
1

TEDT, a Leakage-Resilient AEAD mode
for High (Physical) Security Applications

Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert
ICTEAM Institute, Crypto Group, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Abstract

We propose TEDT, a new Authenticated Encryption with Associated Data (AEAD) mode leveraging Tweakable Block Ciphers
(TBCs). TEDT provides the following features: (i) It offers asymptotically optimal security in the multi-user setting. (ii) It offers
nonce misuse-resilience, that is, the repetition of nonces does not impact the security of ciphertexts produced with fresh nonces. (iii)
It offers KDM security in the multi-user setting, that is, its security is maintained even if key-dependent messages are encrypted.
(iv) It offers full leakage-resilience, that is, it limits the exploitability of physical leakages via side-channel attacks, even if these
leakages happen during every message encryption and decryption operation. (v) It can be implemented with a remarkably low
energy cost when strong resistance to side-channel attacks is needed, supports online encryption and handles static & incremental
associated data efficiently. Concretely, TEDT encourages leveled implementations, in which two TBCs are implemented: one
needs strong and energy demanding protections against side-channel attacks but is used in a limited way, while the other only
requires weak and energy efficient protections and performs the bulk of the computation. As a result, TEDT leads to considerably
more energy efficient implementations compared to traditional AEAD schemes, whose side-channel security requires to uniformly
protect every (T)BC execution.

Index Terms

Authenticated encryption, re-keying, tweakable block cipher, beyond-birthday bound, multi-user security, side-channel security,
key-dependent messages security, leveled implementations, low energy implementations.

I. INTRODUCTION

The development of Authenticated Encryption with Associated Data (AEAD) schemes has been an area of extremely active
research since the beginning of this millennium. Numerous prominent designs have emerged and, on top of the traditional
confidentiality and integrity requirements [1], [2], a number of desirable functional and (sometimes conflicting) security
properties emerged. This paper proposes TEDT, a new AEAD mode for tweakable block ciphers that primarily aims at a
high efficiency when a strong resistance to side-channel attacks is needed, which are among the most practical threats against
cryptographic implementations, as highlighted in a recent white paper [3, chapter 1.1] – see also [4]–[10], for example.

Every time an encryption or a decryption operation takes place, some side-effects may be observable, which can leak infor-
mation on the internal state of a computing device, including keys: these can be timing, power consumption and electromagnetic
radiation measurements. Such attacks can be mounted in two main flavors which, in the context of power consumption, are
called Simple Power Analysis (SPA) and Differential Power Analysis (DPA) [11]. In an SPA, an attacker takes advantage of
the leakages resulting from a single input (message) provided for encryption, with measurements that are possibly repeated
multiple times in order to remove the noise in measurements. A DPA exploits the leakages resulting from multiple inputs,
which all provide new information about the internal state of the device, reducing the computational secrecy of this state at a
rate that is exponential in the number of distinct inputs.

Standard AEAD are typically susceptible to the mounting of a DPA attack: for instance, prominent modes like OCB [12],
CCM [13], or GCM [14] all evaluate a block cipher used with a single key on a distinct input for each message block, which
is the exact setting in which DPAs apply.

The protection against side-channel attacks is then typically left to engineers who will implement the block ciphers and other
components of the AEAD in a way that limits the leakages as much as possible. One of the most popular countermeasures is
masking [15], in which the internal state of the device is secret-shared into a number of pieces (leading to so-called higher-order
security under some noise and independence assumptions), which are then used for the computation. The strong protection of a
block cipher against DPA usually decreases the standard performance metrics of both software and hardware implementations
by orders of magnitude compared to non-protected implementations [16], [17]. The overhead for the full AEAD mode is then
of the same order, since all message blocks need to be processed by one such strongly protected block cipher.

Another approach consists in designing leakage-resilient modes [18]–[21]. These modes, which often come with some
computational overheads in the black-box setting, e.g., require more block cipher calls than a standard AEAD or require more
keying material, aim at considerably reducing the effect of leakages and the possibility to mount a DPA. A first classical
ingredient is to use some form of key update or re-keying [22], [23] in order to make sure that each execution of a block
cipher leaks about a different key, hence effectively leaving the adversary with the possibility to mount an SPA only. A second
common ingredient, required in modes aiming at integrity properties, is that the decryption/verification of the validity of a
ciphertext/MAC does not require computing the correct value of the authentication tag [18], [19]. This prevents attacks in

2

which an adversary uses a verification oracle, which it repeatedly queries with a forged message or ciphertext and an invalid
tag in order to obtain leakages about the correct tag.

Leakage-resilient modes can also be designed in such a way that they are amenable to so-called leveled implementations, in
which different implementations of the mode components (e.g., block ciphers) are used. A leveled implementation will rely,
on the one hand, on the limited use of highly protected or, in effect, leak-free components. In practice, these would use strong
state-of-the-art protections, like high-order masking. On the other hand, it will be tolerated that the rest of the components,
which would perform the bulk of the computation, continuously leak a certain amount of information to the adversary every
time they are used, hence requiring very limited protections, or even no specific protection at all depending on the platform.
For example, shuffled implementations could be considered in case of mid-range devices [24], [25], and plain unprotected
implementations could even be sufficient in case of hardware devices (with a good level of parallelism) [26].

The expected benefits of this leakage-resilient approach are twofold. First, they can lead to more efficient implementations
for a given level of resistance to side-channel attacks. Indeed, even if these modes come with apparently heavier requirements
in the black-box world (TEDT requires 4 calls of a TBC per message block), this cost is expected to be largely compensated by
the more limited use of side-channel countermeasures that is required. For example, using the cycle counts of the higher-order
masked implementations in ARM 32-bit devices from the recent work of Goudarzi an Rivain at Eurocrypt 2017 [16], we show
that TEDT leads to reduced cycle counts (hence more energy efficiency) compared to a uniformly protected implementation of
OCB already with two shares, and that the factor of gain approximately reaches `+2

2 for messages of ` blocks as the number
of shares in the masking schemes increases. For “reasonable” number of shares (given the high security goal of TEDT), like
four to eight, the gains can reach factor larger than ten for moderate size messages (like ` = 100). We expect similar energy
gains to be observed in hardware (since the cost of masking is in general quadratic).

Second, the security reductions that come with the definition of leakage-resilient modes bring clear requirement on the
specific blocks to implement. This considerably simplifies the task of designers and evaluation laboratories, and can then also
increase the confidence that can be placed in the result of these evaluations. The reductions also clarify the effect of the failure
of some components. For instance, in the case of TEDT, we show that weakly protected components that would leak their
internal state in full through an SPA would break confidentiality, but would have no impact on ciphertext integrity. And, in
the context of confidentiality, we reduce the security requirements on these weakly protected components, in encryption and
decryption, to two simple security games that require evaluating the effect of at most two leakages of a single TBC, a task
that is considerably simpler than evaluating what can be derived from millions of leakages of a full mode of operation.

Apart from its leakage-resilience, TEDT is also highly competitive in the black-box setting as detailed next:
• TEDT offers optimal multi-user (mu) security and even surpasses, in this respect, the recently GCM-SIV with nonce-

based key-derivation [27], [28]. The gain is obtained from the TEDT re-keying process introduced for leakage-resilience,
and shows another benefit of investigating protections against side-channel attacks at the mode of operation level (i.e.,
side-channel protections can improve other security properties). Note that such a Beyond Birthday Bound (BBB) security
was highlighted in [27] and [3, chapter 1.2], while mu security is crucial for defending against mass surveillance [29].

• TEDT offers mu nonce misuse-resilience in the sense of Ashur et al. [30], and this property is preserved in the presence
of leakages, under the definitions in [31]. Misuse-resilience guarantees that repeated nonces do not have an impact on
the security of messages that are encrypted with fresh nonces, a property that is not satisfied by many standard modes
of operation. We do not aim for nonce misuse-resistance [32], a stronger form of protection that requires that security is
maintained even for ciphertexts produced with repeated nonces, provided that distinct messages are encrypted. Misuse-
resistance requires two successive passes on messages for encryption, which creates additional latency and memory
requirements; but is also believed impossible in many leakage settings (see Appendix A).

• TEDT offers mu key-dependent message (KDM) security. This property is granted thanks to the KDF function that is
integrated in TEDT as part of its rekeying procedure for leakage resilience. (The use of such a KDF was identified by
Bellare and Keelveedhi as a useful ingredient to obtain KDM security [33]).

Our approach for improving mu security may be of independent interest. While it is known that increasing the length of
secret keys and randomizing nonces can help [29], we show how to improve mu security from a public key (used in addition
to the usual secret key).

TEDT analysis. Our security proofs model the TBC as an ideal TBC. Our motivation for appealing to this ideal model partly
inherits from previous works [28], [29]: adversarial queries to the ideal TBC give a clear and rigorous way to measure the
offline computation. In fact, non-degrading mu security results typically rely on the ideal model, e.g., [34] and some of them,
e.g., XGCM [29] and its underlying FX-key length extension [35], can only be proved effective in the ideal model. Still, most
of the security properties of TEDT can also be proven in the standard model (and we do this in appendix). This analysis then
leads to weaker security bounds, which is a well-known artifact of the proof techniques on re-keying designs and rarely relates
to actual weaknesses [36], [37] (this constitutes another equally important reason for relying on ideal model analysis).

In terms of leakages, the ideal cipher model prompted us to make very simple assumptions. Indeed, in such a model, leakages
about a key are guaranteed to be useless as long as they do not lead to a full key-recovery. Our strongly protected components
are then modeled as leak-free, that is, hiding their key and, in the case of confidentiality, also mildly hiding their output, which

3

follows [38]. Our weakly protected components are assumed to leak their state in full as far as authentication is concerned,
which follows [19], and to offer hard-to-invert leakages for confidentiality, which follows [23] and appears theoretically minimal
& practically measurable (which we believe is essential for modes in use). We also provide analyzes in the standard model in
appendix: they require to make stronger assumptions of leakage simulatability [39] regarding the weakly protected components,
and the analyzes lead to comparable bounds.

II. RELATED WORKS

ISAP is an elegant sponge-based AEAD aiming at design-level DPA security [21]. While being based on different con-
structions and primitives, ISAP uses the Encrypt-then-MAC pattern that is common to most proposals for leakage-resilience.
The understanding of side-channel protections for sponge-based constructions is however scarce, and the lack of available
tools made the authors of ISAP postpone any rigorous analysis of their mode for future work. The use of a sponge and the
definition of an authentication tag as a truncation of the final sponge state can be expected to raise some specific difficulties:
indeed it forces computing correct tags every time a ciphertext is sent for decryption, and the leakages of this computation
may eventually lead to simple forgeries. ISAP has not been designed for mu security either, and is actually quite sensitive to
mu attacks on its authentication part. Is is unknown how much key size increases would be required to address this difficulty,
of if the techniques used in our paper could be used in ISAP.

Barwell et al. [18] recently proposed security definitions, a mode of operation, and a choice of a PRF, for a leakage-resilient
AEAD mode. Their security definitions are different from ours, notably in the fact that they do not offer to the adversary
any leakage that would come from queries in which the game challenger would encrypt either a real or a random message.
Such a definition could classify as secure an implementation that leaks plaintexts in full but, on the other hand, makes it
feasible to require misuse-resistance instead of misuse-resilience. Their mode of operation is also incompatible with leveled
implementations: each block-cipher call needs to be equally well protected, and they propose using, for that purpose, a PRF
that is based on pairings. As such, the (e.g., energy) efficiency of a uniformly protected implementation of their mode would
be considerably lower than a leveled implementation of TEDT as we propose.

Berti et al. [19], [20] and Guo et al. [31] also introduced several security definitions and modes of operation for leakage
resilient AEADs. While their security definitions are the starting point of the TEDT design, we extend their work in several
directions. (i) TEDT is designed to offer strong mu security, which is ignored in previous modes, and which, as mentioned
before, is highly important for practical use. (ii) TEDT is fully specified, and we offer a performance evaluation, while their
proposals left several questions open, including the way to implement a hash function. (iii) TEDT is analyzed in several security
models, including the ideal cipher model based on very mild assumptions on leakages (one-wayness) with tight security bounds,
while such a tight security analysis is not available for other modes.

III. PRELIMINARIES

The size or the length of a bit string x ∈ {0, 1}∗, denoted |x|, is the integer a such that x ∈ {0, 1}a; an a-bit string has
length a. Let n be a non negative integer so that, when n is clear in the context, given a bit string x ∈ {0, 1}∗, the padding
x‖0∗ is the smallest bit string containing the prefix x only followed, if necessary, by 0’s and whose length is a multiple of n.
We denote by [num]size the size-bit binary encoding of the integer num. We denote by a (q1, . . . , qω, t)-bounded adversary a
probabilistic algorithm that has access to ω oracles, O1, . . . , Oω , can make at most qi queries to its i-th oracle Oi, and can
perform computation bounded by running time t. A leaking version of an algorithm Algo is denoted LAlgo. It runs both Algo
and a leakage function Lalgo which captures the information given by an implementation of Algo during its execution. LAlgo
returns the outputs of both Algo and Lalgo which all take the same input.

A. Primitives

A Tweakable Block Cipher (TBC) with key space {0, 1}κ, tweak space {0, 1}t, and domain {0, 1}n is a mapping TE :
{0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n such that for any key K ∈ {0, 1}κ and any tweak T ∈ {0, 1}t, X 7→ TE(K,T,X)
is a permutation of X . We call such TBCs (κ, t, n)-TBC. Similarly, we denote (κ, n)-blockcipher those with κ-bit keys and
n-bit blocks. Note that we focus on (n, n, n)-TBC in this paper. A block cipher which is sampled uniformly at random from
the set of all block ciphers with corresponding key space and domain is called an ideal cipher. Similarly, an ideal TBC
ĨC : {0, 1}n ×{0, 1}n ×{0, 1}n → {0, 1}n is a TBC sampled uniformly at random from all (n, n, n)-TBCs. In this case, ĨCTK
is a random independent permutation of {0, 1}n for each (K,T) ∈ {0, 1}n×{0, 1}n even if the key K is public. Throughout
the remaining, we simply use the notation Ẽ for TBCs (instead of TE); and in our ideal TBC-based security proofs, we use
the notation ĨC.

In this paper we focus on nonce-based authenticated encryption scheme with associated data (AEAD), which is defined as
a tuple AEAD = (Enc,Dec) such that:
• Enc : K ×N × AD ×M → C maps a key selected from K, a nonce from N , blocks of associated data from AD, and a
message from M to a ciphertext in C.
• Dec : K ×N ×AD × C →M∪ {⊥} maps a key from K, a nonce N , blocks associated data from AD, and a ciphertext
from C to a message in M that is the decryption of the ciphertext, or to a special symbol ⊥ if integrity checking fails.

4

The message size `m uniquely determines the ciphertext size `c = `m + oh, where the constant oh is the overhead. C`m
denotes the set of all the ciphertexts encrypting `m-size messages. Given a key k ← K, Enck(N,A,M) := Enc(k,N,A,M)
and Deck(N,A,C) := Dec(k,N,A,C) are deterministic functions whose implementations may be probabilistic. Nonce-based
AEAD must be correct meaning that for any key k ← K and any triple (N,A,M) ∈ N×AD×M, Deck(N,A,Enck(N,A,M)) =
M . Since we only focus on correct nonce-based authenticated encryption with associated data in this paper, we will often
simply refer to it as authenticated encryption in the following.

B. Security Definitions in the Multi-User Setting

We extend important existing security definitions to the multi-user setting: they include the (black-box) notion of nonce-
misuse resilience due to Ashur et al. [30] as well as two leakage-resilience notions due to Berti et al. [20] and Guo et al. [31],
for integrity and confidentiality. While single-user (su-) notion does not always imply its multi-user (mu-) counterpart in some
leakage settings [31], we show in Appendix B that our mu-extensions reduce to the su-cases.

1) Misuse-Resilience: Ashur et al. [30] proposed a strong indistinguishability notion for authenticated encryption which
divides adversarial encryption queries into challenge and non-challenge ones, and only requires the adversary to be nonce-
respecting among the former type of queries. The nonce-misuse in non-challenge queries should not affect the pseudorandomness
of the responses to the challenge queries, i.e. of the challenge ciphertexts. To avoid confusion with misuse-resistance [32] we
will not refer to misuse-resilience with its initials but as CCAm$ since it is a “real-or-random” indistinguishability game
between the real world (Enck,Enck,Deck) and the random (or ideal) world (Enck, $,⊥), hence the $, where the second oracle
is the challenge oracle. Formally, given a nonce-based authenticated encryption AEAD = (Enc,Dec), the multi-user chosen
ciphertext misuse resilience advantage of an adversary A against AEAD with u users is

AdvmuCCAm$
AEAD,A,u :=

∣∣∣Pr
[
AEncK,EncK,DecK,ĨC ⇒ 1

]
− Pr

[
AEncK,$,⊥,ĨC ⇒ 1

]∣∣∣,
where the probability is taken over the u user keys K = (K1, . . . ,Ku), with Ki ← K, over A’s random tape and the ideal TBC
ĨC1 and where EncK(i,N,A,M): if 1 ≤ i ≤ u, outputs EncKi(N,A,M); $(i,N,A,M) outputs and associates a fresh random
ciphertext C $← C|M | to fresh input, and the associated C otherwise; Dec(i,N,A,C) outputs DecKi(N,A,C) if (i,N,A,C)
is not an oracle answer to an encryption query (i,N,A,M) for some M , and ⊥ otherwise; ⊥(i,N,A,C) outputs ⊥; for each
user i: (i) nonce N cannot be used both in query to O1(i,N, ∗, ∗) and O2(i,N, ∗, ∗); (ii) O2(i, ∗, ∗, ∗) is nonce-respecting;
(iii) if C is returned by O1(i,N,A,M) or O2(i,N,A,M) query O3(i,N,A,C) is forbidden; (iv) a nonce used twice with
O1 cannot be used for an O3 query. The extended muCCAm$ advantage muCCAm$

∗ is defined as the muCCAm$ one where
the last restriction (iv) is waived from the definition.

2) Leakage-Resilience: In face of a leakage adversary, separate definitions for integrity and confidentiality potentially offer
more gradual degradation. This relies on the feature of physically observable cryptography that unpredictability is much easier
to ensure than indistinguishability [40], which naturally splits the level of confidence we might expect to achieve both notions.
Here, we will focus on misuse-resilient AEAD with misuse-resistant integrity and misuse-resilient confidentiality (as mentioned
earlier, misuse-resistant confidentiality does not seem possible: see appendix A). To formalize the leakage depending on an
implementation, AEAD is associated to both an encryption leakage function Lenc and a decryption leakage function Ldec. Berti
et al. defined a leakage integrity notion Ciphertext Integrity with Misuse-resistance and (encryption & decryption) Leakage
in [19], [20], which is denoted CIML2. In some sense, the definition is obtained by enhancing the traditional INT-CTXT security
game with encryption and decryption leakage. Here we further extend it to multi-user setting, denoted muCIML2. Formally,
given a nonce-based authenticated encryption AEAD = (Enc,Dec) with leakage function pair L = (Lenc, Ldec), the multi-user
ciphertext integrity advantage with misuse-resistance and leakage of an adversary A against AEAD with u users is

AdvmuCIML2
A,AEAD,L,u :=

∣∣∣Pr
[
ALEncK,LDecK,ĨC ⇒ 1

]
−Pr

[
ALEncK,LDec⊥K,ĨC ⇒ 1

]∣∣∣ ,
where the probability is taken over the u user keys K = (K1, . . . ,Ku), with Ki ← K, over A’s random tape and the ideal
TBC ĨC, and where (for 1 ≤ i ≤ u):
• LEncK(i,N,A,M): outputs the cipher EncKi(N,A,M) and the corresponding leakage trace Lenc(Ki, N,A,M);
• LDecK(. . .): outputs

(
DecKi(N,A,C), Ldec(Ki, N,A,C)

)
;

• LDec⊥K(. . .): computes leakd ← Ldec(Ki, N,A,C) and if C is an output of some leaking encryption query (i,N,A,M) for
some M outputs (M, leakd), else outputs (⊥, leakd).

1Since we target security in the ideal cipher model, we follow Bellare and Tackmann [29] and highlight ĨC in the definition.

5

PrivKmuCCAmL2,b
A,AEAD,L,u is the output of the following experiment:

Initialization: generates u secret keys K1, . . . ,Ku ← K and sets Ech, E1, . . . , Eu ← ∅.
Leaking encryption queries: AL gets adaptive access to LEnc(·, ·, ·, ·),

LEnc(i,N,A,M) outputs ⊥ if (i,N, ∗, ∗) ∈ Ech, else computes C ← EncKi(N,A,M) and leake ← Lenc(Ki, N,A,M),
updates Ei ← Ei ∪ {N} and finally returns (C, leake).

Leaking decryption queries: AL gets adaptive access to LDec(·, ·, ·, ·),
LDec(i,N,A,C) outputs ⊥ if (i,N,A,C) ∈ Ech, else computes M ← DecKi(N,A,C) and leakd ← Ldec(Ki, N,A,C)
and returns (M, leakd);

Challenge queries: on possibly many occasions AL submits (i,Nch, Ach,M
0,M1),

If M0 and M1 have different (block) length or Nch ∈ Ei or (i,Nch, ∗, ∗) ∈ Ech, returns ⊥; Else computes Cb ←
EncKi(Nch, Ach,M

b) and leakbe ← Lenc(Ki, Nch, Ach,M
b), updates Ech ← Ech ∪ {(i,Nch, Ach, Cb)} and finally returns

(Cb, leakbe);
Decryption challenge leakage queries: AL gets adaptive access to Ldecch(·, ·, ·, ·),

Ldecch(i,Nch, Ach, C
b) computes and outputs leakbd ← Ldec(k,Nch, Ach, C

b) if (i,Nch, Ach, C
b) ∈ Ech; Else it outputs

⊥;
Finalization: AL outputs a guess bit b′ which is defined as the output of the game.

Figure 1: The PrivKmuCCAmL2,b
A,AEAD,L,u game.

Security against chosen-ciphertext attacks with misuse-resilience and leakage [31], denoted CCAmL2, is a confidentiality
guarantee of authenticated encryption in the leaking setting. Below we define its mu extension muCCAmL2: given an authen-
ticated encryption AEAD = (Enc,Dec) with leakage function pair L = (Lenc, Ldec), the multi-user chosen-ciphertext advantage
with misuse-resilience and leakage of an adversary A against AEAD with u users is

AdvmuCCAmL2
A,AEAD,L,u :=

∣∣∣Pr
[
PrivKmuCCAmL2,0

A,AEAD,L ⇒ 1
]

−Pr
[
PrivKmuCCAmL2,1

A,AEAD,L ⇒ 1
]∣∣∣,

where the security game PrivKmuCCAmL2,b
A,AEAD,L is defined in Figure 1. When the context is clear, we will refer to the muCCAmL2

advantage (also in the ideal TBC model) with the next less formal notation

AdvmuCCAmL2
A,AEAD,L,u =

∣∣∣Pr[ALEncK,LEnc0K,Ldecch,LDecK,ĨC ⇒ 1]

−Pr[ALEncK,LEnc1K,Ldecch,LDecK,ĨC ⇒ 1]
∣∣∣.

which allow us to talk about the 1st, 2nd, . . . oracle.
The CCAmL2 notion is more or less the traditional CCA notion enhanced with encryption and decryption leakage. The

presence of Ldecch, which provides decryption leakage to challenge queries, was intended to capture the informativeness of
valid decryption leakage, and its motivation stems from the harmness of decryption leakage in some applications such as secure
bootloading [41]. It was proved [31] that the combination CIML2 + CCAmL2 is not implied by other combinations of any
natural relaxation of these both notions. To provide a high leakage-resilience guarantee AEAD should satisfy both CIML2 and
CCAmL2 (while in this paper we consider mu extensions of both).

It is tempting to ask why leakage CCA is not defined in the “real-or-random” form — in particular, requiring the real
world with leakage to be indistinguishable from the ideal world with a leakage simulator (as the notion honest-but-curious
indifferentiability [42]). The reason appears that the simulation-based “real-or-random” definition does not catch the desired
properties of encryption schemes: leakages containing the entire challenge messages can be simulated, but completely ruin
message confidentiality.

IV. BACKGROUND AND DESIGN CONSIDERATION

We next describe how we modify the AEAD mode AEDT in [31] which is itself an enhancement of the Encrypt, Digest
and Tag (EDT) mode [20] allowing to handle associated data. All these modes rely on re-keying, so we start by discussing
the benefits and limitations of this technique before presenting our practical and technical improvements.

A. Overview of the Starting Point AEDT

While composing leakage-resilient building blocks does not necessarily leads to a leakage resilient scheme, AEDT is
a successful Encrypt-then-MAC (EtM) composition of a re-keying encryption due to [38] and a plain keyless Hash-then-
SPRP authentication schemes. Next, we pinpoint the core ideas behind this CCAmL2 and CIML2 secure AEAD even if few
considerations have been made in terms of practicality. A picture is given in appendix C (Figure 8).

6

Re-keying against Side-Channel Key-Recovery. Re-keying renders DPA infeasible by deriving session keys and by con-
sistently refreshing the key, so that the attacker cannot collect side-channel leakage on the key in use during cryptographic
operations with different inputs. Concretely, for AEDT, upon each encryption, a new session key k0 is computed via a nonce-
based Key-Derivation Function (KDF), i.e., k0 ← KDFK(N). This KDF is heavily protected, so that the master key K is
safely kept. Therefore, as long as the nonce is fresh, the resulting encryption process roots at new internal state that has not
been affected by the previously observed leakage. Then, the key k0 is served to a block cipher E to produce a key stream block
y1 ← Ek0(1). In parallel, k0 is refreshed by a new ephemeral key k1 ← Ek0(0). This process is repeated until the number
of key stream blocks matches that of message blocks. In all, upon a message of ` blocks, ` keys are produced during the
encryption, and E is rekeyed ` times. But for each of these keys, only 2 different leakage traces of E are produced (i.e., with
inputs 0 and 1), and this typically makes side-channel attacks (mainly DPAs) hard to mount (if not impossible). Re-keying is
typically deemed as costly. However, as mentioned in the introduction, this cost is expected to be largely compensated by the
more limited use of side-channel countermeasures (when targeting side-channel security – see Section VIII).
Minimal Message Manipulation for Side-Channel Confidentiality. Encryption schemes have to perform operations on
sensitive messages. Concretely, the more operations manipulate messages, the more information leaks about them, and this
leakage is very hard to completely avoid [38]. To remedy this situation, in AEDT each message block is involved in only a
single and easy to protect XOR operation. This is arguably the minimum that cannot be avoided.
EtM & Hash-then-MAC for Side-Channel Integrity. As efficiency remains the prior concern for crypto designs it may
seem surprising, at a first sight, not to simply adopt a good black-box design and add leakage protections to it. Concretely,
for AE, integrated designs that perform encryption and tag generation in a “single run” seem the most efficient and attractive:
examples include IAPM [43], OCB [12], TAE [44], OTR [45], COFB [46], and sponge-based proposals [47], [48]. However,
integrated designs typically employ the Decrypt-then-Verify style decryption, which (as observed by Barwell et al. [18]) would
leak unverified plaintext and alter the side-channel security. In contrast, as independently observed in [18], [20], [21], the plain
Encrypt-then-MAC (EtM) paradigm grants resilience to decryption leakage: since its decryption is Verify-then-Decrypt, invalid
decryption queries are prevented to step into the decryption process and thus cannot produce much leakage (i.e., it only needs
to secure the tag verification). As a result, though less elegant, EtM seems the most suitable classical solution in order to
mitiagte concrete side-channel leakages.

For MAC designs, a similar situation appears: during the input-absorbing phase, keyless crypto hash functions are preferred
to the typically more efficient universal hash functions. The motivation is simply to minimize the number of calls to keyed
primitives. Used in the plain Hash-then-MAC paradigm T = TGFK(H(U)) (U = N‖A‖C in AEDT as well as in all our
examples: this maximizes the resistance to invalid decryption queries), side-channel protections are only needed for the Tag
Generation Function TGFK , which is much easier. In fact, leakage security of Hash-then-MAC has been extensive analyzed [19],
[21], [49]. Interestingly, such designs naturally achieve full nonce-robustness on the decryption side, since resisting invalid
(i.e., inherently nonce-misuse) decryption means resisting misuse.

The elegant and provably secure idea used in (A)EDT is to use an invertible block cipher for TGF, and to define the integrity
checking as “For input (U,Z), If H(U) = TGF−1K (Z) then accept Else reject”. In this vein, decryption only leaks a useless
pseudorandom value TGF−1K (Z) rather than the right tag of U , excluding the obvious forgery.
Shortages of AEDT. For AEDT, the security of both encryption and authentication are tightly birthday even in the black-box
setting. While the security of the encryption part could be overcome by using counters (i.e., by using GCM idea) instead of
two fixed constants, the hash-then-SPRP authentication is more problematic: once a collision is found, a forgery immediately
follows. Since the hash digest is of only n bits with typically n = 128, forgery is possible within 264 offline computations,
which is a serious (real) threat.

In addition, unlike classical modes such as GCM-SIV [28], the multi-user security of AEDT cannot be boosted by simply
increasing the key length of the blockcipher. This constitutes another limitation for its practical use. In fact, it is not even clear
how to use a (2n, n)-blockcipher in a rekeying encryption mode while keeping the rate 1/2.

B. Our New Ideas

Besides replacing the two constants in AEDT by GCM-style counters to achieve BBB encryption (as already mentioned),
TEDT uses three main new ideas that we describe next.
Hash-then-TBC for Efficient BBB Authentication. After many failed trials, it appears that the simplest and most efficient
approach to BBB secure leakage-resilient authentication is to increase the output of the hash to 2n bits, and then use an
(n, n, n)-TBC for the tag generation function TGF to absorb this digest. Concretely, upon tagging U , we apply a 2n-bit hash
function H, i.e., V ‖W = H(U), where V and W are the two n-bit halves. Then, the tag is Z = TGFK(W,V) = (ẼWK)(V).
To resist verification/ decryption leakage, we utilize the inverse, i.e., upon (I, Z), “If (ẼWK)−1(Z) = V for V ‖W = H(I) then
accept Else reject”.

If one insists on using classical (n, n)-blockciphers, then it seems two calls are necessary for the BBB (leakage-resilient)
authentication. Both of them as well as the additional internal wires have to be well protected, which could be problematic.

7

U

Ẽh0

Ẽh0

θ

u1

g0 g1

h1

...

Ẽh`

Ẽh`

u`+1

V

W

...

g`

n− 1θ

Figure 2: Hash function H upon a message U = u1‖ . . . ‖u`+1 of ` + 1 blocks, with IV g0‖h0. θ is a domain separation
constant used by the Hir[Ẽ] compression function.

We believe a single protected TBC-call would be more efficient/secure than two protected classical block cipher calls. As will
be seen, the use of (n, n, n)-TBC also cinches the mu security strengthening trick.
Making the Hash Function Concrete. To make the mode more concrete (and practical), we instantiate the hash function
H from the same TBC Ẽ, as in Figure 2. For this purpose, we (have to) view Ẽ as an ideal TBC ĨC. This model has no
difference with an ideal (2n, n)-blockcipher. With the consideration that Hirose’s double-block-length (DBL) construction is
XOR-only and does not require re-keying within each invocation, we select it to instantiate a 3n-to-2n-bit compression function
Hir[Ẽ] [50], and then use Hir[Ẽ] in the strengthened Merkle-Damgård to build H[Ẽ]. The formal description is given later in
Fig V. In this vein, the resulted mode is purely TBC-based which may reduce implementation costs. Yet, we note that DBL
hash does not trivially result in security: see the end of this section.
Public Randomness to Remedy mu Security Degradation. Roughly, mu security degradation stems from two aspects: first,
collision between user keys; second, multiple user keys increase the effectiveness of offline computations.

We illustrate both with examples. Consider u users. For issue (i), the probability to have two users i and j such that Ki = Kj

is u2

2n+1 . With this, for any (N,A,M), EncKi(N,A,M) is a valid forgery for user j. For issue (ii), the adversary could compute
EncK∗(N,A,M) → C for a guess K∗, and as long as K∗ equals Ki for some user i the adversary could have a chance to
detect and notice Ki = K∗: the probability of such a collision is 1

2n in the su setting, yet balloons to u
2n in the mu setting.

Clearly, increasing the secret key length solves both (just boosting the denominator). We show that they can be overcome
by properly using public key bits. Concretely, after we replace all E-calls in the AEDT encryption by TBC-calls, we could
simply use the “public key” PK for the tweak input. This simple trick does not work for the authentication since the tweak
input of TGF has been “occupied” by a half V of the hash digest. Yet, once we append PK to the hash input U , we achieve
some separation between users.

Roughly speaking, now two encryption instances collide only if a collision occurs between both their secret and public keys.
Thus, the probability of user key collision is decreased and issue (i) is solved. For issue (ii), while PK cannot immediately
enlarge the denominator, it makes each guess K∗ = SK∗‖PK∗ less effective: the guess K∗ hits a key Ki = SKi‖PKi only
if PK∗ = PKi. Therefore, if the maximal multiplicity of the PK value is small µ� u (can be achieved by ensuring distinct
PK values, or picking PK at random), for issue (ii) the additional public randomness reduces the probability to µ

2n �
u
2n .2

While more random bits are required, the secret key remains of n bits. In this respect, we note that it is easier to generate
“public keys” than secret ones: for the latter a key agreement protocol is needed, while for the former one could uniformly
pick and send it to the other user in (authenticated) plaintext form.
Summary. In order to fill in the technical part, we mainly have to overcome the two following problems:
(1) Proving that the use of public randomness does avoid mu degradation for encryption and authentication.
(2) Proving that the hash-then-TBC authentication does achieve BBB mu security against verification leakage when the hash

function is a strengthened Merkle-Damgård iteration of Hirose DBL compression function. We remark this is highly
non-trivial, since we aim at 2n/n2 security (so far beyond birthday).3

V. SPECIFICATION FOR TEDT

We now define the TEDT mode of operation.
Parameters. Built upon an (n, n, n)-TBC, the key of TEDT is written as K‖PK, with |K| = n and |PK| = n − 1. Most
importantly, K has to be kept secret, but PK can be public.

As usual, we expect that the secret key K is picked uniformly (from now on we eschew the notation SK used in section
IV-B). On the other hand, PK could be either uniformly picked or ensured distinct for each session. See section IV-B: the
motivation of PK is to avoid mu security degradation. To be conservative we recommend changing PK along with K
during key updating. TEDT accepts 3n

4 -bit nonce and results in n-bit stretch. From a nonce N its generates two sequences
of distinct constants for encryption / decryption, i.e., Pi(N) = N‖[i]n

4−1‖0, and Qi(N) = N‖[i]n
4−1‖1, where the integer

2This clarification is slightly oversimplified. As will be seen, we’ll also rely on some non-standard collision properties of H.
3If H was (indifferentiable from) a random oracle with good 2n/n2 bounds, then the result would be much easier to obtain. Yet, neither “plain” Merkle-

Damgård [51] nor Hir[ĨC] [52] is indifferentiable.

8

Table I
TEDT PARAMETERS.

General n n = 128

Key size 2n− 1: 255 bits:
n secret, n− 1 public 128 private, 127 public

Nonce size 3n
4

bits 96 bits
Maximal message 2n/4−1 blocks 235 bytes

Maximal AD 2n/2 − 1 bits 261 − 1 bytes
Stretch n bits 16 bytes

k0

ẼT

c1 c`

ẼT

K

ẼTP0

m1 m`

ẼT

c2

m2

Q0 Q1 Q`−1
...

ẼT

P1

ẼT

P2

H

K

Ẽ Z

n− 1
1

V

W

k1

y1 y2

pad
T

c1‖ . . . ‖c`

A
N

U

C = (c, Z)

...

Figure 3: The TEDT AEAD. The dark blocks are KDFK and TGFK : for side-channel security they need heavy protection to
be “leak-free”. The other TBC-calls are leaking. For each square, the input to the triangle denotes the key input. The tweak
T = PK‖0 is the public-key PK padded with 0.

i ∈ [0, . . . , 2
n
4−1 − 1]. As will be seen, i corresponds to the message block index, and the first sequence Pi(N) will be used

for re-keying, while Qi(N) will be used to generate key stream blocks: see Figure 3. By this, a single message cannot exceed
n · 2n4−1 bits.

In Table I, we list the TEDT parameters for the general n-bit case, and for the primary use case n = 128.
Hash and Padding. Our TBC-based hash function H[Ẽ] is a Merkle-Damgård iteration of the Hirose DBL compression
function Hir[Ẽ]. The domain separation constant in Hir[Ẽ] is θ = 1, and the initial vector for the Merkle-Damgård is all-zero
[0]2n. The fact that Pi(N) = Qi(N) ⊕ θ will help reduce some constant factors in the security proof. Formally, H[Ẽ] is
described in Figure V. For our purpose, the hash input is a 4-tuple (A,N,−→c , T), with A first to handle static and some type of
incremental associated data. A suffix-free padding pad(A,N,−→c , T) is needed for the Merkle-Damgård iteration. This padding
must prevent the attacks trying to confuse the A and −→c fields of variable length. For this, we define pad(A,N,−→c , T) :=
A‖N‖−→c ‖T‖0∗‖[|A|]n/2‖[|−→c |]n/2. This padding upper-bounds the length of A by 2n/2 − 1, as shown in Table I. We remark
that this padding is part of the AEAD scheme and not of the hash function H.
The Encryption is an EtM composition of the counter-based variant of Pereira et al.’s re-keying encryption [38] and the
Hash-then-TBC tag generation, as discussed in section IV-B. Both KDF (in the encryption) and TGF (in the authentication)
are instatiated with a single TBC-call. To achieve a separation (so that we can use the same secret key K for both), we reserve
1 bit in the tweak input: concretely, we derive T = PK‖0 by padding 0 and use it for the tweak of KDFK , and chop the
output of H by 1 bit to obtain an n − 1 bit halve W and use W‖1 for the tweak of TGFK . The whole process is described
by the algorithm TEDT[Ẽ].EncK,PK(N,A,M) in Figure V. We separate KDF and TGF from the other TBC-calls (though
algorithmically equal) for conceptual convenience: both highlighting the heavily protected calls and simplifying languages.
Since T = PK‖0, in the remaining we also call T a “public-key”.
The Decryption is of Verify-then-Decrypt type: it first invokes the Hash-then-TBC verification to check the integrity, and
decrypts only if the input is decided as authentic. To ensure this verification does not leak the right tag, the inverse of TGF
is invoked. The whole process is described by the algorithm TEDT[Ẽ].DecK,PK(N,A,C) in Figure V.

Remark. The public-key T in the KDF call is also crucial for avoiding the mu security degradation term 2n/u, so it cannot be
replaced by a constant. Furthermore, unlike most TBC modes [53], [54], we do not use domain separation to make TBC-calls
during encryption and authentication independent. This avoids many issues (such as unusual message block size) discussed
in [54, section 6.1].

9

algorithm
TEDT[Ẽ].EncK,PK(N,A,M)

1. `← d|M |/ne
2. parse M as m1‖ . . . ‖m`, with |m1| = . . . = |m`−1| = n and

1 ≤ |m`| ≤ n
3. T ← PK‖0
4. if ` > 0 then
5. k0 ← KDF(K,T, P0(N))

// Pi(N) = N‖[i]n
4
−1‖0

6. for i = 1 to ` do
7. yi ← ẼT

ki−1
(Qi−1(N))

// Qi(N) = N‖[i]n
4
−1‖1

8. ci ← yi ⊕mi

9. ki ← ẼT
ki−1

(Pi(N))
// line 8 omitted for i=`

10. −→c ← c1‖ . . . ‖c`
11. U ← pad(A,N,−→c , T)
12. V ‖W ← H[Ẽ](U)
13. Z ← TGF(K,W, V), C ← −→c ‖Z
14. return C

algorithm
TEDT[Ẽ].DecK,PK(N,A,C)

1. `← d|C|/ne − 1
2. parse C as −→c ‖Z, with −→c = c1‖ . . . ‖c`, |c1| = . . . = |c`−1| =
|Z| = n, and 1 ≤ |c`| ≤ n

3. T ← PK‖0
4. U ← pad(A,N,−→c , T)
5. V ‖W ← H[Ẽ](U)
6. V ∗ ← TGF−1(K,W,Z)
7. if V 6= V ∗ then return ⊥
8. if ` > 0 then
9. k0 ← KDF(K,T, P0(N))

10. for i = 1 to ` do

11. yi ← ẼT
ki−1

(Qi−1(N))
12. mi ← yi ⊕ ci
13. ki ← ẼT

ki−1
(Pi(N))

// line 12 omitted for i=`
14. M ← m1‖ . . . ‖m`

15. return M

algorithm H[Ẽ](U)

1. parse U as u1‖ . . . ‖u`, with |u1|=. . .=|u`| = n
2. g0‖h0 ← [0]2n // IV
3. for i = 1 to ` do
4. gi‖hi ← Hir[Ẽ](ui‖
gi−1‖hi−1)

5. V ← g`, W ← chop(h`)
6. return V ‖W

algorithm pad(A,N,−→c , T)

1. u← A‖N‖−→c ‖T
2. `← |u|
3. ∆← d `

n
e · n− `

4. return u‖[|A|]n/2‖[|−→c |]n/2

algorithm KDF(K,T, I)

1. return ẼT
K(I)

algorithm TGF(K,W, V)

1. return Ẽ
W‖1
K (V)

algorithm TGF−1(K,W,Z)

1. return (Ẽ
W‖1
K)−1(Z)

algorithm Hir[Ẽ](X)

1. parse X as u‖g‖h, |u| = |g| = |h| = n
2. g′ ← Ẽh

u(g)⊕ g
3. h′ ← Ẽh

u(g ⊕ 1)⊕ g ⊕ 1 // θ = 1
4. return g′‖h′

Figure 4: Definition of the TEDT mode, using a TBC Ẽ.

VI. LEAKAGE SECURITY OF TEDT

We now establish the leakage-resilient integrity and confidentiality of TEDT. Before proving muCIML2 and muCCAmL2,
we specify the leakage function pair LTEDT = (Lenc, Ldec). Our analysis relies on the ideal cipher model.

A. Modeling Leakage Functions

We model the leakage as probabilistic efficient functions manipulating and/or computing (partially) secret values. In TEDT,
each computation of Ẽ (resp., ⊕) comes with some additional (internal) information given by LẼ (resp., L⊕). However, we
make a distinction between the leakages given by KDF and TGF and those given by the less protected calls to Ẽ. Indeed,
while KDF and TGF both use Ẽ, the implementation of these algorithms might offer different levels of protection compared
to all the other calls to Ẽ in TEDT, included those of the hash function in Figure 2.

Moreover, we may also split the leakage trace resulting from the computation of any function F ∈ {Ẽ,KDF,TGF, . . .}
between its input and output parts: if FA(X) → Y , LF(A,X) := (LinF (A;X), LoutF (A;Y)) with semicolon. This distinction
comes in handy when we have to assume different level of protection for the input (e.g., N is a public input of KDF, with
A = (K,T)) and the output (e.g., k0 is a protected output of KDF). While a bit theoretical at first, this distinction better
reflects the designers implementation goals for each functions/calls and it allows interpreting the security bounds based on
cryptanalytic experience (as explained later in section VI-C).

Finally, we insist one more time on the probabilistic feature of the leakage functions, even for LinF and LoutF and any F
(which is indeed likely in practice): measuring p times the leakage from the same computation would not result in completely
identical traces. Therefore, we will write [LF]p for the vector of p leakage traces of F. Because of the plentiful possible uses
of Ẽ, we will next denote its input-output leakage function pair as (Lin,Lout) for simplicity.
Oracle-free leakage function. An artifact of modeling leakages as probabilistic functions is that LẼ might contain “future”
calls to Ẽ [22]. While benign as a first sight, the possibility for an adversary to call such a leakage function gives him the ability
to mount a “future computation attack” [23]. For instance, if the leakage resulting from Ẽ(k0, T, P1(N))→ k1 in TEDT might
also already contain y2 = Ẽ(k1, T,Q1(N)), the value y2 cannot remain unpredictable in the next block. Preventing LẼ(k0, ∗, ∗)
from calling Ẽ(k1, ∗, ∗) cannot be achieved only from the tweakable pseudorandom permutation in the standard model. Hence,

10

leakage security (mainly confidentiality) cannot follow. Consequently, for the natural single-pass re-keying encryption used
in TEDT,4 there are only two reliable existing proof approaches which are (i) the leakage simulatability assumption in the
standard model [39], and (ii) the non-invertible leakage assumption in the ideal model [23]. Since we focus here on the ideal
TBC model, and since the non-invertible leakages can be more easily measured by cryptanalytic practice (which we believe is
important for designing modes), we start following this approach of Yu et al. Nevertheless, we also provide a standard model
analysis (of muCCAmL2) based on the former approach in Appendix D.

With this in mind, and to prevent future computation attacks in the ideal model, we assume oracle-free leakage functions [23]:
they cannot make any call to ĨC, which is natural for an implementation not to evaluate computations that are unrelated to
its current state — e.g., Ẽ(k0, ∗, ∗) in our above example. Therefore, we will say that the leakage function associated to F
is oracle-free, if τ(LinF) = τ(LoutF) = ∅, where τ(L∗F) is the transcript of queries and answers made by L∗F to ĨC when L∗F is
evaluated on its inputs.

As discussed in [23], this model appears to have a natural correspondence with concrete attacks on circuits implementing
(tweakable) block ciphers, where the measured leakages can be interpreted as a simple function of the cipher’s input and key
during the first few rounds of the computation, and/or as a simple function of the cipher’s output and key during the last few
rounds of the computation, but where any useful function of the cipher input and output remains elusive (or is the sign of a
completely broken implementation). Also, the use of ideal models does not result in trivial results, as the bounds essentially
match simple side-channel attacks to some extent.

B. muCIML2 of TEDT

We now prove the muCIML2 security of TEDT in the “unbounded leakage” setting [19], [20]. Formally, we assume that
all the intermediate values completely leak except the master key K of KDFK and TGFK which remains secret. This means
that Lin(K,T ;X) = {K,T,X} and Lout(K,T ;Y) = {K,T, Y } as well as L⊕(Y,M) = {Y,M, Y ⊕M}. We denote this
family of leakage functions by L∗. Since we are analyzing TEDT in the ideal TBC model, we can prove information theoretic
security, and we only need to limit the number of adversarial queries.

Therefore, we denote −→q = (qe, qd, qĨC), and using the definition given in Section III-B2, we denote

AdvmuCIML2
TEDT,L∗ (u,

−→q , σ) := max
{
AdvmuCIML2

A,TEDT,L∗,u

}
,

where the maximum is taken over all (−→q , t)-bounded adversaries against u users that have at most σ blocks in all their queried
plaintexts and ciphertexts including associated data. Then our main claim is as follows:

Theorem 1. Assume that the u public-keys T1, . . . , Tu are uniformly distributed, n ≥ 6, 2σ + 3(qe + qd) + qĨC ≤ 2n/8, and
leakage L∗ is “unbounded” as above. Then

AdvmuCIML2
TEDT,L∗(u,

−→q , σ) ≤
(2n2 + 17)(4σ + 6(qe + qd) + 2qĨC)

2n

+
u2

22n
+

1

2n!
·
(4u

2n

)n
(1)

in the ideal TBC model. The proof is available in Appendix E.

As long as we carefully protect the key of KDFK and TGFK , the muCIML2 bound is asymptotically optimal O
(
u2

22n +

n2σ+n2qĨC
2n

)
. Concretely, when n = 128, the integrity security is up to u ≈ 2126 users, σ ≈ 2114 blocks, and qĨC ≈ 2114 offline

computation. If the u public-keys are ensured to be distinct, then we could drop the terms u2

22n and 1
2n! ·

(
4u
2n

)n
, but the bound

does not substantially improve.

Intuition of the proof. All the internal values of the TBC-calls, except K, are given to the adversary A. Conceptually, we could
“wrap up” these leaked TBC-queries into the offline computation power of A. This simplifies the situation and the interaction
between A and a hash-then-TBC authentication scheme, where the offline computation power of A balloons up to O(σ+ qĨC).
Then, we have two steps:

First, we replace KDFK1
,TGFK1

, . . . ,KDFKu ,TGFKu by several tweakable random permutations π̃1, . . . , π̃u, such that π̃i
and π̃j are independent if and only if Ki 6= Kj (they are not always independent and thus the term u2

2n does not emerge), and
prove the indistinguishability of this transition using the H-coeffcients technique [57]. We need to show the offline computation
does not introduce the undesired term O

(
u(σ+qĨC)

2n

)
. We rely on the fact that these O(σ + qĨC) offline queries are “separated”

by the tweak input for this purpose: the offline queries with the tweak Wi‖1 are only helpful for “breaking” (either recovering
the key or distinguishing) the TGF calls with the tweak Wi‖1. Therefore, as long as a single value Wi‖1 is not used by too
many encryption and decryption queries (say, n2 queries), each offline query simultaneously “targets” at most n2 TGF calls.

4Using the standard model and PPT leakage functions, existing provably secure re-keying schemes typically require a more complicated alternating
structure [22], [55], or public randomness [23], [56] in order to overcome the “future computation” attack.

11

It suffices to prove that the probability to obtain n2 semi-collisions on the outputs of H is small enough: by a careful analysis,
we show this probability is O

(
(σ+qĨC)

n

2n(n−1)

)
= O

(
σ+qĨC
2n

)
. By these arguments, the term O(u(σ+qĨC))

2n does not emerge in this step

(while there is a term n2σ+n2qĨC
2n emerging instead).

At this point, the adversary faces an interaction with information that is independent of the secret keys K. We then argue
the unforgeability with two crucial goals: (i) prove that user-key collision does not help breaking integrity; (ii) prove that the
forging probability is σ2

22n instead of σ2

2n .
For the goal (i), note that if the public-keys Ti are not part of the input of the hash, then forgery is obvious using user key

collision (following the idea in section IV-B). But after Ti, Tj are appended, since the probability to have Ki‖Ti = Kj‖Tj is
reduced to u2

2n , we have Ki = Kj ⇒ Ti 6= Tj ⇒ TGFKi(H(pad(A,N,−→c , Ti))) 6= TGFKi(H(pad(A,N,−→c , Tj))) since the
two hash digests are different, rendering the key collision forgery infeasible.

For the goal (ii), since the hash digest is 2n-bit, the collision probability is reduced to
q2
ĨC

22n which blocks the hash-collision

attack (more precisely, O
(

(σ+qĨC)
2

22n

)
, with the above remark on offline computation power). This is slightly oversimplified,

and we invite the reader to read Appendix E for more details. Also, (not surprisingly) the proof crucially relies on the feature
that decryption only makes backward calls TGF−1: otherwise there indeed exists attacks, as discussed in section IV-A. See
appendix E-D for more discussion.

C. Non-Invertible Leakage Assumption

We now turn to the leakage-resilient confidentiality of TEDT. Section VI-A already highlighted the need of additional
leakage assumptions — a standard model proof is deferred to Appendix D. To capture the harmlessness of the leakages, we
here follow [23] and require that they preserve the secrecy of the ephemeral TBC key in the following sense: the probability
that an adversary recovers the ephemeral key before it is being refreshed should be small.

Yu et al. required the adversary A to precisely output the secret [23, Definition 2]. We are more generous as we allow A
to output a set of q guesses instead, and A wins as long as the secret is in this set. Clearly, this weakens the assumption.
Yet, interestingly, this weaker assumption results in better bounds than Yu et al. [23] (which should be an artifact of the proof
technique). More formally, we define

Adv
2-up[q]
T,PA,PB

(A) := PrĨC,s1

[
s2 ← ĨCTs1(PA), z ← ĨCTs1(PB),

Guesses← AĨC(s2, z, leak) : s1 ∈ Guesses
]
, (2)

where T, PA, PB are public constants such that PA 6= PB , |Guesses| = q, and A’s input leak is a list of leakages depending
on a value s0 specified by A:5

leak =
([

Lout(s0, T ; s1), Lin(s1, T ;PA),

Lout(s1, T ; s2), Lin(s1, T ;PB), Lout(s1, T ; z)
]p)

. (3)

And we further define

Adv2-up[q](p, qĨC, t) := max
{
Adv

2-up[q]
T,PA,PB

(A)
}
, (4)

where the maximum is taken over all valid T, PA, PB and with all adversaries that repeat their measurements p times, makes
qĨC ĨC-queries, and runs in time t.

Understanding 2-up[q] Advantage. Equation (2) defines a leakage property of a small “unit” of TEDT, pictured in Figure 5
(left). Concretely, it captures that the secret s1 cannot be recovered from the involved leakages. Note that s1 is used in two
subsequent TBC-calls (this is why we call this assumption “2-up”), from which both the “input” and the “output” leakages may
contain information on s1: this clarifies the presence of Lin(s1, T ;PA), Lout(s1, T ; k2), Lin(s1, T ;PB), and Lout(s1, T ; y2)
in Equation (3). On the other hand, s1 itself is the output of the previous cipher-call, and this explains the presence of
Lout(s0, T ; s1), which may contain information on s1 as well. The goal of repeating the measurements p times is to fit into
the requirement of providing challenge decryption leakages several times in the muCCAmL2 security game. It should be noted
that while this repetition may reduce the measurement noise and make an SPA attack easier, the corresponding advantage of
(4) should still be much smaller than that of a DPA.

Testers: Measuring in Practice. The concrete values of Adv2-up[q] can be measured by running the following tester against
the best known challenging SCA adversary A. This along with Theorem 2 allows deriving concrete limits on the capability of
the implementation (like in [27]).

5This is a simplified description of a challenge-response process. Granting A the freedom to choose this s0 is for composability purpose (which appears
in the proof): the same holds for s in Equation (6).

12

s0

ET

PB

ET

?

ET

PA

s1 s2

z

ET

c

m
?

zs

Figure 5: (Left) Illustration on the 2-up assumption; (Right) The “basic” message manipulating operation.

1: Tester for UP Adv2-up[q]

2: Let the challenging adversary A give s0
3: Pick the secret: s1

$← {0, 1}n
4: s2 ← ẼT

s1(PA), z ← ẼT
s1(PB)

5: return [Lout(s0, T ; s1), Lin(s1, T ;PA), Lout(s1, T ; s2)]p,
6: and [Lin(s1, T ;PB), Lout(s1, T ; z)]p

7: Let the challenging adversary A output q guesses k1, . . . , kq , the adversary A wins as long as s1 ∈ {k1, . . . , kq}

D. Capturing the (In)Security of the XOR

As a last step before moving properly into establishing the muCCAmL2 bound, we have to measure the leakage resulting
from XORing the (supposedly) random block stream with the message blocks in TEDT. To capture this concrete information
we follow Pereira et al. [38] and we define

AdvLORL2
T (A) :=

∣∣∣∣PrĨC,z

[
c0 ← z ⊕m0 : AĨC(c0, leak0)⇒ 1

]
− PrĨC,z

[
c1 ← z ⊕m1 : AĨC(c1, leak1)⇒ 1

]∣∣∣∣ , (5)

where leakb again depends on a value s specified by A:

leakb =
(

[Lout(s, T ; z)]p, L⊕(z,mb), [L⊕(z, cb)]p−1
)
. (6)

In the abbreviation LORL2, the suffix L stands for leaking, and the suffix 2 indicates both encryption and decryption leakages
are given. We also define

AdvLORL2(p, qĨC, t) := max
T,A

{
AdvLORL2

T (A)
}
. (7)

Understanding LORL2 Advantage. Equation (5) defines the information an adversary might extract from the “basic” message
manipulation made in TEDT, which involved XORing as pictured in Figure 5 (right). Concretely, the sensitive point is the key
stream block z. This block is the output of a TBC-call, hence the presence of [Lout(s, T ; z)]p (repeated p times as clarified
before). Then, the block z is used to mask the message block, and thus the leakage L⊕(z,mb) comes. Finally, the presence of
[L⊕(z, cb)]p−1, the leakage from the decryption direction, still stems from the challenge decryption leakage requirements of
muCCAmL2.

Like in [38], [58], if a single XOR of the message leaks a single bit, then no muCCAmL2 security would spring up. Thus,
on the one hand it is legitimate to focus on protecting this part of leaking implementations. But on the other hand, we cannot
claim that AdvLORL2(p, qĨC, t) is negligible. So our goal here is to faithfully reduce the muCCAmL2 to simple and precise
pieces that are more easy to protect as isolate components. This type of methodology is not new in the theory community.
For example, it is typically assumed that the PRP advantage of AES is concrete 0.01 rather than “negligible” [59]. Yet, the
more critical nature of physical leakages also make us deviate from these results. In some sense, we argue that the advantage
degrades in a inevitable rate during the encryption, rather than to argue that the advantage turns better by designs. So in this
sense, TEDT is a security-preserving domain extender for a “single-block” encryption operation. On the practical side, the
value AdvLORL2 can be similarly measured by a tester, see Appendix F, and it is easier to study the relevant protection and
advantage than to study those of the entire modes.

E. muCCAmL2 Analysis of TEDT

We define the leakage function L = (Lenc, Ldec) of TEDT as:
• Lenc, the leakages generated during the encryption:

– Lin(k, t;x) & Lout(k, t; y) generated by internal calls to Ẽ(k, t;x)→ y (excluding KDF- and TGF-calls),6

6We remark that “LoutKDF(k, t;x)”, the “output leakage” of KDF, does not need to completely hide x. It can leak information about x as long as: (i) the
leakage is comparable to Lout, and (ii) it is independent of k. But for simplicity we did not formalize this observation.

13

– L⊕(a, b) generated by the internal actions a⊕ b,
– all the intermediate values involved in the computations of the hash functions (i.e., hash functions are non-protected,

and leak everything).
• Ldec,the above that are generated during the decryption.

We denote −→q = (qm, qe, qd, p− 1, qĨC) and we define

AdvmuCCAmL2
TEDT,L (u,−→q , t, σ) := max

{
AdvmuCCAmL2

A,TEDT,L,u

}
,

where the maximum is taken over all (−→q , t)-bounded adversaries against u users that have at most σ blocks in all their
(challenge & non-challenge) queries including AD.

Theorem 2. In the ideal TBC model, with the TEDT leakage functions L = (Lenc, Ldec) defined as above, if the leakage
functions Lin, Lout, L⊕ satisfy the assumptions specified by Equation (5) and Equation (2), then the following holds:

AdvmuCCAmL2
TEDT (u,−→q , t, σ) ≤

1

n!
·
(4u

2n

)n
+

2u2

22n
+

(3n2 + 26)(4σ + 6(qm + qe + qd) + 2qĨC)

2n

+ σ ·AdvLORL2(p, q∗, t∗) + 2σ ·Adv2-up[q∗](p, q∗, t∗), (8)

where AdvLORL2 and Adv2-up[qĨC+q
∗] are defined in Eq. (7) and Eq. (4) respectively, q∗ = qĨC + 4σ + 6(qe + qd + qm),

t∗ = O(t+ pσtl), and tl is the total time for evaluating Lin and Lout.

The proof follows the approach of [31] which is built upon the well established method of [38]. See Appendix G.

Interpreting the bound. We focus on the last two terms since the others have been analyzed before. On the one hand, the
term σ ·AdvLORL2(p, qĨC + q∗, t∗) corresponds to the reduction to the “minimal” message manipulation. On the other hand,
the term 2σ · Adv2-up[qĨC+q

∗](p, qĨC + q∗, t∗) captures the hardness of side-channel key recovery, and it is roughly of some
birthday type, namely

O
(
σ ·

qĨC + σ + t

c · 2n
)

= O
((qĨC + σ + t)σ

c · 2n
)
,

for some parameter c that depends on the concrete conditions. Yet, it is nowadays a common assumption that with such a
small data complexity (only 3 relevant leakage traces), the value of c should not be significant [55].

The term σ ·Adv2-up illustrates the security loss of “hybrid factor” mentioned in the introduction. A standard model-based
proof for the black-box security of TEDT would also suffer from a similar term σ ·AdvTBC : this is unavoidable for hybrid-
based proofs, see [36], [37]. However, for the black-box setting the term σ ·AdvTBC is not tight, and is merely an artifact of
the technique. By contrast, here with leakage the term σ ·Adv2-up is tight. This is easy to see: this term captures the collision
between the σ keying actions, and such a collision allows the adversary to obtain more than 2 leakage traces about a single
key, which is clearly beyond Equation (3), our assumption of security with 2 traces. In all, our assumption Equation (3), though
a bit conservative, tightly results in a birthday-type bound.

VII. BLACK-BOX SECURITY ANALYSIS OF TEDT

In this section, we no more consider leakages. We first prove the extended mu CCA security muCCAm$
∗ for TEDT in the

ideal TBC model. Formally, we define

AdvmuCCAm$∗

TEDT (u,−→q , σ) := max
{
AdvmuCCAm$∗

TEDT,A,u

}
,

where −→q = (qm, qe, qd, qĨC), and the maximum is taken over all (−→q , t)-bounded adversaries against u users that have at most
σ blocks in all their queried plaintext (both challenge and non-challenge) and ciphertext including AD.

Theorem 3. When the u public-keys T1, . . . , Tu are uniformly distributed, n ≥ 6, and 2σ+ 3(qe + qd) + qĨC ≤ 2n/8, then the
following holds in the ideal TBC model:

AdvmuCCAm$∗
TEDT (u,−→q , σ) ≤ 2u2

22n
+

1

n!
·
(4u

2n

)n
+

(7n2 + 26)(4σ + 6(qe + qd) + 2qĨC)

2n
·

The complete proof is available in Appendix H. Partly thanks to the GCM-like counters we have this O
(
u2

22n +
n2σ+n2qĨC

2n

)
bound similar to Theorem 1. Again, the terms 2u2

22n and 1
n! ·
(

4u
2n

)n
disappear if the u public-keys are distinct. While it seems

that the bound is not affected by the qm non-challenge queries, these queries affect σ which, in turn, affects the bound. The
bound of GCM-SIV with KDF is at best σ`max+qĨC

2n , which we surpass when the maximal query length `max exceeds n2: see
Appendix H-C for the details.

14

Figure 6: Performance evaluation (I): uniformly masked implementation of OCB based on the AES vs. leveled implementation
of TEDT based on Deoxys-BC-256.

KDM Security. Finally, in the ideal TBC model, TEDT achieves birthday 2(3n/4)/2 = 23n/8 security against key-dependent-
message attacks (KDM) when the nonce is random and no restriction is on the message deriving functions, an asymptotically
optimal 2n/n2 KDM security when the nonce is respecting and message deriving functions are oracle-free. A formal discussion
is given in Appendix I.

VIII. PERFORMANCE EVALUATION OF TEDT

In order to put forward the relevance of leveled implementations as a solution to reach high-security against side-channel
attacks, we conclude this paper with an evaluation of the performances that can be reached by TEDT in software, based on
the masked AES implementations proposed by Goudarzi and Rivain in [16]. We specifically consider Table 3 in this reference,
which provides cycle counts in function of the number of shares in the masking scheme. We then selected Deoxys-BC-256
as instance of TBC to use in TEDT, which was recently elected as a finalist of the CAESAR competition [60]. This choice
is mostly motivated by the AES-based structure of this cipher, which enables exploiting the same masking countermeasure. In
particular, we note that Deoxys-BC-256 implies performance overheads of a factor 1.4 to 1.6 for unprotected implementations,
and has a total of 224 S-boxes compared to 200 for the AES (i.e., 10× 16 for the rounds and 10× 4 for the key rounds). By
counting the fraction of time spent on S-boxes (also provided in the work by Goudarzi and Rivain), this allows us to estimate
the respective cycle counts for Deoxys-BC-256 and the AES, for various number of shares (with a ratio 1.5 for one share,
converging to 224

200 as the number of shares increases).

For illustration, we then compared implementations of OCB uniformly protected thanks to masking, and leveled implemen-
tations of TEDT. The first ones use ` + 2 calls to a masked AES implementation, while the second ones uses 2 calls to
masked Deoxys-BC-256 implementations and 4` calls to the unprotected Deoxys-BC-256 implementation. The results of
these evaluations can be found in Figures 6 and 7 for messages of various sizes. The most interesting conclusion is that starting
from 2 shares (i.e., the minimum amount of masking), TEDT compares favorably to OCB, independent of the message size.
This is easily observed thanks to the “factor of gain” on the right Y axis of the figures. It is explained by the large overheads
paid when moving from an unprotected implementation (that can run in a few thousands of cycles) to a masked one (e.g., a
2-share masked AES takes > 50, 000 cycles in [16]). The second important conclusion is that the factor of gain approximately
converges towards l+2

2 as the number of shares increases. Quite naturally, the gains get larger and the full convergence requires
more shares as the message sizes increase. Concretely, factors of gain larger than 10 can already be observed for medium size
messages (e.g., ` = 100 blocks) and 4 to 8 shares. We finally note that the factor of gain is actually slightly lower than l+2

2 ,
which can be explained by the slightly worse performances (and larger number of S-boxes) of Deoxys-BC-256 compared to
the AES. In this respect, it is worth mentioning that combining TEDT with an underlying cipher specifically optimized for
efficient masked implementation, such as the LS-designs in [61] would actually allow an even better trend.

We note finally that we expect similar (energy) gains to be observed in hardware. The only difference is that the energy
overheads of the masking countermeasure in this case may be both due to an increase of the cycle count (as in software) and
to a increased area [17]. Also, hardware implementations provide additional opportunities to implement the weakly protected
implementation at very minimum energy cost (e.g., thanks to low-latency designs [62]).

15

Figure 7: Performance evaluation (II): uniformly masked implementation of OCB based on the AES vs. leveled implementation
of TEDT based on Deoxys-BC-256.

Acknowledgments. Thomas Peters and François-Xavier Standaert are respectively postdoctoral researcher and senior associate
researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the ERC project
Consolidator Grant 724725 (acronym SWORD) and by the European Union and Walloon Region FEDER USERMedia project
501907-379156.

REFERENCES

[1] J. Katz and M. Yung, “Unforgeable Encryption and Chosen Ciphertext Secure Modes of Operation,” in FSE, pp. 284–299.
[2] M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm,” J. Cryptology,

vol. 21, no. 4, pp. 469–491, 2008.
[3] J.-P. Aumasson, S. Babbage, D. J. Bernstein, C. Cid, J. Daemen, O. Dunkelman, K. Gaj, S. Gueron, P. Junod, A. Langley, D. McGrew, K. Paterson,

B. Preneel, C. Rechberger, V. Rijmen, M. Robshaw, P. Sarkar, P. Schaumont, A. Shamir, and I. Verbauwhede, “CHAE: Challenges in Authenticated
Encryption,” ECRYPT-CSA D1.1, Revision 1.05, 1 March 2017, https://chae.cr.yp.to/whitepaper.html.

[4] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M. Shalmani, “On the Power of Power Analysis in the Real World: A
Complete Break of the KeeLoqCode Hopping Scheme,” in CRYPTO 2008, pp. 203–220.

[5] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability of FPGA bitstream encryption against power analysis attacks: extracting keys
from xilinx virtex-ii fpgas,” in ACM CCS 2011, pp. 111–124.

[6] Y. Zhou, Y. Yu, F. Standaert, and J. Quisquater, “On the Need of Physical Security for Small Embedded Devices: A Case Study with COMP128-1
Implementations in SIM Cards,” in Financial Crypto 2013, pp. 230–238.

[7] J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede, “DPA, Bitslicing and Masking at 1 GHz,” in CHES 2015, pp. 599–619.
[8] D. Genkin, I. Pipman, and E. Tromer, “Get your hands off my laptop: physical side-channel key-extraction attacks on pcs - extended version,” J.

Cryptographic Engineering, vol. 5, no. 2, pp. 95–112, 2015.
[9] D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” J. Cryptology, vol. 30, no. 2, pp. 392–443, 2017.

[10] D. Dinu and I. Kizhvatov, “EM analysis in the iot context: Lessons learned from an attack on thread,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol.
2018, no. 1, pp. 73–97.

[11] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, 2007.
[12] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: a block-cipher mode of operation for efficient authenticated encryption,” in ACM CCS ’01,

pp. 196–205.
[13] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC (CCM),” RFC, vol. 3610, pp. 1–26, 2003. [Online]. Available:

https://doi.org/10.17487/RFC3610
[14] D. A. McGrew and J. Viega, “The Security and Performance of the Galois/Counter Mode (GCM) of Operation,” in INDOCRYPT 2004, pp. 343–355.
[15] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches to counteract power-analysis attacks,” in CRYPTO 1999, pp. 398–412.
[16] D. Goudarzi and M. Rivain, “How Fast Can Higher-Order Masking Be in Software?” in EUROCRYPT 2017, Part I, pp. 567–597.
[17] H. Groß, S. Mangard, and T. Korak, “An Efficient Side-Channel Protected AES Implementation with Arbitrary Protection Order,” in CT-RSA 2017, pp.

95–112.
[18] G. Barwell, D. P. Martin, E. Oswald, and M. Stam, “Authenticated Encryption in the Face of Protocol and Side Channel Leakage,” in ASIACRYPT 2017,

Part I, pp. 693–723.
[19] F. Berti, F. Koeune, O. Pereira, T. Peters, and F. Standaert, “Ciphertext Integrity with Misuse and Leakage: Definition and Efficient Constructions with

Symmetric Primitives,” pp. 37–50.
[20] F. Berti, O. Pereira, T. Peters, and F. Standaert, “On Leakage-Resilient Authenticated Encryption with Decryption Leakages,” IACR Trans. Symmetric

Cryptol., vol. 2017, no. 3, pp. 271–293, 2017.
[21] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, and T. Unterluggauer, “ISAP - Towards Side-Channel Secure Authenticated Encryption,” IACR

Trans. Symmetric Cryptol., vol. 2017, no. 1, pp. 80–105, 2017.
[22] S. Dziembowski and K. Pietrzak, “Leakage-Resilient Cryptography,” in FOCS 2008, pp. 293–302.
[23] Y. Yu, F. Standaert, O. Pereira, and M. Yung, “Practical Leakage-Resilient Pseudorandom Generators,” in ACM CCS 2010, pp. 141–151.

16

[24] M. Medwed, F. Standaert, J. Großschädl, and F. Regazzoni, “Fresh re-keying: Security against side-channel and fault attacks for low-cost devices,” in
AFRICACRYPT 2010, pp. 279–296.

[25] N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F. Standaert, “Shuffling against Side-Channel Attacks: A Comprehensive Study with Cautionary
Note,” in ASIACRYPT 2012, pp. 740–757.

[26] S. Bhasin, S. Guilley, L. Sauvage, and J. Danger, “Unrolling cryptographic circuits: A simple countermeasure against side-channel attacks,” in CT-RSA
2010, pp. 195–207.

[27] S. Gueron and Y. Lindell, “Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key Derivation,” in ACM CCS 2017, pp. 1019–1036.
[28] P. Bose, V. T. Hoang, and S. Tessaro, “Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds,” in EUROCRYPT

2018, Part I, pp. 468–499.
[29] M. Bellare and B. Tackmann, “The Multi-user Security of Authenticated Encryption: AES-GCM in TLS 1.3,” in CRYPTO 2016, Part I, pp. 247–276.
[30] T. Ashur, O. Dunkelman, and A. Luykx, “Boosting Authenticated Encryption Robustness with Minimal Modifications,” in CRYPTO 2017, Part III, pp.

3–33.
[31] C. Guo, O. Pereira, T. Peters, and F.-X. Standaert, “Leakage-Resilient Authenticated Encryption with Misuse in the Leveled Leakage Setting: Definitions,

Separation Results, and Constructions,” Cryptology ePrint Archive, Report 2018/484, 2018.
[32] P. Rogaway and T. Shrimpton, “Deterministic Authenticated-Encryption: A Provable-Security Treatment of the Key-Wrap Problem,” in EUROCRYPT

2006, pp. 373–390.
[33] M. Bellare and S. Keelveedhi, “Authenticated and Misuse-Resistant Encryption of Key-Dependent Data,” in CRYPTO 2011, pp. 610–629.
[34] S. Tessaro, “Optimally Secure Block Ciphers from Ideal Primitives,” in ASIACRYPT 2015, Part II, pp. 437–462.
[35] J. Kilian and P. Rogaway, “How to Protect DES Against Exhaustive Key Search (an Analysis of DESX),” J. Cryptology, vol. 14, no. 1, pp. 17–35, 2001.
[36] T. Shrimpton and R. S. Terashima, “Salvaging Weak Security Bounds for Blockcipher-Based Constructions,” in ASIACRYPT 2016, Part I, pp. 429–454.
[37] B. Mennink, “Insuperability of the Standard Versus Ideal Model Gap for Tweakable Blockcipher Security,” in CRYPTO 2017, Part II, pp. 708–732.
[38] O. Pereira, F. Standaert, and S. Vivek, “Leakage-Resilient Authentication and Encryption from Symmetric Cryptographic Primitives,” in ACM CCS 2015,

pp. 96–108.
[39] F. Standaert, O. Pereira, and Y. Yu, “Leakage-Resilient Symmetric Cryptography under Empirically Verifiable Assumptions,” in CRYPTO 2013, 2013,

pp. 335–352.
[40] S. Micali and L. Reyzin, “Physically Observable Cryptography (Extended Abstract),” in TCC 2004, pp. 278–296.
[41] C. O’Flynn and Z. D. Chen, “Side channel power analysis of an AES-256 bootloader,” in CCECE 2015, pp. 750–755.
[42] Y. Dodis and P. Puniya, “On the Relation Between the Ideal Cipher and the Random Oracle Models,” in TCC 2006, pp. 184–206.
[43] C. S. Jutla, “Encryption Modes with Almost Free Message Integrity,” J. Cryptology, vol. 21, no. 4, pp. 547–578, 2008.
[44] M. Liskov, R. L. Rivest, and D. A. Wagner, “Tweakable Block Ciphers,” J. Cryptology, vol. 24, no. 3, pp. 588–613, 2011.
[45] K. Minematsu, “Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions,” in EUROCRYPT 2014, pp. 275–292.
[46] A. Chakraborti, T. Iwata, K. Minematsu, and M. Nandi, “Blockcipher-Based Authenticated Encryption: How Small Can We Go?” in CHES 2017, pp.

277–298.
[47] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda, “Beetle Family of Lightweight and Secure Authenticated Encryption Ciphers,” IACR Trans. Cryptogr.

Hardw. Embed. Syst., vol. 2018, no. 2, pp. 218–241.
[48] S. Banik, A. Bogdanov, A. Luykx, and E. Tischhauser, “SUNDAE: Small Universal Deterministic Authenticated Encryption for the Internet of Things,”

IACR Trans. Symmetric Cryptol., vol. 2018, no. 3, pp. 1–35, Sep.
[49] D. P. Martin, E. Oswald, M. Stam, and M. Wójcik, “A Leakage Resilient MAC,” in IMACC 2015, pp. 295–310.
[50] S. Hirose, “Some Plausible Constructions of Double-Block-Length Hash Functions,” in FSE 2006, pp. 210–225.
[51] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-Damgård Revisited: How to Construct a Hash Function,” in CRYPTO 2005, pp. 430–448.
[52] B. Mennink, “Indifferentiability of Double Length Compression Functions,” in IMACC2013, pp. 232–251.
[53] T. Peyrin and Y. Seurin, “Counter-in-Tweak: Authenticated Encryption Modes for Tweakable Block Ciphers. Version 20160524:153228,” Cryptology

ePrint Archive, Report 2015/1049, 2015.
[54] T. Iwata, K. Minematsu, T. Peyrin, and Y. Seurin, “ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication,” in

CRYPTO 2017, Part III, pp. 34–65.
[55] K. Pietrzak, “A Leakage-Resilient Mode of Operation,” in EUROCRYPT 2009, pp. 462–482.
[56] S. Faust, K. Pietrzak, and J. Schipper, “Practical Leakage-Resilient Symmetric Cryptography,” in CHES 2012, pp. 213–232.
[57] S. Chen and J. P. Steinberger, “Tight Security Bounds for Key-Alternating Ciphers,” in EUROCRYPT 2014, pp. 327–350.
[58] C. Hazay, A. López-Alt, H. Wee, and D. Wichs, “Leakage-Resilient Cryptography from Minimal Assumptions,” J. Cryptology, vol. 29, no. 3, pp.

514–551, 2016.
[59] S. Tessaro, “Security Amplification for the Cascade of Arbitrarily Weak PRPs: Tight Bounds via the Interactive Hardcore Lemma,” in TCC 2011, pp.

37–54.
[60] J. Jean, I. Nikolic, T. Peyrin, and Y. Seurin, “Deoxys v1.41,” Submitted to CAESAR, October 2016.
[61] V. Grosso, G. Leurent, F. Standaert, and K. Varici, “Ls-designs: Bitslice encryption for efficient masked software implementations,” in FSE 2014, pp.

18–37.
[62] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F. Standaert, “Towards Green Cryptography: A Comparison of Lightweight Ciphers from the Energy

Viewpoint,” in CHES 2012, pp. 390–407.
[63] T. Jager, M. Stam, R. Stanley-Oakes, and B. Warinschi, “Multi-key Authenticated Encryption with Corruptions: Reductions Are Lossy,” in TCC 2017,

Part I, pp. 409–441.
[64] P. Farshim, L. Khati, and D. Vergnaud, “Security of Even-Mansour Ciphers under Key-Dependent Messages,” IACR Trans. Symmetric Cryptol., vol.

2017, no. 2, pp. 84–104.
[65] J. Black, P. Rogaway, and T. Shrimpton, “Encryption-Scheme Security in the Presence of Key-Dependent Messages,” in SAC 2002, pp. 62–75.
[66] T. Holenstein, R. Künzler, and S. Tessaro, “The Equivalence of the Random Oracle Model and the Ideal Cipher Model, Revisited,” in STOC 2011, pp.

89–98.

17

APPENDIX A
FULL NONCE ROBUSTNESS (MISUSE-RESISTANCE) IS HARD TO ACHIEVE FACING LEAKAGE

(Very informal) The hardness of realizing misuse-resistance in the leakage setting was argued from two different ideas due
to Berti et al. [19] and Guo et al. [31]. Below we elaborate in detail. We ignore the associated data A since it’s irrelevant
here. Concentrating on the re-keying designs, if nonce N is fixed in CPA attacks, then the initial state of the re-keying is
fixed, and likely a same ephemeral key will appear in each encryption process. This allows the adversary to observe long-term
information about this ephemeral key and recover it via SPA [19]. Such a “state-fixing” attack is always possible unless the
AEAD scheme first derives a digest D ← f(N,M) that depends on both N and M . But in the latter case, the scheme
has to rely on: (i) a variable input length PRF fK , which again faces the problem of “state-fixing” attacks, or (ii) a keyless
hash function f (like that used in SIVAT [18]), which leaks easy-to-compare information about the message M and ruins
confidentially (we stress that SIVAT was designed for applications without challenge leakage, so our observation does not
contradict the security claim in [18]). The above “state-fixing” attack won’t be effective on the leakage-resilient PRF/PRP-
based DAE or MR AE schemes (such as those proposed by Barwell [18]): it’s effective on re-keying designs just because the
latter are expected to use PRF/PRPs that are weak w.r.t. leakage-resilience. But for these DAE schemes, another possibility
for distinguishing occurs. Concretely, virtually all (D)AE perform actions on the message block-by-block. For example, in the
SIV(-like) composition, message is absorbed block-by-block by a universal hash function (SCT [53] and ZAE [54] are two
concrete examples); in sponge, message is absorbed block-by-block by a iterative process (e.g., SUNDAE [48]). In all, the
prefix of the leakage Lenc(m1‖m2‖ . . . ‖m`) only depends on m1 (or m1 and m2, when Feistel networks are used). Therefore,
using Lenc(m1‖ . . . ‖m`) as a template, for M0 = m1‖ . . . and M1 = m′1‖ . . ., m′1 6= m1, it’s easy to distinguish Lenc(M

0)
from Lenc(M

1) and break the LOR game. In all, while there isn’t any formal analysis, “full” robustness against nonce-misuse
in the presence of challenge query leakage seems impossible. We further stress that: (1) The (informal) attacks described here
never contradict the security claims in the mentioned papers [18], [48], [53], [54]: the former three only claimed security
without leakage, while the last [18] is only tailored to the setting without challenge query leakage; (2) The impossibility of
“full” robustness against nonce-misuse with challenge query leakage isn’t an artifact of the security model. Instead, it’s the
reality. It shows if challenge query leakage cannot be avoided, then one has to manage the nonce more carefully.

APPENDIX B
CCAm$⇒ muCCAm$, CIML2⇒ muCIML2, CCAmL2⇒ muCCAmL2

Here we sketch the proof ideas for the three equivalence relations. For CCAm$ ⇒ muCCAm$, we consider the real
muCCAm$ setting, replace the real user oracles by the ideal oracles one-by-one, and this eventually reaches the ideal muCCAm$
setting. Each such replacement introduces a security loss of AdvCCAm$, thus the conclusion AdvmuCCAm$ ≤ u ·AdvCCAm$.
The proof ideas for the other are basically the same. Let X ∈ {CIML2,CCAmL2}. We show that if a scheme isn’t muX secure
then a X-adversary AX can be built as well. Basically, AX picks additional u−1 keys according to the relevant key distribution
and simulates their interfaces. These plus its own challenge oracle form u simulated users. AX runs these simulated users
against the muX-adversary AmuX (which we assumed existing). With probability ≥ 1

u (> 1
u in the CCAmL2 setting when the

multiple challenge queries are made to different users), AmuX collapses the user simulated by the challenge oracle of AX, and
this results in AX succeeding. Thus the conclusion AdvmuX ≤ u ·AdvX. This “simulation” approach requires the assumption
that given the keys, the leaking oracle can be simulated. This is typically fulfilled in theory: most theoretical models for
leakage, including PPT leakage functions [22], [23], [55] and simulatable leakage [39] (in the latter setting a public “leakage
oracle” is available, which models the possibility of offline training in real side-channel attacks) allow efficiently simulating
(given the key, of course), and this also seems the case in reality. On the downside, Jager et al. showed that the factor u is
unavoidable for generic reductions [63]. So generic reductions typically result in quantitatively weaker bounds, and it has been
a well-known trend that symmetric community seeks for quantitatively the same bounds via direct approach.

APPENDIX C
FIGURE OF AEDT

APPENDIX D
AN ANALYSIS IN THE STANDARD MODEL

The analysis is very similar to that of AEDT in [31]. To ease comparison, in this subsection we adopt the notations of [31].

Assumptions. In this section, we model the TBC Ẽ as a strong tweakable pseudorandom permutation, defined as follows.

Definition 1 (Strong Tweakable Pseudorandom Permutation). A function Ẽ : K × T W ×M → M is a (q, t, εẼ)-strong
tweakable pseudorandom permutation (STPRP) for a security parameter n if, for all (q, t)-bounded adversaries A, we have∣∣∣Pr

[
k

$← K : AẼk,Ẽ
−1
k (1n)⇒ 1

]
− Pr

[
P

$← T P : AP,P
−1

(1n)⇒ 1
]∣∣∣ ≤ εẼ,

where T P denotes the set of all tweakable permutations onM and with tweak space T W so that for any tweakable permutation
P , and for any tweak tw, P tw = P (tw, ·) and P tw,−1 = P−1(tw, ·) are the inverse of each other.

18

k

EH
0
N
A

R

H

k

E ZR h
1

E

pA

E
c1

pB

E

pA

E

pB

m1

c2

m2

c`

E

pB

m`

...

...

c1‖ . . . ‖c`

0

1

Figure 8: The AEAD mode AEDT. The two dark blocks are “leak-free” KDFK and TGFK instantiated with a single blockcipher-call. pA
and pB could be any two distinct constants, while in section IV-A we consider the simplest case pA = 0 and pB = 1. Note that the notation
E in this figure denotes a classical blockcipher: AEDT is a blockcipher-based AEAD mode.

And we assume the leakages are “recyclably simulatable”. We define

AdvmuCCAmL2
TEDT (−→q , t, σ)

def
=== max

{
AdvmuCCAmL2

TEDT (A)
}
,

where −→q = (qm, qe, qd, p − 1, ql), and the maximal is taken over all (−→q , t)-bounded adversaries: that make qm queries to
the non-challenge encryption oracle, qd queries to the decryption oracle, p − 1 queries to Ldecch, qe queries to the challenge
encryption oracle, and ql queries to L, run in time t, and have at most σ blocks in its queries. In the remaining, we first present
the leakage assumption and then our results.

Recyclable Leakage Simulatability is defined below (adapted to TPRP setting) based on (p, q)-rsim-game in Table II.
We abbreviate it as (p, q)-recyclable-simulatability. This (p, q)-recyclable-simulatability assumption is an extension of the
q-simulatability notion [39], by allowing each of the q leakages in q-simulatability to be repeated p times.

Game (p, q)-rsim(A, Ẽ, L,S, b).
The challenger selects two random keys k, k∗ $← K. The output of the game
is a bit b′ computed by AL based on the challenger responses to a total of
at most q adversarial queries of the following type, each repeated at most p times:
Query Response if b = 0 Response if b = 1

TEnc(T, x) ẼT
k (x), L(k, T, x) ẼT

k (x),SL(k∗, T, x, Ẽk(T, x))
and one query of the following type, repeated at most p times:
Query Response if b = 0 Response if b = 1

Gen(kpre, Tpre, x) SL(kpre, Tpre, x, k) SL(kpre, Tpre, x, k∗)

Table II
THE (p, q)-RSIM-GAME FOR TBC.

Definition 2 ((p, q)-recyclable-simulatability of leakages). Let Ẽ be a TPRP with L as its leakage function. Then the leakages
of Ẽ are said to have (qS , tS , ql, t, ε(p,q)-rsim) (p, q)-recyclable-simulatability, if there exists a (qS , tS)-bounded simulator SL
such that, for every (ql, t)-bounded adversary AL (making at most ql queries to L and running in time t), we have∣∣∣Pr[(p, q)-sim(A, Ẽ, L,S, 1)⇒ 1]− Pr[(p, q)-sim(A, Ẽ, L,S, 0)⇒ 1]

∣∣∣ ≤ ε(p,q)-rsim.

Throughout the remaining, we would simply call such leakages R-simulatable. It isn’t hard to see (p, q)-recyclable-simulatability
captures very similar SPA security setting as Eq. (2), the non-invertible leakage assumption. Please see [31] for additional
discussion on this assumption.

To the muCCAmL2 Advantage. We formally define the leakage function L = (Lenc, Ldec) of TEDT as:
• Lenc consists of the follows that are generated during the encryption:

– the leakages LẼ(s, T, x) generated by all the internal calls to Ẽs(T, x), and
– the leakages L⊕(a, b) generated by all the internal actions a⊕ b, and
– all the intermediate values involved in the computations of the hash functions.

• Ldec consists of the above that are generated during the decryption.
Our security reduction is made against (i) the simulatability of the leaking blocks, (ii) the security of the encryption of one
single block with a fresh key. In detail, following Pereira et al.’s approach [38], we consider a Leaking Real Single-block
Encryption scheme LRSE defined in Fig. 9 as the basic unit of TEDT, and as the leakage confidentiality assumption for TEDT
in the standard model. Since for each generated key kch LRSE will be used to encrypt a single message m composed of a

19

Description of LRSE scheme: (tool for the proof and for capturing the confidentiality advantage)
RSGen(1n) picks kch

$← {0, 1}n, M, C = {0, 1}n (T, pA, pB ∈ {0, 1}n, pA 6= pB)
RSEnckch(m) returns (kup, c), where c = ych ⊕m, ych = Ẽkch(T, pB), and kup = Ẽkch(T, pA). (The term “up” is short for

“update”.)
RSDeckch(c) proceeds in the natural way.
The leakage LRSE = (Lrsenc, Lrsdec, kpre) resulting from the LRSE implementation is defined as
• Lrsenc(kch,m) = (LẼ(kch, T, pA), LẼ(kch, T, pB), L⊕(ych,m),SL(kpre, T, pA, kch)),
• Lrsdec(kch, c) = (LẼ(kch, T, pA), LẼ(kch, T, pB), L⊕(ych, c),SL(kpre, T, pA, kch))

for a fixed random kpre
$← {0, 1}n. As usual we denote LRSEnckch(m) = (RSEnckch(m), Lrsenc(kch, T, pA, pB ,m)).

Figure 9: Basic unit: the single-block encryption scheme LRSE.

single block, we assume that given a security parameter n, LRSE is (p, ql, t, εs-block) secure in the following sense: for any
(ql, t)-bounded eavesdropper adversary ALRSE choosing T, pA, pB ,m0,m1 ∈ {0, 1}n with pA 6= pB , it holds∣∣∣Pr[ALRSE(LRSEnc+kch(m0))⇒ 1]− Pr[ALRSE(LRSEnc+kch(m1))⇒ 1]

∣∣∣ ≤ εs-block, (9)

where LRSEnc+kch(mb) = (LRSEnckch(mb), [Lrsdec(kch, c
b)]p−1, kpre) for the pair of outputs (cb, kup) = RSEnckch(mb). The

reason why the adversary also gets the auxiliary outputs kpre and kup is for composability purpose which will be apparent in
the proof. Similar to Eq. (2), εs-block may not be negligible.

Based on the assumption (9), the muCCAmL2 advantage bound could be established below.

Theorem 4. Let Ẽ : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a (2qe + 2qd + 2qm, t
′, εẼ∗)-STPRP. Assume that Ẽ has two

implementations: a strongly protected implementation Ẽ∗ underlying KDF and TGF is leak free, and a plain implementation Ẽ
have leakage function LẼ that is (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable. Then the TEDT implementation with leakage
function L = (Lenc, Ldec) defined before has

AdvmuCCAmL2
TEDT (−→q , t, σ) ≤2(qe + qd + qm)εẼ + AdvmuCIML2

TEDT (qe + qd + qm, t
′) + 4σ(εẼ + ε(p,2)-rsim) + σ · εs-block, (10)

where σ is the number of blocks in the challenge messages and εs-block is as defined in Eq. (9). Here t′ = t + (qe + qd +
qm)(t$ + t1−pass), t1−pass is the maximum running time of TEDT upon a single (encryption or decryption) query, and t$ is
the time needed for randomly sampling a value from {0, 1}n.

As proved in section VI, the term AdvmuCIML2
TEDT (qe + qd + qm, tAL′) is likely close to optimal. The other terms are of some

birthday type and are comparable to Theorem 2. In some sense, this result can also be seen as domain extension of the single-
block encryption LRSE. It’s worth noting that by setting ε(p,2)-rsim = 0 and εs-block = 0 we obtain a muCCAm$ bound in the
standard model:

AdvmuCCAm$
TEDT (qm, qe, qd, t, σ) ≤ 2(qe + qd + qm + 2σ)εẼ + AdvmuCIML2

TEDT (qe + qd + qm, t
′).

This concrete bound is weak. It doesn’t reveal the influence of key collisions. Also it suffers from the (unreal) “hybrid security
loss” (as discussed subsequently to Theorem 2), which, as we stressed several times and as discussed in [36], [37], constitutes
one of our motivations to mainly rely on ideal model analysis. On the positive side, the above two bounds show that when
the TBC isn’t ideal, TEDT still enjoys (a weaker) provable security.

Proof of Theorem 4 is almost the same as the proof for Theorem 5 & 10 in [31]; also the flow is very similar to Appendix G.
We first prove that based on the pseudorandomness of Ẽ and the simulatability of the leakage, the “real-leaking world”
(ẼTk (p), L(k, T, p)) is indistinguishable from the “ideal-simulating” world ($,SL(k, T, p, $)). This is actually a lemma of Guo
et al. [31] adapted to our TPRP setting.

Lemma 1 (Indistinguishability of Real-Leak and Ideal-Simulation). Let Ẽ : {0, 1}n×{0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εẼ)-
TPRP, whose implementation has a leakage function LẼ having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let
SL be an appropriate (qS , tS)-bounded leakage simulator. Then, for every kpre, T, pA, pB , z ∈ {0, 1}n and every (ql−q∗, t−t∗)-
bounded distinguisher DL, the following holds:∣∣Pr[kch

$← {0, 1}n : DL(ẼTkch(pA), ẼTkch(pB), [LẼ(kch, T, pA), LẼ(kch, T, pB),SL(kpre, T, z, kch)]p)⇒ 1]

− Pr[kch, cA, cB
$← {0, 1}n, cA 6= cB :

DL(cA, cB , [SL(kch, T, pA, cA),SL(kch, T, pB , cB),SL(kpre, T, z, kch)]p)⇒ 1]
∣∣ ≤ εẼ + ε(p,2)-rsim.

Here q∗ = 3p · qS , while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS augmented with the time needed to make 2 oracle
queries to the TPRP challenger and select a uniformly random key in {0, 1}n, and tsim is the time needed to relay the content
of 2p TEnc and p Gen queries from and to a (p, 2)-rsim challenger.

20

Description of LISE: (tool for the proof)
ISGen(1n) picks kch

$← {0, 1}n, M, C = {0, 1}n (T, pA, pB ∈ {0, 1}n, pA 6= pB)
ISEnckch(m) returns (kup, c), where c = ych ⊕m, and kup, ych

$← {0, 1}n, kup 6= ych.
ISDeckch(c) proceeds in the natural way.
The leakage LISE = (Lisenc, Lisdec, kpre) resulting from the LISE implementation is defined as
Lisenc(kch,m) = (SL(kch, T, pA, kup),SL(kch, T, pB , ych), L⊕(ych,m),SL(kpre, T, pA, kch)), Lisdec(kch, c) =

(SL(kch, T, pA, kup),SL(kch, T, pB , ych), L⊕(ych, c),SL(kpre, T, pA, kch)) for a fixed random kpre
$← {0, 1}n.

Figure 10: The ideal single-block encryption scheme ISEnc.

Description of RESM:
• Gen picks k0

$← {0, 1}n
• RESMk0(T,N,m1, . . . ,m`) proceeds in two steps:
(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, computes ki ← Ẽki−1

(T,Ci(N)), yi ← Ẽki−1
(T,Di−1(N)), and ci ← yi ⊕ mi, and adds

[LẼ(ki−1, T, Ci(N)), LẼ(ki−1, T,Di−1(N))]p, L⊕(yi,mi), and [L⊕(yi, ci)]
p−1 to the list leak.

RESMk0(T,N,m1, . . . ,m`) eventually returns (c1, . . . , c`). And we define LRESMk0(T,N,m) =
(RESMk0(T,N,m), leak) for the list leak standing at the end of the above process.

Description of IESM:
• IESMk0(T,N,m1, . . . ,m`) proceeds in two steps:
(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, samples ki

$← {0, 1}n and yi
$← {0, 1}n such that ki 6= yi, sets ci ← yi ⊕ mi, and adds

[SL(ki−1, T, Ci(N), ki),SL(ki−1, T,Di−1(N), yi)]
p, L⊕(yi,mi), and [L⊕(yi, ci)]

p−1 to the list leak.
IESMk0(T,N,m1, . . . ,m`) eventually returns (c1, . . . , c`). And we define LIESMk0(m) = (IESMk0(m), leak) for the list
leak standing at the end of the above process.

Figure 11: The RESM and IESM scheme.

Proof. The proof consists of two simple transitions: first replace the real leakages by with simulated ones, relying on the
recyclable-simulatability assumption, then replace Ẽkch(T, pA) and Ẽkch(T, pB) by two distinct random values to obtain the
target inputs, relying on the assumption that Ẽ is a TPRP.

We then define the tweakable variant of the “single-block scheme” in [31]: roughly, all the intermediate values are replaced
by random and all the leakages are replaced by simulation. The resulted algorithm is defined in Fig. 10. We also define
LISEnc+kch(m) = (LISEnckch(m), [Lisdec(kch, c)]

p−1, kpre) for (c, kup) = ISEnckch(m).

Lemma 2 (Indistinguishability of ISEnc and RSEnc). Let Ẽ : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εẼ)-TPRP,
whose implementation has a leakage function LẼ having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be
an appropriate (qS , tS)-bounded leakage simulator. Then, for every T, pA, pB ∈ {0, 1}n, pA 6= pB , and every (ql− q∗, t− t∗)-
bounded distinguisher DL, the following holds:∣∣Pr[DLRSE(m, LRSEnc+kch(m))⇒ 1]− Pr[DLISE(m, LISEnc+kch(m))⇒ 1]

∣∣ ≤ εẼ + ε(p,2)-rsim.

Here q∗ = 3p ·qS +p, while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS +2t⊕ augmented with the time needed to make
2 oracle queries to the TPRP challenger and select a uniformly random key in {0, 1}n, t⊕ is the time needed to evaluate the
⊕ action on an n-bit input, and tsim is the time needed to relay the content of four TEnc and two Gen queries from and to
a (p, 2)-rsim challenger.

Proof. Follows the same line as Lemma 1.

We then define (L)RESM and (L)IESM in the standard model in Fig. 11 and prove their indistinguishability.

Lemma 3 (Indistinguishability of LRESM and LIESM). Let Ẽ : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εẼ)-TPRP,
whose implementation has a leakage function LẼ having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL
be an appropriate (qS , tS)-bounded leakage simulator. Then, for every `-block message m, every T,N, pA, pB , and every
(ql − 2qr − q∗, t− 2tr − t∗)-bounded distinguisher DL, the following holds:

|Pr[DL(m,RESMk0(T,N,m))⇒ 1]− Pr[DL(m, IESMk0(T,N,m))⇒ 1]| ≤ `(εẼ + ε(p,2)-rsim).

Here qr = `(2qS + 3), q∗ and t∗ are as defined in Lemma 2, and tr = 2`(tS + t$ + tẼ) + ` · t⊕, where tẼ is the time needed for
evaluating Ẽ once, t$ is the time needed for randomly sampling a value from {0, 1}n, and t⊕ is the time needed for evaluating
⊕ once.

21

Proof. We define G0 as the security game in whichAL receives RESMk0(T,N,m) as the input, and G` as the game in which AL

receives IESMk0(T,N,m) as the input. We show that G0 could be transited to G` via a sequence of games G1,G2, . . . ,G`−1. In
detail, for i from 1 to `, we consider the game Gi−1: we replace the two intermediate values ẼTki−1

(Ci(N)) and ẼTki−1
(Di−1(N))

by two distinct random values ki and yi, and replace the leakages [LẼ(ki−1, T, Ci(N)), LẼ(ki−1, T,Di−1(N))]p, L⊕(ẼTki−1
(Di−1(N)),mi),

and [L⊕(ẼTki−1
(Di−1(N)), ci)]

p−1 by the simulated leakage traces [SL(ki−1, T, Ci(N), ki), SL(ki−1, T,Di−1(N), yi)]
p, L⊕(yi,mi),

and [L⊕(yi, ci)]
p−1. This yields the game Gi.

We next derive an upper bound for |Pr[(DL)Gi ⇒ 1]−Pr[(DL)Gi−1 ⇒ 1]|. For this, we assume a (ql−p·qr−q∗, t−p·tr−t∗)-
bounded distinguisher DL against Gi and Gi−1, and we build a distinguisher DL′ against the real-leaking and the ideal-
simulation-world. Assume DL′ receives (cA, cB , [leak1, leak2,SL(kpre, T, Ci−1(N), kch)]p, kpre) as inputs, with cA 6= cB .
DL′ proceeds in six steps:
(1) DL′ first uniformly samples k0;
(2) For j = 1, . . . , i−3,DL′ uniformly samples 2 random values kj 6= yj , simulates the traces [SL(kj−1, T, Cj(N), kj),SL(kj−1, T,Dj−1(N), yj)]

p,
computes cj ← yj ⊕mj and mj ← yj ⊕ cj and obtains the traces L⊕(yj ,mj) and [L⊕(yj , cj)]

p−1;
(3) DL′ then sets yi−2 ← kpre, samples yi−2 6= kpre, obtains [SL(ki−3, T,Di−3(N), yi−2)]p, computes ci−2 ← yi−2 ⊕

mi−2 and mi−2 ← yi−2 ⊕ ci−2 and obtains the traces L⊕(yi−2,mi−2) and [L⊕(yi−2, ci−2)]p−1. These along with
[SL(kpre, T, Ci−1(N), kch)]p are used as the leakages of the i− 2 th iteration;

(4) Then it uniformly samples yi−1, computes ci−1 ← yi−1⊕mi−1, mi−1 ← yi−1⊕ci−1, and uses [SL(ki−2, T, Ci−1(N), kch),SL(ki−2, T,Di−2(N), yi−1)]p,
L⊕(yi−1,mi−1), [L⊕(yi−1, ci−1)]p−1 as the traces of the i− 1 th iteration in the first pass;

(5) Sets ki ← cA and yi ← cB , computes ci ← yi ⊕ mi, and uses [leak1, leak2]p, L⊕(yi,mi), [L⊕(yi, ci)]
p−1 as the

corresponding leakages;
(6) Takes ki as the starting point and emulates the remaining part of the execution of RESM encryption. Eventually, DL′

serves the obtained ciphertext c1‖ . . . ‖c` as well as the leakage traces to DL, and outputs whatever DL outputs.
It can be seen that depending on whether the input tuple received by DL′ is real-leaking or ideal-simulation, DL is interacting
with Gi−1 or Gi.

We further show that to perform the additional operations, DL′ makes at most p · sr additional queries to L and spend p · tr
additional time. To this end, we note that the encryption process of RESM involves 2` − 1 calls to Ẽ and ` xor operations.
Moreover, to emulate the “hybrid” encryption process once, DL′ needs at most (2` − 1)(qS + 1) + ` = qr queries to L and
(2` − 1)(tẼ + t$ + tS) + ` · t⊕ = tr running time. To obtain the required decryption leakage traces, DL′ has to additionally
perform the “hybrid” decryption process for p−1 times, which contributes to (p−1)qr more queries and (p−1)tr more time.
Therefore, as claimed, DL′ makes at most p · qr additional queries to L and spends p · tr additional time for the additional
operations. By the above and Lemma 1, we have∣∣Pr[(DL)Gi ⇒ 1]− Pr[(DL)Gi−1 ⇒ 1]

∣∣ ≤ εẼ + ε(p,2)-rsim.

Therefore, the ` transitions yield ∣∣Pr[DG` ⇒ 1]− Pr[DG0 ⇒ 1]
∣∣ ≤ `(εẼ + ε(p,2)-rsim)

in total.

Then is the standard model version of Lemma 12.

Lemma 4 (1-Block Advantage to `-Block). For every pair of `-block messages m0 and m1 and (ql, t)-bounded adversary
AL, there exists a (ql + 2qr, t+ 2tr)-bounded adversary AL′ such that

|Pr[AL(IESMk0(T,N,m0))⇒ 1]− Pr[AL(IESMk0(T,N,m1))⇒ 1]|

≤
∑̀
i=1

|Pr[AL′(LISEnc+ki−1
(m0

i))⇒ 1]− Pr[AL′(LISEnc+ki−1
(m1

i))⇒ 1]|,

where k0, . . . , k`−1 are chosen uniformly at random, and m0
i and m1

i are the i-th block of m0 and m1 respectively. Here
qr = `(2qS + 1) and tr = `(2tS + 2t$ + t⊕), where tẼ, t$, and t⊕ are as assumed in Lemma 3.

Proof. The proof follows the same line as Lemma 12.

Gathering Lemmas 2, 3, and 4, and following the same line as Lemma 13 we obtain

Lemma 5. Let Ẽ : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εẼ)-TPRP, whose implementation has a leakage function
LẼ having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-bounded leakage
simulator. Then, for every pair of `-block messages m0 and m1 and (ql − 2qr − q∗, t − 2tr − t∗)-bounded adversary AL, it
holds

|Pr[AL(RESMk0(T,N,m0))⇒ 1]− Pr[AL(RESMk0(T,N,m1))⇒ 1]| ≤ 4`(εẼ + ε(p,2)-rsim) + ` · εs-block,

where qr, tr are as defined in Lemma 3, and q∗, t∗ are as defined in Lemma 2.

22

1) Completing the muCCAmL2 Proof.: We start by defining G0 as the game PrivKmuCCAmL2,0
AL,TEDT

, and G∗0 as the game
PrivKmuCCAmL2,1

AL,TEDT
. From G0 we obtain G1 by replacing the u instances of Ẽ∗K1

, . . . , Ẽ∗Ku invoked during the execution by u inde-
pendent tweakable random permutations P̃1, . . . , P̃u. For each such Ki it’s a quite standard trick to build a (2qe+2qd+2qm, tB)-
bounded adversary BSTPRP against the STPRP security of Ẽ∗, with tB ≤ t+ (qe+ qd+ qm)t1−pass ≤ t′. The number of such
Ki involved in the execution is ≤ qe + qd + qm, thus

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ (qe + qd + qm)εẼ∗

follows from the assumption that Ẽ∗ is a (2qe + 2qd + 2qm, t
′, εẼ∗)-secure STPRP. Similarly, we replace Ẽ∗K1

, . . . , Ẽ∗Ku by
P̃1, . . . , P̃u to turn G∗0 into G∗1, which also introduces a gap of (qe + qd + qm)εẼ∗ .

Then, following the proof of Eq. (27), the gap between G1 and G∗1 can be bounded:∣∣Pr[(AL)G1 ⇒ 1]− Pr[(AL)G∗1 ⇒ 1]
∣∣

≤AdvmuCIML2
TEDT (qe + qd + qm, t

′) +
qe + qm − 1

2n
+

∑qm
i=1 εFEMALE-eav(`i)︸ ︷︷ ︸

≤4σ(εẼ+ε(2,2)-rsim)+σ·εs-block (by Lemma 5)

,

with `i the number of blocks in the ith challenge message. This plus the above gap 2(qe + qd + qm)εẼ∗ yield the final claim.

APPENDIX E
PROOF OF THEOREM 1

The proof proceeds in two steps:
(i) Below in section E-B, we transit the scheme TEDT[ĨC]K,T to its idealized version, via replacing calls to KDF and TGF

by several independent tweakable random permutations π̃1, . . . , π̃u. These permutations cannot be queried by A. We show
the real and idealized schemes are indistinguishable. The actual goal of this step is to argue that during the interaction,
the information gained by the adversary is indeed independent of the secret keys K.

(ii) Then in section E-C, we prove unforgability for the idealized scheme to complete the muCIML2 proof.
The proof would rely on some properties of the Hirose compression function and the pad scheme presented in section E-A
below (before the main analysis). Finally, as mentioned, the TBC-call in line 6 in Dec (Fig. V) has to be backward to resist
decryption leakage. To serve more insights, at the end in section E-D we discuss where our proof approach fails for the design
without the backward TBC-call.

A. Properties of Hirose Compression Function and pad
Denote by Hir[ĨC] the Hirose compression function based on the ideal TBC ĨC. Note that any adversary A against Hir[ĨC]

can be normalized to an adversary A′ that only makes pairs of Hirose “matching” queries: A′ runs A, and
• each time A makes a forward query ĨCK(T,X), A′ makes a query ĨCK(T,X⊕θ)→ Y ′ right after relaying ĨCK(T,X)→
Y , and

• each time A makes a backward query ĨC−1K (T, Y), A′ makes a query ĨCK(T,X ⊕ θ) → Y ′ right after relaying
ĨC−1K (T, Y)→ X .

Therefore, we could concentrate on adversaries that only make such pairs of “matching” queries. In this vein, the function
Hir[ĨC] has the following collision-related properties.

Lemma 6. For any A making q pairs of matching queries to ĨC with 1 ≤ q ≤ 2n/4, it holds

Pr[(X,X ′)← AĨC : chop(Hir[ĨC](X)) = chop(Hir[ĨC](X ′)) ≤ 6q

2n
.

Proof. The collision resistance of Hir[ĨC] does not necessarily imply the collision resistance of chop ◦ Hir[ĨC]. To show the
latter, consider any two pairs of matching queries ((v, h, g, y), (v⊕ θ, h, g⊕ θ, z) and ((v′, h′, g′, y′), (v′⊕ θ, h′, g′⊕ θ, z′). We
now bound the probability of collision due to these queries. We distinguish two cases:
Case 1: (v, h, g, y) = (v′⊕ θ, h′, g′⊕ θ, z′). This means the two pairs are actually the same two ĨC queries in different orders.
Then the collision indicates chop(g⊕ y) = chop(g⊕ θ⊕ z). Wlog assume (v, h, g, y) is made after (v⊕ θ, h, g⊕ θ, z). Then
regardless of whether the query is forward or backward, either g or y is uniform in a set of size at least 2n − 2q. Therefore,

Pr[chop(g ⊕ y) = chop(g ⊕ θ ⊕ z)] = Pr[g ⊕ y = b‖chop(g ⊕ θ ⊕ z) for b = 0 or 1] ≤ 2

2n − 2q
.

Therefore, with q matching pairs, we have

Pr[Case 1] ≤ 2q

2n − 2q
.

23

Case 2: (v, h, g, y) 6= (v′ ⊕ θ, h′, g′ ⊕ θ, z′). Then it can be seen the involved queries are four different ones, and a collision
indicates

g ⊕ y = g′ ⊕ y′ ∧ chop(g ⊕ θ ⊕ z) = chop(g′ ⊕ θ ⊕ z′) (11)

or

g ⊕ y = g′ ⊕ θ ⊕ z′ ∧ chop(g ⊕ θ ⊕ z) = chop(g′ ⊕ y′). (12)

Similarly to Case 1, in any subcase, we have

Pr[g ⊕ y = g′ ⊕ y′] ≤ 1

2n − 2q
and Pr[chop(g ⊕ θ ⊕ z) = chop(g′ ⊕ θ ⊕ z′)] ≤ 2

2n − 2q
,

so that Pr[Eq. (11)] ≤ 2
(2n−2q)2 . A similar reasoning shows Pr[Eq. (12)] ≤ 2

(2n−2q)2 . Therefore, when q ≤ 2n/4 we have

Pr[Case 2] ≤
(
q

2

)
· 4

(2n − 2q)2
≤
(4q

2n

)2
≤ 4q

2n
.

In summary,

Pr[collision after chopping] = Pr[Case 1] + Pr[Case 2] ≤ 6q

2n

as claimed.

We also need the multi-collision resistance of the chopped Davies-Meyer.

Lemma 7. Consider the Davies-Meyer function DM[ĨC](K‖T, h) = ĨCTK(h) ⊕ h built upon the ideal TBC ĨC. Then, for any
adversary A making at most q ≤ 2n/2 queries to ĨC and any integer λ, it holds

Pr[(X1, . . . , Xλ)← AĨC : chop(DM[ĨC](X1) = . . . = chop(DM[ĨC](Xλ))] ≤ (4q)λ

λ!2(λ−1)n
.

Proof. Consider any λ ĨC queries (K1‖T1, h1, y1), . . . , (Kλ‖Tλ, hλ, yλ) listed according the order they were made, and let
zi = hi ⊕ yi for each i. Then, since q ≤ 2n/2, we have

(i) Pr[chop(z2) = chop(z1)] ≤ 2
2n−q ≤

4
2n

(ii) . . .
(iii) Pr[chop(zλ) = chop(z1)] ≤ 2

2n−q ≤
4
2n

Thus in total we have

Pr[λ collisions after chopping] ≤
(
q

λ

)
·
(

4

2n

)λ−1
≤ (4q)λ

λ!2(λ−1)n

as claimed.

Last, we claim the pad scheme is effective.

Lemma 8. It holds pad(A,N,−→c , T) 6= pad(A′, N ′,−→c ′, T ′) for any two distinct tuples (A,N,−→c , T) and (A′, N ′,−→c ′, T ′).

Proof. Note that pad(A,N,−→c , T) 6= pad(A′, N ′,−→c ′, T ′) unless |A| = |A′| & |−→c | = |−→c ′|, as otherwise the values appended
in the length field are different. But if |A| = |A′| and |−→c | = |−→c ′| (note |N | = |N ′| and |T | = |T ′| always hold), then
(A,N,−→c , T) 6= (A′, N ′,−→c ′, T ′) indicates at least one of them have different values, and we thus have A‖N‖−→c ‖T 6=
A′‖N ′‖−→c ′‖T ′ and the resulted values are different after padded.

B. Idealizing TEDT

To formally define the idealized scheme, we define an ideal primitive TRPFamily in Fig. 12. Briefly, TRPFamily captures
the behavior of an ideal TBC instantiated with u uniformly picked keys (K∗1 , . . . ,K

∗
u), i.e., u tweakable random permutations

π̃1, . . . , π̃u. Yet, the u keys (K∗1 , . . . ,K
∗
u) are actually not used by TRPFamily: they only define a “pattern” for the permutations

π̃1, . . . , π̃u.7 The definition and use of TRPFamily are similar to Gueron and Lindell [27]. Based on this, the ideal scheme is ob-
tained by replacing every call to KDF(Ki, t,X)/TGF(Ki, t,X) and KDF−1(Ki, t, Y)/TGF−1(Ki, t, Y) by TRPFamily(i, t,X)
and TRPFamily−1(i, t, Y) for i = 1, . . . , u. Denote the obtained idealized scheme by TEDT[ĨC,TRPFamily]T.

7We cannot always use independent π̃1, . . . , π̃u, otherwise the u keys have to be collision-free, resulting in the undesired birthday term u2

2n
.

24

Initialization(u):

1. Choose u random keys K∗ = (K∗1 , . . . ,K
∗
u)

$← (K)u, and tweakable random permutations π̃1, . . . , π̃u from {0, 1}n × {0, 1}n →
{0, 1}n, under the constraint that π̃i = π̃j if and only if K∗i = K∗j .

Interface TRPFamily(i, T,X)

1. Return π̃i(T,X)

Interface TRPFamily−1(i, T, Y)

1. Return π̃−1
i (T, Y)

Finalization(u):

1. Choose u random keys K = (K1, . . . ,Ku)
$← (K)u under the constraint that Ki = Kj if and only if K∗i = K∗j .

Figure 12: Definition of the primitive TRPFamily.

1) Preparation for the Indistinguishability: Notations.: Formally, we are to derive an upper bound for

AdvmuCIML2
D,TEDT[ĨC]K,T,L∗,u

−AdvmuCIML2
D,TEDT[ĨC,TRPFamily]T,L∗,u

.

for any −→q -bounded D—since this is essentially a distinguishing advantage, we use the notation D instead of A. For this, we
employ Patarin’s H-coefficients technique [57]. We first define the transcripts of the distinguisher when interacting with the
real/ideal scheme, and recall the technique.

In detail, we summarize the adversarial queries to the ideal TBC ĨC in a set

τĨC = ((k1, t1, x1, y1), . . . , (kqĨC , tqĨC , xqĨC , yqĨC)),

which indicates the i-th query is either forward ĨCt1k1(x1)→ y1 or backward ĨCt1k1(y1)→ x1.
Note that by our assumption, all the ĨC queries (except for KDF and TGF) made by TEDT are leaked to D. These queries

also result in records of the form (ki, ti, xi, yi). To make a distinction, we denote by τ∗
ĨC

the union of these records and the
adversarial query transcript τĨC. It isn’t hard to see:

• upon an encryption query Enc(i,N,A,M), TEDT makes at most 2 · 2 · d |M |n e+ 2 · d |A|n e ≤ 4(d |M |n e+ d |A|n e) ĨC queries
during encrypting and hashing A and M , and 2× 3 queries during hashing the additional 3 blocks due to N , T , and the
padded length field. Therefore, the number of internal ĨC calls is at most 4(d |M |n e+ d |A|n e) + 6;

• upon a decryption query Dec(i,N,A,C), the number of internal ĨC calls is at most 4(d |M |n e+d
|A|
n e)+6, with C = −→c ‖Z.

Therefore, when interacting with the idealized scheme TEDT[ĨC,TRPFamily]T, the number of internal ĨC calls is at most
4σ + 6(qe + qd), and thus

q∗
ĨC

:=
∣∣τ∗

ĨC

∣∣ ≤ 4σ + 6(qe + qd) + qĨC. (13)

We also summarize the calls to KDF and TGF in a list

τπ̃ = ((K1, t1, x1, y1), (K2, t2, x2, y2), . . .).

In this set, the i-th tuple (Ki, ti, xi, yi) indicates:
• interacting with the real AEAD scheme TEDT[ĨC]K,T, the i-th query is either KDF/TGF(Ki, ti, xi)→ yi or KDF−1/TGF−1(Ki, ti, yi)→
xi; and,

• interacting with the idealized scheme TEDT[ĨC,TRPFamily]T, the i-th query is either TRPFamily(j, ti, xi) → yi or
TRPFamily−1(j, ti, yi)→ xi for some user index j such that Kj = Ki, where Kj is the key sampled by the procedure
Finalization(u) (see Table 12).

Note that since we assume leak-freeness of KDF and TGF-calls, the secret user keys cannot be seen by the distinguisher, and
don’t appear in the true adversarial transcripts. One could imagine that we append these keys to the true adversarial KDF/TGF
transcripts at the end of the interaction for conceptual simplicity, and this eventually yields the above τπ̃ .

We also keep a list
τ∗H =

(
(U1, V1‖W1), (U2, V2‖W2), . . .

)
for the appeared inputs and outputs of the hash function H[ĨC]. Note that by the specification of TEDT, none of the Ui can
be empty. As we assumed all the underlying ĨC queries have been leaked and included in τ∗

ĨC
, this list contains redundant

information: it can be recovered from τ∗
ĨC

. But it simplifies the language, e.g., Eq. (14).
In addition to the above, the “public-keys” T = (T1, . . . , Tu), where Ti = PKi‖0, are also included in the transcript.

Moreover, to simplify the arguments (in particular, the definition of bad transcripts), we reveal to the distinguisher the user
keys K = (K1, . . . ,Ku) at the end of the interaction. In detail,
• in the real world, we reveal the keys K in use, and
• in the ideal world, we reveal the keys K sampled by the procedure Finalization(u) (see Table 12).

25

This is wlog since D is free to ignore this additional information to compute its output bit. Formally, we append both T and
K to the tuple (τ∗H, τ

∗
ĨC
, τπ̃) and obtain what we call the transcript

τ = (τ∗H, τ
∗
ĨC
, τπ̃,T,K).

It may seem exotic that transcripts for an AEAD scheme do not include encryption and decryption query transcripts τe and τd.
This is due to the unbound leakage assumption: since during encryption and decryption, almost all the underlying queries to
ĨC are leaked, the transcripts τ∗

ĨC
and τπ̃ allow completely recover the encryption/decryption queries and answers. Therefore,

there is no need for their presence in this section. (τe and τd will indeed be used in Sections VII and I.)

With respect to some fixed distinguisher D, a transcript τ is said attainable if there exists oracles (ĨC,TRPFamily) such
that the interaction of D with the ideal scheme (TEDT[ĨC,TRPFamily]T, ĨC) yields τ . We denote T the set of attainable
transcripts. In all the following, we denote Tre, resp. Tid, the probability distribution of the transcript τ induced by the real
world, resp. the ideal world (note that these two probability distributions depend on the distinguisher). By extension, we use
the same notation to denote a random variable distributed according to each distribution.

Given a set τ∗
ĨC

and an ideal TBC ĨC, we say that ĨC extends τ∗
ĨC

, denoted ĨC ` τ∗
ĨC

, if ĨCtk(x) = y for all (k, t, x, y) ∈ τ∗
ĨC

.
Given a set τπ̃ ,
• in the real world, we say ĨC extends τπ̃ , denoted ĨC ` τπ̃ , if ĨCtK(x) = y for all (K, t, x, y) ∈ τπ̃;
• in the ideal world, we say TRPFamily extends τπ̃ , denoted TRPFamily ` τπ̃ , if TRPFamily(i, t, x) = y for all

(K, t, x, y) ∈ τπ̃ and all user index i such that Ki = K.
It’s easy to see that for any attainable transcript τ = (τ∗H, τ

∗
ĨC
, τπ̃,T,K), the interaction ofD with oracles (TEDT[ĨC,TRPFamily]T, ĨC)

produces τ if and only if ĨC ` τ∗
ĨC

and TRPFamily ` τπ̃ .
With the above, the main lemma of H-coefficients technique is as follows.

Lemma 9. Fix a distinguisher D. Let T = Tgood∪Tbad be a partition of the set of attainable transcripts T . Assume that there
exists ε1 such that for any τ ∈ Tgood, one has

Pr[Tre = τ]

Pr[Tid = τ]
≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

A proof could be found in [57].2) Completing the Transition.: By the above framework, we start by defining bad transcripts. For a transcript τ , we define
µT and µW , the maximum multiplicity of T and W , as

µT := max
t∈{0,1}n

∣∣{i ∈ {1, . . . , u} : Ti = t}
∣∣,

µW := max
w∈{0,1}n−1

∣∣∣{(U, V ‖W) ∈ τ∗H : W = w
}∣∣∣. (14)

Then, an attainable transcript τ is bad, if one of the following conditions is fulfilled:
• (B-1) µT ≥ n, µW ≥ n.
• (B-2) there exists a KDF/TGF query (K, t, x, y) ∈ τπ̃ such that (K, t, x, ?) ∈ τ∗

ĨC
or (K, t, ?, y) ∈ τ∗

ĨC
.

The bound on µT depends on the distribution PKDistribution. If T1, . . . , Tu are uniformly distributed, then it’s easy to see

Pr[µT ≥ n] ≤
(
u

n

)
· 1

2(n−1)(n−1)
≤ 2n−1 · un

n!2(n−1)n
≤ 1

2n!
·
(4u

2n

)n
. (15)

Whereas if T1, . . . , Tu are distinct, then trivially µT = 1 and Pr[µT ≥ n] = 0.
Reasoning about µW requires the multi-semicollision resistance of H. Formally, we rely on the following lemma, which

claims (multi-semi) collision resistance on H.

Lemma 10. Consider the interaction between an muCIML2 −→q -adversary A and the scheme TEDT[ĨC,TRPFamily]T, and A
has at most σ blocks in all its queried plaintext, ciphertext, and associated data. Define

q∗∗
ĨC

:= 4σ + 6(qe + qd) + 2qĨC. (16)

Then with probability at least 1− 8q∗∗
ĨC

2n , it holds:
(i) H is collision-free: any two distinct (U, V ‖W) and (U∗, V ∗‖W ∗) in τ∗H necessarily have V ‖W 6= V ∗‖W ∗;

(ii) H is multi semi-collision-free: µW < n.

Proof. We denote by G1 the game that captures the interaction between the muCIML2 adversaryA and TEDT[ĨC,TRPFamily]T.
Following Hirose [50], we normalize the game: for each ĨC query either made by A or made by the TEDT mode, we assume

26

the system makes its Hirose matching query immediately (see section E-A). Denote G2 the resulted normalized game. We
now count the number of ĨC queries in G2:
• Since Qi(N) = Pi(N) ⊕ 1 for any i, the 2σ − 1 ĨC queries made during the encryption pass only result in an increase

of at most 1 new ĨC queries for the first constant P0(N) (since P0(N) is the input to KDF, it wouldn’t appear in τ∗
ĨC

);
• the 2σ+6(qe+qd) ĨC queries made by H would not result in new queries, since their matching queries have been included

in these 2σ + 6(qe + qd) queries, and
• the qĨC queries made by A may give rise to ≤ qĨC new queries.

Therefore, in G2, the number of ĨC queries doesn’t exceed q∗∗
ĨC

= 4σ+ 6(qe+ qd) + 2qĨC as in Eq. (16), and the upper bound

on the number of matching ĨC query pairs is
q∗∗
ĨC

2 .

Then consider G2. We define three bad conditions during its execution:
• (C-1) collision occurs between compression function outputs. Formally, there exists two 3n-bit values u‖g‖h and u′‖g′‖h′

such that:
– (u, h, g, g⊕ g∗), (u, h, g⊕ θ, g⊕ θ⊕h∗), (u, h, g, g⊕ g∗∗), (u, h, g⊕ θ, g⊕ θ⊕h∗∗) ∈ τ∗

ĨC
for some g∗, h∗, g∗∗, h∗∗, and

– chop(g∗‖h∗) = chop(g∗∗‖h∗∗).
• (C-2) Hitting initial-vector: ∃u, g, h : Hir[τ∗

ĨC
](u‖g‖h) = [0]2n. Formally, there exists a 3n-bit value u‖g‖h such that

(u, h, g, g), (u, h, g ⊕ θ, g ⊕ θ) ∈ τ∗
ĨC

;
• (C-3) n-collision: there exists n records (u1, h1, g1, z1), . . . , (un, hn, gn, zn) ∈ τ∗

ĨC
such that chop(g1 ⊕ z1) = . . . =

chop(gn ⊕ zn).
For (C-1), from Lemma 6 we have (when q∗∗

ĨC
/2 ≤ 2n/4, i.e., q∗∗

ĨC
≤ 2n/2)

Pr[(C-1)] ≤ 6

2n
·
q∗∗
ĨC

2
=

3q∗∗
ĨC

2n
.

For (C-2), consider any pair of queries (k, t, x, y) and (k, t, x ⊕ θ, y′). Clearly, regardless of the directions of these two
queries, it holds Pr[y = x ∧ y′ = x⊕ θ] ≤ 1

(2n−q∗∗
ĨC

)2 ≤
4

22n when q∗∗
ĨC
≤ 2n/2, and thus

Pr[(C-2)] ≤ 4

22n
·
q∗∗
ĨC

2
=

2q∗∗
ĨC

22n
≤
q∗∗
ĨC

2n
. (n ≥ 2)

For (C-3), an application of Lemma 7 (also requires q∗∗
ĨC
≤ 2n/2) yields Pr[(C-3)] ≤ (4q∗∗

ĨC
)n

n!2n(n−1) . Using n! ≥
(
n
e

)n ≥ 2n

(since n ≥ 6 > 2e), we reach

Pr[(C-3)] ≤
(4q∗∗

ĨC
)n

2n·n
≤

4q∗∗
ĨC

2n
. (4q∗∗

ĨC
≤ 2n)

A union bound thus results in

Pr[(C-1) ∨ (C-2) ∨ (C-3)] ≤
8q∗∗

ĨC

2n
.

Then, conditioned on ¬(C-1) ∧ ¬(C-2) ∧ ¬(C-3), we show the two claims hold. We first consider claim (i). For any two
records (U, V ‖W) and (U∗, V ∗‖W ∗), assume that tail is the maximum common suffix of U and U∗, i.e., U = header‖u‖tail,
U∗ = header∗‖u∗‖tail, |u| = |u∗| = n, u 6= u∗, and |header|, |header∗|, and |tail| are multiples of n. Then we distinguish
two cases:

Case 1: either header‖u or header∗‖u∗ is empty. Wlog assume header‖u is empty. Since U isn’t empty, this means
tail isn’t empty. Then we have H(header∗‖u∗) 6= [0]2n by ¬(C-2), i.e., in H(U∗), the hash-chain value after absorbing u∗

is different from the initial vector [0]2n. So the two “first-block” calls in absorbing tail in H(U) and H(U∗) are different.
By ¬(C-1), this means the resulted hash-chain values are different. Then by iteratively applying ¬(C-1), it can be seen the
“last-block calls” in H(U) and H(U∗) are different, and further V ‖W 6= V ∗‖W ∗.
Case 2: neither header‖u or header∗‖u∗ is empty. Then by ¬(C-1), H(header‖u) 6= H(header∗‖u∗), i.e., the two hash-
chain values after absorbing u 6= u∗ are different. If tail is empty, then as u 6= u∗ the “last-block calls” in H(U) and H(U∗)
are clearly different and further V ‖W 6= V ∗‖W ∗; otherwise, the two claims follow by iteratively applying ¬(C-1).

We then show claim (ii). The above show that distinct hash inputs U and U∗ necessarily result in distinct “last-block-calls”. By
this, any n hash inputs (U1, . . . , Un) necessarily result in n distinct “last-block-calls” denoted Hir(u1, g1, h1), . . . ,Hir(un, gn, hn).
By the definition of Hir, it can be seen such an n-semicollision correspond to an n-collision within n chopped Davies-Meyer
function calls. Concretely, assume that for

g′1‖h′1 = Hir(u1‖g1‖h1), . . . , g′n‖h′n = Hir(un‖gn‖hn),

27

it holds chop(h′1) = . . . = chop(h′n), then it essentially holds

chop(ĨCh1
u1

(g1 ⊕ θ)⊕ (g1 ⊕ θ)) = . . . = chop(ĨChnun(gn ⊕ θ)⊕ (gn ⊕ θ)),

contradicting ¬(C-3). These complete the proof.

Lemma 10 indicates

Pr[µW ≥ n] ≤
8q∗∗

ĨC

2n
. (17)

We continue analyzing bad transcripts, and consider (B-2). Note that by our definition, for every (K, t, x, y) ∈ τπ̃ in the
ideal world, the key K is actually from the “dummy” key vector K. We thus need to argue that the “dummy” key vector K
is uniformly distributed, i.e., for any “target” K† = (K†1 , . . . ,K

†
u), the keys K picked during the Finalization(u) process of

TRPFamily satisfies Pr[K = K†] = 1
2un . For this, define a set of keys K† as

K◦ :=
{
K◦ = (K◦1 , . . . ,K

◦
u) : ∀(i, j),K†i = K†j if and only if K◦i = K◦j

}
.

Then it isn’t hard to see the sufficient and necessary condition for TRPFamily to finally reach K† is: (i) a key vector
K◦◦ ∈ K◦ is sampled during Initialization(u), and (ii) the key vector K, which is essentially sampled from K◦, hits K† during
Finalization(u). Therefore,

Pr[K = K†] =

∣∣K◦∣∣
2un

· 1∣∣K◦∣∣ =
1

2un

as expected. For the remaining analysis, we introduce an auxiliary set

τ∗
ĨC

[t] :=
{
k ∈ {0, 1}n : (k, t, x, y) ∈ τ∗

ĨC
for some x, y

}
.

Then it’s easy to see
∑
t∈{0,1}n |τ∗ĨC[t]| = q∗

ĨC
; and by the above, we have

Pr[(B-2)] ≤
u∑
i=1

∑
t∈{0,1}n:(K,t,∗,∗)∈τπ̃

Pr
[
Ki ∈ τĨC[t]

]
=

u∑
i=1

∑
t∈{0,1}n:(K,t,∗,∗)∈τπ̃

∣∣τĨC[t]
∣∣

2n

=

u∑
i=1

∑
t∈{0,1}n−1:(K,t‖0,∗,∗)∈τπ̃

∣∣τĨC[t‖0]
∣∣

2n
+

u∑
i=1

∑
W∈{0,1}n−1:(K,W‖1,∗,∗)∈τπ̃

∣∣τĨC[W‖1]
∣∣

2n
.

By the construction of TEDT, queries of the form (K, t‖0, x, y) in τπ̃ are nececessarily due to KDF calls, for which K = Ki

and t = PKi for the user index i. Since µT ≤ n, we have
u∑
i=1

∑
t∈{0,1}n−1:(K,t‖0,∗,∗)∈τπ̃

∣∣τĨC[t‖0]
∣∣

2n
≤ n ·

∑
t∈{0,1}n−1

∣∣τĨC[t‖0]
∣∣

2n
.

On the other hand, queries of the form (K,W‖0, x, y) in τπ̃ are due to TGF calls. For any such query (K,W‖0, x, y), there
necessarily exists at least one H query (U, V ‖W) ∈ τ∗H. By this, conditioned on ¬(B-1), we have

u∑
i=1

∑
W∈{0,1}n−1:(K,W‖1,∗,∗)∈τπ̃

∣∣τĨC[W‖1]
∣∣

2n
≤

u∑
i=1

∑
W :(pad(A,N,−→c ,Ti),∗‖W)∈τ∗H

∣∣τĨC[W‖1]
∣∣

2n

≤µT ·
∑

T∈{0,1}n

∑
W :(pad(A,N,−→c ,T),∗‖W)∈τ∗H

∣∣τĨC[W‖1]
∣∣

2n

≤µT · µW ·
∑

W∈{0,1}n−1

∣∣τĨC[W‖1]
∣∣

2n

≤n2 ·
∑

W∈{0,1}n−1

∣∣τĨC[W‖1]
∣∣

2n
. (18)

In all, summing over the two terms, we reach

Pr[(B-2) | ¬(B-1)] ≤ n2 ·
∑

t∈{0,1}n

∣∣τĨC[t]
∣∣

2n
≤
n2q∗

ĨC

2n
≤
n2q∗∗

ĨC

2n
. (19)

28

Now consider a good transcript τ = (τ∗H, τ
∗
ĨC
, τπ̃,T,K). Define

τπ̃[K, t] :=
{

(x, y) ∈ ({0, 1}n)2 : (K, t, x, y) ∈ τπ̃
}
.

With this notation, it’s clear that

Pr[Tid = τ] = Pr[K,T] · Pr[ĨC ` τ∗
ĨC

] ·
∏
(K,t)

1

(2n)|τπ̃ [K,t]|
.

For the real world distribution, we have

Pr[Tre = τ] = Pr[K,T] · Pr[ĨC ` τπ̃ | ĨC ` τ∗ĨC] · Pr[ĨC ` τ∗
ĨC

]

= Pr[K,T] · Pr[ĨCtK(x) = y for all (K, t, x, y) ∈ τπ̃ | ĨC ` τ∗ĨC] · Pr[ĨC ` τ∗
ĨC

],

Since τ is good, (K, t, ∗, ∗) /∈ τ∗
ĨC

for all (K, t, x, y) ∈ τπ̃ . Therefore,

Pr[ĨCtK(x) = y for all (K, t, x, y) ∈ τπ̃ | ĨC ` τ∗ĨC]

= Pr[ĨCtK(x) = y for all (K, t, x, y) ∈ τπ̃] =
∏
(K,t)

1

(2n)|τπ̃ [K,t]|
.

Therefore, for any good transcript τ we have

Pr[Tre = τ] = Pr[Tid = τ],

and thus

AdvmuCIML2
D,TEDT[ĨC]K,T,L∗,u

−AdvmuCIML2
D,TEDT[ĨC,TRPFamily]T,L∗,u

≤Pr[Tid ∈ Tbad] ≤ Pr[(B-2) | ¬(B-1)] + Pr[(B-1)]

≤
(n2 + 8)q∗∗

ĨC

2n
+

1

2n!
·
(4u

2n

)n
. (from Eqs. (15), (17), and (19)) (20)

C. Unforgeability of the Idealized TEDT

Denote by G1 the game that captures the interaction between the muCIML2 adversary A and TEDT[ĨC,TRPFamily]T. We
divide the unforgeability argument into two substeps in two paragraphs below: first, we define and bound several simple bad
conditions that may be fulfilled during an execution of the game G1; then, we show A is unable to forge in G1 as long as
none of these conditions is fulfilled.

1) Bad Conditions for Unforgeability.: We identify the following conditions during an execution of G2:
• (C-1) there exists two user indices i, j such that Ki‖Ti = Kj‖Tj ;
• (C-2) one of the three claims in Lemma 10 is fulfilled, i.e.,

– collision: there exists (U, V ‖W) 6= (U∗, V ∗‖W ∗) ∈ τH with V ‖W = V ∗‖W ∗;
– multi semi-collision: µW ≤ λ.

For (C-1), if T is distinct then Pr[(C-1)] = 0, and if T uniform then Pr[(C-1)] ≤
(
u
2

)
· 1
22n−1 = u2

22n . The other bound

Pr[(C-2)] ≤ 8q∗∗
ĨC

2n immediately follows from Lemma 10, where q∗∗
ĨC

is defined in Eq. (16). For simplicity let Bad = (C-1)∨(C-2),
then

Pr[Bad] ≤ u2

22n
+

8q∗∗
ĨC

2n
.

2) Unforgeability unless Bad.: Conditioned on ¬Bad, we argue all non-trivial decryption queries result in ⊥ except with a
bounded probability. Let C = −→c ‖Z. If this query doesn’t give rise to ⊥, then right after this query is processed, there exists
a hash record (pad(A,N,−→c , Ti), V ‖W) and a TRPFamily query (i,W ∗‖1, V ∗, Z) in the history, such that W ∗ = W and
V ∗ = V . This means at some time during the execution, the following queries exist in the history:

(u, h, g, g ⊕ V) ∈ τ∗
ĨC
, (u, h, g ⊕ θ, g ⊕ θ ⊕W‖b) ∈ τ∗

ĨC
, (i,W ∗‖1, V ∗, Z) ∈ τπ̃,

where u is the last block of pad(A,N,−→c , Ti), b is either 0 or 1, and W ∗ = W and V ∗ = V . We distinguish two cases:

29

a) Case 1: (i,W ∗‖1, V ∗, Z) is created After the pair of IC queries.: As W ∗ = W , we simplify the notation as (i,W‖1, V ∗, Z).
We argue this query (i,W‖1, V ∗, Z) cannot be forward. For this, assume otherwise, then it’s due to an earlier encryption query
LEncK,T(j,N ′, A′,M ′) → −→c ′‖Z, and that H(pad(A′, N ′,−→c ′, Tj)) = V ‖W (i.e., it collides with the pair of ĨC queries in
question). Now,
• if j = i and (N,A,−→c) = (N ′, A′,−→c ′), then since we forbid trivial decryption queries, the tag produced by LEncK,T(j,N ′, A′,M ′)

cannot be Z, and hence cannot create the query (i,W‖1, V ∗, Z);
• if j = i while (N,A,−→c) 6= (N ′, A′,−→c ′), then by Lemma 8 we have pad(A,N,−→c , Ti) 6= pad(A′, N ′,−→c ′, Ti), which

further implies a hash collision and contradicts ¬(C-2);
• if j 6= i and Kj 6= Ki, then it isn’t possible;
• finally, if j 6= i yet Kj = Ki, then we have Tj 6= Ti by ¬(C-1), which by Lemma 8 further implies pad(A,N,−→c , Ti) 6=

pad(A′, N ′,−→c ′, Tj) and contradicts ¬(C-2).
In all, (i,W‖1, V ∗, Z) has to be backward. During the execution of G2, the number of such backward queries is at most qd.
Conditioned on ¬(C-2), the number of records (U†, V †‖W †) ∈ τH with W † = W is at most n. This implies that the number
of “target” V † values is also at most n. For each such “target” V † and each backward query (i,W‖1, V ∗, Z), we have

Pr[V ∗ = V †] ≤ 1

2n − qe − qd
≤ 2

2n
.

Therefore,

Pr[Case 1 | ¬Bad] ≤ 2nqd
2n

. (21)

b) Case 2: (i,W ∗‖1, V ∗, Z) is created Before the pair of IC queries.: We consider the query (v, h, g, g ⊕ V) first. Re-
gardless of its direction, V = g ⊕ (g ⊕ V) is uniform in ≥ 2n − q∗∗

ĨC
possibilities. So

Pr[V = V ∗] ≤ 1

2n − q∗∗
ĨC

≤ 2

2n
.

As argued before,

Pr[W = W ∗] ≤ 2

2n − q∗∗
ĨC

≤ 4

2n
.

Therefore, for each such triple of queries, the probability of collision is at most 8
22n . We’ve at most qd + qe choices for

(i,W ∗‖1, V ∗, Z), and q∗∗
ĨC

choices for the pair of ĨC queries.8 Therefore,

Pr[Case 2] ≤
8q∗∗

ĨC
(qd + qe)

22n
. (22)

Note that these arguments are significantly simplified by the normalization of the game: without the normalization, (i,W ∗‖1, V ∗, Z)
may be created between the two “matching” ĨC queries, giving rise to many additional cases. In summary, gathering (21) and
(22) yields

Pr[A forge in G2 | ¬Bad] ≤ 2nqd
2n

+
8q∗∗

ĨC
(qd + qe)

22n
.

This plus Pr[Bad] yield

AdvmuCIML2
D,TEDT[ĨC,TRPFamily]T,L∗,u

≤ u2

22n
+

8q∗∗
ĨC

2n
+

2nqd
2n

+
8q∗∗

ĨC
(qd + qe)

22n
≤ u2

22n
+

(n2 + 9)q∗∗
ĨC

2n
(23)

since q∗∗
ĨC
≤ 4σ + 6(qe + qd) + 2qĨC,

8q∗∗
ĨC

(qd+qe)

22n ≤ 8(q∗∗
ĨC

)2

6·22n ≤
q∗∗
ĨC

2n , and 2nqd
2n ≤

n2q∗∗
ĨC

2n . Eq. (23) further plus Eq. (20) yield Eq.
(1):

AdvmuCIML2
D,TEDT[ĨC]K,T,L∗,u

≤ u2

22n
+

(2n2 + 17)(4σ + 6(qe + qd) + 2qĨC)

2n
+

1

2n!
·
(4u

2n

)n
.

D. The Necessity of Inverting
Upon each decryption query DecK,PK(N,A,−→c ‖Z), after deriving the digest V ‖W = H(pad(A,N,−→c , PK‖0)), if the

subsequent checking is “If TGF(K,W, V) 6= Z then return ⊥; else decrypt”, then the forgery attack turns clear: as mentioned,
invalid decryption queries leak the correct tag TGF(K,W, V). Let’s see where our proof approach fails for this design.
Concretely, when the proof proceeds into the analogue of Case 1 in section E-C, the query (i,W‖1, V ∗, Z) may not be
backward (which is exactly the case of the aforementioned obvious forgery attack), and we are unable to utilize the uniformness
of V ∗ to complete this argument as we did in section E-C. In all, to achieve integrity against decryption/verification leakage,
the inverse of the underlying primitives seem necessary.

8Note that the pair
(
(v, h, g, g ⊕ V), (v, h, g ⊕ θ, g ⊕ θ ⊕W‖b)

)
should be deemed as an ordered pair.

30

APPENDIX F
TESTER FOR LORL2 ADVANTAGE

As stressed many times, depending on the context, the concrete value of AdvLORL2 may not be negligible.
1: Tester for LORL2 AdvLORL2

2: Let the challenging adversary A give s, T , and (m0,m1)
3: Pick the secret: y $← {0, 1}n, b $← {0, 1}
4: c← y ⊕mb, x← ẼTs (y)
5: return (c, [Lout(s, T ; y)]p, L⊕(y,mb), [L⊕(y, c)]p−1)
6: Let the challenging adversary A output the guess b′

APPENDIX G
PROOF OF THEOREM 2

We proceed in three steps in three subsubsections. First, we define the process of encrypting a single message of ` blocks. We
in particular define both the real and the ideal encryption processes: the real process queries ĨC for encrypting and resembles
TEDT, while the ideal process just samples many random values for encrypting.

We show that the two processes are indistinguishable. This step mainly requires us to bound certain “bad events” in the real
and ideal executions, for which the non-invertible assumption on the leakage functions is helpful.

While the 1st step shows the ciphertext of TEDT is “sufficiently random”, it says nothing about the message confidentiality
since the leakages may leak M . Therefore, we focus on the idealized process ($, Lideal(M)), and show how to relate its
eavesdropper advantage to the term defined by Eq. (5): it resembles using the minimal message processing operation to
independently encrypt |M |/n blocks. The eavesdropper advantage of (TEDT(M), LTEDT(M)) can be derived via the following
chain:

(leaking) eavesdropper advantage of the minimal operation AdvLORL2

⇒(leaking) eavesdropper advantage of the ideal ($, Lideal(M))

⇒(leaking) eavesdropper advantage of encrypting a single message using TEDT

⇒muCCAmL2 advantage of TEDT.

As the 3rd step, based on the eavesdropper advantage of (TEDT(M), LTEDT(M)), we establish the muCCAmL2 advantage.
This step relies on the following features of TEDT:

(i) Every invalid decryption query only leaks a “useless” pseudorandom value, i.e. ĨC∗‖1k (Z) for some Z;
(ii) For each challenge encryption query, since the nonce is used only once during the experiment, the process starts from

a ephemeral key k0 that is different from any other ephemeral key of the other encryption queries. By this, encryption
of this challenge is quite independent from the other encryption queries, and we can view the entire experiment as an
eavesdropper adversary against (TEDT(M), LTEDT(M)) with a lot of offline computations (i.e. all the other encryptions
are turned into offline computations).

Below we expose in detail.
1) The Ideal Single-Message Encryption Process.: Formally, they are defined by the following pseudocode.

Description of RESM[ĨC]:
• Gen picks k0

$← {0, 1}n
• RESMk0 [ĨC](T,N,m1, . . . ,m`) proceeds in two steps:
(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, computes ki ← ĨCTki−1

(Pi(N)), yi ← ĨCTki−1
(Qi−1(N)), and ci ← yi⊕mi, and adds the leakage traces

[Lin(ki−1, T ;Pi(N)), Lout(ki−1, T ; ki)]
p, [Lin(ki−1, T ;Qi−1(N)), Lout(ki−1, T ; yi)]

p, L⊕(yi,mi), and [L⊕(yi, ci)]
p−1

to the list leak.
RESMk0 [ĨC](T,N,m1, . . . ,m`) eventually returns (c1, . . . , c`).
We define LRESMk0 [ĨC](T,N,m) = (RESMk0 [ĨC](T,N,m), leak) for the list leak standing at the end of the above
process.

Description of IESM (an ideal process independent from ĨC):
• IESMk0(T,N,m1, . . . ,m`) proceeds in two steps:
(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, samples ki

$← {0, 1}n and yi
$← {0, 1}n such that ki 6= yi, sets ci ← yi ⊕mi, and adds the leakages

[Lin(ki−1, T ;Pi(N)), Lout(ki−1, T ; ki), Lin(ki−1, T ;Qi−1(N)), Lout(ki−1, T ; yi)]
p, L⊕(yi,mi), and [L⊕(yi, ci)]

p−1 to
the list leak.

31

IESMk0(T,N,m1, . . . ,m`) eventually returns (c1, . . . , c`).
We define LIESMk0(T,N,m) = (IESMk0(T,N,m), leak) for the list leak standing at the end of the above process.

The real and ideal single-message encryption processes (with leakages) are indistinguishable.

Lemma 11. For every `-block message M , every T,N , and every (qĨC, t)-bounded distinguisher DĨC, it holds

|Pr[DĨC(M,RESMk0 [ĨC](T,N,m))⇒ 1]− Pr[DĨC(M, IESMk0(T,N,m))⇒ 1]|
≤` ·Adv2-up[qĨC](p, qĨC + 2`, O(t+ ` · p · tl)),

where tl is the total time needed for evaluating Lin and Lout.

One may wonder why the term capturing AdvPRP
ĨC

is missed. For this, we remark that this term has been captured by the
term Adv2-up[qĨC]: if A predicates the secret then it clearly breaks the PRP security of ĨC.

Proof. Consider the execution of DĨC upon the inputs (M,RESMk0 [ĨC](T,N,M)). We define a bad event BadQuery, which
occurs when any of the internal keys k0, k1, . . . , k`−1 appears in the key field of an ĨC query made by DĨC. This event, once
happens, would cause the key stream blocks lose randomness. We remark that in [23, Appendix A], an event with the same
meaning termed Querya was defined, and was later proved negligible. So here we just need to adapt Yu et al.’s argument to
our setting. In detail, given an adversary DĨC, we construct an adversary AĨC such that

Adv2-up[qĨC](A) ≤ Pr[BadQuery in DĨC(RESMk0 [ĨC](T,N,m1, . . . ,m`))]. (24)

Concretely, upon inputs (s2, z, leak) with

leak =
(
Lout(s0, T ; s1), Lin(s1, T ;P2), Lout(s1, T ; s2), Lin(s1, T ;Q2), Lout(s1, T ; z)

)
,

AĨC runs an instance of D, and keeps record of D’s queries to ĨC in a set τĨC (as defined in previous proofs). AĨC simulates
the following process against D:
(1) AĨC randomly guesses an index i $← [0, `− 1], uniformly samples an initial key k0, and initializes an empty list leak;
(2) for j = 1, . . . , i−1, AĨC queries ĨC to obtain kj ← ĨCTkj−1

(Pj(N)) and yj ← ĨCTkj−1
(Qj−1(N)), and computes cj ← yj⊕

mj .AĨC then adds the leakage traces [Lin(kj−1, T ;Pj(N)), Lout(kj−1, T ; kj)]
p, [Lin(kj−1, T ;Qj−1(N)), Lout(kj−1, T ; yj)]

p,
L⊕(yj ,mj), and [L⊕(yj , cj)]

p−1 to leak;
(3) AĨC queries yi ← ĨCTki−1

(Qi−1(N)) and computes ci ← yi ⊕ mi. It takes ki−1 as the value s0 mentioned before
Eq. (2) and adds [Lin(ki−1, T ;Pi(N)), Lout(ki−1, T ; s1)]p, [Lin(ki−1, T ;Qi−1(N)), Lout(ki−1, T ; yi)]

p, L⊕(yi,mi), and
[L⊕(yi, ci)]

p−1 to leak as the leakage of the i th iteration.
(4) AĨC sets ki+1 ← s2 and yi+1 ← z, and computes ci+1 ← yi+1⊕mi+1. It takes the challenge secret s1 as the key ki and

adds [Lin(s, T ;Pi+1(N)), Lout(s, T ; ki+1)]p, [Lin(s, T ;Qi(N)), Lout(s, T ; z)]p, L⊕(yi,mi), and [L⊕(yi, ci)]
p−1 to leak

as the leakage of the i+ 1 th iteration (note that these leakages are inputs of AĨC).
(5) Then AĨC starts from ki+1 to emulate the remaining actions of RESMk0 [ĨC] encrypting the tail mi+1‖ . . . ‖m` to obtain

ci+1‖ . . . ‖c`.
(6) Eventually, AĨC serves the ciphertext c1‖ . . . ‖c` as well as the leakage list leak to D, and outputs the set Guesses =
{k : (k, t, x, y) ∈ τĨC for some t, x, y}.

The strategy of AĨC is quite obvious: if D triggers the event BadQuery then the key k being queried must be in τĨC.
Therefore, AĨC makes a uniform guess on the position of the first key on which such a query is made; guessing the first
queried key ensuring that that key will only be correlated to one thing: the corresponding leakages (and not any previous call
on ĨC). This guess will be correct with probability 1/`. Then, AĨC emulates the encryption process of RESMk0 and provides the
leakages to D, except for the i index, for which the leakages and ĨC output are replaced by those obtained from a challenger
for the seed-preserving property. If the guess on the index i is correct, all the inputs sent to D are distributed exactly as those
produced by RESMk0 [ĨC](T,N,m1, . . . ,m`). Therefore, when D halts, if D made a query on s1, then simply outputting τĨC
would break the game. So we have Pr[s1 ∈ Guesses | BadQuery in DĨC(M,RESMk0 [ĨC](T,N,M))] = 1

` .
Now, we observe that

Pr[s1 ∈ Guesses | BadQuery in DĨC(M,RESMk0 [ĨC](T,N,m))]

≤ Pr[s1 ∈ Guesses]
Pr[BadQuery in DĨC(M,RESMk0 [ĨC](T,N,m))]

.

32

And it can be seen A is (qĨC +2`, O(t+ ` ·p · tl))-bounded: the factor p before tl stems from the fact that the leakage functions
are evaluated p times in total. By this,

Pr[BadQuery in DĨC(M,RESMk0 [ĨC](T,N,m))] ≤ ` · Pr[s1 ∈ Guesses]
≤ ` ·Adv2-up[qĨC](A) (Eq. 2)

≤ ` ·Adv2-up[qĨC](p, qĨC + 2`, O(t+ ` · p · tl)). (Eq. 4)

It can be seen as long as the event BadQuery never happens during the real execution DĨC(M,RESMk0 [ĨC](T,N,m)),
in the two executions all the keys and key stream blocks are fresh random values independent from τĨC the transcript of ĨC
queries of D, and have the same distribution. Therefore,

|Pr[DĨC(M,RESMk0 [ĨC](T,N,M))⇒ 1]− Pr[DĨC(M, IESMk0 [ĨC](T,N,M))⇒ 1]|
≤` ·Adv2-up[qĨC](p, qĨC + 2`, O(t+ ` · p · tl))

as claimed.
2) From 1-Block to `-Block Advantage.: We then show the eavesdropper advantage of IESM[ĨC] encrypting an `-block

message is related to the defined term AdvLORL2.

Lemma 12. For every pair of `-block messages M0 and M1 and (qĨC, t)-bounded adversary AĨC, it holds

|Pr[AĨC(IESMk0(T,N,M0))⇒ 1]− Pr[AĨC(IESMk0(T,N,M1))⇒ 1]|

≤` ·AdvLORL2(p, qĨC, O(t+ ` · p · tl)) +
`

2n
,

where tl is as defined in Lemma 11.

Proof. Let M0 = m0
1‖ . . . ‖m0

` and M1 = m1
1‖ . . . ‖m1

` . We start by building a sequence of ` + 1 messages Mh,0, . . . ,Mh,`

starting from M0 and modifying its blocks one by one until obtaining M1. That is, Mh,i := m1
1‖ . . . ‖m1

i ‖m0
i+1‖ . . . ‖m0

` .
For any i, assuming a (qĨC, t)-bounded adversary AĨC against IESMk0(T,N,Mh,i−1) and IESMk0(T,N,Mh,i), we build a
(qĨC, t+ tr)-bounded adversary AĨC

2 against the distribution defined in Eq. (5). In detail, upon inputs (cb, leakb) with leakb =(
[Lout(s, T ; z)]p, L⊕(z,mb), [L⊕(z, cb)]p−1

)
, AĨC

2 proceeds in four steps:

(1) AĨC
2 uniformly samples k0 and initializes an empty list leak;

(2) for j = 1, . . . , i−1, AĨC
2 uniformly samples random values kj , yj such that kj 6= yj , computes cj ← yj⊕m1

j , and adds the
traces [Lin(kj−1, T ;Pj), L

out(kj−1, T ; kj)]
p, [Lin(kj−1, T ;Qj−1), Lout(kj−1, T ; yj)]

p, L⊕(yj ,m
1
j), and [L⊕(yj , cj)]

p−1 to
leak;

(3) AĨC
2 samples ki, takes ki−1 as the s value mentioned before Eq. (5) & the challenge key stream block z as yi, and adds

the traces [Lin(ki−1, T ;Pi), L
out(ki−1, T ; ki)]

p, [Lin(ki−1, T ;Qi−1), Lout(ki−1, T ; z)]p, L⊕(y,mb), and [L⊕(y, cb)]p−1 to
leak;

(4) Then AĨC
2 starts from ki to emulate the remaining actions of IESM encrypting the tail m0

i+1‖ . . . ‖m0
` to obtain ci+1‖ . . . ‖c`.

Eventually, AĨC
2 serves the ciphertext c1‖ . . . ‖ci−1‖cb‖ci+1‖ . . . ‖c` as well as all the generated simulated leakages to AĨC,

and outputs whatever AĨC outputs.
It can be seen as long as ki 6= z, depending on whether the input tuple received by AĨC

2 captures the LORL2 challenger
encrypting m0

i or m1
i , the inputs to AĨC capture IESM encrypting Mh,i−1 or Mh,i. Note that Pr[ki = z] = 1/2n. Moreover,

AĨC
2 is (qĨC, O(t+ ` · p · tl))-bounded if AĨC is (qĨC, t)-bounded, which means

|Pr[AĨC(IESMk0(T,N,Mh,i−1))⇒ 1]− Pr[AĨC(IESMk0(T,N,Mh,i))⇒ 1]|

≤AdvLORL2(p, qĨC, O(t+ ` · p · tl)) +
1

2n

by Eq. (7). This along with a simple summation implies the main claim.

Gathering Lemmas 11 and 12, we obtain upper bounds on the eavesdropper advantage of RESM (which is also the
eavesdropper advantage of TEDT) stated in Lemma 13.

Lemma 13. For every pair of `-block messages M0 and M1 and (qĨC, t)-bounded adversary AĨC, it holds

Adveavl2
RESM(p, qĨC, t, `) =|Pr[AĨC(RESMk0 [ĨC](T,N,M0))⇒ 1]− Pr[AĨC(RESMk0 [ĨC](T,N,M1))⇒ 1]|

≤ `

2n
+ ` ·AdvLORL2(p, qĨC, O(t+ ` · p · tl)) + 2` ·Adv2-up[q

ĨC
](p, qĨC + 2`, O(t+ ` · p · tl)),

where tl is as defined in Lemma 11.

33

Proof.

|Pr[AL(RESMk0(T,N,M0))⇒ 1]− Pr[AL(RESMk0(T,N,M1))⇒ 1]|
≤ |Pr[AL(IESMk0(T,N,M0))⇒ 1]− Pr[AL(IESMk0(T,N,M1))⇒ 1]|︸ ︷︷ ︸

≤`·AdvLORL2(p,qĨC,O(t+`·p·tl))+ `
2n (by Lemma 12)

+
∑
b=0,1

|Pr[AL(RESMk0(T,N,M b))⇒ 1]− Pr[AL(IESMk0(T,N,M b))⇒ 1]|︸ ︷︷ ︸
≤2`·Adv

2-up[q
ĨC

]
(p,qĨC+2`,O(t+`·p·tl)) (by Lemma 11)

≤` ·AdvLORL2(p, qĨC, O(t+ ` · p · tl)) +
`

2n
+ 2` ·Adv2-up[qĨC](p, qĨC + 2`, O(t+ ` · p · tl)).

The claim thus follows.
3) Completing the muCCAmL2 Proof.: Theorem 2 could then be derived from Lemma 13. Recall from page 28 that a

decryption query DecK,T(i,N,A,C) is trivial if the action EncK,T(i,N,A,M)→ C happens before. The leakages of trivial
decryption queries may serve new information, thus requiring explicit treatments.

Then we step into the proof. We start by defining G0 as the game capturing the interaction betweenA and (LEncK,T, LEnc
0
K,T, LDecK,T, ĨC),

and G∗0 as the game capturing the interaction between A and (LEncK,T, LEnc
1
K,T, LDecK,T, ĨC).

We then define two games G1 and G∗1: G1, resp. G∗1, is obtained from G0, resp. G∗0, by replacing all the KDF- and
TGF-calls by calls to TRPFamily (as done in section E-B). By Eq. (20) (although the formalisms are different), with q∗∗∗

ĨC
=

4σ + 6(qm + qe + qd) + 2qĨC (which is tweaked from Eq. (16)), we have∣∣Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]
∣∣ ≤ (n2 + 8)q∗∗∗

ĨC

2n
+

1

2n!
·
(4u

2n

)n
(25)

and ∣∣Pr[G∗1 ⇒ 1]− Pr[G∗0 ⇒ 1]
∣∣ ≤ (n2 + 8)q∗∗∗

ĨC

2n
+

1

2n!
·
(4u

2n

)n
, (26)

We then prove∣∣Pr[G1 ⇒ 1]− Pr[G∗1 ⇒ 1]
∣∣ ≤2u2

22n
+

(n2 + 9)q∗∗∗
ĨC

2n

+
∑qm
i=1 Adveavl2

RESM(p, qĨC + q∗, O(t+ pσtl), `i)︸ ︷︷ ︸
≤ σ

2n+σ·AdvLORL2(p,qĨC+q
∗,O(t+pσtl))+2σ·Adv

2-up[q
ĨC

+q∗]
(p,qĨC+q

∗,O(t+pσtl)) (Lemma 13)

, (27)

where `i is the number of blocks in the ith challenge message, and q∗ = 4σ + 6(qm + qe + qd) and tl defined in Lemma
11. This plus the gaps in Eq. (25) and Eq. (26) yield the claim (note that σ ≤ q∗∗∗

ĨC
). To this end, we denote the qe challenge

tuples by (the suffix c stands for “challenge”)

(uc1, Nc1, Ac1,Mc01,Mc11), . . . , (ucqe , Ncqe , Acqe ,Mc0qe ,Mc1qe).

Then, we use qe hops to replace Mc01, . . . ,Mc0qe by Mc11, . . . ,Mc1qe in turn, to show that G1 can be transited to G∗1. For
convenience, we define G2,0 = G1, and define a sequence of games

G2,1,G2,2, . . . ,G2,qe ,

such that in the i-th system G2,i, the first i messages processed by the challenge encryption oracle are Mc01, . . . ,Mc0i , while
the remaining qe − i messages being processed are Mc1i+1, . . . ,Mc1qe . It can be seen actually G2,qe = G∗1.

We then show that for i = 1, . . . , qe, G2,i−1 and G2,i are indistinguishable for AĨC. For this, from AĨC we build an adversary
AĨC

2 , such that |Pr[G2,i−1 ⇒ 1]−Pr[G2,i ⇒ 1]| is related to Adveavl2
RESM(AĨC

2). In detail, initially, AĨC
2 samples two key vectors

K and T = (T1, . . . , Tu) for subsequent simulations. It aborts if there exists two indices i 6= j yet Ki‖Ti = Kj‖Tj : this event
is denoted BadKeyColl. It also keeps a pair of tables (ICTable, ICTable−1) to simulate the primitive TRPFamily via lazy
sampling (note that TRPFamily is essentially an ideal cipher ĨC2 independent from ĨC). Assume that entries in the tables are
of the form ICTable(K,T,X) = Y and ICTable−1(K,T, Y) = X . It then runs A, reacting as follows:
• Upon a query to ĨC: simply relays.
• Upon a (non-challenge) encryption query (ui, Ni, Ai,Mi) from A,

– if (Kui , Tui , C0(Ni)) /∈ ICTable, AĨC
2 samples an initial key k

(i)
0 such that (Kui , Tui , k

(i)
0) /∈ ICTable−1, defines

ICTable(Kui , Tui , C0(Ni)) ← k
(i)
0 and ICTable−1(Kui , Tui , k

(i)
0) ← C0(Ni), and then runs the encryption process

RESM
k
(i)
0

[ĨC](Tui , Ni,Mi) to get the ciphertext−→c i and leakages.AĨC
2 then computes Vi‖Wi ← H[ĨC](pad(Ai, Ni,

−→c i, Tui))

34

and Zi ← ICTable(Kui ,Wi‖1, Vi) (if (Kui ,Wi‖1, Vi) /∈ ICTable then AĨC
2 defines ICTable(Kui ,Wi‖1, Vi) as a

newly sampled value). For this entire process AĨC
2 has to make 4`i + 6 queries to ĨC with `i = |Mi|/n and costs

2t$ + 2p`itl time to evaluating the leakage functions. Finally, AĨC
2 returns the outputs −→c i‖Zi and the leakages to A;

– if (Kui , Tui , C0(Ni)) ∈ ICTable, AĨC
2 simply runs RESMk0(Tui , Ni,Mi) with k0 = ICTable(Kui , Tui , C0(Ni)),

calls Vi‖Wi ← H(pad(Ai, Ni, ci, Tui)) and computes the tag Zi ← ICTable(Kui ,Wi‖1, Vi) on the obtained −→c i, and
returns −→c i‖Zi and the leakages to A. The cost is similar to the above case.

• Upon a trivial decryption query (uj , Nj , Aj , Cj) from A (cf. the beginning of this subsection for “trivial”), AĨC
2 parses

Cj = −→c j‖Zj and simply runs the decryption RESM[ĨC].Deckj0(Tuj , Nj ,
−→c j) for kj0 = ICTable(Kuj , Tuj , C0(Nj)), and

relays the outputs to A. The cost is similar to the encryption case.
• Upon a non-trivial decryption query (uj , Nj , Aj , Cj) from A, AĨC

2 parses Cj = −→c j‖Zj , and computes Vj‖Wj ←
H[ĨC](pad(Aj , Nj ,

−→c j , Tuj)). Then,

– if (Kuj ,Wj‖1, Zj) /∈ ICTable,AĨC
2 samples V ∗j such that (Kuj ,Wj‖1, V ∗j) /∈ ICTable, and sets ICTable(Kuj ,Wj‖1, V ∗j)←

Zj , ICTable−1(Kuj ,Wj‖1, Zj)← V ∗j ;
– if (Kuj ,Wj‖1, Zj) ∈ ICTable, AĨC

2 just sets V ∗j ← ICTable−1(Kuj ,Wj‖1, Zj).

Now AĨC
2 aborts if Vj = V ∗j (this type of abortion is defined as BadDec), and returns (⊥, V ∗j) to A otherwise.

• Upon A submitting the j-th challenge tuple (ucj , Ncj , Acj ,Mc0j ,Mc1j), conditioned on ¬BadKeyColl, it necessarily
holds (Kucj , Tucj , C0(Ncj)) /∈ ICTable by the challenge nonce-respecting restriction on A on a single user. Therefore,
depending on j, AĨC

2 reacts as follows:
– When j < i, it encrypts Mc0j and returns. In detail, AĨC

2 samples kc(j)0 , sets ICTable(Kucj , Tucj , C0(Ncj)) ← kc
(j)
0

and ICTable−1(Kucj , Tucj , kc
(j)
0)← C0(Ncj), and then runs RESM

kc
(j)
0

[ĨC](Mc0j)→ ccj , performs the tag generation

accordingly to produce Zcj and returns (ccj , Zcj) and the leakages to AĨC. The cost is similar to the non-challenge
encryption queries.

– When j = i, it relays Mc0j and Mc1j to its eavesdropper challenger to obtain ccbj and leakages leakenc and [leakdec]p−1,
and then performs the tag generation accordingly to produce Zcj and returns Cbch = (ccbj , Zcj) to A. Note that this
means the relation ICTable(Kuci , Tuci , C0(Nci)) = kch0 is implicitly fixed, where kch0 is the secret key generated
inside the eavesdropper challenger;

– When j > i, it simply encrypts Mc1j and returns. The details are similar to the described case j < i.
• Upon A making the λ-th query to Ldecch(j) (1 ≤ λ ≤ p− 1),

– When j 6= i, AĨC
2 performs the corresponding decryption and returns the obtained leakages to A;

– When j = i, AĨC
2 simply returns the λ-th trace in the vector [leakdec]p−1 as the answer.

It can be seen that as long as AĨC
2 never aborts, the whole process is the same as either G2,i−1 or G2,i depending on whether

b = 0 or 1. We have Pr[AĨC
2 aborts] = Pr[BadKeyColl∨BadDec], and clearly Pr[BadKeyColl] ≤ u2

22n . By the remarks before,
besides running A, AĨC

2 samples at most 2(qm + qe + qd) random values (to emulate TRPFamily) and internally processes
qm + qe + qd− 1 queries (except for the query encrypted by the challenger). Therefore, AĨC

2 makes q∗ = 4σ+ 6(qm + qe + qd)
additional queries to ĨC, and evaluates the leakage functions for 2pσ times, resulting in O(pσtl) additional running time. By
these and the definitions and Eq. (23) in section E-C, it can be seen

Pr[BadDec] ≤ u2

22n
+

(n2 + 9)q∗∗∗
ĨC

2n
. (28)

By all the above, we have

Pr[G2,i ⇒ 1]− Pr[G2,i−1 ⇒ 1] ≤Pr[G2,i ⇒ 1 ∧ AĨC
2 aborts]− Pr[G2,i−1 ⇒ 1 ∧ AĨC

2 aborts]

+ Adveavl2
RESM(p, qĨC + q∗, O(t+ pσtl), `i).

This means ∣∣Pr[G∗1 ⇒ 1]− Pr[G1 ⇒ 1]
∣∣ ≤Pr[G2,qe ⇒ 1]− Pr[G2,0 ⇒ 1]

≤
qe∑
i=1

(
Pr[G2,i ⇒ 1]− Pr[G2,i−1 ⇒ 1]

)

≤2u2

22n
+

(n2 + 9)q∗∗∗
ĨC

2n
+
∑qe
i=1 Adveavl2

RESM(p, qĨC + q∗, O(t+ pσtl), `i)

which is the claim in Eq. (27).

35

APPENDIX H
PROOF OF THEOREM 3

We’ll rely on a balls-in-bin lemma from [53] presented as follows.

Lemma 14 (Balls-in-Bin). Consider throwing a ball into a bin that is chosen independently uniformly at random from 2n ≥ 8
bins. Then the probability that, after throwing σ balls with 8 ≤ σ ≤ 2n, any bin contains 2 log2 σ balls or more, is less than
1
2n .

Proof. See [53, Appendix A]. That proof covered more general cases which we don’t rely on.

Then, note that in the misuse resilience setting, schemes which achieve both CPA confidentiality and authenticity also achieve
CCA confidentiality [30]:

AdvmuCCAm$∗

A,AEAD,u =
∣∣∣Pr
[
AEncK,T,EncK,T,DecK,T,ĨC ⇒ 1

]
− Pr

[
AEncK,T,$,⊥,ĨC ⇒ 1

]∣∣∣
≤
∣∣∣Pr
[
AEncK,T,EncK,T,DecK,T,ĨC ⇒ 1

]
− Pr

[
AEncK,T,EncK,T,⊥,ĨC ⇒ 1

]∣∣∣︸ ︷︷ ︸
Advmu-INT-CTXT

A,AEAD,u : mu INT-CTXT advantage of A on AEAD

+
∣∣∣Pr
[
AEncK,T,EncK,T,⊥,ĨC ⇒ 1

]
− Pr

[
AEncK,T,$,⊥,ĨC ⇒ 1

]∣∣∣︸ ︷︷ ︸
defined as AdvmuCPAm$∗

A,AEAD,u

. (29)

Clearly, Advmu-INT-CTXT
A,TEDT,u ≤ AdvmuCIML2

A,TEDT,u. Therefore, we focus on the CPA advantage AdvmuCPAm$∗

A,TEDT,u . Again we employ the
H-coefficients technique, and present the two steps in two subsequent subsections.

A. Bad Transcripts

Following section E-B, during the interaction, we also reveal some underlying ĨC queries to D and include them in the
transcript. In detail,
• First, we reveal all the ĨC queries underlying the non-challenge encryption queries (i.e., queries to the first encryption

oracle);
• Second, for the challenge encryption queries, we emulate the corresponding hash evaluations, and reveal all the induced
ĨC queries.

We merge these queries with the adversarial queries to obtain a set τ∗
ĨC

. Thus we have
∣∣τ∗

ĨC

∣∣ ≤ q∗
ĨC

which is as defined by Eq.
(13). Note that this upper bound is a bit coarse, but it’s enough for the remaining argument.

We also organize the hash query transcript τ∗H. Besides, the set

τe =
(

(u(1), N (1), A(1),M (1), C(1)), . . . , (u(qe), N (qe), A(qe),M (qe), C(qe))
)

summarizes the queries to the challenge (second) encryption oracle. Recall that we’ve switched to the CPA setting, so these
are “enough”: transcripts are defined as

τ = (τ∗H, τe, τ
∗
ĨC
,T,K).

For an encryption query (u(i), N (i), A(i),M (i), C(i)), we denote

M (i) = m
(i)
1 ‖ . . . ‖m

(i)
`i

and
C(i) = −→c (i)‖Z(i) = c

(i)
1 ‖ . . . ‖c

(i)
`i
‖Z(i),

i.e., m(i)
j , resp. c(i)j , denotes the j th n-bit block of M (i), resp. C(i). Wlog assume that |m(i)

j | = n for any block. And we
define an auxiliary quantity

µY := max
y∈{0,1}n

∣∣{(i, j) : m
(i)
j ⊕ c

(i)
j = y}

∣∣.
Note that in the ideal world, all the blocks in C(1), . . . , C(qe) are uniformly distributed in {0, 1}n. Therefore,

Pr[Tid = τ] = Pr[K,T] · Pr[ĨC ` τ∗
ĨC

] ·
(

1

2n

)qe+∑qe
i=1 `i

. (30)

With the above, a transcript τ is bad if one of the following is fulfilled:
• (B-1) there exists two user indices i, j such that Ki‖Ti = Kj‖Tj ;
• (B-2) µT ≥ n, or µW ≥ n;

36

• (B-3) there exists an encryption query (u,N,A,M,C), C = −→c ‖Z, such that either (Ku, Tu, x, y) ∈ τ∗
ĨC

or (Ku,W‖1, x, y) ∈
τ∗
ĨC

for some x, y, where W comes from its corresponding hash record (pad(A,N,−→c , Tu), V ‖W) ∈ τ∗H;
• (B-4) µY ≥ 2 log2 σ;
• (B-5) there exists two distinct encryption queries (u(i), N (i), A(i),M (i), C(i)) and (u(j), N (j), A(j),M (j), C(j)) with the

corresponding hash records (U (i), V (i)‖W (i)) and (U (j), V (j)‖W (j)) in τ∗H satisfying (U (i) = pad(A(i), N (i),−→c (i), Tu(i)),
U (j) = pad(A(j), N (j),−→c (j), Tu(j))):
– hash collision: V (i)‖W (i) = V (j)‖W (j), or
– contradiction: W (i) = W (j) and Z(i) = Z(j).

The first three conditions have been analyzed in Section VI-B. We recycle the results as follows: when T is uniform, we have

Pr[(B-1)] ≤ u2

22n
, Pr[(B-2) ∨ hash collision] ≤ 1

2n!
·
(4u

2n

)n
+

8q∗∗
ĨC

2n
, and Pr[(B-3) | (B-2)] ≤

n2q∗∗
ĨC

2n
,

where q∗∗
ĨC

is defined by Eq. (16).
For (B-4), in the ideal world c(i)j and thus m(i)

j ⊕c
(i)
j is uniformly and independent from anything else. In addition

∣∣{(i, j)}∣∣ ≤
σ2 ≤ σ � 2n with σ2 denoting the number of blocks in queries to the challenge encryption oracle. So Lemma 14 yields

Pr[(B-4)] = Pr[µY ≥ 2 log2 σ] ≤ 1

2n
.

For (B-5), the collision event has been included in the above bounds. On the other hand, for any two indices i, j, it can be
seen from the proof in appendix E-A that Pr[W (i) = W (j)] ≤ 2

2n−q∗∗
ĨC

. On the other hand, the tags Z(i) and Z(j) are uniform

in the ideal world, and thus Pr[Z(i) = Z(j)] = 1
2n . Since we have ≤ q2e/2 such pairs of indices (i, j), it holds

Pr[contradiction in (B-5)] ≤ q2e
2n(2n − q∗∗

ĨC
)
≤ 2q2e

22n
≤
q∗∗
ĨC

2n
.

In all,

Pr[Tid ∈ Tbad] ≤
u2

22n
+

1

2n!
·
(4u

2n

)n
+

(n2 + 9)q∗∗
ĨC

+ 1

2n
. (31)

B. Ratio of Probabilities of Good Transcripts

For a good transcript τ , by ¬(B-3), for any (u(i), N (i), A(i),M (i), C(i)) ∈ τe the initial session key k(i)0 = ĨC
T
u(i)

K
u(i)

(P0(N (i)))

is uniform. With this observation, we define the first predicate BadKD(ĨC) to capture the “badness” of this key. Formally,
BadKD(ĨC) is fulfilled if one of the following conditions is fulfilled:
• (C-1)“none-freshness” of the key: there exists (u(i), N (i), A(i),M (i), C(i)) ∈ τe such that the key k(i)0 = ĨC

T
u(i)

K
u(i)

(P0(N (i)))

satisfies (k
(i)
0 , Tu(i) , P1(N (i)), y) ∈ τ∗

ĨC
, or (k

(i)
0 , Tu(i) , Q0(N (i)), y) ∈ τ∗

ĨC
for some y, or (k

(i)
0 , Tu(i) , x, y

(i)
1) ∈ τ∗

ĨC
for

some x;
• (C-2)nonce-reusing across two different users: there exists two encryption queries (u(i), N (i), A(i),M (i), C(i)) and (u(j), N (j), A(j),M (j), C(j))

in τe such that Tu(i) = Tu(j) = T , N (i) = N (j) = N , and the two keys k
(i)
0 = ĨCTK

u(i)
(P0(N (i))) and k

(j)
0 =

ĨCTK
u(j)

(P0(N (j))) are identical.
We remark that the event of nonce-reusing for a single user, i.e., there exists two queries of the form (u,N,A,M,C), (u,N,A′,M ′, C ′)
in τe, is also bad for the subsequent probability calculation. But this is forbidden by the muCCAm$ security definition.

For a specific public-key T , a nonce N , and an index j, we define an auxiliary set of keys

τ∗
ĨC

[
T, j,N

]
:=
{
k : (k, T, Pj+1(N), y) ∈ τ∗

ĨC
or (k, T,Qj(N), y) ∈ τ∗

ĨC
for some y

}
.

In addition, for T and a key stream block y ∈ {0, 1}n, define

τ∗
ĨC

[
T, y

]−1
:=
{
k : (k, T, x, y) ∈ τ∗

ĨC
for some x

}
.

Conditioned on ĨC ` τ∗
ĨC

and the values of

k
(1)
0 = ĨC

T
u(1)

K
u(1)

(N (1)), . . . , k
(i−1)
0 = ĨC

T
u(i−1)

K
u(i−1)

(N (i−1)),

the key k(i)0 = ĨC
T
u(i−1)

K
u(i)

(N (i)) is uniform in ≥ 2n− q∗
ĨC
− qe possibilities: the first half is due to ¬(B-3), while the second half

is due to the non-repeating property of the triple (K,T,N) (for the same user N can’t be repeated, while for different users
i, j we’ve Ki‖Ti 6= Kj‖Tj by ¬(B-1)). Therefore,

Pr[(C-1)] ≤
qe∑
i=1

∣∣τ∗
ĨC

[
Tui , 0, N

(i)
]∣∣

2n − q∗
ĨC
− qe

+

qe∑
i=1

∣∣τ∗
ĨC

[
Tui , y

(i)
1

]−1∣∣
2n − q∗

ĨC
− qe

.

37

For (C-2), the number of choice for (u(i), N (i), A(i),M (i), C(i)) is ≤ qe. For each such choice, the number of choice for the
(u(j), N (j), A(j),M (j), C(j)) is ≤ µT due to the restriction Tu(i) = Tu(j) . Thus

Pr[(C-2)] ≤ µT qe
2n − q∗

ĨC
− qe

≤ 2µT qe
2n

.

Thus when q∗
ĨC

+ qe ≤ 2n/2, we have

PrĨC[BadKD(ĨC) | ĨC ` τ∗
ĨC

] ≤ 2µT qe
2n

+

qe∑
i=1

2
∣∣τ∗

ĨC

[
Tu(i) , 0, N (i)

]∣∣
2n

+

qe∑
i=1

2
∣∣τ∗

ĨC

[
Tu(i) , y

(i)
1

]−1∣∣
2n

. (32)

We then analyze the qe encryption queries in turn, and define a sequence of bad predicates

BadE(1)
1 ,BadE(1)

2 , . . . ,BadE(1)
`1−1,

. . .

BadE(qe)
1 ,BadE(qe)

2 , . . . ,BadE(qe)
`qe−1

. (33)

As will be seen, each predicate concerns with the encryption of a specific plaintext block. Formally, for 1 ≤ i ≤ qe, consider
the i-th query (u(i), N (i), A(i),M (i), C(i)), and for 1 ≤ j ≤ `i − 1, let

k
(i)
0 = ĨC

T
u(i)

K
u(i)

(P0(N (i))), k
(i)
1 = ĨC

T
u(i)

k
(i)
0

(P1(N (i))), . . . , k
(i)
j = ĨC

T
u(i)

k
(1)
j−1

(Pj(N
(i)))

be the derived intermediate values. Then BadE(i)
j (ĨC) is fulfilled, if at least one of the following conditions is fulfilled:

• (C-ij1): k(i)j ∈ τ∗ĨC
[
Tu(i) , j,N (i)

]
, or

• (C-ij2): there exists an index s < i such that for the s-th encryption query (u(s), N (s), A(s),M (s), C(s)), it holds:
– Tu(s) = Tu(i) and N (s) = N (i), and
– k

(i)
j equals the intermediate value k(s)j derived correspondingly.

• (C-ij3): k(i)j ∈ τ∗ĨC
[
Tu(i) , y

(i)
j+1

]−1
, or

• (C-ij4): there exists two indices (s, t) such that either s < i, or s = i and t < j, and:
– y

(s)
t+1 = y

(i)
j+1, and

– k
(i)
j equals the intermediate value k(s)t derived correspondingly.

• (C-ij5): k(i)j = y
(i)
j = m

(i)
j ⊕ c

(i)
j .

It isn’t hard to see conditioned on ĨC ` τ∗
ĨC

and ¬BadKD(ĨC) and ¬BadE(i)
j−1(ĨC) ∧ . . . ∧ ¬BadE(1)

1 (ĨC), the value k(i)j is
uniform in ≥ 2n − q∗

ĨC
− qe possibilities. Therefore,

Pr[(C-ij1) ∨ (C-ij3)] ≤

∣∣∣τ∗
ĨC

[
Tu(i) , j,N (i)

]∣∣∣+
∣∣∣τ∗

ĨC

[
Tu(i) , y

(i)
j+1

]−1∣∣∣
2n − q∗

ĨC
− qe

.

For (C-ij2), due to the restriction Tu(s) = Tu(i) and the design of TEDT, it can be seen the number of such index s is at
most µT − 1. Similarly, for (C-ij4), the restriction y(s)t+1 = y

(i)
j+1 indicates the number of such pairs of indices (s, t) is at most

µY − 1. Therefore,

Pr[(C-ij2) ∨ (C-ij4) ∨ (C-ij5)] ≤ µT − 1 + µY − 1 + 1

2n − q∗
ĨC
− qe

.

Thus when q∗
ĨC

+ qe ≤ 2n/2 we have

Pr[BadE(i)
j (ĨC) | ¬BadE(i)

j−1(ĨC) ∧ . . . ∧ ¬BadE(1)
1 (ĨC) ∧ ¬BadKD(ĨC) ∧ ĨC ` τ∗

ĨC
]

≤2

∣∣∣τ∗
ĨC

[
Tu(i) , j,N (i)

]∣∣∣+
∣∣∣τ∗

ĨC

[
Tu(i) , y

(i)
j+1

]−1∣∣∣+ µT + µY

2n
.

For 1 ≤ i ≤ qe and 1 ≤ j ≤ `i, conditioned on ¬BadE(i)
j (ĨC)∧¬BadE(i)

j−1(ĨC)∧. . .∧¬BadE(1)
1 (ĨC)∧¬BadKD(ĨC)∧ĨC ` τ∗

ĨC
,

it can be seen the value y† = ĨC
T
u(i)

k
(i)
j−1

(Qj−1(N (i))) is uniform in ≥ 2n − q∗
ĨC
− qe possibilities, and these possibilities include

y
(i)
j . Therefore,

Pr[y† = y
(i)
j] ≥ 1

2n
. (34)

38

The probabilities of the predicates cumulate to

Pr[BadE(qe)
`qe−1

(ĨC) ∨ . . . ∨ BadE(1)
1 (ĨC) ∨ ¬BadKD(ĨC)︸ ︷︷ ︸

=Bad(ĨC)

| ĨC ` τ∗
ĨC

]

≤
qe∑
i=1

`i∑
j=1

2

(∣∣∣τ∗
ĨC

[
Tu(i) , j,N (i)

]∣∣∣+
∣∣∣τ∗

ĨC

[
Tu(i) , y

(i)
j+1

]−1∣∣∣+ µT + µY

)
2n

.

This plus Eq. (32) yields

Pr[Bad(ĨC) | ĨC ` τ∗
ĨC

] ≤
qe∑
i=1

`i−1∑
j=0

2

(∣∣∣τ∗
ĨC

[
Tu(i) , j,N (i)

]∣∣∣+
∣∣∣τ∗

ĨC

[
Tu(i) , y

(i)
j+1

]−1∣∣∣+ µT + µY

)
2n

.

It’s easy to see
∑qe
i=1

∑`i−1
j=0 (µT +µY) ≤ (µT +µY)σ. On the other hand, for the summation

∑qe
i=1

∑`i−1
j=0

∣∣∣τ∗
ĨC

[
Tu(i) , j,N (i)

]∣∣∣,
we reorganize it according to different T values. In this vein, we have

qe∑
i=1

`i−1∑
j=0

∣∣∣τ∗
ĨC

[
Tu(i) , j,N (i)

]∣∣∣ ≤ µT · ∑
T∈{0,1}n,N∈N ,j∈{0,...,`i−1}

∣∣∣τ∗
ĨC

[
T, j,N

]∣∣∣ ≤ µT |τ∗ĨC| ≤ µT q∗ĨC.
Similarly,

qe∑
i=1

`i∑
j=1

∣∣∣τ∗
ĨC

[
Tu(i) , y

(i)
j

]−1∣∣∣ ≤ µY q∗ĨC.
Gathering the above and Eq. (34) yields

Pr[TEDT[ĨC].EncK,T(u(i), N (i), A(i),M (i)) = −→c (i) for all i ∈ {1, . . . , qe} | ĨC ` τ∗ĨC]

≥Pr[¬Bad(ĨC) | ĨC ` τ∗
ĨC

]

(
1

2n

)∑qe
i=1 `i

≥
(

1−
2µTσ + 2µY σ + 2µT q

∗
ĨC

+ 2µY q
∗
ĨC

2n

)(
1

2n

)∑qe
i=1 `i

. (35)

It remains to analyze the produced tags. Let the hash query record corresponding to (u(i), N (i), A(i),M (i), C(i)) be
(U (i), V (i)‖W (i)). Therefore, the event that the qe tags equal Z(1), . . . , Z(qe) is equivalent to qe equalities as follows:

ĨC
W (1)‖1
K
u(1)

(V (1)) = Z(1), . . . , ĨC
W (qe)‖1
K
u(qe)

(V (qe)) = Z(qe).

Consider the first equality. The entry ĨC
W (1)‖1
K
u(1)

(V (1)) may have been rendered non-random due to the condition TEDT[ĨC].EncK,T(u(i), N (i), A(i),M (i)) =
−→c (i) for all i ∈ {1, . . . , qe} or due to ĨC ` τ∗

ĨC
. However, the former condition only affects entries with the tweak T‖0, while

the latter would not affect ĨCW
(1)‖1

K
u(1)

(V (1)) due to ¬(B-3). Therefore, Pr[ĨC
W (1)‖1
K
u(1)

(V (1)) = Z(1)] = 1
2n .

In a similar vein, for any i ∈ {1, . . . , qe}, under the conditions that ĨC ` τ∗
ĨC

and “TEDT[ĨC].EncK,T(u(i), N (i), A(i),M (i)) =

−→c (i) for all i ∈ {1, . . . , qe}”, the ideal TBC entry ĨC
W (i)‖1
K
u(i)

(V (i)) remains uniform. We need to additionally consider the

condition “ĨCW
(j)‖1

K
u(j)

(V (j)) = Z(j) for j = 1, . . . , i − 1”. By ¬(B-5), V (j)‖W (j) 6= V (i)‖W (i) and Z(j)‖W (j) 6= Z(i)‖W (i)

for any j < i. By this, Pr[ĨC
W (i)‖1
K
u(i)

(V (i)) = Z(i)] ≥ 1
2n , and thus

Pr[ĨC
W (i)‖1
K
u(i)

(V (i)) = Z(i) for i = 1, . . . , qe] ≥
1

2qen
. (36)

Gathering Eq. (30), (35), and (36), and with σ ≤ 2n/48⇒ log2 σ ≤ n, we have

Pr[Tre = τ]

Pr[Tid = τ]
≥
(

1−
2µTσ + 2µY σ + 2µT q

∗
ĨC

+ 2µY q
∗
ĨC

2n

)(
1

2n

)qe+∑qe
i=1 `i

/(
1

2n

)qe+∑qe
i=1 `i

≥1−
2n(σ + q∗

ĨC
) + 4n(σ + q∗

ĨC
)

2n
. (µT ≤ n, µY ≤ 2 log2 σ ≤ 2n)

≥1−
6n(

q∗∗
ĨC

4 + q∗∗
ĨC

)

2n
≥ 1−

8nq∗∗
ĨC

2n
. (σ ≤

q∗∗
ĨC

4
)

39

This plus Eq. (31) yield

AdvmuCPAm$∗

D,TEDT,u ≤
u2

22n
+

1

2n!
·
(4u

2n

)n
+

(n2 + 8n+ 9)q∗∗
ĨC

+ 1

2n
.

By Eq. (29), this plus the bound in Eq. (1) yields

u2

22n
+

(2n2 + 17)(4σ + 6(qe + qd) + 2qĨC)

2n
+

1

2n!
·
(4u

2n

)n
+

u2

22n
+

1

2n!
·
(4u

2n

)n
+

(n2 + 8n+ 9)(4σ + 6(qe + qd) + 2qĨC) + 1

2n

=
2u2

22n
+

1

n!
·
(4u

2n

)n
+

(3n2 + 8n+ 26)(4σ + 6(qe + qd) + 2qĨC)

2n

≤2u2

22n
+

1

n!
·
(4u

2n

)n
+

(7n2 + 26)(4σ + 6(qe + qd) + 2qĨC)

2n
(n ≥ 2).

C. Detailed Comparison with GCM-SIV with KDF

GCM-SIV with nonce-based KDF was recently proposed by Gueron and Lindell [27] as a very elegant and efficient BBB
secure variant of GCM-SIV. Its security bounds are further improved by Bose et al. [28] in the ideal cipher model.

In summary, AES-128-GCM-SIV with KDF uses n = 128 key bits, and its advantages are:
(i) Misuse-resistance (in black-box setting)

(ii) Asymptotically optimal mu security when nonce is random
(iii) Much less calls to the blockcipher
For n = 128 TEDT uses 255 key bits but only 128 bits are secret. Its advantages are:

(i) Asymptotically optimal mu security for fresh nonce (misuse-resilience), say allowing arbitrary nonce reuse across different
users, and slightly better bounds than AES-128-GCM-SIV (see below)

(ii) Provable side-channel security.
Concretely, in the mu setting, if nonce is arbitrarily reused across many users, then security of AES-128-GCM-SIV is

capped at u2

2128 . While Bose et al. proved that using random nonce could forbid arbitrarily reuse and achieve mu BBB, this
method turns ineffective when the nonces in use are the same in each session (e.g., TLS 1.3 uses the sequence number to
compute the nonces). Also according to Rogaway random nonce may be more prone to misuse. In comparison, in TEDT
we employ additional 127-bit public randomness to achieve mu BBB. Though don’t support full nonce misuse, TEDT does
support arbitrarily reusing the same nonce across different users.

In terms of bounds, with 128-bit secret keys, the mu bound of AES-128-GCM-SIV is

σ`max + d(qĨC + σ)

2128
,

where `max and d are upper bounds, respectively, the number of blocks encrypted per user-nonce pair, and of the number
of users that re-use a particular nonce value. Setting d = 1 recovers its su bound. By this, TEDT probably achieves slightly
better bounds 214σ+214qĨC

2128 even in the su setting (revisiting the calculations in Eq. (18) shows that the factor n2 could be
improved to n in the su setting, so its su bound could be better 128σ+128qĨC

2128). As mentioned, we believe this shows the benefits
of protocol-level leakage-resilient designs.

APPENDIX I
KEY-DEPENDENT MESSAGE SECURITY OF TEDT

In this section we analyze the (mu) KDM security of TEDT in the ideal TBC model. We first recall the setting, then present
our results, and then the proofs.

A. The Setting

Bellare and Keelveedhi characterized the KDM security of AEAD where messages can be key-dependent [33]. They defined
three KDM security settings: random nonce, universal nonce (i.e., nonce-respecting), and nonce-misuse. In this paper we
do not target the nonce misuse case as it implies traditional misuse resistance AEAD — while misuse resilience (such as
muCCAm$) offers a nice security/efficiency tradeoff for AEAD. However, adapting and reaching the definition to the misuse
resilient scenario without necessarily implying traditional misuse resistance is an interesting scope for further research since it
is non trivial to secure challenge ciphertexts if partial message recovery is feasible from the non-challenge ciphertexts which
might use several times the same nonce, just because messages depend on the keys. See appendix I-E for more details.

Following [33], we make a distinction of the settings via the nonce type nt: nt = r stands for random nonce, while nt = u
stands for universal nonce. Below, we rephrase the definition of [33, Fig. 2. (right)] which already considered multiple keys.

40

Initialization(u):
1. K = (K1, . . . ,Ku)

$← (K)u, S1, . . . ,Su ← ∅
Encryption: EncK(i,N,A, φm)

1. M ← φm(K)
2. If (nt = r) then N $← N
3. If (b = 1) then C ← EncKi(N,A,M)
4. Else `← ciphertextlength(M), C $← {0, 1}`
5. Si ← Si ∪ {(N,A,C)}
6. Return (N,C)

Decryption: DecK(i,N,A,C)

1. If (N,A,C) ∈ Si then return ⊥
2. If (b = 1) then M ← DecKi(N,A,C)
3. Else M ← ⊥
4. If M = ⊥ then valid← 0 else valid← 1
5. Return valid

Figure 13: KDAE[nt],b
AEAD(A, u): the AEAD KDI security game, where nt ∈ {r, u}.

We will denote it muKDI$ to highlight both the mu setting and the real-or-random indistinguishability from $—the term “KDI”
stands for “key-dependent inputs”, which are synonym to KDM but avoid the suffix M and reduce confusion (since we used
suffix M to denote misuse resistance/resilience properties).

Definition 3 (muKDI$ Advantage). Given a nonce-based authenticated encryption AEAD = (Enc,Dec), the multi-user key-
dependent message security advantage of an adversary A against AEAD with u users is

Adv
muKDI$[nt]
AEAD,A,u :=

∣∣∣Pr
[
AEncnt

K,DecK,ĨC ⇒ 1
]
− Pr

[
A$,⊥,ĨC ⇒ 1

]∣∣∣ ,
where the probability is taken over the u user keys K = (K1, . . . ,Ku), where Ki ← K, over A’s random tape and the ideal
TBC ĨC and where
• Encnt

K(i,N,A, φm): for 1 ≤ i ≤ u, computes M ← φm(K), if nt = u and (i,N) is fresh, outputs C = EncKi(N,A,M);
else if nt = r picks random N ← N , computes C = EncKi(N,A,M) and outputs (N,C);

• DecK(i,N,A,C): for 1 ≤ i ≤ u, if C is an answer to some encryption query (i,N,A, φm), returns ⊥; else outputs
DecKi(N,A,C);

• $(i,N,A, φm): if 1 ≤ i ≤ u, if nt = u and (i,N) is fresh, outputs C ← C|φm(K)|; else if nt = r picks N $← N and
C

$← C|φm(K)| and outputs (N,C);
• ⊥(i,N,A,C): outputs ⊥.

We also recall a more faithful game-based KDI definition [33] in Table 13. It’s equivalent to muKDI$ advantage.

Definition 4 (KDAE Advantage). Let AEAD = (Enc,Dec) be a nonce-based authenticated encryption. The (multi-user)
key-dependent input advantage of an adversary A against AEAD with nonce-type nt ∈ {r, u} (and u users) is

Adv
KDAE[nt]
AEAD,A,u :=

∣∣∣2 · Pr
[
b

$← {0, 1}, b′ = KDAE
[nt],b
AEAD(A, u) : b = b′

]
− 1
∣∣∣ ,

where the security game KDAE
[nt],b
AEAD(A, u) is defined in Table 13.

In the nonce-respecting case, i.e. nt = u, we cannot expect to get a “sufficiently” small advantage without a restriction on the
allowed key-dependent message deriving functions φm due to the impossibility results of [33]. Therefore, muKDI$ advantage
will be associated to a class Φ of KDM deriving functions. Given the number u of users/keys, we consider all the functions
Ku 7→ M which are oracle-free as defined in [64]: a function φm is oracle-free, if for any input K we have τ(φm(K)) = ∅,
where τ(φm(K)) is the transcript of queries made by φm to ĨC when φm is evaluated on the input K.

It’s tempting to ask how muKDI$ security interacts with leakages. The situation becomes more complicated since the secret
keys are frequently used for deriving inputs, and it needs careful discussion whether leakages produced by these actions must
be taken into account and, if not, why. This is out of the scope of this paper.

B. muKDI$ Security of TEDT

Formally, define −→q = (qe, qd, qĨC), and

Adv
muKDI$[nt]
TEDT (u,−→q , σ) := max

{
Adv

muKDI$[nt]
TEDT,A,u

}
,

41

where the maximal is taken over all −→q -bounded adversaries against u users that have at most σ blocks in all its queried
plaintext and ciphertext including associated data. In addition, we follow Black et al. [65] and assume that the message
deriving functions are of fixed-length: formally, for any i ∈ {1, . . . , qe}, |φi[ĨC](K)| = |φi[ĨC′](K′)| for any two ideal TBCs
ĨC, ĨC′ and any K,K′ ∈ (K)u. Note that without this assumption, the key may be leaked by the length of the derived message,
which completely ruins security. In addition, to model the setting where keys are passwords (likely in the muKDI$ setting),
we assume that a secret key K is picked according to the distribution K, and its min-entropy is

H∞(K) = − log2

(
max
K†∈K

Pr[K
$← {0, 1}n : K = K†]

)
.

Then in the random nonce case we have

Theorem 5. When the u public-keys T1, . . . , Tu are uniformly distributed and 4 ≤ 4σ+ 6(qe+ qd) + 2qĨC ≤ 2n/4, in the ideal
TBC model it holds

Adv
muKDI$[r]
TEDT (u,−→q , σ) ≤

6qe(4σ + 6(qe + qd) + 2qĨC)

|N | +
2u(u+ 4σ + 6(qe + qd) + 2qĨC)

2H∞(K)
+

18(6σ + 4(qe + qd) + 2qĨC)2

2n
. (37)

Proof. See appendix I-C. The proof idea is similar to [65], and we employ the randomness mapping argument [66] to make
it a bit more rigorous.

In the universal nonce case, we follow [33] and make the additional assumption that the adversary only chooses oracle-free
message deriving functions (see the definition subsequent to Definition 3). With this restriction, we have:

Theorem 6. When the u public-keys T1, . . . , Tu are uniformly distributed, n ≥ 6, and 2σ + 3(qe + qd) + qĨC ≤ 2n/8, for any
adversary that only queries with oracle-free message deriving functions, in the ideal TBC model it holds

Adv
muKDI$[u]
TEDT (u,−→q , σ) ≤ u2

2n+H∞(K) +
1

2n!
·
(4u

2n

)n
+

(5n2 + 9)q∗∗
ĨC

+ 2qd + 1

2n
.

Proof. The bound is comparable to muCCAm$ (Theorem 3), and the proof is also similar: see appendix I-D.

While the oracle-freeness assumption appears quite strong here, it seems crucial for universal nonce KDM security. Moreover,
it still captures the simple polynomial message deriving functions.

C. Proof of Theorem 5

Wlog assume that both D and φ are deterministic and with unlimited computation power. In this vein, the nonce and the
ideal TBC ĨC constitute the only underlying randomness of the muKDI$ security game. Denote by G1 the real muKDI$ security
game, and by G3 the ideal game. We introduce some “bad events” and helper variables into G3, and define the obtained game
as G2. In detail,
(1) We keep all the query-response pairs of ĨC in a set ICSet;
(2) We maintain a set SecretKeys for the keys that are supposed to be unknown to D. These keys include the u user keys

as well as all the ephemeral keys appeared during the encryption pass.
(3) We distinguish between “public” and “private” ĨC oracles. The former is captured by a public procedure ĨCtk(δ, v), while

the latter by a private procedure ICinnertk(δ, v). The former is offered to D as the ĨC oracle, while the latter is used by−→
φ and the encryption pass. The functions of the ideal TBC is actually implemented by ICinnertk, and ĨCtk only relays the
call to ICinnertk. However, upon a query, ĨCtk would check if the key k ∈ SecretKeys. This constitutes the mechanism
to prevent D from “guessing” the secret keys.

(4) Most importantly, while the ciphertext still consists of uniform blocks, we internally “enforce” them as query-response
pairs of ĨC. This design resembles the idea used in [65] and we follow [66] and name it adaptation.

(5) G2 aborts upon some “bad events”. These in particular include the cases the “enforcement” of query-response pairs of ĨC
cause inconsistency.

In addition, to ease the argument we’ll rely on the normalization (as in section E-C), which is made formal by defining another
game G′2. In detail, G′2 internally performs normalization in the procedure ICinnertk: this is the only difference between G2

and G′2. We formally describe both games in the following paragraph of pseudocode, with the normalization statements (in
G′2 only) clearly marked.

Game G2, G′2
Variables:

Sets ICSet, HSet, and S1, . . . ,Su, initially empty
Set SecretKeys initialized to {K1, . . . ,Ku}
Keys T and K, initialized according to their distributions.

Public procedure Enc(i, A, φ)

42

1. encnum← qunm
2. M ← φ[ICinner](K)
3. parse M as m1‖ . . . ‖m`

4. C $← {0, 1}(`+1)n

5. parse C as c1‖ . . . ‖c`‖Z
6. y1‖ . . . ‖y` ← (m1‖ . . . ‖m`)⊕ (c1‖ . . . ‖c`) // the “imagined” key stream

7. N $← N // sample the nonce and start emulating the encryption
8. If ∃y such that (Ki, Ti, P0(N), y) ∈ ICSet then abort // a bad nonce
9. k0 ← ICinnerTiKi(+, P0(N))

10. Add k0 to SecretKeys
11. If ∃t, x, y such that (k0, t, x, y) ∈ ICSet then abort // sampled a bad k0
12. for i = 1 to ` do // emulate the encryption
13. Adapt(ki−1, T,Qi−1(N), yi)
14. ki ← ICinnerTki−1

(+, Pi(N)) // omitted for i = `
15. Add ki to SecretKeys // omitted for i = `
16. If ∃t, x, y such that (ki, t, x, y) ∈ ICSet then abort // bad next key ki
17. V ‖W ← H[ĨC](pad(A,N, c1‖ . . . ‖c`, Ti))
18. Adapt(Ki,W‖1, V, Z)
19. Si ← Si ∪ {(N,A,C)}
20. Return (N,C)

Public procedure Dec(i,N,A,C)

1. If (N,A,C) ∈ Si then return ⊥
2. parse C as c1‖ . . . ‖c`‖Z
3. if ∃V,W such that (Ki,W, V, Z) ∈ ICSet,

and (Ki,W, V, Z) was created in an ICinner-call with δ = + then abort
4. V ‖W ← H[ĨC](pad(A,N, c1‖ . . . ‖c`, Ti))
5. V ∗ ← ICinnerW‖1Ki

(−, Z)
6. if V = V ∗ then abort
7. Return 0 // valid always equals 0

Public procedure H[ĨC](U)

1. It calls the public procedure ĨCtk to evaluate. Details omitted.
Public procedure ĨCtk(δ, v)

1. If k ∈ SecretKeys then abort // the case D guesses a secret key
2. return ICinnertk(δ, v)

Private procedure ICinnertk(δ, v)

1. If δ = + and @w : (k, t, v, w) ∈ ICSet then // forward query
2. w

$← {0, 1}n such that @v′ : (k, t, v′, w) ∈ ICSet
3. Add (k, t, v, w) to ICSet
4. If δ = − and @w : (k, t, w, v) ∈ ICSet then // forward query
5. w

$← {0, 1}n such that @v′ : (k, t, w, v′) ∈ ICSet
6. If k = Ki and ∃U, t such that (U,w‖t) ∈ HSet then abort
7. Add (k, t, w, v) to ICSet

8. If δ = + and @w : (k, t, v ⊕ θ, w) ∈ ICSet then ICinnertk(+, v ⊕ θ) [G′2 only!]
9. If δ = − and @w : (k, t, w ⊕ θ, w) ∈ ICSet then ICinnertk(+, w ⊕ θ) [G′2 only!]

10. If δ = + then Find w such that (k, t, v, w) ∈ ICSet and return w
11. Else Find w such that (k, t, w, v) ∈ ICSet and return w

Private procedure Adapt(k, t, x, y)

1. If ∃x′, y′ such that (k, t, x, y′) ∈ ICSet or (k, t, x′, y) ∈ ICSet then abort
2. Add (k, t, x, y) to τĨC
While G2 includes many complicated actions, it can be seen it actually behaves the same as G3 in the view of D unless

abortion. Therefore,
Pr[DG3 ⇒ 1]− Pr[DG2 ⇒ 1] ≤ Pr[G2 aborts],

and below we could concentrate on bounding Pr[DG2 ⇒ 1] − Pr[DG1 ⇒ 1]. To this end, we follow the proof idea of Black
et al. [65], but use the randomness mapping technique [66] to make it more rigorous. The analysis consists of two steps:

43

(1) First, we bound Pr[G2 aborts], the probability of abortion in G2 executions;
(2) Second, we consider the sets resulted from a non-aborting G2 execution, and fix the internal randomness of G1 to extend

these sets. It’s easy to show the transcripts of D in such G1 and G2 executions are the same, so that D outputs the same.
This cinches the indistinguishability result.

1) Abort Probability of G2.: We analyze the abort conditions in turn.
a) Inside the Enc Procedure.: For line 8, since the nonce is randomly picked, the probability clearly does not exceed

qeq
∗
ĨC

|N | , where q∗
ĨC

is defined by Eq. (13). It’s also bad if the nonce collides with a previously picked nonce, but this case has
been included in the count q∗

ĨC
.

For lines 11 and 16, if abortion did not occur then all the keys are newly sampled and thus uniform in ≥ 2n−q∗
ĨC

possibilities.

Therefore, for each key the abort probability is ≤ q∗
ĨC

2n−q∗
ĨC

≤ 2q∗
ĨC

2n assuming q∗
ĨC
≤ 2n/2. Since the number of such ephemeral

keys is at most q∗
ĨC

, the total probability is ≤ 2(q∗
ĨC
)2

2n . It isn’t hard to see if these abortions never occur, then the calls to Adapt
in line 13 never abort either.

We finally consider the call to Adapt in line 18. Since N is uniformly picked from N , the derived n − 1 bit half W can
also be proved uniform in at least |N | possibilities. Therefore, for the call to Adapt(Ki,W‖1, V, Z), we have

• Pr[∃Z ′ : (Ki,W‖1, V, Z ′) ∈ ICSet] ≤
q∗
ĨC

|N | , and

• Pr[∃V ′ : (Ki,W‖1, V ′, Z) ∈ ICSet] ≤ q∗
ĨC

|N | . This probability can be further reduced using the uniformness of Z, but
this cannot improve the overall bound.

Therefore, the probability of aborting at line 18 is ≤ 2qeq
∗
ĨC

|N | . We make a side remark that, while the ciphertext c1‖ . . . ‖c`
contains more entropy than N when ` ≥ 1, it may also be an empty string (when the derived message is empty). Consequently,
we cannot rely on the uniformness of c1‖ . . . ‖c`.

Summing over the above, we obtain

Pr[Enc aborts] ≤
3qeq

∗
ĨC

|N |
+

2(q∗
ĨC

)2

2n
. (38)

b) Inside the ĨCtk Procedure.: As mentioned, the abort condition captures the scenario that D succeeds in guessing a
secret key. To obtain a better bound, we distinguish between the user-keys {K1, . . . ,Ku} and the internal ephemeral keys.
And then we follow the argument of Black et al. [65]:
• First, note that if D was given no information about the user-keys then clearly Pr[k ∈ {K1, . . . ,Ku}] = u

2H∞(K) ;
• Second, note that the view provided to D in G2 is indeed independent of the keys:
(1) every encryption query returns a random string whose length is independent of the keys (due to the fixed-length

assumption on
−→
φ);

(2) unless abortion occurred, every ĨCtk query returns a random n-bit value independent of the keys (this value only does
equal some previously known values);

(3) unless abortion occurred, every Dec query simply returns ⊥ or 0 independent of the keys (the return value can be fully
decided by the sets S1, . . . ,Su).

Since the number of calls to ĨCtk does not exceed q∗
ĨC

, the probability of this type of abortion is ≤ uq∗
ĨC

2H∞(K) .
On the other hand, an ephemeral key k∗ is derived during the emulated encryption process. If abortion never occurred, then

k∗ was uniform in ≥ 2n − q∗
ĨC

possibilities. In a similar vein to the above, the view provided to D is indeed independent of

these “secret keys”. Therefore, the probability of this type of abortion is ≤ q∗
ĨC
·q∗

ĨC

2n−q∗
ĨC

≤ 2(q∗
ĨC
)2

2n since the number of such “secret
keys” is ≤ q∗

ĨC
, and thus

Pr[ĨCtk aborts] ≤
uq∗

ĨC

2H∞(K) +
2(q∗

ĨC
)2

2n
. (39)

c) Inside the calls to ICinnertk with δ = −.: This condition is quite clear:

Pr[ICinnertk aborts] ≤
q∗
ĨC
· q∗

ĨC

2n − q∗
ĨC

≤
2(q∗

ĨC
)2

2n
. (40)

d) Inside the Dec Procedure.: We first consider line 3, which captures the scenario that a right tag Z was created during
the evaluation of

−→
φ , which—of course,—was unknown to D, but D latter “wisely” succeeds in guessing Z. Since line 3 only

considered the case Z resulting from a forward call to ICinnertk, such a “target” Z is uniform in ≥ 2n− q∗
ĨC

values. Therefore,

in a similar vein to the argument for Eq. (39), it can be shown the probability of this type of abortion is ≤ q∗
ĨC
·q∗

ĨC

2n−q∗
ĨC

≤ 2(q∗
ĨC
)2

2n .

44

For line 6, we rely on the obvious fact that

Pr[In G2, Dec aborts at line 6] ≤ Pr[In G′2, Dec aborts at line 6]. (41)

We introduce two helper bad events in G′2:
• (C-1) there exists two user indices i, j such that Ki = Kj ;
• (C-2) hash collision: there exists two distinct records (U, V ‖W) and (U ′, V ′‖W ′) in HSet such that V ‖W = V ′‖W ′.

Via an analysis similar to section E-C, we reach

Pr[(C-1) ∨ (C-2)] ≤ u2

2H∞(K) +
4q∗∗

ĨC

2n
, (42)

where q∗∗
ĨC

= 4σ + 6(qe + qd) + 2qĨC.
Conditioned on ¬(C-1) and ¬(C-2), we argue none (non-trivial) decryption queries aborts at line 6 except negligible. Consider

a decryption query DecK(i,N,A,C), and let C = −→c ‖Z. If this query aborts at line 6, then at that time there exists a hash
record (pad(A‖N‖−→c ‖Ti), V ‖W) and an ĨC query (Ki,W

∗‖1, V ∗, Z) such that V ∗ = V and W ∗ = W . This implies the
existence of the following queries:(

(u, h, g, g ⊕ V), (u, h, g ⊕ θ, g ⊕ θ ⊕W‖b)
)
, (Ki,W

∗‖1, V ∗, Z),

where u is the last block of pad(A‖N‖−→c ‖Ti), b is either 0 or 1, and V ∗ = V and W ∗ = W . Note that it necessarily holds
u /∈ SecretKeys since the previous calls to ĨChu did not abort. We distinguish two cases:

e) CASE 1: (Ki,W
∗‖1, V ∗, Z) is created After the pair of IC queries.: As W ∗ = W , we simplify the notation as

(Ki,W‖1, V ∗, Z). We argue this query (Ki,W‖1, V ∗, Z) cannot be forward. For this, assume otherwise, then since line
3 did not cause abortion, this query was not created due to calls made by

−→
φ . So it’s due to an earlier encryption query

LEncK(j,N ′, A′,M ′) → −→c ′‖Z, and during the hash-evaluation of this query, the last-block call also gives rise to the digest
V ‖W . Now,
• if j = i and (N,A,−→c) = (N ′, A′,−→c ′), then the tag produced by LEncK(j,N ′, A′,M ′) cannot be Z, and thus cannot

create the query (Ki,W‖1, V ∗, Z);
• if j = i while (N,A,−→c) 6= (N ′, A′,−→c ′), then it contradicts ¬(C-2);
• if j 6= i then Kj 6= Ki by ¬(C-1), and thus impossible.

In all, (Ki,W‖1, V ∗, Z) has to be backward. Then V = V ∗ would contradict the non-abortion of ICinnertk-calls. Consequently,
this case never causes abortion at line 6.

f) CASE 2: (Ki,W
∗‖1, V ∗, Z) is created Before the pair of IC queries.: Then, following the same line as the muCIML2

analysis, for the query (u, h, g, g ⊕ V), it holds

Pr[V = V ∗] ≤ 1

2n − q∗∗
ĨC

≤ 2

2n
.

Therefore,

Pr[Case 2 | ¬(C-1) ∧ ¬(C-2)] ≤
2(q∗∗

ĨC
)2

2n
. (43)

Since we assumed q∗∗
ĨC
≥ 4,

4q∗∗
ĨC

2n ≤
(q∗∗

ĨC
)2

2n . Therefore, gathering Eq. (41), (42), and (43) yields

Pr[G2 aborts at line 6 in Dec] ≤ u2

2H∞(K) +
3(q∗∗

ĨC
)2

2n
. (44)

Note that here we cannot rely on the muCIML2 result, since ĨCKi can be called by
−→
φ which interrupts the analysis. In

summary, Eq. (38), (39), (40), and (44) yield

Pr[G2 aborts] ≤
3qeq

∗
ĨC

|N |
+

2(q∗
ĨC

)2

2n
+

uq∗
ĨC

2H∞(K) +
2(q∗

ĨC
)2

2n
+

2(q∗
ĨC

)2

2n
+

u2

2H∞(K) +
3(q∗∗

ĨC
)2

2n

≤
3qeq

∗
ĨC

|N |
+
u(u+ q∗

ĨC
)

2H∞(K) +
9(q∗∗

ĨC
)2

2n
(q∗

ĨC
≤ q∗∗

ĨC
). (45)

45

2) The Randomness Mapping.: Consider a non-aborting G2 execution. We collect the sets of variables standing at the end
of this execution as

τ = (ICSet,N,K,T).

In this tuple, the entry ICSet, K, and T are clear, while the vector N = (N1, . . . , Nqe) contains the qe randomly picked
nonce values. It isn’t hard to see this tuple τ keeps all the randomness necessary and sufficient to recover the corresponding
G2 execution. This is clear for ĨC and Dec queries. For Enc queries, the random ciphertext blocks have been kept in ICSet
while nonce kept in N, so it’s also clear.

We next make the randomness in G1 explicit. Note that the randomness source ĨC has been “explicit”. We only need to add a
tape of uniform values h, and assume that the nonce values are “downloaded” from this tape as Ni ← h(i) for the i-th encryption
query. And we denote by h ` N the event ∀i : h(i) = Ni. Then clearly, for a fixed “target” tuple τ = (ICSet,N,K†,T†)
we have

PrĨC,h,K,T[ĨC ` ICSet ∧ h ` N ∧K = K† ∧T = T†] ≥ Pr[ĨC ` ICSet] · Pr(N,K†,T†).

On the other hand, since in a G2 execution every adapted entry has an n-bit value picked uniformly, it can be seen the
probability that a G2 execution produces the variables satisfies

Pr[G2 → (ICSet,N,K†,T†)] = Pr[ĨC ` ICSetR] ·
(1

2n

)|ICSetA|
· Pr(N,K†,T†),

where ICSetR and ICSetA are the sets of sampled and adapted entries in ICSet respectively. Therefore,

PrĨC,h,K,T[ĨC ` ICSet ∧ h ` N ∧K = K† ∧T = T†]

Pr[G2 → (ICSet,N,K†,T†)]
≥ Pr[ĨC ` ICSetA | ĨC ` ICSetR](

1
2n

)|ICSetA| ≥ 1. (46)

In addition, it can be seen for a G2 execution that produces (ICSet,N,K,T), if a G1 execution is ran with K,T, and
randomness ĨC ` ICSet and h ` N, then the transcripts of queries and answers of D obtained in these two executions are
exactly the same, so that D outputs the same. This could be formally proved via a transcript centric argument like in [66]; to
keep it cleaner we eschew this tedious analysis. Denote by Tnb the set of variables τ that can be produced by non-aborting
G2 executions. Then we have (note q∗

ĨC
≤ q∗∗

ĨC
≤ 4σ + 6(qe + qd) + 2qĨC)

Pr
[
DG2 ⇒ 1

]
− Pr

[
DG1 ⇒ 1

]
≤Pr[G2 aborts] +

∑
τ∈Tnb

Pr[G2 → τ] ·
(

1− Pr[(ĨC, h,K,T) ` τ]

Pr[G2 → τ]

)
≤Pr[G2 aborts] ≤

3qe(4σ + 6(qe + qd) + 2qĨC)

|N |
+
u(u+ 4σ + 6(qe + qd) + 2qĨC)

2H∞(K) +
9(4σ + 6(qe + qd) + 2qĨC)2

2n
.

This and Pr[DG3 ⇒ 1]− Pr[DG2 ⇒ 1] ≤ Pr[G2 aborts] establish Eq. (37).

D. Proof of Theorem 6

The proof is much simpler than section I-C since
−→
φ are oracle-free: we could simply apply H-coefficients technique and

follow the proof idea in section VII.
1) Bad Transcripts.: In this setting, transcripts are defined as τ = (τ∗H, τe, τd, τ

∗
ĨC
,T,K), where

τe =
(
(u(1), N (1), A(1), φ(1), C(1)), . . . , (u(qe), N (qe), A(qe), φ(qe), C(qe))

)
and

τd =
(
(u(1), N (1), A(1), C(1), b(1)), . . . , (u(qe), N (qe), A(qe), C(qe), b(qe))

)
summarize the queries to the encryption and decryption oracles respectively, and τ∗

ĨC
contains the adversarial ĨC queries & the

ĨC queries made by H (note that here there isn’t any “non-challenge” encryption queries, so it’s slightly different from section
H-A). Note that τ is attainable only if τ can be produced in the ideal world, and this means b(1) = . . . = b(qe) = 0.

Now, a transcript τ is bad if one of the following conditions is fulfilled:
• (B-1) there exists two user indices i, j such that Ki‖Ti = Kj‖Tj ;
• (B-2) µT ≥ n, or µW ≥ n, or µY ≥ 2 log2 σ;
• (B-3) there exists a 4-tuple (i,N,A,−→c) such that,

– either (i,N,A, φ,−→c ‖Z) ∈ τe, or (i,N,A,−→c ‖Z, b) ∈ τd; and
– (Ki, Ti, ∗, ∗) ∈ τ∗ĨC, or (Ki,W‖1, ∗, ∗) ∈ τ∗ĨC for the corresponding hash record (pad(A,N,−→c , Ti), V ‖W) ∈ τ∗H.

46

• (B-4) hash collision: there exists two distinct hash query records (U, V ‖W) and (U ′, V ′‖W ′) in τ∗H such that U 6= U ′

yet V ‖W = V ′‖W ′;
• (B-5) there exists two distinct encryption queries (u(i), N (i), A(i), φ(i), C(i)) and (u(j), N (j), A(j), φ(j), C(j)) with hash

query (pad(A(i)‖N (i)‖−→c (i)‖Tu(i)), V (i)‖W (i)) and (pad(A(j)‖N (j)‖−→c (j)‖Tu(j)), V (j)‖W (j)) in τ∗H satisfying: W (i) =
W (j), and Z(i) = Z(j);

• (B-6) incorrect plaintext length: there exists a query (u(i), N (i), A(i), φ(i), C(i)) ∈ τe such that |φ(i)| 6= |C(i)| − n.
We can recycle most of the results in section H-A:

Pr[(B-1)] ≤ u2

2n+H∞(K) , Pr[(B-2) ∨ (B-4)] ≤ 1

2n!
·
(4u

2n

)n
+

8q∗∗
ĨC

2n
+

1

2n
,

Pr[(B-3) | (B-2)] ≤
n2q∗∗

ĨC

2n
, and Pr[(B-5)] ≤ 2q2e

2n(2n − q∗∗
ĨC

)
≤ 4q2e

22n
≤
q∗∗
ĨC

2n
.

Finally, since
−→
φ are assumed to be of fixed-length, we actually have Pr[(B-6)] = 0. This condition was presented only for

clearness. Therefore,

Pr[Tid ∈ Tbad] ≤
u2

2n+H∞(K) +
1

2n!
·
(4u

2n

)n
+

(n2 + 9)q∗∗
ĨC

+ 1

2n
.

2) Ratio for Good Transcripts.: Fix a good τ . For each encryption query record (u(i), N (i), A(i), φ(i), C(i)), we “replace”
the field φ(i) by M (i) = φ(i)(K). Here we eschew the notation φ(i)[ĨC] since it’s oracle-free. In this vein, the set τe turns
the same as the set τe analyzed in section H-B. Importantly, the message deriving functions would not affect the calculations
since they are oracle-free. So we can recycle the result

Pr[TEDT[ĨC]K,T ` τe | ĨC ` τ∗ĨC] ≥
(

1−
2µT (σ + q∗∗

ĨC
) + 2µY (σ + q∗∗

ĨC
)

2n

)(
1

2n

)qe+∑qe
i=1 `i

≥
(

1−
8nq∗∗

ĨC

2n

)(
1

2n

)qe+∑qe
i=1 `i

(47)

We only need to lower bound

Pr[TEDT[ĨC]K,T ` τd | TEDT[ĨC]K,T ` τe ∧ ĨC ` τ∗
ĨC

].

For this, we upper bound the probability

Pr[TEDT[ĨC]K,T 0 τd | TEDT[ĨC]K,T ` τe ∧ ĨC ` τ∗
ĨC

].

This requires to prove any decryption query Dec[ĨC]K,T(i,N,A,C) results in 0 in the real world except with negligible
probability. Let C = (−→c , Z), and let V ‖W = H[ĨC](pad(A‖N‖−→c ‖Ti)). We distinguish two case:

a) Case 1:: there exists an encryption query (u(i), N (i), A(i),M (i), C(i)) such that Ku(i) = Ki, and D(i)‖W (i) =
H[ĨC](pad(A(i)‖N (i)‖−→c (i)‖Tu(i))) = V ‖W , where C(i) = (−→c (i), Z(i)). By ¬(B-4) and Lemma 8, this implies (N,A,−→c , Ti) =

(N (i), A(i),−→c (i), Tu(i)). Then since we forbid trivial decryption query, it has to be Z(i) 6= Z. By this, ĨCW‖1Ki
(V) = Z(i) 6= Z

implies this decryption query results the answer 0.
b) Case 2:: otherwise, then conditioned on TEDT[ĨC]K,T ` τe ∧ ĨC ` τ∗

ĨC
, the value ĨC

W‖1
Ki

(V) remains uniform in
≥ 2n − qe − qd possibilities, and thus

Pr[Dec[ĨC]K,T(i,N,A,C) = 1] = Pr[ĨC
W‖1
Ki

(V) = Z] ≤ 1

2n − qe − qd
≤ 2

2n
.

Taking a union bound over the qd decryption queries yields

Pr[TEDT[ĨC]K,T 0 τd | TEDT[ĨC]K,T ` τe ∧ ĨC ` τ∗
ĨC

] ≤ 2qd
2n

. (48)

Gathering Eq. (47) and (48) and Pr[Tid ∈ Tbad] yields the final bound

u2

2n+H∞(K) +
1

2n!
·
(4u

2n

)n
+

(n2 + 9)q∗∗
ĨC

+ 1

2n
+

8nq∗∗
ĨC

2n
+

2qd
2n

≤ u2

2n+H∞(K) +
1

2n!
·
(4u

2n

)n
+

(5n2 + 9)q∗∗
ĨC

+ 2qd + 1

2n
(n ≥ 2).

47

E. Insecurity with a Single Nonce Reuse

We target a single user-key (K,T). We first use the identity function and an arbitrary nonce N for an encryption query:
this cause TEDT compute k0 := ẼTK(P0(N)), y1 := ẼTk0(Q0(N)), and c1 := y1 ⊕K. We don’t care about the subsequent tag
generation. We then use the constant function φ(K) = 0 and the nonce N (repeating) for the second encryption query: the
resulted ciphertext block is c∗1 = y1. Then K = c1 ⊕ c∗1 is recovered (even if we don’t need to decide the pseudorandomness
of c1 and c∗1).

The situation here deviates from section VII because TEDT doesn’t ensure the confidentiality of messages encrypted by
repeated nonce: this isn’t harmful in the muCCAm$ setting, but is harmful here since the message may be the secrete key.

How to design a muKDI$ secure scheme in the misuse-resilience is out of the scope of this paper.

