randomly choose any 2-dimensional linearizable affine
subspace from 80 such subspaces by imposing 3 linear equations on x.

• For active S-boxes with DDT entry 8, randomly choose any 2-dimensional
linearizable affine subspace from 6 such subspaces by imposing an extra
linear equation on x (2 linear equations are already included in Eq. (2)).

Non-full S-box linearization. Ui ̸= 11111 indicates that only part of the output
bits of the i-th S-box needs to be linearized.

• For non-active S-boxes, linearize the outputs marked by u by imposing a
least possible number of equations according to Observation 3. At most 2
linear equations are required.

• For each active S-box with DDT 8, if its only non-linear output bit is not
marked by U , then we need not handle it. Otherwise, impose an extra linear
equation on x in a similar way as what we do for full S-box linearizations.

We denote these extra linear equations for linearizing χ0 by

A3 · x = tA3 . (5)
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Suppose bits in y marked by u now can be computed from x linearly through

y = Lχ0 · x + tLχ0
, (6)

and further an equivalent system of Eq. (4) can be obtained as

B · L · Lχ0 · x + B · L · (tLχ0
+ RC0) = tB . (7)

We merge the four systems of linear equations on x together, i.e., Eq. (2),
(3), (5) and (7) and denote the resulted system of linear equations by EM :

A · x = tA. (8)

Then, solutions fulfilling EM will be solutions of the 2-round connector.

Algorithm of the 2-round connector. Since Eq. (3) remains static, and
given differences (β0, α1, β1, α2), Eq. (2) and (1) are determined, the core part is
the generation of Eq. (5), i.e., linearizing χ0, which is sketched in the procedure
basicLinearization (see Alg. 2). The procedure mainLinearization (see Alg. 1)
invokes basicLinearization and generates the final system of linear equations
EM whose solutions are exactly the solutions of the 2-round connector.

The inputs to mainLineariztion are β0, α1, β1, α2(∆SI) and EM , where EM

is initialized with Eq. (2) and (3). Similarly, basicLinearization takes as input the
same β0, α1 and EM , as well as a flag vector U generated in mainLinearization.
If basicLinearization succeeds, it will return to mainLinearization the (partial)
linear mapping of χ0, i.e., (Lχ0 , tLχ0

), and the updated EM . Further, the success
of mainLinearization will give rise to the final system of equations EM .

In basicLinearization, a procedure named preProcess is called on Line 1 which
is described more at length in Alg. 3. preProcess identifies all possible S-boxes
of χ0 whose output bits marked by U are already linear under the initial EM , so
the number of equations in Eq. (5) will be minimized. In fact, the conditions of
Line 11 and 16 would never hold if EM does not contain Eq. (3), and they hold
more likely for large Eq. (3), i.e., large c + p. Therefore, preProcess is crucial to
the success of solving Keccak instances with a relatively large capacity, such
as SHA3-256.

Note that Alg. 1 and 2 do not succeed all the time. To overcome this prob-
lem, we repeat random picks of compatible input differences β1 (β0 changes
accordingly) for a given ∆SI , until the main procedure succeeds.

4.4 3-Round Connector

We construct 3-round connectors upon a 2-round connector. Since almost all
output bits of the first round affect α3 (the difference after the third round), full
linearizations are enforced on the first nonlinear layer χ0 while constructing a
2-round connector for the first two rounds. Once a 2-round connector succeeds,
the resulted system of equations EM on x can be re-expressed as an equivalent
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Algorithm 1: mainLinearization.
Input: EM , β0, α1, β1, and α2
Output: updated EM

1 Derive Eq. (1) from (β1, α2);
2 Derive Eq. (4) and U ;
3 Initialize a counter cnt to a large integer;
4 while cnt > 0 do

// Linearize χ0 and obtain (Lχ0 , tχ0 ) and update EM .
5 if basicLinearization(EM , β0, α1, U) succeeds then
6 Derive Eq. (7) using (Lχ0 , tLχ0

) output by basicLinearization;
7 if Eq. (7) is consistent with EM then
8 Add Eq. (7) to EM ;
9 Output EM ;

10 return success;

11 cnt = cnt − 1;
12 return failure;

Algorithm 2: basicLinearization.
Input: EM , β0, α1, and U
Output: updated EM , Lχ0 , tχ0

1 lsb,Lχ0 , tLχ0
= preProcess(β0, α1, U); // Generate the primary Lχ0 , tLχ0

and a list of S-boxes that need further processing.
2 for each S-box sb in lsb do
3 Initialize an empty list llin of set of equations;
4 if sb is active then
5 Load to llin the 6 sets; // Each set has 1 equation.

6 else
7 Load to llin all sets of least possible equations that allow linearization

of output bits marked by U ;
8 while There is any untested set in llin do
9 Randomly choose an untested set of equations;

10 if The set of equations are consistent with EM then
11 Add it to EM and update Lχ0 , tLχ0

;
12 Break;
13 else
14 if All sets have been tested then
15 Output “No solution in basicLinearization”;
16 return failure;

17 Output EM , Lχ0 , tχ0 ; // EM is updated with Eq. (5).
18 return success;

16



Algorithm 3: preProcess.
Input: β0, α1, U
Output: A list lsb of S-boxes that need further processing, Lχ0 , tLχ0

1 Initialize an empty list lsb, a matrix Lχ0 and a vector tLχ0
;

2 for i = 0 → b/5 − 1 do
3 if Ui > 0 then
4 Extract δin, δout of the i-th S-box from β0, α1;
5 if DDT(δin, δout) = 2, 4 then
6 Update Lχ0 , tLχ0

;
7 if DDT(δin, δout)) = 8 then
8 if The only nonlinear output bit is not marked by Ui then
9 Update Lχ0 , tLχ0

;
10 else
11 if Among the 6 2-dimensional linearizable subspaces, some one

is already specified in EM then
12 Update Lχ0 , tLχ0

;
13 else
14 Add this S-box to lsb;

15 if the S-box is not active then
16 if Any set of equations for linearizing the output bits marked by Ui

is already contained in EM then
17 Update Lχ0 , tLχ0

;
18 else
19 Add this S-box to lsb;

20 return lsb,Lχ0 , tLχ0
;

system of equations E′
M on z, i.e., the input value of the second round. It can be

considered that the first round disappeared. Next, given E′
M , a 2-round connector

is to construct for the second and the third rounds where the second round is
partially linearized. Once the second 2-round connector succeeds, its solutions
will bypass the first three rounds. That is to say, a 3-round connector is obtained.

Due to a great consumption of degree of freedom, the solution space of a 3-
round connector may have a dimension smaller than the weight of the following
differential, making it hard to find a real collision with one solution space. How-
ever, this problem can be solved by constructing the second 2-round connectors
repeatedly. In these 3-round connectors, the degrees of freedom for linearizing
the second round can be reused and hence are not consumed. Thus, multiple
solution spaces can be generated successively if one is not enough. Such succes-
sively generated 3-round connectors are called adaptive 3-round connectors, for
which a detailed description can be found in Section 7.2 of [26].
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4.5 Analysis of Degrees of Freedom

Let the degree of freedom of the final EM for the connector be DF. In our collision
attacks, DF is a key factor on success. A solution space with DF larger than the
weight of the differential trail is possible to suggest a message pair with digest
collision. After linearizing the first round, the degree of freedom is

∑b/5−1
i=0 DF(1)

i

in which DF(1)
i is the degree of freedom of 5-bit input space of the i-th S-box in

the first round and calculated according to rules in Table 2. This concerns not
only the transition from β0 to α1, but also the S-box linearizations.

Table 2: Value of DF(1)
i

DDT(δin, δout)=32 DDT(δin, δout)=2 DDT(δin, δout)=4 DDT(δin, δout)=8

DF(1)
i

* 2 ∼ 5 1 2 2 or 3
* δin and δout are the input and output differences of the i-th S-box
in the first round. The exact value of DF(1)

i is based on whether the
output bits of the i-th S-box influence ∆SI , i.e., the value of Ui.

The constraints on the initial state reduce (c + p) degrees of freedom for
the pre-fixed (c + p)-bit. Another decrement on the degree of freedom is due to
the constraints on the input values of the S-box layer in the second round. The
definition of DF(2)

i , the degree of freedom of 5-bit input values to S-boxes in the
second round, is

DF(2)
i =


1, DDT(δin, δout) = 2,

2, DDT(δin, δout) = 4,

3, DDT(δin, δout) = 8,

5, DDT(δin, δout) = 32,

(9)

where δin and δout are the input and output differences of the i-th S-box in
the second round. For the i-th S-box in the second round, we add (5 − DF(2)

i )
equations to EM and suppose to deduce the degree of freedom by this amount.

Therefore, the degree of freedom of the final EM of our 2-round connector is
estimated as

DF =
b/5−1∑

i=0
DF(1)

i − (c + p)−
b/5−1∑

i=0
(5− DF(2)

i ). (10)

Large DF benefits our search for collisions in rounds beyond the second round
and sufficiently large DFs (say > 140) may allow 3-round connectors.

4.6 How to choose β2, β1 and β0

Choosing β1 in the 2-round connector. Recall that we randomly choose
compatible input differences β1 according to ∆SI (α2) until the 2-round con-
nector succeeds. As the number of active S-boxes in the second round is large
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enough (range from tens to hundreds in our attacks), there is a huge number of
compatible choices of β1 so that we can only choose those β1 such that β1 → α2
is of the best probability for the given α2. This allows a speedup of 2-round con-
nectors, as well as an increment of DF. Interestingly, the differential probability
of β1 → α2 does not need to be high because this transition is covered in our
2-round connector.

Choosing β0 in the 2-round connector. So far we have not given details on
how β0 can be selected. We follow Dinur et al.’s work [10] in a more general way
to uniquely determine β0, namely, the difference before χ layer of the first round.
Specifically, the so-called “target difference algorithm” is used which consists of
a difference phase and a value phase.

Given ∆SI , we have randomly chosen a compatible input difference β1. We
then build two equation systems E∆ and EM accordingly. E∆ is on differences
of the message pairs (specifically, on β0) and EM is on the value of one message
(specifically, on the value of the message before χ0, i.e., x as shown in Fig. 3).
The initialization of E∆ should abide by (1) the constraints implied by the
(c + p)-bit pre-fixed value that the corresponding difference should be 0, and (2)
the input difference bits of non-active S-boxes in the first round equal to 0. The
initialization of EM should abide by the pre-fixed value of the last c + p bits.
These rules are easy to be implemented as the variable vector x is the image of
the initial vector by an invertible linear mapping. Therefore, in the initialization
we equate the corresponding bits to their enforced values in E∆ and EM .

For E∆, we add additional equations so that its solution, i.e., β0 is compatible
with α1. Though the obvious way is to equate the 5 input difference bits to a
specific value for each active S-box in the first round, this will restrict the solution
space significantly. As suggested in [10], we chose one of the 2-dimensional affine
subsets of input differences instead of a specific value for each active S-box. This
is based on the fact that given any nonzero 5-bit output difference to a Keccak
S-box, the set of possible input differences contains at least five 2-dimensional
affine subspaces. After a consistent E∆ system is constructed, the solution space
is an affine subspace of candidates for β0. Then we continue to maintain E∆

by iteratively adding two additional equations to uniquely specify a 5-bit input
difference for the active S-boxes. For each active S-box, once the specific input
difference is determined, we add equations to EM system to enforce every active
5-bit of x (input bits to active S-box) to an affine subspace corresponding to the
uniquely determined δin and δout. In this way, we always find a compatible β0
for α1 that fulfills the constraints imposed by the (c + p)-bit pre-fixed value.

Choosing β2 in the 3-round connector. β2 is chosen before running the
3-round connector. Its value fulfills two requirements: (1) given α2 = L−1(β2),
a 2-round connector for the first two rounds can be obtained with a sufficiently
large degree of freedom; and (2) β2 → α3 is of high probability where α3 is the
input difference of the following differential trail. While constructing 3-round
connectors, specifically the second 2-round connector, β2 is fixed and does not
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change. In this way, the second 2-round connector can be constructed efficiently
thanks to the high probability of β2 → α3.

5 Search for Differential Trails with GPU

In this section, we elaborate on searching differential trails of Keccak. The
idea of searching differential trails greatly benefits from previous differential
analysis of Keccak [9, 14, 19, 21]. The associated techniques developed in
the previous works are reviewed first, followed by the considerations in find-
ing differential trails that fit in our attacks. Subsequently, the exact searching
algorithm that provides differential trails for practical collision attacks against
Keccak[640, 160, 5, 160], 5-round SHAKE128, 5-round SHA3-224, 5-round SHA3
256, Keccak[1440, 160, 5, 160], and Keccak[1440, 160, 6, 160] is illustrated. To
speed up the searching process, we introduce GPU implementations of Keccak.
The differential trails to be used in our collision attacks are listed at the end of
this section.

5.1 Differential Properties of Keccak

In this subsection, we recall special properties of the linear and nonlinear layer
of Keccak round function which have been identified in previous works. In the
following paragraphs, we follow the notations from [9].

Key properties used in differential analysis. The concept of column parity,
defined in [4], is the most critical property of θ operation. Formally, the column
parity (or parity for short) P (A) of a value (or a difference) A is defined as the
parity of the columns of A, i.e., P (A)[i][k] = ΣjA[i][j][k]. A column is even, if its
parity is 0, otherwise it is odd. A state is in Column Parity kernel (CP-kernel for
short) if all of its columns are even. θ adds a pattern, called the θ-effect, to the
state. The θ-effect of a state A is E(A)[i][k] = P (A)[i− 1][k] + P (A)[i + 1][k− 1].
Thus the effect of θ depends only on column parities. Given a state A in CP-
kernel, the Hamming weight of A remains unchanged after θ. Another interesting
property is that θ−1 diffuses much faster than θ. To be precise, a single bit
difference can propagate into half state bits through θ−1 on average.

Regarding the nonlinear operation S-box, given a non-zero input difference,
all compatible output differences occur with the same probability. Particularly,
for input differences with one active bit, the S-box acts as identity with proba-
bility 2−2. However, given an output difference of the S-box, the probabilities of
compatible input differences vary even though the best probability is determined.
When the best probability is only 2−3, there are multiple input differences achiev-
ing this. Therefore, given an output difference of χ, usually there are multiple
input differences fulfilling the best probability.
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Representation of trails and their weights. As in previous sections, we
denote the differences before and after the i-th round by αi−1 and αi, respectively.
Let βi = L(αi), then an n-round differential trail starting from the 1-st round is
of the following form

α0
L−→ β0

χ−→ α1
L−→ · · ·αn−1

L−→ βn−1
χ−→ αn.

For simplicity, a trail can also be represented with only βi’s or αi’s.
The weight of a differential β → α over a function f with domain {0, 1}b is

defined as
w(β → α) = b− log2|{x : f(x)⊕ f(x⊕ β) = α}|.

In other words, the weight of a differential β → α is equal to −log2Pr(β → α).
α and β are compatible when Pr(β → α) > 0, otherwise the weight of β → α is
undefined.

The weight w(βi → αi+1) is denoted by wi, and thus the weight of a trail
is the sum of the weights of round differentials that constitute the trail. In
addition, #AS(α) is used to represent the number of active S-boxes in a state
difference α. According to the properties of χ, given βi the weight of (βi → αi+1)
is determined; also, given βi the minimum reverse weight of (βi−1 → L−1(βi))
is fixed.

As in [4], n−1 consecutive βi’s, say (β1, · · · , βn−1) is called an n-round trail
core which defines a set of n-round trails α0

L−→ β0
χ−→ α1

L−→ β1 · · ·
L−→ βn−1

χ−→
αn where the first round is of the minimal weight determined by α1 = L−1(β1),
and αn is compatible with βn−1. The first step of mounting collision attacks
against n-round Keccak is to find good (n− 1)-round trail cores.

5.2 Requirements for Differential Trails

Good trail cores are those satisfying all the requirements which will be explained
as follows. Firstly, the difference of the output needs to be zero, i.e., αd

nr
= 0

(αd
nr

represents the first d bits of αnr
).

Secondly, the consumption of degree of freedom must be within budget. With
the definition of weight, Eq. (10), i.e., the estimation of DF of our 2-round con-
nectors can be represented in an alternative way

DF =
b/5−1∑

i=0
DF(1)

i − (c + p)− w1. (11)

The first term of the formula depends on the output bits of the first round that
need to be linearized and DDT entries of active S-boxes as depicted in Table 2.
Empirically, the inputs of most S-boxes are confined to 2-dimensional subsets.
Therefore, we heuristically set b

5 ×2 as a threshold for the first term in (11), and
denote a threshold of the first two terms in (11) for further search conditions by

TDF = b

5
× 2− (c + p).
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Note that this is a pessimistic estimation of the first two terms. The actual
value is usually higher due to the technique of non-full S-box linearization and
the fact that there may exist dependencies in the system of equations used for
constructing connectors.

In order to mount collision attacks against Keccak[r, c, nr, d] with methods
described in Section 4, it is necessary that

TDF > w1 + · · ·+ wnr−2 + wd
nr−1 (12)

where wd
nr−1 is the portion of wnr−1 that relates to the digest. The trail searching

phase is performed to provide ∆SI for the connector. However, the conditions
for a good trail core is restrained by results of the connector, i.e., the degree
of freedom of the solution space. So we take (12) as a heuristic condition for
searching good trail cores which are promising for collision attacks.

Thirdly, the collision attack should be practical. Note that after we obtain a
subspace of message pairs that fulfill the first two or three rounds, the complexity
of searching a collision is 2w, where w = wnr−3 + · · · + wd

nr−1 is the weight of
the differential trail over the last three rounds. To make our attacks practical,
we restrict w to be small enough, say 55.

We summarize the requirements for differential trails as follows and list TDFs
for different variants of Keccak[r, c, nr, d] in Table 3.

(1) αd
nr

= 0, i.e., the difference of output must be zero.
(2) TDF > w1 + · · ·+ wd

nr−1, i.e., the degree of freedom must be sufficient;
(3) w = wnr−3 + · · ·+ wd

nr−1 ≤ 55, the complexity of finding a collision should
be practical.

Table 3: TDFs of different versions of Keccak[r, c, nr, d]
Keccak[r, c, nr, d] TDF Remarks

Keccak[1440, 160, 5, 160] 479 Keccak contest
Keccak[1344, 256, 5, 256] 378 SHAKE128
Keccak[ 640, 160, 5, 160] 159 Keccak contest
Keccak[1440, 160, 6, 160] 479 Keccak contest
Keccak[1152, 448, 5, 224] 188 SHA3-224
Keccak[1088, 512, 5, 256] 124 SHA3-256

5.3 Searching Strategies

In 5-round collision attacks on Keccak, we are to combine a 2-round connector
and a 3-round differential trail. Given α2, i.e., the input difference of the differ-
ential trail over the last three rounds, the minimal weight of the second round w1
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is determined. Note that, the second round is covered by the connector, and the
smaller w1, the fewer constraints imposed to the connector. In order to make
it practical to construct 2-round connectors, we aim to find 3-round differen-
tial trails that impose a least possible number of constraints to the connector.
Namely, w1 should be as small as possible. Actually, this means we need to find
good 4-round differential trails cores. Similarly, in 6-round collision attacks, a
3-round connector is combined with a 3-round differential trail. As shown in
Section 4.4, β2, β3(α3) are known and fixed in the 3-round connector, so 5-round
trails cores are needed, whose first two rounds will be covered by the connector.

Differential trails with two rounds in CP-kernel. The differential trails
with two rounds in CP-kernel are searched to fulfill the requirements discussed
above. The 2-round trail cores, denoted by (β3), that ensure α3 and at least one
choice of α4 in CP-kernel are the starting point of our algorithm for searching
differential trails. A detailed analysis of the reason to do so is postponed to
Appendix C.1. By extensively making use of the KeccakTools [5] developed by
the Keccak Team, we generate such 2-round trails cores, based on which trail
cores of 4 or 5 rounds for our collision attacks are obtained it the following way.

Algorithm for searching differential trails. We sketch below our steps for
finding 4-round differential trail cores of Keccak, upon which 5-round collision
attacks are mounted, as illustrated in Fig. 4.

1. Using KeccakTools, find special β3’s with a low Hamming weight, say 10.
2. For every β3 obtained, traverse all possible α4 using a tree structure, compute

β4 = L(α4) and test whether there exists a compatible α5 where αd
5 =

0 (Requirement (1)). If so, keep this β3 and record its forward extension,
otherwise discard it.

3. For the remaining β3’s, traverse all possible β2’s which are compatible with
L−1(β3)’s. For the trail core (β2, β3, β4), check Requirement (2) and (3). If
these two requirements are satisfied, then output (β2, β3, β4).

We provide a description in more details in Appendix C.2. To mount collision
attacks on 6-round Keccak, 5-round differential trail cores are needed. In this
case, we just extend forward the 4-round trail cores by one more round, as shown
in Fig. 5.

5.4 GPU Implementations of Keccak

Techniques for GPU implementations of Keccak are introduced to improve our
computing capacity. While one could expect a speed of order 221 Keccak-f
evaluations per second on a single CPU core, we show in this section this num-
ber could increase to 229 per second on NVIDIA GeForce GTX1070 graphic
card. The significant speedup will benefit us in two stages: searching for differ-
ential trails among larger spaces and brute-force search of collisions following
differential trails with lower probability.
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Figure 4: Search for differential trails and collision attacks on 5-round Keccak.
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Figure 5: Search for differential trails and collision attacks on 6-round Keccak.

Overview of GPU and CUDA. GPUs (Graphics Processing Unit) are in-
tended to process the computer graphics and image originally. With more tran-
sistors for data processing, a GPU usually consists of thousands of smaller but
efficient ALUs (Arithmetic Logic Unit), which can be used to process parallel
tasks efficiently. CUDA is a general purpose parallel computing architecture and
programming model that is used in NVIDIA GPUs [23]. One of the program-
ming interfaces of CUDA is CUDA C/C++ which is based on standard C/C++.
Here, we mainly focus on CUDA C++.

To better understand the techniques for implementations, some basic con-
cepts are introduced. From the view of hardware architecture, a GPU is com-
prised of several SMs (Streaming Multiprocessors), which determine the paral-
lelization capability of GPU. In Maxwell architecture, each SM owns 128 SPs
(streaming processors) — the basic processing units. Warp is the basic execution
unit in SM and each warp consists of 32 threads. All threads in a warp execute
the same instructions at the same time. Each thread will be mapped into a SP
when it is executed.

Existing implementations and our implementations. Guillaume Sevestre
[25] implemented Keccak in a tree hash mode, the nature of which allows each
thread to run a copy of Keccak. Unfortunately, there are no implementation
details given. In [7], Pierre-Louis Gayrel et al. implemented Keccak-f [1600]
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with 25 threads that calculate all 25 lanes in parallel in a warp and these
threads cooperate via the shared memory. One disadvantage of this strategy
is bank conflict — concurrent access to the shared memory of the same bank by
threads from the same warp will be forced to be sequential. Besides, there are
two open-source softwares providing GPU implementations of Keccak: ccminer
(ref. http://ccminer.org) and hashcat (ref. https://hashcat.net) in CUDA
and OpenCL, respectively.

Having learnt from the existing works and codes, we implemented Keccak
following two different strategies: one thread for one Keccak or one warp for one
Keccak. From experimental results, we find that one thread for one Keccak
gives a better number of Keccak-f evaluations per second. So we adopt this
strategy in this paper. More detailed techniques of implementation optimization
are introduced in Appendix B.1.

Benchmark. With all the optimization techniques in mind, we implemented
Keccak-f [1600] in CUDA, and have it tested on NVIDIA GeForce GTX1070
and NVIDIA GeForce GTX970 graphics cards. The hardware specifications of
GTX1070 and GTX970 are given in Appendix B.2.

Table 4: Benchmark of our Keccak implementations in CUDA
Target Keccak-f evaluations per second GPU
Keccak-f [1600]v1 228.90 GTX1070
Keccak-f [1600]v2 229.24 GTX1070

Keccak-f [1600]v1 227.835 GTX970
Keccak-f [1600]v2 228.37 GTX970

Table 4 presents the performance, where Keccak-f [1600]v1 and Keccak-
f [1600]v2 are our implementations used to search for differential trails and to
find real collisions in the brute-force stage, respectively. The difference between
the two versions is: Keccak-f [1600]v1 copies all digests into global memory, and
Keccak-f [1600]v2 only copies the digest into global memory when the resulted
digest equals to a given digest value. For both versions we did not include the
data transfer time. It can be seen that roughly GTX1070 can be 28 times faster
than a CPU core. The source codes of these two versions are available freely via
http://team.crypto.sg/Keccak_GPU_V1andV2.zip.

5.5 Searching results

Some of the best differential trail cores we obtained with the help of GPU are
listed in Table 5. As can be seen, Trail cores No. 1∼3 are all suitable for collision
attacks against Keccak[1440,160,5,160] and the 5-round SHAKE128. Trail core
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No. 4 is sufficiently good for collision attacks against Keccak[640, 160, 5, 160].
To mount collision attacks on 5-round SHA3-224, 5-round SHA3-256 and Kec-
cak[1440,160,6,160], Trail core No. 3 and 5 are used respectively. Trail core No.
6 is slightly different from the other cores as it leads to an inner collision of the
last 160 state bits for Keccak[1440,160,6,160]. Details of these differential trail
cores are provided in Appendix D.

Table 5: Differential trail cores of Keccak, where 160⊣ stands for an inner collision
on the last 160 bits of the state.

No. r + c #AS(α2-β2-β3-βd
4 ) w1-w2-w3-wd

4 w2+w3+wd
4 d Trail info.

1 1600 102- 8- 8-2 240-19-16-4 39 256
2 1600 88- 8- 7-0 195-21-15-0 36 256 Table 9
3 1600 59-10- 9-0 127-24-19-0 43 256
4 800 38- 8- 8-0 85-20-16-0 36 160 Table 10

No. r + c #AS(α2-β2-β3-β4-βd
5 ) w1-w2-w3-w4-wd

5 w3+w4+wd
5 d Trail info.

5 1600 127-9-8-8-10 292-25-18-16-16 50 160 Table 11
6 1600 135-8-7-8-15 317-17-14-16-20 50 160⊣ Table 12

6 Experiments and Results

6.1 Summary of Collision Attacks

In this section, we employ 4-round (5-round) trail cores in Table 5 to mount
collision attacks against 5-round (6-round) Keccak. Recall that our collision
attack consists of a connecting phase and a brute-force searching stage. Let Tc

denote the time consumed by the connecting stage and Tb by the brute-force
searching stage. After the connecting stage, a message space with DF degrees of
freedom is returned by the connector. If DF is greater than the weight w of the
differential trail over the last rounds beyond the connector, a colliding pair will
be found in the brute-force searching stage with a very high probability.

Table 6 summarizes seven collision attacks we obtained (for six Keccak
variants), and the corresponding timings, DFs of the returned message space and
w of the differential trail. With the attacks on Keccak[1440, 160, 5, 160], Kec-
cak[640, 160, 5, 160] and Keccak[1440, 160, 6, 160], we provide the first solu-
tions to three instances of Keccak contest [2]. The source codes for verifying the
seven collisions are available via http://team.crypto.sg/VerifyCollisions.
zip.

Collisions of 5-round instances. Take the first target in Table 6 as an exam-
ple. We apply Trail core No. 2 to the collision attack on Keccak[1440, 160, 5, 160].
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Table 6: Experimental details of our collision attacks.
Target [r, c, d] nr Trail Core Tc DF w Tb Collision
Keccak[1440,160,160] 5 No. 2 9.6s≀ 162 36 2.48h Table 13
Keccak[640,160,160] 5 No. 4 0.5h 56 35 2.67h Table 14
SHAKE128 5 No. 1 0.4h 94 39 0.5h Table 15
SHA3-224 5 No. 3 11.7h 83 36.70∗ 29h Table 16
SHA3-256 5 No. 3 428.8h 37 36.70∗ 45.6h Table 17
Keccak[1440,160,160] 6 No. 5 4.5h 174† 47.81∗ 112h‡ Table 18
Keccak[1440,160,160⊣] 6 No. 6 7.5h 145† 48.83∗ 60200h Table 19

≀ Usual computers evaluate around 220 ∼ 222 full Keccak evaluations per second.
∗ The weight takes multiple trails of the last two rounds into consideration.
† DF of the message space returned by the 2-round connector for the first two
rounds.
‡ The actual time using three NVIDIA GeForce GTX970 GPUs while elsewhere
it refers to the time when one CPU core is used.

After solving the 2-round connector in 9.6 seconds, the resulting solution space
has a degree of freedom DF of 162 which is sufficiently larger than 36, i.e., the
weight of the differential trail over the remaining 3 rounds. The time for search-
ing a collision is 2.48 core hours. We give one example of collisions in Table 13.
The attacks on other 5-round targets work similarly.

Collision on Keccak[1440, 160, 6, 160]. Our collision attacks on 6-round
instances exploit 3-round connectors to the first three rounds, where a 2-round
connector for the first two rounds is constructed first, based on which adaptive
3-round connectors are constructed. The attack on Keccak[1440, 160, 6, 160]
uses Trail core No. 5. The 2-round connector of the first two rounds succeeds in
4.5 core hours and returns a message space with 174 degrees of freedom. Every
time the second round connector outputs a subspace of messages (i.e., solution
of 3-round connectors) with DF ∈ [40, 45]. In order to find one colliding pair, at
least 247.81 pairs of messages are required. This could be achieved by repeating
the second round connector for 22.81 ∼ 27.81 times. By running our CUDA
implementation on three NVIDIA GeForce GTX970 GPUs, the first collision is
found in 112 hours, which equals to 249.07 message pair evaluations1. An example
of collision is given in Table 18.

Inner collision on the last 160-bit of Keccak[1440, 160, 6, 160] When an
inner collision on the last 160 bits of the state is obtained (i.e., a collision on
capacity bits), we could then construct state collisions of messages of any block
length more than 2 by choosing the next message block properly. Specifically, we
1 Our experiment shows 228.87 pairs of 5-round Keccak could be evaluated per second

on NVIDIA GeForce GTX970 graphic card.
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choose certain values for the next message block such that the r-bit difference of
the state is cancelled after absorption. Thus, in the next permutation the whole
states become identical. This property maintains if all subsequent message blocks
are identical, and in such situations we can obtain a collision on the final digest
with certainty. With this in mind, a 6-round collision attack on the last 160
bits of Keccak[1440, 160, 6, 160] is mounted. Similar to the normal collision
attack, a 3-round connector is constructed based on Trail core No. 6. The size
of the solution space we obtained is around 258 ∼ 264 which exceeds the data
complexity required. To compare with the efficiency of GPU implementations,
this collision is obtained with 172 CPU cores consuming approximately 60200
core hours in total. The first collision occurs after enumerating approximately
247.4 message pairs. An example of a colliding pair is given in Table 19.

6.2 Technical Analysis of the Results

Choice of β1. In our 2-round connector, β1 is randomly chosen such that
β1 → α2 is of the best probability, except Keccak[1440,160,5,160] for which the
connector randomly chooses any compatible β1. The DF of the message space
returned by the connector for Keccak[1440,160,5,160] is 162. In comparison,
the first 2-round connector for Keccak[1440,160,6,160] returns a message space
with DF = 174, even though its weight of the second round w1 which is covered
by the connector is much larger than that of Keccak[1440,160,5,160], as can be
seen in Table 5. This confirms the effect of the choice of β1 on the resulted DF.

S-box linearization. Full S-box linearizations are enforced in 2-round connec-
tors for Keccak[1440, 160, 5, 160], Keccak[640, 160, 5, 160] and SHAKE128, as
well as the first 2-round connector for Keccak[1440, 160, 6, 160]. Namely, the
first round is fully linearized no matter whether it is necessary or not. For SHA3-
224, SHA3-256, S-boxes of the first round are fully linearized only when necessary,
otherwise non-full S-box linearizations are used. It is the same case for S-boxes
in the second round while constructing the second round connector for Kec-
cak[1440, 160, 6, 160].

It is worth noting that our collision attacks on 5-round SHA3-256 and Kec-
cak[1440, 160, 6, 160] are not possible without the techniques of non-full S-box
linearization. Take the 2-round connector for SHA3-256 as an example. While
partially linearizing the first round, (besides the S-boxes with DDT entry 2 or 4)
there are 26 S-boxes in the first round exempted from consuming extra degrees
of freedom due to techniques of non-full S-box linearization. Finally, our 2-round
connector returns a space of messages with DF almost as large as the weight of
the differential trail. Moreover, in this space of messages, we find only one col-
lision. This in turn proves the usefulness and effectiveness of the non-full S-box
linearization techniques.
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7 Conclusion

We observed that connectors of Keccak can be extended to multiple rounds
using S-box linearizations. In this paper, two types of S-box linearization are
proposed, i.e., full S-box linearization and non-full S-box linearization. By lin-
earizing S-boxes in the first round, we extend Dinur et al.’s 1-round connector to
two rounds. Further, by applying linearization to the first two rounds, 3-round
connectors became possible. We combined our connectors with suitable differen-
tial trails searched with dedicated strategies, and then obtained seven practical
collisions on six round-reduced SHA-3 and Keccak variants, including 5-round
SHAKE128, 5-round SHA3-224, 5-round SHA3-256, a 6-round instance of Keccak
contest and a variant of it. So far, these are the best collision attacks on round-
reduced SHA-3 and Keccak contest instances.
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A Linearizable Affine Subspaces

Table 7: The 80 2-dimensional linearizable affine subspaces of Keccak S-box
{0, 1, 4, 5} {2, 3, 6, 7} {0, 1, 8, 9} {4, 5, 8, 9} {0, 2, 8, A}
{1, 2, 9, A} {0, 3, 8, B} {1, 3, 9, B} {2, 3, A, B} {6, 7, A, B}
{0, 1, C, D} {4, 5, C, D} {8, 9, C, D} {4, 6, C, E} {5, 6, D, E}
{4, 7, C, F} {5, 7, D, F} {2, 3, E, F} {6, 7, E, F} {A, B, E, F}
{0, 2, 10, 12} {8, A, 10, 12} {1, 3, 11, 13} {9, B, 11, 13} {0, 4, 10, 14}
{1, 5, 10, 14} {2, 4, 12, 14} {0, 4, 11, 15} {1, 5, 11, 15} {3, 5, 13, 15}
{10, 11, 14, 15} {0, 6, 10, 16} {2, 6, 12, 16} {3, 7, 12, 16} {4, 6, 14, 16}
{C, E, 14, 16} {1, 7, 11, 17} {2, 6, 13, 17} {3, 7, 13, 17} {5, 7, 15, 17}
{D, F, 15, 17} {12, 13, 16, 17} {10, 11, 18, 19} {14, 15, 18, 19} {0, 2, 18, 1A}
{8, A, 18, 1A} {10, 12, 18, 1A} {11, 12, 19, 1A} {10, 13, 18, 1B} {1, 3, 19, 1B}
{9, B, 19, 1B} {11, 13, 19, 1B} {12, 13, 1A, 1B} {16, 17, 1A, 1B} {8, C, 18, 1C}
{9, D, 18, 1C} {A, C, 1A, 1C} {8, C, 19, 1D} {9, D, 19, 1D} {B, D, 1B, 1D}
{10, 11, 1C, 1D} {14, 15, 1C, 1D} {18, 19, 1C, 1D} {8, E, 18, 1E} {A, E, 1A, 1E}
{B, F, 1A, 1E} {4, 6, 1C, 1E} {C, E, 1C, 1E} {14, 16, 1C, 1E} {15, 16, 1D, 1E}
{9, F, 19, 1F} {A, E, 1B, 1F} {B, F, 1B, 1F} {14, 17, 1C, 1F} {5, 7, 1D, 1F}
{D, F, 1D, 1F} {15, 17, 1D, 1F} {12, 13, 1E, 1F} {16, 17, 1E, 1F} {1A, 1B, 1E, 1F}

B GPU Implementation
B.1 Techniques for GPU implementation optimization
The techniques commonly used to optimize the CUDA program include mem-
ory optimizations, execution configuration optimizations, and instruction-level
parallelism (ILP).

Memory optimizations. Usually registers have the shortest access latency
compared with other memory, so keeping data in registers as much as possible
improves the efficiency in general. However, dynamically indexed arrays cannot
be stored in registers, so we define some variables for the 25 lanes by hand in
order to have them stored in registers. Constant memory is a type of read-only
memory. When it is necessary for a warp of threads read the same location of
memory, constant memory is the best choice. So we store 24 round constants on
it. When the threads in a warp read data which is physically adjacent to each
other, the texture memory provides better performance than global memory, and
it reduces memory traffic as well. So we can bind input data and some frequent
accessed read-only data with texture memory.
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Execution configuration. With resources like registers and shared memory
limited in each graphic card, the number of threads running in each block will
affect the performance since too many threads running in parallel will cause
a shortage of registers and shared memory allocated to each thread, while too
few parallel threads reduce the overall performance directly. According to our
experiments, one block with 128 threads gives the best performance.

Instruction-level parallelism. From [28], hashcat, and ccminer, we see that
forcing adjacent instructions independent gives better performance. Without
prejudice to the functions of the program, we can adjust the order of instructions
to improve the efficiency of the operations. In addition, loop unrolling [20] is also
a good practice to obtain ILP.

B.2 Hardware specification of GPU

Table 8: The hardware specification sheet of GTX1070 and GTX970
GTX1070 GTX970

Core Clock Rate 1645 MHz 1228 MHz
Multiprocessors 16 13
Regs Per Block 65536 65536

Total Global Memory 8105.06 MiB 4036.81 MiB
Bus Width 256 bits 256 bits

Memory Clock Rate 4004 MHz 3505 MHz
L2 Cache Size 48 KiB 48 KiB

Shared Memory Per Block 48 KiB 48 KiB
Total Constant Memory 64 KiB 64 KiB

C Details of Differential Trail Search

C.1 Analysis of the Starting Point of the Search

The following paragraphs describe how specific attributes of differential trails are
settled down. We take the 5-round Keccak collision situation as an example to
explain why those kinds of trails are necessary.

Searching from light β3’s. Our initial goal is to find collisions for 5-round
Keccak. To facilitate a 5-round collision of Keccak, we need to find 4-round
differential trails satisfying the three requirements mentioned in Section 5.2. How-
ever, it is difficult to meet all of them simultaneously even though each of them
can be fulfilled solely.
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We explain as follows. Since we aim for practical attacks, w2 + w3 + wd
4

must be small enough, say 55. That is to say, the last three rounds of the trail
must be light and sparse. When we restrict a 3-round trail to be lightweight and
extend it backwards for one round, we almost always unfortunately get a heavy
state α2 (usually #AS(α2) > 120) whose weight may exceed the TDF. We take
Keccak-224 as an example. The TDF of Keccak-224 is 191, which indicates
#AS(α2) < 92 as the least weight for an S-box is 2. For a lightweight 3-round
trail, it satisfies Requirement (1) occasionally. The greater d is, the fewer trails
satisfy Requirement (1).

With these requirements in mind, we search for 4-round differential trail cores
from light middle state differences β3’s. From light β3’s we search forwards and
backwards, and check whether Requirement(1) and (2) are satisfied respectively;
once these two requirements are satisfied, we compute the weight w2 + w3 + wd

4
for brute force, hoping it is small enough for practical attacks.

α3, α4 in CP-kernel. The designers of Keccak show in [4] that it is not
possible to construct 3-round low weight differential trails which stay in CP-
kernel. However, 2-round differential trails in CP-kernel are possible, as studied
in [9, 14, 21].

We restrict α3 in CP-kernel. If ρ−1 ◦ π−1(β3) is outside the CP-kernel and
sparse, say 8 active bits, the active bits of α3 = L−1(β3) will increase due to
the strong diffusion of θ−1 and the sparseness of β3. When #AS(α3) > 11,
the complexity for searching backwards for one β3 is greater than 234.87 which
is too time-consuming. On the other hand, we had better also confine α4 to
the CP-kernel. If not, the requirement αd

nr
= 0 may not be satisfied. As can

be seen from the lightest 3-round trail for Keccak-f [1600] [14], after θ the
none-zero difference bits are diffused among the state making a 224-bit collision
impossible (a 160-bit collision is still possible). So our starting point is special
β3 which makes sure α3 = L−1(β3) lies in CP-kernel, and for which there exists
a compatible α4 in CP-kernel. Fortunately, such kind of β3’s can be obtained
with KeccakTools [5].

C.2 Detailed Algorithm for Searching Differential Trails

In this section, we describe more at length about the algorithm for finding dif-
ferential trails. Firstly, light β3’s, namely, 2-round in CP-kernel trail cores are
generated with KeccakTools [5], and then extended one round forwards and
backwards respectively to find suitable 4-round trail cores. Note that all exten-
sions should be traversed. Given a β3, suppose there are C1 possible one-round
forward extensions and C2 one-round backward extensions. These two numbers
are mainly determined by the active S-boxes of β3. If the number of active S-
boxes is AS, then roughly C1 ≥ 4AS and C2 ≥ 9AS according to the DDT. In the
search for 4-round trail cores, C2 is the dominant time complexity, while for 5-
round trail cores of Keccak[1440, 160, 6, 160], we start from (β3, β4) generated
by KeccakTools, and C1 is almost as large as C2.
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• Generate β3 such that α3 = L−1(β3) lies in CP-kernel, and that there exists
a compatible α4 in CP-kernel, using TrailCoreInKernelAtC of KeccakTools
[5] where the parameter aMaxWeight is set to be 60. We obtain more than
3000 such cores.

• For each β3, if C1 ≤ 236, we traverse all possible α4, compute β4, and check
whether the collision is possible for β4. If yes, keep this β3 and record this
forward extension, otherwise, discard this β3.

• For remaining β3, if C2 ≤ 235, try all possible β2 which are compatible with
α3 = L−1(β3), and compute AS(α2) where α2 = L−1(β3). If AS(α2) ≤ 110,
check whether this trail core (β2, β3, β4) is practical for the collision attack.

To find a 5-round trail core for Keccak[1440, 160, 6, 160], we adapt the second
step as follows.

• For each β3, extend forwards for one round using KeccakFTrailExtension
of KeccakTools [5] with weight up to 45. For each generated 2-round core
(β3, β4), if C1 ≤ 236 for β4, traverse all possible α5 and compute β5. Check
whether there exists an α6 such that αd

6 = 0. If yes, record the three-round
core β3, β4, β5, otherwise, discard the β3.

D Differential Trails

In this section, we give details of differential trails of Keccak mentioned in
Section 5. Actually, we present trail cores. For example, a 4-round tail core
(β2, β3, β4) consisting of three state differences represents a set of 4-round differ-
ential trails

α1
L−→ β1

χ−→ α2
L−→ β2

χ−→ α3
L−→ β3

χ−→ α4
L−→ β4

χ−→ α5

where α5 is compatible with β4 and β1 → α2 is of the least weight determined
by β2. In our collision attacks on 5-round (6-round) Keccak, 4-round (5-round)
trail cores are needed.

The 1600-bit state is displayed as a 5 × 5 array, ordered from left to right,
where ‘|’ acts as the separator; each lane is denoted in hexadecimal using little-
endian format; ‘0’ is replaced with ‘-’ for differential trails.

E Instances of Collisions

In this section, we give instances of collisions against Keccak[1440, 160, 5, 160],
Keccak[640, 160, 5, 160], Keccak [1440, 160, 6, 160], 5-round SHAKE128, 5-round
SHA3-224, 5-round SHA3-256 respectively. Note that we denote two colliding mes-
sages with M1, M2.
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Table 9: Trail core No.1 ∼ 3 used in the collision attacks
Trail core No. 1, used in the collision attack of 5-round SHAKE128

β2

----------------|--------------24|--------------2-|----------------|----------------

2−19
----------------|---------------4|----------------|----------------|---------4------
----------------|------4---------|--------------2-|----------------|----------------
----------------|----------------|----------------|----------------|----------------
---------4------|------4---------|---------4------|---------4------|---------4------

β3

----------------|----4-----------|---1------------|----------------|-----1----------

2−16
----------------|----4-----------|----------------|----------------|----------------
---------------8|----------------|----------------|----------------|----------------
----------------|----------------|---1------------|----------------|----------------
---------------8|----------------|----------------|----------------|-----1----------

β4

----------------|----------------|----------------|----------------|2-4-------------

2−4
----------------|---------------8|--------------4-|---------8------|----------------
----------------|----------------|----------------|--8-------------|----------2-----
-------------4-8|-----------4----|-1--------------|8---------------|----------------
----4-----------|----------------|----------4-----|----------------|---1------------

Trail core No. 2, used in the collision attack of Keccak[1440, 160, 5, 160]

β2

----------------|----------------|----------------|----------------|----------------

2−21
--------1-------|-----------8----|-------------1--|--------1----1--|----------------
--------1-------|----------------|-1--------------|-1--------------|-1--------------
----------------|-----------8----|----------------|----------------|-1--------------
----------------|----------------|-------------1--|-------------1--|----------------

β3

----------------|8---------------|----------------|----------------|----------------

2−15
----------------|----------------|--------8-------|---------------1|----------------
----------------|----------------|----------------|---------------1|----------------
----------------|---------------1|----------------|----------------|---------------1
----------------|8---------------|--------8-------|----------------|----------------

β4

----------------|----------------|----------------|----------------|----------------

1
----------------|----------------|----------------|----2-----------|--------1-------
---------------1|------2---------|---------2------|----------------|----------------
----------------|----------------|-------------4--|----------------|----------------
----------------|--8-------------|----------------|----------------|---------------2

Trail core No. 3, used in the collision attack of 5-round SHA3-224 and 5-round SHA3-256.
The probability is 2−36.70 considering multiple trails of the last two rounds.

β2

---------------1|----------------|---------------4|----------------|----------------

2−24
---------------4|---------------4|---------------4|-----------2----|----------------
2---------------|----------------|----------2-----|----------------|----------------
2---------------|----------------|----------------|-----------2----|----------------
----------2----1|----------------|----------2-----|----------------|---------------1

β3

---------------1|----------------|---------------1|------4---------|----------------

2−19
----------------|----------------|---------------1|----------------|-----------4----
----------------|-------------1--|----------------|----------------|-----------4----
----------------|----------------|----------------|----------------|----------------
---------------1|-------------1--|----------------|------4---------|----------------

β4

----------------|----------------|----------------|----------------|----------------

1
--------1------4|------4---------|----------------|----------------|----------------
------8---------|--------------4-|----------------|----------------|-----------4----
----------------|------1---------|-----------4----|----------------|-1------4-------
4---------------|----------------|-2--------------|----------------|-----1-------4--

36



Table 10: Trail core No. 4, used in the collision attack of Keccak[640,160,5,160]. β4
has two choices.

β2

--------|-----8--|-----A--|-----8--|-----8--

2−20 β1
4

--------|--------|--------|--------|--------

1
--------|--------|--------|--------|-------- 1------4|-4------|--------|--------|--------
2-------|2-------|--------|2-------|-------- --------|------4-|-2------|--------|-2------
2-------|--------|-----8--|-----8--|-1------ -------2|-----8--|--------|--------|4-------
--------|--------|-----2--|--------|-1------ 4-------|--------|--------|--------|--------

β3

--------|--------|--------|-------1|------4-

2−16 β2
4

--------|--------|--------|--------|--------

1
------8-|--------|-------1|--------|------4- 1-------|-4------|--------|--------|--------
--------|--------|--------|-------1|-------- --------|------4-|-2------|--------|-2------
--------|--------|--------|--------|-------- -------2|-----8--|--------|--------|4-------
------8-|--------|--------|------4-|-------- 4-------|2-------|--------|--------|--------

Table 11: Trail core No. 5, used in the collision attack of Keccak[1440, 160, 6, 160].
The total probability is 2−72.81 considering multiple trails of last two rounds. The
probability of last three rounds is 2−47.81.

β2

----------------|-----8----------|-----8------4---|----------------|------------4---

2−25
-----------2---8|-----------2----|---------------8|-----------2---8|-----------2----
----------------|-----8----------|----------------|----------------|-----8------4---
-----------2----|----------------|-----8----------|-----------2---8|----------------
----------------|----------------|----------------|----------------|----------------

β3

----------------|----------------|----------------|---------1------|----------------

2−18
----------------|----------------|----------------|---------1------|----------------
----------------|----------------|----------------|----------------|----------------
-----2----------|--2-------------|--2-------------|-4--------------|----------------
-----2----------|-4--------------|--2-------------|-4--------------|----------------

β4

----------------|----------------|----------------|------------8---|----------------

2−16
--1-------------|----------------|----------------|----------------|---4------------
----------------|----------------|----------------|----------------|-8--------------
----------------|----------------|----------------|--------------1-|---4------------
----------------|------------8---|----------------|-----------4----|----------------

β5

-8--------------|-------1--------|48-1---1--------|---------2-2----|-------12--4---C

2−16
-----8---1------|------48-1---34-|4---------------|-------2--------|---4-------12--4
--2--------1----|-9-------24--8--|----------2-----|34-------48-1---|------------2---
----24--8--18---|--------81------|4---------------|-------48-1---12|--1----------4--
---8-------24--8|---8-8----------|-24--8-418------|------1---------|--4--------2----
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Table 12: Trail core No. 6, used in the last 160-bit collision attack of
Keccak[1440, 160, 6, 160]. The total probability is 2−65.83 considering multiple trails
of last two rounds. The probability of last three rounds is 2−48.83.

β2

-2--------------|----8-----------|----------------|----------2-----|----------2-----

2−17
-2--------------|----------------|----------------|----------------|----------------
----------------|----8-----------|------------4---|----------------|----------------
----------------|----------------|------------4---|----------------|----------2-----
----------------|----------------|----------------|----------------|----------------

β3

-2--------------|----------------|-2--------------|----------------|----------------

2−14
----------------|----------------|----------------|----------------|----------------
---1------------|----------------|----------------|--------2-------|----------------
---1------------|--------2-------|-2--------------|--------2-------|----------------
----------------|----------------|----------------|----------------|----------------

β4

----------------|----------------|-------------1--|---4------------|----------------

2−16
----------------|----------------|---8------------|----------------|----------------
----------------|----------------|--4-------------|----------------|----------------
----------------|----------------|----------------|----1--------1--|----------------
--8-------------|----------------|----------------|---------2------|----------------

β5

----------------|-------1-2------|--1----841----2-|--------2---29--|-4----8---4---41

2−20
----------14C1--|----2---1---1841|----------------|-------2-4------|--29-4----8---4-
--2-4-----------|5--8---1----8---|-----------29-2-|841----2---1---1|-------------2--
--1----8---C2-8-|----------------|4-8------------1|18---2---18---A4|---1C81----2----
--52-8---1----C-|----A4-8--------|----8---C2-8---1|----------------|--4-8-----------

Table 13: Collision for the contest instance Keccak[1440, 160, 5, 160]

M1

FE04ABD5B6CB82B0|61CC2361C8649AFA|8192015AE5A4CD17|18CA3F02D74C2A1E|2FD4F65B9B8954B7
C3E83AFE2554E96C|D40EA8CEA0A5D897|13F77204F374C0FA|C50800E587690A4A|A818DB7455FC0EEC
D165BE70A75C79BD|A5E719D73D740232|3129EFB27EE7D766|CBC2BA892C29908E|67723AF6944A3147
5BC2E4ECA7B4EA3A|1BCF8762A0E3E233|18A28C2474950C18|DB52DE89434D26B2|A642C6B06F111CAC
7866F86D04A61505|B2B98F0702FE80C1|00000000F8514DD0|0000000000000000|0000000000000000

M2

E8AC1434F0FEBE8E|85FDE653956EF372|7B1CEE0DB775BFC0|F80D568E8D0A97CC|9E3E49ADCFFC18BF
8DC76DBCC537ED14|AD6CCD45B0990F18|A9CF7A6399115588|970C9BC4ED512782|08A0B2CA4DDD83BF
9F13F101BF5BE7EC|7B533F4848528805|21F6E6F54C30B798|0BDA3E2038C5FAA6|84808A532E7E1407
8D2DE036C7989316|2778E5A9A1717231|4CC28A17BA036E68|42DA44B9D77DE6F6|56C2556B467D1BBC
AD99AD3F868AD505|2F4EB3D410EC316E|0000000092856EAD|0000000000000000|0000000000000000

digest 0887B202077B082F|E6D2B9B1BA9B51AC| 7BF7B1AF

Table 14: Collision for the contest instance Keccak[640, 160, 5, 160].

M1

297DB73F|CE5FB46D|63EFD5AB|AB75DBB2|020119E7

M2

5B150BCB|C0F3F2FC|5907B5A5|22736DC3|914CF0C5
06927773|A645A6A4|68E6E3F8|15282462|633AAB83 87477D63|A675A649|8BBEA96F|52EB8AE3|19402D41
96C7A5FB|5E4CBEB5|92614C96|DD9647DA|D4B0094F D9FB4CC3|669FD630|D8C9FC71|57558554|0662F64A
4C68376F|D3B63751|6286AB56|DE577A52|9003EA0F 64B4B5C5|7F12BF56|2BEADBF0|F6207B10|F2FD9787
00000000|00000000|00000000|00000000|00000000 00000000|00000000|00000000|00000000|00000000

digest F90B5ABA|7430682D|85668C62|66E1B0AD|B052AC35
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Table 15: Collision for 5-round SHAKE128

M1

0A3E44EBE62104A0|1E8617C352E80FBC|B69A38114369962F|1237F5EEA8045DAB|D4144AC64E22044C
1240A93D79FCCB2E|C8C63A830CBACFFC|B36B34C0E1719824|F94803ECC5586680|ACF133FE29839CAD
CA5F88F260DEFAA7|972FE7E882A4AB03|D11344BE12431A54|814488EBAE68F93B|56D10CF0251FAED3
77A665FCC5F52D9F|D50EF69FAB128ACC|87F3F1816E740894|770D4D55489234B0|737134B1243F3A3D
FE0E2AE7F23D8E40|0000000000000000|0000000000000000|0000000000000000|0000000000000000

M2

0CDDD5D25A8BD7CA|F71D259EE445A4D8|EB84F177D51C9D45|0A70C1FC50024C24|7108096E3F024F63
3B8D1EEBC5E9150E|EADCC9FB19824E75|B8A97CB74697BAAD|5988E2CD64063AD1|FB55123185E2E4A4
E74FF74033CA1486|915F016B41BDAF6B|145441AAC9EFA342|D9A609CF15E6C626|5609C4F58F5DEE0A
AB4E178C43BA8687|3774B01D78F2ABE4|AA35E3D371664594|A26EAD50F73069A7|DE4E25F8A0F8E928
FE431BE34F8371D8|0000000000000000|0000000000000000|0000000000000000|0000000000000000

digest 9D2E953AD7C6A939|326F59A68A6016EF|A71EAFEE371700D7|3C463D5D098D9B76

Table 16: Collision for 5-round SHA3-224

M1

BA651BB077352C22|020878C86F47A777|A68806B74E37F538|FC14E1158751958F|38364A327DE40704
F24920D7259B9A3B|98E0602DA4CF65CB|A0CD3329C8DC6E96|08050DBA7BFFB106|3B74AE3D29AA1F74
C72E0606BA4A9E5C|E7E83E0C5A8D05EE|78E2095685EEABBC|114AD7006B5B4905|2FFD9CF449950256
EAB168AEC88D6917|294C016FD4B8C424|EA95CDFF2F0B0939|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

M2

DF3E25D454129D90|743A8BB224F5D398|803A36FD69A1590C|26E9CC61513C3B2C|52777F2E82CBABF9
0ED8318F4F31BE85|AE55CC288D95514A|E57052E3B305CCDE|3CC6422BDC7AE40D|F4D560227B5E03BB
A88F4E0FF407024C|4102F764F58A1C70|68D868FC2E2EE351|554ED55BF9A456A7|BCD9BE774A516ED6
C1C74E8F2CF70106|DAC93A2C7E587301|E4294D74AD68A5F6|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

digest 79D8E749B6633429|8006840F0FA7F0B1|4FF9CCCF110BD0D4| FB35AD94

Table 17: Collision for 5-round SHA3-256

M1

FECA67BD2D3F021A|BD10A64A4C2B774F|F8EF6FF82DD21FC7|6F4BA4D964A78764|0F4FD1C92A24BC6E
FB4B8C0A11C64088|EDA7B9EBC05F50A8|0A71DD08E7F1EB5B|5342D2AE78A8BFB5|6591A9B0CC2E7CE9
52A3DD827F4EF6DC|9D89B18362B80DE4|FEA719A1875BFFF7|49A2B95AD7B7D147|B23784B72EB9260A
187AEFD07295FD59|EE806366EF9D09FF|0000000000000000|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

M2

16F97050842C2D17|A731EE935A43480A|6D8E356BDBD7CBE9|D62C0B356FFA158A|4FAD968080C7F8C8
7C83B8E1C61BC5AB|7E3FCA22B5E29305|5888D4DBE848C840|236DE21CCEF77B8A|69D59EF589070E60
E87FCD2BF2C6CCE1|B1E28B821FD93ABC|AD5D6FB1860CB45C|AB8FC7D1015975D5|24C6B737EE96CC23
D3BFB5957965A447|EE31D3F5269F254F|0000000000000000|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

digest 65017C2E8B6040B4|344FF8BB933B4BD6|C6A3F13368BE2003|AB427B4B33435ACB

Table 18: Collision for the contest instance Keccak[1440, 160, 6, 160]

M1

DA27ABE5B7EC359D|328A2AB4CD0E256A|00DBDEECA184390E|3843F66481C745F4|DDF83BEF39D4F594
46BA2A960272C97A|8CC8CE3E13185558|2D7C6CC662546532|4D8DCDC25DC7F4B8|574252F43F85BF94
BDCFA2D6B04CBDEE|208D7A02168A7596|AFE7C652F0A68792|467C04748D85916F|F1BFEAF63C4B97C3
C2B0AAEA35887CD4|72A3D23F9D84434D|97A5D9A090590B61|BBE1EC62DBD4327E|64284BCB9BE462C5
8843CBC8B55E106A|DD3DD96A1AC48100|00000000E9151D67|0000000000000000|0000000000000000

M2

5A0C640730278910|32C1A7D724790C0B|8BCE75C46404A83A|7FCE23E92ECE7E31|1BEE08F9F932C785
3969BA55EB6B17F9|E82948B06C21C6A8|AF42ACEF22202C1F|A9C1BD90BF96FB60|0F98E27C36B57BDA
A02B26453D88C70F|5EC5F74DC919C7E6|31391D7A23A3C8DD|C0BECDAD0AC7F275|14FA28F6B2C9D390
69F67EEAEF258217|159B7FEDCED37178|DA89C2B0291CCA7D|7BDDE79F989414AE|3088CBE192E15B4B
138617865C48CEA9|2A917CE5E3AD1374|0000000098425E60|0000000000000000|0000000000000000

digest 602133DD97109089|611B5125914B0F05| 532B96C0
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Table 19: Collision on the last 160 bits of Keccak[1440, 160, 6, 160⊣]

M1

6FDB2A20F8992431|2087B01388592A01|D114527BE00F3C5A|2CCAE47DF6025BBB|276C0E5A2B64FD12
F7C10ACF1A83B66B|9558BC260011465E|06C34BD57E6F00CA|81BF6D44927DA86A|F1A1EE2D0F329641
78367D0B0C0A12BF|A932C8A9906D8577|78116644C91F9867|0510A128067B884D|63F5D9D184C7D6E2
02BEA4FBB2F9DA4A|CED47DD4D59E41F8|DDA6E9AC3E28B45A|FD12804E77348FB8|557A955C5CD88D02
96E21F07B25C1F2E|104767C63F7C2AB4|00000000C60B57C1|0000000000000000|0000000000000000

M2

033C171CD7A65128|45F8C2FB4052939B|55A9BD5D6B4533A6|69DF5701873D16E7|ADC98EEA28325D2C
8EF732C6DAED91BE|1A7AF5636039685D|84915390F1F832B6|92677C0DFB5DB15B|998A4A254F9C88E0
F810289754AA0C71|28ACE4F7585781D4|9400E644963033D7|3432AEC4E5231119|23E1FD9183D58A0C
CFAA789629A11457|E7681880B18D4DA6|6A2C40394F8E1172|E9562446427C4AAC|D97ABBDB097B07E2
73D4472B79731977|37EE2EC25F6706B6|00000000AF85B4FB|0000000000000000|0000000000000000

160⊣ |8FA6D263 |1BF0161E867C399C|DE5348CD351076D5
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