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Modeling Power Efficiency of S-boxes Using
Machine Learning
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Abstract—In the era of lightweight cryptography, designing
cryptographically good and power efficient 4x4 S-boxes is a
challenging problem. While the optimal cryptographic properties
are easy to determine, verifying the power efficiency of an S-
box is non-trivial. The conventional approach of determining
the power consumption using commercially available CAD-tools
is highly time consuming, which becomes formidable while
dealing with a large pool of S-boxes. This mandates development
of an automation that should quickly characterize the power
efficiency from the Boolean function representation of an S-
box. In this paper, we present a supervised machine learning
assisted automated framework to resolve the problem for 4x4
S-boxes, which turns out to be 14 times faster than traditional
approach. The key idea is to extrapolate the knowledge of literal
counts, AND-OR-NOT gate counts in SOP form of the underlying
Boolean functions to predict the dynamic power efficiency. The
experimental results and performance of our novel technique
depicts its superiority with high efficiency and low time overhead.
We demonstrate effectiveness of our framework by reporting a set
of power efficient optimal S-boxes from a large set of S-boxes.
We also develop a deterministic model using results obtained
from supervised learning to predict the dynamic power of an
S-box that can be used in an evolutionary algorithm to generate
cryptographically strong and low power S-boxes.

Index Terms—Power Efficiency, Optimal S-box, Dynamic
power, Machine Learning

I. INTRODUCTION

The advent of Internet-of-Things(IoT) era have resulted in
wide shift of spectrum of devices from desktops and servers
to embedded-systems, RFIDs and sensor-networks having
huge resource constraints. The heavy resource constraints on
these end devices make it impossible to run conventional
cryptographic algorithms, which lead to the development of
lightweight cryptographic algorithms and primitives. Recently,
this development of lightweight cryptographic primitives has
gained its momentum with the announcement of lightweight
cryptographic project by NIST [1]. As S-boxes are the basic
building blocks (used to provide the non-linearity) for design-
ing block ciphers, designing cryptographically good and power
efficient S-boxes is a widely discussed problem.

A series of research work is going on to make S-boxes
power efficient using suitable architecture. In [2], Satoh et al.
proposed a low power multi-stage PPRM-based S-box archi-
tecture. In [3], Bertoni et al. presented DSE-based (Decoder-
Switch-Encoder) architecture for low power S-box design.
This was followed by the work [4], where the authors showed
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use of ANF representation of Boolean function to achieve an
optimized pipelining arrangement and short critical-path, low
power S-box architecture. In [5], Trichina et al. introduced
a side-channel resistant AES co-processor optimized for low
power that uses an S-box architecture introduced in [6]. In all
of the above mentioned papers, the main focus is given on the
implementation architecture.

Another direction of research is to fix an architecture
and then report the S-boxes which are power efficient. This
approach was used in [7] where the authors aimed to report
cryptographically good, power efficient S-boxes (LUT based
architecture) from a large search space. They used a heuristic
based approach to find optimal 4 × 4 S-boxes and then for
each of the S-boxes they verified the power efficiency. As
the algorithm runs over a large space, the time required to
determine whether a S-box is power efficient or not, plays a
crucial role.

A. Determining Power Efficiency of S-boxes: The Traditional
Approach

In this subsection we discuss two generic methods that are
used for determining the power efficiency of S-boxes. The first
one is a simulation based approached and the second one being
a probabilistic one. A brief description of both the approaches
are given below. The design flow is shown in Fig.1

SIMULATION BASED TECHNIQUE. In this technique the aver-
age power dissipation of the circuit is obtained by recording
the signal events over time, followed by tabulation and averag-
ing of event data. The flow diagram of this methodology has
been shown in Fig.1. This approach involves huge computation
resources and is time consuming. This approach was used in
[7] to report power efficient S-boxes from a large search space.
A look-up-table (LUT) based S-box design is first synthesized
using a technology library through a commercial synthesis tool
to form gate-level-netlist and delay file. The gate-level-netlist
along with delay model and test-bench file is used to generate
a switching activity file containing details of toggle count of
every signal. This can be done via commercial simulation
tools. The activity file also contains information about the
time attributes of every node which specify time durations for
every nodes and signals at various levels. The test bench file
contains all possible combinations of signal transitions to be
given at input. The gate-level-netlist along with this generated
switching activity file is used to determine the exact power
using any commercial power estimation tool.

PROBABILISTIC APPROACH. [8] In probability-based power
estimation method a signal is viewed to be a random vari-
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able asserted with some statistical features (static probability,
transition density, etc). This technique uses a simplified de-
lay model (also called zero-delay model where same delay
is assumed for all the gates) for power estimation unlike
simulation-based approach where the exact delay is measured.
Moreover, a static probability (usually 0.5) is assigned to each
input signals, which may not be accurate. In this approach, the
S-box specification is converted into a logic form (using signal
probability or BDD model) using a logic extractor. Major
issue with signal probability model is that it cannot handle
toggle power as well as spatial and temporal co-relations (due
to presence of reconvergent fan-out at various circuit nodes).
BDD takes care of these limitations, but at the cost of speed.
In BDD, switching activity is calculated for each ordering of
the input variables. With the increase in size of inputs the
problem becomes intractable.

B. Our Contribution

Central to this work is power efficiency of S-boxes. We
have already seen in the previous subsection that existing
approaches to determine power efficiency have issues with
accuracy or speed. So, we primarily aim to devise a completely
new methodology that determines the power efficiency of a set
of S-boxes that reduces the time overhead and maintains good
accuracy. Our contributions are two folded:
• In this paper, we present a supervised machine learning

assisted automated framework to classify a set of n× n
S-boxes into two classes (good and bad) based on their
power efficiency. We mainly focus on the LUT based
implementation of S-boxes with AND, OR, INVERTER
(in short A-O-I) gates. We have observed that the
switching activity of the component functions of an S-
box is mainly dependent upon the literal counts (in SOP,
factor and kernel extracted forms) and AND-OR-NOT
gate counts of the underlying Boolean functions (also

known as the component functions) corresponding to the
S-box. However, it is hard to mathematically formulate
such a relation. This motivates us to choose machine
learning based approach to predict the dynamic power
efficiency of a set of S-boxes as it is dependent on the
switching activity of it’s component functions.

• We demonstrate the effectiveness of our framework by
reporting a set of power efficient S-boxes from a large
set of 4 × 4 optimal. The experimental results shows
that our tool is approximately 84% accurate for both
the classifiers. In terms of speed, our algorithm turns
out to be at least 14 times faster than the simulation
based approach in determining power efficiency by
commercially available CAD-tools.

• We have also developed a deterministic model where we
try to mathematically formulate the correlation between
the actual power values and the feature values reported
from SIS. The effectiveness of this mathematical formu-
lation to predict the actual power of an S-box is verified
by another fresh pool of cryptographically good S-boxes.
The result depicts that this model predicts the power with
a very low mean relative error of 9.65%.

C. Significance of the Work

To the best of our knowledge, this is the first machine
learning based approach that predicts whether an S-box is
power efficient or not. Our algorithm requires roughly 0.874
seconds to determine power efficiency of an S-box, in an Intel
Xeon machine, operating at 2 Ghz processor speed. We have
also used the CAD-tool Synopsys Design Compiler to compute
the power of an S-box, which takes roughly 11.843 seconds in
the same machine. This depicts that our algorithm reduces the
time overhead by a factor of around 14 times. This overhead
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becomes formidable when we consider a very large set of S-
boxes. For example, suppose we have a large set of 220 optimal
4×4 S-boxes for which we want to report the power efficient
S-boxes. In this case, our algorithm will take around 10.6 days
where as the CAD tool will require 148.5 days i.e. close to
almost 5 months time.

D. Organization

The remainder of the paper is organized as follows. In Sect.
II, we provide a basic overview and cryptographic properties of
S-boxes, machine learning models with performance metrics.
In Sect. III we describe our machine learning based framework
to classify set of S-boxes depending on the power efficiency.
We describe all the features that we used in feature set for
modeling. In Sect. IV we provide experimental results showing
the efficiency and high performance of our tool for a set of
4×4 optimal S-boxes. Next we propose a deterministic model
using the correlation between the actual power values and
the feature values reported from SIS in Sect. V. Finally, we
conclude in Sect. VI with interesting open problems.

II. PRELIMINARIES

A. S-box Representation and Properties

In the standard cryptographic nomenclature, an n × n
substitution box (abbreviated as S-box) is a nonlinear function
from n bit to n bit: S : Fn

2 → Fn
2 . It can be represented

as a set of n vectorial Boolean functions (s1, . . . , sn), where
∀i ≤ n, si : Fn

2 → F2 are the component functions. Here,
we briefly describe some important cryptographic properties
of S-boxes.

BALANCEDNESS. We call an S-box S to be balanced if it
takes every values of Fn

2 same number of times.
NONLINEARITY. The nonlinearity of a Boolean function s :
Fn

2 → F2 is defined as the minimum distance of the function
from the set of all affine functions. Extending the idea, we
define the nonlinearity of n × n S-box as the minimum of
all the distances between the set of linear combinations of
component functions of S to the set of all affine functions.
More formally, nonlinearity of an n×n-function S equals the
minimum nonlinearity of all its component functions v · S,
where v ∈ F ∗n2 [9]:

NLS = 2n−1 − 1

2
max
a ∈ Fn

2

v ∈ Fn∗
2

|WS(a, v)|,

where

WS(a, v) =
∑
x∈Fn

2

(−1)v·S(x)+a·x, a, v ∈ Fn
2 ,

is the Walsh-Hadamard transform of the function S and a · b
is the usual inner product of a, b ∈ Fn

2 that equals a · b =⊕n
i=1 aibi.

DIFFERENTIAL UNIFORMITY. Let S be a function from Fn
2

into Fm
2 with a ∈ Fn

2 and b ∈ Fm
2 . We define the difference

distribution table of S with respect to a and b as:

∆S(a, b) = {x ∈ Fn
2 : S(x)⊕ S(x⊕ a) = b} .

The entry at position (a, b) corresponds to the cardinality of
the difference distribution table ∆S(a, b) and is denoted as
δS(a, b). The differential uniformity δF is then defined as [10]:

δS = max
a ∈ Fn∗

2
b ∈ Fm

2

δS(a, b).

Definition 1: A 4× 4 S-box is said to be cryptographically
optimal if it is balanced, has nonlinearity equal to 4, and
differential uniformity equal to 4 [11].
We are mainly interested in optimal S-boxes as these S-boxes
are good in terms of resisting linear and differential attacks.
While designing block ciphers, another possible choices of
S-boxes are the involutive ones.

B. Sources of Power Dissipation in CMOS

The sources of power dissipation in digital CMOS can
be broadly classified based on their dependence on circuit
topology. While static power, leakage power and short-circuit
power are completely dependent on CMOS-technology and
independent of circuit topology, dynamic power has a depen-
dence on the structure of the circuit. In this paper we mainly
concentrate on the dynamic power of CMOS circuits. The
transition rate of a circuit node is not equal to the transition
rate of clock. Statistically, the average dynamic power of a
node in a circuit is given by the following equation [12]:

Pdyn = α0→1 · fclk · CL · V 2
dd,

where, Vdd is the supply voltage, CL is the node capacitance,
fclk is the clock frequency and α0−>1 is the node transition
activity factor of the node. Combining gate transitions of every
internal nodes, the total dynamic power of the circuit is given
by the following expression:

P total
dyn =

N∑
i=1

(αi · Ci) · fclk · V 2
dd,

where N is the total number of nodes in the circuit.

C. Machine Learning and It’s Performance Metrics

There are two types of supervised machine learning frame-
works, namely classification and regression. In case of regres-
sion, a continuous value is predicted while in case of classi-
fication a class label is predicted. The quality of prediction
by an ML is evaluated by some widely known metrics. In
this subsection, we briefly revisit the popular metrics used to
evaluate ML based models. First we consider the confusion
matrix, one of the most intuitive and easiest metrics used for
finding the correctness and accuracy of classification based
models. It is a 2 × 2 matrix (with dimension “actual” and
“predicted”) having the following entries:
• True Positives (TP). When the actual data and predicted

data both belongs to 1 (True).
• False Positives (FP). In this case the actual class of the

data point was 0 (False), however the prediction is 1
(True).

• False Negatives (FN). Here the actual class of the data
point was 1 (True) while the prediction is 0 (False).
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• True Negatives (TN). In this case both the actual class
and predicted class of the data point is 0 (False).

Now we describe the performance metrics that we will con-
sider to evaluate our algorithm.

Accuracy. Accuracy in classification problems is the number
of correct predictions made by the model over all kinds
predictions made. Formally, it is defined as

accuracy =
TP + TN

TP + TN + FP + FN
.

Note that, accuracy is a good measure only when the target
variable classes in the data are nearly balanced.

F1 Score. Two important measures for classification based
models are precision and recall. Precision is a measure that
tells us what proportion of the S-boxes that we predicted
as energy efficient, actually power efficient. On the other
hand recall is a measure that tells us what proportion of
S-boxes that actually are power efficient is detected by the
algorithm as being power efficient. These two measures are
clubbed together to have a single metric called F1 score,
which basically is the harmonic mean of precision and recall.
Formally,

precision =
TP

TP + FP
, recall =

TP

TP + FN
.

F1 score =
2× precision× recall

(precision + recall)
.

Note that the use of harmonic mean ensures that if one number
is really small between precision and recall, the F1 score
becomes more closer to the smaller number than the bigger
one, giving the model an appropriate score rather than just an
arithmetic mean.

ROC Plot. In statistics, a receiver operating characteristic
curve, i.e. ROC curve, is a graphical plot that illustrates
the diagnostic ability of a binary classifier system as its
discrimination threshold is varied. The area under curve of
an ROC curve represents the quality of a classifier, which
ranges between 0 to 1 with higher values representing a better
classifier.

III. PROPOSED METHODOLOGY

In this section we provide complete details of our machine
learning based framework to evaluate and classify S-boxes
based on their dynamic power consumption. As mentioned
already, by dynamic power we basically mean dynamic power
consumption for the AOI implementation (LUT based) of an
S-box.

A. Machine Learning Model

We have followed supervised learning approach to construct
a binary classifier for our problem. Given a predefined thresh-
old power Pth, the classification is done as follows:

S ∈ Class 0 (bad), if Pdyn(S) > Pth

S ∈ Class 1 (good), if Pdyn(S) ≤ Pth.

We have mapped our problem to classification rather than
regression as we are interested to report whether a set of
S-boxes are power efficient or not, rather than reporting the
exact dynamic power of an S-box. By aligning our problem
to classification problem we are apparently exploiting a large
search space.

Let, Perm(2n) be the set of all permutations of
{0, · · · , 2n − 1} and Σn ⊂ Perm(2n) be a set of S-boxes
(permutations) having some properties P . To ensure good
cryptographic properties, a typical choice for P could be
optimal meaning that the S-boxes must be balance, highly
nonlinear and have low differential uniformity. We begin with
a training vector Ttrain, extract all the desirable features (listed
in the next subsection) for each S-boxes corresponding to the
training vector using the module Extract Feature. Then we
compute the power class of each S-box using the module
Find Class and train the ML classifier by feeding these
features and power class. Now to predict the power classes
corresponding to a vector of S-boxes, termed as test vector
Ttest, we extract the features of each S-boxes and use the
already trained classifier. The formal algorithm corresponding
our framework is presented in Algorithm 1.

Algorithm 1: ML-Framework for Classifying S-boxes
Input : Σn ⊂ Perm(2n), a set of S-boxes having

property P .
Output: Classification vector Etest of S-boxes

corresponding to the test vector Ttest
1 Construct Ttrain ⊂ Σn and Ttest = Σn\Ttrain ;
2 Let Ttrain = (S1, . . . , St) and Ttest = (St+1, . . . , S|Σn|)
3 for i = 1; i ≤ t; i = i+ 1 do
4 FSi

= Extract Feature(Si);
5 ESi

= Find Class(Si);
6 end
7 /* Train Model */
8 Ctrain =TrainModel((FS1

, . . . , FSt
), (ES1

, . . . , ESt
))

9 /* Classify*/
10 for i = t+ 1; i ≤ |Σn|; i = i+ 1 do
11 FSi

= Extract Feature(Si);
12 ESi = Predict Class(FSi , Ctrain);
13 end
14 Etest = (Et+1, . . . , E|Σn|);
15 return Etest;
16 }

B. Feature Set Considerations

A feature set is a set of measurable attributes or char-
acteristics that is used by the model for classification. The
feature extractor function Extract Feature returns values
corresponding each of features for a given S-box. In our model,
we have considered the following features representing a S-
box:

FEATURE 1: lc(SOP). This feature denotes the literal count
in simplified Sum-of-Products(SOP) representation of the
Boolean functions corresponding to the S-box. Recall that a
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literal is a Boolean variable in its complement or normal form.
The switching capacitance of a circuit has a direct correlation
with its literal count [13] and hence its dynamic power.
FEATURE 2: lc(factor). This represents the literal count of the
SOP when expressed as parenthesized algebraic expression.
The power consumption of a circuit in terms of its literal count
is given by [13] Σniαi, where ith literal is occurring ni times
with switching activity αi. So, an algebraic factorization of
the expression helps in reducing the number of literals, and
hence the overall switching activity.
FEATURE 3: gc(kernel). This feature represents the gate count
of kernel-extracted representation. A cube in a Boolean func-
tion is a product of one or more number literals. We call
a Boolean expression cube-free if no cube can divide the
expression evenly. A Boolean expression s can be expressed
as P · Q + R, where P , Q and R are Boolean expressions,
Q being the quotient and R is the remainder. A cube-free
expression is called kernel of F . Factoring out kernel from
the expression reduces the total number of nodes in the overall
circuit, which in actual reduces the total switching activity of
the circuit [14]. The main advantage of extracting out kernel
from a set of Boolean expression lies in the fact that one single
copy of the kernel circuit is implemented, which results in
significant reduction in the number of nodes in the circuit.
Let Q = f(l1, l2, . . . , lm) be an extracted kernel of a set of
functions s1, . . . , si having I1, I2, . . . , In as internal nodes. So,
the output of driver gates of l1, l2, . . . , lm drives i − 1 lesser
gates, which reduces the switching capacitance and hence the
overall dynamic power with a power saving given by [15]:
(i−1).(

∑m
j=1 αlj .nlj+

∑n
j=1 αI j .nI j), where nx and αx are

the number of gates driven by node x and switching activity
of node x.
FEATURE 4: gc(AND). This represents the number of AND
gate count in the kernel extracted representation of an S-box.
FEATURE 5: gc(OR). This feature denotes the number of OR
gate count in the kernel-extracted representation.
FEATURE 6: gc(NOT). This represents the number of NOT
gate used in the kernel-extracted representation.

Now we will take an example of a 4× 4 S-box to demon-
strate the above mentioned features.

A CONCRETE EXAMPLE. Let S be a 4 × 4 optimal S-box
given in . Corresponding component functions (s1, s2, s3, s4)
of S are given as follows:
s1(x1, x2, x3, x4) = x1 ·x2 ·x3+x1 ·x2 ·x3+x1 ·x2 ·x3+x1 ·x4

s2(x1, x2, x3, x4) = x1 ·x2 ·x3+x1 ·x2 ·x3+x1 ·x2 ·x3+x1 ·x4

s3(x1, x2, x3, x4) = x1 ·x3 ·x4+x1 ·x2 ·x3+x1 ·x2 ·x4+x3 ·x4

s4(x1, x2, x3, x4) = x1 · x2 · x4 + x2 · x4 + x1 · x3.
Now in factor form this can be expressed as:

s1(x1, x2, x3, x4) = x1 · x2 · x3 + x1 · (x2 · x3 + x2 · x3 + x4)
s2(x1, x2, x3, x4) = x1 · x2 · x3 + x1 · (x2 · x3 + x2 · x3 + x4)
s3(x1, x2, x3, x4) = x1 ·x3 ·x4 +x1 ·x2 ·x3 +x4 ·(x1 ·x2 +x3)
s4(x1, x2, x3, x4) = x1 · (x2 · x4 + x3) + x2 · x4.

From the above two representations, it is easy to see that
the literal counts in SOP form and factor form are 40 and 34
respectively.

Now we consider the kernel-extracted representation of the
Boolean functions. In our example, the maximum common

kernel is Q = x1 ·x2 +x1 ·x2 and the kernel extracted Boolean
function is given by:
s1(x1, x2, x3, x4) = x3 ·Q+ x1(x2 · x3 + x4)
s2(x1, x2, x3, x4) = x3 ·Q+ x1(x2 · x3 + x4)
s3(x1, x2, x3, x4) = x1 ·x3 ·x4 +x1 ·x2 ·x3 +x4 ·(x1 ·x2 +x3)
s4(x1, x2, x3, x4) = x1 · (x2 · x4 + x3) + x2 · x4

It is easy to see that in this representation total number of
two input AND, OR, NOT gates are 31, 17 and 10 respectively.
The kernel representation has less number of gates and hence
lesser switching activity as shown in Fig.2(b), where gate Q
is used only once as compared with Fig.2(a).
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Fig. 2. Circuit of s1 and s2 with and without Kernel Extraction

C. Model Selection

In this subsection, we briefly describe the two models that
we have chosen for the machine learning and justify the
selection.

SUPPORT VECTOR MACHINE (SVM). SVM [16] is a tra-
ditional and very popular machine learning model. In this
model, one or more hyperplanes are constructed in a multi-
dimensional space based on which classification is done.
Construction of the hyperplanes are done by maximizing it’s
distance from the nearest data point on either side of the
plane. These distances are known as support vectors, which are
maximized to obtain the best accuracy. This model provides
very good accuracy if a linear separation is obtained. This
model uses a subset of support vectors in decision making
process, which makes it fast and memory efficient.
RANDOM FOREST (RF). Random Forest [17] is a type of
ensemble method where multiple decision trees are combined
to form an effective and very powerful model. A single
decision tree has tendency to overfit on the training data,
where the model gets perfectly trained by the training data, but
unable to generalize on new or test dataset. In RF, a label is
predicted by taking majority vote from all decision trees used
to construct the model. As this model combines decisions from
multiple decision tree, chances of over-fitting of data becomes
negligible, increasing the accuracy of the model. This model
runs very effectively on very large number of data points.
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IV. APPLICATION TO 4 X 4 OPTIMAL S-BOX

In this section we apply our tool to report all the power
efficient S-boxes from a set of 4×4 optimal S-boxes. We first
describe the complete set-up, briefly discuss tuning parameters
corresponding to both the classifiers used and finally show the
high performance and efficiency of the tool.

A. Setup

In order to evaluate our proposed methodology we started
with a list of 10000 cryptographically strong S-boxes having
differential uniformity and non-linearity of 4 obtained using
genetic algorithm. We used tournament method of size 3 as
selection method for our genetic algorithm. To extract features
of every S-box we used Sequential Interactive System(SIS)
[18] version 1.3 and Espresso [19] version 2.3. We have syn-
thesized every S-box using Synopsys Design Compiler version
J-2014.09-SP1 to report their dynamic power. In the synthesis
process we have forced the synthesis tool to use standard
cell library (180nm) consisting of only 2-input AND, OR,
and NOT gate and used TSL18FS120 cell library from Tower
Semiconductor Ltd. The standard cell library is characterized
using Silicon Smart Software (Version: 2008.02-SP1p1) char-
acterized under Fast-Fast process(P), 1.98V voltage(V) and
-40 degree C temperature(T). Finally, to build our ML model
and data analysis we used Scikit-Learn [20] ML tool version
v0.19. Before feeding our data into the ML-tool we profiled
the data such that it contains equal number of good and bad
S-boxes based on some pre-defined threshold dynamic power.
In our case, we have chosen 130µW power value as threshold.
So our dataset contains 5000 S-boxes having dynamic power
value less than 130µW (called as good S-boxes) and 5000
S-boxes having power more than 130µW (called as bad S-
boxes).

B. Performance

In this subsection we show the effectiveness of our tool
in classifying the power efficiency of the S-boxes. For that
we measure the classification accuracy, F1 score and area of
ROC curves corresponding to both RF and SVM classifier. The
training and validation sets are chosen randomly from a set of
10000 labeled samples, with their sizes in ratio 7 : 3. The
sample set consists of 5000 power efficient and 5000 power
in-efficient S-boxes in order to achieve an unbiased training.

FEATURE IMPORTANCE ASSESSMENT. We have shown the
results of the feature importance assessment in Fig. 3. The Y-
axis represents the features (as mentioned in ) and the X-axis
represents importance of each feature scaled to an interval
of [0,1]. It is interesting to observe that all the features are
required (importance value for each of them is greater than 0)
during the classification.
LEARNING CURVES. The learning curve conventionally de-
picts improvement in performance as we increase the number
of training examples. Learning curves corresponding to our
experiment using RF and SVM are depicted in Fig. 4. The red
line signifies the training score while the green line signifies
cross-validation score.
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(b) Feature Importance Graph for SVM Model

Fig. 3. Feature Importance Graph for 4× 4 Optimal S-boxes

ACCURACY AND F1 SCORE. The accuracy and F1 score
obtained in our experiment is shown in Table I. The results
depict that our classifier models perform reasonably well to
predict the power efficiency of a set of S-boxes.

Classifier TN FP FN TP Accuracy F1 Score
RF 1296 197 274 1233 84.3% 0.846

SVM 1310 203 296 1191 83.4% 0.840

TABLE I
PERFORMANCE RESULT FOR 4× 4 OPTIMAL S-BOXES

ROC AREA UNDER THE CURVE. We have also provided the
ROC curves for both the classifier. From Fig 5, we see that
the area under curve (AUC) for RF and SVM are 0.92 and
0.89 respectively, showing goodness of the classifier.

In order to verify the robustness of the learning, we ran
each of our experiments several times. The average accuracy,
F1 score and area of ROC curves for RF is 84.2%, 0.841 and
0.92 respectively. For SVM the values are 83.1%, 0.836 and
0.89 respectively.

C. Efficiency

Our experiment takes 43.7 minutes of running time to
predict the power classes of 3000 S-boxes. So, on an average
our algorithm requires roughly 0.874 seconds to predict the
power class for each S-boxes. On the other hand, we have
run the CAD-tool Synopsys Design Compiler to compute
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Fig. 4. Learning Curves for 4× 4 Optimal S-boxes
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Fig. 5. ROC plot for 4× 4 Optimal S-boxes

the power of an S-box. To evaluate each S-box, the Design
Compiler takes approximately 11.843 seconds of running time
in a machine with Intel Xeon at @ 2 Ghz processor speed.
This shows that our algorithm reduces the time overhead by
a factor of around 14 times.

V. TOWARDS A DETERMINISTIC MODEL TO PREDICT
POWER

In this section first we develop a relation between the actual
power values and the feature values reported from SIS, and

then using correlation we will verify the nature of relationship
and develop a deterministic model connecting the the two.

A. Relation between Predicted Dynamic Power and Feature
Values

As pointed out earlier that power consumption of a circuit
in terms of its literal count is given by [13] Σniαi, where
ith literal is occurring ni times with switching activity αi and
kernel extraction reduces the switching capacitance and hence
the overall dynamic power with a power saving given by [15]:
(i−1).(

∑m
j=1 αlj .nlj+

∑n
j=1 αI j .nI j), where nx and αx are

the number of gates driven by node x and switching activity
of node x. Taking this relation into account, we develop the
following relation between predicted power value X and the
feature values as:

X = αN ∗ gc(NOT) + αA ∗ gc(AND)
+ αO ∗ gc(OR) + αF ∗ lc(FACTOR),

where αN , αA, αO are the switching activity corresponding
to the NOT, AND, OR gates respectively. By definition, we
have αN = 0.5, αA = 0.25 and αO = 0.75. We use αF to
denote the switching activity of a literal and we assume it to
be equally likely with 0.5 probability.

B. Correlation between Predicted and Reported Dynamic
Power

In this section we will study the correlation between the
reported dynamic power and predicted power values obtained
using the equation introduced in sectionV-A. We begin with
4 000 S-boxes and continue to increase the number until the
correlation becomes static. As shown in Fig.6, the correlation
become static around 16 000 to 20 000. So, we consider a set of
20 000 cryptographically strong S-boxes and the result of the
correlation graph is shown in Fig.7. We observed a constant

0.76

0.77

0.78

0.79

0.80

0.81

0.82

4000 8000 12000 16000 20000

Correlation vs. #S-boxes

Fig. 6. Correlation vs. Number of S-boxes
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correlation of 0.78 from 16 000 S-boxes. So, with the data
of 20 000 S-boxes we plotted the reported dynamic power
from Design Compiler along the Y -axis versus the predicted
dynamic power along the X-axis as shown in Fig.6. We tried
to fit a linear model as a first approximation to describe this
correlation as: Y = b ∗X + a, where X is predicted dynamic
power, b and a are the slope and Y -intercept of the line
respectively. The values of a and b are given by:

b = Cov(X,Y )/ Var(X)

a = mean(Y )− b ∗mean(X).

From Fig.6 the value of a and b is calculated as 23.3 and 2.7
respectively.

0
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150

200

250

0 10 20 30 40 50 60 70

Xaxis-> Predicted Dynamic Power, Yaxis->Reported Dynamic Power

Fig. 7. Reported Dynamic Power(Design Compiler) vs. Predicted Dynamic
Power

C. Model Verification

To verify the relation obtained in section V-B, we considered
a 10 000 different set of S-boxes comprising of both Optimal
as well as Involutive Optimal S-boxes, and we observed a
mean error of 9.65% as shown in Fig.8. The red line in Fig.8
is the predicted values of 10 000 S-boxes according to the
equation equation Y = 2.7 ∗X + 23.3, while the blue cluster
are their actual values obtained from CAD-tool. In Fig.8 the
orange dots and blue dots shows predicted dynamic power and
actual dynamic power respectively for each S-boxes. It is also
clear from the figure that orange and blue band are in sync
with each other showing a linear correlation between them.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a supervised machine learn-
ing assisted automated framework to report the power effi-
ciency of cryptographically strong S-boxes. We have validated
the effectiveness of our framework by reporting a set of power
efficient S-boxes from a large set of 4 × 4 optimal S-boxes.

The experimental results shows that for 4 × 4 S-boxes, our
methodology is around 84% accurate and approximately 14
times faster (using AND-OR-NOT gates) than the traditional
approach. We have also extended this result to mathematically
formulate the correlation between the actual power values and
the feature values reported from SIS. Our experiment shows
that the above formulation can predict the power with high
accuracy and can be very useful in an evolutionary algorithm
to generate cryptographically good S-boxes with low power.
Extension of this machine learning based methodology for
predicting the dynamic power efficiency of larger S-boxes such
as 8× 8 S-boxes seems to be an intriguing future direction.
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