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Abstract. Deep Neural Networks (DNNs) have recently received sig-
nificant attention in the side-channel community due to their state-of-
the-art performance in security testing of embedded systems. However,
research on the subject mostly focused on techniques to improve the at-
tack efficiency in terms of the number of traces required to extract secret
parameters. What has not been investigated in detail is a constructive
approach of DNNs as a tool to evaluate and improve the effectiveness
of countermeasures against side-channel attacks. In this work, we try to
close this gap by applying attribution methods that aim for interpreting
DNN decisions, in order to identify leaking operations in cryptographic
implementations. In particular, we investigate three different approaches
that have been proposed for feature visualization in image classification
tasks and compare them regarding their suitability to reveal Points of
Interests (POIs) in side-channel traces. We show by experiments with
three separate data sets that Layer-wise Relevance Propagation (LRP)
proposed by Bach et al. provides the best result in most cases. Finally, we
demonstrate that attribution can also serve as a powerful side-channel
distinguisher in DNN-based attack setups.

Keywords: Side-Channel Attacks · Deep Learning · Machine Learning
· Leakage Analysis

1 Introduction

Side-Channel Analyis (SCA) is a technique by which an adversary circumvents
the security assumptions of a cryptographic system by analyzing its physical
properties. In this regard, timing [13], power consumption [12], and Electromag-
netic (EM) emanation [3] have been investigated to reveal secret parameters.
In order to decrease the information leakage of cryptographic implementations,
researchers and industry came up with dedicated countermeasures which can
be roughly classified into Masking and Hiding [15]. However, more powerful at-
tacks demonstrated that even side-channel protected implementations may still
be vulnerable [16].
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A new line of work that deals with the application of DNNs for side-channel
evaluation of protected and unprotected cryptographic implementations has
been presented recently. In general, DNNs provide a powerful method for a
variety of different real-world problems such as image classification [10], natu-
ral language processing [23], and medicine [8]. In the context of SCA, especi-
ally Convolutional Neural Networks (CNNs) have shown to be advantageous
over standard analyzing tools like Template Attacks (TAs) in different settings
(for example in case of de-synchronized traces or an unknown leakage model)
[7,11,14,22].

Due to the black-box nature of DNNs, understanding the operation of Deep
Learning (DL) models is an active area of research. It is evident that safety
critical applications such as medicine or autonomously driving cars need to be
validated exhaustively prior to their actual release. Regarding image classifica-
tion, several so-called attribution or heatmapping methods have been proposed
to explain the predictions of a DNNs. The idea is to visualize the pixels of an
input image which had the greatest influence of classifying it into a certain cate-
gory. By doing so, it is possible to make the decisions of a DNN more transparent
and explainable as it helps to identify if a DNN was able to learn the ”correct”
features during training.

In this work, we analyze different attribution methods of DNNs for their
suitability in SCA. More specific, we investigate saliency maps [20], occlusion
[24], and LRP [5] to extract the features or POIs from a trained DNN which are
most informative for symmetric key recovery. Proper POI detection is commonly
considered as crucial for the success of profiled SCA (i.e. attacks which assume
an adversary with access to a profiling device which is similar to the target) and
usually performed as a pre-processing step ahead of the actual attack [17]. Here,
we take another perspective and show a technique to compute the relevance
of sample points in side-channel traces after the profiling step. This can be
seen as a constructive method for evaluators to identify the operations of the
implementation under test which caused the highest leakage. Furthermore, we
demonstrate that attribution methods can also be used as a distinguisher in
DNNs-based SCA.

1.1 Contribution & Structure of the Paper

The contributions of this paper are manifold:

1. We show a generic technique that can be used to calculate the POIs from
a trained DNN. It is generic in a sense that it is independent of the actual
used attribution method.

2. Based on the commonly known Key Guessing Entropy (KGE), we define two
novel metrics to quantitatively asses how good the selection of POIs is done.

3. We compare three attribution methods on three different data sets: an unpro-
tected hardware and two protected software implementations of the Advan-
ced Encryption Standard (AES). Our results indicate that the LRP approach
is most suitable for finding POIs.
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4. We show how LRP can be embedded in profiled attack setups to distinguish
between correct and incorrect key hypotheses. We demonstrate by practi-
cal experiments that our proposed method is more efficient than using the
network predictions directly for key recovery.

The structure of the paper is as following: In Section 2, we shortly recap DL-
based SCA and give an introduction in DNN attribution methods. In Section 3,
we presents our approach for POI visualization and apply them to three data
sets for leakage analysis. In Section 4, we evaluate the quality of side-channel
heatmaps. In Section 5, we describe our attribution-based technique for key
recovery and use them to attack an unprotected and a protected implementation
of the AES. The last section summarizes the paper and gives insights on possible
future work.

2 Preliminaries

This section outlines the foundations of DL-based SCA. Furthermore, back-
ground and motivation of DNN attribution methods is provided.

2.1 Deep Learning-based Profiled Side-Channel Analysis

Profiled SCA is divided in two stages: profiling phase and key recovery phase. In
the former, the adversary takes advantage of a profiling device on which he can
fully control input and secret key parameters of the cryptographic algorithm.
He uses that to acquire a set of NP profiling side-channel traces x ∈ RD, where
D denotes the number of sample points in the measurements. Let V = g(p, k)
be a random variable representing the result of an intermediate operation of the
target cipher which depends partly on public information p (plaintext or cipher-
text chunk) and secret key k ∈ K, where K is the set of possible key values. V
is assumed to have an influence on the deterministic part of the side-channel
measurements. In the context of DL or Machine Learning (ML) in general,
the goal of the attacker during the profiling phase is to construct a classifier
that estimates the probability distribution f(x) ≈ P[V |x] using the training set
DTrain = {xi, vi}i=1,...,NP

.
During the key recovery phase, the adversary generates a new set DAttack

with NA attack traces from the actual target device (which is structurally iden-
tical to the profiling device) whereby the secret key k is fixed and unknown. In
order to retrieve it, Log-likelihood (LL) scores over all possible key candidates
k∗ ∈ K are computed and combined to:

dLL(DAttack, f()) =

NA∑
i=1

log f(xi)[g(pi, k
∗)] (1)

The k-th entry in score vector dLL corresponds to the correct key candidate
[18]. A commonly known metric in profiled SCA is the so-called KGE or key
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rank function which quantifies the difficulty to retrieve the correct value of the
key regarding the required number of traces from DAttack [21]. It is computed
by performing a ranking of d after the evaluation of each attack trace.

2.2 Deep Neural Network Attribution Methods

In recent years there has been a growing interest in neural networks having
several layers of neurons stacked upon each other, which are commonly referred
as to DNNs. They represent a particular powerful type of ML techniques that are
able to represent the learning task as a nested hierarchy of concepts, where more
abstract concept representations are built from simpler ones. Throughout the
paper we assume a DNN as a classification function that takes an input vector
x = [x1, . . . , xD] ∈ RD and produces an output f(x,W) = [f1(x), . . . , fC(x)],
where C denotes the number of output neurons (= number of categories). The
parameters W are learned during training to approximate f from a broad class
of functions to map x to the desired output. Training a DNN is usually done
in a iterative, multi-step process by which the parameters of the network are
optimized to minimize a loss function, which depicts the difference between the
expected output (i.e. labels) and the prediction result. In practice, optimizer
algorithms such as Stochastic Gradient Descent (SGD) or ADAM are employed
for that purpose [9].

Given a specific class c, attribution methods for DNNs aim to determine
the influence rc = [rc1, . . . , r

c
D] ∈ RD of each data point xi of an input vector

(sometimes also called ”features”) with respect to the output neuron fc [4].
The result can be visualized, e.g., as a heatmap that indicates the features that
contributed positively and/or negatively to the activation of the target output. In
the following, we briefly summarize three recent attribution methods that have
been proposed for calculating heatmaps for 2D images, which we later apply to
1D side-channel traces.

Saliency Maps Saliency maps were introduced by Simonyan et al. in 2013 to
highlight class discriminative areas of images [20] captured by CNNs. To this end,
the norm value ‖·‖∞ over partial derivatives of the output category is computed
with respect to the input features:

rci =

∥∥∥∥∂fc(x)

∂xi

∥∥∥∥
∞

(2)

Partial derivatives are found by running the back-propagation algorithm
throughout the layers of the network. Intuitively, the magnitude of the deri-
vative indicates which features need to be modified the least to affect the class
score the most. However, since the sign of the derivative is lost when using
the norm, only positive attributions of input features can be detected with the
saliency method. It consequently provides only local explanations, e.g., by indi-
cating the features that make a car more/less a car, but no global explanations
which features compose a car [19].
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Layer-wise Relevance Propagation (LRP) LRP was introduced by Bach et
al. as a general concept to achieve a pixel-wise decomposition of the prediction
f(x) as a terms of the separate input dimensions [5]:

f(x) ≈
N∑
i=1

ri (3)

, where ri > 0 can be interpreted as positive evidence for the presence of a struc-
ture, and ri < 0 as evidence for its absence. The algorithm follows a conservation
principle that proceeds layer by layer, by which the prediction score fc is pro-
pagated recursively through the network until the input layer is reached. For
redistribution a layers relevance onto the preceding layer, Bach et al. proposed
the following propagation rule:

r
(l)
i =

∑
j

zij∑
i′ zi′j + ε · sign(

∑
i′ zi′j)

r
(l+1)
j (4)

Here, r
(l)
i denotes the relevance associated with the ith neuron in layer l received

from the jth neuron in the layer l + 1, and zij = a
(l)
i w

(l,l+1)
ij the weighted

activation of neuron i onto neuron j in the next layer. The ε term is added in
order to cope with numerical instabilities in case the denominator tends to zero.

Compared to gradient-based attribution methods such as saliency, LRP is ap-
plicable to any network with monotonous activation units (even non-continuous).
LRP furthermore provides a clear interpretation by indicating the features for
and against a category [19]. We will see later in the paper that this property can
be exploited to construct a side-channel distinguisher.

Occlusion Occlusion sensitivity analysis as proposed by Zeiler and Vergus at-
tempts to identify the location of objects in images by systematically occluding
different regions of the input with a grey square, and monitoring the classifica-
tion result [24]. Therefore, the relevance of input features can be described as
probability drop of the correct class with respect to the position of the grey pa-
tch. It is evident that the runtime and result of the algorithm is heavily depends
on the number of features that are removed together per iteration.

In the remainder of the paper, we refer to the 1-occlusion approach given in
[4]. In 1-occlusion, exactly one feature of the input data is set to zero per time,
while the effect on the output is measured. More formally, the attribution of a
single feature can be calculated as:

rci = fc(x)− fc(x[i] = 0) (5)

, where x[i] = v indicates an input vector those ith data point has been repla-
ced with the value v. We have chosen 1-occlusion since the leakage information
present in side-channel traces is often concentrated in a small number of sample
points [17].
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3 Attribution for POI Analysis

In this section, we describe a method to generate heatmaps for side-channel
traces using DNN attribution and apply it to three data sets.

3.1 Side-Channel Heatmaps

DNN-based SCA aimed mainly for symmetric key recovery in the past. In this
context, especially CNNs have shown to be a suitable tool due to the fact that
they are able to automatically extract the areas in the side-channel traces which
contains the most information [7,14]. Furthermore, CNNs are able to detect POIs
that would normally not be considered by an attacker. These can be used by
the network in conjunction with the areas that contain a lot of leakage to make
the attack even more efficient, i.e., requiring less/smaller traces for a successful
attack. When using established SCA techniques such as TAs, the selection of the
POIs has to be done manually as preprocessing step ahead of the actual attack.
This is not only tedious, but also error prone as proper POI selection has shown
to have a significant impact on the attack efficiency [25].

In this section, we go one step further and describe a way to extract the POIs
from a trained CNN (or any type of DNN) that have been considered as most
discriminative to reveal the correct key, based on the attribution methods pre-
sented in the previous section. The approach works as follows and is summarized
in (6): Given a trained DNN f(), the relevance rCk for an input trace x is found
by using one of the attribution methods mentioned in Section 2. Ck represents
the output class under the correct key hypothesis, i.e., the labels that have been
used for training of f(). This procedure is conducted for a set of NAttr traces
and the average relevance r̄ ∈ RD is calculated.

r̄ =
1

NAttr

NAttr∑
i=1

rCk(xi, f()) (6)

Because r̄ has the same dimensionality as x, it can be visualized as 1D side-
channel heatmap plot. The information can be used, for example, to determine
leaking operations in cryptographic implementations since it is easily possible to
trace which operations are performed at which time intervals (at least in white-
box evaluation settings). Another use case would be to identify relevant regions
in the side-channel traces using only a subset of the available traces in a first
step, in order to decrease the number of data points for the actual attack with
the complete data set (and thus speed up calculations).

3.2 Experimental Results

We consider three data sets for the experiments of the paper: An unprotected
hardware (denoted as AES-Serial), and two protected software implementations
of the AES (denoted as ASCAD and AES-RSM). For all data sets, we have crea-
ted attribution heatmaps according to 6 using the Python frameworks Keras [2]
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Fig. 1: Mean attributions for three different data sets. Each curve has been cal-
culated with NAttr = 1000 traces according to formula 6.

and DeepExplain [1]. We have kept the same DNN architecture throughout all
experiments in order to allow an unbiased evaluation. The employed network is
a CNN which consist of four convolution blocks followed by two fully-connected
layers. Details about the network structure along with related training parame-
ters are described in detail in Table 1 in the Appendix. As a preprocessing step,
we transformed the traces of all data sets to have zero mean and unit variance
(sometimes referred to as data standardization).

AES-Serial AES-Serial denotes a set of power traces of an unprotected AES
hardware design that have been acquired from a Xilinx ZYNQ UltraScale+ eva-
luation board. A single measurement contains 1000 data points representing
approximately the time interval when the first AES round is calculated. Since
it is commonly known that the most leakage in a hardware implementation is
caused by register transitions, we have used the XOR of two consecutive S-Box
outputs in the first round as target operation and consequently as labels for
training. We have trained the network using 25 000 traces and subsequently cal-
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culated heatmaps with a subset of NAttr = 1000 measurements for each of the
attribution methods introduced in Section 2. The result is plotted in the upper
left corner of Fig.1. From there, one can observe that the region around sample
point 800 is considered as most informative by all three attribution methods.
Interestingly, the saliency heatmap indicates a wider range of samples as impor-
tant and additionally shows a second peak in the first half of heatmap. One can
now use this information in order to increase the SCA resistance of the imple-
mentation. Indeed, by examining the implemented hardware layout, we could
easily backtrack that the found leakage is caused by an unintended high routing
fanout between the state array and the mix columns operation.

ASCAD ASCAD is public database of side-channel measurements and related
meta-data obtained from a first-order secured software AES implementation [18].
Each trace is composed of 700 sample points and the targeted intermediate result
is the third byte of the masked S-Box output that is processed during the first
round. The database is split in 50 000 training and 10 000 attack traces and
we have used the complete former set for CNN training. Next, we calculated
attribution heatmaps using NAttr = 1000 measurements which are illustrated
in upper right corner of Fig.1. From there, it can be noticed that the heatmaps
computed by LRP and 1-Occlusion are very similar in most areas, while the
saliency heatmap shows a different characteristic with several peaks in regions
where no attribution is found by the other techniques. Considering the Signal-
to-Noise Ratio (SNR) analysis that is given in [18], one would expect to see four
regions with POIs: One for the processing of the masked S-box output in linear
parts, one for the processing of the S-Box output masked with the output mask,
and for the processing of the two masks each. This is mostly reflected by the LRP
heatmap. The example demonstrates that attribution methods may also help to
reverse-engineer internal structures of protected cryptographic implementations.

AES-RSM The third data set we have analyzed is based on a secured soft-
ware AES implementation which originates from the DPA Contest v4.2 [6]. It is
equipped with two SCA countermeasures: a first-order secure masking scheme
called Rotating Sbox Masking (RSM), and shuffling of the S-Box execution order.
All traces are composed of 10 000 sample points representing approximately the
first one and a half rounds of an encryption operation and have been acquired
on a ChipWhisperer-Lite board. Previous work showed that the implementation
can be attacked very efficiently using a CNN with Domain Knowledge (DK),
where the profiling is done directly regarding a byte of the secret key and the
related plaintext byte is given to the network via a second input path [11]. We
slightly adapted our CNN architecture used in the former experiments to this
setting. The network was trained using 100 000 traces with random keys and
once again, we calculated attribution heatmaps using a subset of 1000 measu-
rements. Since the DeepExplain framework does not support occlusion analysis
for DNNs having multiple inputs, we only report results for saliency and LRP.
In the lower part of Fig.1 one can see that both methods consider only a small
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fraction of sample points as important. When examining the pseudo code of
the implementation that is given in [6], it becomes evident that these sample
points represent the time window when the key is masked before the actual AES
round transformation. The second smaller peak, which appears a bit later in the
saliency heatmap, is likely due to the XOR of the plaintext with the masked
key. In RSM, the mask values are fixed to carefully which are rotated for every
cipher execution. The results show that such a construction is not secure enough
to resist DNN-based attacks. That is why we recommend to employ masking
schemes that provide a higher level of entropy.

DNN attribution mechanisms are especially interesting in combination with
the DK approach, since here no specific assumption about the leakage behavior
of the implementation under test is assumed. This means, an evaluator using the
method out-of-the-box is only able to validate if the implementation is vulnerable
to such kinds of attacks. Attribution-based leakage analysis supports this process
by identifying which parts of the implementation need to be fixed in order to
increase the SCA resistance.

4 Evaluating Side-Channel Heatmaps

As discussed in the previous section, side-channel heatmaps of the same data set
can vary a lot depending on the used attribution method. A natural question is
therefore which technique for computing DNN attributions is most suitable in the
context of SCA for leakage analysis. In image classification tasks, heatmaps are
often evaluated qualitatively by human experts supported through highlighting
the important pixels in the ground truth. It is trivial to see that this process
cannot be applied for side-channel traces, as it is not possible to judge whether
a 1D heatmap indicates the ”important” sample points by visual inspection.
Because of that, we introduce two novel quantitative metrics in the following to
assess the quality of side-channel heatmaps.

Given an attribution heatmap r̄, we can derive an ordered sequence s ∈ ND =
[s1, . . . , sD] that sorts the values of r̄ according to its relevance such that the
property holds:

(i < j)⇔ (|r̄i| > |r̄j |) (7)

We use absolute values for the comparison since a side-channel heatmap can also
contain negative attribution values as illustrated in Fig.1. However, the sign of
the attribution can be disregarded in this case since both, positive as well as
negative evidence can be considered as important for POI detection. Based on
the ordering s, we can define our heatmap metrics called Key Rank Perturbation
Curve (KRPC) and Zero-Baseline Key Guessing Entropy (ZB-KGE).

4.1 KRPC

The KRPC is inspired by the region perturbation method proposed in [19] and
measures how the key rank calculated in the recovery phase of a profiled attack
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Algorithm 1 KRPC

Inputs: Sorted heatmap indices s, attack (sub-)set DAttack, trained DNN f(), number
of perturbation steps NPert

1: Initialize perturbation counter: i = 0
2: while i < NPert do
3: Get index of sample points to perturb: ip = s[i]
4: for all x ∈ DAttack do
5: Replace sample point with Gaussian noise: x[ip] = N (0, 1)
6: end for
7: Calculate key rank with updated traces: kr[i] = dLL(DAttack, f())[k]
8: Increase perturbation counter: i = i + 1
9: end while
return: Key rank vector kr for key k

increases when we progressively inject Gaussian noise into the traces. Algorithm
1 summarizes the procedure to compute the KRPC.

We have decided to use a Gaussian noise with mean µ = 0 and standard
deviation σ = 1 (denoted as N (0, 1) in Algorithm 1) as perturbation procedure,
since the injected values lie within the same distribution as the other sample
points in the trace (induced by our preprocessing). The KRPC can be interpreted
as noise that is present in the attack traces, but not in the training traces.
Replacing the most sensitive samples first should imply a fast decrease of the
key rank.

We have computed KRPC curves for all three data sets with NPert = 250
perturbation steps. For computational reasons, we have restricted the number
of attack traces that are used in Algorithm 1 to a value that led to a stable key
rank below three without perturbation. However, in order to decrease the bias
that is induced by a fix choice of the attack traces, we have repeated each expe-
riment five times and used a different subset of the attack traces for every run.
Finally, we calculated average KRPC curves which are illustrated as function of
perturbation steps in Fig.2. From there, we can observe that saliency analysis re-
aches the highest key rank after perturbing 250 sample points in all investigated
data sets. However, there are notable differences between the three attribution
methods when examining only the first 100 perturbation steps. One can see,
for example, that the heatmaps computed by LRP and 1-occlusion better iden-
tifies the most relevant POIs in the ASCAD data set, while saliency performs
best on the unprotected hardware implementation. We assume that this is due
to the fact that saliency is only able to provide local explanations and thus is
less suitable for POI detection in settings with highly multivariate leakage (i.e.
implementations with masking countermeasures). The unprotected hardware im-
plementation, in contrast, exhibits several independent leakage locations due to
its serial architecture, which can be better detected by the saliency method.
Results for AES-RSM are almost similar, which is not surprising when looking
at the corresponding attributions in Fig.1. Although AES-RSM is also equipped
with a lightweight masking countermeasure, the exploited leakage is rather of
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Fig. 2: Mean KRPC curves for three data sets

univariate nature since there is only a single peak visible in both heatmaps that
is detected by saliency and LRP likewise.

4.2 ZB-KGE

Using ZB-KGE, we are able to determine how fast the key rank estimated with a
zero-baseline attack setDBaseline (i.e. an attack set where all sample points in the
traces are set to zero) converges when we continuously add relevant sample points
from the actual attack set DAttack to DBaseline. The procedure for calculating a
ZB-KGE curve is described in Algorithm 2. Intuitively, the steeper a ZB-KGE
graph decreases, the more POIs have been identified by the related side-channel
heatmap. Since the ZB-KGE simulates the absence of features, it furthermore
provides insights on how many POIs should approximately be conserved in case
of a dimensionality reduction. Fig.3 displays the ZB-KGE as function of the
number of added POIs for the three data sets. As in the previous experiment,
we have calculated mean curves over five independent subsets of DAttack. From
Fig.3, it can be noticed that the results are close to, but not equivalent to those
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computed with Algorithm 1. For instance, the LRP and 1-occlusion ZB-KGE
curves for the ASCAD data set drop faster in the beginning, but eventually
gets passed by the curve for the saliency method. What we find interesting
is the fact that 1-occlusion identifies equally good relevant sample points in
the ASCAD data set as LRP, but not in the AES-Serial data set. This is a
strong indicator that the information contained in a single sample point of the
unprotected hardware traces is rather small. A greater occlusion factor might
be more suitable in such cases where the univariate leakage is distributed over a
large range of connected sample points. The curves for the AES-RSM data set
are again very similar and show that roughly 150 out of 10 000 data points are
sufficient to reveal the correct key.

Algorithm 2 ZB-KGE

Inputs: Sorted heatmap indices s, attack (sub-)set DAttack, trained DNN f(), number
of sample points to add NAdd

1: Initialize status counter: i = 0
2: Initialize zero-baseline attack set: DBaseline

3: while i < NAdd do
4: Get index of sample points to add: ia = s[i]
5: for all xA ∈ DAttack,x

B ∈ DBaseline do
6: Replace zero sample point with actual value: xB [ia] = xA[ia]
7: end for
8: Calculate key rank with updated traces: kr[i] = dLL(DBaseline, f())[k]
9: Increase status counter: i = i + 1

10: end while
return: Key rank vector kr for key k

5 Attribution as a Distinguisher

As explained earlier in the paper, LRP provides signed explanations that allow to
distinguish between input features that support the classification decision, and
features speaking against the prediction result. This property is very helpful
in image classification tasks as LRP heatmaps can be easily interpreted, e.g.,
to debug which pixels of an image led to a misclassification. In this section, we
exploit the ability of LRP to provide negative and positive evidence to distinguish
between correct and incorrect key hypothesis in the key recovery phase of a
profiled attack. The basic idea is that there should be a measurable difference
between heatmaps calculated with the attack traces under the correct key guess,
and heatmaps for which the wrong output neuron of the DNN has been chosen.
Furthermore, the difference should be most distinct in areas which have been
identified as relevant during profiling. The procedure of the complete attack is
as following:
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Fig. 3: Mean ZB-KGE curves for three data sets

1. Perform DNN training as in a usual profiled attack according to Section 2.1
in order to build device model f().

2. Create side-channel heatmap r̄ using 6 and a subset of DTrain. Next, build
ordered sequence s that fulfills 7.

3. For each key hypothesis k∗ ∈ K, calculate attribution vector rCk∗ using
LRP and sum up those values that correspond to the NPOI highest ranked
components in s. Repeat for complete attack set DAttack such that:

dAT (DAttack, f()) =

NA∑
i=1

NPOI∑
j=1

rCk∗ (xi, f())[s[j]] (8)

The attack is successful if k = arg max(dAT )

We have performed the attack on the AES-Serial and ASCAD data sets with
NPOI = 50. The remaining parameters as well as the DNN architecture have
been the same as in the previous experiments. Fig.4 shows the evolution of the
average key rank as function of the number of attack traces computed from
five independent attacks. For comparison, we have done the key recovery also
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Fig. 4: Mean key ranks for the unprotected hardware AES (left) and the pro-
tected software AES (right). The attribution-based attack (AT) needs less traces
for a successful key recovery than the LL-based attack in both setups.

according to 1 using same trained DNN models and exactly the same traces.
From Fig.4, one can see that our proposed attribution-based attack converges
faster to a key rank of one than the LL-based attack in both data sets. More
concretely, for the unprotected hardware AES, our method needs roughly 100
traces to get to key rank one for the first time and stabilizes after 300 attack
traces. The LL-based attack, in contrast, reaches a stable key rank of one only
after 750 traces. Results for the protected software AES differ not to such an
extent, however, the attribution-based attack manages a stable key rank below
ten with approximately 100 traces while the attack based on LL distinguisher
needs around 300 traces more to pass that mark.

In summary, our experiments demonstrate that attribution methods and es-
pecially LRP are able to use the information that is captured during DNN trai-
ning more efficiently for recovery than the standard LL approach. Drawback
of the method is the increased time complexity due to the need of computing
attributions over all key hypothesis. However, we stress that time is often not
a limiting factor for an adversary. We were able to do a successful key reco-
very on a single Nvidia GeForce GTX 1080 GPU in under 10 minutes which is
still practical. This further confirm that our attribution-based distinguisher is
an interesting alternative when performing profiled SCA.

6 Conclusion

In this work we have studied DNN attribution methods as a tool for leakage
analysis in DL-based side-channel attacks. In particular, we have presented a
technique to compute heatmaps of side-channel traces in order to find leaking
operations in unprotected and protected cryptographic implementations. We ad-
ditionally proposed two metrics to evaluate the quality of side-channel heatmaps
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and used them to compare saliency analysis, LRP and 1-occlusion for their suit-
ability to detect sensitive sample points in side-channel traces. Although the
results indicate no clear advantage for one of the methods, we tend to recom-
mend LRP as most appropriate due to its good performance on the first-order
secured implementations. Furthermore, as demonstrated in the paper, there is
also the opportunity to build an effective distinguisher for key recovery using
LRP.

Future work might investigate other DNN attribution methods in the context
of SCA, such as prediction difference analysis [26] or Deconvolution [24]. Another
interesting path could be to explore the usage of DNN visualization techniques
for network debugging and architecture optimization.
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A Network Parameters

Table 1: Network configuration of CNN

Layer Type Hyperparameters

Trace Input -
Convolution 1D filters=8, filter length=8, activation=ReLU

Max-Pooling pool length=2
Dropout PDrop = 0.3

Convolution 1D filters=16, filter length=8, activation=ReLU
Batch Normalization -

Max-Pooling pool length=2
Dropout PDrop = 0.3

Convolution 1D filters=32, filter length=8, activation=ReLU
Batch Normalization -

Max-Pooling pool length=2
Dropout PDrop = 0.3

Convolution 1D filters=64, filter length=8, activation=ReLU
Batch Normalization -

Max-Pooling pool length=2
Dropout PDrop = 0.3
Flatten -

(optional) Domain Input neurons=256
(optional) Concatenate -

Fully-Connected neurons=20, activation=ReLU
Batch Normalization -

Dropout PDrop = 0.2
Output neurons=256

In all experiments, we trained the network using Adam optimizer and a
learning rate of 0.0001 (AES-Serial) or 0.001 (ASCAD & AES-RSM).
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