
A constant rate non-malleable code in the split-state model∗

Divesh Aggarwal† Maciej Obremski‡

September 8, 2020

Abstract

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs in ICS 2010, have emerged
in the last few years as a fundamental object at the intersection of cryptography and coding theory.
Non-malleable codes provide a useful message integrity guarantee in situations where traditional error-
correction (and even error-detection) is impossible; for example, when the attacker can completely
overwrite the encoded message. Informally, a code is non-malleable if the message contained in a
modified codeword is either the original message, or a completely “unrelated value”.

The family which received the most attention is the family of tampering functions in the so called
(2-part) split-state model: here the message x is encoded into two shares L and R, and the attacker is
allowed to arbitrarily tamper with each L and R individually.

In this work, we give a constant rate non-malleable code from the tampering family containing so
called 2-lookahead functions and forgetful functions, and combined with the work of Dodis, Kazana
and the authors from STOC 2015, this gives the first constant rate non-malleable code in the split-state
model with negligible error.

∗A previous version of this paper was titled “Inception makes non-malleable codes shorter aswell!”. We refer to Appendix B
for a discussion of the differences between the previous and the current version.
†Department of Computer Science and Center for Quantum Technologies, National University of Singapore. Email:

dcsdiva@nus.edu.sg.
‡Center for Quantum Technologies, National University of Singapore. Email: obremski.math@gmail.com.

1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [DPW10], provide a useful mes-
sage integrity guarantee in situations where traditional error-correction (and even error-detection) is
impossible; for example, when the attacker can completely overwrite the encoded message. Informally,
given a tampering family F , an F-non-malleable code (E,D) encodes a given message x into a codeword
y ← E(x) in a way that, if y is modified into y′ = f(y) by some f ∈ F , then the message x′ = D(y′)
contained in the modified codeword y′ is either the original message x, or a completely “unrelated value”.
In other words, non-malleable codes aim to handle a much larger class of tampering functions F than
traditional error-correcting or error-detecting codes, at the expense of potentially allowing the attacker
to replace a given message x by an unrelated message x′ (and also necessarily allowing for a small “sim-
ulation error” ε). As shown by [DPW10], this relaxation still makes non-malleable codes quite useful
in a variety of situations where (a) the tampering capabilities of the attacker might be too strong for
error-detection, and, yet (b) changing x to unrelated x′ is not useful for the attack. For example, imagine
x being a secret key for a signature scheme. In this case, tampering which keeps x the same corresponds
to the traditional chosen message attack (covered by the traditional definition of secure signatures), while
tampering which changes x to an unrelated value x′ will clearly not help in forging signatures under the
original (un-tampered) verification key, as the attacker can produce such signatures under x′ by himself.

Split-State Model. Although such codes do not exist if the family of “tampering functions” F is
completely unrestricted [DPW10], they are known to exist for many broad tampering families F . One
such natural family is the family of tampering functions in the so called split-state model. Here the
k-bit message x is encoded into 2 shares y1, y2 of length n each, and the attacker is allowed to arbitrarily
tamper with each yi individually. The rate of such an encoding is naturally defined as τ = k

2n .
Non-malleable codes in this model could be interpreted as “non-malleable secret-sharing schemes”:

even if both the shares are independently tampered with, the recovered message is either x or is unrelated
to x. Non-malleable codes in the split-state model have received a lot of attention so far [DPW10,
LL12, DKO13, ADL14, CG14a, CG14b, Agg15, CGL16, Li17, Li19]. In addition, some of the recent
results [GPR16, GK18a, GK18b, ADN+18, BS18, SV18] have shown application of non-malleable codes
in the split-state model to other important problems like non-malleable commitments and non-malleable
secret sharing.

The known results can be summarized as follows. The first non-malleable code in the split-state
model against an information-theoretic adversary was constructed in [DKO13], who constructed a non-
malleable code for 1-bit messages in the split-state model. Following that [ADL14, Agg15, AB16] gave
the first information-theoretic construction supporting k-bit messages, but where the length of each share
n = O(k5). There was a plausible conjecture stated in [ADL14] about the non-malleability of the inner
product function under which one would get a 2-part split-state code with constant rate, i.e., n = O(k).

In [CG14a], it was shown that the notion of non-malleable codes in the split-state model is closely
related to the notion of non-malleable two-source extractors and using this insight, and the alternating
extraction protocol from [DP07], recent results [CGL16, Li17, Li19] have obtained improved constructions
of non-malleable codes in the split-state model. The most recent result [Li19] gives a construction with

rate c·log log log 1/ε
log log 1/ε for some constant c. This construction has a constant rate if ε is a constant, but the rate

approaches 0 if ε is negligible in n, as is required for applications. In particular, if we choose ε = 2−n
Ω(1)

,
then the rate is O(log logn

logn).
The authors, along with Dodis and Kazana [ADKO15a] introduced the concept of non-malleable

reductions and, under a plausible conjecture, gave a series of reductions that results in constant rate
non-malleable codes in the split-state model 1.

1A previous version of [ADKO15a] claimed a constant rate non-malleable codes in the split-state model. Unfortunately,
Li [Li17] found a mistake in the proofs of one of the lemmas in the paper, and though the lemma is believable, currently the

1

However, until this work, the problem of unconditionally constructing constant rate non-malleable
codes in the split-state model (with ε negligible in the size of the codeword) remains open.

Our Result. In this work, we give a constant rate non-malleable code in the split-state model.

Theorem 1.1 (Main Result). There exists an efficient, information-theoretically secure ε-non-malleable

code in the split-state model with shares of size O(k), where k is the length of the message, and ε = 2−k
Ω(1)

.

Our result is achieved by giving a non-malleable code against the tampering family G containing
2-lookahead tampering functions and forgetful tampering functions. Combined with a non-malleable
reduction from the 2-split tampering family to G gives a non-malleable code in the split-state model. For
an overview of our construction and a discussion of our proof techniques, we refer the reader to Section 2.

Other Related Work. If we relax the number of states to more than 2, or we restrict the adversary
to be computationally bounded, then there are known constructions of constant rate non-malleable codes
with negligible error. In particular, some recent results [CZ14, KOS17, KOS18, GMW18] obtain near
optimal non-malleable codes in the t-split-state model where t is a constant greater than 2, and [AAG+16]
gave a construction of a rate 1 non-malleable code against computationally bounded adversaries.

Other results that look at an (enhanced) split-state model are Faust et al. [FMNV14] which consider
the model where the adversary can tamper continuously, and [ADKO15b], that considers the model where
the adversary, in addition to performing split-state tampering, is also allowed some limited interaction
between the two states.

There have been some results that have obtained non-malleable codes against continuous tampering
in the split-state model [AKO17, ADN+17].

In addition to the already-mentioned results, several recent works [CCFP11, CCP12, CKM11, FMVW14,
AGM+14, AGM+15, BDSKM16, FHMV17, BDSKM18, BDSG+18] either used or built non-malleable
codes for various families F , but did not concentrate on the split-state model, which is our focus here.

The notion of non-malleability was introduced by Dolev, Dwork and Naor [DDN00], and has found
many applications in cryptography. Traditionally, non-malleability is defined in the computational setting,
but recently non-malleability has been successfully defined and applied in the information-theoretic setting
(generally resulting in somewhat simpler and cleaner definitions than their computational counter-parts).
For example, in addition to non-malleable codes studied in this work, the work of Dodis and Wichs [DW09]
defined the notion of non-malleable extractors as a tool for building round-efficient privacy amplification
protocols.

Finally, the study of non-malleable codes falls into a much larger cryptographic framework of providing
counter-measures against various classes of tampering attacks. This work was pioneered by the early works
of [ISW03, GLM+03, IPSW06], and has since led to many subsequent models. We do not list all such
tampering models, but we refer to [KKS11, LL12] for an excellent discussion of various such models.

Organization of the Paper. In Section 2, we provide an overview of our construction and our proof
techniques. In Section 3, we introduce the various notations and define the primitives and their parameters
needed for our constructions. Additionally, in Section 3 we give formal definitions of non-malleable
reductions and their connection to non-malleable codes. In Section 4, we state the properties of the
non-malleable code construction from [ADL14] needed for our proofs. In Section 5, we provide our
construction in a series of steps. In particular, in Subsection 5.1, we give a construction of non-malleable
codes against 2-lookahead tampering. In Subsection 5.2, we show how to extend this construction to
obtain a non-malleable code against 2-lookahead and forgetful tampering. Finally, in Subsection 5.3,
we show how this yields a constant-rate non-malleable code in the split-state model. In Section 7 and
Section A, we prove the results in Section 5.1 and Appendix 4, respectively.

construction is secure only under a plausible conjecture.

2

2 Overview of the Construction and Techniques

2.1 Non-malleable reductions

In [ADKO15a], the notion of non-malleable codes w.r.t. to a tampering family F was generalized to
a more versatile notion of non-malleable reductions from F to G. Intuitively, (F ,G, ε)-non-malleable
reduction allows one to encode a value x with y ← E(x), so that the tampering of y by y′ = f(y)
for f ∈ F gets “reduced” (by the decoding function D(y′) = x′) to tampering with x itself via some
(distribution over) G ∈ G, that is D(f(y)) ≈ε G(x). For formal definitions and more details we refer to
the Section 3.2.

Notice that the notion of non-malleable code w.r.t. F , is simply a reduction from F to the family of
“trivial manipulation functions” consisting of identity function and constant functions (see Def. 3.4 for
formal definition). The utility of non-malleable reductions comes from the natural composition theorem
that was shown in [ADKO15a], which allows to construct a non-malleable code by gradually make our
tampering families simpler and simpler, until we eventually end up with a family of trivial manipulation
functions mentioned above.

2.2 Important tampering families

Let us briefly introduce few important function families.

• t-split-state model. Is a family where the attacker can apply t arbitrarily correlated functions
h1, . . . , ht to t separate parts of memory (but, of course, each hi can only be applied to the i-th
part individually).

• forgetful family. Memory is split into t parts. Adversary can apply any tampering function that
depends only on (t− 1) parts. I.e. adversary has to ’forget’ at least one part of the memory (it is
up to him which will be forgotten), besides that, it is not restricted in any way.

• lookahead manipulation family. There are t parts of memory (x1, . . . , xt), adversary tampers with
first part x′1 = f1(x1), then with next parts while knowing all previous parts: x′i = fi(x1, . . . , xi).
In other words, x′1 depends on x1, x′2 depends on both x1 and x2, and in general, x′i depends on
x1, . . . , xi.

• 2−lookahead manipulation family. Here t parts of memory (for t even) are split into two groups:
(x1, . . . , xt/2) and (xt/2+1, . . . , xt), each of the groups is tampered independently, within the groups
adversary applies lookahead manipulations. That means that x′i depends on x1, . . . , xi for i =
1, . . . , t/2, and for i = t/2 + 1, . . . , t we get that x′i depends on xt/2+1, . . . , xi.

2.3 Reduction from 2−split state model

Theorem 2.1. [Informal]. It was shown in [ADKO15a] that there is an efficient non-malleable reduction
from the 2−split state tampering family to a union of the forgetful tampering family and the 2−lookahead
tampering family. Moreover this reduction has a constant rate, i.e. the size of the codeword is linear in
the size of the message. (for a formal statement see Thm. 5.1).

By above theorem, to build explicit non-malleable code in the 2−split-state model it suffices to build
non-malleable code against sum of forgetful and double lookahead families. Moreover, if our code has a
constant rate then induced code in 2−split state model will have a constant rate.

3

2.4 Non-malleable code with rate zero but with additional properties

A key ingredient in our construction will be the non-malleable code construction from [ADL14]. Even
though, this construction has rate 1

n4 → 0 ([ADL14] claimed a rate of 1
n6 but it was shown to be 1

n4

using the same construction in [AB16]), it has some additional properties that allow us to bootstrap it to
obtain a constant rate code against 2-lookahead tampering. In particular, the non-malleable code from
[ADL14] has two additional properties that are crucial for our construction:

• Leakage resilient storage. The code in [ADL14] is built on inner product function, which is a strong
2-source extractor. Thus it has excellent leakage resilience properties. Even if the adversary sees
one state, and obtains a lot of independent leakage from the other state, he still won’t be able to
say anything about the message2.

• Detection of bijective tampering. The adversary cannot hope to retain a lot of information about the
codeword in the tampered codeword, and still be able to tamper successfully. If the two tampered
states carries a lot of information about original states then we are guaranteed that either the
tampered codeword decodes to the original message is preserved or the codeword is not valid (and
decodes to an error message, ⊥).

The two properties mentioned above together mean the following. A valid codeword encoding a valid
message different from the original message can be produced only if the tampered codeword lost a
significant fraction of the information about the original states. In fact, the tampered states carry so
little3 information about the original states, that the tampered states and some additional leakage of the
codeword put together are still not enough to retrieve any information about the original message.

2.5 Non-malleable code (NMC) against lookahead tampering - the construction4

For clarity, we will first discuss the construction of a non-malleable code against lookahead tampering
alone (without resilience to forgetful tampering). The construction is described in Figure 1. The main
ingredients are:

• (Enc,Dec) a non-malleable code from [ADL14],

• Ext2 and Ext3 are inner product (strong 2-source) extractors with appropriate parameters,

• Checks is an appropriate 2-universal (collision resilient) hash function.

We would like to emphasize here that the reason this construction has a constant rate even though
(Enc,Dec) was not constant rate is because we are using Dec(L,R) to only store “checks” to detect any
tampering in X,Y,A,B and not to actually store the message.

2.6 A few tampering scenarios

We look at a few tampering scenarios to give the intuition behind the construction. We will write L′, R′ to
denote states L and R after tampering. We remind that, since Enc,Dec is a non-malleable code, adversary
can only preserve the decoding Dec(L,R) or overwrite it completely or create an invalid codeword.

2The leakage resilience is meant to be exactly as described here. We are not referring to leakage resilient non-malleable
code as defined in [LL12] and [ADKO15b].

3The information rate of the tampered codeword to original codeword is way more then 1/2, but the rate of information
required to retrieve the message is close to 1, the gap between the two is of a constant order.

4For convenience of the reader last page of this manuscript contains figures for both constructions.

4

! " #

$ % &

Dec !, $ = [-, Checks2 ", %, #, &, 3] 3 = Ext8(", %) Message = 3 + Ext?(#, &)

Arrows represent
the direction of
the tampering.
L is tampered first,
then X given X,L etc.

First blocks of the lookaheads.
@AB is the decoder of [ADL14]

Second blocks. Third blocks.

Dotted lines separate blocks of lookahead

Figure 1: The decoding algorithm of NMC against lookahead tampering.

Scenario 1: The adversary preserves checks encoded with non-malleable code from [ADL14], i.e.
Dec(L′, R′) = Dec(L,R).
In this case any tampering with X,Y,A,B will be detected via the checks in Dec(L′, R′) = Dec(L,R).
There is a technical issue with making this formal: the adversary tampers with X,A after seeing L and
with Y,B after seeing R, but we choose the lengths of the states appropriately so that we can model every-
thing as a small leakage from L and R and the secrecy of checks is preserved i.e. X,X ′, Y, Y ′, A,A′, B,B′

together do not reveal any information about the random seed σ, and thus the probability that checks of
original and tampered parts of the codeword will collide is negligible.

Scenario 2: The adversary overwrote checks i.e. Dec(L′, R′) 6= Dec(L,R) is a valid codeword.
In this case, by the NMC properties, we get that after the decoding, the modified seed σ′ and the
corresponding check value c′ are independent of the original values. However, we can not rule out the
possibility that the adversary knows both σ′ and c′ (e.g., if he completely overwrote L,R by something
unrelated). Now we have two sub-scenarios:

Scenario 2.1: Adversary lost some information about X or Y .
In this case, either X can not be fully recovered from L′, X ′, or Y cannot be fully recovered from R′, Y ′.
Then by the strong 2-source extractor property of Ext2, the adversary has lost all information about Z
and, as a consequence, the tampered codeword is uncorelated with the message.

5

Scenario 2.2: Adversary preserved information about X and Y .
We know that σ′ and c′ are controlled by the adversary but completely independent of the original checks.
We also know that X ′ and Y ′ must have high min-entropy, or else they wouldn’t carry information about
X,Y . In order to argue tamper detection in this case, we need to go into the details of the definition
of our check. Our check function consists of two checks, one is a collision resilient hash function on
X‖Y ‖A‖B using half of σ as a seed. The other half of σ say σ2 is used for a check on Z,

Check-Zσ2(Z) := c2 = Z1 ⊕ σ2,

where Z1 is an appropriate length prefix of Z.
In this scenario, the check on Z comes into play. We have that X and Y are sampled independently and
uniform at random and Z := Ext2(X,Y). We can argue that X ′, Y ′ are high-entropic and independent
even given L,R (and hence given L′, R′), and thus Z ′ = Ext2(X ′, Y ′) is close to uniform and independent
of the message given L′, R′. Notice that the check for Z (or Z ′) has the property that for any fixing of
σ′2 and c′2, the probability that for U uniform U ⊕ σ′2 = c′2 is negligible. Since, as we just discussed, Z ′ is
close to uniform and independent of σ′2 and c′2 the probability that Z ′ ⊕ σ′2 = c′2 is negligible, and hence
the tampering is detected by the decoding algorithm with overwhelming probability.

Scenario 2.2′: Imagine we are in the scenario 2.2 mentioned above, but we did not have the last parts
A,B in our encoding function, i.e. the message is simply Z instead of Z ⊕ Ext3(A,B).
Notice that in the previous scenario, we used that X ′ and Y ′ are independent of the message and since
they have high entropy, Z ′ = Ext2(X ′, Y ′) is close to uniform and independent of the message. We did not
show (and did not need) independence of Z and Z ′, since Z was sampled uniformly and independently
from the message. Now, however, if the message is simply Z, then we cannot say any more that X ′ and
Y ′ are independent or that Ext2(X ′, Y ′) is uniform and independent of the message.

Our encoding algorithm appends random variables A,B, respectively as the last part in both looka-
heads to ensure that X,Y are independent of the message m.

2.7 Why do we need additional properties of [ADL14]?

In Scenarios 2.1 and 2.2 we need to argue that all information about original Dec(L,R) has been lost.
This is not quite as trivial as it seems at the first glance. Dec(L′, R′) might be independent of Dec(L,R)
but L′, R′, X ′, Y ′, A′, B′ together might carry some information about the original checks. Imagine, for
example, that Dec(L′, R′) is fixed and independent of Dec(L,R). We have to exclude the possibility that
the rest of the codeword (X ′, Y ′, A′, B′) fulfills the checks from Dec(L′, R′) if and only if the first bit of
Dec(L,R) is equal to Dec(L′, R′). If we didn’t rule out this possibility, then Dec(L′, R′) is not independent
of Dec(L,R) conditioned on the codeword being valid. This is not only a technical issue, but given that
Dec(L,R) encodes a check on Z, this would raise a concern about the security of the whole scheme.

As we discussed earlier, [ADL14] has the property that if Dec(L,R) 6= Dec(L′, R′) then L′, R′ form a
valid codeword if and only if it doesn’t carry much information about L,R, i.e. the tampering function
on L and R are very far from bijective. Then we simply consider X ′, Y ′, A′, B′ as an extra leakage5 and
we can show that L′, R′, X ′, Y ′, A′, B′ together do not carry enough information about L,R and thus are
independent of the original checks.

Another place where we use an additional properties of [ADL14] is in Scenario 1 where we need to
show that X,X ′, Y, Y ′, A,A′, B,B′ doesn’t carry any information about Dec(L,R). here the argument is
much more straight forward and follows from the leakage resilient storage property of the code.

5Where X ′, A′ is bounded leakage from L and Y ′, B′ is a bounded leakage from R.

6

2.8 Last step: resilience to forgetful tampering

Finally in Section 5.2, we show how to add resilience to forgetful tampering. We need to modify our
construction so that forgetting about any of the states leads to forgetting the message. This means that
the message can not be retrieved using only 5 of the states (i.e. that the construction is 6 out of 6 secret
sharing). First notice:

1. Forgetting A or B: by the property of inner product forgetting A or B immediately leads to losing
any information about Ext3(A,B) and thus we lose information about the original message.

2. Forgetting X or Y : Losing information about Z immediately leads to losing any information about
message. However, situation is more complicated, since L,R encode the check on Z. Thus, not all
information about Z is lost and some partial information about the message can be retrieved.

3. Forgetting L or R: forgetting any of the two is inconsequential, we can fully retrieve the message
simply by calculating Ext2(X,Y) + Ext3(A,B).

Point 2: This problem can be easily resolved, notice that L,R carry only information about the prefix
of Z. Thus the only information about the encoded message the adversary can retrieve is the prefix of that
message. To fix this, we simply require that the prefix of the message is 02t where 2t is the length of the
check, which essentially means that the message is encoded only on the suffix i.e Ext2(X,Y)+Ext3(A,B) =
02t||message.

Point 3: Notice that now, after the above fix, forgetting X or Y leads to forgetting the whole message.
Using this fact, we can easily fix the issue from point 3. We will split X (and Y) into 2 states X = X1+X2

(and Y = Y1+Y2). Notice that forgetting any of the fourX1, X2, Y1, Y2 leads to forgetting the message. We
will exploit this fact simply by extending states holding L and R to store L‖X1 and R‖Y1 respectively,
while states previously storing X and Y will only store X2 and Y2 respectively (see Figure 2 for the
diagram of modified decoder function).

After the above modifications. Notice that:

1. Forgetting A or B: we still immediately lose the message.

2. Forgetting X2 or Y2: we lose the information about Z which immediately leads to losing any
information about the message.

3. Forgetting L‖X1 or R‖Y1: forgetting any of the two means forgetting X1 or Y1 which has the same
consequences as forgetting X2 or Y2.

3 Preliminaries

3.1 Notation and Mathematical Preliminaries

For a set T , let UT denote a uniform distribution over T , and, for an integer `, let U` denote uniform
distribution over ` bit strings. We say that b = a ± δ if a − δ ≤ b ≤ a + δ. For any random variable A
and any set A, we denote A|A∈A to be the random variable A′ such that

∀a, Pr[A′ = a] = Pr[A = a | A ∈ A] .

The statistical distance between two random variables A,B is defined by

∆(A ; B) =
1

2

∑
v

|Pr[A = v]− Pr[B = v]| .

7

! "# $

% &# '

Dec !, % = [., Checks3 ", &, $, ', 4]
4 = Ext#(", &)

0#<||Message = 4 + ExtB($, ')

First blocks of the lookaheads.
CDE is the decoder of [ADL14]

Second blocks. Third blocks.

"F

&F

" = "F + "#
& = &F + &#

Figure 2: The decoding algorithm of NMC against lookahead and forgetful tampering .

We use A ≈ε B as shorthand for ∆(A,B) ≤ ε.

Lemma 3.1. For any function α, if ∆(A ; B) ≤ ε, then ∆(α(A) ; α(B)) ≤ ε.

The min-entropy of a random variable W is H∞(W)
def
= − log(maxw Pr[W = w]), and the conditional

min-entropy of W given Z is H∞(W |Z)
def
= − log (Ez←Z maxw Pr[W = w|Z = z]).

Definition 3.1. We say that a function Ext : Fn × Fn → F is a (k, ε)-2-source extractor if for all
independent sources X,Y ∈ Fn such that min-entropy H∞(X) + H∞(Y) ≥ k, we have (Y,Ext(X,Y)) ≈ε
(Y, Um), and (X,Ext(X,Y)) ≈ε (X,Um).

Lemma 3.2. For all positive integers n and any finite field F, and for all ε > 0, the inner product
function 〈·, ·〉 : Fn × Fn → F is an efficient ((n+ 1) log |F|+ 2 log

(
1
ε

)
, ε) 2-source extractor.

In particular, for n being an integer multiple of m, and interpreting elements of {0, 1}m as elements
from F2m and those in {0, 1}n to be from (F2m)n/m, we have that for any ε > 0 there exists an efficient
(n+m+ 2 log

(
1
ε

)
, ε) 2-source extractor Ext : {0, 1}n × {0, 1}n → {0, 1}m.

The following is a definition of an ε-almost universal hash function.

Definition 3.2. A function C : {0, 1}s×{0, 1}n → {0, 1}t is called an ε-almost universal hash function

8

if for any x, y ∈ {0, 1}n such that x 6= y,

Pr
R←{0,1}s

(C(R, x) = C(R, y)) ≤ ε

The following is a standard construction of a polynomial evaluation ε-universal hash function. The
parameters are from [DW09].

Lemma 3.3. For any n, t > 2 log n, there exists an efficiently computable 2−t/2-almost univeral hash
function C : {0, 1}s × {0, 1}n → {0, 1}t with s = 2t.

3.2 Non-malleable Codes and Reductions

Definitions. In [ADKO15a], the notion of non-malleable codes w.r.t. to a tampering family F (see
[DPW10]) was generalized to a more versatile notion of non-malleable reductions from F to G. The
following definitions are taken from [ADKO15a].

Definition 3.3 (non-malleable reduction). Let F ⊂ AA and G ⊂ BB be some classes of functions
(which we call manipulation functions). We will write:

(F ⇒ G, ε)

and say F reduces to G, if there exist an efficient randomized encoding function E : B → A, and an
efficient deterministic decoding function D : A → B, such that (a) for all x ∈ B, we have D(E(x)) = x,
and (b) for all f ∈ F , there exists G such that for all x ∈ B,

∆
(
D(f(E(x))) ; G(x)

)
≤ ε, (1)

where G is a distribution over G, and G(x) denotes the distribution g(x), where g ← G.
The pair (E,D) is called (F ,G, ε)-non-malleable reduction.

Intuitively, (F ,G, ε)-non-malleable reduction allows one to encode a value x by y ← E(x), so that
tampering with y by y′ = f(y) for f ∈ F gets “reduced” (by the decoding function D(y′) = x′) to
tampering with x itself via some (distribution over) g ∈ G.

In particular, the notion of non-malleable code w.r.t. F , is simply a reduction from F to the family
of “trivial manipulation functions” NMk defined below.

Definition 3.4. Let NMk denote the set of trivial manipulation functions on k-bit strings, which consists
of the identity function I(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k.

We say that a pair (E,D) defines an (F , k, ε)-non-malleable code, if it defines a (F ,NMk, ε)-non-
malleable reduction.

The utility of non-malleable reductions comes from the following natural composition theorem that
was shown in [ADKO15a], which allows to gradually make our tampering families simpler and simpler,
until we eventually end up with a non-malleable code (corresponding to the trivial family NMk).

Theorem 3.1 (Composition). If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒ H, ε1 + ε2).

We will also need the following trivial observation.

Observation 3.1 (Union). Let (E,D) be an (F ,H, ε) and a (G,H, ε′) non-malleable reduction . Then
(E,D) is an (F ∪ G,H,max(ε, ε′)) non-malleable reduction .

Useful Tampering Families. We define several natural tampering families we will use in this work.
For this, we first introduce the following “direct product” operator on tampering families:

9

Definition 3.5. Given tampering families F ⊂ AA and G ⊂ BB, let F ×G denote the class of functions
h from (A×B)A×B such that

h(x) = h1(x1)‖h2(x2)

for some h1 ∈ F and h2 ∈ G and x = x1‖x2, where x1 ∈ A, x2 ∈ B.
We also let F1 := F , and, for t ≥ 1, F t+1 := F t ×F .

We can now define the following tampering families:

• Sn = ({0, 1}n){0,1}
n

denote the class of all manipulation functions on n-bit strings.

• Given t > 1, Stn denotes the tampering family in the t-split-state model, where the attacker can
apply t arbitrarily correlated functions h1, . . . , ht to t separate, n-bit parts of memory (but, of
course, each hi can only be applied to the i-th part individually).

• FORtn1,n2,...,nt
denotes forgetful family. It is applied to t parts of memory of length ni but the

output value can depend only on (t − 1) parts. More precisely: Let x ∈ {0, 1}n be a bit vector
and xi ∈ {0, 1}ni denote i-th block of n bits. For any h ∈ FORtn1,n2,...,nt

there exist a subset
S ⊂ {1, 2, . . . , t} of size (t − 1) such that h(x) can be evaluated from xS . Besides that, it is not
restricted in any way.

• Finally, LA←tn1,...,nt
, where n = n1 + · · ·+ nt denotes the class of lookahead manipulation functions l

that can be rewritten as l = (l1, . . . , lt), for li : {0, 1}n1+···+ni → {0, 1}ni , and where

l(x) = l1(x1)‖ . . . ‖lt(x1, . . . , xt)

for xi ∈ {0, 1}ni . In other words, if l(x1, . . . , xt) = y1, . . . , yt, then y1 depends on x1, and y2 depends
on both x1 and x2, and in general, yi depends on x1, . . . , xi.

4 The non-malleable code construction from [ADL14, Agg15, AB16]

We will need the construction of non-malleable codes in the split-state model from [ADL14, Agg15, AB16].
We need a little more than just the non-malleability property of the construction. The following theorem
states and proves the precise property of the code that we require for our construction. The proof appears
in Appendix A and is a rather straightforward modification of the proofs in [ADL14, Agg15, AB16]. The
reader can safely skip this section and return to it when referenced.

Theorem 4.1. There exists an efficient construction (Enc,Dec) of an ε-non-malleable code in the split-
state model from {0, 1}7t to Fnp × Fnp with ε = 2−Ω(t), n = O(t5) and p ≤ 2O(t) is a prime6. Furthermore,
for any functions f : Fnp → Fnp , and g : Fnp → Fnp , the space Fnp × Fnp can be partitioned into

Fnp ×R0, L0 × (Fnp \ R0), (Lsame,i ×Rsame,i)1≤i≤q, (L⊥,i ×R⊥,i)1≤i≤r,Rem

such that the following hold.

• L0 = {` ∈ Fnp : |f−1(f(`))| ≥ p0.45n , and R0 = {r ∈ Fnp : |g−1(g(r))| ≥ p0.45n, i.e., L0 is the subset
of Fnp on which f is “far from” being a bijective function, and R0 is the subset of Fnp on which g is
“far from” being a bijective function.

• For all m ∈ {0, 1}7t, for all i, Pr[Dec(Enc(m)) = m | Enc(m) ∈ Lsame,i × Rsame,i] = 1, and
|Lsame,i ×Rsame,i| ≥ p1.9n.

6The constant 7 in this Theorem statement are chosen to match those required in our results. There is some freedom in
the choice of parameters in [ADL14, Agg15, AB16], and so the result of this theorem follows for an appropriate choice of t.

10

• For all m ∈ {0, 1}7t, for all i, Pr[Dec(Enc(m)) = ⊥ | Enc(m) ∈ L⊥,i × R⊥,i] = 1 − ε, and
|L⊥,i ×R⊥,i| ≥ p1.9n.

• For all m ∈ {0, 1}7t, Pr[Enc(m) ∈ Rem] ≤ ε.

• The decoding function Dec(`, r) := h(Ext(`, r)) is a deterministic function of the inner product
two-source extractor function from Fnp × Fnp to Fp.

5 Our constructions and the main result

It was shown in [ADKO15a] that

Theorem 5.1. For any q, there is an n = O(q) such that

(S2
n ⇒ LA←3

q,q,q × LA←3
q,q,q ∪ FOR6

q,q,q,q,q,q, 2
−Ω(q)) .

So, now we construct non-malleable codes for the tampering family LA←3
q,q,q ×LA←3

q,q,q ∪FOR6
q,q,q,q,q,q.

In Section 5.1, we give a non-malleable code against 2-lookahead tampering family, and in Section 5.2,
we show how to extend it to include the forgetful tampering family.

5.1 A non-malleable code against 2-lookahead tampering

Theorem 5.2. There exists a 2−k
Ω(1)

-non-malleable code for k-bit messages against the tampering family
LA←3

O(k),O(k),O(k) × LA
←3
O(k),O(k),O(k).

Construction. Our construction (E,D) depicted in Figure 1 that achieves the above result is as fol-
lows7.

Encoding : Given m ∈ {0, 1}k, we do the following.

• Let Ext3 be the inner product function from F5
2k
× F5

2k
→ F2k . Let A,B be chosen uniformly

at random from {0, 1}5k.
• Let Ext2 be the inner product function from F25

2k
× F25

2k
→ F2k . Sample X,Y ∈ {0, 1}25k

uniformly at random, conditioned on z := Ext2(X,Y) = m⊕ Ext3(A,B).

• Let σ1, σ2 be 2t-bit strings sampled uniformly at random for t = Θ(k1/5).

• Let C1, C2 : {0, 1}2t × {0, 1}25k → {0, 1}t, and C3, C4 : {0, 1}2t × {0, 1}5k → {0, 1}t be 2−t/2-
almost universal hash functions as defined in Lemma 3.3. Also, let z = z1‖z2 where |z1| = 2t.

• Let s = σ1, σ2, c1 := C1(σ1, X)‖C2(σ1, Y)‖C3(σ1, A)‖C4(σ1, B), c2 := z1 ⊕ σ2.

• Let L,R := Enc(s), where (Enc,Dec) be a non-malleable code in the split state model given
by Theorem 4.1 from {0, 1}10t to Fnp × Fnp where n = d100k

log p e.
• Output (L,X,A) as the first part of the codeword, and (R, Y,B) as the second part.

For the rest of the paper, we denote C1(σ1, X)‖C2(σ1, Y)‖C3(σ1, A)‖C4(σ1, B) by C(σ1, X‖Y ‖A‖B).8

Decoding : Given (L,X,A), (R, Y,B) we do the following.

7We note here, that the construction is efficient. Please notice that since Ext2 and Ext3 are just inner product extractors
they are efficiently invertible, in particular for any output z it is possible to efficiently sample X,Y uniformly random fulfilling
Ext2(X,Y) = z.

8We require 4 almost universal hash functions instead of a single, joint check in order to ensure that X,Y are independent
given C(σ1, X‖Y ‖A‖B), and A,B are independent given C(σ1, X‖Y ‖A‖B).

11

• Compute s = Dec(L,R), and z = Ext2(X,Y).

• If s = ⊥, output ⊥, else let s = σ1, σ2, c1, c2.

• If z1 6= c2 ⊕ σ2, where z1 is the first 2t bits of z, or c1 6= C(σ1, X‖Y ‖A‖B), output ⊥.

• Else output z ⊕ Ext3(A,B).

Overview of the proof. Given a message m ∈ {0, 1}k, let E(z) = (L,X,A), (R, Y,B). Let f1, g1 :
Fnp → Fnp , f2, g2 : Fnp × {0, 1}25k → {0, 1}25k, and f3, g3 : Fnp × {0, 1}30k → {0, 1}5k be arbitrarily chosen
functions, and let

L′ = f1(L), R′ = g1(R), X ′ = f2(L,X), Y ′ = g2(R, Y), A′ = f3(L,X,A), B′ = g3(R, Y,B) .

Also, let z′, z′1, z
′
2, σ
′
1, σ
′
2, c
′
1, c
′
2 be the corresponding tampered values.

As is the case with almost all proofs for non-malleable code constructions, our proof proceeds by first
partitioning the ambient space Fnp×{0, 1}30k×Fnp×{0, 1}30k depending on the functions f1, g1, f2, g2, f3, g3.
We then argue that for each partition, as long as the partition is large enough, conditioned on the random
variables L,X,A,R, Y,B being restricted to be in that partition, we can show that either the codeword
remains unchanged after tampering, or D((L′, X ′, A′), (R′, Y ′, B′)) = ⊥ with high probability, or the
tampered codeword is almost independent of the message m, (i.e., it reveals no information about the
message m).

We first consider the partition where Dec(L′, R′) = Dec(L,R). In this case, notice that if X,Y,A,B
are changed then with high probability, C(σ1, X‖Y ‖A‖B) 6= C(σ1, X‖Y ‖A‖B), and so the decoding
algorithm outputs ⊥ with high probability. On the other hand, if X,Y,A,B are unchanged, then the
decoder outputs same. For the formal proof, we need to deal with the dependence between various random
variables, and the detailed proof can be found in Lemma 7.1.

We next consider the partition where H∞(L′) + H∞(R′) � n log p, and Dec(L′, R′) 6= Dec(L,R). In
this case, by Theorem 4.1, we have that Dec(L′, R′) = ⊥ with high probability.

This leaves us with the partitions where one of H∞(L|L′) or H∞(R|R′) (say H∞(L|L′)) is at least
0.45n log p. Notice that here we are using the fact that for an appropriate choice of partitions, we have
that H∞(L′) + H∞(L|L′) ≈ n log p for L chosen uniformly from that partition. This in particular means
that H∞(L|L′, X ′, A′) ≥ 45k − 25k − 5k = 15k. Thus, again using the observation that Dec(L,R)
is a deterministic function of a strong two-source extractor h(Ext(L,R)), we have that Dec(L,R) is
independent of L′, R′, X ′, Y ′, A′, B′, X, Y,A,B. At this point, we can fix L,R, thereby fixing L′ = `′, R′ =
r′.

Thus, X ′, Y ′ are deterministic functions of X,Y , respectively. Now we further partition the space
{0, 1}25k×{0, 1}25k based on the functions f2, g2. First we consider the case where H∞(X ′)+H∞(Y ′)�
26k. In this case, by using the fact that inner product is a strong 2-source extractor, and noting that
X,Y , and hence X ′, Y ′ is independent of the message m, we have that z′ (and hence z′1 is close to uniform
and independent of the message m, and `′, r′. Thus, the probability that σ′2 = c′2 ⊕ z′1 is negligible, and
hence the decoding algorithm outputs ⊥ with high probability.

The only remaining case is when one of H∞(X|X ′) or H∞(Y |Y ′) (say H∞(X|X ′)) is at least 10k, in
which case H∞(X|X ′, A,A′) ≥ 5k, and hence by the strong extractor property of the inner product, we
have that z = Ext2(X,Y) is independent of X ′, Y ′, A′, B′, A,B and hence is independent of the tampered
codeword (since we already fixed L′, R′). The tampered codeword is thus independent of the message9.

5.2 A non-malleable code secure against 2-lookahead and forgetful tampering

Theorem 5.3. There is an 2−k
Ω(1)

- non-malleable code for k-bit messages against the tampering family
LA←3

O(k),O(k),O(k) × LA
←3
O(k),O(k),O(k) ∪ FOR

6
O(k),O(k),O(k),O(k),O(k),O(k).

Proof. We modify the construction in Section 5.1 to get non-malleability against the forgetful family.

9Since m = Ext2(X,Y) + Ext3(A,B)

12

Construction. Our construction (E∗, D∗) depicted in Figure 2 that achieves the above result is as
follows.

Encoding : Our encoding algorithm is as follows.

• Given a message m∗ ∈ {0, 1}k−2t, let m = 02t‖m∗.
• Let X,A, Y,B, L,R, s, σ1, σ2, z, z1, z2, c1, c2 be as in the encoding of E(m), where E is the

encoding algorithm from Section 5.1.

• Choose X1, Y1 uniformly at random from {0, 1}25k, and let X2 = X ⊕X1, Y2 = Y ⊕ Y1.

• Output the three parts of the first lookahead as ((L,X1), X2, A), and the three parts of the
second lookahead as ((R, Y1), Y2, B).

Decoding : The decoding algorithm is as follows.

• Given ((L,X1), X2, A), ((R, Y1), Y2, B), compute X = X1 ⊕X2, and Y = Y1 ⊕ Y2.

• Then D∗ (((L,X1), X2, A), ((R, Y1), Y2, B)) := D ((L,X,A), (R, Y,B)), where D is as defined
in Section 5.1.

We now give a simple argument that shows that this construction is secure against the tampering fam-
ily LA←3

O(k),O(k),O(k) × LA
←3
O(k),O(k),O(k) ∪ FOR

6
O(k),O(k),O(k),O(k),O(k),O(k) assuming the construction given

in Theorem 5.2 is secure against the tampering family LA←3
O(k),O(k),O(k) × LA

←3
O(k),O(k),O(k).

Non-malleability against 2-lookahead tampering. We first argue security against 2-lookahead
tampering. Let the tampering functions be f1, g1 : Fnp ×{0, 1}25k → Fnp , f2, g2 : Fnp ×{0, 1}25k → {0, 1}25k,

f3, g3 : Fnp × {0, 1}50k → {0, 1}25k, f4, g4 : Fnp × {0, 1}55k → {0, 1}5k, such that

L′1 = f1(L,X1), X ′1 = f2(L,X1), X ′2 = f3(L,X1, X2), A′ = f4(L,X1, X2, A) ,

and
R′1 = g1(R, Y1), Y ′1 = g2(R, Y1), Y ′2 = g3(R, Y1, Y2), B′ = g4(R, Y1, Y2, B) ,

We show the result for every possible fixing of X1 = x and Y1 = y. We define the functions f∗1 , f
∗
2 , f

∗
3 as

f∗1 (L) := f1(L, x), f∗2 (L,X) := f2(L, x)⊕ f3(L, x,X ⊕ x), f∗3 (L,X,A) := f4(L, x,X ⊕ x,A) ,

and similarly define g∗1, g
∗
2, g
∗
3, which is an attack in LA←3 × LA←3 against the construction from Theo-

rem 5.2. With this change, the proof is identical to that of Theorem 5.2.

Non-malleability against forgetful tampering. In order to argue security against forgetful tam-
pering, consider the case where the adversary loses information about one of A or B (say A), but knows
L,R,X1, X2, Y1, Y2, B. We assume that A,B,X1, X2, Y1, Y2 are uniformly distributed and L,R is com-
puted as in the E∗ given A,B,X1, X2, Y1, Y2. In this case, since H∞(A|C(σ1, X‖Y ‖A‖B)) ≥ 5k− t, and
A,B are independent given C(σ1, X‖Y ‖A‖B), we have that10

∆(Ext3(A,B) ; Uk | B,X1, X2, Y1, Y2, L,R) ≤ 2−1.5k .

For any message m∗, we have that Ext3(A,B) ⊕ Ext2(X1, X2) = m∗ (respectively Uk ⊕ Ext2(X1, X2) =
m), and using Lemma 6.1, we have that upto statistical distance 2 · 2−0.5k, B,X1, X2, Y1, Y2, L,R are
independent of the message m.

10Recall that C(σ1, X‖Y ‖A‖B) is shorthand for C1(σ1, X)‖C2(σ1, Y)‖C3(σ1, A)‖C4(σ1, B).

13

Similarly, if the adversary loses information about one of X2 or Y2 (say X2), then a similar ar-
gument shows that z2 is uniform and independent of A,B,X1, Y1, Y2, L,R, and hence conditioning on
(z1‖z2)⊕ Ext3(A,B) = 02t‖m∗, which implies that upto statistical distance 2−Ω(k), m∗ is independent of
A,B,X1, Y1, Y2, L,R.

Losing one of (L,X1) or (R, Y1) (say (L,X1)) is clearly worse for the adversary, and so the adversary
cannot distinguish between the tampered codeword of any two messages. The result follows.

5.3 Final result via a non-malleable reduction from [ADKO15a]

Setting q = 125k in Theorem 5.4, and padding the required number of 0’s as a prefix to each part of the
codeword, we obtain the following

Theorem 5.4. There is an 2−q
Ω(1)

- non-malleable code for k−O(k1/5)-bit messages against the tampering
family LA←3

q,q,q × LA←3
q,q,q ∪ FOR6

q,q,q,q,q,q.

Theorem 1.1 then follows from Theorem 3.1 and Theorem 5.1.

6 Some Additional Useful Lemmas

In this section, we list a few simple but useful results that we need for our technical proofs in Section 7
and Appendix A.

The following is a simple result from [ADL14] that says that if two pairs of random variables
(X1, X2), (Y1, Y2) are statistically close to each other then X1 conditioned on X2 is statistically close
to Y1 conditioned on Y2.

Lemma 6.1. Let X1, X2 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤
ε. Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.

The following is a variant of a similar simple lemma from [DKO13, ADL14]. The proof is just a simple
application of triangle inequality.

Lemma 6.2. Let S be some random variable distributed over a set S, and let S1, . . . ,Sj be a partition
of S. Let φ : S → T be some function, and let D1, . . . , Dj be some random variables over the set T .
Assume that for all 1 ≤ i ≤ j,

∆ (φ(S)|S∈Si ; Di) ≤ εi.

Then
∆ (φ(S) ; D) ≤

∑
εi Pr[S ∈ Si] ,

for some random variable D ∈ T such that for all d Pr[D = d] =
∑

i Pr[S ∈ Si] · Pr[Di = d].

We will need the following simple lemma about the inner product 2-source source extractors.

Lemma 6.3. Let p ≥ 2 and n ≥ 100 be integers. Ext : Fnp × Fnp → Fp be the inner product 2-source

extractor with |Fp| = p. Let Ext−1(b) to be a random variable that chooses a random element (x, y) in
Fnp × Fnp , such that Ext(x, y) = b. Then, for any b ∈ Fp, and any set S ⊂ Fnp × Fnp

• If |S| ≤ δp2n, then
Pr[Ext−1(b) ∈ S] ≤ 2δp .

14

• If S = A× B for some A,B ⊆ Fnp , and |A × B| ≥ p1.9n, then

Pr[Ext−1(b) ∈ A× B]

|A × B|/p2n
= 1± p−0.4n .

Proof. We have that

Pr[Ext−1(b) ∈ S] =
number of pairs (x, y) ∈ S such that Ext(x, y) = b

number of pairs (x, y) ∈ Fnp × Fnp such that Ext(x, y) = b
.

The denominator in the above is p2n−1 ± pn, which immediately implies that if |S| ≤ δp2n then

Pr[Ext−1(b) ∈ S] ≤ δp2n

p2n−1 − pn
≤ 2δp2n

p2n−1
= 2δp .

For seeing the second item, we observe by the 2-source extractor property that the number of pairs
(x, y) ∈ A× B such that Ext(x, y) = b is |A×B|p (1± p−0.45n+1.5). Then

Pr[Ext−1(b) ∈ A× B]

|A × B|/p2n
=

(1± p−0.45n+1.5)

(1± p−n+1)
= 1± p−0.45n+2

1± p−n+1
= 1± p−0.4n .

The following corollary is immediate from the above.

Corollary 6.1. Let p ≥ 2 and n ≥ 10 be integers. Let Ext : Fnp × Fnp → Fp be the inner product 2-
source extractor with |Fp| = p. Let S1,S2, . . . ,Sq,Sq+1 be a partition of Fnp × Fnp such that for 1 ≤ i ≤ q,
Si = Li×Ri for some Li,Ri ⊆ Fnp and |Si| ≥ p1.9n. Also, |Sq+1| ≤ δpn. Let Ib be a random variable that

takes the value i ∈ [q + 1] if Ext−1(b) ∈ Si, and I be a random variable that takes the value i ∈ [q + 1]

with probability |Si|
p2n . Then for any b ∈ F

∆(I ; Ib) ≤ p−0.4n + 2δp .

Proof. We have that

∆(I ; Ib) ≤ max(Pr[I = q + 1],Pr[Ib = q + 1]) +

q∑
i=1

∣∣∣Pr[I = i]− Pr[Ib = i]
∣∣∣

≤ 2δp+

q∑
i=1

|Si|
pn

p−0.4n

≤ 2δp+ p−0.4n ,

as needed.

7 Proof of Theorem 5.2

Given a message m ∈ {0, 1}k, let the encoding of the message be E(m) = (L,X,A), (R, Y,B), where
(L,X,A) is the first part of the encoding and (R, Y,B) is the second part of the encoding. After tampering,
let the codeword be (L′, X ′, A′), (R′, Y ′, B′). Then, since the allowed tampering is independent lookahead
tampering on the two parts, L′ is a function of L, X ′ is a function of L,X, and A′ is a function of
(L,X,A). The second part of the tampered codeword (R′, Y ′, B′) has a similar dependence on (R, Y,B).

15

Let the functions f1, g1 : Fnp → Fnp , f2, g2 : Fnp×{0, 1}25k → {0, 1}25k, and f3, g3 : Fnp×{0, 1}30k → {0, 1}5k
be arbitrarily chosen tampering functions, and let (L′, X ′, A′), (R′, Y ′, B′) be

L′ = f1(L), R′ = g1(R), X ′ = f2(L,X), Y ′ = g2(R, Y), A′ = f3(L,X,A), B′ = g3(R, Y,B) .

Also, for convenience, we denote Ext2(X ′, Y ′) as z′ = z′1‖z′2, and Dec(L′, R′) as σ′1‖σ′2‖c′1‖c′2, where
c′2 = z′1 ⊕ σ′2 and c′1 = C(σ′1, X

′‖Y ′‖A′‖B′).
We will now partition the domain to which the codeword (L,X,A), (R, Y,B) belong based on the

choice of the tampering functions mentioned above, such that

• The probability of E(m) belonging to a particular partition is (close to being) independent of the
message m

• Conditioned on E(m) belonging to a particular partition, the function corresponding to decoding
of the tampered codeword D((L′, X ′, A′), (R′, Y ′, B′)) is distributed over a convex combination of
the identity function and constant functions, and the distribution is independent of the message m.

We will begin by considering partitions of L × R based on the choice of the functions f1 and g1 as in
Theorem 4.1 (with the functions f and g in Theorem 4.1 replaced by f1 and g1, respectively).

7.1 Dec(L,R) remains unchanged after tampering

We first consider the partitions where, after tampering, Dec(L,R) = Dec(L′, R′).

Lemma 7.1. If for some i, |Lsame,i ×Rsame,i| ≥ p1.9n, then for any m ∈ {0, 1}k

D(Tamper(E(m)))L∈Lsame,i,R∈Rsame,i ≈2−t/3 G(m) ,

for some function G(m) in NMk.

Proof. For the purpose of the proof of this lemma, we assume that E(m) = (L,X,A), (R, Y,B) is such
that L ∈ Lsame,i, R ∈ Rsame,i. Thus, we have that Dec(L,R) = Dec(L′, R′). We have that Dec(L,R) is
a deterministic function of Ext(L,R), where Ext is (the inner product) strong 2-source extractor. Since
the size of X ′, A′ is much smaller than that of L, we wish to argue that even though X ′, A′ can depend
on L, there is enough entropy in L given X ′ and A′, and hence Ext(L,R) (and consequently, Dec(L,R))
is independent X ′, A′, Y ′, B′ by the strong 2-source extractor property of Ext(·, ·). Thus, any change in
X,Y,A,B will be detected by the checks in Dec(L′, R′) = Dec(L,R). This argument is not sufficiently
formal since L,R are co-related with X,Y,A,B since c1 = C(σ1, X‖Y ‖A‖B) and c2 = z1 ⊕ σ2, where
Dec(L,R) = σ1‖σ2‖c1‖c2.

To make the above intuition formal, we introduce new random variables L̃, R̃ be sampled uniformly
from Lsame,i,Rsame,i respectively11. Also, notice that σ1, σ2 are chosen uniformly at random independent
of X,Y,A,B. Then,

H∞(L̃|f2(L̃,X), f3(L̃,X,A)) + H∞(R̃) ≥ 190k − 30k = 160k .

Thus,

∆
(
Ext(L̃, R̃) ; UZp | X,Y,A,B, f2(L̃,X), g2(R̃, Y), f3(L̃,X,A), g3(R̃, Y,B), σ1, σ2

)
≤ 2−29k .

11Since we are working with extractors we need independence. Variables L,R are not independent since they form a valid
[ADL14] codeword. We will start with L̃, R̃ independent, run the extraction argument and only at the end condition on L̃, R̃
being a valid codeword.

16

Conditioning on h(Ext(L̃, R̃)) = σ1, σ2, C(σ1, X‖Y ‖A‖B), σ2⊕z1, where z1 is the first 2t bits of Ext2(X,Y)
(respectively, h(UZp) = σ1, σ2, C(σ1, X‖Y ‖A‖B), σ2 ⊕ z1) and using Lemma 6.1, we have that

X,Y,A,B, f2(L,X), g2(R, Y), f3(L,X,A), g3(R, Y,B), σ1, σ2 (2)

≈2·2−28k X,Y,A,B, f2(L̃,X), g2(R̃, Y), f3(L̃,X,A), g3(R̃, Y,B), σ1, σ2 .

In the above, we have used the fact that the joint distribution of

Ext(L̃, R̃), X, Y,A,B, f2(L̃,X), g2(R̃, Y), f3(L̃,X,A), g3(R̃, Y,B), σ1, σ2

conditioned on h(Ext(L̃, R̃)) = σ1, σ2, C(σ1, X‖Y ‖A‖B), σ2 ⊕ z1 is identical to the joint distribution

Ext(L,R), X, Y,A,B, f2(L,X), g2(R, Y), f3(L,X,A), g3(R, Y,B), σ1, σ2 .

Notice that the decoding of the tampered codeword D((L′, X ′, A′), (R′, Y ′, B′)) is a deterministic func-
tion of Dec(L′, R′) = Dec(L,R), f2(L,X), g2(R, Y), f3(L,X,A), g3(R, Y,B), which is in turn a determin-
istic function of X,Y,A,B, f2(L,X), g2(R, Y), f3(L,X,A), g3(R, Y,B), σ1, σ2.12 The inequality (2) above
shows that up to statistical distance 2 · 2−28k, we can consider D((L′, X ′, A′), (R′, Y ′, B′)) as the same
deterministic function of X,Y,A,B, f2(L̃,X), g2(R̃, Y), f3(L̃,X,A), g3(R̃, Y,B), σ1, σ2.

Now we fix A = α, and B = β. Let φ(`, x) be a binary function such that φ(`, x) = 1 if f2(`, x) = x
and f3(`, x, α) = α, and 0, otherwise. Similarly, let ψ(r, y) be a binary function such that ψ(r, y) = 1 if
g2(r, y) = y and g3(r, y, β) = β, and 0, otherwise.

By the almost universality of C and from inequality (2), we have that the decoding of the tampered
codeword D((L′, X ′, A′), (R′, Y ′, B′)) = ⊥ with probability at least

Pr[f2(L̃,X) 6= X ∨ g2(R̃, Y) 6= Y ∨ f3(L̃,X, α) 6= α ∨ g3(R̃, Y, β) 6= β]− 2−t/2 − 2 · 2−28k .

Also, with probability

Pr[f2(L̃,X) = X ∧ g2(R̃, Y) = Y ∧ f3(L̃,X, α) = α ∧ g3(R̃, Y, β) = β]− 2 · 2−28k ,

we have that D((L′, X ′, A′), (R′, Y ′, B′)) = m. Thus, upto statistical distance 2−t/2− 2−27k, φ(L̃,X) and
ψ(R̃, Y) determine D(E(m)) = D((L′, X ′, A′), (R′, Y ′, B′)). We would be done at this point if φ(L̃,X)
and ψ(R̃, Y) were independent of the message m. However, Ext2(X,Y) = m ⊕ Ext3(α, β), and hence
there is a (mild) dependence between m and the pair φ(L̃,X) and ψ(R̃, Y). We show below that this
dependence does not affect the claimed result.

We now define a function G as follows. Let X̃, Ỹ be chosen uniformly at random in {0, 1}25k and let
m̃ := Ext2(X̃, Ỹ)⊕ Ext3(α, β). For any m ∈ {0, 1}k, G(m) = m if φ(L̃, X̃) = 1 and ψ(R̃, X̃) = 1, and 0,
otherwise.

It is sufficient to show that the pair φ(L̃, X̃), ψ(R̃, Ỹ) is statistically close to φ(L̃,X), ψ(R̃, Y).
To see this, notice that H∞(X̃|φ(L̃, X̃)) ≥ 25k − 1, and hence, by the strong 2-source extractor

property of Ext2, we have that

Ext2(X̃, Ỹ), φ(L̃, X̃), ψ(R̃, Ỹ) ≈2−11k Uk, φ(L̃, X̃), ψ(R̃, Ỹ) .

Conditioning on Ext2(X̃, Ỹ) = m⊕Ext3(α, β) (respectively, Uk = m⊕Ext3(α, β)) and applying Lemma 6.1,
we get that

φ(L̃,X), ψ(R̃, Y) ≈2−10k+1 φ(L̃, X̃), ψ(R̃, Ỹ) ,

where we used the fact that Ext2(X̃, Ỹ), φ(L̃, X̃), ψ(R̃, Ỹ) conditioned on Ext2(X̃, Ỹ) = m⊕ Ext3(α, β) is
distributed identically to Ext2(X,Y), φ(L̃,X), ψ(R̃, Y).

Since 2−t/2 + 2−27k + 2−10k+1 < 2−t/3, we get the desired result.
12Notice that Dec(L,R) is determined by σ1, σ2 and X,Y,A,B. Thus we omit values Dec(L,R) and Dec(L′, R′) since they

are determined by the remaining variables.

17

7.2 f1 is far from being bijective

We now consider the case where f1 is far from being bijective, i.e., for every element y in Fnp has a large
number of preimages with respect to f1. The case where g1 is far from being bijective is similar.

Lemma 7.2. Let L0 be as in Theorem 4.1, and let R be a subset of Fnp such that |L0×R| ≥ p1.9n. Then

for any m ∈ {0, 1}k
D(Tamper(E(m)))L∈L0,R∈R ≈2−t/3 G(m) ,

for some function G(m) in NMk.

Proof. For the purpose of the proof of this lemma, we assume that E(m) = (L,X,A), (R, Y,B) is such
that L ∈ L0, R ∈ R.

We first give an intuition for the proof. We have that Dec(L,R) is a deterministic function of Ext(L,R),
where Ext is (the inner product) strong 2-source extractor. Since the size of X ′, A′ is much smaller than
that of L and f1 is far from being a bijection, we wish to argue that even though X ′, A′ can depend on
L, there is enough entropy in L given L′, X ′ and A′, and hence Ext(L,R) (and consequently, Dec(L,R))
is independent L′, X,A,X ′, A′, R′, Y, B, Y ′, B′ by the strong 2-source extractor property of Ext(·, ·). To
complete the proof, we need to consider two cases - the first where one of X ′, Y ′ is far from being a bijective
function of X,Y , and the second where both X ′, Y ′ are close to being bijective functions of X,Y . In the
first case, using the property of the strong extractor, we can argue that the tampered codeword (and
hence its decoded value) is independent of the message m. In the second case, z′ = Ext(X ′, Y ′) is close
to being uniform and the probability that c′2 = σ′2 ⊕ z′2 will be small.

To make the above argument formal, one has to again worry about the dependence between various
parts of the codeword since c1 = C(σ1, X‖Y ‖A‖B) and c2 = z1 ⊕ σ2, where Dec(L,R) = σ1‖σ2‖c1‖c2.

For the purpose of the proof, we introduce new random variables L̃, R̃ sampled uniformly from L0,R,
respectively. Also, notice that σ1, σ2 are chosen uniformly at random independent of X,Y,A,B. Let

L̃′ = f1(L̃), R̃′ = g1(R̃) .

Now, let Dec(L̃′, R̃′) = σ̃′1‖σ̃′2‖c̃′1‖c̃′2 if Dec(L̃′, R̃′) 6= ⊥. Also, let z̃′ = Ext2(f2(L̃,X), g2(R̃, Y)), and let z̃′1
be the first 2t bits of z̃′.

Since
H∞(L̃|L̃′, X̃ ′, A′) + H∞(R̃) ≥ 45k − 25k − 5k + 90k = 105k ,

we have by the strong 2-source extractor property of Ext that

∆
(
Ext(L̃, R̃) ; UZp | X,Y,A,B, L̃′, R̃′, f2(L̃,X), g2(R̃, Y), f3(L̃,X,A), g3(R̃, Y,B), σ1, σ2

)
≤ 2−2k .

Conditioning on h(Ext(L̃, R̃)) = σ1, σ2, C(σ1, X‖Y ‖A‖B), σ2⊕z1, where z1 is the first 2t bits of Ext2(X̃, Ỹ)
(respectively, h(UZp) = σ1, σ2, C(σ1, X‖Y ‖A‖B), σ2 ⊕ z1), and using Lemma 6.1, we have that

∆
(

(L′, R′, X ′, Y ′, A′, B′) ;
(
L̃′, R̃′, f2(L̃,X), g2(R̃, Y), f3(L̃,X,A), g3(R̃, Y,B)

)
| X,Y,A,B

)
≤ 2−2k .

(3)
As in Lemma 7.1, here we have used the fact that the joint distribution of

Ext(L̃, R̃), X, Y,A,B, f2(L̃,X), g2(R̃, Y), f3(L̃,X,A), g3(R̃, Y,B), σ1, σ2

conditioned on h(Ext(L̃, R̃)) = σ1, σ2, C(σ1, X‖Y ‖A‖B), σ2 ⊕ z1 is identical to the joint distribution

Ext(L,R), X, Y,A,B, f2(L,X), g2(R, Y), f3(L,X,A), g3(R, Y,B), σ1, σ2 .

Thus, up to statistical distance 2−2k, it suffices to show the statement of the lemma assuming that L
and R are replaced by L̃ and R̃, respectively, i.e., where L̃, R̃ are chosen without any dependence on
X,Y,A,B.

18

Since L̃, R̃ are uniformly distributed, it is sufficient to find a distribution D = D(`, r) independent of
the message m for every `, r ∈ Fnp such that

D ((f1(`), f2(`,X), f3(`,X,A)) , (g1(r), g2(r, Y), g3(r, Y,B))) ≈2−0.4t D . (4)

This will imply the final result since 2−0.4t + 2−2k < 2−t/3.
The inequality 4 is immediate for the case when Dec(f1(`), g1(r)) = ⊥ since we can choose G`,r(m) = ⊥

for all m, and so we restrict our attention to the case when Dec(f1(`), g1(r)) = σ̃′1‖σ̃′2‖c̃′1c̃′2 6= ⊥. Notice
that in this case, σ̃′1‖σ̃′2‖c̃′1c̃′2 is fixed.

Since `, r is fixed, for the remainder of the proof, we shorthand f2(`, x), g2(r, y), f3(`, x, a), and
g3(r, y, b) by f2(x), g2(y), f3(x, a), and g3(x, b), respectively for any x, y, a, b.

We partition {0, 1}25k × {0, 1}25k into X0 × Y0, X0 × Y1, X1 × Y0, and X1 × Y1, where

X0 = {x ∈ {0, 1}25k | |f−1
2 (f2(x))| ≥ 210.5k} ,

Y0 = {y ∈ {0, 1}25k | |g−1
2 (g2(y))| ≥ 210.5k} ,

X1 = {0, 1}25k\X0, and Y1 = {0, 1}25k\Y0. We will now split our argument into cases whereX,Y ∈ Xi×Yj
for i, j ∈ {0, 1}. Intuitively speaking if X ∈ X0, then X has high entropy given f2(X) and hence, by
the strong extractor property of Ext2, the tampered codeword is independent of the message m. Similar
conclusion is obtained when Y ∈ Y0. On the other hand, if X ∈ X0, and Y ∈ Y0, then f2(X), g2(Y) have
sufficient entropy to ensure that Ext2(f2(X), g2(Y)) looks uniform and so the probability that σ′2⊕z′2 = c′2
is small.

All of the following claims assume some lower bounds on sizes of partitions. Notice that if any of the
partitions are smaller, then the probability of ’hitting’ such partition is negligible. Such event will merely
contribute to the epsilon in the statement of Lemma 7.2.

Claim 7.1. If |X0 × Y0| ≥ 248.5k, then

D ((f1(`), f2(X), f3(X,A)) , (g1(r), g2(Y), g3(Y,B))) |X∈X0,Y ∈Y0 ≈2−0.5k D0,0 ,

for some distribution D0,0 over {0, 1}k ∪ {⊥} independent of the message m.

Proof. Let X̃, Ỹ be uniform in X0,Y0, respectively. Then, H∞(X̃|f2(X̃), A, f3(X̃, A)) ≥ 5.5k, and also
H∞(Ỹ) ≥ 23.5k. Thus, by the strong 2-source extractor property of the inner product,

∆(Ext2(X̃, Ỹ) ; Uk | A,B, f2(X̃), g2(Ỹ), f3(X̃, A), g3(Ỹ , B)) ≤ 2−1.5k .

Conditioning on Ext2(X̃, Ỹ) = m⊕Ext3(A,B) (respectively Uk = m⊕Ext3(A,B)), and using Lemma 6.1,
we get that D ((f1(`), f2(X), f3(X,A)) , (g1(r), g2(Y), g3(Y,B))) |X∈X0,Y ∈Y0 is 2−0.5k close to

D0,0 := D
((
f1(`), f2(X̃), f3(X̃, A)

)
,
(
g1(r), g2(Ỹ), g3(Ỹ , B)

))
.

Here we have used the fact that

A,B, f2(X̃), g2(Ỹ), f3(X̃, A), g3(Ỹ , B)

conditioned on Ext2(X̃, Ỹ) = m⊕ Ext3(A,B) is distributed identically as

A,B, f2(X), g2(Y), f3(X,A), g3(Y,B)|X∈X0,Y ∈Y0 .

To conclude the proof, we just need to observe that the distribution D defined above is independent of
the message m.

19

Similarly, since we only used that one of f2, g2 has a large preimage, we have the following:

Claim 7.2. If |X0 × Y1| ≥ 248.5k, then

D ((f1(`), f2(X), f3(X,A)) , (g1(r), g2(Y), g3(Y,B))) |X∈X0,Y ∈Y1 ≈2−0.5k D0,1 ,

for some distribution D0,1 over {0, 1}k ∪ {⊥} independent of the message m.

Claim 7.3. If |X1 × Y0| ≥ 248.5k, then

D ((f1(`), f2(X), f3(X,A)) , (g1(r), g2(Y), g3(Y,B))) |X∈X1,Y ∈Y0 ≈2−0.5k D1,0 ,

for some distribution D1,0 over {0, 1}k ∪ {⊥} independent of the message m.

We now show a similar result for X1 × Y1.

Claim 7.4. If |X1 × Y1| ≥ 248.5k, then

D ((f1(`), f2(X), f3(X,A)) , (g1(r), g2(Y), g3(Y,B))) |X∈X1,Y ∈Y1 ≈2−0.5k+2−0.5t D1,1 ,

where D1,1 := ⊥.

Proof. Note that X,Y restricted to X ∈ X1, Y ∈ Y1 are uniform in X1,Y1, respectively and independent
of the message m.13 In this case, H∞(f2(X)) + H∞(g2(Y)) ≥ 48.5k − 10.5k − 10.5k = 27.5k. Thus,

∆(Ext2(f2(X), g2(Y)) ; Uk) ≤ 2−0.5k .

Thus, the probability that z′1 ⊕ σ̃′2 = c̃′2 is at most 1
2t/2 + 1

20.5k , which implies that

Pr[D ((f1(`), f2(X), f3(X,A)) , (g1(r), g2(Y), g3(Y,B))) = ⊥] ≥ 1− 2−0.5k − 2−0.5t ,

as needed.

Finally, we choose the distribution D to be the convex combination of Di,j for i, j ∈ {0, 1} such that

the distribution Di,j is chosen with probability
|Xi×Yj |

250k .

Since X,Y are uniformly distributed in {0, 1}25k, the probability that (X,Y) ∈ Xi × Yj is
|Xi×Yj |

250k .
Thus, by Claims 7.1, 7.2, 7.3, and 7.4, we have that

∆ (D ((f1(`), f2(`,X), f3(`,X,A)) , (g1(r), g2(r, Y), g3(r, Y,B))) ; D) ≤ 2−0.5k + 2−0.5t .

Similar to Lemma 7.2, we obtain the following.

Lemma 7.3. Let R0 be as in Theorem 4.1, such that |Fnp ×R0| ≥ p1.9n. Then for any m ∈ {0, 1}k

D(Tamper(E(m)))L∈L0,R∈R ≈2−t/3 G(m) ,

for some function G(m) in NMk.

13m = Ext2(X,Y)⊕ Ext3(A,B) is dependent on X,Y,A,B, but the pair X,Y does not depend on the message m.

20

7.3 Finishing the proof

We now prove Theorem 5.2. For this, we consider the partitoning as in Fnp × Fnp as in Theorem 4.1.
We have shown in Lemma 7.1 that for any partition of the form Lsame,i × Rsame,i, there is a function
GP(m) ∈ NMk such that

(∆(D(Tamper(E(m)))L,R∈P ; GP(m)) ≤ 2−t/3 .

Moreover, for a partition P of the form L⊥,i × R⊥,i, if L,R ∈ P, then Dec(L,R) = ⊥, and hence
D(Tamper(E(m))) = ⊥. Thus, for such a partition,

(∆(D(Tamper(E(m)))L,R∈P ; ⊥) = O(ε) ≤ 2−Ω(t) .

depending on the functions f1, g1. Also, by Lemmas 7.2, and 7.3, for the partition P being one of Fnp×R0

or L0 × Fnp \ R0, if |P| ≥ p1.9n, there is a function GP(m) ∈ NMk such that

(∆(D(Tamper(E(m)))L,R∈P ; GP(m)) ≤ 2−t/3 .

Also, if |P| < p1.9n, then by Lemma 6.3, Pr[L,R ∈ P] ≤ 2p−0.1n+1 = 2−Ω(t). Thus, consider the function
G∗ formed as a convex combination of the functions GP , given above, where the partition P is chosen
with probability Pr[(L,R) ∈ P]. By Lemma 6.2, it is immediate that

(∆(D(Tamper(E(m))) ; G∗(m)) ≤ 2−Ω(t) .

We would like to say that function G∗ is in the NMk family since it is a convex combination of functions
in NMk. Unfortunately it is not that trivial, the weights of the convex combination might depend
on m because the probability of falling into particular partition Pr[(L,R) ∈ P] might depend on the
message m. To resolve this, consider a random function G that is a convex combination of GP that
chooses the partition P with probability |P|

p2n . It is easy to see that G ∈ NMk. By Corollary 6.1,

∆(G∗(m) ; G(m)) ≤ 2−Ω(t), and the result follows.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K Maji, Omkant Pandey, and
Manoj Prabhakaran. Optimal computational split-state non-malleable codes. In Theory of
Cryptography Conference, pages 393–417. Springer, 2016.

[AB16] Divesh Aggarwal and Jop Briët. Revisiting the sanders-bogolyubov-ruzsa theorem in f p
n and its application to non-malleable codes. In Information Theory (ISIT), 2016 IEEE
International Symposium on, pages 1322–1326. Ieee, 2016.

[ADKO15a] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable
reductions and applications. In Proceedings of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
459–468, 2015.

[ADKO15b] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Leakage-
resilient non-malleable codes, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In STOC. ACM, 2014.

21

[ADN+17] Divesh Aggarwal, Nico Dottling, Jesper Buus Nielsen, Maciej Obremski, and Erick Pur-
wanto. Continuous non-malleable codes in the 8-split-state model. Technical report, Cryp-
tology ePrint Archive, Report 2017/357, 2017.

[ADN+18] Divesh Aggarwal, Ivan Damg̊ard, Jesper Buus Nielsen, Maciej Obremski, Erick Purwanto,
Joao Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable secret-sharing
schemes for general access structures. IACR Cryptology ePrint Archive, 2018:1147, 2018.

[Agg15] Divesh Aggarwal. Affine-evasive sets modulo a prime. Information Processing Letters,
115(2):382–385, 2015.

[AGM+14] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. Explicit non-malleable codes resistant to permutations and perturbations. IACR
Cryptology ePrint Archive, 2014:841, 2014.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. A rate-optimizing compiler for non-malleable codes against bit-wise tampering
and permutations. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages 375–397, 2015.

[AKO17] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-malleable
codes stronger. In Theory of Cryptography Conference, pages 319–343. Springer, 2017.

[BDSG+18] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-
malleable codes for small-depth circuits. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 826–837. IEEE, 2018.

[BDSKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes for bounded depth, bounded fan-in circuits. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 881–908. Springer, 2016.

[BDSKM18] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes
from average-case hardness: Decision trees, and streaming space-bounded tampering. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 618–650. Springer, 2018.

[BS18] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable secret
sharing. IACR Cryptology ePrint Archive, 2018:1144, 2018.

[CCFP11] Hervé Chabanne, Gérard Cohen, J Flori, and Alain Patey. Non-malleable codes from the
wire-tap channel. In Information Theory Workshop (ITW), 2011 IEEE, pages 55–59. IEEE,
2011.

[CCP12] Herve Chabanne, Gerard Cohen, and Alain Patey. Secure network coding and non-malleable
codes: Protection against linear tampering. In Information Theory Proceedings (ISIT), 2012
IEEE International Symposium on, pages 2546–2550. IEEE, 2012.

[CG14a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ITCS,
2014.

[CG14b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In TCC, 2014.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with
their many tampered extensions. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pages 285–298. ACM, 2016.

22

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: built-in tamper resilience. In
Advances in Cryptology–ASIACRYPT 2011, pages 740–758. Springer, 2011.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes in the constant split-
state model. To appear in FOCS, 2014.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM, 30:391–437, 2000.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In Advances in Cryptology-CRYPTO 2013. Springer, 2013.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In Foun-
dations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages
227–237. IEEE, 2007.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452. Tsinghua University Press, 2010.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptog-
raphy from weak secrets. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, pages 601–610, Bethesda, MD, USA, 2009.
ACM.

[FHMV17] Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi. Non-
malleable codes for space-bounded tampering. In Annual International Cryptology Con-
ference, pages 95–126. Springer, 2017.

[FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes. In
Theory of Cryptography Conference - TCC. Springer, 2014.

[FMVW14] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and key-
derivation for poly-size tampering circuits. In Eurocrypt. Springer, 2014. To appear.

[GK18a] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Ilias Diakoniko-
las, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 685–698. ACM, 2018.

[GK18b] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access struc-
tures. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 501–530. Springer, 2018.

[GLM+03] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorith-
mic Tamper-Proof (ATP) security: Theoretical foundations for security against hardware
tampering. In Moni Naor, editor, First Theory of Cryptography Conference — TCC 2004,
volume 2951 of LNCS, pages 258–277. Springer-Verlag, February 19–21 2003.

[GMW18] Divya Gupta, Hemanta K Maji, and Mingyuan Wang. Constant-rate non-malleable codes
in the split-state model. Technical report, Technical Report Report 2017/1048, Cryptology
ePrint Archive, 2018.

23

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 1128–1141. ACM, 2016.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keep-
ing secrets in tamperable circuits. In Serge Vaudenay, editor, Advances in Cryptology—
EUROCRYPT 2006, volume 4004 of LNCS, pages 308–327. Springer-Verlag, 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume
2729 of LNCS. Springer-Verlag, 2003.

[KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable
and leaky memory. In Advances in Cryptology–CRYPTO 2011, pages 373–390. Springer,
2011.

[KOS17] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state non-
malleable codes with explicit constant rate. In Theory of Cryptography Conference, pages
344–375. Springer, 2017.

[KOS18] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable
randomness encoders and their applications. In EUROCRYPT, pages 589–617. Springer,
2018.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1144–1156. ACM, 2017.

[Li19] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions.
CCC’19, 2019.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In Advances in Cryptology–CRYPTO 2012, pages 517–532. Springer, 2012.

[San12] T Sanders. On the bogolyubov-ruzsa lemma, anal. PDE, 5:627–655, 2012.

[SV18] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret sharing
and applications. IACR Cryptology ePrint Archive, 2018:1154, 2018.

A Proof of Theorem 4.1

Proof. We assume n = c1t
5, p ≥ 2c2t, and ε = 2−t/c3 for large enough universal constants c1, c2, c3. Before

describing the construction of (Enc,Dec), we need the following construction of a so-called affine-evasive
set from [Agg15].

Affine-evasive set. There is a universal constant c ∈ (0, 1) such that for any prime p, there is an
efficiently samplable set S of size pc such that for any (a, b) ∈ F2

p \ {1, 0}∣∣∣S ∩ aS + b| ≤ 3 ,

where aS + b = {as+ b : s ∈ S}.

24

Construction of (Enc,Dec). The construction of (Enc,Dec) can then be described as follows. We
choose a large enough prime p ≤ 2O(t) such that there is an affine-evasive set S as described above, such
that |S| � 27t (say |S| = 210t). Then, the set |S| is partitioned into 27t equal partitions Ss of size 23t

each for every s ∈ {0, 1}7t such that it is possible to efficiently sample an element uniformly at random
from Ss for all s ∈ {0, 1}7t.

Additionally, let Ext : Fnp × Fnp → Fp be the inner-product two source extractor.
We define Enc(s) to be L,R chosen uniformly at random such that Ext(L,R) ∈ Ss. The definition

of the decoding function Dec is immediate from the definition of the encoding function. For any given
`, r ∈ Fnp , Dec(`, r) = s if Ext(`, r) ∈ Ss, and Dec(`, r) = ⊥ if Ext(`, r) /∈ S.

Finding partitions with desired properties. Let f : Fnp → Fnp and g : Fnp → Fnp be arbitrarily
chosen tampering functions. In order to prove Theorem 4.1, we need to partition the ambient space
Fnp ×Fnp based on the functions f and g. We define L0,R0 as in the theorem statement, and the first two
partitions are

Fnp ×R0, L0 × (Fnp \ R0) .

We will now partition (Fnp \ L0) × (Fnp \ R0) such that each part is either of type Lsame,j × Rsame,j

(i.e., Dec(`, r) = Dec(f(`), g(r)) for any (`, r) in this partition), or it is of type L⊥,j × R⊥,j (i.e.,
Dec(f(L), g(R)) = ⊥ with high probability if (L,R) := Enc(s) belong to this partition), or the size
of the partition is “small”. The set Rem comprises of these small partitions and we show that the total
size of Rem is still small enough that by Lemma 6.3, we conclude that the probability that Enc(L,R)
belongs to Rem is 2−Ω(t). For this purpose, we keep track of the total size of the set Rem, when we add
a partition to it.

We further partition Fnp \ L0 iteratively into L1, . . . ,La as follows. For i ≥ 1, given L1, . . . ,Li−1, if
there exists a linear map Ai : Fnp → Fnp for which∣∣{x ∈ Fnp : f(x) = Aix} \ (L0 ∪ L1 ∪ . . . ∪ Li−1)

∣∣ ≥ p0.99n ,

then set Li to be {x ∈ Fnp : f(x) = Aix} \ (L0 ∪ L1 ∪ . . . ∪ Li−1). If no such linear map exists, set a := i,
La := Fnp \ (L1 ∪ . . . ∪ La−1) and complete the process. Note we obtained a partition L1, . . . ,La of Fnp
with a ≤ p0.01n + 1.

Using [ADL14, Lemma 6], we have that if (L̃, R̃) is uniform in La × (Fnp \R0) and |La × (Fnp \R0)| ≥
p2n−10, then (〈L̃, R̃〉, 〈f(L̃), g(R̃)〉) is p−10-close to being uniform in Fp × Fp. This was shown using the
XOR lemma for abelian groups and advanced results from additive combinatorics including a quasi-
polynomial version of the Freiman Ruzsa conjecture that was proved by Sanders in 2012 [San12]. In
particular, it was shown that if (〈L̃, R̃〉, 〈f(L̃), g(R̃)〉) is not close to uniform, then there must be a large
subset of La on which f is linear which contradicts the definition of the set La. This implies that by
Lemma 6.1, for any s ∈ {0, 1}7t, 〈f(L̃), g(R̃)〉 conditioned on h(〈L̃, R̃〉) = s is p−9-close to uniform in Fp.
Hence, by the affine-evasive property of S, Dec(f(L), g(R)) = ⊥ with probability 1− |S|p −p

−9 = 1−p−Ω(1).
Thus, the set La × (Fnp \ R0) is a set of the form L⊥,j ×R⊥,j .

On the other hand, if |La × (Fnp \ R0)| < p2n−10, then we add the set La × (Fnp \ R0) to the set Rem.
We now consider partitions of L1× (Fnp ×R0) (The sets Lu× (Fnp ×R0) can be partitioned similarly

for 1 ≤ u ≤ a− 1).
We partition Fnp \ R0 iteratively into R1, . . . ,Rb as follows. For i ≥ 1, given R1, . . . ,Ri−1, if there

exists αi ∈ Fp, βi ∈ Fnp for which∣∣{x ∈ Fnp : AT1 g(x) = αix+ βi} \ (R0 ∪R1 ∪ . . . ∪Ri−1)
∣∣ ≥ p0.95n ,

then set Ri to be {x ∈ Fnp : AT1 g(x) = αix + βi} \ (R0 ∪ R1 ∪ . . . ∪ Ri−1). If no such linear map
exists, set b := i, Rb := Fnp \ (R1 ∪ . . . ∪ Rb−1) and complete the process. Note, we obtained a partition

R1, . . . ,Rb of Fnp with b ≤ p0.05n + 1. Using [ADL14, Lemma 5], we have that if (L̃, R̃) is uniform in

25

L1 ×Rb and |L1 ×Rb| ≥ p1.98n, then (〈L̃, R̃〉, 〈f(L̃), g(R̃)〉) is p−Ω(n)-close to being uniform in Fp × Fp.
This was shown using a straightforward application of the XOR lemma. In particular, it was shown
that if (〈L̃, R̃〉, 〈f(L̃), g(R̃)〉) is not close to uniform, then there must be a large subset of Rb on which
AT1 g(R) = αR + β, for some α ∈ Fp, β ∈ Fnp which contradicts the definition of the set Rb. This implies

that by Lemma 6.1, for any s ∈ {0, 1}7t, 〈f(L̃), g(R̃)〉 conditioned on h(〈L̃, R̃〉) = s is p−Ω(n)-close to

uniform in Fp. Hence Dec(f(L), g(R)) = ⊥ with probability 1− |S|p − p
−Ω(n) = 1− p−Ω(1). Thus, the set

L1 ×Rb is a set of the form L⊥,j ×R⊥,j .
On the other hand, if |L1 ×Rb| < p1.98n, then we add the set L1 ×Rb to the set Rem. We may add

one such small set to Rem for each L1,L2, . . . ,La−1. Since a < p0.01n + 1, the total size of Rem after this
is at most p2n−10 + p0.01n · p1.98n = p2n−10 + p1.99n.

We now consider L1 ×Ri for 1 ≤ i ≤ b− 1. Let L̃, R̃ be uniformly chosen in L1 ×Ri. Then

〈f(L̃), g(R̃)〉 = 〈L̃, AT1 g(R̃)〉 = α〈L̃, R̃〉+ 〈L̃, β〉 .

Thus, the joint distribution (〈L̃, R̃〉, 〈f(L̃), g(R̃)〉) is p−Ω(n)-close to UFp , αUFp + 〈L̃, β〉 for some random
variable Z ∈ Fp independent of UFp .

CASE 1: α1 6= 1. Conditioning on UFp ∈ Ss, applying Lemma 6.1, we get that up to statistical distance

p−Ω(n), 〈f(L̃), g(R̃)〉 = αSs + Z, which is ⊥ with probability 1− 3
|Ss| = 1− p−Ω(t).

CASE 2: We further partition L1 (and in general Lu for 1 ≤ u ≤ a−1) into two parts L′1 and L′′1, where
〈`, β〉 = 0 for all ` ∈ L′1, and 〈`, β〉 6= 0 for all ` in L′′. Similar to CASE 1, we can argue that if
|L′′ ×Ri| ≥ p1.9n, then the probability that Dec(f(L), g(R) = ⊥) conditioned on L,R ∈ L′′ ×Ri is
1− p−Ω(t).

For L̃, R̃ uniform in L′1,Ri respectively, it is easy to see that 〈f(L̃), g(R̃)〉 = 〈L̃, R̃〉, and so as long
as |L′ ×Ri| ≥ p1.9n, we have that L′ ×Ri is of the form Lsame,j ×Rsame,j for some j.

If any of the partitions L′1 ×Ri or L′′1 ×Ri has size smaller than p1.9n, then we add that partition
to Rem. We can add at most p0.01n × p0.05n = p0.06n such sets and so the total size of the set Rem
is at most p2n−10 + p1.9n + p0.06n × p1.9n < p2n−9.

Thus, by Lemma 6.3, we have that the probability that Enc(s) ∈ Rem is at most 2 · p−9 · p ≤ p−7 =
2−Ω(t), as needed.

B A Comparison to the Previous Version

For the benefit of the readers who have read a previous version of our manuscript titled “Inception makes
non-malleable codes shorter as well!”, we provide here a comparison with the previous version.

The paper was completely rewritten, presentation improved and technical introduction added to
improve readability. We extended and completed all the proofs. In particular, we include the details of
the construction and proof from [ADL14] for completeness. We had earlier omitted these since they are
easy modifications of the original proofs.

In the previous version, we used the super-strong non-malleable codes (NMCs) in the split-state
model that were constructed in [AKO17] by using a so-called inception coding technique on top of the
non-malleable code from [ADL14, Agg15, AB16]. This was used to give a super-Strong NMC against
2−lookahead and forgetful tampering. Since our code had to be composed with a non-malleable reduction
from [ADKO15a], the final construction that we get is still only a constant-rate non-malleable code (and
not a super-strong non-malleable code) in the 2−split state model. We realize that this was unnecessar-
ily complicated, and we now just use the construction from [ADL14] with improved parameters based

26

on [Agg15, AB16] to get a construction of a constant rate non-malleable code (and not a super-strong non-
malleable code) against 2−lookahead and forgetful tampering. This composed with the non-malleable
reduction from [ADKO15a] still gives us a constant-rate non-malleable code in the 2-split-state model
and the construction and proof is much simpler.

27

C Constructions diagrams

! " #

$ % &

Dec !, $ = [-, Checks2 ", %, #, &, 3] 3 = Ext8(", %) Message = 3 + Ext?(#, &)

Arrows represent
the direction of
the tampering.
L is tampered first,
then X given X,L etc.

First blocks of the lookaheads.
@AB is the decoder of [ADL14]

Second blocks. Third blocks.

Dotted lines separate blocks of lookahead

Figure 3: The decoding algorithm of NMC against lookahead tampering.

! "# $

% &# '

Dec !, % = [., Checks3 ", &, $, ', 4]
4 = Ext#(", &)

0#<||Message = 4 + ExtB($, ')

First blocks of the lookaheads.
CDE is the decoder of [ADL14]

Second blocks. Third blocks.

"F

&F

" = "F + "#
& = &F + &#

Figure 4: The decoding algorithm of NMC against lookahead and forgetful tampering .

28

	Introduction
	Overview of the Construction and Techniques
	Non-malleable reductions
	Important tampering families
	Reduction from 2-split state model
	Non-malleable code with rate zero but with additional properties
	Non-malleable code (NMC) against lookahead tampering - the constructionFor convenience of the reader last page of this manuscript contains figures for both constructions.
	A few tampering scenarios
	Why do we need additional properties of ADL14?
	Last step: resilience to forgetful tampering

	Preliminaries
	Notation and Mathematical Preliminaries
	Non-malleable Codes and Reductions

	The non-malleable code construction from ADL14,Agg15,AB16
	Our constructions and the main result
	A non-malleable code against 2-lookahead tampering
	A non-malleable code secure against 2-lookahead and forgetful tampering
	Final result via a non-malleable reduction from ADKO15b

	Some Additional Useful Lemmas
	Proof of Theorem 5.2
	Dec(L,R) remains unchanged after tampering
	f1 is far from being bijective
	Finishing the proof

	Proof of Theorem 4.1
	A Comparison to the Previous Version
	Constructions diagrams

