
Divisible E-Cash from Constrained Pseudo-Random Functions

Florian Bourse1, David Pointcheval2,3 and Olivier Sanders1

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
2 DIENS, Ecole normale supérieure, CNRS, PSL University, Paris, France

3 INRIA, Paris, France

Abstract. Electronic cash (e-cash) is the digital analogue of regular cash which aims at preserving
users’ privacy. Following Chaum’s seminal work, several new features were proposed for e-cash to
address the practical issues of the original primitive. Among them, divisibility has proved very useful
to enable efficient storage and spendings. Unfortunately, it is also very difficult to achieve and, to
date, quite a few constructions exist, all of them relying on complex mechanisms that can only be
instantiated in one specific setting. In addition security models are incomplete and proofs sometimes
hand-wavy.
In this work, we first provide a complete security model for divisible e-cash, and we study the links
with constrained pseudo-random functions (PRFs), a primitive recently formalized by Boneh and
Waters. We exhibit two frameworks of divisible e-cash systems from constrained PRFs achieving
some specific properties: either key homomorphism or delegability. We then formally prove these
frameworks, and address two main issues in previous constructions: two essential security notions
were either not considered at all or not fully proven. Indeed, we introduce the notion of clearing,
which should guarantee that only the recipient of a transaction should be able to do the deposit,
and we show the exculpability, that should prevent an honest user to be falsely accused, was wrong
in most proofs of the previous constructions. Some can easily be repaired, but this is not the case
for most complex settings such as constructions in the standard model. Consequently, we provide
the first construction secure in the standard model, as a direct instantiation of our framework.

1 Introduction

Electronic payment systems offer high usage convenience to their users but at the cost of their
privacy. Indeed, transaction data, such as payee’s identity, date and location, leak sensitive
information about the users, such as their whereabouts, their religious beliefs, their health status,
etc.

However, secure e-payment and strong privacy are not incompatible, as shown by Chaum
in 1982 [Cha82] when he introduced the concept of electronic cash (e-cash). Informally, e-cash
can be thought of as the digital analogue of regular cash with special focus on users’ privacy.
Such systems indeed consider three kinds of parties: the bank, the user and the merchant. The
bank issues coins that can be withdrawn by users and then spent to merchants. Eventually, the
latter deposit the coins on their account at the bank. Compared to other electronic payment
systems, the benefit of e-cash systems is that the bank is unable to identify the author of a
spending. More specifically, it can neither link a particular withdrawal —even if it knows the
user’s identity at this stage— to a spending nor link two spendings performed by the same user.

At first sight, this anonymity property might seem easy to achieve: one could simply envision
a system where the bank would issue the same coin (more specifically, one coin for each possible
denomination) to each user. Such a system would obviously be anonymous but it would also be
insecure. Indeed, although e-cash aims at mimicking regular cash, there is an intrinsic difference
between them: e-cash, as any electronic data, can easily be duplicated. This is a major issue
because it means that a user could spend the same coin to different merchants. Of course,
some hardware countermeasures (such as storing the coins on a secure element) can be used
to mitigate the threat but they cannot completely remove it. Moreover, the prospect of having
an endless (and untraceable) reserve of coins will constitute a strong incentive to attack this
hardware whose robustness is not without limits.

To deter this bad behaviour, e-cash systems must therefore enable (1) detection of re-used
coins and (2) identification of defrauders. Besides invalidating the trivial solution sketched above
(a unique coin for each denomination) these requirements impose very strong constraints on e-
cash systems: users should remain anonymous as long as they behave honestly while becoming
traceable as soon as they begin overspending, from the first cent.

Chaum’s idea, taken up by all subsequent works, was to associate each withdrawn coin with
a unique identifier called a “serial number”1. The latter remains unknown to all parties, except
the user, until the coin is spent. At this time, it becomes public and so can easily be compared
to the set of all serial numbers of previously spent coins. A match then acts as a fraud alert for
the bank which can then run a specific procedure to identify the cheater.

Unfortunately, by reproducing the features of regular cash, e-cash also reproduces its draw-
backs, in particular the problem of paying the exact amount. Worse, as we explain below, the
inherent limitations of e-cash compound this issue that becomes much harder to address in a
digital setting. This has led cryptographers to propose a wide variety of solutions to mitigate
the impact on user’s experience. They include for example on-line e-cash, transferable e-cash or
divisible e-cash.

1.1 Related Work

On-line/Off-line Anonymous e-Cash. The original solution proposed by Chaum for anony-
mous payment was based on the concept of blind signature. This primitive, later formalized
in [PS96, PS00], allows anyone to get a signature σ on a message m that is unknown to the
signer. Moreover, the latter will be unable to link the pair (σ,m) to a specific issuance. Applying
this idea to the payment context leads to the following e-cash system. A coin is a blind signature
issued by a bank to a user during a withdrawal. To spend his coin, the user simply shows the
signature to a merchant who is able to verify it using the bank’s public key. Two cases may then
appear. Either the e-cash system does not allow identification of defrauders, in which case the
bank must be involved in the protocol to check that this coin has not already been spent. The
resulting system is then referred to as on-line e-cash. Otherwise, the coin may be deposited later
to the bank, leading to an off-line e-cash system. Obviously, the latter solution is preferable since
it avoids a costly connection to the servers of the bank during the payment. In the following, we
will only consider off-line e-cash systems.

Transferable vs. Divisible e-Cash. In theory, the problem of anonymous payment is thus
solved by blind signatures for which several instantiations have been proposed (see e.g. [PS00]).
However, as we mention above, it remains to address the problem of paying the exact amount,
which becomes trickier in a digital setting. Indeed, let us consider a consumer that owns a coin
whose denomination is e 10 and that wants to pay e 8.75. A first solution could be to contact
his bank to exchange his coin against coins of smaller denominations but this would actually
reintroduce the bank in the spending process and so would rather correspond to an on-line
system. It then mainly remains two kinds of solutions: those where the merchant gives back
change and those that only use coins of the smallest possible denomination (e.g. e 0.01). They
both gave rise to two main streams in e-cash: transferable e-cash and compact/divisible e-cash.

Let us go back to our example. At first sight, the simplest solution (inspired from regular
cash) is the one where the merchant gives back change, by returning, for example, a coin of
e 0.05, one of e 0.20 and one of e 1. However, by receiving coins, the user technically becomes
a merchant (in the e-cash terminology) which is not anonymous during deposit. Therefore, the
only way to retain anonymity in this case is to ensure transferability of the coin, meaning that
the user will be able to (anonymously) re-spend the received coins instead of depositing them.
While this is a very attractive feature, it has unfortunately proved very hard to achieve. Worse,
Chaum and Pedersen [CP93] have shown that a transferable coin necessarily grows in size after
each spending. Intuitively, this is due to the fact that the coins must keep information about
each of its owner to ensure identification of defrauders. In the same paper, Chaum and Pedersen
also proved that some anonymity properties cannot be achieved in the presence of an unbounded
adversary. Their results were later extended by Canard and Gouget [CG08] who proved that these
properties were also unachievable under computational assumptions. More generally, identifying

1 Actually, this specific terminology appeared later [CFN90] but this notion is implicit in the Chaum’s paper.

2

the anonymity properties that a transferable e-cash system can, and should, achieve has proved
to be tricky [CG08,BCFK15].

All these negative results perhaps explain the small number of results on transferable e-cash,
and quite recent constructions [CGT08, BCF+11, BCFK15] are too complex for a large-scale
deployment or rely on a very unconventional model [FPV09]. In particular, none of them achieves
optimality with respect to the size, meaning that the coin grows much faster than the theoretical
pace identified by Chaum and Pedersen.

Now, let us consider our spending of e 8.75 in the case where all coins are of the smallest
possible denomination. This means that the user no longer has a coin of e 10 but has 1000 coins
of e 0.01. Such a system can handle any amount without change but must provide an efficient
way to store and to spend hundreds of coins at once. A system offering efficient storage is called
compact and a system supporting both efficient storage and spending is called divisible.

Anonymous Compact e-Cash. Anonymous compact e-cash was proposed by Camenisch,
Hohenberger and Lysyanskaya [CHL05] and was informally based on the following idea. Let N
be the amount of a wallet withdrawn by a user (i.e. the wallet contains N coins that all have
the same value). During a withdrawal, a user gets a certificate on some secret value s that will
be used as a seed for a pseudo-random function (PRF) F , thus defining the serial numbers of
the N coins as Fs(i) for i ∈ [1, N].

To spend the i-th coin, a user must then essentially reveal Fs(i) and prove, in a zero-
knowledge way, that it is well-formed, i.e. that (1) s has been certified and that (2) the serial
number has been generated using Fs on an input belonging to the set [1, N]. All of these proofs
can be efficiently instantiated in many settings. Anonymity follows from the zero-knowledge
properties of the proofs and from the properties of the pseudo-random function, as it is hard to
decide whether Fs(i) and Fs(j) have been generated under the same secret key s.

Unfortunately, compact e-cash only provides a partial answer to the practical issues of spend-
ings: storage is very efficient but the coins must still be spent one by one, which quickly be-
comes cumbersome. An ultimate answer to this issue was actually provided by Okamoto and
Ohta [OO92] and later named divisible e-cash. The core idea of divisible e-cash is that the serial
numbers of a divisible coin2 can be revealed by batches, leading to efficient spendings.

However, this is easier said than done, and it took 15 years to construct the first anonymous
divisible e-cash system [CG07]. Moreover, the latter was more a proof of concept than a practical
scheme, as pointed out in [ASM08,CG10]. Although several improvements followed (e.g. [ASM08,
CG10,CPST15a,PST17]), the resulting constructions are still rather complex, which makes their
analysis difficult. We highlight this issue by pointing out below a problem on exculpability that
has been overlooked in the security proofs of these constructions.

1.2 A Major Issue with Exculpability in Previous Constructions

Intuition of the Problem. Among the natural properties expected from an e-cash system
is the one, called exculpability, stating that a coin withdrawn by a user whose public key is
upk∗ can only be spent by the latter. In particular this means that he cannot falsely be accused
of double-spendings: in case of overspending detection, this user is necessarily guilty. All e-
cash constructions enforce this property by requiring a signature (potentially a signature of
knowledge) on the transaction under upk∗. Intuitively, this seems enough: a transaction accusing
an honest user of fraud should contain a signature (or more specifically a proof of knowledge of
a signature) under upk∗ and so would imply a forgery. Actually, this argument is ubiquitous in
previous papers3 and leads to quite simple security proofs. It is explicitly stated in Section D.3
of the full version of [LLNW17] and in Section 4.6 of [CG10], and implicitly used in Section 6.3

2 The terminology can be confusing here: the “divisible coin” considered by most of the papers corresponds to
the “wallet” of a compact e-cash system. In particular, the divisible coin contains several coins that are all
associated to a serial number.

3 Our comment obviously only applies to papers that provide a security proof.

3

of [CPST15a], in Section 6.2 of [PST17], and in the security proofs (page 22) of the full version
of [CHL05].

Unfortunately, this argument is not correct because of the complex identification process of
e-cash systems, based on so-called double spending tags. Indeed, the public key upk∗ returned
by the identification algorithm is not extracted from the signature itself, but from a complex
formula involving several elements, such as PRF seeds, scalars, etc. An adversary might then
select appropriate values that will lead this algorithm to output upk∗ while taking as input two
transactions generated with different public keys. This scenario, that has not been taken into
account in previous papers, invalidates their proofs4 because, in such a case, the transactions do
not contain a valid signature under upk∗.

Concrete Example. To illustrate this problem, let us consider the lattice-based construction
proposed by Libert et al [LLNW17]. In this system, each user selects a short vector e and
defines his public key as F.e for some public matrix F. Each coin withdrawn by this user
is associated with two vectors k and t. The former is used to generate the i-th serial number
yS = bAi ·kcp for some public matrix Ai while the latter is used to generate the double-spending
tag yT = upk + H(R) · bAi · tcp, where H(R) is a matrix derived from public information
associated with the transaction R.

If two transactions R and R’ yield the same serial number, then one computes y∗ = (H(R)−
H(R’))−1(yT −y′T) and returns yT −H(R) ·y∗. One can note that this formula indeed returns a
public key upk∗ if both transactions have been generated by the user upk∗ and tag t, as y∗ is then
bAi · tcp. However, there is no equivalence here, and an adversary might manage to generate
R,R’, t, t’, upk, upk′ (in the exculpability game the adversary controls the bank, the merchants
and all dishonest users) such that upk∗ = yT −H(R) · (H(R)−H(R’))−1(yT − y′T).

If we modify the original protocol, to ensure that collisions only occur when t = t′, the
previous relation still gives us

upk∗ = upk−H(R) · (H(R)−H(R’))−1(upk− upk′)

from which it is not possible to conclude that upk∗ = upk = upk′. In particular, it does not seem
possible to extract from these transactions a short vector e∗ such that upk∗ = F · e∗, which
invalidates the original proof.

Discussion. This problem is not exclusive to lattice-based constructions but we note that
the proofs can be fixed in the case where upk = gx for some secret scalar x and where the
transactions contain a signature of knowledge of the different secret values (including x). This
is actually quite frequent in existing constructions (e.g. [CHL05, CG07, CG10] and the ROM
constructions of [CPST15a,CPST15b,PST17]).

Indeed, in such a case, the double-spending tag is of the form T = upk·Fs(i)R where s is a seed,
i ∈ [1, N] is an integer, and R is derived from public information. In case of double-spending,

there are two tags T and T′ from which one can recover upk by computing (TR
′
/(T′)R)

1
R′−R .

Here again, an adversary might generate upk, s, R, upk′, s′, R′ such that the corresponding

tags T and T′ satisfy (TR
′
/(T′)R)

1
R′−R = upk∗, for some honest public key upk∗. However, in this

case, the reduction can recover the discrete logarithm of upk∗ by extracting all the secret values
from the proofs generated by the adversary. This means that exculpability can still be proven
under the discrete logarithm assumption and so that the original proofs can easily be fixed by
adding this remark.

Unfortunately, this patch is inherent to signatures of knowledge of discrete logarithms in the
Random Oracle Model, and so cannot be applied to other settings (e.g. lattices [LLNW17]) or
to standard model constructions [CPST15a, CPST15b, PST17]. In particular, this means that
divisible e-cash secure in the standard model or even lattice-based compact e-cash is still an
open problem.

4 We stress that the problem is located in the proofs and not in the definition of the exculpability property.

4

1.3 Contributions

One can note that the above issue has remained undetected for more than a decade, whereas
all compact/divisible e-cash systems are based on the same intuition. However, the latter has
never been formalized. Intuition is necessary to design and understand a scheme but we must
be very careful when it comes to complex primitives. This pleads for a more formal approach,
where the common intuition are translated into a generic framework.

In addition, this lack of generic framework leads designers to create and combine several
ad-hoc mechanisms, with complex security proofs that often rely on tailored computational
assumptions. This stands in sharp contrast with a related primitive, group signature, whose
foundations were studied by Bellare et al [BMW03, BSZ05] and for which very efficient con-
structions exist.

Two Generic Frameworks and Concrete Instantiations. In this work, we propose two
generic frameworks that yield secure divisible e-cash systems from constrained PRFs, a well-
known cryptographic primitive. For each framework, we identify the properties it must achieve
and, so, we reduce the problem of constructing divisible e-cash systems to a simpler one: efficient
instantiations of the building blocks. We additionally provide examples of instantiations to show
that our frameworks are not artificial but can lead to practical schemes.

Our Approach: Constrained Pseudo-Random Functions. Starting from the work of
Camenisch et al [CHL05] that defines the serial numbers as outputs of a PRF, we formalize
the requirements on divisible e-cash systems as properties that must be achieved by the PRFs.
Actually, the main requirement is that the serial numbers can be revealed by batches, which
means that it must be possible to reveal some element kS that (1) allows to compute Fs(i)
∀i ∈ S ⊂ [1, N] and (2) does not provide any information on the other serial numbers, i.e. on
the outputs of the PRF outside S. This exactly matches the definition of constrained PRF, a
notion formalized in [BW13,KPTZ13,BGI14].

There are also several requirements that must implicitly be fulfilled by the constrained key
kS , for anonymity to hold, and namely unlinkability of the transactions: different constrained
keys generated from the same master key must be unlinkable, which also requires kS to hide any
information on the subset S (besides its cardinality, which will represent the amount). All these
notions were already defined in previous papers on constrained PRFs (e.g. [BFP+15, BLW17,
BKM17]), although we only need here weaker versions of the original definitions.

Collision Resistance. Intuitively, unlinkability of kS will ensure honest users’ privacy. How-
ever, e-cash systems must also be able to deal with dishonest parties, including the bank itself.
In such a case, the adversary has much more power than in usual PRF security games: it has a
total control on the seeds and could use it to create collisions between serial numbers or worse,
falsely accuse an honest user. To thwart such attacks, we need to introduce a new security prop-
erty for constrained PRFs, that we call collision resistance. It requires that different keys (even
chosen by the adversary) yield different outputs, similarly to the standard collision resistance
notion for hash functions. We provide more details in Section 2.2.

Key Homomorphic vs. Delegable Constrained PRFs. We then investigate two different
scenarios, leading to two different (but related) frameworks. In the former, we consider key homo-
morphic constrained PRF [BFP+15] whereas we use delegatable constrained PRF [KPTZ13] in
the latter. Interestingly, we note that all existing divisible e-cash systems can be associated with
one of these frameworks, which brings two benefits. First, this means that it is possible to get,
from existing systems, constrained PRFs (either key homomorphic or delegatable) that achieve
all the properties we list above. We therefore believe that our results might be of independent
interest outside e-cash since it draws attention on (implicit) constructions of constrained PRFs
that might have been ignored. Second, it means that some of the constructions affected by the

5

exculpability issue (see Section 1.2) could be fixed by using the same tricks we introduce in our
frameworks.

Serial Numbers and Double Spending Tags. Once we have identified the sufficient prop-
erties for our PRFs, we explain how to use them to generically construct the serial numbers
and the double spending tags. This is definitely the main contribution of the paper. We then
describe how to combine these PRFs with very standard primitives, namely digital signatures,
commitment schemes and NIZK proofs, to get a divisible e-cash system.

First Divisible e-Cash System Secure in the Standard Model. Finally, we provide de-
tailed proofs for both frameworks to show that the security of the overall construction generically
holds under the security of each of the building blocks. Concretely, this means that, for any set-
ting, one can construct a secure divisible e-cash system by essentially designing a constrained
PRF achieving some simple properties. To illustrate this point, we describe, by using our frame-
work, the first divisible e-cash system secure in the standard model, since previous analyses in
the standard model are all wrong, as explained above.

Several Security Issues. Another interesting outcome of our formalization process is that it
highlights some security issues that have often been overlooked in previous papers.

First, there is the critical issue with exculpability, as discussed in Section 1.2.
Second, security models of e-cash systems only deal with the security of the users and the

bank. We indeed note that (almost) no property related to the security of the merchant has
ever been formalized. In particular, the ability of the merchants to deposit the electronic coins
they received is not ensured by the e-cash scheme itself. For example, in most systems, nothing
prevents the spender from depositing the coins he has just spent5: we define a new property,
called clearing, that formalizes the security requirements for the merchants.

Eventually, in the withdrawal procedure, the coins secret values are traditionally generated
collaboratively by the bank and the user. Our security analysis shows that this collaborative
generation does not seem to provide any relevant benefit, at least for our frameworks.

1.4 Organization

We recall in Section 2.1 the notion of constrained pseudo-random functions and detail the secu-
rity properties required in order to construct divisible e-cash systems in Section 2.2 . Concrete
instantiations of constrained PRFs can be found in Section 9. The syntax and the security model
of divisible e-cash are described in Section 3. We provide, in Section 4, the intuition behind our
two frameworks before presenting the formal description of the latter in Sections 5 and 7. The
security analysis of our generic constructions are respectively provided in Sections 6 and 8.
Finally, a standard model instantiation of our first framework can be found in Section 10.

2 Constrained Pseudo-Random Function

Our constructions of divisible e-cash systems will heavily rely on constrained pseudo-random
functions [BW13, KPTZ13, BGI14] with special features that we present below. But first, we
recall the syntax of this primitive.

2.1 Syntax

For sake of simplicity, our PRF K × S → Y will only be constrained on subsets of S. We will
then not consider the more general setting where it is constrained according to a circuit. Our
PRF thus consists of the following five algorithms.

5 Identification of the spender is not possible in this case because the two transcripts received by the bank (the
one sent by the spender and the one sent by the merchant) are exactly the same.

6

– Setup(1λ, {Si}ni=1): On input a security parameter λ and a set of admissible subsets Si ⊂ S,
this algorithm outputs the public parameters pp that will be implicitly taken as inputs by
all the following algorithms;

– Keygen(): this algorithm outputs a master secret key s ∈ K;
– CKey(s,X): On input the master key s and a set X , this deterministic6 algorithm outputs a

constrained key kX ∈ KX or ⊥;
– Eval(s, x): On input the master key s and an element x ∈ S, this deterministic algorithm

outputs a value y ∈ Y;
– CEval(X , kX , x): On input a set X , a constrained key kX and an element x ∈ X , this

deterministic algorithm outputs a value y ∈ Y.

For conciseness, we will denote CEval(X , kX , x) by CEvalX (kX , x).
A constrained PRF is correct for a family of subsets {Si}ni=1 if, for all λ ∈ N, pp ←

Setup(1λ, {Si}ni=1), s ← Keygen() and x ∈ Si ⊆ S, we have, with overwhelming probability,
CEvalSi(CKey(s,Si), x) = Eval(s, x). And this common value is PRFs(x).

Definition 1. A constrained PRF is key homomorphic [BLMR13, BFP+15] if:

1. Y, K and KSi are groups ∀i ∈ [1, n]
2. ∀i ∈ [1, n], CEvalSi(k1 · k2, x) = CEvalSi(k1, x) · CEvalSi(k2, x), ∀k1, k2 ∈ KSi and x ∈ Si.
3. CKey(s1 · s2,Si) = CKey(s1,Si) · CKey(s2,Si), ∀s1, s2 ∈ K and i ∈ [1, n]

We use the multiplicative notation for our group operations, in K and KSi . As in [BFP+15], we
require that the CKey algorithm, for any Si, is a group homomorphism from K into KSi .

Finally, some of our constructions will require the ability to derive a constrained key kSi
from any key kSj such that Si ⊂ Sj . This requires the following modifications of the syntax and
of the correctness property.

Definition 2. A constrained pseudo-random function is delegatable [KPTZ13] if it additionally
supports the following algorithm:

– CKey(kX ,X ′): on input a constrained key kX ∈ KX and a set X ′ ⊆ X , this algorithm outputs
a constrained key kX ′ ∈ KX ′ or ⊥.

To be correct, the delegatable constrained PRF must additionally satisfy, for a family of subsets
{Si}ni=1, that, for all λ ∈ N, pp ← Setup(1λ, {Si}ni=1), s ← Keygen(), Si ⊂ Sj ⊆ S, and
kSj ← CKey(s,Sj), we have, with overwhelming probability, CKey(kSj ,Si) = CKey(s,Si).

2.2 Security Model

Our divisible e-cash constructions will use different types of constrained PRF, satisfying some of
the following security requirements. Most of them have already been defined in previous works
but we will need specific variants for some of them.

Pseudo-Randomness (PR). The first property one may expect from a constrained PRF
is pseudo-randomness, which informally requires that an adversary, even given access to con-
strained keys, cannot distinguish the PRF evaluation from random, for a new point (not already

queried and outside sets of known constrained keys). It is defined by Exp
pr−b
A (1λ, {Si}ni=1) in

Figure 1 where the adversary has access to the following oracles:

– OCKey(X): on input a set X , this algorithm returns CKey(s,X) if ∃i ∈ [1, n] such that
X = Si and ⊥ otherwise.

– OEval(x): on input an element x ∈ S, this algorithm returns Eval(s, x).

A constrained PRF is pseudo-random if Advpr (A) = |Pr[Exppr−1A (1λ, {Si}ni=1) = 1] - Pr[Exppr−0A (1λ,
{Si}ni=1) = 1]| is negligible for any A.

6 Although the general definition in [BW13] allows randomized CKey algorithm, all our constructions will require
this algorithm to be deterministic.

7

Exp
pr−b
A (1λ, {Si}ni=1) – Pseudo-Randomness

1. pp← Setup(1λ, {Si}ni=1)
2. s← Keygen()
3. x← AOCKey,OEval(pp)
4. y0 ← Eval(s, x)

5. y1
$← Y

6. b∗ ← AOCKey,OEval(pp, yb)
7. If OEval was queried on x, return 0
8. If OCKey was queried on X 3 x, return 0
9. Return b∗

Exp
kpr−b
A (1λ, {Si}ni=1) – Key Pseudo-Randomness

1. pp← Setup(1λ, {Si}ni=1)
2. s← Keygen()
3. i∗ ← AOCKey,OEval(pp)
4. k0 ← CKey(s,Si∗)
5. k1

$← KSi∗
6. b∗ ← AOCKey,OEval(pp, kb)
7. If OEval was queried on x ∈ Si∗ , return 0
8. If OCKey was queried on X such that X ∩ Si∗ 6= ∅, return 0
9. Return b∗

Exp
ckpr−b
A (1λ, {Si}ni=1) – Combined Key Pseudo-Randomness

1. ppj ← Fj .Setup(1λ, {Si}ni=1), ∀j ∈ [1, t]
2. s← F1.Keygen()
3. i∗ ← AOCKey,OEval({ppj}tj=1)
4. (k10, . . . , k

t
0)← (F1.CKey(s,Si∗), . . . , Ft.CKey(s,Si∗))

5. (k11, . . . , k
t
1)

$← KtSi∗
6. b∗ ← AOCKey,OEval({ppj}tj=1, (k

1
b , . . . , k

t
b))

7. If OEval was queried on x ∈ Si∗ , return 0
8. If OCKey was queried on X such that X ∩ Si∗ , return 0
9. Return b∗

Fig. 1. Pseudo-Randomness Games for Constrained Pseudo-Random Functions

Key Pseudo-Randomness (KPR). We note that the previous definition only requires pseudo-
randomness for the output of the PRF. As in [BFP+15] we extend this property to the con-
strained keys themselves, leading to a property that we call key pseudo-randomness. How-
ever, compared to [BFP+15], we additionally require some form of key privacy, in the sense
of [KPTZ13]. In particular, we need that constrained keys issued for subsets of the same size7

should be indistinguishable.
Let F be a constrained PRF defined for a family of subsets {Si}ni=1 satisfying KSi = KSj ∀i, j

such that |Si| = |Sj |. F is key pseudo-random if Advkpr (A) = |Pr[Expkpr−1A (1λ, {Si}ni=1) = 1] -

Pr[Expkpr−0A (1λ, {Si}ni=1) = 1]| is negligible for any A, where the game Exp
kpr−b
A (1λ, {Si}ni=1) is

defined in Figure 1.

Combined Key Pseudo-Randomness (CKPR). In practice, divisible e-cash systems require
multiple pseudo-random values, some acting as the unique identifier of the coin (the serial
number) and some being used to mask the spender’s identity. If F is key pseudo-random, a
solution could be to split the constrained key kSi ← CKey(s,Si) into several parts, each of
them being used as pseudo-random values. Unfortunately, combining this solution with zero-
knowledge proofs would be very complex. In our frameworks, we will follow a different approach
and will generate several pseudo-random values by using different PRFs F1, . . . , Ft evaluated on
the same master key s and the same subset Si: Let F1 . . . , Ft be constrained PRFs K × S → Y
defined for the same family of subsets {Si}ni=1 satisfying KSi = KSj ∀i, j such that |Si| = |Sj |.
We say that the family (F1, . . . , Ft) achieves combined key pseudo-randomness if Advckpr (A) =

7 We note that our privacy requirements are weaker than the ones of [BLW17, BKM17] since we allow the
constrained keys to leak the size of the subsets.

8

|Pr[Expckpr−1A (1λ, {Si}ni=1) = 1] - Pr[Expckpr−0A (1λ, {Si}ni=1) = 1]| is negligible for any A, where

the game Exp
ckpr−b
A (1λ, {Si}ni=1) is defined in Figure 1.

This can be done very easily by constructing each Fi similarly but with different public
parameters: let us assume that F1.CKey(s,Si) = k1Si = gαi·s1 ∀i for some generator g1 of KSi .
We can define other PRFs F2, . . . Ft with the same input spaces by setting Fj .CKey(s,Si) =

kjSi = gαi·sj for a different generator gj . In such a case, we get t values (k1Si , . . . , k
t
Si) which are

indistinguishable from a random element of KtSi assuming key pseudo-randomness of F1 and the
DDH assumption (see Section 9 for more details).

Strong Key Pseudo-Randomness. In the case where F is a delegatable constrained PRF,
we will need a variant of the key pseudo-randomness property that we call strong key pseudo-
randomness. The latter requires that key pseudo-randomness hold even if some information
leaks during the delegation process. For sake of simplicity, in this context, we will only consider
a family of subsets {Si} of S such that:

Si ∩ Sj 6= ∅ ⇒ Si ⊂ Sj or Sj ⊂ Si

We can therefore define the function D which returns for each subset Si 6= S the smallest
subset containing (strictly) Si. We will define our leakage by introducing a family of functions
H, {HSi}ni=1 such that H : K → G and HSi : KD(Si) → G for some group G. In our new
experiment, when b = 0, the adversary still receives the constrained key kSi for the subset
Si of its choice, but now it additionally receives the evaluation of HSi on the constrained key
kD(Si) of its parent subset8. We require this pair to be indistinguishable from a random pair
generated from the corresponding domains. We note that this property is achieved by any key
pseudo-random delegatable PRF when H and {HSi}ni=1 are random oracles. We will also show
in Appendix 9 that it is possible to construct such PRFs and functions H and {HSi}ni=1 in the
standard model.

A function F achieves strong key pseudo-randomness for a family of function H, {HSi}ni=1 if

Advskpr (A) = |Pr[Expskpr−1A (1λ, {Si}ni=1, {HSi}ni=1) = 1] − Pr[Expskpr−0A (1λ, {Si}ni=1, {HSi}ni=1) =

1]| is negligible for any A, where the game Exp
skpr−b
A (1λ, {Si}ni=1, {HSi}ni=1) is defined in Figure

2.
Finally, we define the strong combined key pseudo-randomness where the adversary receives

a tuple of constrained keys (k10, . . . , k
t
0) ← (F1.CKey(s,Si∗), . . . , Ft.CKey(s,Si∗)) in addition to

HD(S∗i)(CKey(s,SD(Si∗))), instead of just one constrained key.

Exp
skpr−b
A (1λ, {Si}ni=1, H, {HSi}ni=1) – Strong Key Pseudo-Randomness

1. pp← Setup(1λ, {Si}ni=1)
2. s← Keygen()
3. i∗ ← AOCKey,OEval(pp)
4. If Si∗ = S
5. (k00, k

1
0)← (CKey(s,S), H(s))

6. (k01, k
1
1)

$← K×G
7. else
8. (k00, k

1
0)← (CKey(s,Si∗), HS∗i (CKey(s,D(Si∗))))

9. (k01, k
1
1)

$← KSi∗ ×G
10. b∗ ← AOCKey,OEval(pp,H, {HSi}ni=1, (k

0
b , k

1
b))

11. If OEval was queried on x ∈ Si∗ return 0
12. If OCKey was queried on X such that X ∩ Si∗ , return 0.
13. Return b∗

Fig. 2. Strong Key Pseudo-Randomness

8 the case Si = S is addressed separately.

9

Collision Resistance 1
Expcr−1
A (1λ, {Si}ni=1)

1. pp← Setup(1λ, {Si}ni=1)
2. (s1, s2, x1, x2)← A(pp)
3. If (s1, x1) = (s2, x2), return 0
4. Return Eval(s1, x1) =

Eval(s2, x2)

Collision Resistance 2
Expcr−2
A (1λ, {Si}ni=1)

1. pp← Setup(1λ, {Si}ni=1)
2. (i, k1, k2, x)← A(pp)
3. If k1 = k2, return 0
4. Return CEvalSi(k1, x) = CEvalSi(k2, x)

Collision Resistance 3
Expcr−3
A (1λ, {Si}ni=1) (for Key Homomorphic Constrained PRFs only)

1. pp← Setup(1λ, {Si}ni=1)
2. (i, j, ki, kj , x)← A(pp)
3. If i = j, return 0
4. If ki = 1KSi ∨ kj = 1KSj , return 0

5. Return CEvalSi(ki, x) = CEvalSj (kj , x)

Fig. 3. Collision Resistance Games for Constrained Pseudo-Random Functions

Collision Resistance (CR). In our divisible e-cash constructions, the PRFs will mostly be
used to generate serial numbers that act as unique identifiers of the coins. If a coin is spent
twice (or more) the same serial number will appear in several transactions, which provides a
very simple way to detect frauds. However, it is important to ensure that collisions between
serial numbers only occur in such cases. Otherwise, this could lead to false alerts and even false
accusations against an honest user.

At first sight, it might seem that this property is implied by pseudo-randomness. Unfortu-
nately, this is not true in the context of e-cash where the adversary has total control of the
master secret keys, contrarily to the adversary of the pseudo-randomness game. We therefore
need to define a new property that we call collision resistance. Informally, it says that it should
be hard to generate collisions between the outputs of the PRFs. However, some subtleties arise
because of the different kinds of keys (secret master keys, constrained keys) that we consider
here. We then define three variants of this property that are described in Figure 3.

For k ∈ {1, 2, 3}, a constrained PRF achieves collision resistance-k if, for anyA, Advcr−k(A) =
Pr[Expcr−kA (1λ, {Si}ni=1) = 1] is negligible. We provide in Section 9 several examples of PRFs
achieving these properties.

3 Divisible E-Cash

The syntax and the formal security model are drawn from [CPST15a,PST17]. We nevertheless
introduce several changes to make them more generic but also to add some specifications that
were previously implicit only.

3.1 Syntax

A divisible e-cash system is defined by the following algorithms, that involve three types of
entities, the bank B, a user U and a merchant M. Our model defines a unique value N for the
divisible coin but it can easily be extended to support several different denominations.

– Setup(1λ, N): On input a security parameter λ and an integer N , this probabilistic algorithm
outputs the public parameters pp for divisible coins of global value N . We assume that pp
are implicit to the other algorithms, and that they include λ and N . They are also given as
an implicit input to the adversary, we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a key pair (bsk, bpk).
It also sets L as an empty list, that will store all deposited coins. We assume that bsk contains
bpk.

– Keygen(): This probabilistic algorithm executed by a user U (resp. a merchant M) outputs
a key pair (usk, upk) (resp. (msk,mpk)). We assume that usk (resp. msk) contains upk (resp.
mpk).

10

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between the bank B and
a user U . At the end of this protocol, the user gets a divisible coin C of value N or outputs ⊥
(in case of failure) while the bank stores the transcript of the protocol execution or outputs
⊥.

– Spend(U(usk, C, bpk, V),M(msk, bpk, info, V)): This is an interactive protocol between a user
U and a merchant M. Here, info denotes a set of public information associated to the
transaction, by the merchant, and V denotes the amount of this transaction. At the end of
the protocol the merchant gets Z along with a proof of validity Π or outputs ⊥. U then
either updates C or outputs ⊥.

– Deposit(M(msk, bpk, (V, info, Z,Π)),B(bsk, L,mpk)): This is an interactive protocol be-
tween a merchantM and the bank B where the former first sends a transcript (V, info, Z,Π)
along with some additional data µ. B then checks (1) the validity of all these elements and
(2) that this merchant has not already deposited a transcript associated with info. If condi-
tion (1) is not fulfilled, then B aborts and outputs ⊥. If condition (2) is not fulfilled, then
B returns another transcript (V ′, info, Z ′, Π ′) along with the associated µ′. Otherwise, B re-
covers the V serial numbers SNi0 , . . . , SNiV−1

9 derived from Z and compares them to the set
L of all serial numbers of previously spent coins. If there is a match for some index ik, then
B returns a transcript (V ′, Z ′, Π ′, info′) such that SNik is also a serial number derived from
Z ′. Else, B stores these new serial numbers in L and keeps a copy of (V, info,mpk, Z,Π).

– Identify((V, info,mpk, Z,Π), (V ′, info′,mpk′, Z ′, Π ′), bpk): On the wo transcripts, this de-
terministic algorithm outputs 0 if info = info′, if one of the transcripts is invalid, or if the
serial numbers derived from these transcripts do not collide. Else it outputs a user’s public
key upk or ⊥.

– CheckDeposit([(V, info,mpk, Z,Π), µ], bpk): This deterministic algorithm outputs 1 if [(V,
info, Z,Π), µ] are valid elements deposited by a merchant whose public key is mpk and 0
otherwise.

Our model does not place restrictions on the values that can be spent nor on the size of a spending
transcript. It is therefore more generic and in particular also fits compact e-cash systems where
the serial numbers can only be revealed one by one.

3.2 Security Model

Existing security models essentially focus on the the user’s and the bank’s interests. The former
must indeed be able to spend their coins anonymously without being falsely accused of frauds
while the latter must be able to detect frauds and identify the perpetrators. This is formally
defined by three security properties in [CPST15a]: anonymity (user’ spendings are anonymous,
even with respect to the bank), exculpability (honest users cannot be falsely accused, even by
the bank) and traceability (an author of overspending should be traced back).

However, all these notions (and the corresponding ones in previous papers) fail to capture an
important security property for the merchant: he must always be able to clear his transactions,
but also, he should be the only one able to deposit them. This is especially problematic for e-cash
because users can reproduce the transcripts of their spendings. Designers of existing divisible
e-cash systems seem to be more or less aware of this issue10 because they usually attribute
a signing key to the merchant. However, these systems do not specify the security properties
expected from the corresponding signature scheme and most of them even do not specify which
elements should be signed.

9 We do not make any assumption on the indices i0, . . . , iV−1, contrarily to some previous works that assume
they are consecutive.

10 The “correctness for merchant”, informally defined in [ASM08], is related to this issue. It ensures that the
transcript deposited by an honest merchant will be accepted, even if the spender is dishonest and double-
spends his coin. However, it only considers an honest bank and it does not consider situations where the
transcript would be deposited by another entity. In particular, the scheme in [ASM08] does not ensure that
the merchant is the only one able to clear his coins.

11

For completeness, we therefore add the property of clearing (only the recipient merchant can
perform the deposit) to the above usual ones. All of them are defined in Figure 4 and make use
of the following oracles:

– OAdd() is an oracle used by the adversary A to register a new honest user (resp. merchant).
The oracle runs the Keygen algorithm, stores usk (resp. msk) and returns upk (resp. mpk)
to A. In this case, upk (resp. mpk) is said honest.

– OCorrupt(upk/mpk) is an oracle used by A to corrupt an honest user (resp. merchant)
whose public key is upk (resp. mpk). The oracle then returns the corresponding secret key
usk (resp. msk) to A along with the secret values of every coin withdrawn by this user. From
now on, upk (resp. mpk) is said corrupted.

– OAddCorrupt(upk/mpk) is an oracle used by A to register a new corrupted user (resp.
merchant) whose public key is upk (resp. mpk). In this case, upk (resp. mpk) is said corrupted.
The adversary could use this oracle on a public key already registered (during a previous
OAdd query) but for simplicity, we do not consider such case as it will gain nothing more
than using the OCorrupt oracle on the same public key.

– OWithdrawU (upk) is an oracle that executes the user’s side of the Withdraw protocol. This
oracle will be used by A playing the role of the bank against the user with public key upk.

– OWithdrawB(upk) is an oracle that executes the bank’s side of the Withdraw protocol. This
oracle will be used by A playing the role of a user whose public key is upk against the bank.

– OSpend(upk, V) is an oracle that executes the user’s side of the Spend protocol for a value
V . This oracle will be used by A playing the role of the merchant M.

– OReceive(mpk, V) is an oracle that executes the merchant’s side of the Spend protocol for
a value V . This oracle will be used by A playing the role of a user.

– ODeposit(mpk, V, info) is an oracle that executes the merchant’s side of the Deposit pro-
tocol for a transaction of amount V associated with the value info. This oracle cannot be
queried on two inputs with the same value info. It will be used by A playing the role of the
bank.

In the experiments, users are denoted by their public keys upk, cupk denotes the amount already
spent by user upk during OSpend queries, mupk the number of divisible coins that he has with-
drawn and Tri the transcript (Vi, infoi,mpki, Zi, Πi) for any i ∈ N. This means that the total
amount available by a user upk is mupk ·N . The number of coins withdrawn by all users during
an experiment is denoted by m.

For sake of simplicity, we assume that all merchants are corrupted, and added through
OAddCorrupt queries, in the traceability, exculpability and anonymity experiments. We therefore
do not need to add access to the OReceive and ODeposit oracles in the latter. We stress that
this is not a restriction since the OAddCorrupt oracle provides more power to the adversary
than the OAdd and OCorrupt ones. Similarly, we assume that the bank and all the users are
corrupted in the clearing game and so do not provide access to the OSpend, OWithdrawU and
OWithdrawB oracles in it.

Our clearing game ensures that no one can forge a valid deposit query from the merchant.
This means in particular that the bank cannot rightfully refuse the deposit of an honest mer-
chant (because it will not be able to provide a valid proof that the transcript has already been
deposited) and that it cannot falsely accuse a merchant of trying to deposit the same transcript
several times.

A divisible E-cash system is said to be traceable, exculpable, anonymous, and/or clearable
if Succtra(A), Succexcu(A), Advanon(A), and/or Succclear (A), are respectively negligible for any
probabilistic polynomial adversary A, where

Succtra(A) = Pr[ExptraA (1λ, N) = 1] Succexcu(A) = Pr[ExpexcuA (1λ, N) = 1]

Succclear (A) = Pr[ExpclearA (1λ, N) = 1]

Advanon(A) = |Pr[Expanon−1A (1λ, N) = 1]− Pr[Expanon−0A (1λ, N) = 1]|

12

ExptraA (1λ, N) – Traceability Security Game

1. pp ← Setup(1λ, N)
2. (bsk, bpk)← BKeygen()

3. {(Vi, infoi,mpki, Zi, Πi)}ui=1
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u
i=1 Vi > m ·N and ∀i 6= j, Identify(Tri,Trj , bpk) =⊥, then return 1

5. Return 0

ExpexcuA (1λ, N) – Exculpability Security Game

1. pp ← Setup(1λ, N)
2. bpk← A()
3. [Tr1,Tr2]← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify(Tr1,Tr2, bpk) = upk and upk not corrupted, then return 1
5. Return 0

Expanon−bA (1λ, N) – Anonymity Security Game

1. pp ← Setup(1λ, N)
2. bpk← A()
3. (V, upk0, upk1,mpk)← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upki is not registered for i ∈ {0, 1}, then return 0
5. If cupki > mupki ·N − V for i ∈ {0, 1}, then return 0
6. (V,Z,Π, info)← Spend(C(uskb, C,mpk, V),A())
7. cupk1−b

← cupk1−b
+ V

8. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
9. If upki has been corrupted for i ∈ {0, 1}, then return 0

10. Return (b = b∗)

ExpclearA (1λ, N) – Clearing Security Game

1. pp ← Setup(1λ, N)
2. bpk← A()
3. [(V, info,mpk, Z,Π), µ]← AOAdd,OCorrupt,OAddCorrupt,OReceive,ODeposit()
4. If CheckDeposit([(V, info,mpk, Z,Π), µ], bpk) = 0, then return 0
5. If mpk is corrupted, then return 0
6. If (mpk, V, info) has been queried to ODeposit, then return 0
7. Return 1

Fig. 4. Security Games for Divisible E-Cash

13

4 High-Level Description

Before introducing a generic framework for divisible e-cash, we focus on the heart of such systems,
namely the construction of the serial numbers and of the double-spending tags.

Regarding the former, the fact that each serial number SN must look random has led designers
to use pseudo-random functions (PRFs). More specifically, every anonymous divisible e-cash
scheme defines SNi as F.Eval(s, i) where s is the master key and i ∈ [1, N]. However, to avoid a
cost linear in the amount V it is necessary to provide a way to reveal these serial numbers by
batches. Designers of divisible e-cash systems (e.g. [CG07, ASM08, CG10, CPST15a, CPST15b,
PST17]) have thus constructed pseudo-random functions with a special feature: given s and a
subset X ⊆ [1, N], one can compute kX allowing to evaluate the PRF only on the elements of
X . This matches the definition of constrained PRFs, as described above. To spend a value V ,
the user can now simply reveal a constrained key kX for a set X of size V . However additional
properties are required here to achieve anonymity. Indeed, informally, the constrained key must
hide information on the spender (more specifically on the master secret key) and on the subset
X 11 itself. All these properties are captured by key pseudo-randomness that we defined in Section
2. Eventually, to avoid false positive in the fraud detection process, we will need the collision
resistance properties defined in the same section.

Therefore, constructing divisible e-cash with efficient double-spending detections is roughly
equivalent to constructing a key pseudo-random, collision resistant constrained PRF for subsets
of [1, N] that smoothly interacts with Non-Interactive Zero-Knowledge (NIZK) proofs. However,
detection of double spending is not enough, it must also be possible to identify double spenders
by using the additional information contained in the double-spending tag. This adds further
requirements on the PRF and leads to two constructions that we present below.

4.1 Construction using Key Homomorphism

Our first construction of double-spending tag is reminiscent of the techniques used by compact
e-cash systems [CHL05,LLNW17]. In these papers, the double spending tag Ti associated with
SNi is of the form ID · (F ′.Eval(s′, i))R, where ID is the “identity” of the spender (usually his
public key), F ′ is a PRF seeded with a master secret key s′ (note that we may have F = F ′ or
s = s′ but not both) and R is a public identifier of the transaction.

Intuitively, the idea behind this tag is that (F ′.Eval(s′, i))R will perfectly mask the user’s
identity as long as the latter does not overspend his coin. In case of double spendings, there will

indeed be two tags T
(1)
i and T

(2)
i of the form ID · (F ′.Eval(s′, i))R1 and ID · (F ′.Eval(s′, i))R2 .

Therefore, by computing:

((T
(1)
i)R2/(T

(2)
i)R1)1/(R2−R1)

the bank can directly recover the identity ID of the defrauder. This idea was adapted in
[CPST15a, CPST15b, PST17] to the context of divisible e-cash by replacing F ′.Eval(s′, i) with
a key constrained to the appropriate subset.

However, we have explained in Section 1.2 that this process of identification is problem-
atic and could lead to false accusations against honest user, thus breaking exculpability. Con-
cretely, the problem arises from the fact that the above formula may output ID while involving

tags T
(1)
i and T

(2)
i produced for different identities. Indeed, in the exculpability game, a ma-

licious bank could cooperate with malicious users and merchants to select values ID1, ID2,

R1, R2, s1 and s2 such that ((T
(1)
i)R2/(T

(2)
i)R1)1/(R2−R1) = ((ID1 · (F ′.Eval(s1, i1))

R1)R2/(ID2 ·
(F ′.Eval(s2, i2))

R2)R1)1/(R2−R1) = ID. This means that, in general, this tag construction cannot
be used as it is.

To prevent this problem, our generic construction uses four PRFs, that we will denote by F1,
F2, F3 and F4, defined for the same family of subsets {Si}ni=1 and sharing the same key space
K. We additionally require F2, F3 and F4 to be key homomorphic.

11 Actually the size of X can leak as it corresponds to the public amount of the transaction.

14

Let s ∈ K be a secret master key and Si be a subset of size V , the amount of the transaction.

As previously12, our first PRF will be used to reveal k
(1)
Si ← F1.CKey(s,Si). Likewise, our third

PRF will be used to generate an element of the form13 IDR ·k3Si , with k3Si ← F3.CKey(s,Si). The
novelty here is that these values will only constitute a part of the serial number and of the double

spending tag. The other parts will be derived from k
(2)
Si ← F2.CKey(s · id,Si), where id is some

element of K associated with the public identity ID, and from ID·k4Si where k4Si ← F4.CKey(s,Si).
More specifically,

SNj = F1.CEvalSi(k
(1)
Si , j)||F2.CEvalSi(k

(2)
Si , j) TSi = (IDR · k3Si , ID · k

4
Si).

Intuitively, the fact that the master secret key of F2 depends on id will ensure that no collision
can occur for different users, which thwarts the previous attack. Moreover, the first part of SNj
still ensures that collisions can only occur for spendings involving the same master key, evaluated
on the same element j ∈ S. The last element of the double-spending tag has a more technical
purpose, it prevents identification errors in the case where the colliding serial numbers have been
generated using different subsets (see Remark 3).

Therefore, if two spendings with respective tags T
(1)
Si1

and T
(2)
Si2

lead to a collision, then we

have:

T
(1)
Si1

= (IDR1 · k3Si1 , ID · k
4
Si1

) T
(2)
Si2

= (IDR2 · k3Si2 , ID · k
4
Si2

)

with j ∈ Si1 ∩ Si2 . If Si1 = Si2 = Si, we can compute:

F3.CEvalSi(T
(1)
Si [1], j) = F3.CEvalSi(ID

R1 , j) · F3.CEvalSi(k
3
Si , j)

F3.CEvalSi(T
(2)
Si [1], j) = F3.CEvalSi(ID

R2 , j) · F3.CEvalSi(k
3
Si , j)

Since k3Si1
and k3Si2

are derived from the same master key, correctness ensures that F3.CEvalSi(k
3
Si , j)

= F3.CEvalSi(k
3
Si , j). Therefore:

F3.CEvalSi(T
(2)
Si [1], j) · F3.CEvalSi(T

(1)
Si [1], j)−1

= F3.CEvalSi(ID
R2 , j) · F3.CEvalSi(ID

−R1 , j)

The bank can then perform an exhaustive search on the set of public identities {IDi} until it
gets a match. Identification of defrauders is then possible with a linear cost in the number of
users of the system.

Now in the case where Si1 6= Si2 , we have, for any identity ID∗:

F4.CEvalSi1 (T
(1)
Si1

[2]/(ID∗), j) = F4.CEvalSi1 (ID/(ID∗), j) · F4.CEvalSi1 (k4Si1
, j)

F4.CEvalSi2 (T
(1)
Si2

[2]/(ID∗), j) = F4.CEvalSi2 (ID/(ID∗), j) · F4.CEvalSi2 (k4Si2
, j)

Here again, F4.CEvalSi1 (k4Si1
, j) = F4.CEvalSi2 (k4Si2

, j), therefore:

F4.CEvalSi1 (T
(1)
Si1

[2]/(ID∗), j)/F4.CEvalSi2 (T
(1)
Si2

[2]/(ID∗), j)

= F4.CEvalSi1 (ID/(ID∗), j)/F4.CEvalSi2 (ID/(ID∗), j)

and one can easily identify the case where ID∗ = ID since this it is the only one where the right
member equals to 1Y if F4 achieves collision resistance-3.

12 For sake of clarity, we assume here that the elements associated with the users’ identity live in the right spaces.
Our formal definition will make use of suitable maps to ensure this fact.

13 We need to apply the exponent R on the identity itself instead of the constrained key to rely on the correctness
of CEval, but the principle is the same.

15

Remark 3. The use of two elements in the double-spending tag may seem surprising, in particular
because the equality

F3.CEvalSi1 (T
(2)
Si2

[1], j) · F3.CEvalSi2 (T
(1)
Si2

[1], j)−1

= F3.CEvalSi1 (IDR2 , j) · F3.CEvalSi2 (ID−R1 , j)

still holds for the right ID in the case where Si1 6= Si2 . However, in this case, we cannot ensure
that this equality only holds for ID, it might also work for other identities, leading to obvious
identification issues.

4.2 Construction using Delegation

Our second construction is inspired by what has been the main framework for divisible e-cash for
many years (e.g. [CG07,CG10,Mär15]). It makes use of a family of two delegatable PRFs (F1, F2)
that achieves strong combined key pseudo-randomness for a family of functions (H, {HSi}ni=1)
such that H : K → G and HSi : KD(Si) → G for some group G.We recall that we have defined
this notion for a PRF supporting a family of subsets {Si} of [1, N] such that:

Si ∩ Sj 6= ∅ ⇒ Si ⊂ Sj or Sj ⊂ Si

Therefore, for each subset Si 6= [1, N], it is possible to define the smallest subset containing
strictly Si. It is given by a function D.

To spend a value V , a user whose coin secret key is s selects a subset Si containing V elements
and will reveal the following information:

1. k
(1)
Si ← F1.CKey(s,Si)

2. k
(2)
Si ← upk · F2.CKey(s,Si)

3. TSi ← upk ·HSi)(F1.CKey(s,D(Si)))R

for some public element R. The first element will be used by the bank to derive the serial

numbers SNt ← F1.CEvalSi(k
(1)
Si , t) ∀t ∈ Si. The second element prevents the problem we mention

in Section 4.1: it will be used to discard collisions between spendings involving different users.
Finally, the last element is the double-spending tag but the identification process is more subtle
than in the previous case, as we explain below.

Let (k
(1)
Si , k

(2)
Si , TSi) and (k

(1)
Sj , k

(2)
Sj , TSj) be two spendings leading to a collision, i.e. such that

there are ti ∈ Si and tj ∈ Sj verifying the equation:

F1.CEvalSi(k
(1)
Si , ti) = F1.CEvalSj (k

(1)
Sj , tj).

Collision resistance of F1 implies that ti = tj and that k
(1)
Si and k

(1)
Sj were both derived from

the same master secret key. Moreover, ti ∈ Si ∩ Sj 6= ∅ which implies that Si ⊂ Sj or Sj ⊂ Si.
Let us assume that Sj ⊂ Si. We then distinguish the two following cases.

– Case 1: Sj (Si, which implies that D(Sj) ⊂ Si. From k
(1)
Si , one can then compute T∗ ←

HSi)(F1.CKey(k
(1)
Si , D(Sj))) and thus recover upk = TSj/(T

∗)Ri .

– Case 2: Sj = Si. In such a case, k
(2)
Si = k

(2)
Sj if and only if both elements have been generated

using the same public key upk. Therefore, one aborts if this equality does not hold. Else,

one computes upk← (T
Rj
Si /T

Ri
Sj)

1/(Rj−Ri).

16

4.3 Discussion

To our knowledge, all anonymous divisible e-cash systems can be associated with one of these
frameworks. The main difference is that existing constructions require less PRFs but, as we
explain in Section 1.2, this leads to a problem that has been overlooked in the proofs. Although
some of them can be patched without adding new PRFs, we note that this patch is very specific
to some constructions and so cannot be applied to our generic frameworks.

Starting from the seminal work of Canard and Gouget [CG07], several schemes [ASM08,
CG10, Mär15]) implicitly followed the second framework14 and so constructed (or re-used) del-
egatable PRFs satisfying the properties listed above. Unfortunately, the resulting PRFs do not
interact nicely with NIZK, leading to quite complex constructions.

Recently, a series of papers [CPST15a,CPST15b,PST17] followed a different approach that
actually matches our first framework. It is then possible to extract from these papers constrained
key homomorphic PRFs that achieve key pseudo-randomness. Moreover, these PRFs interact
smoothly with NIZK, even in the standard model, leading to very efficient constructions.

However, in practice, efficiency does not only depend on the compatibility with NIZK proofs.
Divisible e-cash indeed achieves its ultimate goal when it allows the user to spend efficiently the
V coins associated with a transaction of amount V . This means that the family of subsets {Si}
supported by the PRF must be as rich and as diverse as possible. For decades, the constructions
have only been compatible with intervals of the form [1+j ·2k, (j+1)2k] due to the use of binary
trees. It is only recently that Pointcheval, Sanders and Traoré [PST17] proposed a construction
supporting any interval [a, b] ⊆ [1, N]. This led to the first constant-size divisible e-cash systems.

5 Our Framework

We now elaborate on the solutions sketched in the previous section to construct a full divisible e-
cash system. We only consider here constructions based on key homomorphic constrained PRFs
but describe those based on delegatable PRF in Section 7.

5.1 Building Blocks

Our framework makes use of three standard cryptographic primitives, namely digital signature,
commitment scheme and non-interactive zero-knowledge (NIZK) proofs that we recall below,
along with their respective security properties.

Digital Signature. A digital signature scheme Σ is defined by three algorithms:

– Keygen(1λ): on input a security parameter λ, this algorithm outputs a pair of signing and
verification keys (sk, pk);

– Sign(sk,m): on input the signing key sk and a message m, this algorithm outputs a signature
σ;

– Verify(pk,m, σ): on input the verification key pk, a message m and its alleged signature σ,
this algorithm outputs 1 if σ is a valid signature on m under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeability under chosen
message attacks (EUF-CMA) [GMR88]: it means that it is hard, even given access to a signing
oracle, to output a valid pair (m,σ) for a message m never asked to the signing oracle. The formal
definition is provided in Figure 5 and makes use of an oracle OSign that, on input a message
m, returns Sign(sk,m). A signature scheme is EUF-CMA secure if Pr[Expeuf−cmaA (1λ) = 1] is
negligible for any A.

14 We nevertheless note that the cut-and-choose technique used during withdrawal in [ASM08] is very specific to
this work and does not fit our framework.

17

Expeuf−cmaA (1λ) – EUF-CMA security Game

1. (sk, pk)← Keygen(1λ)
2. (m∗, σ∗)← AOSign(pk)
3. If Verify(pk,m∗, σ∗) = 0 or OSign queried on m∗, then return 0
4. Return 1

Fig. 5. Security Game for Digital Signature

Hiding Security Game
Exphid−bA (1λ)

1. (ck)← Keygen(1λ)
2. m← A(ck)

3. r
$←R, c0 ← Commit(ck,m, r)

4. c1
$← C

5. b∗ ← AOSign(ck, cb)
6. Return (b = b∗)

Binding Security Game
ExpbindA (1λ)

1. (ck)← Keygen(1λ)
2. (m0,m1, r0, r1)← A(ck)
3. If Commit(ck,m0, r0) 6= Commit(ck,m1, r1)

or m0 = m1, then return 0
4. Return 1

Fig. 6. Security Game for Commitment Schemes

Commitment Scheme. A commitment scheme Γ is defined by the following two algorithms:

– Keygen(1λ): on input a security parameter λ, this algorithm outputs a commitment key ck
that specifies a message spaceM, a randomizer space R along with a commitment space C;

– Commit(ck,m, r) : on input ck, an element r ∈ R and a message m ∈ M, this algorithm
returns a commitment c ∈ C.

Informally, a commitment should be binded to the committed message, but still hiding the latter.
This is formally defined by the games ExpbindA (1λ) and Exphid−bA (1λ) of Figure 6. A commitment
scheme is binding if Pr[ExpbindA (1λ) = 1] is negligible, while it is hiding if Pr[Exphid−1A (1λ) =
1]− Pr[Exphid−0A (1λ) = 1] is negligible.

NIZK Proofs. Let R be an efficiently computable relation with triples (crs, φ, w), where crs

is called the common reference string and w is said to be a witness to the instance φ. A NIZK
proof system is defined by the following three algorithms:

– Setup(1λ): on input a security parameter λ, this algorithm outputs the common reference
string crs.

– Prove(crs, w, φ): on input a triple (crs, w, φ) ∈ R, this algorithm outputs a proof π.
– Verify(crs, φ, π): on input crs, a proof π and an instance φ this algorithm outputs either

1 (accept) or 0 reject.

A NIZK proof is correct if the probability that Verify(crs, φ, Prove(crs, w, φ)) returns 0 is
negligible for all (crs, w, φ) ∈ R. We will additionally require the properties of zero-knowledge
and extractability. Both of them are defined in Figure 7. Extractability requires the existence of
an extractor XA that takes as input the transcript transA of the adversary A. Zero-knowledge
requires the existence of a simulator consisting of the algorithms SimSetup and SimProve that
share state with each other. In the security experiment Expzk−bA (1λ), the adversary has access to
the following oracle:

– OProve-b(w, φ): on input (w, φ), this algorithm returns ⊥ if (crsb, w, φ) /∈ R. Else, it returns
Prove(crsb, w, φ) if b = 0 and SimProve(crsb, φ) otherwise.

A NIZK proof is zero-knowledge if Pr[Expzk−1A (1λ)]−Pr[Expzk−0A (1λ)] is negligible. It is extractable
if Pr[ExpextA (1λ)] is negligible.

18

Zero-Knowledge Game
Expzk−bA (1λ)

1. crs0 ← Setup(1λ)
2. crs1 ← SimSetup(1λ)
3. b∗ ← AOProve−b(crsb)
4. Return (b = b∗)

Extractability Game
ExpextA (1λ)

1. crs← Setup(1λ)
2. (φ, π)← A(crs)
3. w ← XA(transA)
4. If Verify(crs, φ, π) = 0 or (crs, w, φ) /∈ R,

then return 0
5. Return 1

Fig. 7. Security Game for NIZK Proofs

5.2 Construction

Our construction makes use of a digital signature scheme Σ, a commitment scheme Γ and
a NIZK proof system Π as described above. The difficulty here is to provide the description
of a framework that encompasses very different settings such as cyclic groups or lattices. For
example, the element IDR of Section 4 that was involved in double-spending tags does not make
sense in a lattice setting and would in practice be replaced by R · ID where R is a matrix and
ID is a vector. To remain as generic as possible, we will then introduce several functions that
will abstract the properties we need. In our example, we need that IDR+R′ = IDR · IDR′ and
that (R + R′) · ID = R · ID + R′ · ID and so will represent IDR and R · ID by G(ID, R) where
G is a bilinear map (see remark 5 for more details). Such functions make the description of
our framework rather complex but we stress that they are actually very easy to instantiate.
In particular, we emphasize that the following framework essentially formalises the high-level
ideas described in Section 4 and does not significantly increase the practical complexity of our
construction.

– Setup(1λ, N): To generate the public parameters pp, the algorithm first computes crs ←
Π.Setup(1λ). It then selects four constrained PRFs F1, F2, F3 and F4 with the same master
key space K and that support the same subsets S1, . . . ,Sn with Si ⊂ [1, N] ∀i ∈ [1, n].
For sake of simplicity, we assume that KSi = KSj = KS for all i, j ∈ [1, n]. F2, F3 and F4

must additionally be key homomorphic. Finally, it selects a hash function H : {0, 1}∗ → G
for some group G, two functions G1 : {0, 1}∗ → K, G2 : {0, 1}∗ → KS along with a non
degenerate bilinear map G3 : KS × G → KS (see remark 5). The public parameters pp are
then set as crs, F1, F2, F3, F4, H,G1, G2, G3.

– BKeygen(): The bank generates a commitment key ck ← Γ.Keygen(1λ) and a key pair
(skB, pkB)← Σ.Keygen(1λ). It then sets bsk as skB and bpk as (ck, pkB).

– Keygen() : The user (resp. the merchant) generates a signature key pair (usk, upk) (resp.
(msk,mpk)) using Σ.Keygen.

– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user first generates s←
F1.Keygen(1λ, {Si}ni=1) and a random element r from the randomizer space R of Γ . It then
sends c← Γ.Commit(ck, [s, upk], r) to the bank along with a signature τc ← Σ.Sign(usk, c).
If τc is valid, the bank returns a signature σc ← Σ.Sign(skB, c) to the user. The latter can
then set its coin C as (c, s, r, σc).

– Spend(U(usk, C, bpk, V),M(msk, bpk, info, V)): During a spending of amount V , the mer-
chant first selects a string info that he never used before15 and sends it to the user along
with his public key mpk.
The user then selects a subset Si with |Si| = V such that SNj has never been revealed

for all j ∈ Si, and computes k
(1)
Si ← F1.CKey(s,Si), k(2)Si ← F2.CKey(s · G1(upk),Si) and

TSi ← (G3(G2(upk), H(mpk||info)) · k(3)Si , G2(upk) · k(4)Si) where k
(3)
Si = F3.CKey(s,Si) and

k
(4)
Si = F4.CKey(s,Si).

15 This string can simply be a counter incremented by the merchant after each transaction, or include information
that uniquely identifies the transaction such as the date and the hour.

19

Finally, it generates a signature τ ← Σ.Sign(usk, (mpk, V, info, k
(1)
Si , k

(2)
Si , TSi)) along with a

NIZK proof π of (upk, s, c, r, σc,Si, τ) such that:

1. ∃i∗ ∈ [1, n] : Si = Si∗ ∧ |Si| = V
2. c = Γ.Commit(ck, [s, upk], r)
3. 1 = Σ.Verify(pkB, c, σc)

4. k
(1)
Si = F1.CKey(s,Si)

5. k
(2)
Si = F2.CKey(s ·G1(upk),Si)

6. TSi = (G3(G2(upk), H(mpk||info)) · F3.CKey(s,Si), G2(upk) · F4.CKey(s,Si))
7. 1 = Σ.Verify(upk, (mpk, V, info, k

(1)
Si , k

(2)
Si , TSi), τ)

The elements (k
(1)
Si , k

(2)
Si , TSi , π) are then sent to the merchant who accepts them as a payment

if π is valid.
– Deposit(M(msk, bpk, (V, info, k

(1)
Si , k

(2)
Si , TSi , π)),B(bsk, L,mpk)): To deposit a transaction,

the merchant sends its transcript Tr ← (V, info, k
(1)
Si , k

(2)
Si , TSi , π) along with a signature

µ← Σ.Sign(msk,Tr). The bank then checks that (1) the proof π is valid, (2) π proves knowl-
edge of a signature on a tuple whose first coordinate is mpk, (3) Σ.Verify(mpk,Tr, µ) = 1
and (4) that this merchant has not previously deposited a transaction associated with info. If
one of the first three conditions is not satisfied, then the bank returns ⊥. If the last condition

is not satisfied then the bank knows another transcript (V ′, info, k
(1)
Sj , k

(2)
Sj , TSj , π

′) along with

a signature µ′. All these elements, along with [Tr, µ] constitute a proof of double-deposit.
Else, the bank recovers, for all j ∈ Si (see remark 6 below), the serial numbers SNj ←
F1.CEvalSi(k

(1)
Si , j)||F2.CEvalSi(k

(2)
Si , j). It then distinguishes the following two cases:

• ∃j∗ ∈ Si such that SNj∗ already belongs to L. In such a case, the bank recovers the first

transcript (V ′, info′,mpk′, k
(1)
Si′
, k

(2)
Si′
, TSi′ , π

′) that yields this serial number and returns it
along with Tr.
• SNj /∈ L ∀j ∈ Si, in which case the bank simply adds these serial numbers to L

– Identify((V, info,mpk, k
(1)
Si , k

(2)
Si , TSi , π), (V ′, info′,mpk′, k

(1)
Sj , k

(2)
Sj , TSj , π

′), bpk) : Given two

transcripts, this algorithm first checks that (1) mpk||info 6= mpk′||info′ and (2) both proofs
π and π′ are valid. If one of these conditions is not satisfied, then it returns 0. Else,
it checks that there is a collision between the serial numbers derived from these tran-
scripts, i.e. there are x ∈ Si and x′ ∈ Sj such that F1.CEvalSi(k

(1)
Si , x)||F2.CEvalSi(k

(2)
Si , x)

= F1.CEvalSj (k
(1)
Sj , x

′)||F2.CEvalSj (k
(2)
Sj , x

′). If there is no collision, it outputs 0.

Else, it proceeds as in Section 4.1 to identify the defrauder. If TSi [2] = TSj [2], it computes
R = H(mpk||info), R′ = H(mpk′||info′) along with

F3.CEvalSi(TSi [1], x)/F3.CEvalSj (TSj [1], x′)

and F3.CEvalSi(G3(G2(upk), R), x)/F3.CEvalSj (G3(G2(upk), R′), x) for all upk until it gets
a match. It then returns the corresponding public key upk∗ (or ⊥ if the exhaustive search
fails).
Else, TSi [2] 6= TSj [2] and it computes

F4.CEvalSi(TSi [2]/G2(upk), x)/F4.CEvalSj (TSi2 [2]/G2(upk), x′)

for all public keys upk until it gets 1Y . It then returns the corresponding public key upk∗

(or ⊥ if the exhaustive search fails).

– CheckDeposit([(V, info,mpk, k
(1)
Si , k

(2)
Si , TSi , π), µ], bpk) : this algorithm checks that π is valid

and that 1 = Σ.Verify(mpk, (V, info, k
(1)
Si , k

(2)
Si , TSi , π), µ) in which case it outputs 1. Else, it

returns 0.

Remark 4. An example of instantiation of our full construction, in the standard model, is pro-
vided in Section 10 to assess the practical complexity of our framework. Nevertheless, we note

20

that a spending essentially consists in generating 4 constrained keys along with a zero-knowledge
proof that they have been correctly computed from a certified master key. In bilinear groups, such
proofs can easily be produced in the random oracle model or by using Groth-Sahai proofs [GS08]
if one selects an appropriate digital signature scheme for Σ, as illustrated in Section 10. In par-
ticular, the latter section shows that the complexity of our framework is very similar to the
one of (unsecure) schemes from the state-of-the-art. The case of lattices is more complex but
we note that the proofs and the signature scheme required here are similar to those described
in [LLNW17].

Remark 5. The only purpose of the functions G1, G2 and G3 is to project the different elements
of our system on the appropriate spaces, which ensures compatibility with most PRFs. As we
illustrate on concrete examples in Section 9, these functions are in practice very simple (for
example G2 is usually the identity function) and nicely interact with zero-knowledge proofs. In
particular, our bilinear map G3 can easily be instantiated in most settings. For example, when
KS is a cyclic group of order p, we will simply have G = Zp and G3(x, y) = xy. Similarly, when
KS = Fnq , we will have G ⊂Mm,n and G3(x,A) = A · x.

We will also manage to make G1 and G2 injective in practice which means that the collision
resistance will be trivially satisfied. We recall that the bilinear map G3 is non degenerate if
G3(x, y) = 1KS implies x = 1KS or y = 1G.

Remark 6. Note that, even if the bank does not know the subset Si, it is always able to recover all
the serial numbers SNj ← CEvalSi(kSi , j), for j ∈ Si. Indeed, it can generates the list L containing
SNk ← CEvalS(kSi , k), for all S containing V elements and k ∈ S. Such a list contains the valid
serial numbers (those for which S = Si) and so can still be used to detect double-spendings.
Moreover, due to the properties of PRF, the “invalid” serial numbers (those for which S 6= Sj)
are random elements and so are unlikely to create false positives (collisions in the list L that are
not due to double-spendings).

However, we stress that this is only a generic solution that works for any instantiation of
our construction. In practice, it leads to quite complex deposits and so should be avoided,
if possible. Actually, to our knowledge, it is only used in [CPST15a]. All other divisible e-cash
systems manage to construct PRFs that can be evaluated on the elements of Si without knowing
Si. More specifically, theses PRFs are compatible with an algorithm CEval that takes as input
a constrained key and the size of the corresponding subset and that outputs CEval(kSi , |Si|) =
{CEvalSi(kSi , x), ∀x ∈ Si}.

The security of our construction is stated by the following theorem, proven in Section 6.

Theorem 7. Our divisible e-cash system is

– traceable if F1 and F2 achieve collision resistance-1, Γ is computationally binding, Σ is
EUF-CMA secure, Π is extractable, and G1 is collision resistant.

– exculpable if Σ is EUF-CMA secure, Π is extractable, F1 and F2 achieve collision resistance-
1, F3 achieves collision resistance-2, F4 achieves collision resistance-3 and H, G1 and G2

are collision resistant.
– clearable if Σ is EUF-CMA secure.
– anonymous if (F1, F2, F3, F4) achieves combined key pseudo-randomness, Γ is computation-

ally hiding and Π is zero-knowledge.

Remark 8. Most existing constructions require a collaborative generation of the coin secret val-
ues. Our framework can easily support this feature if Γ is homomorphic. In such a case, trace-
ability no longer requires collision resistance for F1 and F2 because the randomness added by the
bank (which is honest in this game) will make collisions very unlikely. Unfortunately, the collab-
orative generation has no effect on exculpability since both parties (the user and the bank) can
be corrupted in this game. We therefore choose to simplify our withdrawal protocol by removing
this step since we need collision resistance of F1 and F2 anyway.

21

6 Security Analysis

6.1 Proof of Traceability

A successful adversary A against the traceability is able to spend more than it has withdrawn
without being identified. Formally, this means that there are u transcripts Tri = {(Vi, infoi,mpki,

k
(1)
Si , k

(2)
Si , TSi , πi)}

u
i=1 where:

–
∑u

i=1 Vi > m.N , with m the number of withdrawn coins
– Identify(Tri,Trj) =⊥ ∀i, j ∈ [1, u]

The latter condition implies that all the proofs πi are valid (otherwise Identify would
have returned 0 and not ⊥). Therefore, the challenger is able to extract from them tuples
Wi = (upki, si, ri, σi, ci,Si, τi) satisfying the 7 relations defined by the Spend algorithm. Else, A
could be trivially converted into an adversary against the extractability of Π.

We then distinguish the following cases:

– Type 1 Adversary: ∃i ∈ [1, u] such that none of the coins generated through OWithdrawB
queries contains the commitment ci.

– Type 2 Adversary: all the commitments ci have been generated during a query to the
OWithdrawB oracle but the serial numbers do not collide.

– Type 3 Adversary: all the commitments ci have been generated during a query to the
OWithdrawB oracle and there is a collision in the list of serial numbers.

Informally, the first two types of adversary essentially imply an attack against the signature
scheme or the commitment scheme. The last type of adversary implies a collision of one of the
functions involved in our construction. This is formally stated by the following lemmas.

Lemma 9. Any type 1 adversary A can be converted into an adversary succeeding against the
EUF-CMA security of Σ with the same probability.

Proof. The reduction R generates as usual the public parameters along with the commitment
key ck but sets pkB as pk∗, where pk∗ is the public key received from the challenger of the
EUF-CMA security experiment.

Each time it receives an OAdd query it generates a new key pair for the user, allowing it to
answer any OSpend query.

Upon receiving an OWithdrawB query, it forwards the commitment c to its signing oracle.
It then receives a signature σc that it can send to A.

The simulation is perfect so A eventually outputs several transcripts, one of which involving
a commitment c∗ and a signature σ∗ such that Σ.Verify(pk∗, c∗, σ∗) = 1. Since we here consider
the first type of adversary, c∗ has never been submitted to the signing oracle, which means that
(c∗, σ∗) is a valid forgery. R is then able to extract this pair and so to break the EUF-CMA
security of Σ. ut

Lemma 10. Any type 2 adversary A can be converted into an adversary succeeding against the
binding security of Γ , with the same probability.

Proof. The reduction R generates the public parameters and (skB, pkB) ← Σ.Keygen(1λ) but
receives ck from the challenger of the binding security experiment. R is able to answer any oracle
query because it knows all the corresponding secret keys. At the end of the game, A then outputs
u transcripts Tri that foil the mechanisms of identification. R extracts the

∑u
i=1 Vi > m ·N serial

numbers which are assumed to be distinct since we only consider type 2 adversary.
Since all the commitments ci have been certified during a query to the OWithdrawB oracle

(otherwise A would be of type 1) and since there have been m withdrawals, there are at most m
distinct commitments ci. Let (sk, upkk) be the secret master key/user public key pair extracted
from Trk, for k ∈ [1, u]. We note that {(sk, upkk)}uk=1 contains at least m+1 elements, otherwise

22

these pairs would yield at most m ·N <
∑u

i=1 Vi serial numbers and there would be at least one
collision.

Therefore, there are only m commitments ci that can be opened to at least m + 1 distinct
pairs (sk, upkk). This implies that there is at least one commitment c∗ that can be opened in two
different ways. By extracting all the commitments ci and all the pairs (sk, upkk), R can easily
recover c∗ along with the different openings that constitute a valid attack against Γ . ut

Lemma 11. Any type 3 adversary A succeeding with probability ε can be converted into an
adversary succeeding against the collision resistance-1 of F1 or F2 or against the one of G1, with
the same probability.

Proof. The reduction R generates the public parameters and the public key of the bank as usual,
and is thus able to answer any query. At the end of the experiment, the type 3 adversary outputs
u transcripts that yield at least two identical serial numbers SNi and SNj such that

SNi = F1.CEvalSi(F1.CKey(si,Si), xi)||F2.CEvalSi(F2.CKey(si ·G1(upki),Si), xi)
and

SNj = F1.CEvalSj (F1.CKey(sj ,Sj), xj)||F2.CEvalSj (F2.CKey(sj ·G1(upkj),Sj), xj)

The relation SNi = SNj implies that F1.CEvalSi(F1.CKey(si,Si), xi) =
F1.CEvalSj (F1.CKey(sj ,Sj), xj) and hence that si = sj and xi = xj , otherwise R could be
straightforwardly converted into an adversary against the collision resistance of F1.

If we now consider the second part of the serial numbers, we have:

F2.CEvalSi(F2.CKey(si ·G1(upki),Si), xi) = F2.CEvalSj (F2.CKey(si ·G1(upkj),Sj), xi)

We can simplify the previous relation by using the homomorphism of F2 and thus get:

F2.CEval(F2.CKey(G1(upki),Si), xi) = F2.CEval(F2.CKey(G1(upkj),Sj), xi)

We distinguish three cases:

– Case 1: G1(upki) 6= G1(upkj)
– Case 2: upki 6= upkj but G1(upki) = G1(upkj)
– Case 3 upki = upkj

Case 1 implies that A managed to generate two master secret keys G1(upki) and G1(upkj)
such that F2.Eval(G1(upki), xi) = F2.Eval(G1(upkj), xi), which means that A can directly be
converted into an adversary against the collision resistance of F2. Similarly, case 2 implies a
collision of the function G1. Let us consider the third case. Let Ri = H(mpki||infoi) and Rj =
H(mpkj ||infoj). We have:

F3.CEvalSi(TSi [1], xi) = F3.CEvalSi(G3(G2(upki), Ri) · F3.CKey(si,Si), xi)
and

F3.CEvalSj (TSj [1], xi) = F3.CEvalSj (G3(G2(upki), Rj) · F3.CKey(si,Sj), xi)

Therefore,

F3.CEvalSi(TSi [1], xi)/F3.CEvalSj (TSj [1], xi)

= F3.CEvalSi(G3(G2(upki), Ri), xi)/F3.CEvalSj (G3(G2(upki), Rj), xi)

However, in such a case, the Identify algorithm would necessarily output a public key (at
least upki), which contradicts our assumption on A. This third case thus cannot occur if A is a
successful adversary against traceability. ut

23

Remark 12. We recall that traceability only requires to output a public key in case of double-
spending but does not care if this public key is correct. This latter property is ensured by
exculpability. This explains why our proof of traceability does not place any requirements on
the last element of the double-spending tag, nor on the functions G2 or G3.

6.2 Proof of Exculpability

Let A be a successful adversary that outputs two valid transcripts Tr = (V, info,mpk, k
(1)
Si , k

(2)
Si ,

TSi , π)], Tr′ = (V ′, info′,mpk′, k
(1)
Sj , k

(2)
Sj , TSj , π

′)] accusing an honest user upk∗ of double spendings,

i.e. such that Identify(Tr,Tr′) = upk∗.
Since upk∗ is an honest user, at least one of this transcript must have been forged by the

adversary. Let us assume that it is the first one. It is possible to extract from π the tuple
(upk, s, c, r, σc,Si, τ), otherwise A could be used against the extractability of Π. We then distin-
guish the two following cases.

– Type 1 Adversary: upk = upk∗.
– Type 2 Adversary: upk 6= upk∗.

The first case implies that the adversary has generated a valid signature under upk∗, which
leads to an attack against the signature scheme Σ, as stated below.

Lemma 13. Any type 1 adversary A succeeding with probability ε can be converted into an
adversary succeeding against the EUF-CMA security of Σ with probability ε

qA
, where qA is a

bound on the number of OAdd queries.

Proof. the reduction R generates the public parameter as usual and receives the public key of
the bank from A. It then selects a random i∗

$← [1, qA] and answer the i-th OAdd query as
follows:

– If i 6= i∗, then R generates a new key pair (usk, upk) for this user.
– Else, it returns the public key pk∗ that it has received from the challenger of the EUF-CMA

security experiment.

One can note that R may answer any query that involves upk 6= pk∗ because it knows the
corresponding signing key usk. For the other ones, R uses its signing oracle and forwards the
signature to A.
A then eventually outputs a forged transcript from which it is possible to extract a valid

signature τ under some public key upk. If upk 6= pk∗, then R aborts. Else, R recovers the

signature τ on (mpk, V, info, k
(1)
Si , k

(2)
Si , TSi). The elements k

(1)
Si , k

(2)
Si and TSi have never been part

of a query to the signing oracle (otherwise the reduction would have double-spent its own coin),

which means that [(mpk, V, info, k
(1)
Si , k

(2)
Si , TSi), τ] is a valid forgery. R then breaks the security

of Σ if it does not abort, which occurs with probability at least 1
qA

.

Lemma 14. Any type 2 adversary can be converted into an adversary succeeding against the
collision resistance-1 of F1 or F2, the collision resistance-2 of F3, the collision resistance-3 of
F4 or against the one of H, G1 or G2, with the same probability.

Proof. The fact that Identify does not output 0 on inputs Tr and Tr′ means that there is at
least one collision between the serial numbers derived from Tr and those derived from Tr′. There
are thus x ∈ Si and x′ ∈ Sj such that

(1) F1.CEvalSi(k
(1)
Si , x) = F1.CEvalSj (k

(1)
Sj , x

′)

(2) F2.CEvalSi(k
(2)
Si , x) = F2.CEvalSj (k

(2)
Sj , x

′)

24

Let s and s′ be the master secret keys extracted from Π and Π ′ respectively. Since k
(1)
Si =

F1.CKey(s,Si) and k
(1)
Sj = F1.CKey(s′,Sj), the relation (1) implies that s = s′ and that x = x′,

otherwise (s, s′, x, x′) could directly be used against the collision resistance-1 of F1.
The equation (2) thus becomes:

F2.CEvalSi(F2.CKey(s ·G1(upk)),Si), x) = F2.CEvalSj (F2.CKey(s ·G1(upk
′)),Sj), x)

which means that F2.CEvalSi(F2.CKey(G1(upk)),Si), x) = F2.CEvalSj (F2.CKey(G1(upk
′)),Sj), x).

We then distinguish three cases.

– Case 1: G1(upk) 6= G1(upk
′)

– Case 2: upk 6= upk′ but G1(upk) = G1(upk
′)

– Case 3: upk = upk′

The first case implies that (G1(upk), G1(upk
′), x, x) can directly be used against the collision

resistance-1 of F2. The second case implies an obvious attack against the collision resistance of
G1. So let us consider the third case.

If upk = upk′, then TSi [2] = TSj [2] is equivalent to Si = Sj .
If Si = Sj , we have:

F3.CEvalSi(TSi [1], x) = F3.CEvalSi(G3(G2(upk), R) · k(3)Si , x)

= F3.CEvalSi(G3(G2(upk), R), x) · F3.CEvalSi(k
(3)
Si , x)

and

F3.CEvalSj (TSj [1], x) = F3.CEvalSj (G3(G2(upk), R′) · k(3)Sj , x)

= F3.CEvalSj (G3(G2(upk), R′), x) · F3.CEvalSj (k
(3)
Sj , x)

Since k
(3)
Si and k

(3)
Sj are derived from the same master secret key s, we additionally know that

F3.CEvalSi(k
(3)
Si , x) = F3.CEvalSj (k

(3)
Sj , x). During the identification process, one then gets

F3.CEvalSi(TSi [1], x)/F3.CEvalSj (TSj [1], x)

= F3.CEvalSi(G3(G2(upk), R), x)/F3.CEvalSj (G3(G2(upk), R′), x)

= F3.CEvalSi(G3(G2(upk), R/R′), x)

since Si = Sj . The fact that A is a type 2 adversary means that:

F3.CEvalSi(G3(G2(upk), R/R′), x) = F3.CEvalSi(G3(G2(upk
∗), R/R′), x)

with upk 6= upk∗. We can then distinguish two cases:

– G3(G2(upk), R/R′) 6= G3(G2(upk
∗), R/R′), which implies an attack against the collision

resistance-2 of F3.
– G3(G2(upk), R/R′) = G3(G2(upk

∗), R/R′) which is equivalent to 1 = G3(G2(upk)/G2(upk
∗), R/R′).

Since G3 is non degenerate, this means that G2(upk) = G2(upk
∗) or that R = R′. But upk 6=

upk∗ and (R,R′) = (H(mpki||infoi), H(mpkj ||infoj)) with (mpki||infoi) 6= (mpkj ||infoj). There-
fore, this second case necessarily implies a collision against G2 or against H.

Now, let us consider the case Si 6= Sj . The fact that the identification process returns upk∗

means that

F4.CEvalSi(T
(1)
Si [2]/G2(upk

∗), x)/F4.CEvalSj (T
(1)
Sj [2]/G2(upk

∗), x) = 1.

25

We can use the fact that F4.CEvalSi(k
(4)
Si , x) = F4.CEvalSj (k

(4)
Sj , x) to simplify the left member

of the previous equation and thus get:

F4.CEvalSi(G2(upk)/G2(upk
∗), x)/F4.CEvalSj (G2(upk)/G2(upk

∗), x) = 1.

with upk 6= upk∗. If G2(upk)/G2(upk
∗) 6= 1, then (i, j, G2(upk)/G2(upk

∗), x) constitutes a
valid attack against the collision resistance 3 of F4. Else, G2(upk) = G2(upk

∗), which implies a
collision against G2.

6.3 Proof of Anonymity

Let A be an adversary breaking the anonymity of our construction with probability ε. We define
the following sequence of games to show that this advantage ε is negligible. For each game i, we
define Advi = |Pr(Si)− 1/2|, where Si is the event that A succeeds in game i.

Game 1. Our first game is exactly the anonymity game defined in Figure 4 with a random bit
b where the reduction R generates normally the secret values. The advantage Adv1 is then ε.

Game 2. In our second game, we make a guess on the coin that will be available to user upkb
at the challenge time. More specifically, the reduction selects a random `∗ ∈ [1, qw] where qw is
a bound on the number of queries and aborts if the `∗-th coin issued by the bank has not been
withdrawn by upkb or if this user has entirely spent it before the challenge phase. The reduction
still generates all the secret values and so the simulation is perfect unless the guess of R is not
correct. We then have Adv2 ≥ 1

qw
ε.

Game 3. In our third game, R generates a simulated common reference string using the
SimSetup and uses the SimProve algorithm to output the NIZK proofs. Any change in the
behaviour of A in this game can then be used against the zero-knowledge property of Π. We
then have Adv3 ≥ Adv2 − AdvzkA .

Game 4. In our fourth game, R proceeds as in the previous game except that during the `∗-th
withdrawal query it replaces the commitment c by a random element from the commitment
space. We note that this is not a problem for further NIZK proofs since the SimProve algorithm
does not need witnesses as inputs. Any significant change in the behaviour of A then yields an
adversary against the hiding property, which means that Adv4 ≥ Adv3 − AdvhidA .

Game 5. In our fifth game, R proceeds as in the previous game, but it answers the challenge
query (V, upk0, upk1,mpk) as follows. First, it selects a subset S containing V elements that have
never been involved in previous spendings of the `∗-th coin. We recall that Game 2 ensures
that such subset exists, otherwise R would abort. Moreover, this game also ensures that this
coin belongs to upk0 or upk1. Let us denote this user by upk∗. R then selects four random

values (k1, k2, k3, k4)
$← K4

S and returns (k
(1)
S , k

(2)
S) = (k1, k2 · F2.CKey(G1(upk

∗),S)) along with
TS = (G3(G2(upk

∗), H(mpk||info)) · k3, G2(upk
∗) · k4). Here again, the NIZK proofs can still

be produced by using the SimProve algorithm. The simulation is perfect unless A is able to
distinguish the random tuple (k1, k2, k3, k4) from (F1.CKey(s,S), F2.CKey(s,S), F3.CKey(s,S),
F4.CKey(s,S)), which would yield an adversary against the combined key pseudo-randomness of

the family (F1, F2, F3, F4). We therefore have Adv5 ≥ Adv4 − Adv
ckps
A .

We can note that in Game 5, the values received by the adversary are simulated proofs along

with random elements (k
(1)
S , k

(2)
S) and TS . The advantage Adv5 of A in this game is then 0. This

means that:

ε

qw
≤ AdvzkA + AdvhidA + Adv

ckps
A

which concludes the proof since qw is polynomial in the security parameter λ.

26

6.4 Proof of Clearability

An adversary succeeding in the clearing security game with probability ε is able to output a

valid proof [Tr, µ] of deposit of a transcript Tr = (V, info,mpk, k
(1)
Si , k

(2)
Si , TSi , π) that has not been

generated by the merchant mpk. Informally, since the CheckDeposit algorithm mostly consists
in verifying the signature µ, this means that A has managed to forge the latter and so that A
can be used against the security of the signature scheme.

Proof. The reduction R generates all the parameters as usual but selects a random `∗ ∈ [1, qa]
where qa is a bound on the number of OAdd queries for merchants. In the simulation, it proceeds
as usual except that it answers the `∗-th OAdd query by returning the public key mpk∗ received
from the challenger C of the EUF-CMA security experiment for Σ. Each time mpk∗ is involved
in a query to the ODeposit oracle, R simply sends the corresponding transaction transcript Tri
to C and then forwards the signature µi to the adversary.

At the end of the game, A returns [Tr, µ] involving an honest merchant mpk. If mpk 6= mpk∗,
then R aborts. Else, the fact that A succeeds means that ODeposit has never been queried on
this transaction and so that Tr has never been sent to the signing oracle provided by C. This
means that µ is a valid forgery that R can forward to C.
R then outputs a valid forgery unless it aborts. It then succeeds against the EUF-CMA

security of Σ with probability at least ε
qa

.

7 Framework based on Delegatable PRFs

As in Section 5.2, our construction makes uses of a digital signature scheme Σ, an homomorphic
commitment scheme Γ and a NIZK proof system Π.

– Setup(1λ, N): To generate the public parameters pp, the algorithm first computes crs ←
Π.Setup(1λ). It then selects two constrained PRFs F1, F2 with the same master key space
K and that support the same subsets S1, . . . ,Sn with Si ⊂ [1, N] ∀i ∈ [1, n]. For sake
of simplicity, we assume that KSi = KSj = KS for all i, j ∈ [1, n]. As we describe in
4.2, the algorithm also defines the functions (H, {HSi}ni=1) such that H : K → G1 and
HSi : KSi → G1 for some group G1. We recall that our family of subsets has the following
property:

Si ∩ Sj 6= ∅ ⇒ Si ⊂ Sj or Sj ⊂ Si
Finally, it selects a hash function H0 : {0, 1}∗ → G2 for some group G2, a function G1 :
{0, 1}∗ → KS , G2 : {0, 1}∗ → G1 along with a non degenerate bilinear map G3 : G1 ×G2 →
G1. The public parameters pp are then set as crs, F1, F2, H,H

′, H0, G1, G2, G3.
– BKeygen(): The bank generates a commitment key ck ← Γ.Keygen(1λ) and a key pair

(skB, pkB)← Σ.Keygen(1λ). It then sets bsk as skB and bpk as (ck, pkB).
– Keygen() : The user (resp. the merchant) generates a signature key pair (usk, upk) (resp.

(msk,mpk)) using Σ.Keygen.
– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user first generates s←
F1.Keygen(1λ, {Si}ni=1) and a random element r from the randomizer space R of Γ . It then
sends c← Γ.Commit(ck, [s, upk], r) to the bank along with a signature τc ← Σ.Sign(usk, c).
If τc is valid, the bank returns a signature σc ← Σ.Sign(skB, c) to the user. The latter can
then set its coin C as (c, s, r, σc).

– Spend(U(usk, C, bpk, V),M(msk, bpk, info, V)): During a spending of amount V , the mer-
chant first selects a string info that he never used before and sends it to the user along with
his public key mpk.
The user then selects an unspent subset Si of V elements, i.e. one such that SNj has never
been revealed for all j ∈ Si, and computes

1. k
(1)
Si ← F1.CKey(s,Si)

2. k
(2)
Si ← G1(upk) · F2.CKey(s,Si)

27

3. TSi ← G3(G2(upk), H0(mpk||info)) ·HSi(F1.CKey(s,D(Si)))
if Si 6= [1, N] and

1. k
(1)
Si ← F1.CKey(s,Si)

2. k
(2)
Si ← G1(upk) · F2.CKey(s,Si)

3. TSi ← G3(G2(upk), H0(mpk||info)) ·H(s)

otherwise.
Finally, it generates a signature τ ← Σ.Sign(usk, (mpk, V, info, k

(1)
Si , k

(2)
Si , TSi)) along with a

NIZK proof π of (upk, s, c, r, σc,Si, τ) such that:

1. ∃i∗ ∈ [1, n] : Si = Si∗ ∧ |Si| = V
2. c = Γ.Commit(ck, [s, upk], r)
3. 1 = Σ.Verify(pkB, c, σc)

4. k
(1)
Si = F1.CKey(s,Si)

5. k
(2)
Si ← G1(upk) · F2.CKey(s,Si)

6. if Si 6= [1, N], TSi ← G3(G2(upk), H0(mpk||info)) ·HSi(F1.CKey(s,D(Si)))
7. else, TSi ← G3(G2(upk), H0(mpk||info)) ·H(s)

8. 1 = Σ.Verify(upk, (mpk, V, info, k
(1)
Si , k

(2)
Si , TSi), τ)

The elements (k
(1)
Si , k

(2)
Si , TSi , π) are then sent to the merchant who accepts them as a payment

if π is valid.
– Deposit(M(msk, bpk, (V, info, k

(1)
Si , k

(2)
Si , TSi , π)),B(bsk, L,mpk)): To deposit a transaction,

the merchant sends its transcript Tr ← (V, info, k
(1)
Si , k

(2)
Si , TSi , π) along with a signature

µ← Σ.Sign(msk,Tr). The bank then checks that (1) the proof π is valid, (2) π proves knowl-
edge of a signature on a tuple whose first coordinate is mpk, (3) Σ.Verify(mpk,Tr, µ) = 1
and (4) that this merchant has not previously deposited a transaction associated with info. If
one of the first three conditions is not satisfied, then the bank returns ⊥. If the last condition

is not satisfied then the bank knows another transcript (V ′, info, k
(1)
Sj , k

(2)
Sj , TSj , π

′) along with

a signature µ′. All these elements, along with [Tr, µ] constitute a proof of double-deposit.

Else, the bank recovers the serial numbers SNj ← F1.CEvalSi(k
(1)
Si , j) for all j ∈ Si. It then

distinguishes the following two cases:

• SNj /∈ L ∀j ∈ Si, in which case the bank simply adds these serial numbers to L
• ∃j∗ ∈ Si such that SNj∗ already belongs to L. In such a case, the bank recovers the

first transcript Tr′ = (V ′, info′,mpk′, k
(1)
Si′
, k

(2)
Si′
, TSi′ , π

′) that yields this serial number. If

Si 6= Si′ , then the bank returns this transcript, along with Tr. If Si = Si′ and k
(2)
Si = k

(2)
Si′

,

then the bank also returns [Tr,Tr′]. Else, it does not return anything.

– Identify((V, info,mpk, k
(1)
Si , k

(2)
Si , TSi , π), (V ′, info′,mpk′, k

(1)
Sj , k

(2)
Sj , TSj , π

′), bpk) : Given two

transcripts, this algorithm first checks that (1) mpk||info 6= mpk′||info′ and (2) both proofs π
and π′ are valid. If one of these conditions is not satisfied, then it returns 0. Else, it checks
that there is a collision between the serial numbers derived from these transcripts, i.e. there

are x ∈ Si and x′ ∈ Sj such that F1.CEvalSi(k
(1)
Si , x) = F1.CEvalSj (k

(1)
Sj , x

′). If there is no

collision or if xi 6= xj , it outputs 0. If there is a collision with Si = Sj but k
(2)
Si 6= k

(2)
Sj , then

it outputs 0.
The fact that xi ∈ Si ∩ Sj 6= ∅ implies that Si ⊂ Sj or Sj ⊂ Si. Let us assume that Sj ⊂ Si.
We then distinguish the two following cases.

• Case 1: Sj = Si (which is equivalent to V = V ′). In such a case, it computes TSi/TSj and
G3(G2(upk), R/R′) for all public key upk, withR = H(mpk||info) andR′ = H(mpk′||info′).
If it gets a match, then it returns the corresponding public upk. Else, it returns ⊥.

• Case 2: Sj (Si, which implies that D(Sj) ⊂ Si. From k
(1)
Si , this algorithm com-

putes T∗ ← HSj (F1.CKey(k
(1)
Si , D(Sj))) and T = TSj/(T

∗). It then compares T with
G3(G2(upk), R′) for all public key upk. If it gets a match, then it returns the corre-
sponding public upk. Else, it returns ⊥.

28

– CheckDeposit([(V, info,mpk, k
(1)
Si , k

(2)
Si , TSi , π), µ], bpk) : this algorithm checks that π is valid

and that 1 = Σ.Verify(mpk, (V, info, k
(1)
Si , k

(2)
Si , TSi , π), µ) in which case it outputs 1. Else, it

returns 0.

The security of our construction is stated by the following theorem.

Theorem 15. Our divisible e-cash system is

– traceable if F1 achieves collision resistance-1, Γ is computationally binding, Σ is EUF-CMA
secure and Π is extractable.

– exculpable if Σ is EUF-CMA secure, Π is extractable, F1 achieves collision resistance-1 and
H0, G1 and G2 are collision resistant.

– clearable if Σ is EUF-CMA secure.
– anonymous if (F1, F2) achieves strong combined key pseudo-randomness for the family (H,H ′),
Γ is computationally hiding and Π is zero-knowledge.

8 Proof of Theorem 15

All the proofs provided here are very similar to those provided in Section 6. We therefore mostly
focus on the parts that involve double-spending tags because these elements strongly differ from
a framework to another. In particular, we do not describe a proof for clearability since the one
for our previous framework still works here.

8.1 Proof of Traceability

A successful adversary A against the traceability is able to spend more than it has withdrawn
without being identified. Formally, this means that there are u transcripts Tri = {(Vi, infoi,mpki,

k
(1)
Si , k

(2)
Si , TSi , πi)}

u
i=1 where:

–
∑u

i=1 Vi > m.N , with m the number of withdrawn coins
– Identify(Tri,Trj) =⊥ ∀i, j ∈ [1, u]

The latter condition implies that all the proofs πi are valid (otherwise Identify would
have returned 0 and not ⊥). Therefore, the challenger is able to extract from them tuples
Wi = (upki, si, ri, σi, ci,Si, τi) satisfying the 7 relations defined by the Spend algorithm. Else, A
could be trivially converted into an adversary against the extractability of Π.

We then distinguish the following cases:

– Type 1 Adversary: ∃i ∈ [1, u] such that none of the coins generated through OWithdrawB
queries contains the commitment ci.

– Type 2 Adversary: all the commitments ci have been generated during a query to the
OWithdrawB oracle but the serial numbers do not collide.

– Type 3 Adversary: all the commitments ci have been generated during a query to the
OWithdrawB oracle and there is a collision in the list of serial numbers.

The first two types of adversary essentially imply an attack against the signature scheme
or the commitment scheme. The security proofs are exactly the same as the one provided in
Appendix 6. We therefore only consider the third type of adversary.

Lemma 16. Any type 3 adversary A succeeding with probability ε can be converted into an
adversary succeeding against the collision resistance-1 of F1.

Proof. The reduction R generates the public parameters and the public key of the bank as
usual, and is thus able to answer any query. At the end of the experiment, the type 3 ad-
versary outputs u transcripts that yield at least two identical serial numbers. Among the
colliding serial numbers, there is at least a pair (SNi, SNj), with SNi = SNj , derived from

29

Tri = (Vi, infoi,mpki, k
(1)
Si , k

(2)
Si , TSi , πi) and Trj = (Vj , infoj ,mpkj , k

(1)
Sj , k

(2)
Sj , TSj , πj) such that

Si 6= Sj or such that Si = Sj ∧ k(2)Si = k
(2)
Sj .

Indeed, let us extract for t ∈ [1, u] and x ∈ St the pairs (SNt,x, upkt) from the transcripts Trt =

(Vt, infot,mpkt, k
(1)
St , k

(2)
St , TSt , πt), i.e. the Vt serial numbers and the user’s public key associated

with each transaction. Since we here consider a type-3 adversary, all these transcripts involve at
most m distinct pairs (sk, upkk). There are thus at most m.N distinct pairs (F1.Eval(sk, x), upkk)
for x ∈ [1, N]. We then have:

{(SNt,x, upkt)}t∈[1,u],x∈St ⊂ {(F1.Eval(sk, x), upkk)}k∈[1,m], x ∈ [1, N]

Since
∑u

i=1 Vi > m·N , there are at least two indices i, j such that (SNi,xi , upki) = (SNj,xj , upkj).
Moreover, we necessarily have i 6= j, otherwise two serial numbers derived from the same tran-
script would collide, leading to an obvious attack against the collision resistance of F1. Therefore,
these serial numbers are derived from two different transcripts Tri and Trj involving respectively
a subset Si and Sj . If Si 6= Sj , we are done. Else, we recall that

SNi = F1.CEvalSi(F1.CKey(si,Si), xi)
and

SNj = F1.CEvalSj (F1.CKey(sj ,Sj), xj).

Therefore, the relation SNi = SNj implies that si = sj (and so that upki = upkj) and
xi = xj , otherwiseR could be straightforwardly converted into an adversary against the collisions

resistance of F1. Moreover we consider here the case Si = Sj , which means that k
(2)
Si = k

(2)
Sj and

thus concludes the proof.
We can then only consider the two following cases:

– Case 1: Si = Sj ∧ k(2)Si = k
(2)
Sj .

– Case 2: Si 6= Sj .

Case 1. As we explain, this case implies si = sj , xi = xj and upki = upkj = upk. Therefore, TSi
and TSj are of the form G3(G2(upk), Ri) · T∗ and G3(G2(upk), Rj) · T∗ for some element T∗ ∈ G1.
Computing TSi/TSj then gives G3(G2(upk), Ri/Rj). However in such a case, Identify would
have at least returned upk.

Case 2. Here again, the collision between the serial numbers implies that si = sj and xi = xj =
x. In particular, we have x ∈ Si ∩ Sj , which implies that Si (Sj or that Sj (Si. We assume,
without loss of generality, that the latter situation occurs. We then have SD(Sj) ⊂ Si. From

k
(1)
Si , this algorithm computes T∗ ← HSj (F1.CKey(k

(1)
Si ,SSj)) and TSj/(T

∗) = G3(G2(upkj), Rj).
However, in this case Identify would have at least returned upkj .

Therefore, if F1 achieves collision resistance-1, then no adversary can succeed against the
traceability of our scheme. ut

8.2 Proof of Exculpability

Let A be a successful adversary that outputs two valid transcripts Tri = (Vi, infoi,mpki, k
(1)
Si , k

(2)
Si ,

TSi , πi)], Trj = (Vj , infoj ,mpkj , k
(1)
Sj , k

(2)
Sj , TSj , πj)] accusing an honest user upk∗ of double spend-

ings, i.e. such that Identify(Tri,Trj) = upk∗.
Since upk∗ is an honest user, at least one of this transcript must have been forged by the

adversary. Let us assume that it is the first one. It is possible to extract from πi the tuple
(upk, s, c, r, σc,Si, τ), otherwise A could be used against the extractability of Π. We then distin-
guish the two following cases.

30

– Type 1 Adversary: upk = upk∗.
– Type 2 Adversary: upk 6= upk∗.

The first case implies that the adversary has generated a valid signature under upk∗, which
leads to an attack against the signature scheme Σ. The proof is exactly the same as the one
provided in Appendix 6 so here we only consider type 2 adversary.

Lemma 17. Any type 2 adversary can be converted into an adversary succeeding against the
collision resistance-1 of F1 or against the collision resistance of H0, G1 or G2, with the same
probability.

Proof. The fact that Identify does not output ⊥ on inputs Tri and Trj means that there is
at least one collision between the serial numbers derived from these transcripts. There are thus
xi ∈ Si and xj ∈ Sj such that

SNi = F1.CEvalSi(F1.CKey(si,Si), xi)
and

SNj = F1.CEvalSj (F1.CKey(sj ,Sj), xj).

By using the same argument as above, we know that si = sj and that xi = xj = x if F1

achieves collision resistance-1. Moreover we know that one of the following two cases necessarily
occurs.

– Case 1: Si = Sj ∧ k(2)Si = k
(2)
Sj .

– Case 2: Si 6= Sj .

Case 1. The equalities k
(2)
Si = k

(2)
Sj and si = sj imply that Tri and Trj have been generated by the

same user upk. Moreover, it implies that TSi = G3(G2(upk), Ri)·(T∗) and TSj = G3(G2(upk), Rj)·
(T∗) for some element T∗ ∈ G1. Therefore, TSi/TSj = G3(G2(upk), Ri/Rj). We additionally know
that Identify returns upk∗, which means that:

G3(G2(upk), Ri/Rj) = G3(G2(upk
∗), Ri/Rj)

Since G3 is non degenerate, this is only possible if Ri = Rj or if G2(upk) = G2(upk
∗). The

former case implies a collision of H0, whereas the second one implies a collision of G2.

Case 2. By using the same argument as in the traceability proof, we know that TSj/(T
∗) =

G3(G2(upkj), Rj), where upkj is the public key involved in the transaction Trj . Therefore, the
fact that Identify returns upk∗ means that

G3(G2(upkj), Rj) = G3(G2(upk
∗), Rj)

which implies a collision of G2.

8.3 Proof of Anonymity

Let A be an adversary breaking the anonymity of our construction with probability ε. We define
the following sequence of games to show that this advantage ε is negligible. For each game i, we
define Advi = |Pr(Si)− 1/2|, where Si is the event that A succeeds in game i.

Game 1. Our first game is exactly the anonymity game defined in Figure 4 with a random bit
b where the reduction R generates normally the secret values. The advantage Adv1 is then ε.

31

Game 2. In our second game, we make a guess on the coin that will be available to user upkb
at the challenge time. More specifically, the reduction selects a random `∗ ∈ [1, qw] where qw is
a bound on the number of queries and aborts if the `∗-th coin issued by the bank has not been
withdrawn by upkb or if this user has entirely spent it before the challenge phase. The reduction
still generates all the secret values and so the simulation is perfect unless the guess of R is not
correct. We then have Adv2 ≥ 1

qw
ε.

Game 3. In our third game, R generates a simulated common reference string using the
SimSetup and uses the SimProve algorithm to output the NIZK proofs. Any change in the
behaviour of A in this game can then be used against the zero-knowledge property of Π. We
then have Adv3 ≥ Adv2 − AdvzkA .

Game 4. In our fourth game, R proceeds as in the previous game except that during the `∗-th
withdrawal query it replaces the commitment c by a random element from the commitment
space. We note that this is not a problem for further NIZK proofs since the SimProve algorithm
does not need witnesses as inputs. Any significant change in the behaviour of A then yields an
adversary against the hiding property, which means that Adv4 ≥ Adv3 − AdvhidA .

Game 5. In our fifth game, R proceeds as in the previous game, but it answers the chal-
lenge query (V, upk0, upk1,mpk) as follows. First, it selects a subset S containing V elements
that have never been involved in previous spendings of the `∗-th coin. We recall that Game 2
ensures that such a subset exists, otherwise R would abort. Moreover, this game also ensures
that this coin belongs to upk0 or upk1. Let us denote this user by upk∗. R then selects three

random values (k1, k2, k3)
$← K2

S × G1 and returns (k
(1)
S , k

(2)
S) = (k1, k2 · G1(upk)) along with

TS = G3(G2(upk), H(mpk||info)) · k3. Here again, the NIZK proofs can still be produced by
using the SimProve algorithm. We note that the simulation is perfect unless A is able to distin-
guish the random tuples (k1, k2, k3) from (F1.CKey(s,S), F2.CKey(s,S), H(s)) if V = N or from
(F1.CKey(s,S), F2.CKey(s,S), HS(F1.CKey(s,D(S)))) otherwise, which would yield an adversary
against the strong combined key pseudo-randomness of F1 and F2 for the family (H,H ′). We

therefore have Adv5 ≥ Adv4 − Adv
ckps
A .

We can note that in Game 5, the values received by the adversary are simulated proofs along

with random elements (k
(1)
S , k

(2)
S) and TS . The advantage Adv5 of A in this game is then 0. This

means that:

ε

qw
≤ AdvzkA + AdvhidA + Adv

ckps
A

which concludes the proof since qw is polynomial in the security parameter λ.

9 PRFs Instantiations

In this section we describe some constrained PRFs that one can use to instantiate our generic
frameworks above. All of them are derived from published e-cash schemes, we therefore do not
claim novelty here but simply show that these PRFs achieve the properties required by our
constructions.

9.1 Key Homomorphic Constrained PRF

The divisible e-cash schemes described in [CPST15a,CPST15b,PST17] yield efficient constrained
PRFs in a bilinear setting that nicely interact with Groth-Sahai non-interactive proofs [GS08].
For sake of simplicity, we only consider the PRF implicitly defined in [CPST15a] but we stress
that similar arguments apply to the ones defined in [CPST15b,PST17].

Before providing a formal definition of the PRF, we first recall the notion of bilinear groups
and introduce some useful notations.

32

Definition 18. Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order
p along with a map, called pairing, e : G1 ×G2 → GT that is

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;
2. non-degenerate: for any g ∈ G∗1 and g̃ ∈ G∗2, e(g, g̃) 6= 1GT ;
3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

There are different types of pairings [GPS08] but we will here only make use of type 3 pairings
that assume that no efficiently computable homomorphism exists between G1 and G2. In the
following every element of G2 will be denoted with a˜(e.g. g̃) to distinguish them from elements
of G1.

Construction. Let S = [1, 2m] for some integer m ≥ 0. For i ∈ [0,m] and j ∈ [0, 2i[, we define
Si,j = [1 + j · 2m−i, (j + 1)2m−i]. Let (G1,G2,GT , e) be bilinear groups as defined above and let
g (resp. g̃) be a generator of G1 (resp. G2). We define below a PRF: K×S → Y, where K = Zp,
KSi,j = G1, ∀i, j and Y = GT .

– Setup(1λ, {Si,j}i,j : This algorithm first selects random scalars ri,j for i ∈ [0,m] and j ∈ [0, 2i[
along with `t for t ∈ [1, 2m]. It then includes the following elements in the public parameters
pp:
• gi,j = gri,j for i ∈ [0,m] and j ∈ [0, 2i[
• g̃i,j,t = g̃`t/ri,j for i ∈ [0,m], j ∈ [0, 2i[and t ∈ Si,j .

– Keygen(): this algorithm returns a random s
$← Zp.

– CKey(s,Si,j): On input s ∈ Zp and a subset Si,j , this algorithms returns a constrained key
kSi,j = gsi,j .

– Eval(s, t): On input the master key s and an element t ∈ S, this algorithm returns e(gs0,0, g̃0,0,t).
– CEval(Si,j , kSi,j , t): On input a set Si,j , a constrained key kSi,j and an element t ∈ S, this

algorithm returns e(kSi,j , g̃i,j,t).

Correctness. For all i ∈ [0,m], j ∈ [0, 2i[and t ∈ Si,j , we have:

CEval(Si,j , CKey(s,Si,j), t) = CEval(Si,j , gsi,j , t)
= e(gsi,j , g̃i,j,t)

= e(g, g̃)`t·s

= e(gs0,0, g̃0,0,t)

= Eval(s, t)

which ensures correctness. The bilinearity of e directly implies the key homomorphism of
this PRF.

Collision Resistance.

Theorem 19. Our PRF achieves collision resistance 1 under the symmetric discrete logarithm
assumption [BCN+10].

Proof. We recall that the symmetric discrete logarithm problem is the bilinear version of the
discrete logarithm problem that assumes it is hard to recover x from the pair (gx, g̃x). Given such
an instance of this assumption, our reduction R selects a random t∗ ∈ [1, 2m] and generates the
parameters as usual except that it implicitly sets `t∗ = x. We note that this is always possible
given both gx and g̃x.

The parameters are correctly distributed, therefore at the end of the game the adversary A
returns (s1, s2, t1, t2) such that:

Eval(s1, t1) = Eval(s2, t2) ∧ (s1, t1) 6= (s2, t2)

33

If t∗ /∈ {t1, t2}, then R aborts. Else let us assume without loss of generality that t∗ = t1.

Eval(s1, t1) = Eval(s2, t2)

⇔ e(g, g̃)s1·x = e(g, g̃)s2·`t2

R can thus return x =
s2·`t2
s1

unless it aborts, which does not occur with probability at least
2
2m . ut

Let us now consider collision resistance 2. For all i ∈ [0,m], j ∈ [0, 2i[, t ∈ Si and k1, k2 ∈ G1,
we have

CEvalSi,j (k1, t) = CEvalSi,j (k2, t)

e(k1, g̃)`t/ri,j = e(k2, g̃)`t/ri,j

which implies that k1 = k2. No adversary can then succeed against collision resistance 2 of
our PRF.

Similarly, if CEvalSi,j (k, t) = CEvalSi′,j′ (k, t), then

e(k, g̃)`t/ri,j = e(k, g̃)`t/ri′,j′ .

If k 6= 1G1 , then ri,j = ri′,j′ , which is very unlikely since these scalars have randomly chosen.
No adversary can then succeed against collision resistance 3 of our PRF.

Key Pseudo-Randomness. Our proof is derived from the anonymity proof provided in the full
version of [CPST15a]. We only prove key pseudo-randomness since it actually implies pseudo-
randomness.

We first recall the weak-EXDH assumption from [Duc10,CPST15a].

Definition 20. Given (g, gx, ga, ga·y, gz) and (g̃, g̃a, g̃y), the weak-EXDH assumption states that
it is hard to distinguish whether z = a · x · y or z is random.

Theorem 21. Our PRF is key pseudo-random under the weak-EXDH assumption.

Proof. The reduction R makes a guess on the set Si∗,j∗ selected by the adversary of the pseudo-
randomness and will abort if it is incorrect. We note that this does not occur with probability
at least 1

n , where n = 2m+1 − 1 in our context. Now it generates as usual random scalars ri,j
and `t but sets the public parameters as follows.

– gi,j = (gy·a)ri,j if Si,j ⊂ Si∗,j∗
– gi,j = (ga)ri,j if Si,j) Si∗,j∗
– gi,j = gri,j otherwise

– g̃i,j,t = g̃`t/ri,j if Si,j ⊂ Si∗,j∗
– g̃i,j,t = (g̃y)`t/ri,j if Si,j) Si∗,j∗ and t ∈ Si∗,j∗
– g̃i,j,t = g̃`t/ri,j if Si,j) Si∗,j∗ and t /∈ Si∗,j∗
– g̃i,j,t = (g̃a)`t/ri,j otherwise

We note that this defines `t = a ·y ·`t if t /∈ Si∗,j∗ and `t = a ·`t otherwise. Next, the reduction
implicitly defines the secret master key as x. We note that, if the guess of R is correct, R will
always received OCKey query on subset Si,j such that Si,j ∩Si∗,j∗ = ∅. Therefore the constrained
key is gx·ri,j , which can always be computed by R since it knows ri,j .

To answer the challenge query from A on Si∗,j∗ ,R simply returns Z = (gz)ri∗,j∗ . If z = a·x·y,
then Z is a valid constrained key and R plays the key pseudo-randomness game for b = 0.
Otherwise, Z is random and R plays the key pseudo-randomness game for b = 1. Any adversary
succeeding against key pseudo-randomness is then able to break the weak-EXDH assumption.

ut

34

It now only remains to explain how one can generate a family of PRFs that achieves
combined key pseudo-randomness. Actually, the technique is implicitly used in [CPST15a,
CPST15b, PST17]. Given the previous PRF, one can generate a family of PRFs (F1, . . . , Ft)
of arbitrary size by using the same random values in the Setup algorithm but with a differ-
ent generator gi for i ∈ [1, t]. Therefore, for any subset Si,j , the family of constrained key is

(k
(1)
Si,j , . . . , k

(t)
Si,j) = (g

ri,j ·s
1 , . . . , g

ri,j ·s
t). It was shown in [PST17] that this tuple is indistinguish-

able from a random element of Gt
1 under the key pseudo-randomness of the underlying PRF and

under the DDH assumption in G1.
In our context, since the weak-EXDH assumption implies the DDH one, we have combined

key pseudo-randomness for free.

Remark 22. As we mention at the beginning of this section, we can extract from [CPST15b,
PST17] alternative PRFs with better efficiency but that rely on stronger assumptions. However,
we note that the one from [PST17] supports any subinterval of [1, N], contrarily to the one we
have just described.

Remark 23. In this bilinear setting, the user’s key pair (usk, upk) is usually (x, gx) ∈ Zp×G1 for
some secret scalar x. Therefore, one can define G1 : ga ∈ G1 7→ a ∈ Zp and G2 : X ∈ G1 7→ X.
We stress that we do not need G1 to be efficiently computable since it will only be used by
the users on their own public key upk for which they know the discrete logarithm usk. Such
functions G1 and G2 are injective and thus trivially achieve collision resistance. Finally we
define G3 : (X, a) ∈ G1 × Zp 7→ Xa ∈ G1 which is bilinear and non-degenerate.

9.2 Delegatable Constrained PRF

We note that the GGM construction [GGM84] instantiated with hash functions yields simple
delegatable constrained PRFs that have already been used in e-cash systems [ASM08]. Unfortu-
nately, they do not interact nicely with NIZK proofs leading either to impractical constructions
or to systems [ASM08] where correct evaluation of the PRF can only be proven through cut-
and-choose techniques that seriously impact the overall security.

We therefore choose to describe the construction from [CG07] which, despite being very
complex, does not need general zero-knowledge arguments.

Construction. Let S = [1, 2m] for some integer m ≥ 0. For i ∈ [0,m] and j ∈ [0, 2i[, we define
Si,j = [1 + j · 2m−i, (j + 1)2m−i] and a sequence of prime pi such that pi divides pi+1 − 1. We
define below a PRF: K × S → Y, where K = Zp0−1, KSi,j = Zpi , ∀i, j and Y = Zpm .

– Setup(1λ, {Si,j}i,j : This algorithm selects a generator g0 of Z∗p0 and, for i ∈ [1,m], two
elements gi,0 and gi,1 of Zpi of order pi−1. Note that these elements necessarily exist because
pi divides pi+1 − 1. All these elements are included in the public parameters.

– Keygen(): this algorithm returns a random s
$← K.

– CKey(s,Si,j): On input s ∈ K and a subset Si,j , this algorithms first selects b0, . . . , bi−1 ∈
{0, 1} such that j =

∑i−1
`=0 b` ·2i−1−`. Let k = gs0. For ` = 0, . . . , i−1 it computes k ← gk`+1,b`

and finally returns the constrained key kSi,j = k.
– Eval(s, t): On input the master key s and an element t ∈ [1, 2m], this algorithm returns

CKey(s,Sm,t−1).
– CEval(Si,j , kSi,j , t): On input a set Si,j , a constrained key kSi,j and an element t ∈ S, this

algorithm first selects b0, . . . , bm−1 such that t−1 =
∑m−1

`=0 b` ·2m−1−`. It then sets k ← kSi,j
and computes, for ` = i, . . . ,m− 1, k ← gk`+1,b`

. Finally, it returns the last value of k.

– CKey(kSi,j ,Si′,j′) : on input a constrained key kSi,j and a set Si′,j′ , this algorithm returns ⊥
if Si′,j′ * Si,j . Else, it selects b0, . . . , bi′−1 ∈ {0, 1} such that j′ =

∑i′−1
`=0 b` · 2i

′−1−` and sets
k = kSi,j . It then computes, for ` = i, . . . i′ − 1, k ← gk`+1,b`

and outputs k.

35

Correctness. Let b0, . . . , bm−1 ∈ {0, 1} be such that t − 1 =
∑m−1

`=0 b` · 2m−1−`. The value
Eval(s, t) = CKey(s,Sm,t−1) is defined by induction as follows. Let k = gs0. For ` = 0, . . . ,m− 1,
one computes k ← gk`+1,b`

and finally sets Eval(s, t) = k.

Now, for any i ∈ [0,m] and j ∈ [0, 2i[, let b
(j)
0 , . . . , b

(j)
i−1 ∈ {0, 1} be such that j =

∑i−1
`=0 b

(j)
` ·

2i−1−`. One can note that for any t ∈ [1, 2m], t ∈ Si,j ⇔ b` = b
(j)
` ∀` ∈ [0, i− 1]. Indeed:

t ∈ Si,j
⇔ j · 2m−i ≤t− 1 ≤ (j + 1)2m−i − 1

⇔ 2m−i
i−1∑
`=0

b
(j)
` · 2

i−1−` ≤t− 1 ≤ 2m−i(1 +

i−1∑
`=0

b
(j)
` · 2

i−1−`)− 1

⇔
i−1∑
`=0

b
(j)
` · 2

m−1−` ≤t− 1 ≤
i−1∑
`=0

b
(j)
` · 2

m−1−` + 2m−i − 1

⇔ b` = b
(j)
` ∀` ∈ [0, i− 1].

Therefore, the CKey algorithm evaluated on (s,Si,j) computes the i first steps of the Eval

algorithm that are common to all elements t ∈ Si,j whereas CEval(Si,j , kSi,j , t) computes the
missing steps. This means that

CEvalSi,j (CKey(s,Si,j), t) = Eval(s, t), ∀Si,j 3 t.
It then only remain to prove that CKey(kSi,j ,Si′,j′) = CKey(s,Si′,j′),∀Si,j ⊃ Si′,j′ . The con-

dition Si,j ⊃ Si′,j′ means that:

1 + j · 2m−i ≤ 1 + j′ · 2m−i′ ≤ (j′ + 1)2m−i
′ ≤ (j + 1)2m−i

The first inequality implies that j′ ≥
∑i−1

`=0 b
(j)
` 2i

′−1−` whereas the last one implies that

j′ ≤
∑i−1

`=0 b
(j)
` 2i

′−1−`+2i
′−i−1. Due to the unicity of the binary decomposition of j′, this is only

possible if b
(j)
` = b

(j′)
` for all ` ∈ [0, i−1]. Here again, this means that the CKey algorithm evaluated

on (kSi,j ,Si′,j′) computes the missing steps of the induction to get kSi′,j′ , which concludes the
proof of correctness.

Collision Resistance. We recall that our framework based on delegatable CPRFs only requires
collision resistance-1. So let us assume that an adversary manages to output two distinct pairs
(s, t) and (s′, t′) such that Eval(s, t) = Eval(s′, t′). First, we note that we cannot have t = t′.
Indeed, one can easily prove by induction that this would mean gs0 = gs

′
0 and so that s = s′.

Let us now write

t− 1 =
m−1∑
`=0

b
(t)
` · 2

m−1−`

t′ − 1 =

m−1∑
`=0

b
(t′)
` · 2m−1−`

the inequality t 6= t′ implies that there is an index `∗ ∈ [0,m − 1] such that (1) b
(t)
`∗ 6= b

(t′)
`∗

and (2) b
(t)
` = b

(t′)
` ∀` ∈ [`∗ + 1,m − 1]. The latter condition implies that the last steps of

the computation of Eval(s, t) and Eval(s′, t′) are the same. More specifically, there are km−1

and k′m−1, such that Eval(s, t) = g
km−1

m,b
(t)
m−1

= g
k′m−1

m,b
(t)
m−1

= Eval(s′, t′), which means that km−1 =

k′m−1 and so on until we get g
k`∗

`∗+1,b
(t)
`∗

= g
k′
`∗

`∗+1,b
(t′)
`∗

. The latter equation means that the discrete

logarithm of g
`∗+1,b

(t′)
`∗

in base g
`∗+1,b

(t)
`∗

is k`∗/k
′
`∗ , which can easily be recovered from s and s′.

Therefore, any adversary succeeding against the collision resistance of this PRF can be converted
into an adversary against the discrete logarithm in one of the groups Zpi .

36

Key Pseudo-Randomness. The divisible e-cash system of [CG07] is claimed to be anony-
mous under a so-called Matching Multi Diffie-Hellman (MMDH) assumption introduced by the
authors. Unfortunately, the latter do not provide any detail in the proof and it seems very dif-
ficult to introduce an MMDH instance in the security reduction while being able to answer to
any adversarial query. We therefore introduce a new assumption which is quite similar to the
MMDH assumption, but which allows us to prove the key pseudo-randomness of this PRF.

Definition 24. Let u > 0 be an integer and, for i ∈ [0, u−1], qi be a prime number such that qi
divides qi+1− 1. Let g0,α and g0,β be generators of Z∗p0 and, for i ∈ [1, u], let gi,α and gi,β be two

elements of Z∗qi of order qi−1. For any integer x and i ∈ [0, u], we define by induction Pi = g
Pi−1

i,α

with P0 = gx0,α.
The u-MMDH assumption states that it is hard to distinguish Z = Pu(x) from a random

element of Z∗qu of order qu−1, even given access to {(gi,α, gi,β)}ui=0 and (gx0,β, g
P0
1,β, . . . g

Pu−1

u,β)

Theorem 25. The PRF described above is key pseudo-random under the m-MMDH assump-
tion.

Proof. Given a m-MMDH instance, the reduction R makes a guess on the set Si∗,j∗ that the
adversary will output. For ` ∈ [0, i∗], it sets p` = qm−i∗+` and selects the other primes p` as
usual for ` ∈ [i∗ + 1,m].

Let b∗0, . . . , b
∗
i∗−1 be such that j =

∑i∗−1
`=0 b∗` · 2i

∗−1−`. The reduction then sets g0 = gm−i∗,α
and, for ` ∈ [1, i∗], g`,b`−1

= gm−i∗+`,α and g`,b`−1
= gm−i∗+`,β, where b denotes 1 − b. All the

other elements of the public parameters are randomly generated.
In the reduction, R implicitly defines the seed as Pm−i∗−1. Since the Eval function returns

the output of CKey, we just explain how R can handle the OCKey queries. Let Si,j be the subset
queried to the OCKey oracle and j =

∑i−1
`=0 b` · 2i−1−`. If the guess on Si∗,j∗ is correct, then

there exists `∗ ∈ [0,min(i, i∗) − 1] such that b∗`∗ 6= b`∗ . Otherwise, we would have Si,j ⊂ Si∗,j∗
or Si∗,j∗ ⊂ Si,j and the guess would be invalid. Therefore, at the `∗-th step of the computation
of kSi,j , the value k is of the form gk

′
`∗+1,b`∗

= gk
′
m−i∗+`∗+1,β with k′ depending on Pm−i∗−1

and {(gi,α, gi,β)}mm−i∗ . The element gk
′
m−i∗+`∗+1,β can then easily be derived from the elements

provided in the m-MMDH instance which ensures that the simulation is perfect.
When the adversary outputs the challenge subset,R aborts if its guess is incorrect. Otherwise,

it returns Z from the m-MMDH instance. If Z = Pu(x), then it is a valid constrained key and
the adversary A plays the key pseudo-randomness game for b = 0. Else, it is a random element
from the corresponding constrained key space, which corresponds to the case where b = 1.

Strong Key Pseudo-Randomness. We note that, for any subset Si,j 6= [1, 2m], the con-

strained key kSi,j is of the form g
kSi−1,j′
i,b where Si−1,j′ is the smallest subset strictly containing

Si,j . Now let h0 be a generator of Zp0 and hi,b be an element of Zpi of order pi−1 for b ∈ {0, 1}.
We can then define H : s 7→ hs and Hi,j : k 7→ hki,b.

Therefore, in the strong key pseudo-randomness game, the adversary will now have to distin-

guish pairs of the form (g
kSi−1,j′
i,b , h

kSi−1,j′
i,b) from random elements. By using the same argument

as in the key homomorphic case, we can prove that this is not possible under the key pseudo-
randomness of the PRF and the DDH assumption.

10 A Standard Model Instantiation

As we have explained in our introduction, the exculpability issue invalidates existing standard
model constructions. We therefore describe in this section the first e-cash scheme proven secure in
the standard model. It is a direct instantiation of our first framework, using the CPRF presented
in Section 9.1.

Our NIZK proofs are instantiated with the Groth-Sahai proof system [GS08] that allows to
prove most relations for bilinear groups. We will more specifically use their SXDH setting for

37

our complexity evaluation. For sake of clarity, we will underline all committed values when we
will describe the proven relations.

– Setup(1λ, 2m): To generate the public parameters pp for divisible coins of value 2m, the
algorithm first computes a Groth-Sahai common reference string for the SXDH setting. It
then generates four constrained PRFs F1, F2, F3 and F4, as described in Section 9.1, using
different generators g(1), g(2), g(3) and g(4) for each of them. It then selects a hash function
H : {0, 1}∗ → G and instantiates G1, G2 and G3 as described in Remark 23.
Next, it generates m + 1 key pairs (sk(i), pk(i)), for i ∈ [0,m], for the AGHO structure-
preserving signature scheme from [AGHO11]. For each i ∈ [0,m] and j ∈ [0, 2i[, it uses sk(i)

to generate a signature µi,j = (z
(i,j)
1 , z

(i,j)
2 , w̃(i,j)) on (g

(1)
i,j , g

(2)
i,j , g

(3)
i,j , g

(4)
i,j) before discarding

this secret key. The public keys pk(i) = (ṽ
(i)
1 , ṽ

(i)
2 , w̃

(i)
k), for k ∈ [1, 4], are included in the

public parameters16.
Finally, it selects a random x ∈ Zp and generators (g, g̃) ∈ G1 × G2 and adds (X, X̃) ←
(gx, g̃x) in pp. It also includes the description of a hash function H ′ : {0, 1}∗ → Zp. This last
step provides public parameters for the PS aggregate signature scheme in [PS16].

– BKeygen(): The bank first sets ck = {g, h1, h2} for some generators h1, h2 ∈ G1. It then
generates a key pair (skB, pkB) for the signature scheme in [AGHO11] and outputs (ck, pkB),
where pkB = (ṽ1, ṽ2, w̃).

– Keygen() : The user (resp. the merchant) generates a pair (usk, upk), with usk
$← Zp and

upk = g̃usk (resp. msk
$← Zp and mpk = g̃msk). We note that this is a valid key pair for the

PS signature scheme.
– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user first generates two

random scalars s and r. It then sends c← hs1 · husk2 · gr along with a PS signature on H ′(c)

using usk. The bank then returns an AGHO signature τc = (z
(c)
1 , z

(c)
2 , w̃(c))← Sign(skB, c).

– Spend(U(usk, C, bpk, V),M(msk, bpk, info, V)): During a spending of amount V , the mer-
chant first selects a string info that he never used before and sends it to the user along with
his public key mpk.
The user then selects a subset Si,j with |Si,j | = V such that SNj has never been revealed for
all j ∈ Si,j , and computes

• k(1)Si,j = (g
(1)
i,j)s

• k(2)Si,j = (g
(2)
i,j)s+usk

• TSi,j [1] = (g
(3)
i,j)s · gusk·H(mpk||info)

• TSi,j [2] = (g
(4)
i,j)s · gusk

It then generates a PS signature (gt, Xt · gt·usk·H
′(mpk||V ||info||k(1)Si,j ||k

(2)
Si,j
||TSi,j)) = (τ1, τ2) = τ ,

for some scalar t along with the following NIZK proof π:

1. Si,j is a valid subset:

• e(z(i,j)1 , ṽ
(i)
1) · e(z(i,j)2 , g̃) · e(g, ṽ(i)2)−1

4∏
k=1

e(g
(k)
i,j , w̃

(i)
k) = 1

• e(z(i,j)1 , w̃(i,j)) · e(g, g̃)−1 = 1

• V = 2m−i (both i and V are public here)
2. c is a valid commitment:

• c = h
s
1 · h

usk
2 · gr

3. c has been signed by the bank:

• e(z(c)1 , ṽ1) · e(z(c)2 , g̃) · e(g, ṽ2)−1e(c, w̃) = 1

• e(z(c)1 , w̃(c)) · e(g, g̃)−1 = 1

4. k
(1)
Si,j = (g

(1)
i,j)s

16 This step will enable efficient proofs of valid constraining. The generation of such signatures can also be
performed by the bank, without impact on the security

38

5. k
(2)
Si,j = (g

(2)
i,j)s+usk

6. TSi,j = ((g
(3)
i,j)s · gusk·H(mpk||info), (g

(4)
i,j)s · gusk)

7. τ is valid:

• e(τ1, X̃ · g̃
usk·H′(mpk||V ||info||k(1)Si,j ||k

(2)
Si,j
||TSi,j)) · e(τ2, g̃)−1 = 1

The elements (k
(1)
Si , k

(2)
Si , TSi , π) are then sent to the merchant who accepts them as a payment

if π is valid.

The remaining algorithms can straightforwardly be derived from our generic framework since
they do not really depend on the instantiations of our signature schemes. Nevertheless, in prac-
tice, we note that we can reduce the complexity of the Deposit procedure. Indeed, each of

our serial numbers SNj theoretically requires to evaluate two CPRFs F1.CEvalSi(k
(1)
Si , j) and

F2.CEvalSi(k
(2)
Si , j). However a fraud only occurs when the outputs of both PRFs collide with

the outputs obtained from a different transcript. We can then simply compute F1.CEvalSi(k
(1)
Si , j)

and stores it as a partial serial number. In case of collision (which is very unlikely, unless an
active attack occurs), the other half of SNj would be computed to eliminate false positives.

Efficiency. We here only focus on the spending complexity, since the Withdraw algorithm only
involves few exponentiations and since the complexity of the Deposit algorithm is the same as
the one from [CPST15a], if we use the trick described above.

One can note that spending an amount V = 2i can be done in constant time, for any
i ∈ [0,m]. We could handle any amount in constant time if we had use the implicit CPRF
in [PST17], but at the cost of a less standard assumption.

The bulk of the spending process is the generation of the NIZK proof. Indeed, the serial
number and the double spending tag only represents 2 elements of G1, each. Using the Groth-
Sahai proofs systems, the commitments to the secret variables represent 24 elements of G1 and
4 elements of G2. Proving all the relations we have listed above represents 18 elements of G1

and 34 elements of G2. Therefore, the whole Spend transcript contains 46 elements of G1 and
38 elements of G2, which is very similar to the complexity of the (unsecure) standard model
construction described in the full version of [CPST15a].

11 Conclusion

Decades after their introduction, divisible e-cash systems are still remarkably hard to design, and
even to analyse. Existing schemes are based on intricate mechanisms, tailored to very specific
settings, and so can hardly be reproduced in different contexts. Moreover, such mechanisms
often rely on ad-hoc computational problems whose intractability is hard to assess.

In this paper we introduce the first frameworks for divisible e-cash systems that only use
constrained PRFs and very standard cryptographic primitives. We prove the security of our
global constructions assuming that each of the building blocks achieve some properties that we
identify.

Our work thus presents this complex primitive in a new light, highlighting its strong relations
with constrained PRFs. More specifically, it shows that the bulk of the design of a divisible e-
cash system is the construction of a constrained PRF with some specific features. We therefore
hope that our results will encourage designers of constrained PRFs to add these features to their
constructions, so as to implicitly define a new divisible e-cash scheme. We in particular believe
that it is an important step towards a post-quantum divisible e-cash system.

Acknowledgements

We thank Benôıt Libert for very helpful discussions on the exculpability issue of previous works.
This work is supported in part by the European Union PROMETHEUS Project (Horizon 2020

39

Research and Innovation Program, Grant Agreement no. 780701) and the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – Crypto-
Cloud).

References

AGHO11. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-
preserving signatures in asymmetric bilinear groups. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 649–666. Springer, Heidelberg, August 2011.

ASM08. Man Ho Au, Willy Susilo, and Yi Mu. Practical anonymous divisible e-cash from bounded accumu-
lators. In Gene Tsudik, editor, FC 2008, volume 5143 of LNCS, pages 287–301. Springer, Heidelberg,
January 2008.

BCF+11. Olivier Blazy, Sébastien Canard, Georg Fuchsbauer, Aline Gouget, Hervé Sibert, and Jacques Traoré.
Achieving optimal anonymity in transferable e-cash with a judge. In Abderrahmane Nitaj and David
Pointcheval, editors, AFRICACRYPT 11, volume 6737 of LNCS, pages 206–223. Springer, Heidelberg,
July 2011.

BCFK15. Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss. Anonymous transfer-
able E-cash. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 101–124. Springer,
Heidelberg, March / April 2015.

BCN+10. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Get shorty
via group signatures without encryption. In Juan A. Garay and Roberto De Prisco, editors, SCN 10,
volume 6280 of LNCS, pages 381–398. Springer, Heidelberg, September 2010.

BFP+15. Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens. Key-
homomorphic constrained pseudorandom functions. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 31–60. Springer, Heidelberg, March 2015.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.
In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg,
March 2014.

BKM17. Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs from standard
lattice assumptions. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 415–445. Springer, Heidelberg, May 2017.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic
PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013.

BLW17. Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In Serge
Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer, Heidelberg, March
2017.

BMW03. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In Eli Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 614–629. Springer, Heidelberg, May 2003.

BSZ05. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic
groups. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer,
Heidelberg, February 2005.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300.
Springer, Heidelberg, December 2013.

CFN90. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, Heidelberg, August 1990.

CG07. Sébastien Canard and Aline Gouget. Divisible e-cash systems can be truly anonymous. In Moni Naor,
editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 482–497. Springer, Heidelberg, May 2007.

CG08. Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In Steven M. Bellovin, Rosario
Gennaro, Angelos D. Keromytis, and Moti Yung, editors, ACNS 08, volume 5037 of LNCS, pages 207–
223. Springer, Heidelberg, June 2008.

CG10. Sébastien Canard and Aline Gouget. Multiple denominations in e-cash with compact transaction data.
In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages 82–97. Springer, Heidelberg, January
2010.

CGT08. Sébastien Canard, Aline Gouget, and Jacques Traoré. Improvement of efficiency in (unconditional)
anonymous transferable e-cash. In Gene Tsudik, editor, FC 2008, volume 5143 of LNCS, pages 202–
214. Springer, Heidelberg, January 2008.

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

CHL05. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer, Heidelberg, May 2005.

CP93. David Chaum and Torben P. Pedersen. Transferred cash grows in size. In Rainer A. Rueppel, editor,
EUROCRYPT’92, volume 658 of LNCS, pages 390–407. Springer, Heidelberg, May 1993.

40

CPST15a. Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. Divisible E-cash made
practical. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 77–100. Springer,
Heidelberg, March / April 2015.

CPST15b. Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. Scalable divisible E-cash.
In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS
15, volume 9092 of LNCS, pages 287–306. Springer, Heidelberg, June 2015.

Duc10. Léo Ducas. Anonymity from asymmetry: New constructions for anonymous HIBE. In Josef Pieprzyk,
editor, CT-RSA 2010, volume 5985 of LNCS, pages 148–164. Springer, Heidelberg, March 2010.

FPV09. Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable constant-size fair e-cash.
In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS 09, volume 5888 of LNCS, pages
226–247. Springer, Heidelberg, December 2009.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April
2008.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 13, pages 669–684. ACM Press, November 2013.

LLNW17. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-
based PRFs and applications to E-cash. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 304–335. Springer, Heidelberg, December
2017.

Mär15. Patrick Märtens. Practical divisible e-cash. IACR Cryptology ePrint Archive, 2015:318, 2015.
OO92. Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor,

CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer, Heidelberg, August 1992.
PS96. David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Kwangjo Kim

and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 252–265. Springer,
Heidelberg, November 1996.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor, CT-
RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg, February / March 2016.

PST17. David Pointcheval, Olivier Sanders, and Jacques Traoré. Cut down the tree to achieve constant
complexity in divisible E-cash. In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages
61–90. Springer, Heidelberg, March 2017.

41

	Divisible E-Cash from Constrained Pseudo-Random Functions

