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Abstract. In (TCC 2017), Hofheinz, Hövelmanns and Kiltz provided a
fine-grained and modular toolkit of generic key encapsulation mechanism
(KEM) constructions, which were widely used among KEM submissions
to NIST Post-Quantum Cryptography Standardization project. The se-
curity of these generic constructions in the quantum random oracle model
(QROM) has been analyzed by Hofheinz, Hövelmanns and Kiltz (TCC
2017), Saito, Xagawa and Yamakawa (Eurocrypt 2018), and Jiang et al.
(Crypto 2018). However, the security proofs from standard assumptions
are far from tight. In particular, the factor of security loss is q and the
degree of security loss is 2, where q is the total number of adversarial
queries to various oracles.
In this paper, using semi-classical oracle technique recently introduced
by Ambainis, Hamburg and Unruh (ePrint 2018/904), we improve the
results in (Eurocrypt 2018, Crypto 2018) and provide tighter security
proofs for generic KEM constructions from standard assumptions. More
precisely, the factor of security loss q is reduced to be

√
q. In addition, for

transformation T that turns a probabilistic public-key encryption (PKE)
into a determined one by derandomization and re-encryption, the degree
of security loss 2 is reduced to be 1. Our tighter security proofs can
give more confidence to NIST KEM submissions where these generic
transformations are used, e.g., CRYSTALS-Kyber etc.

Keywords: quantum random oracle model · key encapsulation mecha-
nism · generic construction

1 Introduction

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] is wide-
ly accepted as a standard security notion for a key encapsulation mechanism
(KEM). Random oracle model (ROM) [2] is an idealized model, where a hash



function is idealized to be a publicly accessible random oracle (RO). Gener-
ic constructions of IND-CCA-secure KEMs in the ROM are well studied by
Dent [3] and Hofheinz, Hövelmanns and Kiltz [4]. Essentially, these generic con-
structions are categorized as variants of Fujisaki-Okamoto (FO) transformation
(denote these transformations by FO transformations for brevity) [5, 6], includ-

ing FO�⊥, FO⊥, FO�⊥m, FO⊥m, QFO�⊥m and QFO⊥m, where m5 (without m) mean-
s K = H(m) (K = H(m, c)), �⊥ (⊥) means implicit (explicit) rejection, FO
denotes the class of transformations that turn a PKE with standard security
(one-wayness against chosen-plaintext attacks (OW-CPA) or indistinguishabil-
ity against chosen-plaintext attacks (IND-CPA)) into an IND-CCA KEM, Q
means an additional Targhi-Unruh hash [7] (a length-preserving hash function
that has the same domain and range size) is added into the ciphertext, and
variants of REACT/GEM transformation [8, 9] (denote these transformations

by modular FO transformations), including U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m,
where U denotes the class of transformations that turn a PKE with non-standard
security (e.g., OW-PCA, one-way against plaintext checking attack [8, 9]) or a
deterministic PKE (DPKE, where the encryption algorithm is deterministic)
into an IND-CCA-secure KEM.

Recently, post-quantum security of these generic transformations has gath-
ered great interest [4, 10–15] due to the widespread adoption [11, Table 1] in KEM
submissions to NIST Post-Quantum Cryptography Standardization Project [16],
of which the goal is to standardize new public-key cryptographic algorithms
with security against quantum adversaries. Quantum adversaries may execute
all offline primitives such as hash functions on arbitrary superpositions, which
motivated the introduction of quantum random oracle model (QROM) [17]. As
Boneh et al. have argued [17], for fully evaluating the post-quantum security,
the analysis in the QROM is crucial.

When proving a security of a cryptographic scheme S under a hardness as-
sumption of a problem P , we usually construct a reduction algorithm A against
P that uses an adversary B against S as a subroutine. Let (T, ε) and (T ′, ε′)
denote the running times and advantages of A and B, respectively. The reduc-
tion is said to be tight if T ≈ T ′ and ε ≈ ε′. Otherwise, if T � T ′ or ε � ε′,
the reduction is non-tight. Generally, the tightness gap, (informally) defined by
Tε′

T ′ε [18], is used to measure the quality of a reduction. Tighter reductions with
smaller tightness gap are desirable for practice cryptography especially in large-
scale scenarios, since the tightness of a reduction determines the strength of the
security guarantees provided by the security proof.

In [4, 10, 11] and this work, all the security reductions for (modular) FO

transformations in the QROM satisfy (1) T is about T ′, i.e., T ≈ T ′; (2) ε′ ≈ κε 1
τ ,

where κ and τ in the following are respectively denoted as the factor and degree
of security loss6. Let q be the total number of adversarial queries to various
oracles.

5 The message m here is picked at random from the message space of underlying PKE.
6 When comparing the tightness of different reductions, we assume perfect correctness

of underlying scheme for brevity.
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– In [4], Hofheinz et al. presented QROM security reductions for QFO�⊥m and

QFO⊥m with κ = q
3
2 and τ = 4, for QU�⊥m and QU⊥m with κ = q and τ = 2.

– In [10], Saito, Xagawa and Yamakawa presented a tight security proof (i.e.,

κ = 1 and τ = 1) for U�⊥m under a new (non-standard) security assumption
called disjoint simulatability (DS). Moreover, two generic transformation,
TPunc and KC, were given to construct a DS-secure DPKE from standard
assumptions, with security reductions κ = q and τ = 2.

– In [11], Jiang et al. presented security reductions for FO�⊥, FO�⊥m, T , U�⊥, U⊥,

U�⊥m and U⊥m with κ = q and τ = 2.

As seen above, above security proofs of (modular) FO transformations from
standard assumptions are far from tight. Recently, To better assess the security
of lattice-based submissions, Ducas and Stehlé [19] suggested 10 questions that
NIST should be asking the community. The 10-th question [19, Problem 10] is
on this non-tightness in the QROM. To better understand this, they asked that

Can the tightness of those reductions be improved?

1.1 Our Contributions

In this paper, we give a positive answer and show that tightness of these re-
ductions can be improved. Specifically, we provide tighter security proofs for
these generic transformations in [4, 10] by using semi-classical oracle technique
recently introduced by Ambainis, Hamburg and Unruh [20]. The improvements
of the factor κ and the degree τ of security loss are summarized in Table 1. The
detailed comparison with previous results in [10, 11] is shown in Table 2, where
ε (ε′) is the advantage of an adversary against security of underlying (result-
ing) cryptographic protimitive and δ is the correctness error (the probability of
decryption failure in a legitimate execution of a scheme).

Table 1: Improvements of the factor κ and the degree τ of security loss.

(κ, τ) TPunc, KC T FO�⊥m, FO�⊥, U�⊥, U⊥,U�⊥m, U⊥m

SXY18 [10] (q, 2) – –
JZC+18 [11] – (q, 2) (q, 2)

Our work (
√
q, 2) (q, 1) (

√
q, 2)

1. For FO�⊥m and FO�⊥, the security loss factor q in [11] is reduced to be
√
q.

Specifically, we give a reduction from IND-CPA security of underlying PKE
to IND-CCA security of resulting KEM with ε′ ≈ √qε+q

√
δ, which is tighter

than ε′ ≈ q
√
ε+ q

√
δ in [11] from OW-CPA security of underlying PKE.
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Table 2: Comparisons between previous works [10, 11] and our work.

Transformations SXY18 [10] Our results

PKE′=TPunc(PKE, G)
IND-CPA⇒DS

ε′ ≈ q
√
ε

IND-CPA⇒DS
ε′ ≈ √qε

DPKE′=KC(DPKE, H)
OW-CPA⇒DS

ε′ ≈ q
√
ε

OW-CPA⇒DS
ε′ ≈ √qε

Transformations JZC+18 [11] Our results

PKE′=T(PKE, G)
OW-CPA⇒OW-qPCA

ε′ ≈ q
√
ε+ q

√
δ

IND-CPA⇒OW-qPCA

ε′ ≈ qε+ q
√
δ

KEM-I=FO�⊥m(PKE, G,H, f)
OW-CPA⇒IND-CCA

ε′ ≈ q
√
ε+ q

√
δ

IND-CPA⇒IND-CCA

ε′ ≈ √qε+ q
√
δ

KEM-II=FO�⊥(PKE, G,H)
OW-CPA⇒IND-CCA

ε′ ≈ q
√
ε+ q

√
δ

IND-CPA⇒IND-CCA

ε′ ≈ √qε+ q
√
δ

KEM-III=U�⊥(PKE′, H)
OW-qPCA⇒IND-CCA

ε′ ≈ q
√
ε

OW-qPCA⇒IND-CCA
ε′ ≈

√
qε+ qδ

KEM-IV=U⊥(PKE′, H)
OW-qPVCA⇒IND-CCA

ε′ ≈ q
√
ε

OW-qPVCA⇒IND-CCA
ε′ ≈

√
qε+ qδ

KEM-V=U�⊥m(DPKE′, H)
OW-CPA⇒IND-CCA

ε′ ≈ q
√
ε+ q

√
δ

OW-CPA⇒IND-CCA
ε′ ≈

√
qε+ qδ

KEM-VI=U⊥m(DPKE′, H)
OW-VA⇒IND-CCA

ε′ ≈ q
√
ε+ q

√
δ

OW-VA⇒IND-CCA
ε′ ≈

√
qε+ qδ

2. For T, the quadratic security loss is reduced to be a linear one. Particularly,
we provide a reduction from IND-CPA security of underlying PKE to OW-
qPCA security of resulting PKE with ε′ ≈ qε+q

√
δ, while previous reduction

in [11] is from OW-CPA security of underlying PKE with ε′ ≈ q
√
ε+ q

√
δ.

3. For TPunc and KC, the security loss factor q in [10] is reduced to be
√
q. Both

IND-CPA security of underlying PKE and OW-CPA of underlying DPKE
can be reduced to DS security of DPKE by TPunc and KC with ε′ ≈ √qε7,
respectively. While, under the same assumptions, previous reductions [10]
are with ε′ ≈ q

√
ε.

4. For U�⊥, U⊥, U�⊥m and U⊥m, the security loss factor q in [11] is also reduced to√
q. Particularly, OW-qPCA (one-way against quantum plaintext checking

attacks) security and OW-qPVCA (one-way against quantum plaintext and
(classical) validity checking attacks) security of underlying PKE, OW-CPA
security and OW-VA (one-way against validity checking attacks) security of
underlying DPKE can be reduced to IND-CCA security of resulting KEM
with ε′ ≈

√
qε+ qδ. While, under the same assumptions, previous reductions

in [11] are with ε′ ≈ q
√
ε or ε′ ≈ q

√
ε+ q

√
δ.

7 Here, for TPunc and KC, we just follow [10] and assume the perfect correctness of
underlying PKE.
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According to [11, Table 1], our results directly apply to the NIST KEM submis-
sions [16], including CRYSTALS-Kyber, LAC, SABER, SIKE and LEDAkem,
and provide tighter reductions than previous known [4, 11]. For the submis-

sions [16] where QFO�⊥m and QFO�⊥ are adopted, including FrodoKEM, KINDI,
Lizard, NewHope, OKCN-AKCN-CNKE, Round2, Titanium, BIG QUAKE and
LEDAkem, our results also provide tighter reductions than [11] without requiring
the additional Targhi-Unruh hash.

1.2 Technique

In security proofs of (modular) FO transformations [4, 11, 10], reprogramming
random oracle is an important trick. The security loss in current proofs [4, 11, 10]
arises from the reprogramming of quantum random oracle. Here, we focus on the
techniques of improving the analysis of quantum random oracle programming.

One way to hiding (OW2H) lemma [21, Lemma 6.2] is a practical tool to
prove the indistinguishability between games where the random oracles are re-
programmed. Roughly speaking, OW2H lemma states that the distinguishing ad-
vantage |Pleft − Pright| of an oracle algorithm AO that issuing at most q queries
to an oracle O distinguishes Left (O is not reprogrammed) from Right (O is
reprogrammed at x∗), can be bounded by 2q

√
Pguess, that is

|Pleft − Pright| ≤ 2q
√
Pguess, (1)

where Pguess is the success probability of another oracle algorithm B guessing x∗

by running AO and measuring one of AO’s query uniformly at random. To apply
OW2H lemma to prove the security of some certain cryptographic schemes, [11,
10, 13] generalized the OW2H lemma. However, these generalizations do not give
tighter bounds.

Very recently, Ambainis et al. [20] further improved the OW2H lemma by
giving higher flexibility as well as tighter bounds. Specifically, a new technique
called semi-classical oracle was developed, and semi-classical OW2H lemma was
given with tighter bounds. Informally, a semi-classical oracle OSCx∗ measures the
output |fx∗(x)〉 instead of |x〉, where fx∗(x) = 1 if x = x∗ and 0 otherwise.
Let O\x∗ be an oracle that first queries semi-classical OSCx∗ and then O. Semi-
classical OW2H lemma shows that above |Pleft − Pright| can be bounded by
2
√
qPfind, i.e.,

|Pleft − Pright| ≤ 2
√
qPfind, (2)

where Pfind is the probability of the event Find that semi-classical oracle OSCx∗
ever outputs 1 during the execution AO\x

∗
.

Next, we show how to use above semi-classical OW2H lemma to improve the
security proofs of (modular) FO transformations [11, 10]. The primal obstacle is
the simulation of the semi-classical oracle OSCx∗ , which is quantumly accessable.
In particular, the key is simulation of fx∗ . We overcome this by making the best
of specific properties of different FO-like KEM constructions. Specifically, in
security proofs of (modular) FO transformations, x∗ is instantiated with m∗ of
which the encryption is exactly challenge ciphertext c∗.
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– For KC, U�⊥m and U⊥m, underlying PKE is deterministic. fm∗(m) can be sim-
ulated by verifying whether the encryption of m is c∗.

– For U�⊥ and U⊥, underlying PKE satisfies OW-qPCA security or OW-
qPVCA security. fm∗(m) can be simulated by verifying whether PCO(m, c∗) =
1, where Pco(m, c) is the plaintext checking oracle that returns 1 iff decryp-
tion of ciphertext c yields message m.

– For TPunc, underlying PKE satisfies IND-CPA security. We note that in
IND-CPA security game, m∗ ∈ {m0,m1}, where m0 and m1 are chosen by
the adversary. Thus, the simulator can simulate fm∗ by setting m∗ = m0 or
m∗ = m1. This trick comes from [20, Sec. 4.2], where Ambainis et al. argued
the hardness of inverting a random oracle with leakage.

– For T , FO�⊥m, FO�⊥, OW-CPA security of underlying PKE is assumed in
previous security proofs in [4, 11], where OW2H lemma is used. When using
semi-classical OW2H lemma, we need to a stronger assumption of underlying
PKE, IND-CPA security, to follow above mentioned trick to simulate fm∗ .

Directly utilizing semi-classical OW2H lemma with bound (2) instead of

OW2H lemma with bound (1), we improve the security reductions for FO�⊥m,

FO�⊥, TPunc, KC, U�⊥, U⊥, U�⊥m and U⊥m, and reduce security loss factor from q
to
√
q.

By introducing Bures distance, Ambainis et al. [20] also gave another tighter
bound, ∣∣∣√Pleft −√Pright∣∣∣ ≤ 2

√
qPfind. (3)

Apparently, as pointed by [20], if Pright is negligible, i.e., Pright ≈ 0, we can
approximately have |Pleft| / 4qPfind. In the security proofs of (modular) FO
transformations, roughly speaking, Pleft is the success probability of an adver-
sary against resulting cryptographic scheme, Pright is the corresponding “target
probability” (typically, 0 or 1/2) specified by concrete security definition, and
Pfind is the success probability of another adversary against underlying prim-
itive. Note that for OW-qPCA security, the “target probability” Pright = 0.
Thus, using semi-classical OW2H lemma with bound (3), we can further reduce
quadratic security loss in the proof of T in [11] to a linear one.

2 Preliminaries

Symbol description λ is denoted as a security parameter. K,M, C and R are
denoted as key space, message space, ciphertext space and randomness space,
respectively. Denote the sampling of a uniformly random element x in a finite

set X by x
$← X. Denote the sampling from some distribution D by x←D.

x =?y is denoted as an integer that is 1 if x = y, and otherwise 0. Pr[P : G]
is the probability that the predicate P holds true where free variables in P are
assigned according to the program in G. Denote deterministic (probabilistic)
computation of an algorithm A on input x by y := A(x) (y ← A(x)). Let |X| be
the cardinality of set X. AH means that the algorithm A gets access to the oracle
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H. f ◦ g(·) means f(g(·)). Following the work [4], we also make the convention
that the number qH of the adversarial queries to an oracle H counts the total
number of times H is executed in the experiment.

Note: All cryptographic primitives and corresponding security and correct-
ness definitions used in this paper are presented in Appendix A.

2.1 Quantum Random Oracle Model

In this section, we will present several existing lemmas that we need in our
security proofs.

Lemma 1 (Simulating the random oracle [22, Theorem 6.1]). Let H
be an oracle drawn from the set of 2q-wise independent functions uniformly at
random. Then the advantage any quantum algorithm making at most q queries
to H has in distinguishing H from a truly random function is identically 0.

Lemma 2 (Generic search problem [23, 24, 11]). Let γ ∈ [0, 1]. Let Z be
a finite set. F : Z → {0, 1} is the following function: For each z, F (z) = 1
with probability pz (pz ≤ γ), and F (z) = 0 else. Let N be the function with
∀z : N(z) = 0. If an oracle algorithm A makes at most q quantum queries to F
(or N), then

∣∣Pr[b = 1 : b← AF ]− Pr[b = 1 : b← AN ]
∣∣ ≤ 2q

√
γ.

Semi-classical oracle. Roughly speaking, semi-classical oracle OSCS only mea-
sures the output |fS(x)〉 but not the input |x〉, where fS is the indicator
function such that fS(x) = 1 if x ∈ S and 0 otherwise. Formally, for a query
to OSCS with

∑
x,z ax,z|x〉|z〉, OSCS does the following

1. initialize a single qubit L with |0〉,
2. transform

∑
x,z ax,z|x〉|z〉|0〉 into

∑
x,z ax,z|x〉|z〉|fS(x)〉,

3. measure L.
Then, after performing this semi-classical measurement, the query state will
become

∑
x,z:fS(x)=y

ax,z|x〉|z〉 (non-normalized) if the measurement outputs

y (y ∈ 0, 1).

Lemma 3 (Semi-classical OW2H [20, Theorem 1]). Let S ⊆ X be random.
Let O1, O2 be oracles with domain X and codomain Y such that O1(x) = O2(x)
for any x /∈ S. Let z be a random bitstring. (O1, O2, S and z may have arbitrary
joint distribution D.) Let OSCS be an oracle that performs the semi-classical mea-
surements corresponding to the projectors My, where My :=

∑
x∈X:fS(x)=y

|x〉〈x|
(y ∈ 0, 1). Let O2\S (“O2 punctured on S”) be an oracle that first queries OSCS
and then O2. Let AO1(z) be an oracle algorithm with query depth q. Denote
Find as the event that in the execution of AO2\S(z), OSCS ever outputs 1 during
semi-classical measurements. Let

Pleft : = Pr[b = 1 : (O1,O2, S, z)←D, b← AO1(z)]

Pright : = Pr[b = 1 : (O1,O2, S, z)←D, b← AO2(z)]

Pfind : = Pr[Find : (O1,O2, S, z)←D,AO2\S(z)].
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Then |Pleft − Pright| ≤ 2
√

(q + 1)Pfind and
∣∣√Pleft −√Pright∣∣ ≤ 2

√
(q + 1)Pfind.

The lemma also holds with bound
√

(q + 1)Pfind for alternative definition of

Pright = Pr[b = 1 ∧ ¬Find : (O1,O2, S, z)←D, b← AO2\S(z)].

Lemma 4 (Search in semi-classical oracle [20, Corollary 1]). Suppose
that S and z are independent, and that A is a q-query algorithm. Let Pmax :=

maxx∈X Pr[x ∈ S]. Then Pr[Find : AO
SC
S (z)] ≤ 4q · Pmax.

3 Improved security proofs for (modular) FO
transformations

In [4], Hofheinz et al. proposed several (modular) FO transformations, including

T, U�⊥, U⊥, U�⊥m, U⊥m, FO�⊥m and FO�⊥, of which the security in the QROM was

proven by [11, 10]. However, except the one for U�⊥m from DS security of under-
lying DPKE to IND-CCA security of resulting KEM [10], all the reductions are
non-tight due to the usage of OW2H lemma. To achieve a DS-secure DPKE,
[10] also gave two transformations, TPunc and KC, from an IND-CPA-secure
PKE and a OW-CPA-secure DPKE, respectively. But, the security reductions
for TPunc and KC are also non-tight due to the utilization of OW2H lemma.

In this section, we will show that if the underlying PKE is assumed to be

IND-CPA-secure, tighter reductions for FO�⊥m and T can be achieved by using
semi-classical oracle technique in [20]. As discussed in Sec. 1.2, we can also use

semi-classical oracle technique to obtain tighter security reductions for FO�⊥,
TPunc, KC, U�⊥, U⊥, U�⊥m and U⊥m. We present them in Appendix D.

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message
space M and randomness space R, hash functions G : M → R, H : M → K
and a pseudorandom function (PRF) f with key space Kprf , we associate KEM-

I=FO�⊥m[PKE,G,H,f ], see Fig. 1.

Gen′

1 : (pk, sk)← Gen

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk,m;G(m))

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 1: IND-CCA-secure KEM-I=FO�⊥m[PKE,G,H,f ]

Theorem 1 (PKE IND-CPA
QROM⇒ KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM-I, issuing at most qD queries to the
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decapsulation oracle Decaps, at most qG (qH) queries to the random oracle G
(H) ((qG + qH) ≥ 1), there exist an IND-CPA adversary A against PKE and
an adversary A′ against the security of PRF with at most qD classical queries

such that AdvIND-CCA
KEM-I (B) ≤ 2

√
(qG + qH + 1)AdvIND-CPA

PKE (A) + 2 (qG+qH+1)2

|M| +

AdvPRF(A′) + 4qG
√
δ and the running time of A is about that of B.

Proof. Here, we follow the proof skeleton of [11, Theorem 2]. Let B be an ad-
versary against the IND-CCA security of KEM-I, issuing at most qD queries to
the decapsulation oracle Decaps, at most qG (qH) queries to the random ora-
cle G (H). Denote ΩG, ΩH and ΩHq as the sets of all functions G : M → R,
H : M× C → K and Hq : C → K, respectively. Consider the games G0 − G9

in Fig. 2. Although the games G0 −G5 are essentially the same with the games
G0−G5 in prior proof of [11, Theorem 2], we still outline them here for readabil-
ity and completeness. In particular, to apply the semi-classical oracle techniques
in [20], we introduce games G6 −G9, which are different from the proof of [11,
Theorem 2], and essential for the improvement of tightness in this paper.

Game G0. Since game G0 is exactly the IND-CCA game,∣∣Pr[GB0 ⇒ 1]− 1/2
∣∣ = AdvIND-CCA

KEM-I (B).

Game G1. In game G1, the Decaps oracle is changed that the pseudorandom
function f is replaced by a random function H ′q. Obviously, any distinguisher
between G0 and G1 can be converted into a distinguisher A′ between f and H ′q
with at most qD classical queries. Thus,∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ AdvPRF(A′).

Let G′ be a random function such that G′(m) is sampled according to the
uniform distribution overRgood(pk, sk,m) := {r ∈ R : Dec(sk,Enc(pk,m; r)) =

m}. LetΩG′ be the set of all functionsG′. Define δ(pk, sk,m) =
|R\Rgood(pk,sk,m)|

|R|
as the fraction of bad randomness and δ(pk, sk) = maxm∈M δ(pk, sk,m). With
this notation δ = E[δ(pk, sk)], where the expectation is taken over (pk, sk)←Gen.

Game G2. In game G2, we replace G by G′ that uniformly samples from

“good” randomness at random, i.e., G′
$← ΩG′ . Following the same analysis

as in the proof of [11, Theorem 1], we can show that the distinguishing prob-
lem between G1 and G2 is essentially the distinguishing problem between G
and G′, which can be converted into a distinguishing problem between F1 and
F2, where F1 is a function such that F1(m) is sampled according to Bernoulli
distribution Bδ(pk,sk,m), i.e., Pr[F1(m) = 1] = δ(pk, sk,m) and Pr[F1(m) =
0] = 1− δ(pk, sk,m), and F2 is a constant function that always outputs 0
for any input. Thus, conditioned on a fixed (pk, sk) we obtain by Lemma 2,∣∣Pr[GB1 ⇒ 1 : (pk, sk)]− Pr[GB2 ⇒ 1 : (pk, sk)]

∣∣ ≤ 2qG
√
δ(pk, sk). By averaging

over (pk, sk)←Gen we finally obtain∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]
∣∣ ≤ 2qGE[

√
δ(pk, sk)]≤2qG

√
δ.
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GAMES G0 −G9

1 : (pk, sk′)← Gen′;G
$← ΩG

2 : G′
$← ΩG′ ;G := G′ //G2 −G4

3 : g(·) = Enc(pk, ·;G(·))

4 : H
$← ΩH //G0 −G2

5 : Hq, H
′
q

$← ΩHq ;m∗
$←M; r∗ := G(m∗)

6 : r∗
$←R //G7 −G9

7 : c∗ := Enc(pk,m∗; r∗) //G0 −G8

8 : m′∗
$←M //G9

9 : c∗ := Enc(pk,m′∗; r∗) //G9

10 : k∗0 := H(m∗); k∗1
$← K; b

$← {0, 1}

11 : k∗0
$← K //G7 −G9

12 : b′ ← BG,H,Decaps(pk, c∗, k∗b ) //G0 −G5

13 : G̈ := G; G̈(m∗)
$← R //G6 −G7

14 : Ḧ := H; Ḧ(m∗)
$← K //G6 −G7

15 : g(·) = Enc(pk, ·; G̈\m∗(·)) //G6 −G7

16 : b′ ← BG̈\m
∗,Ḧ\m∗,Decaps(pk, c∗, k∗b )//G6 −G7

17 : g(·) = Enc(pk, ·;G\m∗(·)) //G8 −G9

18 : b′ ← BG\m
∗,H\m∗,Decaps(pk, c∗, k∗b )//G8 −G9

19 : return b′ =?b

Decaps (c 6= c∗) //G0 −G3

1 : Parse sk′ = (sk, k)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : K := H(m′)

5 : else return

6 : return K := f(k, c)//G0

7 : return K := H ′q(c)//G1 −G3

H(m) //G3 −G9

1 : return Hq(g(m))

Decaps (c 6= c∗) //G4 −G9

1 : return K := Hq(c)

Fig. 2: Games G0-G9 for the proof of Theorem 1

Game G3. In G3, H is substituted with Hq ◦ g, where g(·) = Enc(pk, ·;G(·)).
Since the G in this game only samples “good” randomness, the function g is
injective. Thus, Hq ◦ g is a perfect random function. Therefore, G2 and G3 are
statistically indistinguishable and we have Pr[GB2 ⇒ 1] = Pr[GB3 ⇒ 1].
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Game G4. In game G4, the Decaps oracle is changed that it makes no use of
the secret key sk′ any more. When B queries the Decaps oracle on c (c 6= c∗),
K := Hq(c) is returned as the response. Let m′ := Dec(sk, c) and consider the
following two cases.

Case 1: Enc(pk,m′;G(m′)) = c. In this case,H(m′) = Hq(c) and both Decaps
oracles in G3 and G4 return the same value.

Case 2: Enc(pk,m′;G(m′)) 6= c. In this case, H ′q(c) and Hq(c) are respectively
returned in G3 and G4. In G3, H ′q(c) is uniformly random and independent
of the oracles G and H in B’s view. In G4, queries to H can only reveal
Hq(ĉ), where ĉ satisfies g(m̂) = ĉ for some m̂. If there exists a m̂ such that
Enc(pk, m̂;G(m̂)) = c, m̂ = m′ since G in this game only samples from
“good” randomness. Thus, Enc(pk,m′;G(m′)) = c will contradict the con-
dition Enc(pk,m′;G(m′)) 6= c. Consequently, Hq(c) is also a fresh random
key just like H ′q(c) in B’s view. Hence, in this case, the output distributions
of the Decaps oracles in G3 and G4 are identical in B’s view.

As a result, the output distributions of G3 and G4 are statistically indistinguish-
able and we have Pr[GB3 ⇒ 1] = Pr[GB4 ⇒ 1].

Game G5. In game G5, we replace G′ by G, that is, G in this game is reset to
be an ideal random oracle. Then, following the same analysis as in bounding the
difference between G1 and G2, we can have∣∣Pr[GB4 ⇒ 1]− Pr[GB5 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

Let G̈ (Ḧ) be the function such that G̈(m∗) (Ḧ(m∗)) is picked uniformly
at random from R (K), and G̈ = G (Ḧ = H) everywhere else. In the proof of
[11, Theorem 2], G and H in game G5 are directly reprogrammed to G̈ and Ḧ,
respectively, and then the OW2H lemma is used to argue the indistinguishability.

Here, in order to use the semi-classical OW2H lemma, we reprogram G and
H in game G5 with an additional semi-classical oracle. Thereby, we need to
consider the simulation of such a semi-classical oracle, which is unnecessary in
the proof of [11, Theorem 2]. As discussed in Sec. 1.2, this semi-classical oracle
can be simulated under the IND-CPA security assumption. Thus, we present
following gamehops from G6 to G9.

Game G6. In game G6, replace G and H by G̈\m∗ and Ḧ\m∗ respectively. For
B’s query to G̈\m∗ ( Ḧ\m∗), G̈\m∗ (Ḧ\m∗) will first query a semi-classical ora-
cle OSCm∗ , i.e., perform a semi-classical measurement, and then query G̈ (Ḧ). Let
Find be the event that OSCm∗ ever outputs 1 during semi-classical measurements
of B′s queries to G̈\m∗ and Ḧ\m∗. Note that if the event ¬Find that OSCm∗ always
outputs 0 happens, B never learns the values of G(m∗) and H(m∗) and bit b is
independent of B’s view. That is, Pr[GB6 ⇒ 1 : ¬Find] = 1/2. Hence,

Pr[GB6 ⇒ 1 ∧ ¬Find : G6] = 1/2 Pr[¬Find : G6] = 1/2(1− Pr[Find : G6]).
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Let (G×H)(·) = (G(·), H(·)), (G̈×Ḧ)(·) = (G̈(·), Ḧ(·)), and (G̈×Ḧ)\m∗(·) =
(G̈\m∗(·), Ḧ\m∗(·)). If one wants to make queries to G (or H) by accessing to
G × H, he just needs to prepare a uniform superposition of all states in the
output register responding to H (or G). The number of total queries to G×H
is at most qG + qH .

AG×H(pk, c∗, H(m∗), Hq)

1 : k∗0 = H(m∗); k∗1
$← K; b

$← {0, 1}

2 : b′ ← BG,H,Decaps(pk, c∗, k∗b )

3 : return b′ =?b

Decaps (c 6= c∗)

1 : return K := Hq(c)

Fig. 3: AG×H for the proof of Theorem 1.

Let AG×H be an oracle algorithm on input (pk, c∗, H(m∗), Hq)
8 in Fig.

3. Sample pk, m∗, G, Hq, H and c∗ in the same way as G5 and G6, i.e.,

(pk, sk) ← Gen, m∗
$← M, G

$← ΩG, Hq
$← ΩHq , H := Hq ◦ g and c∗ =

Enc(pk,m∗;G(m∗)). Then, AG×H(pk, c∗, H(m∗), Hq) perfectly simulates G5,

and A(G̈×Ḧ)\m∗(pk, c∗, H(m∗), Hq) perfectly simulates G6. Applying Lemma

3 with X = M, Y = (R,K), S = {m∗}, O1 = G×H, O2 = G̈ × Ḧ and
z = (pk, c∗, H(m∗), Hq) and A, we can have∣∣Pr[GB5 ⇒ 1]− Pr[GB6 ⇒ 1 ∧ ¬Find : G6]

∣∣ ≤√(qG + qH + 1) Pr[Find : G6].

Game G7. In game G7, replace r∗ := G(m∗) and k∗0 := H(m∗) by r∗
$← R and

k∗0
$← K. We do not care about B’s output, but only whether the event Find

happens. Note that in G6 and G7, there is no information of (G(m∗), H(m∗)) in
the oracle G̈× Ḧ. Thus, apparently, Pr[Find : G6] = Pr[Find : G7]].

Game G8. In game G8, replace G̈ and Ḧ by G and H. Since G(m∗) and H(m∗)
are never used in simulating B’s view, such a replacement causes no difference
from B’s view and we have Pr[Find : G7] = Pr[Find : G8].

Game G9. In game G9, replace m∗ by m′∗. Note that the information of m∗ in
this game only exists in the oracles G\m∗ and H\m∗. By Lemma 4,

Pr[Find : G9] ≤ 4(qG + qH/|M|).

8 Although Hq here is the whole truth table of Hq, it is just taken as an oracle to
make queries (with at most qH times) in algorithm A. Thus, we can also take Hq as
an accessible oracle instead of a whole truth table.
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A(1λ, pk)

1 : m∗,m′
∗ $←M;m0 = m∗;m1 = m′

∗
; k∗

$← K

2 : b′′
$← {0, 1}; r∗ $←R; c∗ = Enc(pk,mb′′ ; r

∗)

3 : Pick a 2qG(2qH)-wise function G(Hq)

4 : b′ ← BG\m0,H\m0,Decaps(pk, c∗, k∗)

5 : return Find

H(m)

1 : g(·) := Enc(pk, ·;G\m0(·))
2 : return Hq ◦ g(m)

Decaps (c 6= c∗)

1 : return K := Hq(c)

Fig. 4: Adversary A for the proof of Theorem 1

Next, we show that any adversary distinguishing G8 from G9 can be convert-
ed into an adversary against the IND-CPA security of underlying PKE. Con-
struct an adversary A on input (1λ, pk) as in Fig. 4. Then, according to Lemma
1, if b′′ = 0, A perfectly simulates G8 and Pr[Find : G8] = Pr[1 ← A : b′′ = 0].
If b′′ = 1, A perfectly simulates G9 and Pr[Find : G9] = Pr[1 ← A : b′′ = 1].
Since AdvIND-CPA

PKE (A) = 1/2 |Pr[1← A : b′′ = 0]− Pr[1← A : b′′ = 1]|,

|Pr[Find : G8]− Pr[Find : G9]| = 2AdvIND-CPA
PKE (A).

Finally, combing this with the bounds derived above, we have AdvIND-CCA
KEM-I (B)

≤ AdvPRF(A′) + 4qG
√
δ + 1/2 Pr[Find : G6] +

√
(qG + qH + 1) Pr[Find : G6]

≤ AdvPRF(A′) + 4qG
√
δ +

√
2(qG + qH + 1) Pr[Find : G6]

≤ AdvPRF(A′) + 4qG
√
δ + 2

√
(qG + qH + 1)AdvIND-CPA

PKE (A) + 2
(qG + qH + 1)2

|M|
.

ut

The transformation T [25, 4] turns a probabilistic PKE into a determined one by
derandomization and re-encryption [25, 26]. To a PKE=(Gen, Enc, Dec) with
message space M and randomness space R, and a random oracle G :M→ R,
we associate PKE′ = (Gen′, Enc′, Dec′) = T[PKE, G], see Fig. 5. As discussed
in Sec. 1.2, for T, using semi-classical OW2H lemma with bound (3), we can
improve the reduction in [11] and reduce the quadratic security loss to a linear
one. The complete proof of Theorem 2 is presented in Appendix B.

Gen′

1 : (pk, sk)← Gen

2 : return (pk, sk)

Enc′(pk,m)

1 : c = Enc(pk,m;G(m))

2 : return c

Dec′(sk, c)

1 : m′ := Dec(sk, c)

2 : if Enc(pk,m′;G(m′)) = c

3 : return m′

4 : else return ⊥

Fig. 5: OW-qPCA-secure PKE′ = T[PKE, G]
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Theorem 2 (PKE IND-CPA
QROM⇒ PKE′ OW-qPCA). If PKE is δ-correct,

for any OW-qPCA B against PKE′, issuing at most qG quantum queries to
the random oracle G and at most qP quantum queries to the plaintext check-
ing oracle Pco, there exists an IND-CPA adversary A against PKE such that

Adv
OW−qPCA
PKE′ (B) ≤ 4qG

√
δ+2(qG+2)AdvIND-CPA

PKE (A)+4 (qG+2)2

|M| and the running

time of A is about that of B.
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A Cryptographic Primitives

Definition 1 (Public-key encryption). A public-key encryption scheme PKE
consists of three algorithms. The key generation algorithm, Gen, is a probabilis-
tic algorithm which on input 1λ outputs a public/secret key-pair (pk, sk). The
encryption algorithm Enc, on input pk and a message m ∈M, outputs a cipher-
text c← Enc(pk,m). If necessary, we make the used randomness of encryption

explicit by writing c := Enc(pk,m; r), where r
$← R (R is the randomness s-

pace). The decryption algorithm Dec, is a deterministic algorithm which on input
sk and a ciphertext c outputs a message m := Dec(sk, c) or a rejection symbol
⊥/∈ M. A PKE is determined if Enc is deterministic. We denote DPKE to
stand for a determined PKE.

Definition 2 (Correctness [4]). A public-key encryption scheme PKE is δ-
correct if E[ max

m∈M
Pr[Dec(sk, c) 6= m : c ← Enc(pk,m)]] ≤ δ, where the expecta-

tion is taken over (pk, sk)← Gen. A PKE is perfectly correct if δ = 0.

Definition 3 (DS-secure DPKE [10]). Let DM denote an efficiently sam-
pleable distribution on a setM. A DPKE scheme (Gen,Enc,Dec) with plaintext
and ciphertext spaces M and C is DM-disjoint simulatable if there exists a PPT
algorithm S that satisfies the following,

(1) Statistical disjointness:

DisjPKE,S := max
(pk,sk)∈Gen(1λ;Rgen)

Pr[c ∈ Enc(pk,M) : c← S(pk)]

is negligible, where Rgen denotes a randomness space for Gen.
(2) Ciphertext indistinguishability: For any PPT adversary A,

AdvDS-IND
PKE,DM,S(A) :=

∣∣∣∣∣∣Pr

[
A(pk, c∗)→ 1 :

(pk, sk)← Gen;m∗ ← DM;
c∗ = Enc(pk,m∗)]

]
−Pr[A(pk, c∗)→ 1 : (pk, sk)← Gen; c∗ ← S(pk)]

∣∣∣∣∣∣
is negligible.

Definition 4 (OW-ATK-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message spaceM. For ATK ∈ {CPA,VA, qPCA,
qPVCA} [11], we define OW-ATK games as in Fig. 6, where

OATK :=


⊥ ATK = CPA

Val(·) ATK = VA
Pco(·, ·) ATK = qPCA

Pco(·, ·),Val(·) ATK = qPVCA.
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Define the OW-ATK advantage function of an adversary A against PKE as
AdvOW-ATK

PKE (A) := Pr[OW-ATKAPKE = 1].

Game OW-ATK

1 : (pk, sk)← Gen

2 : m∗
$←M

3 : c∗ ← Enc(pk,m∗)

4 : m′ ← AOATK(pk, c∗)

5 : return m′ =?m∗

Pco(m,c)

1 : if m /∈M
2 : return ⊥
3 : else return

4 : Dec(sk, c) =?m

Val(c)

1 : m := Dec(sk, c)

2 : if m ∈M
3 : return 1

4 : else return 0

Fig. 6: Games OW-ATK (ATK ∈ {CPA, VA, qPCA, qPVCA}) for PKE, where OATK

is defined in Definition 4. In games qPCA and qPVCA, the adversary A can query the
Pco oracle with quantum state.

Game IND-CPA for PKE

1 : (pk, sk)← Gen

2 : b← {0, 1}
3 : (m0,m1)←A(pk)

4 : c∗ ← Enc(pk,mb)

5 : b′ ← A(pk, c∗)

6 : return b′ =?b

Game IND-CCA for KEM

1 : (pk, sk)← Gen

2 : b
$← {0, 1}

3 : (K∗0 , c
∗)← Encaps(pk)

4 : K∗1
$← K

5 : b′ ← ADecaps(pk, c∗,K∗b )

6 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 7: IND-CPA game for PKE and IND-CCA game for KEM.

Definition 5 (IND-CPA-secure PKE). Define IND− CPA game of PKE
as in Fig. 7 and the IND− CPA advantage function of an adversary A against
PKE as AdvIND-CPA

PKE (A) :=
∣∣Pr[IND-CPAAPKE = 1]− 1/2

∣∣ .
Definition 6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms. The key generation algorithm Gen outputs a key
pair (pk, sk). The encapsulation algorithm Encaps, on input pk, outputs a tuple
(K, c), where K ∈ K and c is said to be an encapsulation of the key K. The
deterministic decapsulation algorithm Decaps, on input sk and an encapsulation
c, outputs either a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K.

Definition 7 (IND-CCA-secure KEM). We define the IND− CCA game
as in Fig. 7 and the IND− CCA advantage function of an adversary A against
KEM as AdvIND-CCA

KEM (A) :=
∣∣Pr[IND-CCAAKEM = 1]− 1/2

∣∣ .
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B Proof of Theorem 2

Proof. Let B be an adversary against the OW-qPCA security of PKE′, issuing at
most qPC queries to the oracle PCO, at most qG queries to the random oracle
G. Denote ΩG as the sets of all functions G : M → R. Let G′ be a random
function such that G′(m) is sampled according to the uniform distribution in
Rgood(pk, sk,m), where Rgood(pk, sk,m) := {r ∈ R : Dec(sk,Enc(pk,m; r)) =

m}. Let ΩG′ be the set of all functions G′. Let δ(pk, sk,m) = |Rbad(pk,sk,m)|
|R| as

the fraction of bad randomness, where Rbad(pk, sk,m) = R \ Rgood(pk, sk,m).
δ(pk, sk) = maxm∈M δ(pk, sk,m). δ = E[δ(pk, sk)], where the expectation is
taken over (pk, sk)←Gen. Consider the games in Fig. 8.

Game G0. Since game G0 is exactly the OW-qPCA game,

Pr[GB0 ⇒ 1] = Adv
OW−qPCA
PKE′ (B).

GAMES G0 −G6

1 : (pk, sk)← Gen;G
$← ΩG

2 : G′
$← ΩG′ ;G := G′ //G1 −G2

3 : m∗
$←M

4 : r∗ := G(m∗)

5 : r∗
$←R //G6

6 : c∗ := Enc(pk,m∗; r∗)//G0 −G6

7 : g(·) := Enc(pk, ·;G(·))//G0 −G4

8 : m′ ← BG,PCO(pk, c∗)//G0 −G4

9 : G̈ = G; G̈(m∗)
$←R//G5 −G6

10 : g(·) := Enc(pk, ·; G̈\m∗(·))//G5 −G6

11 : m′ ← BG̈\m
∗,PCO(pk, c∗)//G5 −G6

12 : Query G with input m′//G4 −G6

13 : return m′ =?m∗

Pco(m,c) //G0 −G1

1 : if m /∈M
2 : return ⊥
3 : else return

4 : Dec′(sk, c) =?m

PCO (m, c) //G2 −G6

1 : if m /∈M
2 : return ⊥
3 : else return

4 : g(m) =?c

Fig. 8: Games G0-G6 for the proof of Theorem 2

Game G1. In game G1, we replace G by G′ that uniformly samples from “good”

randomness at random, i.e., G′
$← ΩG′ . Following the same analysis as in the

proof of Theorem 1, we can have∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ ≤ 2qG

√
δ.
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Game G2. In game G2, the PCO oracle is changed that it makes no use of the se-
cret key sk any more. Particularly, when B queries PCO oracle, Enc(pk,m;G(m)) =
?c is returned instead of Dec′(sk, c) =?m. It is easy to verify that Dec′(sk, c) =
?m is equal to Dec(sk, c) =?m ∧ Enc(pk,m;G(m)) =?c. Thus, the outputs of
the PCO oracles in G1 and G2 merely differs for the case of Dec(sk, c) 6= m
and Enc(pk,m;G(m)) = c. But, such a case does not exist since G in this game
only samples from “good” randomness. That is, the PCO oracle in G2 always
has the identical output with the one in G1. Therefore, we have

Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1].

Game G3. In game G3, we switch the G that only samples from “good” ran-
domness back to an ideal random oracle G. Then, similar to the case of G0 and
G1, the distinguishing problem between G2 and G3 can also be converted to the
distinguishing problem between G and G′. Using the same analysis method in
bounding the difference between G0 and G1, we can have∣∣Pr[GB2 ⇒ 1]− Pr[GB3 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

Game G4. In game G4, an additional query to G with classical state |m′〉|0〉
is performed after B returns m′. Obviously, G4 has the same output as G3 and
we have

Pr[GB3 ⇒ 1] = Pr[GB4 ⇒ 1].

Let G̈ be the function that G̈(m∗) = r̈∗, and G̈ = G everywhere else, where
r̈∗ is picked uniformly at random from R.

Game G5. In gameG5, we replaceG by a semi-classical oracle G̈\m∗. For a query
input, G̈\m∗ will first query OSCm∗ , i.e., perform a semi-classical measurement,
and then query G̈. Let Find be the event that OSCm∗ ever outputs 1 during semi-
classical measurements of the queries to G̈\m∗. We note that

Pr[GB5 ⇒ 1 ∧ ¬Find : G5] = 0

since GB5 ⇒ 1 implies that m′ = m∗ in G5, and G̈ is classically queried at m′

in G5
9. Applying Lemma 3 with X =M, Y = R, S = {m∗}, O1 = G, O2 = G̈

and z = (pk, c∗), we can have∣∣∣∣√Pr[GB4 ⇒ 1]−
√

Pr[GB5 ⇒ 1 ∧ ¬Find : G5]

∣∣∣∣ ≤√(qG + 2) Pr[Find : G5].

Game G6. In game G6, we replace r∗ := G(m∗) by r∗
$← R. Since G(m∗) is

only used once and independent of the oracles G̈ and PCO,

Pr[Find : G5] = Pr[Find : G6].

9 For a classical query input m∗, OSCm∗ always outputs 1.
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Note that G(m∗) is never used in G6, we can just replace G
$← ΩG; G̈ =

G; G̈(m∗)
$← R by G̈

$← ΩG. For brevity and readability, we will substitute the
notation G̈ with notation G. Then, game G6 can be rewritten as in Fig. 9.

GAMES G6

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗
$←M; r∗

$←R
3 : c∗ := Enc(pk,m∗; r∗)

4 : g(·) := Enc(pk, ·;G\m∗(·))

5 : m′ ← BG\m
∗,PCO(pk, c∗)

6 : Query G with input m′

7 : return m′ =?m∗

PCO (m, c) //G6 −G7

1 : if m /∈M return ⊥
2 : else return

3 : g(m) =?c

GAMES G7

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗,m∗1
$←M; r∗

$←R
3 : c∗ := Enc(pk,m∗1; r∗)

4 : g(·) := Enc(pk, ·;G\m∗(·))

5 : m′ ← BG\m
∗,PCO(pk, c∗)

6 : Query G with input m′

7 : return m′ =?m∗

Fig. 9: Game G6 and game G7 for the proof of Theorem 2

A(1λ, pk)

1 : m∗,m∗1
$←M;m0 = m∗;m1 = m∗1

2 : b′′
$← {0, 1}; r∗ $←R

3 : c∗ = Enc(pk,mb′′ ; r
∗)

4 : Pick a 2qG-wise function G

5 : g(·) := Enc(pk, ·;G\m0(·))

6 : m′ ← BG\m0,PCO(pk, c∗)

7 : Query G with input m′

8 : return Find

PCO (m, c)

1 : if m /∈M
2 : return ⊥
3 : else return

4 : g(m) =?c

Fig. 10: Adversary A for the proof of Theorem 2

Game G7. In gameG7, we replace c∗ := Enc(pk,m∗; r∗) by c∗ := Enc(pk,m∗1; r∗),

where m∗1
$← M. Note that the information of m∗ in this game only exists in

the oracle G\m∗, by Lemma 4 we have

Pr[Find : G7] ≤ 4
qG + 1

|M|
.
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Next, we show that any adversary distinguishing G6 from G7 can be convert-
ed into an adversary against the IND-CPA security of underlying PKE scheme.
Construct an adversary A on input (1λ, pk) as in Fig. 10, where Find is 1 if-
f the event Find that OSCm0

ever outputs 1 during semi-classical measurements
of the queries to G\m0 happens. Then, according to Lemma 1, if b′′ = 0, A
perfectly simulates G6 and Pr[Find : G6] = Pr[1 ← A : b′′ = 0]. If b′′ = 1,
A perfectly simulates G7 and Pr[Find : G7] = Pr[1 ← A : b′′ = 1]. Since
AdvIND-CPA

PKE (A) = 1/2 |Pr[1← A : b′′ = 0]− Pr[1← A : b′′ = 1]|,

|Pr[Find : G6]− Pr[Find : G7]| = 2AdvIND-CPA
PKE (A).

Finally, combing this with the bounds derived above, we can conclude that

Adv
OW−qPCA
PKE′ (B) ≤ 4qG

√
δ + 2(qG + 2)AdvIND-CPA

PKE (A) + 4
(qG + 2)2

|M|
.

ut

C Auxiliary lemmas

We note that semi-classical OW2H lemma can not directly apply to the security
proofs where underlying assumption is a search one (e.g., One-Wayness) since
the semi-classical oracle can only return “Yes” (the event Find happens) or “no”
(the event ¬Find happens). Indeed, intuitively, if Find happens, we can measure
the register |x〉 of the query state

∑
x,z:fS(x)=1 ax,z|x〉|z〉 to obtain a x such that

x ∈ S.
Here, formally, we focus on the case where the set S is a singleton, i.e.,

S = {x∗} (x∗ ∈ X) and slightly modify the semi-classical OW2H lemma to
make it applicable for security proofs with a search assumption.

Semi-classical oracle with auxiliary extractor. An auxiliary extractor L′

with size dlog |X|e is added to record x∗. For a query toOSCS with
∑
x,z ax,z|x〉|z〉,

OSCS does the following,
1. initialize a single qubit L and an auxiliary extractor L′ with |0〉,
2. transform

∑
x,z ax,z|x〉|z〉|0〉|0〉 into

∑
x,z ax,z|x〉|z〉|fS(x)〉|f ′S(x)〉, where

f ′S(x) = x · fS(x), that is f ′S(x) = x if x = x∗ and 0 otherwise.
3. measure L and L′.

Note that the state of composite system made up of L and L′ is a superposition of
|0〉|0〉 and |1〉|x∗〉. Thus, if the measurement of L outputs 1 (0), the measurement
of L′ will output x∗ (0). Given x∗ ∈ X, we can view the composite system of L
and L′ as a new system L̃, |0〉|0〉 as |0̃〉, |1〉|x∗〉 as |1̃〉. Thus, following the proof
of [20, Theorem 1], we can directly derive the following lemma.

Lemma 5 (Semi-classical OW2H with auxiliary extractor). Let S =
{x∗} (x∗ ∈ X) be random. Let O1, O2 be oracles with domain X and codomain
Y such that O1(x) = O2(x) for any x 6= x∗. Let z be a random bitstring. (O1, O2,
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S and z may have arbitrary joint distribution D.) Let OSCS be a semi-classical
oracle with auxiliary extractor described above. Let O2\S (“O2 punctured on S”)
be an oracle that first queries OSCS and then O2.

Let AO1(z) be an oracle algorithm with query depth q. Denote Find as the
event that in the execution of AO2\S(z), OSCS ever outputs 1 and x∗ during
semi-classical measurements.

Let

Pleft : = Pr[b = 1 : (O1,O2, S, z)←D, b← AO1(z)]

Pright : = Pr[b = 1 : (O1,O2, S, z)←D, b← AO2(z)]

Pfind : = Pr[Find : (O1,O2, S, z)←D,AO2\S(z)]

Then |Pleft − Pright| ≤ 2
√

(q + 1)Pfind and
∣∣√Pleft −√Pright∣∣ ≤ 2

√
(q + 1)Pfind.

The lemma also holds with bound
√

(q + 1)Pfind for the following alternative
definition of Pright,

Pright = Pr[b = 1 ∧ ¬Find : (O1,O2, S, z)←D, b← AO2\S(z)].

Lemma 6 ([11, Lemma 4][10, Lemma 2.2]). Let ΩH (ΩH′) be the set of
all functions H : {0, 1}n1 × {0, 1}n2 → {0, 1}m (H ′ : {0, 1}n2 → {0, 1}m). Let

H
$← ΩH , H ′

$← ΩH′ , x
$← {0, 1}n1 . Let F0 = H(x, ·), F1 = H ′(·) Consider an

oracle algorithm AH,Fi that makes at most q queries to H and Fi (i ∈ {0, 1}).
If x is independent from the AH,Fi ’s view,∣∣Pr[1← AH,F0 ]− Pr[1← AH,F1 ]

∣∣ ≤ 2q
1√
2n1

.

D Improved security proofs for remaining (modular) FO
transformations

D.1 FO�⊥: From IND-CPA-secure PKE to IND-CCA-secure KEM

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message space
M, ciphertext space C and randomness space R, hash functions G : M → R
and H :M×C → K, we associate KEM-II=FO�⊥[PKE,G,H], see Fig. 11.

Different from the one in FO�⊥m, the random oracle H in FO�⊥ takes both the
plaintext m and the ciphertext c as input. Using the same proof technique in
[11, Theorem 1], we can divide the H-inputs (m, c) into two categories, matched
inputs and unmatched inputs, by judging whether c = Enc(pk,m;G(m)), and
replace H by Hq ◦ g only for the matched inputs. Then, following the proofs of
Theorem 1, we can derive Theorem 3.

Theorem 3 (PKE IND-CPA
QROM⇒ KEM-II IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM-II, issuing at most qD queries to
the decapsulation oracle Decaps, qG (qH) queries to the random oracle G (H),
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there exists an IND-CPA adversary A against PKE such that AdvIND-CCA
KEM-II (B) ≤

2qH
1√
|M|

+4qG
√
δ+2

√
(qG + qH + 1)AdvIND-CPA

PKE (A) + 2 (qG+qH+1)2

|M| and the run-

ning time of A is about that of B.

Gen′

1 : (pk, sk)← Gen

2 : s
$←M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk,m;G(m))

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c)

Fig. 11: IND-CCA-secure KEM-II=FO�⊥[PKE,G,H]

D.2 TPunc: From IND-CPA-secure PKE to DS-secure DPKE

Gen′

1 : (pk, sk)← Gen

2 : return (pk, sk)

Enc′(pk,m), where m ∈M′

1 : c = Enc(pk,m;G(m))

2 : return c

Dec′(sk, c)

1 : m′ := Dec(sk, c)

2 : if m′ /∈M′

3 : return ⊥
4 : else return m′

S(pk)

1 : r
$←R

2 : c = Enc(pk, 0; r)

3 : return c

Fig. 12: DS-secure PKE′ = TPunc[PKE, G] with simulation S

The transformation TPunc that converts a perfectly-correct IND-CPA-secure
PKE into a DS-secure DPKE, is a variant of T and proposed by [10]. The
security of TPunc is proven in the QROM with non-tight reduction due to the
usage of OW2H lemma. Here, we will improve the reduction using semi-classical
OW2H lemma.

To a PKE=(Gen, Enc, Dec) with message space M and randomness space
R, and a random oracle G :M→R, we associate PKE′ = (Gen′, Enc′, Dec′) =
TPunc[PKE, G], where M′ =M\{0}, see Fig. 12.

Theorem 4 (PKE IND-CPA
QROM⇒ PKE′ DS). Let S be the algorithm

described in Fig. 12. Let UM′ be the uniform distribution over M′. If PKE is
perfectly correct, DisjPKE′,S = 0. Moreover, for any B against PKE′ issuing at
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most qG quantum queries to G, there exist adversaries A1 and A2 against the
IND-CPA security of PKE such that AdvDS-IND

PKE′,UM′ ,S
(B) ≤ 2AdvIND-CPA

PKE (A2) +

2
√

2(qG + 1)AdvIND-CPA
PKE (A1) + 4 (qG+1)2

|M| , and the running time of A1 (A2) is

about that of B.

Remark: In [14], TPunc is modularized into two transformations, Punc (reduce
IND-CPA security to probabilistic DS security tightly) and T (reduce probabilis-
tic DS security to deterministic DS security non-tightly). The proof technique
in Theorem 4 can also be trivially used to get a tighter reduction for T from
probabilistic DS security to deterministic DS security.

Proof. DisjPKE′,S = 0 has been proven in [10, Theorem 3.3]. Here, we focus
on the upper bound of AdvDS-IND

PKE′,UM′ ,S
(B). Let B be an adversary against PKE′,

issuing at most qG queries to the random oracle G. Denote ΩG as the sets of all
functions G :M→R.

Define games G0 and G1 as in Fig. 13. According to the definition of DS
security, we have

AdvDS-IND
PKE′,UM′ ,S

(B) =
∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ .
Game G2. Replace r∗ := G(m∗) by r∗

$← R. First, as [10, Theorem 3.3] has
showed, we can construct an adversary A2 against the IND-CPA security of PKE
as in Fig. 14. Apparently,∣∣Pr[GB0 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣ = 2AdvIND-CPA
PKE (A2).

GAMES G0

1 : (pk, sk)← Gen;G
$← ΩG

2 : r∗
$←R

3 : c∗ := Enc(pk, 0; r∗)

4 : b′ ← BG(pk, c∗)

5 : return b′

GAMES G1 −G2

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗
$←M′

3 : r∗ := G(m∗)//G1

4 : r∗
$←R//G2

5 : c∗ := Enc(pk,m∗; r∗)

6 : b′ ← BG(pk, c∗)

7 : return b′

Fig. 13: Games G0-G2 for the proof of Theorem 4

A2 against the IND-CPA game

1 : (pk, sk)← Gen;m0
$←M′;m1 := 0; r∗

$←R; b
$← {0, 1}

2 : c∗ := Enc(pk,mb; r
∗); b′ ← A(pk, c∗); return b′ =?b

Fig. 14: A2 for the proof of Theorem 4
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Then, we will use semi-classical OW2H lemma to bound
∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣.
Let G̈ be the function such that G̈(m) = G(m) for m 6= m∗ and G̈(m∗)

$← R.
Then, it’s easy to see that G2 can be rewritten as G3 in Fig. 15 and we have

Pr[GB2 ⇒ 1] = Pr[GB3 ⇒ 1]

Game G4. G4 is the same as G3 except that G̈ is replaced by a semi-classical
oracle G̈\m∗. For a query input, G̈\m∗ will first query OSCm∗ , i.e., perform a semi-
classical measurement, and then query G̈. Let Find be the event that OSCm∗ ever
outputs 1 during semi-classical measurements of the queries to G̈\m∗.

GAMES G3

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗
$←M′

3 : r∗ := G(m∗)

4 : G̈ = G

5 : G̈(m∗)
$←R

6 : c∗ := Enc(pk,m∗; r∗)

7 : b′ ← BG̈(pk, c∗)

8 : return b′

GAMES G4

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗
$←M′

3 : r∗ := G(m∗)

4 : G̈ = G

5 : G̈(m∗)
$←R

6 : c∗ := Enc(pk,m∗; r∗)

7 : b′ ← BG̈\m
∗
(pk, c∗)

8 : return b′

Fig. 15: Games G3-G4 for the proof of Theorem 4

Applying Lemma 3 with X =M, Y = R, S = {m∗}, O1 = G, O2 = G̈ and
z = (pk, c∗), we can have∣∣Pr[GB1 ⇒ 1]− Pr[GB3 ⇒ 1]

∣∣ ≤ 2
√

(qG + 1) Pr[Find : G4].

We note that in game G4, G(m∗) is only used in evaluating c∗ and indepen-

dent of G̈, we can replace r∗ := G(m∗) by r∗
$← R and then simplify G4 as G5

in Fig. 16. Since the output distributions of G4 and G5 are totally identical, we
have

Pr[GB4 ⇒ 1] = Pr[GB5 ⇒ 1].

Game G6. In game G6, we replace m∗
$←M′ by m∗

$←M. Since the statistical
distance between uniform distributions on M′ and M is 1

|M| , we have

∣∣Pr[GB5 ⇒ 1]− Pr[GB6 ⇒ 1]
∣∣ ≤ 1

|M|
.
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GAMES G5 −G6

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗
$←M′//G5

3 : m∗
$←M//G6

4 : r∗
$←R

5 : c∗ := Enc(pk,m∗; r∗)

6 : b′ ← BG\m
∗
(pk, c∗)

7 : return b′

GAMES G7

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗
$←M

3 : m∗1
$←M

4 : r∗
$←R

5 : c∗ := Enc(pk,m∗1; r∗)

6 : b′ ← BG\m
∗
(pk, c∗)

7 : return b′

Fig. 16: Games G5-G7 for the proof of Theorem 4

A(1λ, pk)

1 : m∗,m∗1
$←M;m0 = m∗;m1 = m∗1

2 : b′′
$← {0, 1}; r∗ $←R; c∗ = Enc(pk,mb′′ ; r

∗)

3 : Pick a 2qG-wise function G

4 : m′ ← BG\m0(pk, c∗); pcreturnFind

Fig. 17: Adversary A1 for the proof of Theorem 4

Game G7. In gameG7, we replace c∗ := Enc(pk,m∗; r∗) by c∗ := Enc(pk,m∗1; r∗),

where m∗1
$← M. Note that the information of m∗ in this game only exists in

the oracle G\m∗, by Lemma 4 we have

Pr[Find : G7] ≤ 4
qG
|M|

.

Next, we show that any adversary distinguishing G6 from G7 can be converted
into an adversary against the IND-CPA security of underlying PKE. Construc-
t an adversary A1 on input (1λ, pk) as in Fig. 17, where Find returns 1 iff
the event Find that OSCm0

ever outputs 1 during semi-classical measurements
happens. Then, according to Lemma 1, if b′′ = 0, A1 perfectly simulates G6

and Pr[Find : G6] = Pr[1 ← A1 : b′′ = 0]. If b′′ = 1, A perfectly simu-
lates G7 and Pr[Find : G7] = Pr[1 ← A1 : b′′ = 1]. Since AdvIND-CPA

PKE (A) =
1/2 |Pr[1← A1 : b′′ = 0]− Pr[1← A1 : b′′ = 1]|,

|Pr[Find : G6]− Pr[Find : G7]| = 2AdvIND-CPA
PKE (A1).

Finally, combing this with the bounds derived above, we have AdvDS-IND
PKE′,UM′ ,S

(B)

≤ 2AdvIND-CPA
PKE (A2) + 2

√
2(qG + 1)AdvIND-CPA

PKE (A1) + 4
(qG + 1)qG
|M|

+
qG + 1

|M|

≤ 2AdvIND-CPA
PKE (A2) + 2

√
2(qG + 1)AdvIND-CPA

PKE (A1) + 4
(qG + 1)2

|M|
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D.3 KC: from OW-CPA-secure DPKE to DS-secure DPKE

Following the idea of “plaintext confirmation” that attaches an additional hash
of plaintext to ciphertext, [10] proposed a transformation KC from OW-CPA-
Secure DPKE to DS-Secure DPKE. The security reduction of KC in the QROM
is non-tight due to the usage of OW2H lemma. Here, we will use semi-classical
OW2H lemma to improve the tightness in [10].

Gen′

1 : (pk, sk)← Gen

2 : return (pk, sk)

Enc′(pk,m)

1 : c1 = Enc(pk,m)

2 : c2 = H(m)

3 : return c = (c1, c2)

Dec′(sk, c)

1 : Parse c = (c1, c2)

2 : m′ := Dec(sk, c1)

3 : if m′ /∈M∨H(m′) 6= c2

4 : return ⊥
5 : else return m′

S(pk)

1 : m
$←M

2 : c1 = Enc(pk,m)

3 : c2
$← {0, 1}n

4 : return c = (c1, c2)

Fig. 18: DS-secure DPKE′ = KC[DPKE, H] with simulation S

To a public-key encryption DPKE=(Gen, Enc, Dec) with message spaceM,
and a random oracleH :M→ {0, 1}n, we associate DPKE′ = (Gen′, Enc′, Dec′) =
KC[DPKE, H], see Fig. 18.

Theorem 5 (DPKE OW-CPA
QROM⇒ DPKE′ DS). Let S be the algorithm

described in Fig. 18. If DPKE is perfectly correct, DisjDPKE′,S = 2−n. More-
over, for any B against DPKE′ issuing at most qH quantum queries to H,
there exists an adversary A against the OW-CPA security of DPKE such that

AdvDS-IND
DPKE′,UM,S(B) ≤ 2

√
(qH + 1)AdvOW-CPA

DPKE (A) and the running time of A is

about that of B.

Proof. Since H is a random oracle, it’s obvious that DisjDPKE′,S = 2−n.
Let ΩH be the sets of all functions H : M → {0, 1}n. Define game G0 and

game G1 as in Fig. 19. Then, we have

AdvDS-IND
DPKE′,UM,S(B) =

∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ .

Let Ḧ be the function such that Ḧ(m) = H(m) form 6= m∗ and Ḧ(m∗)
$← R.

Then, it’s easy to see that G1 can be rewritten as G2 in Fig. 20 and we have

Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1]
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Game G3. G3 is the same as G2 except that Ḧ is replaced by a semi-classical
oracle Ḧ\m∗. For a query input, H\m∗ will first query OSCm∗ , i.e., perform a
semi-classical measurement, and then query Ḧ. Particularly, OSCm∗ here will be
equipped with an auxiliary extractor to record m∗. Let Find be the event that
OSCm∗ ever outputs 1 and m∗ during semi-classical measurements of the queries
to Ḧ\m∗.

GAMES G0

1 : (pk, sk)← Gen′;H
$← ΩH

2 : m∗
$←M

3 : c∗1 := Enc(pk,m∗)

4 : c∗2 := H(m∗)

5 : c∗ = (c∗1, c
∗
2)

6 : b′ ← BH(pk, c∗)

7 : return b′

GAMES G1

1 : (pk, sk)← Gen′;H
$← ΩH

2 : m∗
$←M

3 : c∗1 := Enc(pk,m∗)

4 : c∗2
$← {0, 1}n

5 : c∗ = (c∗1, c
∗
2)

6 : b′ ← BH(pk, c∗)

7 : return b′

Fig. 19: Games G0-G1 for the proof of Theorem 5

GAMES G2

1 : (pk, sk)← Gen′;H
$← ΩH

2 : m∗
$←M

3 : c∗1 := Enc(pk,m∗)

4 : c∗2 := H(m∗)

5 : c∗ = (c∗1, c
∗
2)

6 : Ḧ = H; Ḧ(m∗)
$← {0, 1}n

7 : b′ ← BḦ(pk, c∗)

8 : return b′

GAMES G3

1 : (pk, sk)← Gen′;H
$← ΩH

2 : m∗
$←M

3 : c∗1 := Enc(pk,m∗)

4 : c∗2 := H(m∗)

5 : c∗ = (c∗1, c
∗
2)

6 : Ḧ = H; Ḧ(m∗)
$← {0, 1}n

7 : b′ ← BḦ\m
∗
(pk, c∗)

8 : return b′

Fig. 20: Games G2-G3 for the proof of Theorem 5

Applying Lemma 5 with X =M, Y = R, S = {m∗}, O1 = H, O2 = Ḧ and
z = (pk, c∗), we can have∣∣Pr[GB0 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣ ≤ 2
√

(qG + 1) Pr[Find : G3].

Note that in game G3, H(m∗) is only used in evaluating c∗2 and independent
of Ḧ, we can replace c∗2 := H(m∗) by c∗2←{0, 1}n and then simplify G3 as G4

in Fig. 21. Since the output distributions of G3 and G4 are totally identical, we
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have
Pr[Find : G3] = Pr[Find : G4].

Next, construct an adversary A(pk, c∗1) against the OW-CPA security of un-
derlying DPKE as in Fig. 21, where Ĥ\m∗ is the same as H\m∗ except that
the indication function fm∗(m) which outputs 1 if m = m∗ and 0 otherwise, is

replaced by f̂m∗(m),

f̂m∗(m) =

{
1 Enc(pk,m) = c∗

0 otherwise.

Note that Enc(pk,m) = c∗ iff m = m∗ since PKE is perfectly correct. Thus,
Ĥ\m∗ is totally identical with H\m∗. According to Lemma 1,

Pr[Find : G4] = AdvOW-CPA
DPKE (A).

GAMES G4

1 : (pk, sk)← Gen′;H
$← ΩH

2 : m∗
$←M

3 : c∗1 := Enc(pk,m∗)

4 : c∗2
$← {0, 1}n

5 : c∗ = (c∗1, c
∗
2)

6 : b′ ← BH\m
∗
(pk, c∗)

7 : return b′

A(pk, c∗1)

1 : c∗2
$← {0, 1}n

2 : c∗ = (c∗1, c
∗
2)

3 : Pick a 2qH -wise function H

4 : b′ ← BĤ\m
∗
(pk, c∗)

5 : return Find

Fig. 21: Game G4 and A for the proof of Theorem 5

Collecting all above bounds, we have

AdvDS-IND
DPKE′,UM,S(B) ≤ 2

√
(qH + 1)AdvOW-CPA

DPKE (A).

ut

Gen

1 : (pk, sk)← Gen′

2 : s
$←M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec′(sk, c)

3 : if m′ =⊥
4 : return K := H(s, c)

5 : else return

6 : K := H(m′, c)

Fig. 22: IND-CCA-secure KEM-III = U�⊥[PKE′, H]
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D.4 U�⊥: from OW-qPCA-secure PKE to IND-CCA-secure KEM

To a public-key encryption PKE′=(Gen′, Enc′, Dec′) and a random oracle H

(H : M× C → K), we associate KEM-III = U�⊥[PKE′, H]. The algorithms of
KEM-III=(Gen,Encaps,Decaps) are defined in Fig. 22.

Theorem 6 (PKE′ OW-qPCA
QROM⇒ KEM IND-CCA). If PKE′ is δ-

correct, for any IND-CCA B against KEM-III, issuing at most qD (classical)
queries to the decapsulation oracle Decaps and at most qH queries to the quan-
tum random oracle H, there exists a OW-qPCA adversary A against PKE′ such

that AdvIND-CCA
KEM-III (B) ≤ 2qH

1√
|M|

+ 2
√

(qH + 1)(2δ + Adv
OW−qPCA
PKE′ (A)) and the

running time of A is about that of B.

Proof. Let B be an adversary against the IND-CCA security of KEM-III, issuing
at most qD queries to Decaps and at most qH queries to H. Let ΩH and ΩHq be
the sets of all functions H :M×C → K and Hq : C → K, respectively. Consider
the games in Fig. 23 and Fig. 25.

Game G0. Since game G0 is exactly the IND-CCA game,∣∣Pr[GB0 ⇒ 1]− 1/2
∣∣ = AdvIND-CCA

KEM-III (B).

Game G1. In game G1, the Decaps oracle is changed that H ′q(c) is returned
instead of H(s, c) for an invalid encapsulation c. Considering that B’s view is
independent of (the uniform secret) s, we can use Lemma 6 to obtain∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ 2qH ·
1√
M

.

Game G2. In game G2, H is changed that Hq(c) is returned instead of H1(m, c)
when (m, c) satisfies Pco(m, c) = 1 (i.e., Dec′(sk, c) = m). Note that it is
impossible that Pco(m1, c) = Pco(m2, c) = 1 for m1 6= m2 because Dec′ is
a deterministic algorithm. Further, as Hq is a random function independent of
H1, H in game G2 is also a uniformly random function like the one in game G1.
Thus,

Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1].

Game G3. In game G3, the Decaps oracle is changed that it makes no use
of the secret key sk′ any more. When B queries the Decaps oracle on c (c 6=
c∗), K := Hq(c) is returned as the response. In order to show that the output
distributions of Decaps are identical in G2 and G3, we consider the following
cases for a fixed ciphertext c and m′ := Dec′(sk, c).

Case 1: m′ 6= ⊥. Note that H(m′, c) = Hq(c) on account of Pco(m′, c) = 1.
Therefore, the two Decaps oracles in games G2 and G3 return the same
value.
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Case 2: m′ = ⊥. Random values H ′q(c) and Hq(c) in K are returned in G2

and G3, respectively. In G2, H ′q is a random function independent of H. In
G3, B’s queries to H can only help him get access to Hq at c such that
Dec′(sk, c) = m̂ for some m̂ 6= ⊥. Therefore, B never sees Hq(c) by querying
H. Hence, in B’s view, Hq(c) is totally uniform at random like H ′q(c). As a
result, the Decaps oracle in G3 has the same output distribution as the one
in G2.

Thus, B’s views are identical in G2 and G3 and we have

Pr[GB2 ⇒ 1] = Pr[GB3 ⇒ 1].

GAMES G0 −G5

1 : (pk, sk′)← Gen′

2 : Hq, H
′
q

$← ΩHq ;H1
$← ΩH

3 : m∗
$←M

4 : r∗
$← R

5 : c∗ := Enc(pk,m∗; r∗)

6 : k∗0 := H(m∗, c∗)

7 : k∗1
$← K

8 : b
$← {0, 1}

9 : b′ ← BH,Decaps(pk, c∗, k∗b )//G0 −G3

10 : Ḧ = H; Ḧ(m∗, c∗)
$←R //G4 −G5

11 : b′ ← BḦ,Decaps(pk, c∗, k∗b )//G4

12 : b′ ← BḦ\(m
∗,c∗),Decaps(pk, c∗, k∗b )//G5

13 : return b′ =?b

H(m, c)

1 : if Pco(m, c) = 1 //G2 −G5

2 : return Hq(c) //G2 −G5

3 : return H1(m, c)

Decaps (c 6= c∗) //G0 −G2

1 : Parse sk′ = (sk, s)

2 : m′ := Dec′(sk, c)

3 : if m′ 6=⊥ return K := H(m′, c)

4 : else return

5 : K := H(s, c) //G0

6 : K := H ′q(c) //G1 −G2

Decaps (c 6= c∗) //G3 −G5

1 : return K := Hq(c)

Fig. 23: Games G0-G5 for the proof of Theorem 6

Let Ḧ be an oracle such that Ḧ(m, c) = H(m, c) for (m, c) 6= (m∗, c∗) and

Ḧ(m∗, c∗)
$← K. Let S be a singleton {(m∗, c∗)}.

Game G4. In game G4, replace H by Ḧ. We note that in this game b is inde-
pendent of B’s view since queries to Ḧ and Decaps can not reveal H(m∗, c∗).
Thus,

Pr[GB4 ⇒ 1] = 1/2.

Game G5. In game G5, replace Ḧ by Ḧ\S. Given any query input, Ḧ\S will
first query semi-classical oracle OSCS , i.e., perform a semi-classical measurement,
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and then query Ḧ. Particularly, OSCS here will be equipped with an auxiliary
extractor to record (m∗, c∗). Let Find be the event that OSCS ever outputs 1 and
(m∗, c∗) during semi-classical measurements of the queries to Ḧ\S.

Let AH be an oracle algorithm on input (pk, c∗, k∗0 , Hq)
10 in Fig. 24. Sample

pk, c∗, k∗0 , Hq and H in the same way as G3 and G4, i.e., (pk, sk) ← Gen,

m∗
$← M, r∗

$← R, c∗ = Enc(pk,m∗; r∗), Hq
$← ΩHq , H1

$← ΩH , simulate

H in the same way as G3 and G4, set k∗0 = H(m∗, c∗), Ḧ(m, c) = H(m, c) for

(m, c) 6= (m∗, c∗) and Ḧ(m∗, c∗)
$← K. Then, AH and AḦ on input (pk, c∗, k∗0 ,

Hq) perfectly simulate G3 and G4, respectively.

AH(pk, c∗, k∗0 , Hq)

1 : k∗1
$← K; b

$← {0, 1}

2 : b′ ← BH,Decaps(pk, c∗, k∗b )

3 : return b′ =?b

Decaps (c 6= c∗)

1 : return K := Hq(c)

Fig. 24: AH for the proof of Theorem 6.

GAMES G6 −G9

1 : (pk, sk′)← Gen′

2 : Hq
$← ΩHq ;H1

$← ΩH

3 : m∗
$←M; r∗

$←R

4 : r∗
$←Rgood(pk, sk,m)//G7 −G8

5 : c∗ := Enc(pk,m∗; r∗)

6 : k∗0 , k
∗
1

$← K; b
$← {0, 1}

7 : b′ ← BH\(m
∗,c∗),Decaps(pk, c∗, k∗b )//G6 −G7

8 : b′ ← BĤ\(m
∗,c∗),Decaps(pk, c∗, k∗b )//G8 −G9

9 : return b′ =?b

H(m, c)

1 : if Pco(m, c) = 1

2 : return Hq(c)

3 : else return H1(m, c)

Decaps (c 6= c∗)

1 : return K := Hq(c)

Fig. 25: Games G6 −G9 for the proof of Theorem 6

Applying Lemma 5 with X = (M, C), Y = K, S = {(m∗, c∗)}, O1 = H,
O2 = Ḧ and z = (pk, c∗, k∗0 , Hq), we can have∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]

∣∣ ≤ 2
√

(qH + 1) Pr[Find : G5].

Since H(m∗, c∗) in G5 is used only once and independent of the oracles Ḧ and

decaps, we can replace k∗0 = H(m∗, c∗) by k∗0
$← K and simplify G5 into G6 as

10 As in the proof of Theorem 1, Hq here can be either the whole truth table of Hq or
an accessible oracle.
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in Fig. 25, and have

Pr[Find : G5] = Pr[Find : G6]

Game G7. In game G7, replace r∗
$← R by r∗

$← Rgood(pk, sk,m∗), where
Rgood(pk, sk,m∗) := {r ∈ R : Dec(sk,Enc(pk,m∗; r)) = m∗}.

We note that the statistical distance between uniform distributions on R and
Rgood(pk, sk,m∗) is

δ(pk, sk,m∗) =
|Rbad(pk, sk,m∗)|

|R|
,

whereRbad(pk, sk,m∗) = R\Rgood(pk, sk,m∗). Let δ(pk, sk) = maxm∈M δ(pk, sk,m).
Then δ = E[δ(pk, sk)], where the expectation is taken over (pk, sk)←Gen.

Conditioned on a fixed (pk, sk) we have |Pr[Find : G6]− Pr[Find : G7]| ≤
δ(pk, sk). By averaging over (pk, sk)←Gen we finally obtain

|Pr[Find : G6]− Pr[Find : G7]| ≤ δ.

Game G8. In game G8, replace H\S by Ĥ\S, where Ĥ\S is the same as H\S
except the indicator function fS(m, c) in semi-classical oracle OSCS is replaced

by f̂S(m, c). f̂S(m, c) is defined as

f̂S(m, c) =

{
1 PCO(m, c∗) = 1 and c = c∗

0 otherwise.

We note that fS(m, c) = 1 iff (m, c) = (m∗, c∗). Since c∗ = Enc(pk,m∗; r∗) and
the r∗ in this game is sampled from “good” randomness, PCO(m, c∗) = 1 iff

m = m∗. Therefore, fS(m, c) is identical with f̂S(m, c), and we have

Pr[Find : G7] = Pr[Find : G8].

A(1λ, pk, c∗)

1 : k∗0 , k
∗
1

$← K

2 : b
$← {0, 1}

3 : Pick a qH -wise functions Hq, H1

4 : m′ ← BĤ\S,Decaps(pk, c∗)

5 : return Find

H(m, c)

1 : if Pco(m, c) = 1

2 : return Hq(c)

3 : else return H1(m, c)

Decaps (c 6= c∗)

1 : return K := Hq(c)

Fig. 26: Adversary A for the proof of Theorem 6
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Game G9. In game G9, switch r∗
$← Rgood(pk, sk,m∗) back to r∗

$← R. Similar
to the case of bounding the difference between G6 and G7, we can have

|Pr[Find : G8]− Pr[Find : G9]| ≤ δ.

Then, we construct an adversary A against the OW-qPCA security of the
PKE′ scheme as in Fig. 26. According to Lemma 1,

Adv
OW−qPCA
PKE′ (A) = Pr[Find : G9].

Finally, combing this with the bounds derived above, we can conclude that

AdvIND-CCA
KEM-III (B) ≤ 2qH

1√
M

+ 2

√
(qH + 1)(2δ + Adv

OW−qPCA
PKE′ (A)).

ut

D.5 U⊥: from OW-qPVCA-secure PKE to IND-CCA-secure KEM

U⊥, a KEM variant of the REACT/GEM transformations [8, 9], was first given
by [3, Table 2]. To a public-key encryption PKE′=(Gen′, Enc′, Dec′) and a hash
function H, we associate KEM-IV = U⊥[PKE′, H] as in Fig. 27. The security
of U⊥ in the QROM was analyzed by [11]. However, the security proof is non-
tight due to utilization of OW2H lemma. Here, using the semi-classical OW2H
lemma in the same way as in Theorem 6, we improve the tightness and obtain
the following theorem.

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$←M

2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps⊥(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ =⊥
3 : return ⊥
4 : else return

5 : K := H(m′, c)

Fig. 27: IND-CCA-secure KEM-IV = U⊥[PKE′, H]

Theorem 7 (PKE′ OW-qPVCA
QROM⇒ KEM-IV IND-CCA). If PKE′ is

δ-correct, for any IND-CCA B against KEM-IV, issuing at most qD (classical)
queries to the decapsulation oracle Decaps and at most qH queries to the quan-
tum random oracle H, there exists a OW-qPVCA adversary A against PKE′ that
makes at most qH queries to the Pco oracle and at most qD (classical) queries to

the Val oracle such that AdvIND-CCA
KEM-IV (B) ≤ 2

√
(qH + 1)(2δ + Adv

OW−qPVCA
PKE′ (A))

and the running time of A is about that of B.
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D.6 U�⊥
m/U⊥

m: from OW-CPA-secure/OW-VA-secure DPKE to
IND-CCA KEM

The transformation U�⊥m (U⊥m) [27, 4] is a variant of U�⊥ (U⊥) that derives the
KEM key as K = H(m) instead of K = H(m, c). To a deterministic public-key
encryption scheme PKE′ = (Gen′, Enc′, Dec′) with message space M, a hash
function H : M → K, and a pseudorandom function f with key space Kprf ,
we associate KEM-V=U�⊥m[DPKE′,H,f ] and KEM-VI=U⊥m[DPKE′,H] shown in
Fig. 28 and Fig. 29, respectively.

Gen

1 : (pk, sk)← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 28: IND-CCA-secure KEM-V=U�⊥m[DPKE′,H,f ]

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk, c)

1 : m′ := Dec′(sk, c)

2 : if Enc′(pk,m′) = c

3 : return K := H(m′)

4 : else return ⊥

Fig. 29: IND-CCA-secure KEM-VI=U⊥m[DPKE′,H]

We note that for a deterministic PKE scheme the OW-PCA security is e-
quivalent to the OW-CPA security as we can simulate the Pco oracle via re-
encryption during the proof. Thus, combing the proofs of Theorem 6, Theorem
7, we can easily obtain the following two theorems.

Theorem 8 (PKE′ OW-CPA
QROM⇒ KEM-V IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM-V, issuing at most
qD (classical) queries to the decapsulation oracle Decaps and at most qH quan-
tum queries to the random oracle H, there exist a OW-CPA adversary A against
PKE′ and an adversary A′ against the security of PRF with at most qD clas-

sical queries such that AdvIND-CCA
KEM-V (B) ≤ 2

√
(qH + 1)(AdvOW-CPA

PKE′ (A) + δ) + δ +

AdvPRF(A′), and the running time of A is about that of B.
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Theorem 9 (PKE′ OW-VA
QROM⇒ KEM-VI IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM-VI, issuing at most
qD (classical) queries to the decapsulation oracle Decaps and at most qH quan-
tum queries to the random oracle H, there exists a OW-VA adversary A against
PKE′ who makes at most qD (classical) queries to the Val oracle such that

AdvIND-CCA
KEM-VI (B) ≤ 2

√
(qH + 1)(AdvOW-VA

PKE′ (A) + δ) + δ and the running time of A
is about that of B.

36


