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Abstract

Leakage certification aims at guaranteeing that the statistical models used in side-channel
security evaluations are close to the true statistical distribution of the leakages, hence can be
used to approximate a worst-case security level. Previous works in this direction were only
qualitative: for a given amount of measurements available to an evaluation laboratory, they
rated a model as “good enough” if the model assumption errors (i.e., the errors due to an
incorrect choice of model family) were small with respect to the model estimation errors. We
revisit this problem by providing the first quantitative tools for leakage certification.

For this purpose, we provide bounds for the (unknown) Mutual Information metric that
corresponds to the true statistical distribution of the leakages based on two easy-to-compute
information theoretic quantities: the Perceived Information, which is the amount of information
that can be extracted from a leaking device thanks to an estimated statistical model, possibly
biased due to estimation and assumption errors, and the Hypothetical Information, which is the
amount of information that would be extracted from an hypothetical device exactly following the
model distribution. This positive outcome derives from the observation that while the estimation
of the Mutual Information is in general a hard problem (i.e., estimators are biased and their
convergence is distribution-dependent), it is significantly simplified in the case of statistical
inference attacks where a target random variable (e.g., a key in a cryptographic setting) has a
constant (e.g., uniform) probability. Our results therefore provide a general and principled path
to bound the worst-case security level of an implementation. They also significantly speed up
the evaluation of any profiled side-channel attack, since they imply that the estimation of the
Perceived Information, which embeds an expensive cross-validation step, can be bounded by the
computation of a cheaper Hypothetical Information, for any estimated statistical model.

1 Introduction

State-of-the-art. Side-Channel Attacks (SCAs) are among the most important threats against
the security of modern embedded devices [20]. They leverage physical leakages such as the power
consumption or electromagnetic radiation of an implementation in order to recover sensitive data.
Concretely, SCAs consist in two main steps: information extraction and information exploitation.
In the first step, the adversary collects partial information about some intermediate computations
of the leaking implementation. For this purpose, he generally compares key-dependent leakage
models with actual measurements thanks to a distinguisher such as the popular Correlation Power
Analysis (CPA) [2] or Template Attacks (TAs) [4]. In the second step, the adversary combines this
partial information in order to recover the sensitive data in full (e.g., by performing a key recovery).
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For this purpose, the most frequent solution is to exploit a divide-and-conquer strategy (e.g., to
recover each key byte independently), and to perform key enumeration if needed [22,27,34].1

Based on this description, the (worst-case) security evaluation of actual implementations and
side-channel countermeasures requires estimating the amount of information leaked by a target
device [33]. Fair evaluations ideally require exploiting a perfect leakage model (i.e., a model that
perfectly corresponds to the leakage distribution) with a Bayesian distinguisher. Yet, such a perfect
leakage model is in general unknown. Therefore, side-channel security evaluators (and adversaries)
have to approximate the statistical distribution of the leakages using density estimation techniques.
It raises the problem that security evaluations can become inaccurate due to estimation and as-
sumption errors in the leakage model. Estimation errors are due to an insufficient number of mea-
surements for the model parameters to converge. Assumption errors are due to incorrect choices of
density estimation tools (e.g., assuming Gaussian leakages for non-Gaussian leakages).

The problem of ensuring that a leakage model is “good enough” so that it does not lead to
over-estimating the security of an implementation has been formalized by Durvaux et al. as leakage
certification [13]. In the first leakage certification test introduced at Eurocrypt 2014, a leakage
model is defined as good enough if its assumption errors are small with respect to its estimation
errors. Intuitively, it guarantees that given the amount of measurements used by the evaluator /
adversary to estimate a model, any improvement of his (possibly incorrect) assumptions will not
lead to noticeable degradations of the security level (since the impact of improved assumptions will
be hidden by estimation errors). In a heuristic simplification proposed at CHES 2016, a model is
considered as good enough if the statistical moments of the model do not noticeably deviate from
the statistical moments of the actual leakage distribution [12]. In both cases, the certification tests
are based on challenging the model against fresh samples in a cross-validation step. In both cases,
the certification tests are qualitative and conditional to the number of measurements available to
build the model. By increasing the number of measurements (and if the model is imperfect), one
can make estimation errors arbitrarily small, which inevitably leads to the possible detection of
assumption errors. As a result, a fundamental challenge in side-channel security evaluations (which
we tackle in this paper) is to bound the information loss due to model errors quantitatively.

We note that from an information theoretic viewpoint, the risk of under-estimating the leakages
due to model errors in side-channel security evaluations can be captured with the notion of Perceived
Information (PI) initially introduced in [30] to analyze model variability in nanoscale devices.
Informally, the PI corresponds to the amount of information that can be extracted from some data
thanks to a statistical model possibly affected by estimation or assumption errors. If the model is
perfect, the PI is identical to Shannon’s standard definition of Mutual Information (MI). Otherwise,
the difference between the MI and the PI provides a quantitative view of the information loss. (Yet,
at this stage not a usable one since the MI is unknown, just as the perfect model).

Contribution. The main contributions of the paper are to provide simple and efficient information
theoretic tools in order to bound the model errors in side-channel security evaluations, and to
validate these tools empirically based on simulated leakages and actual measurements.

Our starting point for this purpose is a third information theoretic quantity that was introduced
as part as a negative result on the way towards the CHES 2016 heuristic leakage certification test.
Namely, the Hypothetical Information (HI), which is the amount of information that would be
extractable from the samples if the true distribution was the statistical model. As discussed in [12],
as such the HI seems useless since in case of incorrect model, it can be completely disconnected

1 More advanced strategies, such as Algebraic Side-Channel Attacks (ASCA) [29] or Soft Analytical Side-Channel
Attacks (SASCA) [35] can also be considered. Our following tools apply identically to these attacks.
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from the true leakage distribution (i.e., models with positive HI may not lead to successful attacks).
Yet, we show next how it can be used in combination with the PI in order to enable quantitative
leakage certification. In particular, our main results in this direction are twofold:

• First, we show that – under the assumption that the target random variable (e.g., the secret
key) has constant (e.g., uniform) probability – the empirical HI (eHI), which corresponds to
the HI estimated directly based on the empirical leakage distribution, is in expected value
an upper bound for the MI and that it converges monotonically towards the true MI as the
number of measurements used in order to estimate the leakage model increases.

• Second, we show that (under the same assumptions) the PI is a lower bound for the MI.

Our experiments then show that these tools can be concretely exploited in the analysis of actual
leakage models and speed up side-channel security evaluations. They also sometimes illustrate
the difficulty to obtain tight worst-case bounds in practice, and the interest of exploiting some
additional (e.g., Gaussian) leakage assumptions in order to more efficiently obtain “close to worst-
case” evaluations. In this case as well, we show that bounding the PI with the HI can lead to
efficiency gains, especially if distributions with larger number of dimensions are considered.

Related works. The fact that we may bound the MI is surprising since it is actually known to be
impossible in general. As for example discussed by Paninski [26], there are no unbiased estimators
for the MI (and the rate at which the error decreases depends on the data structure, for any
estimator). This had led some works aiming at leakage detection to exploit more positive results
for the distribution of the zero MI (i.e., the case with no information leakage) [5, 6, 24]. We follow
a different path by observing that in the context of side-channel security evaluations, every key (or
target intermediate variable) has a uniform distribution a priori, and it is easy for the evaluator
to enforce that the number of leakages collected for every key (or target intermediate variable) is
identical. In this case, where the probability of the key (or target intermediate variable) does not
need to be estimated, we fall back on a situation where the maximum likelihood estimation of the
MI is biased upwards everywhere. Combined with the good properties of the empirical distribution
(which converges towards the true distribution) it leads to our first result. The result for the PI is
even more direct, holds for any model, and is obtained by solving an optimization problem.

Besides, the problem of leakage certification shares strong similarities with the application of
the bias-variance decomposition [8], introduced as a diagnosis tool for the evaluation of side-channel
leakage models by Lerman et al. [18]. Note that we here mean the bias (and variance) of the leakage
model, not the bias of the MI estimator as when previously referring to Paninski. Conceptually,
evaluating the bias and variance of a leakage model can be viewed as similar to evaluating its
estimation and assumption errors. Yet, the problem of this decomposition is again that it requires
the knowledge of the perfect leakage model. Lerman et al. alleviate this difficulty by assuming
that the perfect leakage model directly provides the key (in one trace). However, this leads their
estimation of the bias and variance to gradually become inaccurate as the target implementations
become protected, so that this idealizing assumption becomes more and more incorrect.

2 Notations and background

In this section, we provide the background and definitions needed to describe our results, with a
particular focus on the different metrics we suggest for side-channel security evaluations.

True distributions. Given a (discrete) secret key variable K and a (discrete or continuous)
leakage variable L, we denote the true conditional Probability Mass Function (PMF) – which
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corresponds to discrete leakages – as Pr(L = l|K = k) and the true conditional Probability Density
Function (PDF) – which corresponds to continuous leakages – as f(L = l|K = k).

Mutual Information (MI). In the simpler case of discrete leakages, it is defined as [7]:

MI(K;L) = H(K) +
∑
l∈L

Pr(L = l) ·
∑
k∈K

Pr(K = k|L = l) · log2 Pr(K = k|L = l), (1)

= H(K) +
∑
k∈K

Pr(K = k) ·
∑
l∈L

Pr(L = l|K = k) · log2 Pr(K = k|L = l). (2)

Using the simplified notation Pr(X = x) := p(x), it leads to:

MI(K;L) = H(K) +
∑
k∈K

p(k) ·
∑
l∈L

p(l|k) · log2 p(k|l). (3)

Assuming uniformly distributed keys, p(k|l) is computed as p(l|k)∑
k∗∈K p(l|k∗) and H(K) = log2(|K|).

Similarly, in the case of continuous leakages, we can define the MI as follows:

MI(K;L) = H(K) +
∑
k∈K

Pr(k) ·
∫
l∈L

f(l|k) · log2 p(k|l) dl. (4)

MI and statistical inference attacks. We are interested in the MI in the context of side-
channel analysis because it is a good predictor of the success probability of a continuous “statistical
inference attack”, where an adversary uses his leakages in order to recover a secret key.2 Precisely,
it is shown in [10] that a higher MI generally implies a more efficient maximum likelihood attack
where the adversary selects the most likely key k̃ among all the candidates k∗ as:

k̃ = argmax
k∗∈K

∏
l∈L

p(k∗|l). (5)

Note that this implication only holds independently for each key k manipulated by the leaking
device. That is, a higher “MI per key” MI(k;L) implies a higher probability of success Pr(k̃ = k).
Intuitively, the link between such an attack and MI(k;L) comes from the similarity between the
product of probabilities in the attack and the sum of log probabilities in the metric.

Sampling process. The true distributions are generally unknown, but we can sample them in
order to produce data sets for estimating leakage models and testing these models. We denote
these sampling processes as M n← p(l|k) and T nt← p(l|k) in the discrete case, with n and nt (resp.,
n(k) and nt(k)) the number of i.i.d. samples measured and stored (resp., per key) in the multisets
of samples M and T (which have repetitions). We replace p by f for the continuous case.

Computing the MI by sampling. The MI metric can be computed directly thanks to Equa-
tions 3 or 4. It can also be computed “by sampling” (for discrete and continuous leakages) as:

M̂I(K;L) = H(K) +
∑
k∈K

p(k) ·
nt(k)∑
i=1

1

nt(k)
· log2 p(k|lk(i)), (6)

2 We consider so-called noisy leakages, where the adversary can observe a noisy function of secret variables [28].
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where lk(i) ∈ T is the ith leakage sample observed for the key k. In the discrete case, it is easy
to see that the blue part of the equation corresponds to the empirical distribution. So Equation 6
essentially replaces the true distribution p(l|k) by the empirical one, and the hat sign is used to
reflect that the MI is computed by sampling. Since the empirical distribution converges towards
the real one as nt → ∞, M̂I(K;L) also tends towards MI(K;L). In the continuous case, the
convergence requires more elaboration (details are given in Appendix A). For simplicity, we next
refer to the blue part of Equation 6 as the empirical in both the discrete and continuous cases.

Note that the PMF after the log in Equation 6 is fixed (i.e., it is not an estimate). So this
equation does not describe an estimation of the MI in the usual sense, where the joint probability
of two random variables has to be estimated: it only provides an alternative way to compute the
MI of some known distribution. Hence it does not suffer from the bias issues discussed in [26].

Model estimation. Given a set of n modeling samples M, we denote the process of estimating
the conditional leakage distribution as m̃n(l|k) ←M, where we use the red color to highlight the
model and the tilde sign to reflect that it is the result of a statistical estimation.

We will consider two types of models: exhaustive models where we directly estimate the empirical
distribution (e.g., in the discrete case they correspond to histograms on the full support of the
observations); simplified models which may for example correspond to histograms with reduced
numbers of bins in the discrete case, or to parametric (e.g., Gaussian) PDF estimation in the
continuous case. Simplified models are aimed to converge faster (i.e., to require lower n values
before becoming informative), possibly at the cost of some information loss when n→∞. In other
words, exhaustive models (sometimes slowly) converge towards the real distribution as n → ∞,
while simplified models may be affected by assumption errors appearing for large n’s (i.e., bad
choices of parametric estimation such as assuming Gaussian noise for non-Gaussian leakages).

Finally, we use the term model for the (parametric or non-parametric) estimation of a distri-
bution from a given number of profiling leakages n, and the term model family for the set of all
the models that can be produced with a defined set of parameters. For example, the (univariate)
Gaussian model family denotes all the models that can be produced by estimating a sample mean
and a sample variance, and a Gaussian model corresponds to one estimation given n leakages.

Hypothetical and Perceived information. Given that the true distributions p(l|k) or f(l|k)
are unknown, we cannot directly compute the MI. One option to get around this impossibility is
to estimate it, which is known to be a hard problem (i.e., there are no unbiased and distribution-
independent estimators [26]). We next study an alternative approach which is to analyze the
information that is revealed by estimated models thanks to two previously introduced and easy-to-
compute quantities. First the Perceived Information (PI), which is the amount of information that
can be extracted from some data thanks to an estimated model, possibly affected by estimation
or assumption errors [13]. Second the Hypothetical Information (HI), which is the amount of
information that would be revealed by (hypothetical) data following the model distribution [12].

Informally, the PI predicts the concrete success probability of a maximum likelihood attack
exploiting an estimated model just as the (unknown) MI predicts the theoretical success probability
of a worst-case maximum likelihood attack exploiting the true leakage distribution [15]. It can
be negative if the estimated model is too different from the true distribution, and therefore can
underestimate the information available in the leakages. By contrast, the HI is a purely hypothetical
value that is always non-negative and can therefore overestimate the information available in the
leakages. We next aim to formalize their properties, and in particular to show that they can be
used to (lower and upper) bound the worst-case security level captured by the unknown MI.
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The HI is defined as follows in the discrete case (replace
∑

by
∫

in the continuous case):

HIn(K;L) = H(K) +
∑
k∈K

p(k) ·
∑
l∈L

m̃n(l|k) · log2 m̃n(k|l). (7)

For a given estimated model m̃n(l|k), the HI can be computed exactly based on Equation 7, or by

sampling (just as for the MI). In the latter case, we use the notation ĤIn(K;L):

ĤIn(K;L) = H(K) +
∑
k∈K

p(k) ·
nt(k)∑
i=1

1

nt(k)
· log2 m̃n(k|lk(i)), (8)

with as main difference from the MI case that the test samples come from a set Tm which has been
picked up from the model distribution rather than the true distribution. We denote this process as
Tm

nt← m̃n(l|k), and use the green color to denote the empirical distribution of the model.
Note that, as in Equation 6, the model after the log in Equation 8 is fixed. Similarly to the MI

estimation process, the value of the estimation ĤI(K;L) when nt → ∞ equals HI(K;L). In most
practical cases, the HI will be estimated directly via Equations 7 (which is simpler and faster).

Next, the PI is theoretically defined as follows in the discrete case:

PIn(K;L) = H(K) +
∑
k∈K

p(k) ·
∑
l∈L

p(l|k) · log2 m̃n(k|l), (9)

and as follows in the continuous case:

PIn(K;L) = H(K) +
∑
k∈K

p(k) ·
∫
l∈L

f(l|k) · log2 m̃n(k|l) dl. (10)

In contrast with the HI, these equations cannot be computed directly since they require the knowl-
edge of the true distributions p(l|k) and f(l|k) which are unknown. So concretely, the PI will always
be computed thanks to the following sampling process (where we keep the red color code for the
model and the blue color code for the true empirical distribution, as before):

P̂In(K;L) = H(K) +
∑
k∈K

p(k) ·
nt(k)∑
i=1

1

nt(k)
· log2 m̃(k|lk(i)). (11)

This is feasible in practice since, even though the analytical form of the true distributions is unknown
to the evaluator, he can sample these distributions, by measuring his target implementation.

Note again that, as in Equation 6, the model after the log in Equation 11 is fixed. So what the
PI captures is the amount of information that can be extracted from some fixed model (usually
obtained by estimation in an earlier phase). In other words, the PI computation is a two-step
process: first a model is estimated, second the amount of information it provides is estimated. This
is captured in our equations with the tilde and hat notations: the first one is for the estimation of
the model, the second one for the computation of the information theoretic metrics by sampling.

Other useful facts. We next list a few additional results that are relevant to our discussions.

• A sufficient condition for successful (maximum likelihood) attacks. As previously mentioned, the
PI can be negative, indicating an estimated model that is too different from the true distribution.
Also, the link between information theoretic metrics and the success rate of maximum likelihood
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attacks only holds per key. A sufficient condition for successful maximum likelihood attacks, first
stated in [33], can therefore be given based on the “PI per key”. For this purpose, and again
assuming uniformly distributed keys, we first define a PI matrix (PIM) as follows:

P̂IMn(k, k∗) = H(K) +

nt(k)∑
i=1

1

nt(k)
· log2 m̃n(k∗|l). (12)

It captures the correlation between a key generating leakages k and a key candidate in a maximum
likelihood attack k∗. The sufficient condition of successful attack against this key k is:

k = argmax
k∗∈K

P̂IMn(k, k∗). (13)

The PI is connected to the PIM: P̂In(K;L) = E
k∈K

(
P̂IMn(k, k)

)
, with E the mean operator.

• Key equivalence in the standard DPA setting. In the usual (divide-and-conquer) side-channel
analysis context, formalized in [21] as the standard DPA setting that we consider next, the adversary
can continuously accumulate information about the key thanks to multiple input plaintexts x.
Information theoretic metrics such as the MI, HI and PI therefore have to include another sum
over these inputs to be reflective of this setting. For example in the discrete MI case, it yields:

MI(K;L,X) = H(K) +
∑
k∈K

p(k) ·
∑
x∈X

p(x) ·
∑
l∈L

p(l|k, x) · log2 p(k|l, x). (14)

Concretely, the adversary exploits the leakages after a first group operation between uniformly
distributed plaintexts x and a key k took place. For example, he can target an intermediate
operation y = x ⊕ k or y = S(x ⊕ k) with S a block cipher S-box.3 As a result, one can leverage
the “key equivalence property” also proven in [21], which states that MI(K;L,X) = MI(k;L,X) =
MI(Y ;L) (i.e., there are no weak keys with respect to standard DPA and all the information
exploited depends on the target intermediate computation Y ).4 Again, we use the MI(k;L,X)
notation for a “MI per key” (i.e., Equation 14 for a fixed value of K, which is the same for all k’s).
The same type of result holds with the HI and PI. In the following, and in order to keep notations
concise, we will therefore state our results for MI(Y ;L), HIn(Y ;L) and PIn(Y ;L):

MI(Y ;L) = H(Y ) +
∑
y∈Y

p(y) ·
∑
l∈L

p(l|y) · log2 p(y|l), (15)

HIn(Y ;L) = H(Y ) +
∑
y∈Y

p(y) ·
∑
l∈L

m̃n(l|y) · log2 m̃n(y|l), (16)

PIn(Y ;L) = H(Y ) +
∑
y∈Y

p(y) ·
∑
l∈L

p(l|y) · log2 m̃n(y|l), (17)

where the n subscript reflects the amount of leakages used to estimate the model.

• Cross-validation. When computing a metric by sampling, one generally uses cross-validation in
order to better take advantage of the collected data. As detailed in [13], it allows all the measured
leakages to be used both as profiling and as test samples (but not both at the same time).

3 It is shown in [36] that their adaptive selection only marginally improves the attacks, and in [9, 10] how this
average metric can be used to state a sufficient condition for secure masked implementations.

4 The second equality is turned into an inequality in case of non-bijective S-boxes (e.g., as in the DES).
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• Metrics convergence and confidence intervals. When estimating a metric by sampling, one is
generally interested in knowing whether the computed value is close enough to the asymptotic one.
In the context of side-channel analysis considered here, the amount of collected data is generally
sufficient to build a “convergence plot” (see the experimental section) enabling to gain simple
(visual) confidence that the metric is well estimated. If needed (e.g., in case of limited amount of
data available), the bootstrap confidence intervals proposed in [17] can be used.

• Outliers. We finally note that outliers may prevent the PI metric computed from real data to
converge (e.g., in case a probability zero is assigned to the correct y, leading to a log(0) in the PI
equation). The treatment of these outliers will be specifically discussed in the next section.

3 Theoretical bounds for the MI metric

Given the motivation that the MI metric is a good predictor of the success probability of a worst-
case side-channel attack using the true leakage model, and the impossibility to compute it directly
for unknown distributions, we now provide our main theoretical results and show how the HI and
PI metrics can be used to bound the MI. We first state our results for discrete leakages and discuss
the continuous case in Section 3.4. We will consider three quantities for this purpose:

• The previously defined MI with p(y|l) computed thanks to Bayes assuming uniform y’s:

MI(Y ;L) = H(Y ) +
∑
y∈Y

p(y) ·
∑
l∈L

p(l|y) · log2 p(y|l), (18)

= H(Y ) +
∑
y∈Y

p(y) ·
∑
l∈L

p(l|y) · log2
p(l|y)∑

y∗∈Y p(l|y∗)
·

(Uniform y’s are typically encountered in the aforementioned standard DPA setting).

• The previously defined PI (i.e., Equation 17) under a similar uniformity assumption.

• The empirical HI (eHI), which is Equation 16 taking as model m̃n(l|y) the empirical distri-
bution, that we denote by ẽn(l|y), under a similar uniformity assumption:

eHIn(Y ;L) = H(Y ) +
∑
y∈Y

p(y) ·
∑
l∈L

ẽn(l|y) · log2 ẽn(y|l). (19)

Note that the eHI is exactly the biased maximum likelihood estimator of the MI that is used in the
leakage detection test of Chatzikokolaki et al. [5], applied in the SCA setting by Mather et al [24].
As detailed next, under our uniformity assumption this estimator of the MI is biased upwards
everywhere, which explains why the eHI provides an upper bound of the unknown MI.

3.1 Technical lemmas

We start with a few technical lemmas that we need to prove our two main theorems. Note that some
of them are variations of well-known results given in textbooks such as [7]. We provide the proofs
for the sake of completeness and for readers not familiar with information theory. Considering a
discrete random variable taking values 1, 2, . . . , t, we next denote the actual probability of a value
v as p(v), and the t-dimensional vector containing these probabilities as p.
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Lemma 1. Denoting by ẽn the empirical distribution estimated from n i.i.d. leakage samples
indexed 1, 2, . . . , n, and by ẽjn the empirical distribution estimated from the same samples excluding
the sample j, the following equality holds:

ẽn =
∑
j=1:n

1

n
ẽjn,

and each empirical distribution ẽjn follows exactly the same distribution as ẽn−1.

Proof. Let x ∈ {1, 2, . . . , t}n be the random i.i.d. samples. For any subset S of {1, . . . , n}, we
denote by ẽS the empirical distribution of the sample whose indices are in S. Observe that:

ẽS =
1

|S|
∑
i∈S

Ixi ,

with Ixi the indicator function taking the value 1 for the entry xi and 0 otherwise. We then have:

∑
j=1:n

1

n
ẽjn =

1

n

n∑
j=1

 ∑
i∈{1:n}\{j}

1

n− 1
Ixi

 ,

=
1

n(n− 1)

n∑
j=1

((
n∑

i=1

Ixi

)
− Ixj

)
,

=
1

n(n− 1)

n( n∑
i=1

Ixi

)
−

n∑
j=1

Ixj

 ,

=
1

n(n− 1)
(n− 1)

(
n∑

i=1

Ixi

)
,

=
1

n

n∑
i=1

Ixi = ẽn,

which proves the equality in the lemma. Moreover, since the samples are i.i.d., all ẽjn follow the
same distribution, and in particular the same distribution as ẽnn = ẽn−1.

Lemma 2. Let γ : [0, 1]t → R be a convex function. Then for any n > 1, we have:

γ(p) ≤ E
(
γ(ẽn)

)
≤ E

(
γ(ẽn−1)

)
.

Moreover, if γ is continuous at p and bounded from above on [0, 1]t, then:

E
(
γ(ẽn)

)
→ γ(p),

monotonically with n. Similarly, if γ is concave and under the assumption that it is continuous
and bounded from below, the same result holds with reverse inequalities.

Proof. We focus on the convex case and begin with the first inequality. Observe that:

p = E (ẽn) . (20)
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Indeed, by linearity of the expected value, we have E (ẽn) = 1
n

∑n
i=1 E(Ixi), with Ixi the indicator

function, whose t-dimensional value is 1 for the entry xi and 0 otherwise. Therefore, for any i and
entry v ∈ {1, . . . , t} we have:

E(Ixi)v = 1 · Pr(xi = v) + 0 · Pr(xi 6= v) = p(v),

from which (20) follows. Hence, the following holds due to the convexity of γ:

γ(p) = γ
(
E (ẽn)

)
≤ E

(
γ (ẽn)

)
.

For the second inequality, it follows from Lemma 1 that:

ẽn =
∑
j=1:n

1

n
ẽjn.

Hence we have:

γ(ẽn) = γ

∑
j=1:n

1

n
ẽjn

 ≤ ∑
j=1:n

1

n
γ
(
ẽjn
)
.

Moreover, each ẽjn has the same distribution as ẽn−1. Hence:

E
(
γ (ẽn)

)
≤ E

∑
j=1:n

1

n
γ
(
ẽjn
) ,

=
∑
j=1:n

1

n
E
(
γ(ẽjn)

)
,

=
∑
j=1:n

1

n
E
(
γ(ẽn−1)

)
= Eγ(ẽn−1).

Let us now show the convergence under the assumption that γ is continuous at p and uniformly
bounded by some M . By continuity of γ at p, for every ε there is a δ such that ||ẽn−p|| ≤ δ implies
|γ(ẽn)− γ(p)| ≤ ε. Moreover, ẽn converges in probability to p, meaning that for every (δ, ε′) there
is a n′ such that Pr(||ẽn − p|| > δ) < ε′ for any n > n′. As a consequence, for n > n′, we have:

Pr(|γ(ẽn)− γ(p)| > ε) < ε′.

Remembering that γ(.) < M , we then have that for every n > n′:

E
(
γ(fn)

)
− γ(p) = E

(
γ(ẽn)− γ(p)

)
,

≤ εPr
(
|γ(ẽn)− γ(p)| ≤ ε

)
+
(
M − γ(p)

)
Pr
(
|γ(ẽn)− γ(p)| > ε

)
,

≤ ε(1− ε′) + ε′
(
M − γ(p)

)
,

for every n > n′. Combining this with γ(p) ≤ E
(
γ(ẽn)

)
yields the desired convergence result.

Lemma 3. Let y ∈ Rm
+ be a vector of positive entries. Then for any positive x ∈ Rm

+ , we have:∑
i

yi log2
xi∑
j xj
≤
∑
i

yi log2
yi∑
j yj

,

with equality if and only if xi = kyi for some k > 0.
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Proof. Let x′ = x/(
∑

j xj) and y′ = y/(
∑

j yj). These vectors can be viewed as probability distribu-
tions since they are non-negative and sum to 1. Hence we can compute the following KL-divergence,
which is always non-negative, and zero if and only if x′ = y′:

0 ≤ DKL(y′||x′) =
∑
i

(
y′i log

(
y′i
x′i

))
.

Using log(y′i/x
′
i) = log y′i − log x′i, we obtain:∑

i

(y′i log x′i) ≤
∑
i

(y′i log y′i),

from which the result follows by replacing x′i, y
′
i and multiplying by

∑
j yj . Moreover, equality holds

if and only if x′ = y′, that is, if x = ky for some k > 0.

3.2 Bound from the HI

We first recall the following standard result from Cover and Thomas:

Theorem 4 (Cover & Thomas, 2.7.4 [7]). The mutual information MI(Y ;L) is a concave function
of p(y) for fixed p(l|y) and a convex function of p(l|y) for fixed p(y).

Combined with the technical Lemma 2, it directly leads to our main result:

Theorem 5. On average over the profiling sets M used to estimate the eHI and assuming that the
target random variable Y has (constant) uniform probability, we have:

E
M n←p(l|y)

(
eHIn(Y ;L)

)
≥ E
Mn−1← p(l|y)

(
eHIn−1(Y ;L)

)
≥ MI(Y ;L).

Moreover, lim
n→∞

eHIn(Y ;L) = MI(Y ;L) (i.e., the eHI monotonically converges towards the MI).

Proof. Observe that eHIn(Y ;L) is the mutual information between Y and the empirical distribution
of the leakages. Hence (thanks to Theorem 4), it is convex in ẽn(l|y) for a fixed distribution of y
(which we have by assumption). The result then follows from Lemma 2.

3.3 Bound from the PI

Theorem 6. Assuming that the target random variable Y has (constant) uniform probability and
given any model m̃n(l|y) for the conditional probabilities p(l|y), we have:

PIn(Y ;L) := H(Y ) +
∑
y

p(y)
∑
l

p(l|y) log2
m̃n(l|y)∑
y∗ m̃n(l|y∗)

≤ MI(Y ;L).

Proof. Since p(y) is a constant c, we have:

PIn(Y ;L) = H(Y ) + c
∑
l

(∑
y

p(l|y) log2
m̃n(l|y)∑
y∗ m̃n(l|y∗)

)
· (21)

Now for any l, it follows from Lemma 3 that:∑
y

p(l|y) log2
m̃n(l|y)∑
y∗ m̃n(l|y∗)

≤
∑
y

p(l|y) log2
p(l|y)∑
y∗ p(l|y∗)

· (22)

11



Re-introducing this in Equation 21 leads to:

PIn(Y ;L) ≤ H(Y ) + c
∑
l

(∑
y

p(l|y) log2
p(l|y)∑
y∗ p(l|y∗)

)
, (23)

= H(Y ) +
∑
y

p(y)
∑
l

p(l|y) log2
p(l|y)∑
y∗ p(l|y∗)

,

= MI(Y ;L).

Additional observation. It would be nice to know that PIn(Y ;L) = MI(Y ;L) if and only if
m̃n(l|y) = p(l|y). However, this is not true in general. Suppose for example that l and y only take
two values l1, l2 and y1, y2, and that p(li|yj) = 1/2 for all four cases. Then consider the model
defined by m̃n(l1|yj) = α and m̃n(l2|yj) = 1− α for both yj and some α ∈ [0, 1]. Again assuming a
constant p(y) = 1/2, the perceived information of any such model would be:

PIn(Y ;L) = H(Y ) +
1

2

∑
l

∑
y

1

2
log2

m̃n(l|y)∑
y∗ m̃n(l|y∗)

,

= H(Y ) +
1

4

(
log2

m̃n(l1|y1)
m̃n(l1|y1) + m̃n(l1|y2)

+ log2
m̃n(l1|y2)

m̃n(l1|y1) + m̃n(l1|y2)

+ log2
m̃n(l2|y1)

m̃n(l2|y1) + m̃n(l2|y2)
+ log2

m̃n(l2|y2)
m̃n(l2|y1) + m̃n(l2|y2)

)
,

= H(Y ) +
1

4

(
log2

α

α+ α
+ log2

α

α+ α
+ log2

1− α
1− α+ 1− α

+ log2
1− α

1− α+ 1− α

)
,

= H(Y ) + log2
1

2
,

irrespectively of α. The value obtained for any α is the same as for α = 1/2 (i.e., the only value
for which m̃n(l|y) = p(l|y)). We therefore conclude that PIn(Y ;L) = MI(Y ;L) does not imply that
the model accurately describes the distribution of leakage. As a complement of this observation,
we next characterize the conditions under which m̃n(l|y) = p(l|y) is the only maximum.

Proposition 7. Let P be the matrix defined by Pl,y = p(l|y). If P is full row rank, then
PIn(Y ;L) = MI(Y ;L) if and only if m̃n(l|y) = p(l|y). If P is not full row rank then one can
build alternative models leading to PIn(Y ;L) = MI(Y ;L).

Proof. Let m̃n(l|y) be a conditional probability distribution. Keeping the notations of Theorem 6,
PIn(Y ;L) = MI(Y ;L) holds if and only if equality holds in Equation 23, and therefore if and only
if it holds in Equation 22 for every l. By Lemma 3, this is equivalent to the existence of a positive
vector k such that m̃n(l|y) = kl · p(l|y) holds for every y, l. Clearly, m̃n(l|y) = p(l|y) for all y, l
if and only if all kl’s are equal to 1 (i.e., k = 1). Now, for an arbitrary positive vector k, the
quantities m̃n(l|y) = kl p(l|y) define valid conditional probabilities if and only if (i) they all belong
to [0, 1], and (ii)

∑
l m̃n(l|y) = 1 for every y. We show next that these conditions imply k = 1 if

and only if P is full row-rank, which will imply our result. Define the matrix M as Ml,y = m̃n(l|y)
and the diagonal matrix K as Kll = kl (so that k = K1)). Condition (ii) can be rewritten as
1TM = 1T = 1TP , and m̃n(l|y) = kl p(l|y) can be re-expressed as M = KP . Therefore:

(k − 1)TP = (1TK − 1T )P = 1TKP − 1TP = 1TM − 1TP = 1T − 1T = 0.

12



That is, the vector (k−1)T is in the left-kernel of P . Hence, if P has full-row rank, the only vector
k for which (ii) is satisfied is k = 1. Otherwise, any vector of the form k = 1 + αv for α 6= 0 and
v 6= 0 in the left-kernel of P would lead m̃n(l|y) to satisfy condition (ii). To finish the proof, we
show that we can also have condition (i) satisfied. By taking a sufficiently small α, we can ensure
that k is positive, and therefore that the m̃n(l|y)’s are non-negative. Because

∑
l m̃n(l|y) = 1 by

condition (ii), this implies that m̃n(l|y) ≤ 1 for every l, y and that condition (i) is satisfied.

Note that this full row rank condition may not be achieved in so-called Simple Power Analysis
(SPA) attacks with “compressive” leakage functions. For example, imagine an implementation
leaking the noise-free Hamming weight of an n-bit key. Then, the number of leakages (i.e., n+ 1)
is lower then the number of keys (i.e., 2n) and P cannot have full row rank. By contrast, in the
DPA setting, the amount of leakages that the adversary can observe is multiplied by the number
of plaintexts (i.e., 2n) and the matrix P(l,x),k = p(l, x|k) is expected to be of full row rank.

3.4 Discussion and application of the results

The previous theorems can be quite directly applied in a side-channel evaluation context. Yet the
following clarifications are worth being pointed out before moving to experiments.

First and as previously mentioned, one technical difficulty that may arise is the presence of
outliers (or simply rare events) leading to zero probabilities for the good key candidate, and therefore
to a log(0) in the PI equation (for the HI equation, we assume 0 · log(0) = 0). A simple heuristic
to deal with these cases is to lower-bound such probabilities to 1

nt(k)
and to report the fraction of

corrected probabilities (which vanishes as n increases) with the experimental results.
Second, the HI bound of Section 3.2 is stated for the empirical distribution that is straightfor-

ward to estimate in a discrete case with finite support thanks to histograms. In this respect, we
observe that actual leakages are measured thanks to sampling devices (hence are inherently discrete
and finite). We also refer to the fast leakage assessment methodology in [31] for a motivation why
this may lead to performance gains for the evaluator. Yet, there is actually nothing specific to
discrete distributions in the way we obtain this bound (up to the slightly different convergences
discussed in Appendix A). So it is applicable to continuous distributions and estimators. For exam-
ple, we could replace the estimation of the discrete MI based on histograms that we use to compute
the eHI by a Kernel-based one such as used in [6, 24]). In the next section, we also consider a
simplified (Gaussian) model family and show how the HI bound can be useful in this context.

4 Empirical confirmation

4.1 Simulated experiments

In order to demonstrate the relevance of the previous tools, we start by investigating a standard
simulation setting where the evaluator / adversary exploits the leakages corresponding to several
executions of the AES S-box. Our first scenario corresponds to a univariate attack against an
unprotected implementation of this S-box, where the leakage samples are of the form:

l1i = HW
(
S(x⊕ k)

)
+ ri,

with HW the Hamming weight function, and ri a Gaussian distributed noise sample with variance
σ2. The noise level is a parameter of our simulations. For convenience (and simpler interpretation)
we report it as a Signal-to-Noise Ratio (SNR) which is defined as in [19] as the variance of the
signal (which is worth 2 in the case of a random 8-bit Hamming weight value) divided by σ2.
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Our second simulated scenario corresponds to a bivariate attack against the same unprotected
implementation of the AES S-box, where the leakage vectors are of the form:

l2i =
[
HW(x⊕ k) + ri; HW

(
S(x⊕ k)

)
+ r′i

]
.

Finally, our third scenario corresponds to a univariate attack against a masked (i.e., secret
shared [3]) implementation of this S-box, where the leakage samples are of the form:

l3i =
[
HW

(
S(x⊕ k)⊕ q

)
+ HW(q) + ri

]
,

where q is a secret mask that is picked up uniformly at random by the leaking device.

The results of our first scenario for high and medium SNRs are in Figure 1, where we plot
the MI (that is known since we are in a simulated setting), the eHI, the ePI (considered in our
bounds) and the Gaussian PI (gPI) which is the PI corresponding to a Gaussian leakage model.
The IT metrics are plot in function of the number of traces in the profiling set n.5 As expected,
the eHI provides an average upper bound that converges monotonically towards the MI, and the
ePI provides a lower bound. Besides, the gPI converges rapidly towards the true MI since in our
simulations, the leakages are generated based on a Gaussian distribution. So making this additional
assumption in such an ideal setting allows faster model convergence without information loss.
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(a) SNR = 1 (lin. scale).

106 107 108

n

0.4

0.3

0.2

0.1

0.0

0.1

0.2

IT
 M

et
ric

eHIn
ePIn
gPIn
MI

(b) SNR = 0.1 (lin. scale).

Figure 1: Simulated experiments, unprotected S-box, high & medium SNRs, univariate.

These results are confirmed with the similar plots given in Figure 2 for a lower SNR of 0.01.
For readability, the right plot switches to a logarithmic scale for the Y axis. It illustrates a context
where it is possible to formally bound the mutual information to values lower than 10−2.

Figure 1 and 2 correspond to simple (unprotected, univariate) cases where the estimation of the
empirical distribution (despite significantly more expensive than the one of a Gaussian distribution)
leads to reasonably tight bounds for the MI. We complement this observation with experiments
corresponding to our second (unprotected, bivariate) context. As illustrated in Figure 3 for medium
and low SNRs, this more challenging context leads to considerably less tight bounds, which can be
explained by the (much) slower convergence of multivariate histograms. Note that we could not
reach a positive ePI with n = 107 in this case (and the gPI still does it rapidly).

5 We use nt = n, which leads to good estimations since the number of measurements needed to estimate a model
is usually larger than the number of leakages needed to recover the key with a well-estimated model [32].
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Figure 2: Simulated experiments, unprotected S-box, low SNR, univariate.
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Figure 3: Simulated experiments, unprotected S-box, medium & low SNR, bivariate.

We finally report the results of the simulated masked implementation in Figure 4 for very high
and high SNRs. The very high SNR case is intended to illustrate a context where the Gaussian
assumption is not satisfied (since the masked leakage distribution is actually a Gaussian mixture),
so that the gPI is considerably lower than the ePI. By contrast, and as observed (for example)
in [14], Figure 1 (right), this Gaussian approximation becomes correct and the gPI gets close to
the ePI as the noise increases, which we also see on the right part of Figure 4.

An open source code allowing to reproduce these different results is available at the address [1].

4.2 Real measurements

We complement the previous simulated experiments with analyzes performed on actual measure-
ments obtained from an FPGA implementation of the AES S-box. In order to instantiate a noise
parameter as in our simulations, we consider different architectures for this purpose: the target
S-box is computed in parallel with π ∈ {0, 3, 7, 11) other S-boxes whose computations (for random
inputs) generate “algorithmic noise”. We implemented our design on a SAKURA-X board embed-
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Figure 4: Simulated experiments, masked S-box, very high & high SNR, univariate.

ding a Xilinx Kintex-7 FPGA. The target device was running at 4 MHz and sampled at 500 Ms/s
(i.e., 125 leakage points per cycle). We split our experiments in two parts. In a first part, we con-
sider a univariate evaluation (similar to the first setting of our simulated setup) allowing reasonably
tight worst-case bounds. In a second part, we consider a highly multivariate evaluation (i.e., an
adversary exploiting all the 125 points of each clock cycle) and discuss how to connect this context
with nearly worst-case security arguments for (e.g., masked) cryptographic implementations.

4.2.1 Univariate analyses and theoretical worst-case bounds

The eHI/ePI bounds computed for the most informative leakage points of our measurements for
π = 0 and 7 are in Figure 5. The π = 3 and 11 cases are given in Appendix B, Figure 7. We again
observe that it is possible to obtain reasonably tight bounds (e.g., to bound the MI below 10−1

which is a sufficient noise for the masking countermeasure to be effective). Yet, as π increases and
the MI decreases, we also see that tightening the bounds becomes increasingly data-intensive.
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Figure 5: Actual measurements, unprotected S-box, univariate.

In view of the important amount of samples n needed to bound the MI, and of the popularity
of the Gaussian assumption in SCAs [4], we additionally considered the Gaussian HI (gHI) which
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is the HI corresponding to a Gaussian model, and evaluated it based on the formula:

approx-gHIn(Y,L) = −1

2
· log2

(
1− ρ(M,L)2

)
, (24)

where ρ is Pearson’s correlation coefficient, L the leakage random variable (as previously) and M the
model random variable. As discussed in [19], ρ(Y,M) can be related to the leakages’ SNR, which (in
the case of Gaussian leakages) can be linked to the MI metric [10]. As observed in [21], the formula
holds well for noisy Hamming weight leakages in case of “reasonably small” correlations values
(i.e., typically ρ < 0.1). The latter is confirmed in our experiments of Figures 5 and Appendix B,
Figure 7. Namely, these figures first illustrate that the gHI is also an upper bound for the gPI
and converges monotonically (as expected from the results in Section 3). They additionally show
that the gHI and gPI are very close to the worst-case MI in our experimental setting. The latter is
particularly interesting since the gHI converges very fast compared to the other metrics.

4.2.2 Multivariate analyzes and efficient evaluations

Ultimately, an evaluator would be interested in efficiently and tightly bounding the total amount
of information provided by his leakage points. As clear from the Section 4.1 (and the bivariate
analysis of Figure 3), obtaining tight MI bounds with two dimensions is already data-intensive.
Hence, applying such a straightforward approach to our measurements where each clock cycle has
125 points is unlikely to provide any tight result. So here as well, we considered the multivariate
gHI as a useful alternative (yet, this time without possibility to compare it to the eHI). For this
purpose, we use the formula for the differential entropy of a multivariate Gaussian distribution:

gH(Z) =

1
2 log

(
det(2πeΣ)

)
log(2)

, (25)

where Σ is the covariance matrix of the Gaussian-distributed random variable Z, det(.) denotes
the matrix determinant and the log(2) of the denominator is to obtain a value in bits. We then
used this standard formula to approximate the multivariate gHI as:

MV approx-gHIn(Y,L) = gH(M) + gH(L)− gH(M ;L), (26)

which is the multivariate generalization of Equation 24. Note that as in Equation 24, this approx-
imation is based on the (multivariate) model random variable, which captures the possibility that
different leakage points can have different leakage behaviors despite depending on the same Y .

Note also that as the number of dimensions increases, using such an approximation is increas-
ingly useful from the time complexity viewpoint. Indeed, while the univariate gHI can be computed
directly by integration, computing the multivariate gHI in our experimental case study (where we
exploit the measurements of two clock cycles corresponding to 250 leakage points) would require
integrating a 250-dimension distribution. By contrast, evaluating Equation 26 only requires esti-
mating the covariances matrices of the model, leakages and their joint distribution.

The approximations of the multivariate gHI for the cases π = 3 and 11 are in Figure 6. The
π = 0 and 7 cases are given in Appendix B, Figure 8. For completeness, the plots first report
the univariate gHI for each time sample (in red). The multivariate Gaussian approximations of
Equation 26 are then reported in purple in a cumulative manner: the value for time sample x
corresponds to the x-variate estimation for dimensions 1 to x. Eventually, we added a conservative
bound in blue, based on the assumption that each leakage point provides independent information
and is summed. Those results are practically-relevant for two main reasons:
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Figure 6: Actual measurements, unprotected S-box, multivariate.

• First, they allow estimating the information of a very powerful yet realistic, close to worst-
case adversary (since the univariate gHI is close to the eHI) in a more accurate (and less
conservative) manner than bounds obtained based on an independence assumption. For
example, the most informative point of Figure 6(b) has a (univariate) gHI of 4 · 10−2 while
our approximation of the multivariate gHI is worth 2 · 10−1 (i.e., a factor 5 more) and the
bound would suggest a gHI larger than one (i.e., no security). So it illustrates a case where
our approximation provides a useful intermediate between a too optimistic univariate analysis
and a too conservative bound based on an independence assumption. We note that as for the
univariate case, the approximation of Equation 26 only holds for reasonably small HI values
(i.e., typically below 0.1). For example, the approximation for the π = 0 case in Appendix B,
Figure 8(a) overestimates the information leakages. Yet, the quantitative analysis of those
cases is anyway not very interesting (since they correspond to a too weak security).

• Second, these close to worst-case evaluations of the information leakages are obtained very
efficiently (from the data complexity viewpoint). Taking again the π = 11 case for illustra-
tion, the Gaussian approximation of the 250-variate gHI already reaches a good convergence
after approximately n = 106 samples (while the gPI is still negative with this amount of
measurements). For completeness, we report the convergence plots of the multivariate gPI
and gHI in Appendix B, Figure 9, where we can also observe this faster convergence for lower
number of dimensions (illustrating a case where the gPI is already positive).

5 Conclusions

This paper provides first quantitative tools to bound the information leakages exploited in SCAs,
taking into account the risk of a “false sense of security” due to incorrect assumptions about
the leakage distributions. In case of low-dimensional leakages, we are able to formally bound the
amount of information obtained on a target random variable. In case of high-dimensional leakages
(which typically happen in case of strong adversaries trying to exploit all the information in power
or electromagnetic measurements), tightening these bounds usually requires an unrealistic amount
of data. Yet, even in these cases, our tools can be used to approximate the information provided
by more specialized (close to worst-case) adversaries, by exploiting simplifying (e.g., Gaussian)
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assumptions. As a result, a natural approach to leakage certification is to mix (i) a low-dimension
analysis estimating both the empirical and (for example) the Gaussian HI and PI metrics, in or-
der to gauge the quality of the simplifying (e.g., Gaussian) assumption and (ii) a high-dimension
analysis based on the simplifying assumption(s) only. Such an approach can considerably speed up
security evaluations. First, estimating an HI bound is significantly less expensive than estimating
the PI, both in terms of data complexity (as clear from the convergence plots of the previous section)
and in terms of time complexity. For example, the multivariate gHI estimations of Section 4.2.2
are obtained within minutes of computations on a desktop computer whereas the gPI estimations
take several hours (due to their expensive cross-validation step). Next, such information theoretic
metrics can be used to bound the success rate of actual side-channel attacks much faster than by
directly mounting attacks. These bounds can be used both in the context of standard divide-and-
conquer adversaries as usually considered in current security evaluations (e.g., using the formulas
in [10]), and for analyzing more advanced adversaries trying to combine the information leakages
beyond the operations that can be easily guessed by a divide-and-conquer adversary (e.g., using
the Local Random Probing Model in [16]). We believe these tools are important ingredients to
strengthen the understanding of side-channel security evaluations and the design of countermea-
sures with strong security guarantees. We also believe they are of general interest and could find
applications in other contexts such as timing attacks or privacy-related applications [23].
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A Convergence of Equation 6

For completeness, we first detail the discrete case. We let Il(.) be the indicator function of the
leakage l so that Il(l

∗) = 1 if l = l∗ and 0 otherwise. Clearly, Il(l
∗)p(k|l) = Il(l

∗)p(k|l∗), and∑
l∈L Il(l

∗) = 1 for any l∗ ∈ L. We also let ν(l|k) be the number of samples collected for the key
k ∈ K having led to the leakage l. Then, the following holds:

ν(l|k) =

nt(k)∑
i=1

Il(lk(i)).

Moreover, denoting the empirical distribution as ν(l|k)/nt(k), we have:

nt(k)∑
i=1

1

nt(k)
· log2 p(k|l(i)), =

nt(k)∑
i=1

∑
l∈L

Il(lk(i))

nt(k)
· log2 p(k|l(i))

=
∑
l∈L

nt(k)∑
i=1

Il(lk(i))

nt(k)
· log2 p(k|l),

=
∑
l∈L

ν(l|k)

nt
· log2 p(k|lk(i)),

which, when nt(k) grows (other parameters being fixed), gets arbitrarily close to:∑
l∈L

p(l|k) · log2 p(k|lk(i)).

Next moving to the continuous case and denoting by δl(·) the Dirac delta function centered at l,
we first observe that for every l ∈ L, the following holds:

1

nt(k)
· log2 p(k|lk(i)) =

1

nt(k)

∫
l∗∈L

δlk(i)(l
∗) · log2 p(k|l∗)dl∗.

Therefore, we have:

∑
k∈K

p(k) ·
nt(k)∑
i=1

1

nt(k)
· log2p(k|lk(i)) =

∑
k∈K

p(k) ·
nt(k)∑
i=1

1

nt(k)
·
∫
l∗∈L

δlk(i)(l
∗) · log2 p(k|l∗)dl∗,

=
∑
k∈K

p(k) ·
∫
l∗∈L

 1

nt(k)

nt(k)∑
i=1

δlk(i)(l
∗)

 · log2 p(k|l∗)dl∗, (27)

where the expression
(

1
nt(k)

∑nt(k)
i=1 δlk(i)(l

∗)
)

is the empirical measure (conditional to k). It is then

a consequence of the law of large numbers that:∫
l∗∈L

 1

nt(k)

nt(k)∑
i=1

δlk(i)(l
∗)

 g(l∗)dl∗
a.s.→
∫
l∗∈L

f(l∗|k)g(l∗)dl∗,

for any continuous and bounded g [11] (Theorem 11.4.1), and hence that Equation 27 converges to:∑
k∈K

p(k) ·
∫
l∗∈L

f(l∗|k)p(k|l∗)dl∗.
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B Additional figures
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(a) π = 3 (log. scale).
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(b) π = 11 (log. scale).

Figure 7: Actual measurements, unprotected S-box, univariate (II).
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(a) π = 0 (log. scale).
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(b) π = 7 (log. scale).

Figure 8: Actual measurements, unprotected S-box, multivariate.
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(a) π = 11, 10 dimensions (log. scale).
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(b) π = 11, 20 dimensions (log. scale).
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(c) π = 11, 40 dimensions (log. scale).
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Figure 9: Actual measurements, unprotected S-box, multivariate (II).
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