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Abstract
Tightly secure cryptographic schemes have been extensively studied in the fields of chosen-ciphertext

secure public-key encryption (CCA-secure PKE), identity-based encryption (IBE), signatures and more.
We extend tightly secure cryptography to inner product functional encryption (IPFE) and present the
first tightly secure schemes related to IPFE.

We first construct a new IPFE scheme that is tightly secure in the multi-user and multi-challenge
setting. In other words, the security of our scheme does not degrade even if an adversary obtains many
ciphertexts generated by many users. Our scheme is constructible on a pairing-free group and secure
under the matrix decisional Diffie-Hellman (MDDH) assumption, which is the generalization of the
decisional Diffie-Hellman (DDH) assumption. Applying the known conversions by Lin (CRYPTO 2017)
and Abdalla et al. (CRYPTO 2018) to our scheme, we can obtain the first tightly secure function-hiding
IPFE scheme and multi-input IPFE (MIPFE) scheme respectively.

Our second main contribution is the proposal of a new generic conversion from function-hiding
IPFE to function-hiding MIPFE, which was left as an open problem by Abdalla et al. (CRYPTO 2018).
We can obtain the first tightly secure function-hiding MIPFE scheme by applying our conversion to the
tightly secure function-hiding IPFE scheme described above.

Finally, the security reductions of all our schemes are fully tight, which means that the security of
our schemes is reduced to the MDDH assumption with a constant security loss.
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1 Introduction

(Multi-input) inner product functional encryption. Functional encryption (FE) [13, 37] is a rela-
tively novel cryptographic notion that has a crucially different feature from traditional encryption schemes.
Specifically, FE schemes allow us to obtain computation results from encrypted data without revealing any
other information about the underlying data. This is in contrast to traditional encryption schemes, in which
only owners of legitimate keys can learn entire underlying data from ciphertexts while others can learn
nothing. An FE scheme supports a certain function class F and in which an owner of a master secret can
issue a secret key skf for any function f ∈ F . Decryption of a ciphertext ctx of message x with skf yields
the computation result f (x) and nothing else.

Multi-input functional encryption (MIFE) [28] is a natural extension of FE, which can handle a function
class that takes multiple inputs. Roughly speaking, an owner of skf can learn the computation result
f (x1, . . . , xµ) from ciphertexts ctx1 , . . . , ctxµ of messages x1, . . . , xµ for some natural number µ > 2.

Known (MI)FE schemes can be classified into two categories with respect to their function classes.
∗junichi.tomida.vw@hco.ntt.co.jp
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General functionalities: This category consists of (MI)FE schemes for general circuits, e.g., [8, 23, 24,
28, 39]. Although they are powerful enough to handle all functions computable in polynomial time,
known schemes are built on quite heavy cryptographic primitives such as indistinguishability ob-
fuscation [23] or multi-linear maps [22]. Thus, they are captured as rather feasibility results.

Specific functionalities: The second category covers (MI)FE schemes for specific functions such as inner
product and quadratic function, e.g., [2, 4, 6, 9]. They are aimed at obtaining more practical features,
namely, efficiency and concrete security, with sacrificing the generality. Therefore, most of them
have simple constructions, and their security is based on standard assumptions.

Inner product functional encryption (IPFE) [2] and multi-input IPFE (MIPFE) [4], categorized into the
latter, are FE andMIFE respectively, whose function classes are inner product. More precisely, in an (M)IPFE
scheme, a secret key sky1,...,yµ is associated with vectors y1, . . . , yµ , and decrypting ciphertexts ctx1 , . . . , ctxµ

of vectors x1, . . . , xµ with sky1,...,yµ reveals the summation of the inner products
∑

i ∈[µ]⟨xi , yi ⟩. When µ = 1,
the above description corresponds to an IPFE scheme. Inner product is a simple but powerful functional-
ity, and many practical applications of IPFE have been suggested, e.g, biometric authentication, nearest-
neighbor search and statistical analysis [2, 32].

Function privacy. In (MI)FE, we can consider two types of privacy: message privacy and function pri-
vacy. Message privacy, which is essential for standard (MI)FE schemes, is the property that ciphertexts do
not reveal any information about underlying data. On the other hand, function privacy is an additional but
important property for (MI)FE schemes, which indicates that secret keys also hide the information of the
corresponding function. Function privacy is essential for some applications such as delegation of sensitive
computation [15]. We often call (MI)FE with function privacy as function-hiding (MI)FE. Function-hiding
(MI)FE schemes have also been studied for both general functionalities [14, 15] and specific functionali-
ties [12, 18, 32, 38].

Tight security. When we try to prove the security of a cryptographic scheme, we often construct a
reduction algorithm that solves a problem assumed to be hard by utilizing a PPT adversary that breaks
the security of the scheme. Then, breaking the security of the scheme immediately implies solving the
hard problem. It is both theoretically and practically important to evaluate how difficult breaking the
scheme is compared with solving the problem. More formally, when the reduction algorithm equipped
with an adversary that breaks the scheme with probability ϵ in time t solves the underlying problem with
probability ϵ/L in roughly the same time t , it is important to evaluate the security loss L . This is because
we need to set the parameter size of the scheme large enough to negate the effect of L for the security
guarantee. Thus, the smaller the security loss L , the more desirable the security reduction. We say that the
security reduction is tight if the security loss is constant, i.e., L = O (1).

When we consider public-key primitives such as public-key encryption (PKE) or identity-based en-
cryption (IBE), we usually prove their security in the single-challenge setting. This is because the security
of public-key primitives in the single-challenge setting normally implies that in the multi-user and multi-
challenge setting via hybrid argument, which is more realistic setting where an adversary can make poly-
nomially many challenge queries against multiple users. However, such a hybrid argument increases the
security loss by the factor of µq , where µ is the number of users and q is the maximum number of challenge
queries for each users [11]. Since it is difficult to assume the numbers of users and ciphertexts that will be
involved with the scheme at deployment time, we strongly desire cryptographic schemes whose security
is guaranteed independently of those numbers.

2



Motivated by the above reason, (almost) tightly secure cryptographic schemes have been extensively
studied in various fields, especially on chosen-ciphertext secure PKE (CCA-secure PKE), IBE, and signature,
e.g, [7, 17, 25, 26, 29–31, 33]. In spite of such a great deal of effort, tightly secure schemes in the context of
advanced encryption are known only for IBE except the very recent result on broadcast encryption by Gay
et al. [27]. Hence, it is an important and interesting task to explore what kind of cryptographic schemes
can achieve tight security.

Tight security for IPFE. We would like to discuss the importance of tightly secure IPFE in more detail.
We consider that the most significant situation where we need a tightly secure IPFE scheme is when a
function-hiding scheme is needed. This is because the only way that we know to realize function-hiding
IPFE schemes requires bilinear groups, which is relatively susceptible to security loss. The one solution
to compensate for security loss caused by loose reduction is to increase the parameter size of underlying
primitives, e.g., bilinear groups, which will reinforce the difficulty of underlying problems, e.g., the matrix
Diffie-Hellman problem. As observed by Abe et al. [5], however, this is not an easy task for bilinear groups
because there are many factors that involve the security and efficiency of them such as the choice of curves,
pairings, and various parameters like embedding degrees. Hence, we typically adopt one from existingwell-
studied settings, which are investigated only for standard parameters such as 128, 192, and 256-bit security.
Themain problem of this fact is that there is no intermediate instantiation among these parameters, and one
have to hop to the next standard level if stronger security is necessary. A pairing computation is especially
influenced by this hop; for instance, they state that a pairing in the 192-bit security takes 6 to 7 times more
time than in the 128-bit security on ordinary personal computers [10, 20].

Additionally, it is not unrealistic that an adversary obtains a large amount of ciphertexts so that we
need to consider the security loss of IPFE schemes. Let us consider the case to use a function-hiding IPFE
scheme for DNA analysis. Suppose a national institution holds a database consisting of a certain part of
the human’s DNA sequence. It is rational to assume that the part consists of 213 bases and the number of
the samples is 220; actually, GenBank operated by the National Center for Biotechnology Information has
more than 227 sequences [1]. Each sample is encoded to a binary vector setting as A=(1,0,0,0), T=(0,1,0,0),
and so on, and stored in a cloud server with an encrypted form. We can check the number of the same
bases between encrypted sequences and a target sequence by decrypting with a secret key for the target
sequence. Because DNA sequences have a correlation with phenotypes, the DNA similarity check will be
useful for genetical research, medical diagnosis, etc. We need the function-hiding property because target
sequences are also personal data and thus sensitive. In this situation, the possibly untrusted server has
q = 220 ciphertexts, large enough to consider the security loss of the scheme. Decryption of all known
schemes involves the same number of pairings as the order of the vector length: m = 215 per one sample
in our case. Thus, the choice of the security level significantly affects the efficiency of the system, and
we can conclude that tight security is a very important concept in the context of IPFE as well as other
cryptosystems.

1.1 Our Contributions

We extend the realm of tightly secure cryptography to IPFE and present a series of the first tightly secure
(M)IPFE schemes. Our first main contribution is to construct the first tightly secure public-key IPFE scheme
in the multi-user and multi-challenge setting. Note that previous IPFE schemes are tightly reduced to
underlying assumptions in the single-challenge setting [6], which means that their security is independent
from the number of secret key queries. To our knowledge, however, there are no results on tight security
of IPFE in the multi-user and multi-challenge setting. Our tightly secure IPFE scheme is constructible from
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a pairing-free group and its security is based on the matrix decisional Diffie-Hellman (MDDH) assumption,
which is a generalization of the well-studied decisional Diffie-Hellman (DDH) assumption, with a very
small constant security loss.

Our result can be easily extended to the multi-input setting. Recently, Abdalla et al. proposed a generic
conversion from an IPFE scheme into a MIPFE scheme [3, 4]. Their conversion employs parallel execution
of µ instances of the underlying IPFE scheme that is secure in the multi-challenge setting. By this con-
struction, their conversion incurs a security loss ofO (µq) if we apply it to an IPFE scheme that is secure in
the single challenge setting, where µ is the number of slots of the converted scheme and q is the maximum
number of adversary’s ciphertext queries for each slot. Interestingly, this construction is precisely com-
patible with an IPFE scheme that is secure in the multi-user and multi-challenge setting. In other words,
the security of the converted MIPFE scheme is tightly reduced to that of the underlying IPFE scheme if
the underlying scheme is secure in the multi-user and multi-challenge setting. Additionally, our scheme
satisfies the requirement for the conversion. Thus, we can obtain the first tightly secure MIPFE scheme.

Another important issue is the realization of tightly secure function-hiding (M)IPFE schemes. All pre-
vious function-hiding schemes suffer from a security loss of L = O (qct + qsk), where qct (resp. qsk) refers
to the total number of ciphertext (resp. secret key) queries [12, 18, 34, 38]. To achieve tight security, we
utilize Lin’s technique, who presented a simple paradigm to construct a function-hiding (private-key) IPFE
scheme from a (public-key) IPFE scheme [34]. Applying her paradigm to our IPFE scheme, we can obtain
the first tightly secure function-hiding IPFE scheme that is based on bilinear groups. However, the naive
application of her paradigm to our scheme results in a redundant scheme. Thus, we optimize the scheme
by reducing the unnecessary part.

The final target is to construct a tightly secure function-hiding MIPFE scheme. Unfortunately, there is
no known generic technique to achieve a function-hidingMIPFE scheme. In fact, Abdalla et al. mention that
a powerful conversion to achieve a function-hiding MIPFE scheme is a very interesting open problem [3].
Furthermore, the techniques used in the rather specific constructions of known function-hiding MIPFE
schemes [3, 19] are not applicable to our situation. Roughly speaking, this is because our scheme requires
the selective setting in a certain step of the proof, if we naively try to prove the security similarly to [3,19].

Our second main contribution is overcoming this problem by solving the open problem posed by Ab-
dalla et al., that is, we introduce a new powerful and generic conversion. It converts a (weakly) function-
hiding IPFE scheme into a (fully) function-hiding MIPFE scheme. Our conversion is as general as that
for constructing non-function-hiding MIPFE by Abdalla et al. [3]: the requirements for an underlying
scheme are essentially the same. Hence, if new function-hiding IPFE schemes are proposed in the fu-
ture, e.g., based on lattices, we may utilize our conversion to obtain new function-hiding MIPFE schemes
though some modification will be necessary. Additionally, we can obtain (non-tightly-secure) function-
hiding MIPFE schemes in a more modular way than the previous ones [3, 19] by utilizing our conversion
to function-hiding IPFE schemes, e.g., the scheme from AGRW17 [4] + Lin17 [34] (Appendix A). Applying
our conversion to our tightly secure function-hiding IPFE scheme, we can finally achieve the first tightly
secure function-hiding MIPFE scheme.

Similarly to all previous IPFE schemes based on a cyclic group or bilinear groups, the decryption algo-
rithms of our schemes require to solve the discrete logarithm problem on a decryption value. As pointed
out in [2, 32], however, this step is not so problematic in many cases. This is mainly because decryption
values will not become exponentially large in real applications. Additionally, although there are some IPFE
schemes that allow exponentially large outputs, they are either inefficient due to the large modulus [6] or
based on a non-standard assumption [16].

We summarize the comparison of our schemes with previous ones in Tables 1 to 4. In these tables, we
count the numbers of elements assuming that amatrix distributionDk is a uniform one overZ(k+1)×k

p . Some
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readers may be concerned about the increase of the key and ciphertext sizes, which may slow the efficiency
of the system even after the compensation of security loss. However, we would like to emphasize that our
contribution is a theoretically and technically significant step in tightly secure cryptography. Furthermore,
our schemes may outperform previous ones in some situations. For example, when we instantiate our
function-hiding IPFE scheme from the SXDH, it takes almost 5 times more pairings in decryption than the
state-of-the-art scheme (Table 3). As discussed in the previous subsection, the difference of security level
possibly affects pairings by the factor of 6 to 7 in practice, and thus there is a possibility that the decryption,
the most important process of IPFE, of our scheme is faster than those of previous ones in the same security
level. We leave constructing more compact tightly secure IPFE schemes as an interesting open problem.

2 Technical Overview

In this section, we briefly explain our novel techniques. We write this section assuming that readers are
familiar with the notations and notions explained in Section 3. Refer to Section 3 if any notations and
notions are unfamiliar.

2.1 Tightly Secure IPFE

Our scheme is secure in the multi-user and multi-challenge setting under the MDDH assumption, but here
we describe our scheme based on the DDH assumption in the single-user and multi-challenge setting to
ease the exposition. Our starting point is the adaptively secure IPFE scheme by Agrawal et al. [6]. We
briefly describe their scheme below. Let m be a vector length in the scheme.

Setup(1λ , 1m): a
U←− Zp , W

U←− Zm×2
p , a := (a , 1), pk := ([a], [Wa]), msk :=W.

Enc(pk, x): s
U←− Zp , ct := ([sa], [sWa + x]).

KeyGen(pk,msk, y): sk := (−W⊤y, y).

Dec(pk, ct, sk): −y⊤W[sa] + y⊤[sWa + x] = [⟨x, y⟩].

Next, we explain the security proof of this scheme by Abdalla et al. [4], which is somewhat different from
the original proof by Agrawal et al. and roughly goes as follows. First, the form of the challenge ciphertext
is changed from ct := ([sa], [sWa+xβ]) to ct := ([sa+ s ′b], [W(sa+ s ′b)+xβ]), where s ′

U←− Zp , b := (1, 0),
and β

U←− {0, 1}. This change is computationally indistinguishable under the DDH assumption. At this
point, we redefine W as

W := W̃ + u(x1 − x0)a⊥⊤ , (2.1)

where u
U←− Zp , W̃

U←− Zm×2
p , and a⊥ := (1,−a), and note that a⊥⊤b = 1. In fact, x0 and x1 may depend on

W̃ because the information of W̃ is leaked to the adversary from the public key and queried secret keys.
However, we can assume that x0 and x1 do not depend on W̃ (and formally we use complexity leveraging
to argue that). Then, redefined W is also a random element in Zm×2

p and we have

Wa = W̃a, (2.2)

W⊤yℓ = W̃⊤yℓ (ℓ is an index for the query number), (2.3)

W(sa + s ′b) + xβ = W̃(sa + s ′b) + us ′(x1 − x0) + xβ = W̃(sa + s ′b) + (us ′ + β)(x1 − x0) + x0. (2.4)
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IPFE schemes
scheme |pk| |msk| |ct| |sk| sec. loss assumption

ALS16 [6] m + 1 2m m + 2 m + 2 O (qct) DDH
AGRW17 [4] k m + k 2 + k (k + 1)m m + k + 1 m + k + 1 O (qct) Dk -MDDH
Ours m2 + 1 2m2 3m 3m O (1) DDH

k 2m2 + k 2 + k (k 2 + k )m2 (k 2 + k + 1)m (k 2 + k + 1)m O (1) Dk -MDDH

Table 1: Comparison of adaptively secure IPFE schemes in the multi-user and multi-challenge setting. The columns
|pk| and |ct| refer to the number of group elements. The columns |msk| and |sk| refer to the number of Zp elements.
The number m refers to the vector length. The number qct refers to the total number of ciphertext queries by an
adversary. Note that we omit the group description from |pk|.

MIPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

ACFGU18 [3] {k 2 + k + (k + 2)m}µ m + k + 1 (m + k + 1)µ + 1 O (qct) Dk -MDDH
Ours (k 2m + k m + 1)mµ (k 2 + k + 1)m (k 2 + k + 1)mµ + 1 O (1) Dk -MDDH

Table 2: Comparison of MIPFE schemes based on a pairing-free group. The columns |msk| and |sk| refer to the
number of Zp elements. The column |ct| refers to the number of group elements. The number m refers to the vector
length. The number µ refers to the number of slots. The number qct refers to the total number of ciphertext queries
for all slots by an adversary.

function-hiding IPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

DDM16 [18] 8m2 + 12m + 28 4m + 8 4m + 8 O (qctqsk) SXDH
TAO16 [38] 4m2 + 18m + 20 2m + 5 2m + 5 O (qct + qsk) XDLIN
Lin17 [34] (k + 1)(4m + 3k + 1) 2m + 2k + 2 2m + 2k + 2 O (qct + qsk) Dk -MDDH
Ours 32m2 10m 10m O (1) SXDH

(4k 4 + 8k 3 + 12k 2 + 8k )m2 (4k 2 + 4k + 2)m (4k 2 + 4k + 2)m O (1) Dk -MDDH

Table 3: Comparison of fully function-hiding IPFE schemes in the standard model. Lin17 [34] refers to the scheme
obtained by applying her paradigm to the IPFE scheme AGRW17 [4] (Appendix A). The column |msk| refers to the
number of Zp elements. The columns |ct| and |sk| refer to the number of group elements in G1 and G2 respectively.
The number m refers to the vector length. The numbers qct and qsk refer to the total numbers of ciphertext queries
and secret key queries by an adversary respectively.

function-hiding MIPFE schemes
scheme |msk| |ct| |sk|

DOT18 [19] (2m + 2k + 1)2µ 2m + 2k + 1 (2m + 2k + 1)µ
ACFGU18 [3] {(k + 1)(4m + 5k + 1) + k }µ 2m + 3k + 2 (2m + 3k + 2)µ(+|GT |)
Ours {(k 4 + 2k 3 + 3k 2 + 2k )(2m + 1)2 +m}µ (2k 2 + 2k + 1)(2m + 1) (2k 2 + 2k + 1)(2m + 1)µ

scheme sec. loss assumption
DOT18 [19] O (qct + qsk) k -Lin
ACFGU18 [3] O (qct + µqsk) Dk -MDDH
Ours O (1) Dk -MDDH

Table 4: Comparison of fully function-hidingMIPFE schemes. The column |msk| refers to the number ofZp elements.
The columns |ct| and |sk| refer to the number of group elements in G1 and G2 respectively. The number m refers to
the vector length. The number µ refers to the number of slots. The numbers qct and qsk refer to the total numbers of
ciphertext queries for all slots and secret key queries by an adversary respectively.
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In the indistinguishability-based security game, we impose a query condition on the adversary to avoid a
trivial attack. That is, for all secret key queries, we have x0yℓ = x1yℓ. Eq.(2.3) follows from this condition.
Finally, from Eq. (2.4), we can argue that the information of β is hidden from the adversary by the term
us ′ unless s ′ = 0, because u is a fresh randomness from the viewpoint of the adversary. Thus, the scheme
is secure under the DDH assumption. In the multi-challenge setting, however, this proof strategy needs a
hybrid argument for each challenge and incurs the security loss of O (qct), where qct is the number of the
ciphertext challenges. Intuitively, this is because the matrix W is shared in all challenge ciphertexts and
we cannot redefine W suitable for all challenge ciphertexts simultaneously in Eq.(2.1).

The first attempt to obtain a tight reduction is setting W in Eq.(2.1) as

u1, . . . ,uL
U←− Zp , W := W̃ +

∑
ι∈[L]

u ιxιa⊥
⊤
,

where L(≤ m) is the dimension of the spaceV spanned by x1j − x0j ∈ Zm
p for all j ∈ [qct], and {xι}ι∈[L] are

a basis ofV . In this case, Eq.(2.2) and Eq.(2.3) do not change and Eq.(2.4) becomes

W(sja + s ′j b) + x
β
j = W̃(sja + s ′j b) + s ′j

∑
ι∈[L]

u ιxι + β(x1j − x0j ) + x0j ,

where j is the index of challenge queries. If we can say that {[s ′j u ι]}j ∈[qct],ι∈[L] are indistinguishable from
{[r j,ι]}j ∈[qct],ι∈[L], which are qctL random elements in G , we can conclude that the term s ′j

∑
ι∈[L] u ιxι hides

the information of β. This is because x1j − x0j ∈ V for all j ∈ [qct], and each
∑
ι∈[L] r j,ιxι is a completely

random element in V . Fortunately, it is well known that {s ′j u ι}j ∈[qct],ι∈[L] on the exponent forms a syn-
thesizer [36], and they are computationally indistinguishable from qctL random group elements with the
security loss being either qct or L . Thus, we can prove the security of the scheme by Agrawal et al. with
the security loss of O (m), which is independent from the adversaries’ behavior.

However, the above proof contains two deficiencies. The first is that the security reduction is still not
tight. The second is that the above strategy is useful against only selective adversaries. This is because the
reduction algorithm needs to know about V to simulate each challenge ciphertext, but V depends on all
challenge queries that the adversary makes. Thus, we have to overcome these two problems.

Toward tight security. The solution for the first problem (and partly for the second problem as a result)
is to increase the column of the part a, which allows us to embed more randomness into ciphertexts. That
is, we modify the scheme as

Setup(1λ , 1m):

a
U←− Zp , W

U←− Zm×2m
p , a := (a , 1), A := Im ⊗ a =

m vectors︷             ︸︸             ︷©­­­­«
a

a
. . .

a

ª®®®®¬
∈ Z2m×m

p ,

pk := ([a], [WA]), msk :=W.

Enc(pk, x): s := (s1, . . . , sm)
U←− Zm

p , ct := ([As], [WAs + x]).

7



KeyGen(pk,msk, y): sk := (−W⊤y, y).

Dec(pk, ct, sk): −y⊤W[As] + y⊤[WAs + x] = [⟨x, y⟩].

The security proof goes as follows. First, the form of all challenge ciphertexts is changed to

B := Im ⊗ (1, 0) ∈ Z2m×m
p , s′j := (s ′j,1, . . . , s ′j,m)

U←− Zm
p , ct := ([Asj + Bs′j ], [W(Asj + Bs′j ) + x

β
j ]). (2.5)

The DDH problem is tightly reduced to the problem of distinguishing this change by the random self-
reducibility. Next, we redefine W as

u
U←− Zp , W := W̃ + u

∑
ι∈[L]

xιa⊥
⊤
ι , (2.6)

where a⊥ι ∈ Z2m
p is the ι-th column of A⊥ := Im ⊗ a⊥. Then, we have

WA = W̃A,

W⊤yℓ = W̃⊤yℓ,

W(Asj + Bs′j ) + x
β
j = W̃(Asj + Bs′j ) + u

∑
ι∈[L]

s ′j,ιxι + β(x1j − x0j ) + x0j . (2.7)

In this case, we can see that {[us ′j,ι]}j ∈[qct],ι∈[L] are computationally indistinguishable from {[r j,ι]}j ∈[qct],ι∈[L],
which are qctL random elements in G , and this indistinguishability is tightly reduced to the DDH assump-
tion by the random self-reducibility. Then, the information of β is completely hidden by the same argument
as before in the selective security model.

Toward adaptive security. In this paragraph, we refer to the computational change fromAsj toAsj+Bs′j
as the first step and that from {[us ′j,ι]}j ∈[qct],ι∈[L] to {[r j,ι]}j ∈[qct],ι∈[L] as the second step. The main obstacle
to achieve the adaptive security is that the reduction algorithm needs to know about the space V before
seeing all challenge queries in the second step. Our observation is that we do not need a random element in
V to hide the information of β in each ciphertext. LetVj be a space spanned by x1ι − x0ι ∈ Zm

p for all ι ∈ [j ].
Then, a random element in Vj suffices to hide the information of β in the j -th ciphertext. Fortunately,
the reduction algorithm knows about Vj when it simulates the j -th ciphertext because it already receives
vectors that spanVj .

To do so, we modify the first step. In particular, we change the way of choosing s′j in Eq.(2.5) as

s ′j,1, . . . , s ′j,ϕ(j )
U←− Zp , s′j := (s ′j,1, . . . , s ′j,ϕ(j ), 0

m−ϕ(j )) ∈ Zm
p ,

where ϕ(j ) := dimVj . Next, we modify the definition of xι as xι := x1
ρ(ι) − x

0
ρ(ι) ∈ Z

m
p for all ι ∈ [L], where

ρ(ι) := min ϕ−1(ι). It is not difficult to confirm that {xι}ι∈[ϕ(j )] form a basis ofVj . Then, Eq.(2.7) is changed
to

W(Asj + Bs′j ) + x
β
j = W̃(Asj + Bs′j ) + u

∑
ι∈[ϕ(j )]

s ′j,ιxι + β(x1j − x0j ) + x0j .

Observe that the reduction algorithm can compute xι for ι ∈ [ϕ(j )] when it simulates the j -th ciphertext.
As explained in the previous paragraph, {[us ′j,ι]}j ∈[qct],ι∈[ϕ(j )] are computationally indistinguishable from
{[r j,ι]}j ∈[qct],ι∈[ϕ(j )], and the term

∑
ι∈[ϕ(j )] r j,ιxι hides the information of β in the j -th ciphertext. Thus, we

can achieve the adaptive security.
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2.2 Conversion from Function-Hiding IPFE to Function-Hiding MIPFE

Similarly to previous MIPFE schemes, our conversion utilizes parallel execution of an underlying function-
hiding IPFE scheme. The construction of our conversion can be seen as the combination of the non-
function-hiding MIPFE scheme by Abdalla et al. [3] and the function-hiding MIPFE scheme by Datta et
al. [19]. For simplicity, we consider the IPFE scheme over Zn for some integer n, which means that the
functionality of FE is inner product over Zn . Let m be a vector length and µ be a number of slots of the
converted scheme, and IPFE := (Setup′, Enc′,KeyGen′,Dec′) be an underlying weakly function-hiding
IPFE scheme. Then, our conversion invokes Setup′ with setting the vector length as 2m + 1 and gen-
erates µ master secret keys msk′1, . . . ,msk′µ (we omit public parameters here). In addition, it chooses

µ random vectors u1, . . . , uµ
U←− Zm

n and sets a master secret key of the converted scheme as msk :=
(msk′1, . . . ,msk′µ , u1, . . . , uµ). To encrypt a vector xi for the index i , it encrypts x̃i := (xi + ui , 0m , 1) as
ct′i ← Enc′(mski , x̃i ) and outputs ct′i . To generate a secret key for {yi }i ∈[µ], it first generates secret shares
of −∑i ∈[µ]⟨yi , ui ⟩ as r1, . . . , rµ

U←− Zn such that
∑

i ∈[µ] ri = −
∑

i ∈[µ]⟨yi , ui ⟩ (mod n). These shares prevent
the leakage of partial inner product values. Then, our conversion generates a secret key for ỹi := (yi , 0m , ri )
as sk′i ← KeyGen′(msk′i , ỹi ) for all i ∈ [µ] . Finally, it sets the secret key for converted scheme as
sk := (sk′1, . . . , sk′µ). The decryption algorithm simply computes

∑
i ∈[µ]Dec

′(ct′i , sk
′
i ) (mod n). The cor-

rectness of the converted scheme is not difficult to confirm because
∑

i ∈[µ]⟨x̃i , ỹi ⟩ =
∑

i ∈[µ]⟨xi , yi ⟩.
Although our conversion is as simple as that by Abdalla et al. [3], the security proof needs a more

ingenious technique. To see this, we briefly recall the proof strategy of their conversion and show that the
naive application of their strategy to our conversion does not work. Here, we assume that the converted
MIPFE scheme is weakly function-hiding, meaning that an adversary against the converted scheme has the
following condition on the queries in the security game. Let qct,i be the total number of ciphertext queries
for index i and qsk be the total number of secret key queries. Then, for all (j1, . . . , jµ) ∈ [qct,1]× · · · × [qct,µ],
and ℓ ∈ [qsk], we have ∑

i ∈[µ]
⟨x0i ,ji

, y0i ,ℓ⟩ =
∑

i ∈[µ]
⟨x0i ,ji

, y1i ,ℓ⟩ =
∑

i ∈[µ]
⟨x1i ,ji

, y1i ,ℓ⟩. (2.8)

The proof employs a series of games, and the goal is that the adversary does not obtain any information
about a random bit β in the final game. The first step is to redefine ui := ũi+x0i ,1−x

β
i ,1, where ũi

U←− Zn . This
information-theoretic change does not affect secret keys because

∑
i ∈[µ]⟨x0i ,1 − x

β
i ,1, y

β
i ,ℓ⟩ = 0 from Eq.(2.8).

The second step is to change x̃i ,ji from (x
β
i ,ji
+ũi+x0i ,1−x

β
i ,1, 0

m , 1) to (x0i ,ji
+ũi , 0m , 1). This change is justified

by the security of the underlying IPFE scheme because ⟨xβi ,ji
− xβi ,1, y

β
i ,ℓ⟩ = ⟨x

0
i ,ji
− x0i ,1, y

β
i ,ℓ⟩ for all i ∈ [µ],

which can be derived from Eq. (2.8). Finally, we want to change ỹi ,ℓ from (yβi ,ℓ, 0
m , ri ,ℓ) to (y0i ,ℓ, 0

m , r ′i ,ℓ) to
hide the information of β. However, we cannot make this change in the adaptive setting. The reason is that
the reduction algorithm needs to set r ′i ,ℓ := ri ,ℓ+∆i ,ℓ, where∆i ,ℓ := ⟨x0i ,ji

+ui , y
β
i ,ℓ−y

0
i ,ℓ⟩ = ⟨x

0
i ,1+ui , y

β
i ,ℓ−y

0
i ,ℓ⟩

(the second equality follows from Eq.(2.8)), to keep the inner product value when it simulates the ℓ-th secret
key. If the adversary makes a secret key query before it makes the first ciphertext query for some index i ,
the reduction algorithm cannot simulate a secret key because it does not know the value ⟨x0i ,1, y

β
i ,ℓ − y

0
i ,ℓ⟩.

Hence, this strategy does not work.
To circumvent this problem, we introduce another proof strategy. Recall that this problem occurs in

the second step, where yβi ,ℓ is changed to y
0
i ,ℓ, whereas the first step goes well, where x

β
i ,ji

is changed to x0i ,ji
.

Intuitively, our solution for this problem is to make both changes in one-shot in the same manner as the
first step. That is, we do not take the intermediate step where the inner product values of queried vectors
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are
∑

i ∈[µ]⟨x0i ,ji
, yβi ,ℓ⟩, and we change the replies such that the inner product values of queried vectors are

directly changed from
∑

i ∈[µ]⟨x
β
i ,ji
, yβi ,ℓ⟩ to

∑
i ∈[µ]⟨x0i ,ji

, y0i ,ℓ⟩. This means that our conversion allows us to
directly achieve a fully function-hiding MIPFE scheme. This is possible if we prepare 2n + 1 dimensions
for the underlying scheme and use the similar technique to that by Tomida et al. [38]. To do so, we want
to create a situation where x̃i ,ji := (x

β
i ,ji
+ ũi − xβi ,1, x0i ,1, 1) and ỹi ,ℓ := (yβi ,ℓ, y

0
i ,ℓ, r

′
i ,ℓ). This is because if we

have the above situation, we can change x̃i ,ji to (ũi , x0i ,ji
− x0i ,1 + x0i ,1, 1) = (ũi , x0i ,ji

, 1) by the security of the
underlying scheme and the relation ⟨xβi ,ji

− xβi ,1, y
β
i ,ℓ⟩ = ⟨x

0
i ,ji
− x0i ,1, y

0
i ,ℓ⟩, which also can be derived from

Eq.(2.8).
To reach the situation starting from the real game, however, we need onemore trick. This is because the

reduction algorithm needs to compute the value ∆i ,ℓ := ⟨x0i ,1, y0i ,ℓ⟩ to adjust inner products with the term
r ′i ,ℓ when it simulates the ℓ-th secret key. Thus, the same problems as above occurs. To solve this problem,

we take the intermediate step where x̃i ,ji := (x
β
i ,ji
+ ui , vi , 1) and ỹi ,ℓ := (yβi ,ℓ, y

0
i ,ℓ, ri ,ℓ), where vi

U←− Zm
n is

randomly chosen at the beginning of the game. This is possible because computing ∆i ,ℓ := ⟨vi , y0i ,ℓ⟩ suffices
for the reduction algorithm to reach the step. After the step, we redefine ui := ũi − xβi ,1 and vi := ṽi + x0i ,1
where ũi , ṽi

U←− Zm
n . This change is information-theoretic and we do not need to care about when the

adversary makes the first ciphertext query. By these steps, our proof strategy goes well since there are no
steps where reduction algorithms need to compute values related to x0i ,1 when it simulates secret keys.

The interesting points of our technique are to crucially utilize the blank space, namely the n+1 to 2n-th
dimensions, and directly construct a fully function-hiding MIPFE scheme from a weakly function-hiding
IPFE scheme. This is in contrast to the function-hiding scheme in [3], where they first construct a weakly
function-hiding MIPFE scheme, setting a vector length of an underlying IPFE scheme as almost n. Then,
they convert it into a fully function-hiding scheme by doubling the vector length of the scheme.

3 Preliminary

3.1 Notation

For a natural number n ∈ N, Zn denotes a ring Z/nZ and [n] denotes a set {1, . . . ,n}. For a set S ,
s

U←− S denotes that s is uniformly chosen from S . We treat vectors as column vectors. For a vector
x, | |x| |∞ denotes its infinity norm. For vectors v1, v2, . . . , vn , (v1, v2, . . . , vn) denotes a vector generated
by the vertical concatenation of these vectors. For matrices (including vectors) with the same number of
rowsA1,A2, . . . ,An , (A1 | |A2 | | · · · | |An) denotes a matrix generated by the horizontal concatenation of these
matrices. For a generator gi of a cyclic group Gi of order p and a ∈ Zp , [a]i denotes g a

i . Furthermore,
for a matrix A := (aj,ℓ)j,ℓ over Zp , [A]i denotes a matrix over Gi whose (i , j ) entry is g

aj,ℓ
i . For vectors

x := (x1, . . . , xn) and y := (y1, . . . , yn) ∈ Zn
p , let e ([x]1, [y]2) := e (g1, g2)⟨x,y⟩ be a function that computes

the inner product on the exponent by
∏

i ∈[n] e ([xi ]1, [yi ]2). A matrix In denotes the n × n identity matrix.
A matrix Om×n denotes the m × n zero matrix. A function f : N→ R is called negligible if f (λ) = λ−ω(1)
and denotes f (λ) ≤ negl(λ). For families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, X ≈c Y means
that they are computationally indistinguishable.

3.2 Basic Tools and Assumption

Definition 3.1 (Cyclic Group). A description of a cyclic group GCG:=(p ,G , g ) consists of a prime p , a
cyclic groupG of order p , and a generator g . A cyclic group generator GCG(1λ) takes a security parameter
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1λ and outputs a description of a cyclic group GCG with a λ-bit prime p .

Definition 3.2 (Bilinear Groups). A description of bilinear groups GBG:=(p ,G1,G2,GT , g1, g2, e ) consist of
a prime p , cyclic groupsG1,G2,GT of order p , generators g1 and g2 ofG1 andG2 respectively, and a bilinear
map e : G1 ×G2 → GT , which has two properties.

• (Bilinearity): ∀h1 ∈ G1,h2 ∈ G2, a ,b ∈ Zp , e (ha
1 ,h

b
2 ) = e (h1,h2)ab .

• (Non-degeneracy): For generators g1 and g2, gT := e (g1, g2) is a generator of GT .

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs a description of bilinear
groups GBG with a λ-bit prime p .

Definition 3.3 (Dk -MDDH Assumption [21]). Let Dk be a matrix distribution over full rank matrices in
Z
(k+1)×k
p . We can assume that, wlog, the first k rows of a matrix A chosen from Dk forms an invertible

matrix. We consider the following distribution:

GCG ← GCG(1λ), GBG ← GBG(1λ),

A← Dk , v
U←− Zk

p , t0 := Av, t1
U←− Zk+1

p .

We say that the Dk -MDDH assumption holds with respect to GCG if, for any PPT adversary A,

AdvDk-MDDH
A,CG (λ) := |Pr[1← A(GCG, [A], [t0])] − Pr[1← A(GCG, [A], [t1])]| ≤ negl(λ),

and with respect to GBG if, for any PPT adversary A and both i ∈ {1, 2},

AdvDk-MDDH
A,BG,i (λ) := |Pr[1← A(GBG, [A]i , [t0]i )] − Pr[1← A(GBG, [A]i , [t1]i )]| ≤ negl(λ).

Random self-reducibility. By the random self-reducibility, we can obtain arbitrarily many instances
of the Dk -MDDH problem without additional security loss. For any n ∈ N, we additionally define the
following distribution:

V
U←− Zk×n

p , T0 := AV, T1
U←− Z

(k+1)×n
p .

The advantages of A against n-fold Dk -MDDH assumption with respect to GCG and GBG are defined as:

Advn-Dk-MDDH
A,CG (λ) := |Pr[1← A(GCG, [A], [T0])] − Pr[1← A(GCG, [A], [T1])]|,

Advn-Dk-MDDH
A,BG,i (λ) := |Pr[1← A(GBG, [A]i , [T0]i )] − Pr[1← A(GBG, [A]i , [T1]i )]|.

Then, for any PPT adversariesA1,A2 and both i ∈ {1, 2}, there exist PPT adversaries B1,B2 and we have

Advn-Dk-MDDH
A1,CG (λ) ≤ AdvDk-MDDH

B1,CG (λ) + 2−Ω(λ),

Advn-Dk-MDDH
A2,BG,i (λ) ≤ AdvDk-MDDH

B2,BG,i (λ) + 2−Ω(λ),
Time(Bj ) ≈ Time(Aj ) + npolyj (λ) for both j ∈ {1, 2},

where polyj (λ) is independent from Time(Aj ).
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3.3 Definitions of Inner Product Functional Encryption

In this paper, we treat both single-input inner product functional encryption (IPFE) and multi-input IPFE.
In both cases, the inner product functionality is defined over Z and its domain is limited depending on
the infinity norms of the input vectors. We formally define the functionality called bonded-norm inner
product.

Definition 3.4 (Bounded-Norm Inner Product overZ). This function familyF consists of functions f X ,Y
y1,...,yµ

:
Zm × · · · × Zm → Z where m, µ,X ,Y ∈ N, yi ∈ Zm s.t. | |yi | |∞ ≤ Y . For all (x1, . . . , xµ) ∈ (Zm)µ s.t.
∀i ∈ [µ], | |xi | |∞ ≤ X , we define the function as

f X ,Y
y1,...,yµ

(x1, . . . , xµ) :=
∑

i ∈[µ]
⟨xi , yi ⟩.

We call µ a number of slots. We refer to the function as single-input inner product when µ = 1, and
multi-input inner product when µ > 1.

With respect to single-input IPFE, there are two types of IPFE: public-key IPFE and private-key IPFE.
To achieve the function privacy, we need the private-key setting as defined below. Roughly speaking, this
is because an adversary can learn the information of functions embedded in secret keys by decrypting
ciphetexts generated by itself with the secret keys in the public-key setting.

Definition 3.5 (Public-Key Inner Product Functional Encryption). Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be
ensembles of norm-bounds. Public-key inner product functional encryption (Pub-IPFE) consists of five
algorithms.

Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.

Setup(1m , pp): It takes a vector length 1m and pp and outputs a public key pk and a master secret keymsk.

Enc(pk, x): It takes pk and a vector x := (x1, . . . , xm) ∈ Zm and outputs a ciphertext ct.

KeyGen(pk,msk, y): It takes pk,msk, and a vector y := (y1, . . . , ym) ∈ Zm and outputs a secret key sk.

Dec(pk, ct, sk): It takes pk, ct and sk and outputs a decrypted value d ∈ Z or a symbol ⊥.

Correctness. Pub-IPFE is correct if it satisfies the following condition. For any λ,m ∈ N and for any
x, y ∈ Zm s.t. | |x| |∞ ≤ Xλ and | |y| |∞ ≤ Yλ , we have

Pr


d = ⟨x, y⟩

pp← Par(1λ)
(pk,msk) ← Setup(1m , pp)
ct← Enc(pk, x)
sk← KeyGen(pk,msk, y)
d := Dec(pk, ct, sk)


= 1.

Security. Let µ ∈ N be a natural number that represents the number of users. Pub-IPFE is adaptively
secure in the multi-user and multi-challenge setting if it satisfies the following condition. That is, the ad-
vantage of A against Pub-IPFE defined as follows is negligible in λ for any constant m, µ ∈ N, and PPT
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Oct(β ∈ {0, 1}, i ∈ [µ], (x0, x1) ∈ (Zm )2)
cti

U←− Enc(pki , x
β)

return cti

Osk(i ∈ [µ], y ∈ Zm )
ski

U←− KeyGen(pki ,mski , y)
return ski

Fig 1: The description of oracles in the security game for Pub-IPFE.

adversary A,

AdvPub-IPFEA (λ) :=

�������2Pr
β = β

′
β

U←− {0, 1}, pp← Par(1λ)
{(pki ,mski )}i ∈[µ] ← Setup(1m , pp)
β′← AOct(β,·,·),Osk(·,·)(1λ , {pki }i ∈[µ])

 − 1
������� .

The description of the oracles Oct and Osk is presented in Fig 1. We refer to queries to Oct and Osk as a
ciphertext query and a secret key query respectively. To avoid a trivial attack ofA, we have the following
condition onA’s queries. Let qct,i and qsk,i be the total number of ciphertext queries and secret key queries
for index i respectively. Then, for all i ∈ [µ], ji ∈ [qct,i ], and ℓi ∈ [qsk,i ], we have

⟨x0i ,ji
, yi ,ℓi ⟩ = ⟨x1i ,ji

, yi ,ℓi ⟩. (3.1)

Definition 3.6 (Private-Key Inner Product Functional Encryption). Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be
ensembles of norm-bounds. Private-key inner product functional encryption (Priv-IPFE) consists of five
algorithms.

Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.

Setup(1m , pp): It takes a vector length 1m and pp and outputs a master secret key msk.

Enc(pp,msk, x): It takes pp, msk, and a vector x := (x1, . . . , xm) ∈ Zm and outputs a ciphertext ct.

KeyGen(pp,msk, y): It takes pp,msk, and a vector y := (y1, . . . , ym) ∈ Zm and outputs a secret key sk.

Dec(pp, ct, sk): It takes pp, ct and sk and outputs a decrypted value d ∈ Z or a symbol ⊥.

Correctness. Priv-IPFE is correct if it satisfies the following condition. For any λ,m ∈ N and for any
x, y ∈ Zm s.t. | |x| |∞ ≤ Xλ and | |y| |∞ ≤ Yλ , we have

Pr


d = ⟨x, y⟩

pp← Par(1λ)
msk← Setup(1m , pp)
ct← Enc(pp,msk, x)
sk← KeyGen(pp,msk, y)
d := Dec(pp, ct, sk)


= 1.

Security. Let µ ∈ N be a natural number that represents the number of users. Priv-IPFE is fully function-
hiding in the multi-user setting if it satisfies the following condition. That is, the advantage of A against
Priv-IPFE defined as follows is negligible in λ for any constant m, µ ∈ N and any PPT adversary A,

AdvPriv-IPFEA,f-fh (λ)

:=

������Pr
β′ = 1

pp← Par(1λ)
{mski }i ∈[µ] ← Setup(1m , pp)
β′← AOct(0·,·),Osk(0,·,·)(pp)

 − Pr
β′ = 1

pp← Par(1λ)
{mski }i ∈[µ] ← Setup(1m , pp)
β′← AOct(1,·,·),Osk(1,·,·)(pp)


������ .
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Oct(β ∈ {0, 1}, i ∈ [µ], (x0, x1) ∈ (Zm )2)
cti

U←− Enc(pp,mski , xβ)
return cti

Osk(β ∈ {0, 1}, i ∈ [µ], (y0, y1) ∈ (Zm )2)
ski

U←− KeyGen(pp,mski , yβ)
return ski

Fig 2: The description of oracles in the security game for Priv-IPFE.

It is convenient for our paper to define the advantage on Priv-IPFE as above rather than the form like
|2Pr[β = β′] − 1|, and both formulations are equivalent. The description of the oracles Oct and Osk is pre-
sented in Fig 2. We refer to queries to Oct and Osk as a ciphertext query and a secret key query respectively.
To avoid a trivial attack of A, we have the following condition on A’s queries. Let qct,i and qsk,i be the
total numbers of ciphertext queries and secret key queries for index i respectively. Then, for all i ∈ [µ],
ji ∈ [qct,i ], and ℓi ∈ [qsk,i ], we have

⟨x0i ,ji
, y0i ,ℓi ⟩ = ⟨x

1
i ,ji
, y1i ,ℓi ⟩. (3.2)

We say that Priv-IPFE isweakly function-hiding in themulti-user setting if it satisfies the above definition
except that the query condition of A is more restricted as follows. That is, for all i ∈ [µ], ji ∈ [qct,i ], and
ℓi ∈ [qsk,i ], we have

⟨x0i ,ji
, y0i ,ℓi ⟩ = ⟨x

1
i ,ji
, y0i ,ℓi ⟩ = ⟨x

1
i ,ji
, y1i ,ℓi ⟩. (3.3)

We denote the advantage ofA in weakly function-hiding game in the multi-user setting by AdvPriv-IPFEA,w-fh (λ).

As pointed out by Abdalla et al. [4], public-key multi-input IPFE (MIPFE) is almost meaningless because
it inherently leaks the same amount of information as parallel execution of single-input IPFE. Therefore,
following them, we only consider private-key MIPFE in this paper.

Definition 3.7 (Multi-Input Inner Product Functional Encryption). Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be
ensembles of norm-bound. Multi-input inner product functional encryption (MIPFE) consists of four algo-
rithms.

Setup(1λ , 1m , 1µ): It takes a security parameter 1λ , a vector length 1m , and a number of slots 1µ . Then, it
outputs a public parameter pp and a master secret key msk.

Enc(pp,msk, i , x): It takes pp, msk, an index i ∈ [µ], and a vector x := (x1, . . . , xm) ∈ Zm and outputs a
ciphertext cti .

KeyGen(pp,msk, {yi }i ∈[µ]): It takes pp,msk, and vectors {yi := (yi ,1, . . . , yi ,m)}i ∈[µ] ∈ (Zm)µ , and outputs
a secret key sk.

Dec(pp, ct1, . . . , ctµ , sk): It takes pp, ct1, . . . , ctµ and sk and outputs a decrypted value d ∈ Z or a symbol
⊥.

Correctness. MIPFE is correct if it satisfies the following condition. For any λ,m, µ ∈ N and for any
{xi }i ∈[µ], {yi }i ∈[µ] ∈ (Zm)µ s.t. ∀i , | |xi | |∞ ≤ Xλ and | |yi | |∞ ≤ Yλ , we have

Pr

d =
∑

i ∈[µ]
⟨xi , yi ⟩

pp,msk← Setup(1λ , 1m , 1µ)
cti ← Enc(pp,msk, i , xi ) for all i ∈ [µ]
sk← KeyGen(pp,msk, {yi }i ∈[µ])
d := Dec(pp, ct, sk)

 = 1.
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Oct(β ∈ {0, 1}, i ∈ [µ], (x0, x1) ∈ (Zm )2)
cti

U←− Enc(pp,msk, i , xβ)
return cti

Osk(β ∈ {0, 1}, ({y0i }i ∈[µ], {y
1
i }i ∈[µ]) ∈ ((Z

m )µ )2)

sk
U←− KeyGen(pp,msk, {yβi }i ∈[µ])

return sk

Fig 3: The description of oracles in the security game for MIPFE.

Security. MIPFE is fully function-hiding if it satisfies the following condition. That is, the advantage of
A against MIPFE defined as follows is negligible in λ for any constant m, µ ∈ N and any PPT adversary
A,

AdvMIPFE
A,f-fh(λ) :=

�������2Pr
β = β

′
β

U←− {0, 1},
(pp,msk) ← Setup(1λ , 1m , 1µ)
β′← AOct(β,·,·),Osk(β,·)(pp)

 − 1
������� .

The description of the oracles Oct and Osk is presented in Fig 3. We refer to queries to Oct and Osk as a
ciphertext query and a secret key query respectively. To avoid a trivial attack ofA, we have the following
condition onA’s queries. Let qct,i be the total number of ciphertext queries for index i and qsk be the total
number of secret key queries. Then, for all (j1, . . . , jµ) ∈ [qct,1] × · · · × [qct,µ], and ℓ ∈ [qsk],∑

i ∈[µ]
⟨x0i ,ji

, y0i ,ℓ⟩ =
∑

i ∈[µ]
⟨x1i ,ji

, y1i ,ℓ⟩. (3.4)

In this paper, we assume that qct,i ≥ 1 for all i ∈ [µ] and qsk ≥ 1. Note that this condition can be easily
removed by simply utilizing symmetric key encryption [4, 19].

We say thatMIPFE is adaptively secure if it satisfies the above definition except that there is an additional
query condition of A. That is, for all i ∈ [µ] and ℓ ∈ [qsk],

y0i ,ℓ = y1i ,ℓ.

We denote the advantage of A in the adaptive-security game by AdvMIPFE
A,ad (λ). This security definition

captures only the message privacy of MIPFE schemes, i.e., the scheme is non-function-hiding. Note that
this security definition of the adaptive security is identical to many-AD-IND security in [3, 4].

4 Tightly Secure (Multi-Input) Inner Product Functional Encryption

In this section, we present our tightly secure Pub-IPFE scheme and non-function-hiding MIPFE scheme,
the latter is obtained by applying the conversion by Abdalla et al. [3] to our IPFE scheme.

4.1 Construction

LetDk be a matrix distribution over full rank matrices in Z
(k+1)×k
p and norm bounds Xλ andYλ be polyno-

mials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GCG ← GCG(1λ), Ã← Dk , pp := (GCG, [Ã])
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Setup(1m , pp): It takes a vector length 1m and a public parameter pp. Then, it outputs a public key pk and
a master secret key msk as follows.

W
U←− Z

m×k (k+1)m
p , A :=

k m matrices︷               ︸︸               ︷©­­­­«
Ã

Ã
. . .

Ã

ª®®®®¬
∈ Zk (k+1)m×k 2m

p , (4.1)

pk := (GCG, [Ã], [WA]), msk :=W.

Enc(pk, x): It takes pk and x ∈ Zm and outputs a ciphertext ct as follows.

s
U←− Zk 2m

p , c1 := As ∈ Zk (k+1)m
p , c2 :=WAs + x ∈ Zm

p , ct := ([c1], [c2]).

KeyGen(pk,msk, y): It takes pp, msk, and y ∈ Zm and outputs a secret key sk as follows.

k1 := −W⊤y ∈ Zk (k+1)m
p , k2 := y ∈ Zm

p , sk := (k1, k2).

Dec(pk, ct, sk): It takes pk, ct, and sk. Then it computes [d] := [k⊤1 c1+k⊤2 c2] and searches ford exhaustively
in the range of −mXλYλ to mXλYλ . If such d is found, it outputs d . Otherwise, it outputs ⊥.

Correctness. Observe that if ct is an encryption of x and sk is a secret key of y,

d = −y⊤WAs + y⊤WAs + y⊤x = ⟨x, y⟩.

Therefore, if | |x| |∞ ≤ Xλ and | |y| |∞ ≤ Yλ , the output of the decryption algorithm is d = ⟨x, y⟩.

4.2 Security

Theorem 4.1. Assume that theDk -MDDH assumption holds with respect to GCG, then our Pub-IPFE scheme
is adaptively secure in the multi-user and multi-challenge setting. More formally, let µ be a number of users,
qct :=

∑
i ∈[µ] qct,i be the total number of the ciphertext queries byA, qsk :=

∑
i ∈[µ] qsk,i be the total number of

the secret key queries byA, and m be a vector length. Then, for any PPT adversaryA and security parameter
λ, there exist PPT adversaries B1 and B2 for the Dk -MDDH and we have

AdvPub-IPFEA (λ) ≤ 2AdvDk-MDDH
B1,CG (λ) + 2AdvDk-MDDH

B2,CG (λ) + 2−Ω(λ),
max{Time(B1), Time(B2)} ≈ Time(A) + (µ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We employ a series of games and evaluate the advantage of the adversary in each game. In this
paper, we use the variable i to denote the index of users and ji (resp. ℓi ) to denote the index of ciphertext
(resp. secret key) queries for user i . For example, a vector s in ji -th ciphertext for user i will be denoted by
si ,ji . In the security proof, however, we change the forms of ciphertexts and secret keys for every user in
the same way simultaneously. Thus, we do not need to specify users when we consider adversary’s queries.
For conciseness, we omit the index i from (i , ji ) and (i , ℓi ), and just use j and ℓ to denote the indices of
queries (but j and ℓ are implicitly associated with i ).
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Game 0: This game is the same as the real game. Then, for all j ∈ [qct,i ], the j -th ciphertext thatA obtains
from the oracle corresponds to

sj
U←− Zk 2m

p , cj,1 := Asj , cj,2 :=WiAsj + x
β
j .

Game 1: The reply for ciphertext queries is changed as follows. For j ∈ [qct,i ], we define xj := x1j − x0j ∈
Zm

p . Let ϕi : [qct,i ] → [m] be a map such that ϕi (j ) := rank(x1 | | · · · | |xj ). Then, for all j ∈ [qct,i ], the
j -th ciphertext that A obtains from the oracle corresponds to

b
U←− Zk+1

p \span(Ã), B :=

k m vectors︷             ︸︸             ︷©­­­­«
b

b
. . .

b

ª®®®®¬
∈ Zk (k+1)m×k m

p , (4.2)

s̃j,1, . . . , s̃j,ϕi (j )
U←− Zk

p , s′j := (s̃j,1, . . . , s̃j,ϕi (j ), 0
k (m−ϕi (j ))) ∈ Zk m

p ,

cj,1 := Asj + Bs′j , cj,2 :=Wi (Asj + Bs′j ) + x
β
j .

Game 2: The reply for ciphertext queries is changed as follows. Let ρi : [ϕi (qct,i )] → [qct,i ] be a map
such that ρi (ι) := min ϕ−1i (ι). In other words, on an input ι, ρi returns the first query number j such
that the rank of the matrix (x1 | | · · · | |xj ) equals ι. Then, for all j ∈ [qct,i ], the j -th ciphertext that A
obtains from the oracle corresponds to

u
U←− Zk

p ,

cj,1 := Asj + Bs′j , cj,2 :=Wi (Asj + Bs′j ) + x
β
j +

∑
ι∈[ϕi (j )]

⟨u, s̃j,ι⟩xρi (ι) .

Note that s̃j,ι is defined in Game 1.

Game 3: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i ], the j -th ciphertext that
A obtains from the oracle corresponds to

r j,1, . . . , r j,ϕi (j )
U←− Zp ,

cj,1 := Asj + Bs′j , cj,2 :=Wi (Asj + Bs′j ) + x
β
j +

∑
ι∈[ϕi (j )]

r j,ιxρi (ι) .

Game 4: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i ], the j -th ciphertext that
A obtains from the oracle corresponds to

r j,1, . . . , r j,ϕi (j )
U←− Zp ,

cj,1 := Asj + Bs′j , cj,2 :=Wi (Asj + Bs′j ) + x0j +
∑
ι∈[ϕi (j )]

r j,ιxρi (ι).

Thanks to Lemma 4.1 to Lemma 4.5, Theorem 4.1 holds. □
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In the following, we denote the event that A’s output is equal to β, i.e., β = β′, in Game ι by Eι.

Lemma 4.1. For any PPT adversary A, there exists a PPT adversary B1 for the Dk -MDDH s.t.

|Pr[E0] − Pr[E1]| ≤ AdvDk-MDDH
B1 (λ) + 2−Ω(λ),

Time(B1) ≈ Time(A) + (µ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We describe a PPT adversary B1 that solves a Dk -MDDH problem using A internally. B1 takes
an n-Dk -MDDH problem (GCG, [Ã], [Tδ]) with n := k mqct, where δ ∈ {0, 1}. Note that the number
n = k mqct corresponds to the maximum possible instance usage of B1. Therefore, the number of instances
that B1 utilizes depends on A’s behavior and B1 does not utilize all instances necessarily. B1 generates
random matrices W1, . . . ,Wµ

U←− Z
m×k (k+1)m
p and sets pki := (GCG, [Ã], [WiA]) for all i ∈ [µ], where A is

defined in the same way as Eq. (4.1). Then, B1 inputs {pki }i ∈[µ] to A. Because B1 generates mski := Wi

for all i by itself, it can easily simulate Osk. Thus, the remaining task is simulating Oct.
First, B1 selects a bit β

U←− {0, 1}. Let tδ,ι ∈ Zk+1
p be the ι-th column of Tδ. When A queries Oct on

(i , (xj,0, xj,1)) as the j -th query for user i , B1 computes a reply as follows:

sj,kϕi (j )+1, . . . , sj,k m
U←− Zk

p ,

cj,1 := (tδ,k m(∑ι∈[i−1] qct,ι+j−1)+1, . . . , tδ,k m(∑ι∈[i−1] qct,ι+j−1)+kϕ(j ), Ãsj,kϕi (j )+1, . . . , Ãsj,k m) ∈ Zk (k+1)m
p ,

cj,2 :=Wicj,1 + x
β
j ∈ Z

m
p ,

ctj := ([cj,1], [cj,2]).

We check that B1 correctly simulates Oct. Recall that the columns of Ã and b are linearly independent
and form a basis of Zm

p . Thus, we can rewrite cj,1 as:

sj,1, . . . , sj,k m
U←− Zk

p , s ′j,1, . . . , s ′j,kϕi (j )
U←− Zp ,

cj,1 = (Ãsj,1 + δs
′
j,1b, . . . , Ãsj,kϕi (j ) + δs

′
j,kϕi (j )b, Ãsj,kϕi (j )+1, . . . , Ãsj,k m)

= Asj + δBs′j ,

where sj := (sj,1, . . . , sj,k m) and s′j := (sj,1, . . . , sj,kϕi (j ), 0k (m−ϕi (j ))). Then, if δ = 0, A’s view corresponds to
Game 0 and otherwise, it corresponds to Game 1. Finally, B1 outputs the truth value of (β = β′) where β′
is the output of A. This proves Lemma 4.1. □

Lemma 4.2. For any PPT adversary A, we have

Pr[E1] = Pr[E2].

Proof. Lemma 4.2 follows from Claim 4.1 and Claim 4.2. To prove Lemma 4.2, we use a kind of complexity
leveraging argument. In the following, we randomly choose vectors independently from the security game
as {x̃j }i ∈[µ],j ∈[qct,i ]

U←− Zm
p . The purpose is to assure that x̃j is independent from W̃i in Eq.(4.4). □

Claim 4.1. For any PPT adversary A and both ι ∈ {1, 2}, we have

Pr[Eι] = Pr[Eι |{x̃j }i ∈[µ],j ∈[qct,i ]
U←− Zm

p ,∀i , j, x̃j = xj (mod p)].
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Proof. Vectors {x̃j }i ∈[µ],j ∈[qct,i ] are chosen independently from A’s view. Then, the event [∀i , j, x̃j = xj

(mod p)] does not affect A’s behavior. □

Claim 4.2. For any PPT adversary A, we have

Pr[E1 |{x̃j }i ∈[µ],j ∈[qct,i ]
U←− Zm

p ,∀i , j, x̃j = xj (mod p)]

=Pr[E2 |{x̃j }i ∈[µ],j ∈[qct,i ]
U←− Zm

p ,∀i , j, x̃j = xj (mod p)].

Proof. We denote the ι-th column of the matrix B by bι for ι ∈ [k m], where B is defined in Eq. (4.2).
We define that B∗ :=

(
(A| |B)−1

)⊤ ∈ Z
k (k+1)m×k (k+1)m
p and denote the (k 2m + ι)-th column of B∗ by b∗ι for

ι ∈ [k m]. Then the following equations hold:

b∗
⊤
ι A = 0⊤, b∗

⊤
ι bι′ =

{
1 (ι = ι′)
0 (ι , ι′)

for all ι, ι′ ∈ [k m]. (4.3)

Next, we redefineWi as

u
U←− Zk

p , W̃i
U←− Z

m×k (k+1)m
p ,

Wi := W̃i +
∑

ι∈[ϕi (qct,i )]
x̃ρi (ι)u

⊤
(
b∗k (ι−1)+1 | | . . . | |b

∗
k (ι−1)+k

)⊤
.

(4.4)

Observe thatWi is identically distributed to the original one, i.e.,Wi
U←− Z

m×k (k+1)m
p . This is because x̃j is

determined independently from W̃i . Under the condition such that ∀i , j, x̃j = xj (mod p), we have

(In the public key)

WiA = W̃iA for all i ∈ [µ] , (4.5)
(In the secret keys)

W⊤i yℓ = W̃⊤i yℓ for all i ∈ [µ] and ℓ ∈ [qsk,i ], (4.6)
(In the challenge ciphertexts)

Wi (Asj + Bs′j ) =
©­«W̃i +

∑
ι∈[ϕi (qct,i )]

x̃ρi (ι)u
⊤
(
b∗k (ι−1)+1 | | . . . | |b

∗
k (ι−1)+k

)⊤ª®¬ (Asj + Bs′j )

= W̃i (Asj + Bs′j ) +
∑

ι∈[ϕi (qct,i )]
x̃ρi (ι)u

⊤ (
Ok×k (ι−1) | |Ik | |Ok×k (m−ι)

)
s′j

= W̃i (Asj + Bs′j ) +
∑
ι∈[ϕi (j )]

⟨u, s̃j,ι⟩x̃ρi (ι) for all i ∈ [µ] and j ∈ [qct,i ].

(4.7)

Here, Eq. (4.5) and Eq. (4.7) follow from Eq. (4.3), and Eq. (4.6) follows from Eq. (3.1). Then, from Eq. (4.5),
Eq. (4.6), and Eq. (4.7), A’s views in Game 1 and Game 2 are identical if ∀i , j, x̃j = xj (mod p). Then,
Claim 4.2 holds. □

Lemma 4.3. For any PPT adversary A, there exists a PPT adversary B2 for the Dk -MDDH s.t.

|Pr[E2] − Pr[E3]| ≤ AdvDk-MDDH
B2 (λ) + 2−Ω(λ),

Time(B2) ≈ Time(A) + (µ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).
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Proof. First, we prove the following claim.

Claim 4.3. We consider the following distribution for any n ∈ N:

GCG ← GCG(1λ), S
U←− Zk×n

p , u
U←− Zk

p , t0 := S⊤u, t1
U←− Zn

p .

Then, for any PPT adversary A, there exists a PPT adversary B and we have

AdvProblemA (λ) := |Pr[1← A(GCG, [S], [t0])] − Pr[1← A(GCG, [S], [t1])]| ≤ Advn-Dk-MDDH
B,CG (λ),

Time(B) ≈ Time(A) + npoly(λ),

where poly(λ) is independent from Time(A).

Proof. For a matrix A in the n-Dk -MDDH problem, we can define that A :=
(
A0
a⊤1

)
, where A0 ∈ GLk (Zp )

and a1 ∈ Zk
p . Then, we can rewrite an instance of n-Dk -MDDH problem as

S
U←− Zk×n

p , t̃0 := S⊤(A−10 )⊤a1, t̃1
U←− Zn

p ,(
GCG, A :=

(
A0
a⊤1

)
, T0 :=

(
S
t̃⊤0

)
or T1 :=

(
S
t̃⊤1

))
.

B chooses r
U←− Zk

p , sets tβ := S⊤r + t̃β for β ∈ {0, 1}, and inputs (GCG, [S], [tβ]) to A. Observe that S and
tβ defined above are identically distributed to those defined in Claim 4.3. □

We describe a PPT adversary B2 that solves a problem defined in Claim 4.3 using A internally. B2
takes an instance (GCG, [S], [tδ]) with n := mqct, where δ ∈ {0, 1}. Note that the number n = mqct

corresponds to the maximum possible instance usage of B2. Therefore, the number of instances that B2
utilizes depends on A’s behavior, and B2 does not utilize all instances necessarily. B2 chooses Ã ← Dk

and sets pp := (GCG, [Ã]). B2 generates key pairs as (pki ,mski ) ← Setup(1m , pp) for all i ∈ [µ]. Then, B2
inputs {pki }i ∈[µ] to A. Because B2 generates mski for all i by itself, it can easily simulate Osk. Then, the
remaining task is simulating Oct.

First, B2 selects a bit β
U←− {0, 1}. Let s̃ι ∈ Zk

p be the ι-th column of S ∈ Zk×n
p and tδ,ι ∈ Zp be the ι-th

element of tδ ∈ Zn
p . WhenA queries Oct on (i , (xj,0, xj,1)) as the j -th query for user i , B2 computes a reply

as follows:

sj
U←− Zk 2m

p , s′j :=
(
s̃m(∑ι∈[i−1] qct,ι+j−1)+1, . . . , s̃m(∑ι∈[i−1] qct,ι+j−1)+ϕi (j ), 0

k (m−ϕi (j ))
)
∈ Zk m

p ,

cj,1 := Asj + Bs′j , cj,2 :=Wicj,1 + x
β
j +

∑
κ∈[ϕi (j )]

tδ,m(∑ι∈[i−1] qct,ι+j−1)+κxρi (κ),

ctj := ([cj,1], [cj,2]),

whereA andB are defined as Eq.(4.1) and Eq.(4.2). Recall that t0,m(∑ι∈[i−1] qct,ι+j−1)+κ = ⟨u, s̃m(∑ι∈[i−1] qct,ι+j−1)+κ⟩
and t1,m(∑ι∈[i−1] qct,ι+j−1)+κ is a random element in Zp for κ ∈ [ϕi (j )]. Then, A’s view corresponds to Game
2 if δ = 0, and it corresponds to Game 3 otherwise. Finally, B2 outputs the truth value of (β = β′) where
β′ is the output of A. This proves Lemma 4.3. □

Lemma 4.4. For any PPT adversary A, we have

Pr[E3] = Pr[E4].
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Proof. For any i ∈ [µ] and j ∈ [qct,i ], we can see that the term
∑
ι∈[ϕi (j )] r j,ιxρi (ι) is a completely random

element in span({xρi (ι)}ι∈[ϕi (j )]). From the definition of the maps ϕi and ρi , xj ∈ span({xρi (ι)}ι∈[ϕi (j )]).
Therefore, we have

xβj +
∑
ι∈[ϕi (j )]

r j,ιxρi (ι) = βxj + x0j +
∑
ι∈[ϕi (j )]

r j,ιxρi (ι)

≡ x0j +
∑
ι∈[ϕi (j )]

r j,ιxρi (ι) for all i ∈ [µ] and j ∈ [qct,i ].

In the above equation, the relation ≡ indicates that LHS and RHS are identically distributed. Thus, A’s
views in Game 3 and Game 4 are identical. □

Lemma 4.5. For any PPT adversary A, we have

Pr[E4] = 1/2.

Lemma 4.5 is trivial because A does not obtain any information about β in Game 4.

4.3 Application to Multi-Input Inner Product Functional Encryption

We can obtain an adaptively secure MIPFE scheme whose security is tightly reduced to the Dk - MDDH
assumption by applying the generic conversion by Abdalla et al. [3] to our scheme. Let Pub-IPFE be a
Pub-IPFE scheme that is adaptively secure in the multi-user and multi-challenge setting. It is not difficult
to see that the security of the MIPFE scheme obtained by applying the conversion to Pub-IPFE is reduced
to that of Pub-IPFE with the security loss being 1. For the completeness, we describe their conversion in a
slightly modified way so that it is sufficient for our purpose.

Property. Let Pub-IPFE := (Par, Setup, Enc,KeyGen,Dec) be a Pub-IPFE scheme (Definition 3.5). In their
conversion, we require that Pub-IPFE has the following properties.

1. Pub-IPFE is adaptively secure in the multi-challenge and multi-user setting.

2. A public parameter pp defines an order n, a group G of order n with group law ◦, and an encoding
function E : Zn → G .

3. A decryption algorithm Dec correctly works even if it takes pp instead of pk. Moreover, the de-
cryption algorithm Dec can be divided into the two algorithms Dec1 and Dec2 with the following
properties. For any λ,m ∈ N, any x, y ∈ Zm , and any z ∈ Zn such that |z | ≤ mXλYλ , we have

Pr


d = E (⟨x, y⟩ mod n)

pp← Par(1λ)
(pk,msk) ← Setup(1m , pp)
ct← Enc(pk, x)
sk← KeyGen(pk,msk, y)
d := Dec1(pp, ct, sk)


= 1, Dec2(pp,E (z )) = z .

4. For any a ,b ∈ Zn , we have E (a) ◦ E (b) = E (a + b).

5. Given pp and any z ∈ Zn , one can efficiently compute E (−z ).
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Conversion by Abdalla et al. [3]. Let Pub-IPFE :=
(
Par′, Setup′, Enc′,KeyGen′,Dec′ := (Dec′1,Dec′2)

)
be a Pub-IPFE scheme with the property defined above. Let MIPFE := (Setup, Enc,KeyGen,Dec) be a
converted MIPFE scheme. Let Xλ := X ′λ/µ be a norm bound of MIPFE, where X ′λ is a norm bound of
Priv-IPFE.

Setup(1λ , 1m , 1µ): It takes a security parameter 1λ , a vector length 1m , and a number of slots 1µ . Then, it
outputs a public parameter pp and a master secret key msk as follows.

pp′← Par′(1λ), {pk′i ,msk′i }i ∈[µ] ← Setup′(1m , pp′), {ui }i ∈[µ]
U←− Zm

n ,
pp := pp′, msk := ({pk′i ,msk′i }i ∈[µ], {ui }i ∈[µ]).

Enc(pp,msk, i , x): It takes pp, msk, i ∈ [µ] and x ∈ Zm and outputs a ciphertext cti as follows.

x̃ := x + ui ∈ Zm
n , ct′i ← Enc′(pk′i , x̃), cti := ct′i .

KeyGen(pp,msk, {yi }i ∈[µ]): It takes pp, msk, and {yi }i ∈[µ] ∈ Zm and outputs a secret key sk as follows.

ỹi := yi ∈ Zm
n , sk′i ← KeyGen′(pk′i ,msk′i , ỹi ) for all i ∈ [µ],

z :=
∑

i ∈[µ]
⟨yi , ui ⟩ ∈ Zn , sk := ({sk′i }i ∈[µ], z ).

Dec(pp, {cti }i ∈[µ], sk): It takes pp, {cti }i ∈[µ], and sk. Then, it computes decryption value d as follows.

di := Dec′1(pp′, ct′i , sk′i ) ∈ G for all i ∈ [µ], d := Dec′2(pp,d1 ◦ · · · ◦ dµ ◦ E (−z )).

By the conversion, we obtain the following corollary.

Corollary 4.1. Let MIPFE be the MIPFE scheme obtained by applying the conversion in [3] to our Pub-IPFE
scheme. Then MIPFE is adaptively secure. More formally, let µ be a number of slots, qct :=

∑
i ∈[µ] qct,i be the

total number of the ciphertext queries byA, qsk be the total number of the secret key queries byA, and m be
a vector length. Then, for any PPT adversaryA and security parameter λ, there exist PPT adversaries B1 and
B2 for the Dk -MDDH and we have

AdvMIPFE
A,ad (λ) ≤ 2AdvDk-MDDH

B1 (λ) + 2AdvDk-MDDH
B2 (λ) + 2−Ω(λ),

max{Time(B1), Time(B2)} ≈ Time(A) + (µ + qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

5 Function-Hiding Inner Product Functional Encryption

Lin proposed a simple framework that allows us to construct a function-hiding IPFE scheme from a public
key IPFE scheme [34]. We can apply her framework to our scheme and obtain a tightly function-hiding
IPFE scheme in the multi-user setting. Informally, her framework is as follows.

First, we can see that a ciphertext and a secret key in our IPFE scheme consist of vectors, and decryption
involves inner product of these vectors. That is, a ciphertext of a vector x corresponds to a vector cin :=
(cin,1, cin,2) := (As,WAs + x) ∈ Z

(k 2+k+1)m
p and a secret key of a vector y corresponds to a vector kin :=
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(kin,1, kin,2) := (−W⊤y, y) ∈ Z(k
2+k+1)m

p . Decryption just computes ⟨cin, kin⟩. We call the scheme described
above an inner scheme.

To ensure the confidentiality of secret keys, we “encrypt” secret keys in the same way as cipher-
texts in our IPFE scheme. That is, a secret key of the function-hiding IPFE scheme is generated as sk :=
(cout,1, cout,2) :=

(
Dr ∈ Zk (k+1)(k 2+k+1)m

p ,VDr + kin ∈ Z(k
2+k+1)m

p

)
, where V, D, and r correspond to W, A,

and s respectively in our scheme presented in Section 4.1. We call the scheme utilized to encrypt secret
keys an outer scheme. We also need to transform ciphertexts to make them compatible with sk, which
can be done by “generating a secret key” of cin in the outer scheme. That is, we define a ciphertext of
the function-hiding IPFE scheme as ct := (kout,1, kout,2) :=

(
−V⊤cin ∈ Zk (k+1)(k 2+k+1)m

p , cin ∈ Z(k
2+k+1)m

p

)
.

Observe that ⟨ct, sk⟩ = ⟨cin, kin⟩ = ⟨x, y⟩.
To achieve the security, of course we need to encode both ct and sk on the exponent of group elements.

We employ bilinear groups that allow us to compute inner product over the group elements, which is
necessary for decryption. Then, the confidentiality of ciphertexts is assured by the inner scheme and that
of secret keys is assured by the outer scheme.

5.1 Actual Scheme and Optimization

As described above, if we directly apply Lin’s framework to our scheme, the first components of a ciphertext
and a secret key will consist of k (k + 1)(k 2 +k + 1)m group elements. Recall the reason we need k (k + 1)m
group elements in the first components of a ciphertext and a secret key in the original scheme. That is,
the maximum dimension of the space spanned by the vectors xj = x1j − x0j is m, and this fact directly
affects the number of group elements in the first components. Because the vector length handled in the
outer scheme is (k 2 +k + 1)m, the first components seem to require k (k + 1)(k 2 +k + 1)m group elements.
However, observe that themaximumdimension of the space spanned by the vectors kout,ℓ := k1out,ℓ−k

0
out,ℓ :=

(−W⊤y1
ℓ
, y1
ℓ
) − (−W⊤y0

ℓ
, y0
ℓ
) for all ℓ ∈ [qsk] is m, not (k 2 + k + 1)m. Hence, we can reduce the number of

group elements in the first components to k (k + 1)m, and the resulting scheme is given as follows.
Let Dk be a matrix distribution over full rank matrices in Z

(k+1)×k
p and norm bounds Xλ and Yλ be

polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GBG ← GBG(1λ), Ã, D̃← Dk , pp := (GBG, [Ã]1, [D̃]2).

Setup(1m , pp): It takes a vector length 1m and a public parameter pp. Then, it outputs a master secret key
msk as follows.

W
U←− Z

m×k (k+1)m
p , V

U←− Z
(k 2+k+1)m×k (k+1)m
p , msk := (W,V).

Enc(pp,msk, x): It takes pp, msk, and x ∈ Zm and outputs a ciphertext ct as follows.

A :=

k m matrices︷               ︸︸               ︷©­­­­«
Ã

Ã
. . .

Ã

ª®®®®¬
∈ Zk (k+1)m×k 2m

p , s
U←− Zk 2m

p , cin := (As,WAs + x) ∈ Z(k
2+k+1)m

p ,

kout,1 := −V⊤cin ∈ Zk (k+1)m
p , kout,2 := cin, ct := ([kout,1]1, [kout,2]1).
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KeyGen(pp,msk, y): It takes pp, msk, and y ∈ Zm and outputs a secret key sk as follows.

D :=

k m matrices︷               ︸︸               ︷©­­­­«
D̃

D̃
. . .

D̃

ª®®®®¬
∈ Zk (k+1)m×k 2m

p , r
U←− Zk 2m

p , kin := (−W⊤y, y) ∈ Z(k
2+k+1)m

p ,

cout,1 := Dr ∈ Zk (k+1)m
p , cout,2 := VDr + kin ∈ Z(k

2+k+1)m
p , sk := ([cout,1]2, [cout,2]2).

Dec(pp, ct, sk): It takes pp, ct, and sk. Then it computes [d]T := e ([kout,1]1, [cout,1]2)e ([kout,2]1, [cout,2]2)
and searches for d exhaustively in the range of −mXλYλ to mXλYλ . If such d is found, it outputs d .
Otherwise, it outputs ⊥.

Correctness. Observe that if ct is an encryption of x and sk is a secret key of y,

d = −c⊤inVDr + c⊤inVDr + c⊤inkin = ⟨cin, kin⟩ = ⟨x, y⟩.

Therefore, if | |x| |∞ ≤ Xλ and | |y| |∞ ≤ Yλ , the output of the decryption algorithm is d = ⟨x, y⟩.

5.2 Security

Theorem 5.1. Assume that theDk -MDDH assumption holds with respect to GBG, then our Priv-IPFE scheme
is weakly function-hiding in the multi-user setting. More formally, let µ be a number of users, qct :=

∑
i ∈[µ] qct,i

be the total number of the ciphertext queries by A, qsk :=
∑

i ∈[µ] qsk,i be the total number of the secret key
queries byA, and m be a vector length. Then, for any PPT adversaryA and security parameter λ, there exist
PPT adversaries B1, . . . ,B4 for the Dk -MDDH, and we have

AdvPriv-IPFEA,w-fh (λ) ≤ 2
∑
ι∈{1,2}

AdvDk-MDDH
Bι,BG,1 (λ) + 2

∑
ι∈{3,4}

AdvDk-MDDH
Bι,BG,2 (λ) + 2−Ω(λ),

max
ι∈[4]
{Time(Bι)} ≈ Time(A) + (µ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Theorem 5.1 follows from Theorem 4.1 and Lin’s observation [34]. That is, the following relations hold:{
{ct0j }j ∈[qct,i ], {sk0ℓ}ℓ∈[qsk,i ]

}
i ∈[µ]
≈c

{
{ct1j }j ∈[qct,i ], {sk0ℓ}ℓ∈[qsk,i ]

}
i ∈[µ]
≈c

{
{ct1j }j ∈[qct,i ], {sk1ℓ}ℓ∈[qsk,i ]

}
i ∈[µ]

.

The first indistinguishability follows from the security of the inner scheme and Eq. (3.3), and the second
indistinguishability follows from the security of the outer scheme and Eq.(3.3). More precisely, we use the
relations ⟨x0i ,ji

, y0i ,ℓi ⟩ = ⟨x
1
i ,ji
, y0i ,ℓi ⟩ for the inner scheme and ⟨c1in,i ,ji

, k0in,i ,ℓi ⟩ = ⟨c
1
in,i ,ji

, k1in,i ,ℓi ⟩ for the outer
scheme. Both relations can be derived from Eq. (3.3). Note that because our scheme is adaptively secure,
the above relations hold even if ciphertexts and secret keys are queried by an adversary adaptively.

Remark 5.1. Although the above scheme is weakly function-hiding in themulti-user setting, we can easily
convert it into one that is fully function-hiding in the multi-user setting by the conversion proposed by Lin
and Vaikuntanathan [35]. The conversion is very simple and works by only doubling vector lengths. When
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encrypting x ∈ Zm , we just encrypt (x, 0m) in the original scheme. Key generation is also done in the same
way. In addition, this conversion is tight. That is, for any PPT adversaryA and security parameter λ, there
exist PPT adversaries B1,B2,B3 and we have

AdvPriv-IPFEA,f-fh (λ) ≤
∑
ι∈[3]

AdvPriv-IPFEBι,w-fh (λ),

max
ι∈[3]
{Time(Bι)} ≈ Time(A) + (µ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

6 FromSingle toMulti-Input Function-Hiding Inner Product Functional
Encryption

In this section, we present a generic conversion from weakly function-hiding single-input IPFE to fully
function-hiding multi-input IPFE. Because all known function-hiding single-input IPFE schemes are based
on bilinear groups, we design the conversion to be compatible with group based schemes. As in [3], how-
ever, we believe that our conversion is so generic that we can easily modify it to be suitable to schemes
based on other primitives if constructed.

6.1 Conversion

Property. Let Priv-IPFE := (Par, Setup, Enc,KeyGen,Dec) be a Priv-IPFE scheme (Definition 3.6). In our
conversion, we require that an underlying scheme has the following properties.

1. Priv-IPFE is weakly function-hiding in the multi-user setting.

2. A public parameter pp defines an order n, a group G of order n with group law ◦, and an encoding
function E : Zn → G .

3. A decryption algorithmDec can be divided into the two algorithmsDec1 andDec2 with the following
properties. For any λ,m ∈ N, any x, y ∈ Zm , and any z ∈ Zn such that |z | ≤ mXλYλ , we have

Pr


d = E (⟨x, y⟩ mod n)

pp← Par(1λ)
msk← Setup(1m , pp)
ct← Enc(pp,msk, x)
sk← KeyGen(pp,msk, y)
d := Dec1(pp, ct, sk)


= 1, Dec2(pp,E (z )) = z .

4. For any a ,b ∈ Zn , we have E (a) ◦ E (b) = E (a + b).

Conversion. Let Priv-IPFE :=
(
Par′, Setup′, Enc′,KeyGen′,Dec′ := (Dec′1,Dec′2)

)
be a Priv-IPFE scheme

with the property defined above. Let MIPFE := (Setup, Enc,KeyGen,Dec) be a converted MIPFE scheme.
Let Xλ := X ′λ/µ be a norm bound of MIPFE, where X ′λ is a norm bound of Priv-IPFE. Our conversion is
performed as follows.
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Setup(1λ , 1m , 1µ): It takes a security parameter 1λ , a vector length 1m , and a number of slots 1µ . Then, it
outputs a public parameter pp and a master secret key msk as follows.

pp′← Par′(1λ), {msk′i }i ∈[µ] ← Setup′(12m+1, pp′), {ui }i ∈[µ]
U←− Zm

n ,
pp := pp′, msk := ({msk′i }i ∈[µ], {ui }i ∈[µ]).

Enc(pp,msk, i , x): It takes pp, msk, i ∈ [µ] and x ∈ Zm and outputs a ciphertext cti as follows.

x̃ := (x + ui , 0m , 1) ∈ Z2m+1
n , ct′i ← Enc′(pp′,msk′i , x̃), cti := ct′i .

KeyGen(pp,msk, {yi }i ∈[µ]): It takes pp, msk, and {yi }i ∈[µ] ∈ Zm and outputs a secret key sk as follows.

{ri }i ∈[µ−1]
U←− Zn , rµ := − ©­«

∑
i ∈[µ−1]

ri +
∑

i ∈[µ]
⟨yi , ui ⟩

ª®¬ ∈ Zn ,

ỹi := (yi , 0m , ri ) ∈ Z2m+1
n , sk′i ← KeyGen′(pp′,msk′i , ỹi ) for all i ∈ [µ],

sk := {sk′i }i ∈[µ].

Dec(pp, {cti }i ∈[µ], sk): It takes pp, {cti }i ∈[µ], and sk. Then, it computes decryption value d as follows.

di := Dec′1(pp′, ct′i , sk′i ) ∈ G for all i ∈ [µ], d := Dec′2(pp′,d1 ◦ · · · ◦ dµ).

Correctness. From property 3, we have

di = E (⟨xi + ui , yi ⟩ + ri mod n).

From property 4, we have

d1 ◦ · · · ◦ dµ = E
©­«
∑

i ∈[µ]
(⟨xi + ui , yi ⟩ + ri ) mod n

ª®¬ = E
©­«
∑

i ∈[µ]
⟨xi , yi ⟩ mod n

ª®¬ .
Then, from property 3 and the correctness of Priv-IPFE, we have d := Dec′2(d1 ◦ · · · ◦ dµ) =

∑
i ∈[µ]⟨xi , yi ⟩.

Remark 6.1. Typically, we define Priv-IPFE as consisting of four algorithms (Setup, Enc,KeyGen,Dec) and
Setup outputs pp andmsk when we consider Priv-IPFE in the single-user setting. To apply our conversion
to such a Priv-IPFE scheme, just setting pp := pp′1, . . . , pp

′
µ suffices in the setup algorithm. In the security

proof, however, we need a hybrid argument for each slot similarly to [3]. Thus, the security reduction will
not become tight.

6.2 Security

Theorem6.1. Let Priv-IPFE be a Priv-IPFE scheme that satisfies the properties described above. Then converted
scheme, MIPFE, is a fully function-hiding MIPFE scheme. More formally, let µ be a number of slots, qct :=∑

i ∈[µ] qct,i be the total number of the ciphertext queries byA, qsk be the total number of the secret key queries
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game x̃i ,j in ct ỹi ,ℓ in sk −∑ ri ,ℓ justification

0 (real) (xβi ,j + ui , 0m , 1) (yβi ,ℓ, 0
m , ri ,ℓ)

∑⟨yβi ,ℓ, ui ⟩ -
1 (xβi ,j + ui , vi , 1) (yβi ,ℓ, 0

m , ri ,ℓ)
∑⟨yβi ,ℓ, ui ⟩ w-fh

2 (xβi ,j + ui , vi , 1) (yβi ,ℓ, y
0
i ,ℓ , ri ,ℓ)

∑(⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩) w-fh

3 (xβi ,j −x
β
i ,1 + ui , x0i ,1 + vi , 1) (yβi ,ℓ, y

0
i ,ℓ, ri ,ℓ)

∑(⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩) info.

4 (ui , x0i ,j + vi , 1) (yβi ,ℓ, y
0
i ,ℓ, ri ,ℓ)

∑(⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩) w-fh

5 (final) (ui , x0i ,j + vi , 1) ( 0m , y0i ,ℓ, ri ,ℓ)
∑⟨y0i ,ℓ, vi ⟩ w-fh

Table 5: Overview of the game change. In justification, w-fh stands for the weakly function-hiding security of
Priv-IPFE and info. stands for an information-theoretic change.

by A, and m be a vector length. Then, for any PPT adversary A and security parameter λ, there exist PPT
adversaries B1,B2 for Priv-IPFE and we have

AdvMIPFE
A,f-fh(λ) ≤ 2

∑
ι∈[2]

AdvPriv-IPFEBι,w-fh (λ),

max
ι∈[2]
{Time(Bι)} ≈ Time(A) + (µ + qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).
Proof. We employ a series of games and evaluate the advantage of the adversary in each game. For ease of
exposition, we first consider six games: Games 0 to 5, and show that the each transition of games is justified
by the security of the underlying scheme (or an information-theoretical argument). Then, we explain that
the transition from Game 0 to 2 and that from Game 3 to 5 can be done in one-shot. We summarize forms of
ciphertexts and secret keys in each game in Table 5. A formal description of each game is given as follows.
Similarly to in Section 4.2, we omit index i from index ji and just denote it by j .

Game 0: This game is the same as the real game. Then, for all i ∈ [µ], j ∈ [qct,i ], and ℓ ∈ [qsk], the j -th
ciphertext and the ℓ-th secret key that A obtains from the oracles correspond to

{ri ,ℓ}i ∈[µ−1]
U←− Zn , rµ,ℓ := −

©­«
∑

i ∈[µ−1]
ri ,ℓ +

∑
i ∈[µ]
⟨yβi ,ℓ, ui ⟩

ª®¬ ∈ Zn , (6.1)

x̃i ,j := (xβi ,j + ui , 0m , 1) ∈ Z2m+1
n , ỹi ,ℓ := (yβi ,ℓ, 0

m , ri ,ℓ) ∈ Z2m+1
n .

Game 1: This game is the same as Game 0 except that x̃i ,j in the ciphertext queries is defined as follows:

{vi }i ∈[µ]
U←− Zm

n , x̃i ,j := (xβi ,j + ui , vi , 1) ∈ Z2m+1
n for all i ∈ [µ] and j ∈ [qct,i ].

Game 2: This game is the same as Game 1 except that ỹi ,ℓ in the secret key queries is defined as follows:

{r ′i ,ℓ}i ∈[µ−1]
U←− Zn , r ′µ,ℓ := −

©­«
∑

i ∈[µ−1]
r ′i ,ℓ +

∑
i ∈[µ]

(
⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩

)ª®¬ ∈ Zn , (6.2)

ỹi ,ℓ := (yβi ,ℓ, y
0
i ,ℓ, r

′
i ,ℓ ) ∈ Z

2m+1
n for all i ∈ [µ] and ℓ ∈ [qsk].
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Game 3: This game is the same as Game 2 except that x̃i ,j in the ciphertext queries is defined as follows:

x̃i ,j := (xβi ,j −x
β
i ,1 + ui , x0i ,1 + vi , 1) ∈ Z2m+1

n for all i ∈ [µ] and j ∈ [qct,i ].

Game 4: This game is the same as Game 3 except that x̃i ,j in the ciphertext queries is defined as follows:

x̃i ,j := (ui , x0i ,j + vi , 1) ∈ Z2m+1
n for all i ∈ [µ] and j ∈ [qct,i ].

Game 5: This game is the same as Game 4 except that ỹi ,ℓ in the secret key queries is defined as follows:

{r ′′i ,ℓ}i ∈[µ−1]
U←− Zn , r ′′µ,ℓ := −

©­«
∑

i ∈[µ−1]
r ′′i ,ℓ +

∑
i ∈[µ]
⟨y0i ,ℓ, vi ⟩

ª®¬ ∈ Zn , (6.3)

ỹi ,ℓ := ( 0m , y0i ,ℓ, r ′′i ,ℓ ) ∈ Z
2m+1
n for all i ∈ [µ] and ℓ ∈ [qsk].

Thanks to Lemma 6.1 to Lemma 6.6 and the observation in Section 6.2.1, Theorem 6.1 holds. □

In the following, we denote the event that A’s output is equal to β, i.e., β = β′, in Game ι by Eι.

Lemma 6.1. For any PPT adversary A, there exists a PPT adversary B1 for Priv-IPFE s.t.

|Pr[E0] − Pr[E1]| ≤ AdvPriv-IPFEB1,w-fh (λ),
Time(B1) ≈ Time(A) + (µ + qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. Let δ ∈ {0, 1} be a random coin that corresponds to β in Definition 3.6, chosen by the game for
weakly function-hiding Priv-IPFE. B1 behaves as follows.

1. B1 chooses a bit β
U←− {0, 1} and vectors {ui }i ∈[µ], {vi }i ∈[µ]

U←− Zm
n .

2. B1 obtains pp′ from the game and inputs it to A as pp.

3. When A makes a ciphertext query for (i , (x0i ,j , x1i ,j )), B1 first sets x̃0i ,j := (xβi ,j + ui , 0m , 1) ∈ Z2m+1
n

and x̃1i ,j := (x
β
i ,j + ui , vi , 1) ∈ Z2m+1

n . Then, B1 queries Oct on (i , (x̃0i ,j , x̃1i ,j )) and obtains ct′i ,j from it.
Finally, B1 replies cti ,j := ct′i ,j to A.

4. WhenAmakes a secret key query for ({y0i ,ℓ}i ∈[µ], {y
1
i ,ℓ}i ∈[µ]),B1 first sets ỹ

0
i ,ℓ = ỹ1i ,ℓ := (y

β
i ,ℓ, 0

m , ri ,ℓ) ∈
Z2m+1

n where ri ,ℓ is generated as Eq.(6.1). Then, B1 queries Osk on (i , (ỹ0i ,ℓ, ỹ
1
i ,ℓ)) and obtains sk

′
i ,ℓ from

it for all i ∈ [µ]. Finally, B1 replies skℓ := {sk′i ,ℓ}i ∈[µ] to A.

5. Finally, when A outputs β′, B1 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i ], and ℓ ∈ [qsk], we have

⟨x̃0i ,j , ỹ0i ,ℓ⟩ = ⟨x̃
0
i ,j , ỹ

1
i ,ℓ⟩ = ⟨x̃

1
i ,j , ỹ

1
i ,ℓ⟩ = ⟨x

β
i ,j + ui , y

β
i ,ℓ⟩ + ri ,ℓ.

Then, B1 follows the condition Eq.(3.3). It is not difficult to confirm that A’s view corresponds to Game 0
if δ = 0 and Game 1 if δ = 1. This concludes the proof. □
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Lemma 6.2. For any PPT adversary A, there exists a PPT adversary B2 for Priv-IPFE s.t.

|Pr[E1] − Pr[E2]| ≤ AdvPriv-IPFEB2,w-fh (λ),
Time(B2) ≈ Time(A) + (µ + qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. Let δ ∈ {0, 1} be a random coin that corresponds to β in Definition 3.6, chosen by the game for
weakly function-hiding Priv-IPFE. B2 behaves as follows.

1. B2 chooses a bit β
U←− {0, 1} and vectors {ui }i ∈[µ], {vi }i ∈[µ]

U←− Zm
n .

2. B2 obtains pp′ from the game and inputs it to A as pp.

3. WhenAmakes a ciphertext query for (i , (x0i ,j , x1i ,j )),B2 first sets x̃0i ,j = x̃1i ,j := (x
β
i ,j+ui , vi , 1) ∈ Z2m+1

n .
Then, B2 queries Oct on (i , (x̃0i ,j , x̃1i ,j )) and obtains ct′i ,j from it. Finally, B2 replies cti ,j := ct′i ,j to A.

4. When A makes a secret key query for ({y0i ,ℓ}i ∈[µ], {y
1
i ,ℓ}i ∈[µ]), B2 first computes

{ri ,ℓ}i ∈[µ−1]
U←− Zn , rµ,ℓ := −

©­«
∑

i ∈[µ−1]
ri ,ℓ +

∑
i ∈[µ]
⟨yβi ,ℓ, ui ⟩

ª®¬ ∈ Zn ,

r ′i ,ℓ := ri ,ℓ − ⟨y0i ,ℓ, vi ⟩, ỹ0i ,ℓ := (y
β
i ,ℓ, 0

m , ri ,ℓ) ∈ Z2m+1
n , ỹ1i ,ℓ := (y

β
i ,ℓ, y

0
i ,ℓ, r

′
i ,ℓ) ∈ Z

2m+1
n

for all i ∈ [µ].

Then, B2 queries Osk on (i , (ỹ0i ,ℓ, ỹ
1
i ,ℓ)) and obtains sk′i ,ℓ from it for all i ∈ [µ]. Finally, B2 replies

skℓ := {sk′i ,ℓ}i ∈[µ] to A.

5. Finally, when A outputs β′, B2 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i ], and ℓ ∈ [qsk], we have

⟨x̃0i ,j , ỹ0i ,ℓ⟩ = ⟨x̃
0
i ,j , ỹ

1
i ,ℓ⟩ = ⟨x̃

1
i ,j , ỹ

1
i ,ℓ⟩ = ⟨x

β
i ,j + ui , y

β
i ,ℓ⟩ + ri ,ℓ.

Then, B2 follows the condition Eq. (3.3). Observe that {ri ,ℓ}i ∈[µ−1] are chosen randomly from Zn , then
{r ′i ,ℓ}i ∈[µ−1] are also random elements in Zn from the viewpoint of the adversary. Additionally, we have

r ′µ,ℓ = rµ,ℓ − ⟨y0µ,ℓ, vµ⟩ = −
©­«

∑
i ∈[µ−1]

ri ,ℓ +
∑

i ∈[µ]
⟨yβi ,ℓ, ui ⟩

ª®¬ − ⟨y0µ,ℓ, vµ⟩

= − ©­«
∑

i ∈[µ−1]
r ′i ,ℓ +

∑
i ∈[µ]

(
⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩

)ª®¬ .
Then, A’s view corresponds to Game 1 if δ = 0 and Game 2 if δ = 1. This concludes the proof. □

Lemma 6.3. For any PPT adversary A, we have

Pr[E2] = Pr[E3].
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Proof. Lemma 6.3 follows from Claim 6.1 and Claim 6.2. To prove Lemma 6.3, we use a kind of complexity
leveraging argument. In the following, we randomly choose vectors independently from the security game
as {x̂γi ,1}γ∈{0,1},i ∈[µ]

U←− Zm
n . The purpose is to assure that x̂0i ,1 and x̂1i ,1 are independent from ũi and ṽi in

Claim 6.2. □

Claim 6.1. For any PPT adversary A and both ι ∈ {2, 3}, we have

Pr[Eι] = Pr[Eι |{x̂γi ,1}γ∈{0,1},i ∈[µ]
U←− Zm

n ,∀γ, i , x̂γi ,1 = xγi ,1 (mod n)],

where xγi ,1 ∈ Zm for γ ∈ {0, 1} and i ∈ [µ] is the γ-side vector queried at A’s first ciphertext query for slot i .

Proof. Vectors {x̂γi ,1}γ∈{0,1},i ∈[µ] are chosen independently fromA’s view. Then, the event [∀γ, i , x̂γi ,1 = xγi ,1
(mod n)] does not affect A’s behavior. □

Claim 6.2. For any PPT adversary A, we have

Pr[E2 |{x̂γi ,1}γ∈{0,1},i ∈[µ]
U←− Zm

n ,∀γ, i , x̂γi ,1 = xγi ,1 (mod n)]

=Pr[E3 |{x̂γi ,1}γ∈{0,1},i ∈[µ]
U←− Zm

n ,∀γ, i , x̂γi ,1 = xγi ,1 (mod n)].

Proof. We redefine ui and vi as ui := ũi − x̂βi ,1 and vi := ṽi + x̂0i ,1 where ũi , ṽi
U←− Zm

n for all i ∈ [µ].
Observe that ui and vi are identically distributed to the original ones, i.e., ui , vi

U←− Zm
n . This is because x̂0i ,1

and x̂1i ,1 are chosen independently from ũi and ṽi . Under the condition such that ∀γ, i , x̂γi ,1 = xγi ,1 (mod n),
we have

(In the secret keys)

r ′µ,ℓ = −
©­«

∑
i ∈[µ−1]

r ′i ,ℓ +
∑

i ∈[µ]

(
⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩

)ª®¬
= − ©­«

∑
i ∈[µ−1]

r ′i ,ℓ +
∑

i ∈[µ]

(
⟨yβi ,ℓ, ũi ⟩ + ⟨y0i ,ℓ, ṽi ⟩

)
+

∑
i ∈[µ]

(
−⟨yβi ,ℓ, x̂

β
i ,1⟩ + ⟨y

0
i ,ℓ, x̂

0
i ,1⟩

)ª®¬
= − ©­«

∑
i ∈[µ−1]

r ′i ,ℓ +
∑

i ∈[µ]

(
⟨yβi ,ℓ, ũi ⟩ + ⟨y0i ,ℓ, ṽi ⟩

)ª®¬ for all ℓ ∈ [qsk],

(6.4)

(In the ciphertexts)

x̃i ,j = (xβi ,j + ui , vi , 1) = (xβi ,j − x̂
β
i ,1 + ũi , x̂0i ,1 + ṽi , 1) for all i ∈ [µ] and j ∈ [qct,i ]. (6.5)

Eq. (6.4) follows from the condition Eq. (3.4) because
∑

i ∈[µ]

(
−⟨yβi ,ℓ, x̂

β
i ,1⟩ + ⟨y0i ,ℓ, x̂

0
i ,1⟩

)
= 0. Then, from

Eq. (6.4) and Eq. (6.5), A’s views are identical in Game 2 and Game 3 if ∀γ, i , x̂γi ,1 = xγi ,1 (mod n). This
proves Claim 6.2. □

Lemma 6.4. For any PPT adversary A, there exists a PPT adversary B3 for Priv-IPFE s.t.

|Pr[E3] − Pr[E4]| ≤ AdvPriv-IPFEB3,w-fh (λ),
Time(B3) ≈ Time(A) + (µ + qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

30



Proof. We use the following claim in the proof of Lemma 6.4.

Claim 6.3. For all i ∈ [µ], j ∈ [qct,i ], and ℓ ∈ [qsk], we have

⟨xβi ,j − x
β
i ,1, y

β
i ,ℓ⟩ = ⟨x

0
i ,j − x0i ,1, y0i ,ℓ⟩.

Proof. From Eq.(3.4), we have

⟨xβi ,j , y
β
i ,ℓ⟩ +

∑
ι∈[µ],
ι,i

⟨xβι,1, y
β
ι,ℓ⟩ = ⟨x

0
i ,j , y

0
i ,ℓ⟩ +

∑
ι∈[µ],
ι,i

⟨x0ι,1, y0ι,ℓ⟩ (6.6)

⟨xβi ,1, y
β
i ,ℓ⟩ +

∑
ι∈[µ],
ι,i

⟨xβι,1, y
β
ι,ℓ⟩ = ⟨x

0
i ,1, y

0
i ,ℓ⟩ +

∑
ι∈[µ],
ι,i

⟨x0ι,1, y0ι,ℓ⟩ (6.7)

Then Eq.(6.6) − Eq.(6.7) yields Claim 6.3. □

Next, we describe B3’s behavior. Let δ ∈ {0, 1} be a random coin that corresponds to β in Definition 3.6,
chosen by the game for weakly function-hiding Priv-IPFE.

1. B3 chooses a bit β
U←− {0, 1} and vectors {ui }i ∈[µ], {vi }i ∈[µ]

U←− Zm
n .

2. B3 obtains pp′ from the game and inputs it to A as pp.

3. WhenA makes a ciphertext query for (i , (x0i ,j , x1i ,j )), B3 first sets x̃0i ,j := (x
β
i ,j − x

β
i ,1 +ui , x0i ,1 + vi , 1) ∈

Z2m+1
n and x̃1i ,j := (ui , x0i ,j + vi , 1) ∈ Z2m+1

n . Then, B3 queries Oct on (i , (x̃0i ,j , x̃1i ,j )) and obtains ct′i ,j
from it. Finally, B3 replies cti ,j := ct′i ,j to A.

4. WhenAmakes a secret key query for ({y0i ,ℓ}i ∈[µ], {y
1
i ,ℓ}i ∈[µ]),B3 first sets ỹ

0
i ,ℓ = ỹ1i ,ℓ := (y

β
i ,ℓ, y

0
i ,ℓ, r

′
i ,ℓ) ∈

Z2m+1
n where r ′i ,ℓ is generated as Eq.(6.2). Then, B3 queries Osk on (i , (ỹ

0
i ,ℓ, ỹ

1
i ,ℓ)) and obtains sk

′
i ,ℓ from

it for all i ∈ [µ]. Finally, B3 replies skℓ := {sk′i ,ℓ}i ∈[µ] to A.

5. Finally, when A outputs β′, B3 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i ], and ℓ ∈ [qsk], we have

⟨x̃0i ,j , ỹ0i ,ℓ⟩ = ⟨x̃
0
i ,j , ỹ

1
i ,ℓ⟩

= ⟨xβi ,j − x
β
i ,1, y

β
i ,ℓ⟩ + ⟨ui , y

β
i ,ℓ⟩ + ⟨x

0
i ,1 + vi , y0i ,ℓ⟩ + r ′i ,ℓ

= ⟨ui , y
β
i ,ℓ⟩ + ⟨x

0
i ,j − x0i ,1, y0i ,ℓ⟩ + ⟨x

0
i ,1 + vi , y0i ,ℓ⟩ + r ′i ,ℓ

= ⟨ui , y
β
i ,ℓ⟩ + ⟨x

0
i ,j + vi , y0i ,ℓ⟩ + r ′i ,ℓ

= ⟨x̃1i ,j , ỹ1i ,ℓ⟩.

In the third line, we use Claim 6.3. Then, B3 follows the condition Eq.(3.3). It is not difficult to confirm that
A’s view corresponds to Game 3 if δ = 0 and Game 4 if δ = 1. This concludes the proof. □

Lemma 6.5. For any PPT adversary A, there exists a PPT adversary B4 for Priv-IPFE s.t.

|Pr[E4] − Pr[E5]| ≤ AdvPriv-IPFEB4,w-fh (λ),
Time(B4) ≈ Time(A) + (µ + qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).
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Proof. Let δ ∈ {0, 1} be a random coin that corresponds to β in Definition 3.6, chosen by the game for
weakly function-hiding Priv-IPFE. B4 behaves as follows.

1. B4 chooses a bit β
U←− {0, 1} and vectors {ui }i ∈[µ], {vi }i ∈[µ]

U←− Zm
n .

2. B4 obtains pp′ from the game and inputs it to A as pp.

3. WhenAmakes a ciphertext query for (i , (x0i ,j , x1i ,j )),B4 first sets x̃0i ,j = x̃1i ,j := (ui , x0i ,j+vi , 1) ∈ Z2m+1
n .

Then, B4 queries Oct on (i , (x̃0i ,j , x̃1i ,j )) and obtains ct′i ,j from it. Finally, B4 replies cti ,j := ct′i ,j to A.

4. When A makes a secret key query for ({y0i ,ℓ}i ∈[µ], {y
1
i ,ℓ}i ∈[µ]), B4 first computes

{r ′i ,ℓ}i ∈[µ−1]
U←− Zn , r ′µ,ℓ := −

©­«
∑

i ∈[µ−1]
r ′i ,ℓ +

∑
i ∈[µ]

(
⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩

)ª®¬ ∈ Zn ,

r ′′i ,ℓ := r ′i ,ℓ + ⟨y
β
i ,ℓ, ui ⟩, ỹ0i ,ℓ := (y

β
i ,ℓ, y

0
i ,ℓ, r

′
i ,ℓ) ∈ Z

2m+1
n , ỹ1i ,ℓ := (0

m , y0i ,ℓ, r
′′
i ,ℓ) ∈ Z

2m+1
n

for all i ∈ [µ].

Then, B4 queries Osk on (i , (ỹ0i ,ℓ, ỹ
1
i ,ℓ)) and obtains sk′i ,ℓ from it for all i ∈ [µ]. Finally, B4 replies

skℓ := {sk′i ,ℓ}i ∈[µ] to A.

5. Finally, when A outputs β′, B4 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i ], and ℓ ∈ [qsk], we have

⟨x̃0i ,j , ỹ0i ,ℓ⟩ = ⟨x̃
0
i ,j , ỹ

1
i ,ℓ⟩ = ⟨x̃

1
i ,j , ỹ

1
i ,ℓ⟩ = ⟨y

β
i ,ℓ, ui ⟩ + ⟨x0i ,j + vi , y0i ,ℓ⟩ + r ′i ,ℓ.

Then, B4 follows the condition Eq. (3.3). Observe that {r ′i ,ℓ}i ∈[µ−1] are chosen randomly from Zn , then
{r ′′i ,ℓ}i ∈[µ−1] are also random elements in Zn from the viewpoint of the adversary. Additionally, we have

r ′′µ,ℓ = r ′µ,ℓ + ⟨y
β
µ,ℓ, uµ⟩ = −

©­«
∑

i ∈[µ−1]
r ′i ,ℓ +

∑
i ∈[µ]

(
⟨yβi ,ℓ, ui ⟩ + ⟨y0i ,ℓ, vi ⟩

)ª®¬ + ⟨yβµ,ℓ, uµ⟩

= − ©­«
∑

i ∈[µ−1]
r ′′i ,ℓ +

∑
i ∈[µ]
⟨y0i ,ℓ, vi ⟩

ª®¬ .
Then, A’s view corresponds to Game 4 if δ = 0 and Game 5 if δ = 1. This concludes the proof. □

Lemma 6.6. For any PPT adversary A, we have

Pr[E5] = 1/2.

Lemma 6.6 is trivial because A does not obtain any information about β in Game 5.
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6.2.1 Optimization

On Lemma 6.1 and Lemma 6.2, we define that

x̃0i ,j := (x
β
i ,j + ui , 0m , 1), x̃1i ,j := (x

β
i ,j + ui , vi , 1),

ỹ0i ,ℓ := (y
β
i ,ℓ, 0

m , ri ,ℓ), ỹ1i ,ℓ := (y
β
i ,ℓ, y

0
i ,ℓ, r

′
i ,ℓ).

Then, we have ⟨x̃0i ,j , ỹ0i ,j ⟩ = ⟨x̃1i ,j , ỹ0i ,j ⟩ = ⟨x̃1i ,j , ỹ1i ,j ⟩ for all i ∈ [µ], j ∈ [qct,i ], and ℓ ∈ [qsk], which satisfies
the condition Eq.(3.3). Hence, we do not need Game 1 actually and can prove that

|Pr[E0] − Pr[E2]| ≤ AdvPriv-IPFEB1,w-fh (λ).

Similarly, we can also prove that

|Pr[E3] − Pr[E5]| ≤ AdvPriv-IPFEB2,w-fh (λ).

6.3 Application to Our Scheme

Applying the conversion to our scheme presented in Section 5.1, we can obtain a tightly secure fully
function-hiding MIPFE scheme. First, we confirm that our scheme satisfies the property presented in Sec-
tion 6.1.

1. Theorem 5.1 says that our scheme is weakly function-hiding.

2. We can define that n := p , G := GT , and E : a ∈ Zp → [a]T ∈ GT . The group law ◦ corresponds to
the multiplication over GT .

3. We can define that Dec1 computes [d]T and Dec2 searches for the discrete logarithm of [d]T .

4. It is obvious that g a
T · g b

T = g a+b
T .

Then, from Theorem 5.1 and Theorem 6.1, we obtain the following corollary.

Corollary 6.1. Let MIPFE be the MIPFE scheme obtained by applying the conversion in Section 6.1 to our
weakly function-hiding Priv-IPFE scheme. Then MIPFE is fully function-hiding. More formally, let µ be a
number of slots, qct :=

∑
i ∈[µ] qct,i be the total number of the ciphertext queries by A, qsk be the total number

of the secret key queries byA, andm be a vector length. Then, for any PPT adversaryA and security parameter
λ, there exist PPT adversaries B1, . . . ,B4 for the Dk -MDDH and we have

AdvMIPFE
A,f-fh(λ) ≤ 8

∑
ι∈{1,2}

AdvDk-MDDH
Bι,BG,1 (λ) + 8

∑
ι∈{3,4}

AdvDk-MDDH
Bι,BG,2 (λ) + 2−Ω(λ),

max
ι∈[4]
{Time(Bι)} ≈ Time(A) + (µ + qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).
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Setup(1λ , 1m): It takes a security parameter 1λ and a vector length 1m . Then, it outputs a public parameter
pp and a master secret key msk as follows.

GBG ← GBG(1λ), pp := GBG,

A,D← Dk , W
U←− Z

m×(k+1)
p , V

U←− Z
(m+k+1)×(k+1)
p , msk := (A,D,W,V).

Enc(pp,msk, x): It takes pp, msk, and x ∈ Zm and outputs a ciphertext ct as follows.

s
U←− Zk

p , cin := (As,WAs + x) ∈ Zm+k+1
p ,

kout,1 := −V⊤cin ∈ Zk+1
p , kout,2 := cin, ct := ([kout,1]1, [kout,2]1).

KeyGen(pp,msk, y): It takes pp, msk, and y ∈ Zm and outputs a secret key sk as follows.

kin := (−W⊤y, y) ∈ Zm+k+1
p , r

U←− Zk
p ,

cout,1 := Dr ∈ Zk+1
p , cout,2 := VDr + kin ∈ Zm+k+1

p , sk := ([cout,1]2, [cout,2]2).

Dec(pp, ct, sk): It takes pp, ct, and sk. Then it computes [d]T := e ([kout,1]1, [cout,1]2)e ([kout,2]1, [cout,2]2)
and searches for d exhaustively in the range of −mXλYλ to mXλYλ . If such d is found, it outputs d .
Otherwise, it outputs ⊥.
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