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Abstract
How to train a machine learning model while
keeping the data private and secure? We present
CodedPrivateML, a fast and scalable approach to
this critical problem. CodedPrivateML keeps both
the data and the model information-theoretically
private, while allowing efficient parallelization of
training across distributed workers. We charac-
terize CodedPrivateML’s privacy threshold and
prove its convergence for logistic (and linear) re-
gression. Furthermore, via experiments over Ama-
zon EC2, we demonstrate that CodedPrivateML
can provide an order of magnitude speedup (up
to ∼ 34×) over the state-of-the-art cryptographic
approaches.

1. Introduction
Modern machine learning models are breaking new ground
by achieving unprecedented performance in various applica-
tion domains. Training such models, however, is a daunting
task. Due to the typically large volume of data and complex-
ity of models, training is a compute and storage intensive
task. Furthermore, training should often be done on sensi-
tive data, such as healthcare records, browsing history, or
financial transactions, which raises the issues of security and
privacy of the dataset. This creates a challenging dilemma.
On the one hand, due to its complexity, training is often de-
sired to be outsourced to more capable computing platforms,
such as the cloud. On the other hand, the training dataset is
often sensitive and particular care should be taken to protect
the privacy of the dataset against potential breaches in such
platforms. This dilemma gives rise to the main problem
that we study here: How can we offload the training task
to a distributed computing platform, while maintaining the
privacy of the dataset?

More specifically, we consider a scenario in which a data-
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owner (e.g., a hospital) wishes to train a logistic regression
model by offloading the large volume of data (e.g., health-
care records) and computationally-intensive training tasks
(e.g., gradient computations) to N machines over a cloud
platform, while ensuring that any collusions between T
out of N workers do not leak information about the train-
ing dataset. We focus on the semi-honest adversary setup,
where the corrupted parties follow the protocol but may leak
information in an attempt to learn the training dataset.

We propose CodedPrivateML for this problem, which has
three salient features:

1. provides strong information-theoretic privacy guaran-
tees for both the training dataset and model parameters
in the presence of colluding workers.

2. enables fast training by distributing the training com-
putation load effectively across several workers.

3. leverages a new method for secret sharing the dataset
and model parameters based on coding and informa-
tion theory principles, which significantly reduces the
communication overhead and the complexity for dis-
tributed training.

At a high level, CodedPrivateML can be described as fol-
lows. It secret shares the dataset and model parameters
at each round of the training in two steps. First, it em-
ploys stochastic quantization to convert the dataset and
the weight vector at each round into a finite domain. It
then combines (or encodes) the quantized values with ran-
dom matrices, using a novel coding technique named La-
grange coding (Yu et al., 2019), to guarantee privacy (in an
information-theoretic sense) while simultaneously distribut-
ing the workload among multiple workers. The challenge
is however that Lagrange coding can only work for com-
putations that are in the form of polynomial evaluations.
The gradient computation for logistic regression, on the
other hand, includes non-linearities that cannot be expressed
as polynomials. CodedPrivateML handles this challenge
through polynomial approximations of the non-linear sig-
moid function in the training phase.

Upon secret sharing of the encoded dataset and model pa-
rameters, each worker performs the gradient computations
using the chosen polynomial approximation of the sigmoid
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function, and sends the result back to the master. It is useful
to note that the workers perform the computations over the
quantized and encoded data as if they were computing over
the true dataset. That is, the structure of the computations
are the same for computing over the true dataset versus
computing over the encoded dataset.

Finally, the master collects the results from a subset of
fastest workers and decodes the gradient over the finite field.
It then converts the decoded gradients to the real domain, up-
dates the weight vector, and secret shares it with the worker
nodes for the next round. We note that since the compu-
tations are performed in a finite domain while the weights
are updated in the real domain, the update process may
lead to undesired behaviour as weights may not converge.
Our system guarantees convergence through the proposed
stochastic quantization technique while converting between
real and finite fields.

We theoretically prove that CodedPrivateML guarantees
the convergence of the model parameters, while providing
information-theoretic privacy for the training dataset. Our
theoretical analysis also identifies a trade-off between pri-
vacy and parallelization. More specifically, each additional
worker can be utilized either for more privacy, by protecting
against a larger number of collusions T , or more paralleliza-
tion, by reducing the computation load at each worker. We
characterize this trade-off for CodedPrivateML.

Furthermore, we empirically demonstrate the impact of Cod-
edPrivateML by comparing it with state-of-the-art crypto-
graphic approaches based on secure multi-party computing
(MPC) (Yao, 1982; Ben-Or et al., 1988), that can also be
applied to enable privacy-preserving machine learning tasks
(e.g. see (Nikolaenko et al., 2013; Gascón et al., 2017;
Mohassel & Zhang, 2017; Lindell & Pinkas, 2000; Dahl
et al., 2018; Chen et al., 2019)). In particular, we envi-
sion a master who secret shares its data and model parame-
ters among multiple workers who collectively perform the
gradient computation using a multi-round MPC protocol.
Given our focus on information-theoretic privacy, the most
relevant MPC-based scheme for empirical comparison is
the BGW-style (Ben-Or et al., 1988) approach based on
Shamir’s secret sharing (Shamir, 1979). While several more
recent work design MPC-based private learning solutions
with information-theoretic security (Wagh et al., 2018; Mo-
hassel & Rindal, 2018), their constructions are limited to
three or four parties.

We run extensive experiments over Amazon EC2 cloud
to empirically demonstrate the performance of CodedPri-
vateML. We train a logistic regression model for image
classification over the MNIST dataset (LeCun et al., 2010),
while the computation workload is distributed to up to
N = 40 machines over the cloud. We demonstrate that Cod-
edPrivateML can provide substantial speedup in training

time (up to ∼ 34.1×), compared with MPC-based schemes,
while guaranteeing the same level of accuracy. The pri-
mary disadvantage of the MPC-based scheme is its reliance
on extensive communication and coordination between the
workers for distributed private computing, and not benefit-
ing from parallelization among the workers as the whole
computation is repeated by all players who take part in
MPC. They however guarantee a higher privacy threshold
(i.e., larger T ) compared with CodedPrivateML.

Other related works. Apart from MPC-based schemes
to this problem, one can consider two other solutions.
One is based on Homomorphic Encryption (HE) (Gen-
try & Boneh, 2009) which allows for computation to be
performed over encrypted data, and has been used to en-
able privacy-preserving machine learning solutions (Gilad-
Bachrach et al., 2016; Hesamifard et al., 2017; Graepel
et al., 2012; Yuan & Yu, 2014; Li et al., 2017; Kim et al.,
2018; Wang et al., 2018; Han et al., 2019). The privacy
guarantees of HE are based on computational assumptions,
whereas our system provides strong information-theoretic
security. Moreover, HE requires computations to be per-
formed over encrypted data which leads to many orders of
magnitude slow down in training. For example, for image
classification on the MNIST dataset, HE takes 2 hours to
learn a logistic regression model with %96 accuracy (Han
et al., 2019). In contrast, in CodedPrivateML there is no
slow down in performing the coded computations which al-
lows for a faster implementation. As a trade-off, HE allows
collusion between a larger number of workers whereas in
CodedPrivateML this number is determined by other system
parameters such as number of workers and the computation
load assigned to each worker.

Another possible solution is based on differential privacy
(DP), which is a release mechanism that preserves the pri-
vacy of personally identifiable information, in that the re-
moval of any single element from the dataset does not
change the computation outcomes significantly (Dwork
et al., 2006). In the context of machine learning, DP is
mainly used for training when the model parameters are
to be released for public use, to ensure that the individual
data points from the dataset cannot be identified from the
released model (Chaudhuri & Monteleoni, 2009; Shokri &
Shmatikov, 2015; Abadi et al., 2016; Pathak et al., 2010;
McMahan et al., 2018; Rajkumar & Agarwal, 2012; Ja-
yaraman et al., 2018). The main difference between these
approaches and our work is that we can guarantee strong
information-theoretic privacy that leaks no information
about the dataset, and preserve the accuracy of the model
throughout the training. We note however that it is in prin-
cipal possible to compose techniques of CodedPrivateML
with differential privacy to obtain the best of both worlds if
the intention is to publicly release the final model, but we
leave this as future work.
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Figure 1. The distributed training setup consisting of a master and
N worker nodes. The master shares with each worker a coded
version of the dataset (denoted by X̃i’s) and the current estimate
of the model parameters (denoted by W̃

(t)
i ’s) to guarantee the

information-theoretic privacy of the dataset against any T collud-
ing workers. Workers perform computations locally over the coded
data and send the results back to the master.

2. Problem Setting
We study the problem of training a logistic regression model.
The training dataset is represented by a matrix X ∈ Rm×d
consisting ofm data points with d features and a label vector
y ∈ {0, 1}m. Row i of X is denoted by xi.

The model parameters (weights) w ∈ Rd are obtained by
minimizing the cross entropy function,

C(w) =
1

m

m∑

i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) (1)

where ŷi = g(xi ·w) ∈ (0, 1) is the estimated probability
of label i being equal to 1 and g(·) is the sigmoid function

g(z) = 1/(1 + e−z). (2)

The problem in (1) can be solved via gradient descent,
through an iterative process that updates the model parame-
ters in the opposite direction of the gradient. The gradient
for (1) is given by ∇C(w) = 1

mX>(g(X×w)− y). Ac-
cordingly, model parameters are updated as,

w(t+1) = w(t) − η

m
X>(g(X×w(t))− y) (3)

where w(t) holds the estimated parameters from iteration
t, η is the learning rate, and function g(·) operates element-
wise over the vector given by X×w(t).

As shown in Figure 1, we consider a master-worker dis-
tributed computing architecture, where the master offloads
the computationally-intensive operations to N workers.
These operations correspond to gradient computations in
(3). In doing so, master wishes to protect the privacy of the
dataset X against any potential collusions between up to T
workers, where T is the privacy parameter of the system.

At the beginning of the training, dataset X is shared in a
privacy-preserving manner among the workers. To do so, X
is first partitioned into K submatrices X = [X>1 · · ·X>K ]>,
for some K ∈ N. Parameter K is related to the computation

load at each worker (i.e., what fraction of the dataset is
processed at each worker), as well as the number of workers
the master has to wait for, to reconstruct the gradient at
each step. The master then creates N encoded submatrices,
denoted by X̃1, . . . , X̃N , by combining the K parts of the
dataset together with some random matrices to preserve
privacy, and sends X̃i to worker i ∈ [N ]. This process
should only be performed once for the dataset X.

At each iteration t of the training, the master also needs to
send to worker i ∈ [N ] the current estimate of the model
parameters (i.e., w(t) in (3)). However, it is recently shown
that the intermediate model parameters can also leak sub-
stantial information about the dataset (Melis et al., 2019).
The master also needs to prevent the leakage of these in-
termediate parameters. To that end, the master creates an
encoded matrix W̃

(t)
i to secret share the current estimate of

model parameters with worker i ∈ [N ]. This coding strategy
should also be private against any T colluding workers.

More specifically, the coding strategy that is used for secret
sharing the dataset (i.e., creating X̃i’s) and model parame-
ters (i.e., creating W̃

(t)
i ’s) should be such that any subset

of T colluding workers can not learn any information, in
the strong information-theoretic sense, about the training
dataset X. Formally, for every subset of workers T ⊆ [N ]
of size at most T , we should have,

I
(
X; X̃T ,

{
W̃

(t)
T
}
t∈[J]

)
= 0 (4)

where I denotes the mutual information, J is the number
of iterations, and X̃T ,

{
W̃

(t)
T
}
t∈[J] is the collection of the

coded matrices and coded parameter estimations stored at
workers in T . We refer to a protocol that guarantees privacy
against T colluding workers as a T -private protocol.

At each iteration, worker i ∈ [N ] performs its computa-
tion locally using X̃i and W̃

(t)
i and sends the result back

to the master. After receiving the results from a sufficient
number of workers, the master recovers X>g(X×w(t)) =∑K
k=1 X

>
k g(Xk × w(t)), reconstructs the gradients, and

updates the model parameters using (3). In doing so, the
master needs to wait only for the fastest workers. We define
the recovery threshold of the protocol as the minimum num-
ber of workers the master needs to wait for. The relations
between the recovery threshold and parameters N , K, and
T will be detailed in our theoretical analysis.

Remark 1. Although our presentation is based on logistic
regression, CodedPrivateML can also be applied to linear
regression with minor modifications.

3. The Proposed CodedPrivateML Strategy
CodedPrivateML strategy consists of four main phases that
are first described at a high-level below, and then with details
in the rest of this section.
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Phase 1: Quantization. In order to guarantee information-
theoretic privacy, one has to mask the dataset and the weight
vector in a finite field F using uniformly random matrices,
so that the added randomness can make each data point
appear equally likely. In contrast, the dataset and weight
vectors for the training task are defined in the domain of
real numbers. We address this by employing a stochastic
quantization technique to convert the parameters from the
real domain to the finite domain and vice versa. Accordingly,
in the first phase of our system, master quantizes the dataset
and weights from the real domain to the domain of integers,
and then embeds them in a field Fp of integers modulo a
prime p. The quantized version of the dataset X is given by
X. The quantization of the weight vector w(t), on the other
hand, is represented by a matrix W

(t)
, where each column

holds an independent stochastic quantization of w(t). This
structure will be important in ensuring the convergence of
the model. Parameter p is selected to be sufficiently large
to avoid wrap-around in computations. Its value depends
on the bitwidth of the machine as well as the number of
additive and multiplicative operations. For example, in a
64-bit implementation, we select p = 15485863 (the largest
prime with 24 bits) as detailed in our experiments.

Phase 2: Encoding and Secret Sharing. In the second
phase, the master partitions the quantized dataset X into K
submatrices and encodes them using the recently proposed
Lagrange coding technique (Yu et al., 2019), which we will
describe in detail in Section 3.2. It then sends to worker
i ∈ [N ] a coded submatrix X̃i ∈ F

m
K×d
p . As we will illus-

trate later, this encoding ensures that the coded matrices do
not leak any information about the true dataset, even if T
workers collude. In addition, the master has to ensure the
weight estimations sent to the workers at each iteration do
not leak information about the dataset. This is because the
weights updated via (3) carry information about the whole
training set, and sending them directly to the workers may
breach privacy. In order to prevent this, at iteration t, master
also quantizes the current weight vector w(t) to the finite
field and encodes it again using Lagrange coding.

Phase 3: Polynomial Approximation and Local Compu-
tations. In the third phase, each worker performs the com-
putations using its local storage and sends the result back
to the master. We note that the workers perform the com-
putations over the encoded data as if they were computing
over the true dataset. That is, the structure of the computa-
tions are the same for computing over the true dataset versus
computing over the encoded dataset. A major challenge is
that Lagrange coding is designed for distributed polynomial
computations. However, the computations in the training
phase are not polynomials due to the sigmoid function. We
overcome this by approximating the sigmoid with a polyno-
mial of a selected degree r. This allows us to represent the
gradient computations in terms of polynomials that can be

computed locally by each worker.

Phase 4: Decoding and Model Update. The master col-
lects the results from a subset of fastest workers and decodes
the gradient over the finite field. Finally, master converts the
decoded gradients to the real domain, updates the weight
vector, and secret shares it with workers for the next round.

We next provide the details of each phase. The overall algo-
rithm of CodedPrivateML, and each of its four phases, are
also presented in Appendix A.1 of supplementary materials.

3.1. Quantization

We consider an element-wise lossy quantization scheme for
the dataset and weights. For quantizing the dataset X ∈
Rm×d, we use a simple deterministic rounding technique:

Round(x) =

{
bxc if x− bxc < 0.5
bxc+ 1 otherwise (5)

where bxc is the largest integer less than or equal to x. We
define the quantized dataset as

X , φ
(
Round(2lx ·X)

)
(6)

where the rounding function from (5) is applied element-
wise to the elements of matrix X and lx is an integer parame-
ter that controls the quantization loss. Function φ : Z→ Fp
is a mapping defined to represent a negative integer in the
finite field by using two’s complement representation,

φ(x) =

{
x if x ≥ 0
p+ x if x < 0

(7)

Note that the domain of (6) is
[
− p−1

2(lx+1) ,
p−1

2(lx+1)

]
. To avoid

a wrap-around which may lead to an overflow error, prime
p should be large enough, i.e., p ≥ 2lx+1 max{|Xi,j |}+ 1.

At each iteration, master also quantizes the weight vector
w(t) from real domain to the finite field. This proves to be
a challenging task as it should be performed in a way to
ensure the convergence of the model. Our solution to this
is a quantization technique inspired by (Zhang et al., 2017;
2016). Initially, we define a stochastic quantization function:

Q(x; lw) , φ
(
Roundstoc(2

lw · x)
)

(8)

where lw is an integer parameter to control the quantization
loss. Roundstoc : R→ Z is a stochastic rounding function:

Roundstoc(x) =

{
bxc with prob. 1− (x− bxc)
bxc+ 1 with prob. x− bxc

The probability of rounding x to bxc is proportional to the
proximity of x to bxc so that stochastic rounding is unbiased
(i.e., E[Roundstoc(x)] = x).

For quantizing the weight vector w(t), the master creates r
independent quantized vectors:
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w(t),j , Qj(w
(t); lw) ∈ Fd×1

p for j ∈ [r] (9)

where the quantization function (8) is applied element-wise
to the vector w(t) and each Qj(·; ·) denotes an indepen-
dent realization of (8). The number of quantized vectors
r is equal to the degree of the polynomial approximation
for the sigmoid function, which we will describe later in
Section 3.3. The intuition behind creating r independent
quantizations is to ensure that the gradient computations
performed using the quantized weights are unbiased esti-
mators of the true gradients. As detailed in Section 4, this
property is fundamental for the convergence analysis of our
model. The specific values of parameters lx and lw pro-
vide a trade-off between the rounding error and overflow
error. In particular, a larger value reduces the rounding error
while increasing the chance of an overflow. We denote the
quantization of the weight vector w(t) as

W
(t)

= [w(t),1 · · · w(t),r]. (10)

by arranging the quantized vectors from (9) in matrix form.

3.2. Encoding and Secret Sharing

The master first partitions the quantized dataset X into
K submatrices X = [X

>
1 . . .X

>
K ]>, where Xi ∈ F

m
K×d
p

for i ∈ [K]. It also selects K + T distinct elements
β1, . . . , βK+T from Fp. It then employs Lagrange cod-
ing (Yu et al., 2019) to encode the dataset. More specif-
ically, it finds a polynomial u : Fp → F

m
K×d
p of degree

at most K + T − 1 such that u(βi) = Xi for i ∈ [K],
and u(βi) = Zi for i ∈ {K + 1, . . . ,K + T}, where Zi’s
are chosen uniformly at random from F

m
K×d
p (the role of

Zi’s is to mask the dataset and provide privacy against up
to T colluding workers). This is accomplished by letting u
be the respective Lagrange interpolation polynomial

u(z) ,
∑
j∈[K]

Xj ·
∏

k∈[K+T ]\{j}

z − βk
βj − βk

+

K+T∑
j=K+1

Zj ·
∏

k∈[K+T ]\{j}

z − βk
βj − βk

. (11)

Master then selects N distinct elements {αi}i∈[N ] from Fp
such that {αi}i∈[N ] ∩ {βj}j∈[K] = ∅, and encodes the
dataset by letting X̃i = u(αi) for i ∈ [N ]. By defining
an encoding matrix U = [u1 . . .uN ] ∈ F(K+T )×N

p whose
(i, j)th element is given by uij =

∏
`∈[K+T ]\{i}

αj−β`

βi−β`
,

one can also represent the encoding of the dataset as,
X̃i = u(αi) = (X1, . . . ,XK ,ZK+1, . . . ,ZK+T ) · ui. (12)

At iteration t, the quantized weights W
(t)

are also encoded
using a Lagrange interpolation polynomial,

v(z) ,
∑
j∈[K]

W
(t) ·

∏
k∈[K+T ]\{j}

z − βk
βj − βk

+

K+T∑
j=K+1

Vj ·
∏

k∈[K+T ]\{j}

z − βk
βj − βk

. (13)

where Vj for j ∈ [K + 1,K + T ] are chosen uniformly at
random from Fd×rp . The coefficients β1, . . . , βK+T are the
same as the ones in (11). We note that the polynomial in
(13) has the property v(βi) = W

(t)
for i ∈ [K].

The master then encodes the quantized weight vector by
using the same evaluation points {αi}i∈[N ]. Accordingly,
the weight vector is encoded as

W̃
(t)
i =v(αi)=(W

(t)
, . . . ,W

(t)
,VK+1, . . . ,VK+T ) ·ui (14)

for i ∈ [N ], using the encoding matrix U from (12). The
degree of the polynomials u(z) and v(z) are bothK+T−1.

3.3. Polynomial Approximation and Local
Computation

Upon receiving the encoded (and quantized) dataset and
weights, workers should proceed with gradient computa-
tions. However, a major challenge is that Lagrange coding
is originally designed for polynomial computations, while
the gradient computations that the workers need to do are
not polynomials due to the sigmoid function. Our solution is
to use a polynomial approximation of the sigmoid function,

ĝ(z) =

r∑

i=0

ciz
i, (15)

where r and ci denotes the degree and coefficients of the
polynomial, respectively. The coefficients are obtained by
fitting the sigmoid function via least squares estimation.

Using this polynomial approximation we can rewrite (3) as,

w(t+1) = w(t)− η

m
X
>

(ĝ(X×w(t))− y). (16)

where X is the quantized version of X, and ĝ(·) operates
element-wise over the vector X×w(t).

Another challenge is to ensure the convergence of weights.
As we detail in Section 4, this necessitates the gradient
estimations to be unbiased using the polynomial approxima-
tion with quantized weights. We solve this by utilizing the
computation technique from Lemma 4.1 in (Zhang et al.,
2016) using the quantized weights formed in Section 3.1.
Specifically, given a degree r polynomial from (15) and r
independent quantizations from (10), we define a function,

ḡ(X,W
(t)

) ,
r∑

i=0

ci
∏
j≤i

(X×w(t),j) (17)

where the product
∏
j≤i operates element-wise over the

vectors (X×w(t),j) for j ≤ i. Lastly, we note that (17) is
an unbiased estimator of ĝ(X×w(t)),

E[ḡ(X,W
(t)

)] = ĝ(X×w(t)), (18)

where ĝ(·) acts element-wise over the vector X×w(t), and
the result follows from the independence of quantizations.
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Using (17), we rewrite the update equations from (16) in
terms of the quantized weights,

w(t+1) = w(t)− η

m
X
>

(ḡ(X,W
(t)

)− y). (19)

The computations are then performed at each worker lo-
cally. In particular, at each iteration, worker i ∈ [N ] locally
computes f : F

m
K×d
p ×Fd×rp → Fdp:

f
(
X̃i,W̃

(t)

i

)
= X̃

>
i ḡ(X̃i,W̃

(t)

i ) (20)

using X̃i and W̃
(t)
i and sends the result back to the master.

This computation is a polynomial function evaluation in
finite field arithmetic and the degree of f is deg(f) = 2r+1.

3.4. Decoding and Model Update

After receiving the evaluation results in (20) from
a sufficient number of workers, master decodes{
f
(
Xk,W

(t))}
k∈[K]

over the finite field. The min-

imum number of workers the master needs to wait for is
termed the recovery threshold of the system and is equal to
(2r + 1)(K + T − 1) + 1 as we demonstrate in Section 4.

We now proceed to the details of decoding. By construction
of the Lagrange polynomials in (11) and (13), one can define
a univariate polynomial h(z) = f

(
u(z), v(z)

)
such that

h(βi) =f
(
u(βi), v(βi)

)
=f
(
Xi,W

(t))
= X

>
i ḡ(Xi,W

(t)
) (21)

for i ∈ [K]. On the other hand, from (20), the computation
result from worker i equals to

h(αi) =f
(
u(αi), v(αi)

)

=f
(
X̃i,W̃

(t)

i

)
= X̃

>
i ḡ(X̃i,W̃

(t)

i ) (22)

The main intuition behind the decoding process is to use
the computations from (22) as evaluation points h(αi) to
interpolate the polynomial h(z). Specifically, the master can
obtain all coefficients of h(z) from (2r+1)(K+T −1)+1
evaluation results as long as deg

(
h(z)

)
≤ (2r + 1)(K +

T − 1). After h(z) is recovered, the master can recover (21)
by computing h(βi) for i ∈ [K] and evaluating

K∑
k=1

f(Xk,W
(t)

)=
K∑

k=1

X
>
k ḡ(Xk,W

(t)
)=X

>
ḡ(X,W

(t)
) (23)

Lastly, master converts (23) from the finite field to the real
domain and updates the weights according to (19). This
conversion is attained by the function,

Q−1p (x; l) = 2−l · φ−1
(
x
)
. (24)

where we let l = lx + r(lx + lw), and φ−1 : Fp → R is
defined as follows,

φ−1(x) =

{
x if 0 ≤ x < p−1

2

x− p if p−1
2 ≤ x < p

(25)

4. Convergence and Privacy Guarantees
Consider the cost function (1) that we aim to minimize
in logistic regression when dataset X is replaced with the
quantized dataset X using (6). Also denote w∗ as the opti-
mal weight vector that minimizes (1) when ŷi = g(xi ·w),
where xi is row i of X. In this section we prove that Cod-
edPrivateML would guarantee convergence to the optimal
model parameters (i.e., w∗) while maintaining the privacy
of the dataset against colluding workers.

Recall that the model update at the master node in Coded-
PrivateML follows (19), which is

w(t+1) = w(t)− η

m
X
>

(ḡ(X,W
(t)

)− y). (26)

We first state a lemma, which is proved in Appendix A.2 in
supplementary materials.

Lemma 1. Let p(t) , 1
mX

>(
ḡ(X,W

(t)
)−y

)
denote the

gradient computation using the quantized weights W
(t)

in
CodedPrivateML. Then we have

• (Unbiasedness) Vector p(t) is an asymptotically un-
biased estimator of the true gradient. E[p(t)] =
∇C(w(t)) + ε(r), and ε(r) → 0 as r → ∞ where
r is the degree of polynomial in (15) and expectation
is taken with respect to the quantization errors,

• (Variance bound) E
[
‖p(t) − E[p(t)]‖22

]
≤

1
2−2lwm2 ‖X ‖2F , σ2 where ‖ · ‖2 and ‖ · ‖F
denote the l2-norm and Frobenius norm, respectively.

We also need the following basic lemma, which is proved in
Appendix A.3 of supplementary materials.
Lemma 2. The gradient of the cost function (1) with quan-
tized dataset X (as defined in (6)) is L-Lipschitz with
L , 1

4‖X‖
2
2, i.e., for all w,w′ ∈ Rd we have

‖∇C(w)−∇C(w′)‖ ≤ L‖w −w′‖, (27)

We now state our main theorem for CodedPrivateML.
Theorem 1. Consider the training of a logistic regression
model in a distributed system with N workers using Coded-
PrivateML with dataset X = (X1, . . . ,XK), initial weight
vector w(0), and constant step size η = 1/L (where L is
defined in Lemma 2). Then, CodedPrivateML guarantees,

• (Convergence) E
[
C
(
1
J

∑J
t=0 w

(t)
)]
− C(w∗) ≤

‖w(0)−w∗ ‖2

2ηJ + ησ2 in J iterations, where σ2 is given
in Lemma 1,

• (Privacy) X remains information-theoretically
private against any T colluding workers, i.e.,
I
(
X; X̃T , {W̃(t)

T }t∈[J]
)

= 0, ∀T ⊂ [N ], |T | ≤ T ,

as long as we have N ≥ (2r + 1)(K + T − 1) + 1, where
r is the degree of the polynomial approximation in (15).



CodedPrivateML: A Fast and Privacy-Preserving Framework for Distributed Machine Learning

Remark 2. Theorem 1 reveals an important trade-off be-
tween privacy and parallelization in CodedPrivateML. The
parameter K reflects the amount of parallelization in Cod-
edPrivateML, since the computation load at each worker
node is proportional to 1/K-th of the dataset. The pa-
rameter T also reflects the privacy threshold in Coded-
PrivateML. Theorem 1 shows that, in a cluster with N
workers, we can achieve any K and T as long as N ≥
(2r + 1)(K + T − 1) + 1. This condition further implies
that, as the number of workers N increases, the paralleliza-
tion (K) and privacy threshold (T ) of CodedPrivateML can
also increase linearly, leading to a scalable solution.

Remark 3. Theorem 1 also applies to the simpler linear
regression problem. The proof follows the same steps.

Proof. (Convergence) First, we show that the master can
decode X

>
ḡ(X,W

(t)
) over the finite field as long as

N ≥ (2r + 1)(K + T − 1) + 1. As described in Sec-
tions 3.3 and 3.4, given the polynomial to approximation
of the sigmoid function in (15), the degree of h(z) in (21)
is a most (2r + 1)(K + T − 1). The decoding process
uses the computations from workers as evaluation points
h(αi) to interpolate the polynomial h(z). The master can
obtain all coefficients of h(z) as long as the master collects
at least deg

(
h(z)

)
+ 1 ≤ (2r + 1)(K + T − 1) + 1 evalu-

ation results of h(αi). After h(z) is recovered, the master

can decode the sub-gradient X
>
i ḡ(Xi,W

(t)
) by computing

h(βi) for i ∈ [K]. Hence, the recovery threshold is given

by (2r + 1)(K + T − 1) + 1 to decode X
>
ḡ(X,W

(t)
).

Next, we consider the update equation in CodedPrivateML
(see (26)) and prove its convergence to w∗. From the L-
Lipschitz continuity of∇C(w) stated in Lemma 2, we have

C(w(t+1)) ≤ C(w(t)) + 〈∇C(w(t)),w(t+1)−w(t)〉

+
L

2
‖w(t+1)−w(t) ‖

2

= C(w(t))− η〈∇C(w(t)),p(t)〉+L

2
‖p(t)‖

2
,

where 〈, ·, 〉 is the inner product. By taking the expectation
with respect to the quantization noise on both sides,

E
[
C(w(t+1))

]
≤ C(w(t))−η‖∇C(w(t))‖2+

Lη2

2

(
‖∇C(w(t))‖2+σ2)

≤ C(w(t))− η(1− Lη/2)‖∇C(w(t))‖2 + Lη2σ2/2

≤ C(w(t))− η/2‖∇C(w(t))‖2 + ησ2/2 (28)

≤ C(w∗) + 〈∇C(w(t)),w(t)−w∗〉

− η

2
‖∇C(w(t))‖2 + ησ2/2 (29)

≤ C(w∗)+〈E[p(t)],w(t)−w∗〉− η
2
E
[
‖p(t))‖2

]
+ησ2 (30)

= C(w∗) + ησ2 + E
[
〈p(t),w(t)−w∗〉 − η

2
‖p(t))‖2

]
= C(w∗) + ησ2+

1

2η

(
‖w(t)−w∗ ‖2−‖w(t+1)−w∗)‖2

)

where (28) follows from Lη ≤ 1, (29) from the convex-
ity of C, and (30) holds since E[p(t)] = ∇C(w(t)) and
E
[
‖p(t))‖2

]
− ‖∇C(w(t))‖2 ≤ σ2 from Lemma 1 with

assuming the arbitrarily large r. Summing the above equa-
tions for t = 0, . . . , J − 1, we have

J−1∑
t=0

(
E
[
C(w(t+1))

]
− C(w∗)

)
≤ 1

2η

(
‖w(0)−w∗ ‖2 − ‖w(J)−w∗)‖2

)
+ Jησ2

≤ ‖w
(0)−w∗ ‖2

2η
+ Jησ2.

Finally, since C is convex, we observe that

E
[
C
( 1

J

J∑
t=0

w(t) )] ≤ J−1∑
t=0

(
E
[
C(w(t+1))

]
− C(w∗)

)
≤ ‖w

(0)−w∗ ‖2

2ηJ
+ ησ2,

which completes the proof of convergence.
(Privacy) Proof of T -privacy is deferred to Appendix A.4 in
the supplementary materials.

5. Experiments
We now experimentally demonstrate the impact of CodedPri-
vateML, and make comparisons with existing cryptographic
approaches to the problem. Our focus is on training a lo-
gistic regression model for image classification, while the
computation load is distributed to multiple machines on the
Amazon EC2 Cloud Platform.

Setup. We train the logistic regression model from (1) for
binary image classification on the MNIST dataset (LeCun
et al., 2010) to experimentally examine two things: the
accuracy of CodedPrivateML and the performance gain in
terms of training time. The size of dataset is (m, d) =
(12396, 1568)1. Experiments with additional dataset sizes
are provided in Appendix A.6 of supplementary material.

We implement CodedPrivateML using the MPI4Py (Dalcı́n
et al., 2005) message passing interface on Python. Com-
putations are performed in a distributed manner on Amazon
EC2 clusters using m3.xlarge machine instances.

We then compare CodedPrivateML with the MPC-based
approach when applied to our problem. In particular, we
implement a BGW-style construction (Ben-Or et al., 1988)
based on Shamir’s secret sharing scheme (Shamir, 1979)
where we secret share the dataset among N workers who
proceed with a multiround protocol to compute the gradient.
We further incorporate the quantization and approximation
techniques introduced here as BGW-style protocols are also
bound to arithmetic operations over a finite field. See Ap-
pendix A.5 of supplementary materials for additional detail.

1To have a larger dataset we duplicate the MNIST dataset.
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Figure 2. Performance gain of CodedPrivateML over the MPC-
based scheme. The plot shows the total training time for accuracy
95.04% (25 iterations) for different number of workers N in Ama-
zon EC2 Cloud Platform.

Table 1. Breakdown of the total run time with N = 40 workers.

Protocol Encode Comm. Comp. Total run
time (s) time (s) time (s) time (s)

MPC approach 845.55 49.51 3457.99 4304.60
CodedPrivateML (Case 1) 50.97 3.01 66.95 126.20
CodedPrivateML (Case 2) 90.65 6.45 110.97 222.50

CodedPrivateML parameters. There are several system
parameters in CodedPrivateML that should be set. Given
that we have a 64-bit implementation, we select the field
size to be p = 15485863, which is the largest prime with
24 bits to avoid the overflow on intermediate multiplication.
We then optimize the quantization parameters, lx in (6)
and lw in (9), by taking into account the trade-off between
the rounding and overflow error. In particular, we choose
lx = 2 and lw = 4. We also need to set the parameter r,
the degree of the polynomial for approximating the sigmoid
function. We consider both r = 1 and r = 2 and as we show
later empirically observe that a degree one approximation
provides very good accuracy. We finally need to select T
(privacy threshold) and K (amount of parallelization) in
CodedPrivateML. As stated in Theorem 1, these parameters
should satisfy N ≥ (2r + 1)(K + T − 1) + 1. Given our
choice of r = 1, we consider two cases:

• Case 1 (maximum parallelization). All resources to
parallelization by setting K = bN−13 c and T = 1,

• Case 2 (equal parallelization and privacy). The re-
sources are split equally by setting K = T = bN+2

6 c,

Training time. In the first set of experiments, we measure
the training time while increasing the number of workers
N gradually. The results are demonstrated in Figure 2. We
make the following observations. 2

• CodedPrivateML provides substantial speedup over the
MPC approach, in particular, up to 34.1× and 19.4×

2For N = 5, all schemes have almost same performance be-
cause they use same system parameters, K = T = 1.

Figure 3. Comparison of the accuracy of CodedPrivateML
(demonstrated for Case 2 and N = 40 workers) vs conventional
logistic regression that uses the sigmoid function without quanti-
zation. Accuracy is measured with MNIST dataset restructured
for binary classification problem between 3 and 7 (using 12396
samples for the training set and 2038 samples for the test set).

speedup in Cases 1 and 2, respectively. The break-
down of the total run time for one scenario is shown
in Table 1. One can note that CodedPrivateML pro-
vides significant improvement in all three categories
of dataset encoding and secret sharing; communica-
tion time between the workers and the master; and
computation time. One reason for this is that, in MPC-
based schemes, size of the secret shared dataset at each
worker is the same as the original dataset, while in
CodedPrivateML it is 1/K-th of the dataset. This pro-
vides a large parallelization gain for CodedPrivateML.
The other reason is the communication complexity of
MPC-based schemes. We provide the results for more
scenarios in Appendix A.6 of supplementary material.

• We note that the total run time of CodedPrivateML
decreases as the number of workers increases. This
is again due to the parallelization gain of CodedPri-
vateML (i.e., increasing K while N increases). This
parallelization gain is not achievable in MPC-based
scheme, since the whole computation has to be re-
peated by all players who take part in MPC. We should
however point out that MPC-based scheme could at-
tain a higher privacy threshold (T = N/2− 1), while
CodedPrivateML can achieve T = bN+2

6 c (Case 2).

Accuracy. We also examine the accuracy and convergence
of CodedPrivateML in the experiments. Figure 3 illustrates
the test accuracy of the binary classification problem be-
tween digits 3 and 7. With 25 iterations, the accuracy
of CodedPrivateML with degree one polynomial approx-
imation and conventional logistic regression are 95.04%
and 95.98%, respectively. This result shows that CodedPri-
vateML guarantees almost the same level of accuracy, while
being privacy preserving. Our experiments also show that
CodedPrivateML achieves convergence with comparable
rate to conventional logistic regression. Those results are
provided in Appendix A.6 in the supplementary materials.
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A. Supplementary Materials
A.1. Algorithms

The overall procedure of the CodedPrivateML protocol is
given in Algorithm 1. Procedures for individual phases are
shown in Algorithms 2-5 for Sections 3.1-3.4, respectively.

Algorithm 1 CodedPrivateML
input Dataset X,y
output Model parameters (weights) w(J)

1: (Master) Compute the quantized dataset X using (6).
2: (Master) Form the encoded matrices {X̃i}i∈[N ] in (12).
3: (Master) Send X̃i to worker i ∈ [N ].
4: (Master) Initialize the weights w(0) ∈ Rd×1.
5: for iteration t = 0, . . . , J − 1 do
6: (Master) Find the quantized weights W

(t)
from (10).

7: (Master) Encode W
(t)

into {W̃
(t)

i }i∈[N ] using (14).

8: (Master) Send W̃
(t)

i to worker i ∈ [N ].

9: (Worker i = 1, . . . , N ) Compute f(X̃i,W̃
(t)

i ) from
(20) and send the result back to the master.

10: if Master received results from (2r+1)(K+T−1)+1
workers then

11: (Master) Decode {f(Xk,W
(t)

k )}k∈[K] via poly-
nomial interpolation from the received results.

12: end if
13: (Master) Compute

∑K
k=1 f(Xk,W

(t)

k ) in (23) and
convert it from finite field to real domain using (24).

14: (Master) Update the weight vector via (19).
15: end for
16: return w(J)

Algorithm 2 Quantization

input Dataset X and weights w(t)

output Quantized dataset X and weights W
(t)

1: (Master) Compute the quantized dataset from (6),

X = φ
(
Round(2lx ·X)

)

using function Round(·) from (5) and φ(·) from (7).
2: (Master) Compute r independent stochastic quantiza-

tions of vector w(t) given in (9),

w(t),j , Qj(w
(t); lw), j = 1, . . . , r,

by applying the quantization function (8) element-wise
over the vector w(t).

3: (Master) Construct the quantized weight matrix in (10),

W
(t)

= [w(t),1 · · · w(t),r]

using the quantized vectors w(t),j for j = 1, . . . , r.
4: return X and W

(t)

Algorithm 3 Encoding and Secret Sharing

input Quantized dataset X and weights W
(t)

output Encoded dataset X̃i and weights W̃
(t)

i for i ∈ [N ]
1: (Master) Partition the quantized dataset X into K sub-

matrices X = [X
>
1 . . .X

>
K ]>.

2: (Master) Construct the encoded matrices X̃i for i ∈ [N ]
as in (12) using the Lagrange polynomial from (11).

3: (Master) Construct the encoded weights W̃(t)
i for i ∈

[N ] as in (14) using the Lagrange polynomial from (13).

4: (Master) Send X̃i and W̃
(t)

i to worker i, where i ∈ [N ].

Algorithm 4 Polynomial Approximation and Local Com-
putations

input Encoded dataset X̃i and weights W̃(t)
i for i ∈ [N ]

output Computation results f
(
X̃i,W̃

(t)

i

)
for i ∈ [N ]

1: (Master) Find the polynomial approximation coeffi-
cients {ci}ri=0 from (15), by fitting the sigmoid function
to a degree r polynomial via least squares.

2: (Master) Send the coefficients {ci}ri=0 to all workers.
3: (Worker i = 1, . . . , N ) Locally compute the function,

f
(
X̃i,W̃

(t)

i

)
= X̃

>
i ḡ(X̃i,W̃

(t)

i )

using X̃i and W̃
(t)
i as given in (20), and send the result

back to the master.

Algorithm 5 Decoding and Model Update

input Computation results f
(
X̃i,W̃

(t)

i

)
from fastest (2r+

1)(K + T − 1) + 1 workers
output Updated weights w(t+1)

1: (Master) Collect the results from (2r+1)(K+T−1)+1
fastest workers.

2: (Master) Decode
{
f
(
Xk,W

(t))}
k∈[K]

from (21)

through polynomial interpolation using the computa-

tions f
(
X̃i,W̃

(t)

i

)
from (22) that are received from

(2r + 1)(K + T − 1) + 1 workers.

3: (Master) Compute
∑K
k=1 f

(
Xk,W

(t))
=

X
>
ḡ(X,W

(t)
) and convert the result from finite field

to the real domain using (24).
4: (Master) Update the weight vector according to (19),

w(t+1) = w(t)− η

m
X
>

(ḡ(X,W
(t)

)− y).

5: return w(t+1)
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A.2. Proof of Lemma 1

(Unbiasedness) Given X, we have

E[p(t)] =
1

m
X
>(E

[
ḡ(X,W

(t)
)
]
− y

)

=
1

m
X
>(
ĝ(X×w(t))− y

)
(31)

where (31) follows (18). Then, we obtain

E[p(t)]−∇C(w(t))

=
1

m
X
> (

ĝ(X×w(t))− g(X×w(t))
)
. (32)

Assume w(t) is constrained such that ‖w(t) ‖ ≤ R for some
real value R ∈ R ( (Zhang et al., 2016), Lemma 4.2). Then,
from the Weierstrass approximation theorem (Brinkhuis &
Tikhomirov, 2011), for every ε > 0, there exists a poly-
nomial that approximates the sigmoid arbitrarily well, i.e.,
|ĝ(x)−g(x)| ≤ ε for all x in the constrained interval. There-
fore, given X, there exists a polynomial making the norm
of (32) arbitrarily small.

(Variance bound) The variance of p(t) satisfies,

E
[
‖p(t) − E[p(t)]‖22

]

=
1

m2
E
[
‖X>

(
ḡ(X,W

(t)
)− ĝ(X×w(t))

)
‖22
]

=
1

m2
E
[
Tr
(
X
>
q(t) q(t)>X

)]

=
1

m2
Tr
(
X
> E[q(t) q(t)>]X

)
(33)

where Tr(·) denotes the trace of a matrix, and we let q(t) ,

ḡ(X,W
(t)

)− ĝ(X×w(t)).

From Lemma 4 of (Zhang et al., 2016), we have that

E
[
q
(t)
i q

(t)
j ]

{
≤ 2−2lw

(∑r
k=0 ck

(
xiw

(t)
)k)2

if i=j,

= 0 otherwise
(34)

where q(t)i denotes the ith element of q(t).

Combining equations (33) and (34) with the fact that(∑r
k=0 ck

(
xiw

(t)
)k)2 ≈

(
g(xi ·w(t))

)2 ≤ 1 for all
i ∈ [m], we obtain

E
[
‖p(t) − E[p(t)]‖22

]
≤ 1

2−2lwm2
Tr
(
X
>
X
)

=
1

2−2lwm2
‖X ‖2F

A.3. Proof of Lemma 2

For the logistic regression cost function C(w), the Lips-
chitz constant L is less or equal than the largest eigenvalue
of the Hessian ∇2(w) for all w and is given by

L =
1

4
max

{
eig
(
X
>
X
)}
. (35)

A.4. Privacy Proof of Theorem 1

Let Utop ∈ FK×Np and Ubottom ∈ FT×Np are the top and
bottom submatrix of the encoding matrix U constructed
in Section 3.2, respectively. From Lemma 2 of (Yu et al.,
2019), Ubottom is an MDS matrix. Therefore, every T × T
submatrix of Ubottom is invertible.

For a colluding set of workers T ⊂ [N ] of size T , their
received dataset satisfies

X̃T = X×Utop
T + Z×Ubottom

T (36)

where Z =
(
ZK , . . . ,ZK+T

)
, and Utop

T ∈ FK×Tp and
Ubottom
T ∈ FT×Tp are the top and bottom submatrices which

correspond to the columns in U that are indexed by T . Since
Ubottom
T is invertible, X̃T is completely masked by the

random matrix Z. Similarly, W̃
(t)

T is completely masked
by the random matrix V = (VK+1, . . . ,VK+T ) for all
t ∈ [J ], where J is the total number of iterations.

Since X̃T and W̃
(t)

T are completely masked by the random
padding matrices, T colluding workers get no information
about X, i.e., I

(
X; X̃T ,

{
W̃

(t)
T
}
t∈[J]

)
= 0. Then, from

the data-processing inequality (Cover & Thomas, 2012),

I
(
X; X̃T , {W̃(t)

T }t∈[J]

)
≥I
(
X; X̃T , {W̃(t)

T }t∈[J]

)
≥0. (37)

Therefore, I
(
X; X̃T , {W̃(t)

T }t∈[J]
)

= 0 and the original
dataset remains information-theoretically private against T
colluding workers.

A.5. Details of the Implemented MPC-based Scheme

We implement an MPC-based system with a similar privacy
structure, that is, any collusions between T out ofN workers
do not reveal information (in an information-theoretic sense)
about the dataset. To do so, we utilize the well-known BGW
protocol, a secure MPC protocol that can compute polyno-
mial evaluations privately, by ensuring collusions between
up to T out of N workers do not leak information about the
input variables (Ben-Or et al., 1988). Due to the polynomial
nature of the computations supported by the protocol, we
again use polynomial approximation for the sigmoid func-
tion. The protocol utilizes Shamir’s secret sharing scheme
for secret sharing the input variables (Shamir, 1979), which
also requires the input variables to be represented in the
finite field. Therefore, we again use our quantization tech-
nique to convert the dataset and weights from the real to
finite domain. The system parameters used for quantization
and polynomial approximation are selected to be the same
as the ones used for CodedPrivateML.

In order to implement the MPC-based scheme in our prob-
lem, we encode the quantized dataset and weights us-
ing Shamir’s secret sharing. For the (quantized) dataset
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X = [X
>
1 . . .X

>
K ]>, where Xi ∈ F

m
K×d
p , this is achieved

by creating a random polynomial

Pi(z) = Xi +zRi1 + . . .+ zTRiT (38)

for each i ∈ [K], where Rij for j ∈ [T ] are i.i.d. uniformly
distributed random matrices. Then, each worker is assigned
a secret share of the dataset using the polynomial from (38).
We note that in this setup each worker receives a share for
every i ∈ [K]. Therefore, the total amount of data stored
at each worker is equal to the size of the whole dataset
X. A similar polynomial is created for secret sharing the
quantized weights W

(t)
.

The workers then perform addition and multiplication oper-
ations on the secret shared data. For performing an addition
operation, each worker locally adds its own shares. At the
end of this phase, each worker will hold a secret share cor-
responding to the addition of the original variables. For
performing a multiplication operation, workers first mul-
tiply their shares locally. After this phase, the protocol
requires a communication step to take place between the
workers, in which workers create new shares. We implement
this communication phase also using the MPI4Py message
passing interface. One can reduce the number of commu-
nication rounds by using a vectorized form for operations
involving vector products, and implementing a communica-
tion step between workers after each vectorized product. In
our experiments, we implement this faster vectorized form.
The protocol guarantees privacy against bN−12 c colluding
workers (Ben-Or et al., 1988). In our experiments, the time
spent during the communication phase between workers is
included in the reported computation time.

A.6. Additional Experiments

A.6.1. BREAKDOWN OF THE TOTAL RUN TIME FOR
ADDITIONAL SCENARIOS

We present the breakdown of the run time when training is
done by different number of workers, using the dataset from
Section 5. Tables 2 and 3 demonstrate the corresponding
results for N = 10 and N = 25 workers, respectively. One
can note that, in all scenarios, CodedPrivateML provides
significant improvement in all three categories of dataset
encoding and secret sharing; communication time between
the workers and the master; and computation time.

Table 2. Breakdown of the total run time with N = 10 workers.

Protocol Encode Comm. Comp. Total run
time (s) time (s) time (s) time (s)

MPC-based scheme 53.87 11.71 957.12 1001.53
CodedPrivateML (Case 1) 21.86 3.31 259.54 303.13
CodedPrivateML (Case 2) 32.20 5.55 390.98 465.52

Table 3. Breakdown of the total run time with N = 25 workers.

Protocol Encode Comm. Comp. Total run
time (s) time (s) time (s) time (s)

MPC-based scheme 328.19 30.61 1492.44 1818.63
CodedPrivateML (Case 1) 33.27 3.06 97.46 144.77
CodedPrivateML (Case 2) 78.69 7.12 194.09 295.68

A.6.2. CONVERGENCE OF CODEDPRIVATEML

We also experimentally analyze the convergence behaviour
of CodedPrivateML. Figure 4 presents the cross entropy
loss for CodedPrivateML versus the conventional logistic
regression model, over the dataset from Section 5. The latter
setup uses the sigmoid function and no polynomial approxi-
mation, in addition, no quantization is applied to the dataset
or the weight vectors. We observe that CodedPrivateML
achieves convergence with comparable rate to conventional
logistic regression. This result shows that CodedPrivateML
guarantees almost the same convergence rate, while being
privacy preserving.

Figure 4. Convergence of CodedPrivateML (demonstrated for Case
2 and N = 40 workers) vs conventional logistic regression (using
the sigmoid without polynomial approximation or quantization).

A.6.3. EXPERIMENTS FOR A SMALLER DATASET

In this section, we demonstrate the performance of Coded-
PrivateML on a smaller dataset, by considering (m, d) =
(12396, 784). Figure 5 illustrates the training time while
increasing the number of workers N gradually. Tables 4-6
provide the breakdown of the run time for the training phase,
with 10, 25, and 40 workers, respectively.

Upon inspecting the performance gains from Tables 1-3 ver-
sus Tables 6-4, we conclude that CodedPrivateML achieves
a higher performance gain (from 26.2× to 34.1× when
N = 40) as the dimension of dataset gets larger. Our inter-
pretation of this behaviour is based on the following obser-
vation. Increasing the number of workers in the system has
two major impacts on the training time of CodedPrivateML.
The first one is reducing the computation load per worker,
as each new worker can be used to increase the parameter
K (i.e., the parallelization gain). This in turn reduces the
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Figure 5. Performance gain of CodedPrivateML over the MPC-
based scheme with the smaller dataset. The plot shows the total
training time for accuracy 95.04% (25 iterations) for different
number of workers N in Amazon EC2 Cloud Platform.

computation load per worker as the amount of work done
by each worker is scaled with respect to 1/K. The second
one is that increasing the number of workers increases the
encoding time. Therefore, for small datasets, i.e., when the
computation load at each worker is small, the gain from
increasing the number of workers beyond a certain point
may be minimal and the system may saturate. A similar be-
haviour is observed in Figure 5 when the number of workers
is increased from N = 25 to N = 40.

Therefore, in order to achieve the best performance gain,
we find that CodedPrivateML is well suited for data-
intensive distributed training environments for processing
large datasets. Furthermore, it can be tuned to meet the
specific performance guarantees required by different appli-
cations, i.e., a faster implementation versus more privacy.

Table 4. Breakdown of the run time with (m, d) = (12396, 784)
for N = 10 workers.

Protocol Encode Comm. Comp. Total run
time (s) time (s) time (s) time (s)

MPC-based scheme 26.70 5.41 177.44 204.86
CodedPrivateML (Case 1) 8.15 1.26 50.97 62.23
CodedPrivateML (Case 2) 15.97 2.33 76.46 96.70

Table 5. Breakdown of the run time with (m, d) = (12396, 784)
for N = 25 workers.

Protocol Encode Comm. Comp. Total run
time (s) time (s) time (s) time (s)

MPC-based scheme 166.04 14.87 316.55 484.09
CodedPrivateML (Case 1) 16.40 1.29 18.26 38.87
CodedPrivateML (Case 2) 28.62 3.12 38.26 72.39

Table 6. Breakdown of the run time with (m, d) = (12396, 784)
for N = 40 workers.

Protocol Encode Comm. Comp. Total run
time (s) time (s) time (s) time (s)

MPC-based scheme 418.07 24.33 774.20 1194.12
CodedPrivateML (Case 1) 26.64 1.11 11.18 45.58
CodedPrivateML (Case 2) 46.52 2.79 21.07 76.81


