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1 Introduction

Zero-knowledge protocols allow to prove statements without revealing anything but the mere fact that
they are true. Since their introduction by Goldwasser, Micali, and Rackoff [GMR89] they have had a
profound impact on modern cryptography and theoretical computer science at large. Following more
than three decades of exploration, zero-knowledge protocols are now quite well understood in terms of
their expressiveness and round complexity. In particular, under standard computational assumptions,
arbitrary NP statements can be proved in only a constant number of rounds [GMW86, GK96a].

In this work, we consider classical zero-knowledge protocols with post-quantum security, namely,
protocols that can be executed by classical parties, but where both soundness and zero knowledge are
guaranteed even against efficient quantum adversaries. Here our understanding is far more restricted than
in the classical setting. Indeed, not only are we faced with stronger adversaries, but also have to deal with
the fact that quantum information behaves in a fundamentally different way than classical information,
which summons new challenges in the design of zero-knowledge protocols.

In his seminal work [Wat09], Watrous developed a new quantum simulation technique and used
it to show that classical zero-knowledge protocols for NP, such as the Goldreich-Micali-Wigderson 3-
coloring protocol [GMW86], are also zero knowledge against quantum verifiers, assuming commitments
with post-quantum hiding. These protocols are, in fact, proof systems meaning that soundness holds
against unbounded adversarial provers, let alone efficient quantum ones. As in the classical setting, to
guarantee a negligible soundness error (the gold standard in cryptography) these protocols require a
polynomial number of rounds.

Watrous’ technique does not apply for classical constant-round protocols. In fact, constant-round
zero-knowledge protocols with post-quantum security remains an open question, even when the honest
parties and communication are allowed to be quantum. The gap between classical and quantum zero
knowledge stems from fundamental aspects of quantum information such as the no-cloning theorem
[WZ82] and quantum state disturbance [FP96]. These pose a substantial barrier for classical zero-
knowledge simulation techniques, a barrier that has so far been circumvented only in specific settings
(such as, [Wat09]). Overcoming these barriers in the context of constant-round zero-knowledge seems
to require a new set of techniques.

1.1 Results

Under standard computational assumptions, we resolve the above open question — we construct a
classical, post-quantumly secure, computational-zero-knowledge argument for NP in a constant number
of rounds (with a negligible soundness error). That is, the honest verifier and prover (given a witness)
are efficient classical algorithms. In terms of security, both zero-knowledge and soundness hold against
polynomial-size quantum circuits with non-uniform quantum advice.

Our construction is based on fully-homomorphic encryption supporting the evaluation of quantum
circuits (QFHE) as well as additional standard classical cryptographic primitives. All are required to
be secure against efficient quantum algorithms with non-uniform quantum advice. QFHE was recently
constructed [Mah18a, Bra18] based on the assumption that the Learning with Errors Problem [Reg09]
is hard for the above class of algorithms (from hereon, called QLWE) and a circular security assumption
(analogous to the assumptions required for multi-key FHE in the classical setting). All other required
primitives can be based on the QLWE assumption.

Theorem 1.1 (informal). Assuming QLWE and QFHE, there exist a classical, post-quantumly secure,
computational-zero-knowledge argument in a constant number of rounds for any L ∈ NP.

Combining our zero-knowledge protocol with previous work by Broadbent et al. [BJSW16, BG19],
yields constant-round zero-knowledge arguments for QMAwith quantum honest parties.
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Corollary 1.1 (informal). Assuming QLWE and QFHE, there exist a quantum, post-quantumly secure,
computational-zero-knowledge argument in a constant number of rounds for any L ∈ QMA.

Main Technical Contribution: Non-Black-Box Quantum Extraction. Our main technical contribu-
tion is a new technique for extracting information from quantum circuits in a constant number of rounds.
The technique circumvents the quantum information barriers previously mentioned. A key feature that
enables this is using the adversary’s circuit representation in a non-black-box manner.

The technique, in particular, yields a constant round extractable commitment. In such a commitment
protocol, the verifier can commit to a classical (polynomially long) string. This commitment is perfectly
binding, and hiding against efficient quantum receivers. Furthermore, it guarantees the existence of a
simulator, which given non-black-box access to the sender’s code, can simulate its view while extracting
the committed plaintext. Further details are given in the technical overview below.

1.2 Technical Overview

We next discuss the main challenges in the design of post-quantum zero knowledge in constant rounds,
and our main technical ideas toward overcoming these challenges.

1.2.1 Classical Protocols and the Quantum Barrier

To understand the challenges behind post-quantum zero knowledge, let us first recall how classical
constant-round protocols work, and identify why they fail in the quantum setting. Classical constant-
round protocols typically involve three main steps: (1) a prover commitment α to a set of bits, (2) a
verifier challenge β, and (3) a prover response γ, in which it opens the commitments corresponding to the
challenge β. For instance, in the 3-coloring protocol of [GMW86], the prover commits to the (randomly
permuted) vertex colors, the verifier picks some challenge edge, and the prover opens the commitments
corresponding to the vertices of that edge. To guarantee a negligible soundness error, this is repeated in
parallel a polynomial number of times.

As describe so far, the protocol satisfies a rather weak zero-knowledge guarantee — a simulator can
efficiently simulate the verifier’s view in the protocol if it knows the verifier’s challenge β ahead of time.
To obtain an actual zero-knowledge protocol, we need to exhibit a simulator for any malicious verifier,
including ones who may arbitrarily choose their challenge depending on the prover’s message α. For
this purpose, an initial step (0) is added where the verifier commits ahead of time to its challenge, later
opening it in step (2) [GK96a].

The added step allows the simulator to obtain the verifier’s challenges ahead of time by means of
rewinding. Specifically, having obtained the verifier commitment, the simulator takes a snapshot of the
verifier’s state and then runs it twice: first it generates a bogus prover commitment, and obtains the
verifier challenge, then with the challenges at hand, it returns to the snapshot (effectively rewinding the
verifier) and runs the verifier again to generate the simulated execution. The binding of the verifier’s
commitment guarantees that it will never use a different challenge, and thus simulation succeeds.
Barriers to Post-Quantum Security. By appropriately instantiating the verifier commitment, the above
protocol can be shown to be sound against unbounded provers, and in particular efficient quantum provers.
One could expect that by instantiating the prover’s commitments so to guarantee hiding against quantum
adversaries, we would get post-quantum zero knowledge. However, we do not know how to prove that
such a protocol is zero knowledge against quantum verifiers. Indeed, the simulation strategy described
above fails due to two basic concepts of quantum information theory:

• No Cloning: General quantum states cannot be copied. In particular, the simulator cannot take a
snapshot of the verifier’s state.
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• Quantum State Disturbance: General quantum circuits, which in particular perform measure-
ments, are not reversible. Once the simulator evaluates the verifier’s quantum circuit to obtain its
challenge, the verifier’s original state (prior to this bogus execution) has already been disturbed
and cannot be recovered.

Watrous [Wat09] showed that in certain settings the rewinding barrier can be circumvented. He
presents a quantum rewinding lemma that roughly, shows how non-rewinding simulators that succeed in
simulating only with some noticeable probability can be amplified into full-fledged simulators. The quan-
tum rewinding lemma allows proving that classical protocols, like the GMW protocol are post-quantum
zero knowledge (assuming commitments with hiding against quantum adversaries). The technique is
insufficient, however, to prove post-quantum zero knowledge of existing constant-round protocols with a
negligible soundness error, such as the GK protocol described above. For such protocols, non-rewinding
simulators with a noticeable success probability are not known.
Can Non-Black-Box Techniques Cross the Quantum Barriers? Rewinding is, in fact, often an issue
also in the classical setting. Starting with the work of Goldreich and Krawczyk [GK96b], it was shown
that constant-round zero-knowledge protocols with certain features, such as a public-coin verifier, cannot
be obtained using simulators that only use the verifier’s next message function as a black box. That is,
simulators that are based solely on rewinding. Surprisingly, Barak [Bar01] showed that these barriers
can be circumvented using non-black-box techniques. He constructed a constant-round public-coin
zero-knowledge protocol where the simulator takes advantage of the explicit circuit representation of
the verifier. Following Barak’s work, different non-black-box techniques have been introduced to solve
various problems in cryptography (c.f., [DGS09, CLP13, Goy13, BP15, CPS16]).

A natural question is whether we can leverage classical protocols with non-black-box simulators,
such as Barak’s, in order to circumvent the discussed barriers in the quantum setting. Trying to
answer this question reveals several challenges. One inherent challenge is that classical non-black-box
techniques naturally involve cryptographic tools that support classical computations. Obtaining zero
knowledge against quantum verifiers would require analogous tools for quantum computations. As an
example, Barak relies on the existence of constant-round succinct proof systems for the correctness of
classical computations; to obtain post-quantum zero knowledge, such a protocol would need to support
also quantum computations, while (honest) verification should remain classical. Existing protocols for
classical verification of quantum computations [Mah18b] are neither constant round nor succinct.

Another family of non-black-box techniques [BP15, BKP19], different from that of Barak, is based on
fully-homomorphic encryption. Here (as mentioned above) constructions for homomorphic evaluation
of quantum computations exist [Mah18a, Bra18]. The problem is that the mentioned non-black-box
techniques do perform state cloning. Roughly speaking, starting from the same state, they evaluate
the verifier’s computation (at least) twice: once homomorphically, under the encryption, and once in
the clear.1 An additional hurdle is proving soundness against quantum provers. Known non-black-box
techniques are sound against efficient classical provers, and often use tools that are not known in the
quantum setting, such as constant-round knowledge extraction (which is further discussed below).

Our main technical contribution is devising a non-black-box technique that copes with the above
challenges. We next explain the main ideas behind the technique.

1.2.2 Our Technique: A No-Cloning Extraction Procedure

Toward describing the technique, we restrict attention to a more specific problem. Specifically, con-
structing a constant-round post-quantum zero-knowledge protocol can be reduced to the problem of

1In fact, Barak’s technique also seems to require state cloning. Roughly speaking, the same verifier state is used once for
simulating the main verifier execution and once when computing the proof for the verifier’s computation.
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constructing constant-round quantumly-extractable commitments. We recall what such commitments
are and why they are sufficient, and then move to discuss the commitments we construct.

A quantumly-extractable commitment is a classical protocol between a sender Sen and a receiverRec.
The protocol satisfies the standard (statistical) binding and post-quantum hiding, along with a plaintext
extraction guarantee. Extraction requires that there exists an efficient quantum simulator Ext that given
any malicious sender Sen∗, represented by a polynomial-size quantum circuit, can simulate the view
of Sen∗ in the commitment protocol while extracting the committed plaintext message. Specifically,
Ext(Sen∗) outputs a classical transcript T̃ , a quantum state |ψ̃〉, and an extracted plaintext m̃ that are
computationally indistinguishable from a real transcript, state, and plaintext (T, |ψ〉,m), where T and
|ψ〉 are the transcript and sender state generated at the end of a real interaction between the receiver Rec
and sender Sen∗, andm is the plaintext fixed by the commitment transcript T .

Such commitments allow enhancing the classical four-step protocol described before to satisfy post-
quantum zero-knowledge. We simply instantiate the verifier’s commitment to the challenge β in step
(0) with a quantumly-extractable commitment. To simulate a malicious quantum verifier V∗, the zero-
knowledge simulator can then invoke the commitment simulator Ext(V∗), with V∗ acting as the sender,
to obtain a simulated commitment as well as the corresponding challenge β. Now the simulator knows
the challenge ahead of time, before producing the prover message α in step (1), and using the (simulated)
verifier state |ψ̃〉, can complete the simulation, without any state cloning. (Proving soundness is actually
tricky on its own due to malleability concerns. We remain focused on zero knowledge for now).

The challenge is of course to obtain constant-round commitments with no-cloning extraction. In-
deed, classically-extractable commitments have been long known in constant rounds under minimal
assumptions, based on rewinding (and thus state cloning) [PRS02]. We next describe our non-black-box
technique and how it enables quantum extraction without state cloning.
The Non-Black-Box Quantum Extraction Technique: A Simple Case. To describe the technique, we
first focus on a restricted class of adversarial senders that are non-aborting and explainable. The notion
of non-aborting explainable senders considers senders Sen∗ whose messages can always be explained
as a behavior of the honest (classical) sender with respect to some plaintext and randomness (finding
this explanation may be inefficient); in particular, they never abort. The notion further restricts that of
(aborting) explainable adversaries from [BKP19], which also allows aborts. To even further simplify
our exposition, we first address classical (rather than quantum) senders, but crucially, while avoiding any
form of state cloning. Later on, we shall address general quantum adversaries.

Our protocol is inspired by [BP15, BKP19] and relies on two basic tools. The first is fully-
homomorphic encryption (FHE) — an encryption scheme that allows to homomorphically apply any
polynomial-size circuitC to an encryption of x to obtain a new encryption ofC(x), proportional in size to
the result |C(x)| (the size requirement is known as compactness). The second is compute-and-compare
program obfuscation (CCO). A compute-and-compare program CC[f, s, z] is given by a function f
(represented as a circuit), a target string s in its range, and a message z; it outputs z on every input x such
that f(x) = s, and rejects all other inputs. A corresponding obfuscator compiles any such program into a
program C̃Cwith the same functionality. In terms of security, provided that the target s has high entropy
conditioned on f and z, the obfuscated program is computationally indistinguishable from a simulated
dummy program, independent of (f, s, z). Such post-quantumly-secure obfuscators are known under
QLWE [GKW17, WZ17, GKVW19].

To commit to a messagem, the protocol consists of three steps:

1. The sender Sen samples:

• two random strings s and t,
• a secret key sk for an FHE scheme,
• an FHE encryption ctt = FHE.Encsk(t) of t,
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• an obfuscation C̃C of CC[f, s, z], where z = (m, sk) and f = FHE.Decsk is the FHE
decryption circuit.

It then sends (ctt, C̃C) to the receiver R.

2. The receiver Rec sends a guess t′.

3. Sen rewards a successful guess: if t = t′, it sends back s (and otherwise ⊥).

The described commitment protocol comes close to our objective. First, it is binding — the obfuscation
C̃C uniquely determines z = (m, sk). Second, it is hiding — a receiver (even if malicious) gains no
information about the message m. To see this, we argue that no receiver sends t′ = t at the second
message, but with negligible probability. Indeed, given only the first sender message (ctt, C̃C), the
receiver obtains no information about s. Hence, we can invoke the CCO security and replace the
obfuscation C̃C with a simulated one, which is independent of the secret FHE key sk. This, in turn,
allows us to invoke the security of encryption to argue that the first message (ctt, C̃C) hides t. It follows
that the third sender message is ⊥ (rather than the target s) with overwhelming probability, which again
by CCO security implies that the entire view of the receiver can be simulated independently ofm.

Lastly, a non-black-box simulator, given the circuit representation of an explainable sender Sen∗,
can simulate the sender’s view, while extracting m. It first runs the sender to obtain the first message
(ctt, C̃C). At this point, it can use the sender’s circuit Sen∗ to continue the emulation of Sen∗ homo-
morphically under the encryption ctt. The key point is that, under the encryption, we do have t. We can
(homomorphically) feed t to the sender, and obtain an encryption cts of s. Now, the simulator feeds cts
to the obfuscation C̃C, and gets back z = (m, sk). (Note that here the compactness of FHE is crucial —
the sender Sen∗ could be of arbitrary polynomial size, whereas C̃C and thus also cts are of fixed size.)

Having extracted m, it remains to simulate the inner (for now, classical) state ψ of the sender S∗
and the full interaction transcript T . These are actually available, but in encrypted form, as a result
of the previous homomorphic computation. Here we use the fact that the extracted z also includes the
decryption key sk, allowing us to obtain the state ψ and transcript T in the clear.

An essential difference between the above extraction procedure and previous non-black-box extraction
techniques (e.g., [BP15, BKP19]) is that it does not perform any state cloning. As explained earlier,
previous procedures would perform the same computation twice, once under the encryption, and once in
the clear. Here we perform the computation once, partially in the clear, and partially homomorphically.
Crucially, we have a mechanism to peel off the encryption at the end of second part so that we do not
have to redo the computation in the clear.
Indistinguishability through Secure Function Evaluation. The described protocol does not quite
achieve our objective. The simulated interaction is, in fact, easy to distinguish from a real one. Indeed, in
a simulated interaction the simulator’s guess in the second message is t′ = t, whereas the receiver cannot
produce this value. To cope with this problem, we augment the protocol yet again, and perform the
second step under a secure function evaluation (SFE) protocol. This can be thought of as homomorphic
encryption with an additional circuit privacy guarantee, which says that the result of homomorphic
evaluation of a circuit, reveals nothing about the evaluated circuit to the decryptor, except of course from
the result of evaluation.
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The augmented protocol is similar to the previous one, except for the last two steps, now done using SFE:

1. The sender Sen samples:

• two random strings s and t,
• a secret key sk for an FHE scheme,
• an FHE encryption ctt = FHE.Encsk(t) of t,
• an obfuscation C̃C of CC[f, s, z], where z = (m, sk) and f = FHE.Decsk is the FHE
decryption circuit.

It then sends (ctt, C̃C) to the receiver Rec.

2. The receiverRec sends ct′t′ , a guess t
′ encrypted using SFE. (The honest receiver sets t′ arbitrarily.)

3. Sen homomorphically evaluates the function that given input t, returns s (and otherwise ⊥). Sen
then returns the resulting ciphertext to Rec.

The homomorphic computation done by the simulator in the new protocol is augmented accordingly —
instead of sending t and obtaining s directly, it now sends an SFE encryption of t and obtains back an SFE
encryption of s, which it can then decrypt to obtain s. Thus, as before, the homomorphic computation
results in an FHE encryption of s. Indistinguishability of the simulated sender view from the real sender
view now follows since the SFE encryption ct′t′ hides t

′. The SFE circuit privacy guarantees that the
homomorphic SFE evaluation does not leak any information about the target s, as long as the receiver
does not send an SFE encryption of t.
A Malleability Problem and its Resolution. While we could argue before that a malicious receiver
cannot output t in the clear, arguing that it does not output an SFE encryption of t is more tricky. In
particular, the receiver might be able to somehow maul the FHE encryption ctt to get an SFE encryption
ct′t of the value t, without actually “knowing” the value t. Classically, such malleability problems are
solved using extraction. If we could efficiently extract the value encrypted in the SFE encryption ct′, then
we could rely on the previous argument. However, as explained before, efficient extraction is classically
achieved using rewinding and thus state cloning. While so far we have focused on avoiding state cloning
for the sake of simulating the sender, we should also avoid state cloning when proving hiding of the
commitment as we are dealing with quantum receivers. It seems like we are back to square one.

To circumvent the problem, we rely on the fact that the hiding requirement of the commitment is
relatively modest — commitments to different plaintexts should be indistinguishable. This is in contrast
the efficient simulation requirement for the sender (needed for efficient zero knowledge simulation). Here
one commonly used solution is complexity leveraging — we can design the SFE, FHE, and CCO so
that extraction from SFE encryptions can be done in brute force, without any state cloning, and without
compromising the security of the FHE and CCO. This comes at the cost of assuming subexponential
(rather than just polynomial) hardness of the primitives in use.

A different solution, which is also the one we use in the body of the paper, relies on hardness against
efficient quantum adversaries with non-uniform quantum advice (instead of subexponential hardness).
Specifically, the receiver sends a commitment to the SFE encryption key in the beginning of the protocol.
The reduction establishing the hiding of the protocol gets as non-uniform advice the initial receiver
(quantum) state that maximizes the probability of breaking hiding, along with the corresponding SFE
key. This allows for easy extraction from SFE encryptions, without any state cloning.

The full solution contains additional steps meant to establish that the receiver’s messages are appro-
priately structured (e.g., the receiver’s commitment defines a valid SFE key, and the SFE encryption later
indeed uses that key). This is done using standard techniques based on witness-indistinguishable proofs,
which exist in a constant number of rounds [GMW86] assuming commitments with post-quantum hiding
(and in particular, QLWE).
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Dealing with QuantumAdversaries. Above, we have assumed for simplicity that the sender is classical
and have shown a simulation strategy that requires no state cloning. We now explain how the protocol is
augmented to deal with quantum senders (for now still restricting attention to non-aborting explainable
senders). The first natural requirement in order to deal with quantum senders is that the cryptographic
tools in use (e.g., SFE encryption) will be postqantum secure. This can be guaranteed assuming QLWE.

As already mentioned earlier in the introduction, post-quantum security alone is not enough — we
need to make sure that our non-black-box extraction technique can also work with quantum, rather than
classical, circuits representing the sender Sen∗. For this purpose, we use quantum fully-homomorphic
encryption (QFHE). In a QFHE scheme, the encryption and decryption keys are (classical) strings
and the encryption and decryption algorithms are classical provided that the plaintext is classical (and
otherwise quantum). Most importantly, QFHE allows to homomorphically evaluate quantum circuits.
Such QFHE schemes were recently constructed in [Mah18a, Bra18] based on QLWE and a circular
security assumption (analogous to the assumptions required for multi-key FHE in the classical setting).

The augmented protocol simply replaces the FHE schemewith aQFHEscheme (other primitives, such
as the SFE and compute-and-compare are completely classical in terms of functionality and only need to
be post-quantum secure). In the augmented protocol, the honest sender and receiver still act classically. In
contrast, the non-black-box simulator described before is now quantum— it homomorphically evaluates
the quantum sender circuit Sen∗. A technical point is that QFHE should support the evaluation of a
quantum circuit with an additional quantum auxiliary input — in our case the quantum sender Sen∗ and
its inner state after it sends the first message. This is achieved by existing QFHE schemes (for instance,
by using their public key encryption mode, and encrypting the initial state prior to the computation).
Dealing with Aborts. So far, we have dealt with explainable senders that are non-aborting. This is
indeed a strong restriction and in fact, quantumly-extractable commitments against this class of senders
can be achieved using black-box techniques (see more in the related work section). However, considering
an adversary who, with noticeable probability, may abort at some stage of the protocol, existing black-box
techniques completely fail (even if the adversary is explainable up to the abort). In contrast, as we shall
see, our non-black-box technique will enable simulation also for aborting senders.

In our protocol, an aborting sender Sen∗ may refuse to perform the SFE evaluation in the last step
of the protocol. In this case, the simulator will get stuck — the simulated transcript and sender state
|ψ〉 will remain forever locked under the encryption (since the simulator cannot use the obfuscation C̃C
to get the decryption key sk). Accordingly, the described simulator successfully simulates senders that
never abort, but fails to simulate senders that abort (noticeably often). We next observe that there is,
in fact, a non-rewinding simulation strategy also for the other extreme, namely for senders Sen∗ that
(almost) always abort. Here the simulator would simply send in the clear (rather than under FHE) an
SFE encryption ct′t′ of an arbitrary string t

′, just like the honest receiver Rec. In this case, the simulated
sender view is identical to its view in a real interaction (and since the sender Sen∗ aborts, there is no
need to extract the plaintext message).

We show that the two simulators described, Simna for never-aborting senders and Simaa for always-
aborting senders, can be combined into a simulator for general senders (which sometimes abort). This
is enabled by the fact that simulated receiver messages ct′t′ generated by the two simulators are indistin-
guishable due to the hiding of SFE encryptions. Accordingly, the sender’s choice of whether to abort or
not is (computationally) independent of whether we are simulating using the first simulator Simna or the
second Simaa. This gives rise to a combined simulator Simcomb, which flips a random coin b← {na, aa}
to predict whether an abort will occur, and then runs Simb. The combined simulator Simcomb succeeds
if it guessed correctly, which occurs with probability (negligibly close to) half.
ApplyingWatrous’ Quantum Rewinding Lemma. The above is reminiscent of the simulation strategy
in classical 3-message zero-knowledge protocols (with a large soundness error), such as the GMW 3-
coloring protocol [GMW87]. In these protocols, for each possible verifier challenge β there exists a
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non-rewinding simulator Simβ , and the combined simulator Simcomb tries to guess the challenge β and
apply the corresponding simulator. Similarly to the combined simulator in our protocol, the verifier’s
choice of challenge β is (computationally) independent of Simcomb’s guess, and thus the simulator
Simcomb succeeds in simulating with some fixed noticeable probability (specifically 2−|β|).

The advantage of such simulators (non-rewinding and successful with fixed noticeable probability)
is that they can be amplified to full-fledged simulators, both classically and quantumly. In the classical
setting, a full-fledged simulator Sim can be obtained by rerunning Simcomb until it succeeds. We can,
in fact, apply the same rerunning strategy also for quantum verifiers. However, this does not guarantee
zero knowledge against verifiers with quantum auxiliary input (since each execution of Simcomb may
disturb the verifier’s auxiliary state). To obtain zero knowledge against verifiers with quantum auxiliary
input, we apply Watrous’ quantum rewinding lemma [Wat09], which shows how to faithfully amplify the
combined simulator Simcomb in the presence of quantum auxiliary input.
From Explainable Adversaries to Malicious Ones. The only remaining gap is the assumption that
senders are explainable; that is, the messages they send (up to the point that they possibly abort), can
always be explained as messages that would be sent by the honest (classical) sender for some plaintext
and randomness. The simulator Simna (for never-aborting verifiers) crucially relies on this; in particular,
the CCO C̃C and the FHE ciphertext ctt must be formed consistently with each other for the simulator
to work. Importantly, it suffices that there exists an explanation for the messages, and we do not have to
efficiently extract it as part of the simulation;2 indeed, efficient quantum extraction is exactly the problem
we are trying to solve.

The commitment protocol against explainable senders naturally gives rise to a zero-knowledge
protocol against explainable verifiers. As is often the case in the design of zero knowledge protocols
(see discussion in [BKP19]), dealing with explainable verifiers is actually the hard part of designing
zero-knowledge protocols. Indeed, we use a generic transformation of [BKP19], slightly adapted to our
setting, which converts zero-knowledge protocols against explainable verifiers to ones against arbitrary
malicious verifiers. The transformation is based on constant-round (post-quantumly-secure) witness-
indistinguishable proofs, which as mentioned before can be obtained based on QLWE.

1.3 More Related Work on Post-Quantum Zero Knowledge

The study of post-quantum zero-knowledge (QZK) protocols was initiated by van de Graaf [VDGC97],
who first observed that traditional zero-knowledge simulation techniques, based on rewinding, fail against
quantum verifiers. Subsequent work has further explored different flavors of zero knowledge and their
limitations [Wat02], and also demonstrated that relaxed notions such as zero-knowledge with a trusted
common reference string can be achieved [Kob03, DFS04]. Later on, Peikert and Shiehian constructed
non-interactive post-quantum zero knowledge from QLWE in the common random string model [PS19].
Watrous [Wat09] was the first to show that the barriers of quantum information theory can be crossed,
demonstrating a post-quantum zero-knowledge protocol for NP in a polynomial number of rounds (in
the plain model).
Zero Knowledge for QMA. Another line of work aims at constructing quantum (rather than classical)
protocols for QMA (rather than NP). Following a sequence of works [BOCG+06, Liu06, DNS10,
DNS12, MHNF15], Broadbent, Ji, Song and Watrous [BJSW16] show a zero-knowledge quantum proof
system for all of QMA (in a polynomial number of rounds).
Quantum Proofs and Arguments of Knowledge. Extracting knowledge from quantum adversaries
was investigated in a sequence of works [Unr12, HSS11, LN11, ARU14]. A line of works considered
different variants of quantum proofs and arguments of knowledge (of the witness), proving both feasibility

2This is in contrast to other restrictions of the adversary considered in the literature, like semi-honest and semi-malicious
adversaries [GMW87, HIK+11, BGJ+13].
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results and limitations. In particular, Unruh [Unr12] shows that assuming post-quantum injective one-
way functions, some existing systems are a quantum proof of knowledge. He identifies a certain strict
soundness requirement that suffices for such an implication. Ambainis, Rosmanis and Unruh [ARU14]
give evidence that this requirement may be necessary.

Based on QLWE, Hallgren, Smith, and Song [HSS11] and Lunemann and Nielsen [LN11] show
argument of knowledge where it is also possible to simulate the prover’s state (akin to our simulation
requirement of the sender’s state). Unruh further explores arguments of knowledge in the context of
computationally binding quantum commitments [Unr16b, Unr16a]. All of the above require a polynomial
number of rounds to achieve a negligible knowledge error.
Zero-Knowledge Multi-Prover Interactive Proofs. Two recent works by Chiesa et al. [CFGS18]
and by Grilo, Slofstra, and Yuen [GSY19] show that NEXP and MIP∗, respectively, have perfect
zero-knowledge multi-prover interactive proofs (against entangled quantum provers).
Concurrent Work. Broadbent and Grilo [BG19] construct quantum sigma protocols for QMA, that is,
3-message protocols that are zero-knowledge but have large soundness error. Relying on their protocol
and our zero-knowledge protocol and extractable commitment, we obtain a conceptually simple constant-
round zero-knowledge protocol for QMA with a negligible soundness error (in a previous version of our
work, we constructed such a protocol based on earlier work of [BJSW16]). Coladangelo, Vidick, and
Zhang [CVZ19] construct non-interactive zero-knowledge arguments with preprocessing for QMA in
the common reference string model. The challenges tackled and corresponding techniques in our work
are substantially different than those in both of the above mentioned works.

Ananth and La Placa [AP] developed a non-black-box quantum extraction protocol that share some
of our ideas and is based on similar computational assumptions. They used it to obtain quantum
zero-knowledge, but only against explainable non-aborting verifiers.
AWord on Strict Commitments and Non-Aborting Verifiers. In [Unr12], Unruh introduces a notion
of strict commitments, which are commitments that fix not only the plaintext, but also the randomness
(e.g. Blum-Micali [BM84]), and are known to exist based on injective one-way functions. As mentioned
in our technical overview, using such commitments it is possible to obtain zero-knowledge in constant
rounds against non-aborting explainable verifiers through the GK four-step template we discussed in the
overview. Roughly speaking, this is because when considering verifiers that always open their (strict)
commitments, we are assured that measuring their answer does not disturb the verifier state, as this
answer is information-theoretically fixed. This effectively allows to perform rewinding.

2 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:

• A PPT algorithm is a probabilistic polynomial-time Turing machine.

• We sometimes think about PPT algorithms as polynomial-size uniform families of circuits, these
are equivalent models. A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N,
such that each circuit Cλ is of polynomial size λO(1). We say that the family is uniform if there
exists a deterministic polynomial-time algorithmM that on input 1λ outputs Cλ.

• For a PPT algorithmM , we denote byM(x; r) the output ofM on input x and random coins r.
For such an algorithm and any input x, we write m ∈ M(x) to denote the fact that m is in the
support ofM(x; ·).

We follow standard notions from quantum computation.
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• A QPT algorithm is a quantum polynomial-time Turing machine.

• We sometimes think about QPT algorithms as polynomial-size uniform families of quantum
circuits, these are equivalent models. A polynomial-size quantum circuit family C is a sequence of
quantum circuits C = {Cλ}λ∈N, such that each circuit Cλ is of polynomial size λO(1). We say that
the family is uniform if there exists a deterministic polynomial-time algorithmM that on input 1λ

outputs Cλ.

• An interactive algorithmM , in a two-party setting, has input divided into two registers and output
divided into two registers. For the input, one register Im is for an input message from the other
party, and a second register Ia is an auxiliary input that acts as an inner state of the party. For the
output, one register Om is for a message to be sent to the other party, and another register Oa is
again for auxiliary output that acts again as an inner state. For a quantum interactive algorithmM ,
both input and output registers are quantum.

The Adversarial Model. Throughout, efficient adversaries are modeled as quantum circuits with
non-uniform quantum advice (i.e. quantum auxiliary input). Formally, a polynomial-size adversary
A∗ = {A∗λ, ρλ}λ∈N, consists of a polynomial-size non-uniform sequence of quantum circuits {A∗λ}λ∈N,
and a sequence of polynomial-size mixed quantum states {ρλ}λ∈N.

For an interactive quantum adversary in a classical protocol, it can be assumed without the loss
of generality that its output message register (the register containing the message to be sent to the
other side, not the register containing output quantum auxiliary information) is always measured in the
computational basis at the end of computation. This assumption is indeed without the loss of generality,
because whenever a quantum state is sent through a classical channel then qubits decohere and are
effectively measured in the computational basis.
Indistinguishability in the Quantum Setting.

• Let f : N→ [0, 1] be a function.

– f is negligible if for every constant c ∈ N there exists N ∈ N such that for all n > N ,
f(n) < n−c.

– f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N , f(n) ≥ n−c.
– f is overwhelming if it is in the form 1− µ(n), for a negligible function µ.

• We may consider random variables over bit strings or over quantum states. This will be clear from
the context.

• For two random variablesX and Y supported on quantum states, quantum distinguisher circuit D
with, quantum auxiliary input ρ, and µ ∈ [0, 1], we write X ≈D,ρ,µ Y if

|Pr[D(X; ρ) = 1]− Pr[D(Y ; ρ) = 1]| ≤ µ.

• Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ over the same set of
indices I = ·∪λ∈NIλ are said to be computationally indistinguishable, denoted by X ≈c Y , if for
every polynomial-size quantum distinguisher D = {Dλ, ρλ}λ∈N there exists a negligible function
µ(·) such that for all λ ∈ N, i ∈ Iλ,

Xi ≈Dλ,ρλ,µ(λ) Yi .
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• The trace distance between two distributions X,Y supported over quantum states, denoted
TD(X,Y ), is a generalization of statistical distance to the quantum setting and represents the
maximal distinguishing advantage between two distributions supported over quantum states, by un-
bounded quantum algorithms. We thus say that ensemblesX = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ ,
supported over quantum states, are statistically indistinguishable (and write X ≈s Y), if there
exists a negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

TD (Xi, Yi) ≤ µ(λ) .

In what follows, we introduce the cryptographic tools used in this work. By default, all algorithms are
classical and efficient unless stated otherwise, and security holds against polynomial-size non-uniform
quantum adversaries with quantum advice.

2.1 Interactive Protocols, Witness Indistinguishability, and Zero Knowledge

We define proof and argument systems that are secure against quantum adversaries. We start with
classical protocols and proceed to define quantum protocols. In what follows, we denote by (P,V) a
protocol between two parties P and V. For common input x, we denote byOUTV〈P,V〉(x) the output of
V in the protocol. For honest verifiers, this output will be a single bit indicating acceptance or rejection of
the proof. Malicious quantum verifiers may have arbitrary quantum output (which is formally captured
by the verifier outputting its inner quantum state).

Definition 2.1 (Classical Proof and Argument Systems for NP). Let (P,V) be a protocol with an honest
PPT prover P and an honest PPT verifier V for a language L ∈ NP, satisfying:

1. Perfect Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x),

Pr[OUTV〈P(w),V〉(x) = 1] = 1 .

2. Soundness: The protocol satisfies one of the following.

• Computational Soundness: For any quantum polynomial-size prover P∗ = {P∗λ, ρλ}λ∈N,
there exists a negligible function µ(·) such that for any security parameter λ ∈ N and any
x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗λ(ρλ),V〉(x) = 1] ≤ µ(λ) .

A protocol with computational soundness is called an argument.
• Statistical Soundness: There exists a negligible function µ(·), such that for any (unbounded)
prover P∗, any security parameter λ ∈ N, and any x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗,V〉(x) = 1] ≤ µ(λ) .

A protocol with statistical soundness is called a proof.

Definition 2.2 (Quantum Proof and Argument Systems for QMA). Let (P,V) be a quantum protocol
with an honest QPT prover P and an honest QPT verifier V for a language L ∈ QMA, satisfying:

1. Statistical Completeness: There is a polynomial k(·) and a negligible function µ(·) s.t. for any
λ ∈ N,x ∈ L ∩ {0, 1}λ, w ∈ RL(x)3,

Pr[OUTV〈P(w⊗k(λ)),V〉(x) = 1] ≥ 1− µ(λ) .

2. Soundness: As in Definition 2.1.
3For a language L in QMA, for an instance x ∈ L in the language, the set RL(x) is the (possily infinite) set of quantum

witnesses that make the BQP verification machine accept with some overwhelming probability 1− negl(λ).
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2.1.1 Witness Indistinguishability

We rely on classical constant-round (public-coin) proof systems for NP that are witness-indistinguishable;
that is, proofs that use different witnesses (for the same statement) are computationally indistinguishable
(for quantum attackers).

Definition 2.3 (WI Proof System for NP). A classical protocol proof system (P,V) for a language
L ∈ NP (as in Definition 2.1) is witness-indistinguishable if it satisfies:
Witness Indistinguishability: For every quantum polynomial-size verifier V∗ = {V∗λ, ρλ}λ,

{OUTV∗λ
〈P(w0),V

∗
λ(ρλ)〉(x)}λ,x,w0,w1 ≈c {OUTV∗λ

〈P(w1),V
∗
λ(ρλ)〉(x)}λ,x,w0,w1 ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w0, w1 ∈ RL(x) are witnesses for x.

Instantiations. 3-message, public-coin classical proof systems with WI follow from classical zero-
knowledge proof systems such as the parallel repetition of the 3-coloring protocol [GMW91], which is
in turn based on non-interactive perfectly-binding commitments. For the proof system to be WI against
quantum attacks, we need the non-interactive commitments to be computationally hiding against quantum
adversaries, which can be instantiated for example from QLWE.

2.1.2 Sigma Protocols

We use the abstraction of Sigma Protocols, which are public-coin three-message proof systems with a
special zero knowledge guarantee. We define both classical and quantum Sigma Protocols.

Definition 2.4 (Classical Sigma Protocol for NP). A classical sigma protocol for L ∈ NP is a classical
proof system (Σ.P,Σ.V) (as in Definition 2.1) with 3 messages and the following syntax.

• (α, τ) ← Σ.P1(x,w) : Given an instance x ∈ L and a witness w ∈ RL(x), the first prover
execution outputs a public message α for Σ.V and a private inner state τ .

• β ← Σ.V(x) : The verifier simply outputs a string of poly(|x|) random bits.

• γ ← Σ.P3(β, τ) :Given the verifier’s string β and the private state τ , the prover outputs a response
γ.

The protocol satisfies the following.
Special Zero-Knowledge: There exists a PPT simulator Σ.S such that,

{(α, γ) | (α, τ)← Σ.P1(x,w), γ ← Σ.P3(β, τ)}λ,x,w,β ≈c {(α, γ) | (α, γ)← Σ.S(x, β)}λ,x,w,β ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x) and β ∈ {0, 1}poly(λ).

The next claim follows directly from the special zero-knowledge requirement, andwill be used throughout.

Claim 2.1 (First-Message Indistinguishability, [BKP18], Claim 8.1). In every Σ protocol:

{α | (α, τ)← Σ.P1(x,w)}λ,x,w,β ≈c
{
α | (α, γ)← Σ.S(x, 0|β|)

}
λ,x,w,β

,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x) and β ∈ {0, 1}poly(λ).

Instantiations. Like witness-indistinguishable proofs, Sigma protocols are known to follow from the
parallel repetition of the 3-coloring protocol [GMW91]. For the protocol to have special zero knowledge
against quantum attacks, we need the non-interactive commitment α to be computationally hiding against
quantum adversaries, which can be instantiated for example from QLWE.
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Definition 2.5 (Quantum Sigma Protocol for QMA). A quantum sigma protocol for L ∈ QMA is a
quantum proof system (Ξ.P,Ξ.V) (as in Definition 2.2) with 3 messages and the following syntax.

• (α, τ) ← Ξ.P1(x,w
⊗k(λ)) : Given an instance x ∈ L ∩ {0, 1}λ and k(λ) witnesses w ∈ RL(x)

(for a polynomial k(·)), the first prover execution outputs a public message α for Ξ.V and a private
inner state τ .

• β ← Ξ.V(x) : The verifier simply outputs a string of poly(|x|) random bits.

• γ ← Ξ.P3(β, τ) :Given the verifier’s string β and the private state τ , the prover outputs a response
γ.

The protocol satisfies the following.
Special Zero-Knowledge: There exists a QPT simulator Ξ.Sim such that,{

(α, γ) | (α, τ)← Ξ.P1(x,w
⊗k(λ)), γ ← Ξ.P3(β, τ)

}
λ,x,w,β

≈c {(α, γ) | (α, γ)← Ξ.Sim(x, β)}λ,x,w,β ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x) and β ∈ {0, 1}poly(λ).

Instantiations. Quantum sigma protocols follow from the parallel repetition of the 3-message quantum
zero-knowledge protocols of [BG19] for QMA4.

2.1.3 Quantum Zero-Knowledge Protocols

Wenext define post-quantum zero-knowledge classical protocols and zero-knowledge quantum protocols.

Definition 2.6 (Post-Quantum Zero-Knowledge Classical Protocol). Let (P,V) be a classical protocol
(argument or proof) for a languageL ∈ NP as in Definition 2.1. The protocol is quantum zero-knowledge
if it satisfies:
Quantum Zero Knowledge: There exists a quantum polynomial-time simulator Sim, such that for any
quantum polynomial-size verifier V∗ = {V∗λ, ρλ}λ∈N,

{OUTV∗λ
〈P(w),V∗λ(ρλ)〉(x)}λ,x,w ≈c {Sim(x,V∗λ, ρλ)}λ,x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x).

• If V∗ is a classical circuit, then the simulator is computable by a classical polynomial-time
algorithm.

Definition 2.7 (Zero-Knowledge Quantum Protocol). Let (P,V) be a quantum protocol (argument or
proof) for a language L ∈ QMA as in Definition 2.2, where the prover uses k(λ) copies of a witness.
The protocol is quantum zero-knowledge if it satisfies:
Quantum Zero Knowledge: There exists a quantum polynomial-time simulator Sim, such that for any
quantum polynomial-size verifier V∗ = {V∗λ, ρλ}λ∈N,

{OUTV∗λ
〈P(w⊗k(λ)),V∗λ(ρλ)〉(x)}λ,x,w ≈c {Sim(x,V∗λ, ρλ)}λ,x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x).
4The authors in [BG19] use the name "sigma protocols" differently then in this work. Specifically, [BG19] call their

3-message protocols, that are zero-knowledge but have large soundness error, "sigma protocols". In this work we call the
parallel repetition of such protocols (which have amplified soundness but weakened zero knowledge) "sigma protocols".
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2.2 Additional Tools

2.2.1 Compute-and-Compare Obfuscation

We define compute-and-compare (CC) circuits and obfuscators for CC circuits.

Definition 2.8 (Compute-and-Compare Circuit). Let f : {0, 1}n → {0, 1}λ be a circuit, and let u ∈
{0, 1}λ, z ∈ {0, 1}∗ be strings. Then CC[f, u, z](x) is a circuit that returns z if f(x) = y, and ⊥
otherwise. CC[f, u, z] has a canonical description from which f , u, and z can be read.

We now define compute-and-compare (CC) obfuscators (with perfect correctness). In what follows
Obf is a PPT algorithm that takes as input a CC circuit CC[f, u, z] and outputs a new circuit C̃C.

Definition 2.9 (CCobfuscator). APPTalgorithmObf is a compute-and-compare obfuscator if it satisfies:

1. Perfect Correctness: For any circuit f : {0, 1}n → {0, 1}λ, u ∈ {0, 1}λ and z ∈ {0, 1}∗,

Pr
[
∀x ∈ {0, 1}n : C̃C(x) = CC[f, u, z](x)

∣∣∣ C̃C← Obf(CC[f, u, z])
]

= 1 .

2. Simulation: There exists a PPT simulator Sim such that for every two polynomials `1(·), `2(·),

{C̃C | u← {0, 1}λ, C̃C← Obf(CC[f, u, z])}λ,f,z ≈c {Sim(1`1(λ), 1`2(λ), 1λ)}λ,f,z ,

where λ ∈ N, f : {0, 1}n → {0, 1}λ is a `1(λ)-size circuit, z ∈ {0, 1}`2(λ).

Instantiations. Compute-and-compare obfuscators with almost-perfect correctness are constructed in
[GKW17, WZ17] based on QLWE. CC obfuscators with perfect correctness are constructed [GKVW19]
by Goyal, Koppula, Vusirikala and Waters, also based on QLWE.

2.2.2 Non-Interactive Commitments

We define non-interactive commitment schemes.

Definition 2.10 (Non-Interactive Commitment). A non-interactive commitment scheme is given by a
PPT algorithm Com(·) with the following syntax:

• cmt ← Com(1λ, x) : A randomized algorithm that takes as input a security parameter 1λ and
input x ∈ {0, 1}∗, and outputs a commitment cmt.

The commitment algorithm satisfies:

1. PerfectBinding: For anyλ0, λ1 ∈ N,x0, x1, r0, r1 ∈ {0, 1}∗,Com(1λ0 , x0; r0) = Com(1λ1 , x1; r1)
implies x0 = x1.

2. Computational Hiding: For any polynomial `(·),

{Com(1λ, x0)}λ,x0,x1 ≈c {Com(1λ, x1)}λ,x0,x1 ,

where λ ∈ N, x0, x1 ∈ {0, 1}`(λ).

Instantiations. The above non-interactive commitments are known based on various standard assump-
tions, including QLWE [GHKW17, LS19].
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2.2.3 Quantum Fully Homomorphic Encryption

We rely on quantum fully homomorphic encryption, specifically, a scheme where a classical input can
be encrypted classically and a quantum input quantumly. The formal definition follows.

Definition 2.11 (Quantum Fully-Homomorphic Encryption). A quantum fully homomorphic encryp-
tion scheme is given by six algorithms (QHE.Keygen, QHE.Enc, QHE.QEnc, QHE.Dec, QHE.QDec,
QHE.Eval) with the following syntax:

• (pk, sk) ← QHE.Keygen(1λ) : A PPT algorithm that given a security parameter 1λ, samples a
classical public key pk and a classical secret key sk.

• ct ← QHE.Encpk(x) : A PPT algorithm that takes as input a classical string x ∈ {0, 1}∗ and
outputs a classical ciphertext ct.

• |φ〉 ← QHE.QEncpk(|ψ〉) : A QPT algorithm that takes as input a quantum state |ψ〉 and outputs
a quantum ciphertext |φ〉.

• x← QHE.Decsk(ct) : A PPT algorithm that takes as input a classical ciphertext ct and outputs a
string x.

• |ψ〉 ← QHE.QDecsk(|φ〉) : A QPT algorithm that takes as input a quantum ciphertext |φ〉 and
outputs a quantum state |ψ〉.

• |φ̂〉 ← QHE.Evalpk(C, ct, |φ〉) : A QPT algorithm that takes as input a general quantum circuitC,
a classical ciphertext ct and a quantm ciphertext |φ〉 and outputs an evaluated quantum ciphertext
|φ̂〉

The scheme satisfies the following.

• Quantum Semantic Security: For every polynomial `(·),(ct, |φ〉)

∣∣∣∣∣∣
(pk, sk)← QHE.Keygen(1λ),
ct← QHE.Encpk(x0),
|φ〉 ← QHE.QEncpk(|ψ0〉)


λ,x0,|ψ0〉,x1,|ψ1〉

≈c

(ct, |φ〉)

∣∣∣∣∣∣
(pk, sk)← QHE.Keygen(1λ),
ct← QHE.Encpk(x1),
|φ〉 ← QHE.QEncpk(|ψ1〉)


λ,x0,|ψ0〉,x1,|ψ1〉

,

where λ ∈ N, x0, x1 ∈ {0, 1}`(λ) and |ψ0〉, |ψ1〉 are `(λ)-qubit states.

• Compactness: There exists a polynomial poly(·) s.t. for every quantum circuit C with ` output
qubits and an enryption of an input forC, the output size of the evaluation algorithm is ` ·poly(λ),
where λ is the security parameter of the scheme.

• Measurement-Preserving Homomorphism: For every polynomial s(·) there exists a neligible
function negl(·) such that for every λ ∈ N, size-s(λ) quantum circuitC, input (x, |ψ〉) forC which
is comprised of a classical string x and quantum state |ψ〉, subset M of the output qubits of C,
public and secret key pair (pk, sk) ∈ QHE.Keygen(1λ) and randomness strings (rx, r|ψ〉):

TD (D0, D1) ≤ negl(λ) ,

where D0, D1 are the distributions which are defined as follows:
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– D0 : Compute |ψ′〉 ← C (x, |ψ〉), measure the subset of qubits of |ψ′〉 which are inM and
output the obtained state.

– D1 :

∗ Encrypt ct = QHE.Encpk(x; rx), |φ〉 = QHE.QEncpk(|ψ〉; r|ψ〉).
∗ Evaluate |φ̂〉 ← QHE.Evalpk(C, ct, |φ〉).
∗ Measure the |M | packets of qubits that correspond to the output qubits in M (by

compactness, each packet is exactly of size poly(λ)).
∗ Decrypt the measured |M | packets withQHE.Decsk(·), and decrypt the rest of the qubits

with QHE.QDecsk(·). Output the obtained state.

Instantiations. Mahadev [Mah18a] shows how to build quantum FHE based on super-polynomial
QLWE modulus and a circular security assumption with respect to a secret key and an additional
trapdoor information. Brakerski [Bra18] subsequently shows how to construct quantum FHE based on
polynomial QLWE modulus and a circular security assumption (analogous to the assumptions required
for multi-key FHE in the classical setting). The above definition is more specific then the standard
definition of QFHE. Specifically, measurement-preservation and (statistical) correctness for every triplet
(pk, sk, r) of public and secret keys and randomness r for the encryption algorithm, is not an explicit
part of the standard definition. The construction of Brakerski satisfies this more general definition. This
follows readily from the main Theorem (4.1) in [Bra18].

2.2.4 Function-Hiding Secure Function Evaluation

We define two-message function evaluation protocols with statistical circuit privacy and quantum input
privacy.

Definition 2.12 (2-Message Function Hiding SFE). A two-message secure function evaluation protocol
(SFE.Gen, SFE.Enc, SFE.Eval, SFE.Dec) has the following syntax:

• dk ← SFE.Gen(1λ) : a probabilistic algorithm that takes a security parameter 1λ and outputs a
secret key dk.

• ct ← SFE.Encdk(x) : a probabilistic algorithm that takes a string x ∈ {0, 1}∗, and outputs a
ciphertext ct.

• ĉt← SFE.Eval(C, ct) : a probabilistic algorithm that takes a (classical) circuitC and a ciphertext
ct and outputs an evaluated ciphertext ĉt.

• x̂ = SFE.Decdk(ĉt) : a deterministic algorithm that takes a ciphertext ĉt and outputs a string x̂.

The scheme satisfies the following.

• Perfect Correctness: For any polynomial s(·), for any λ ∈ N, size-s(λ) circuit C and input x for
C,

Pr

SFE.Decdk(ĉt) = C(x)

∣∣∣∣∣∣
dk← SFE.Gen(1λ),
ct← SFE.Encdk(x),
ĉt← SFE.Eval(C, ct)

 = 1 .

• Quantum Input Privacy: For every polynomial `(·),{
ct

∣∣∣∣ dk← SFE.Gen(1λ),
ct← SFE.Encdk(x0)

}
λ,x0,x1

≈c
{
ct

∣∣∣∣ dk← SFE.Gen(1λ),
ct← SFE.Encdk(x1)

}
λ,x0,x1

,

where λ ∈ N and x0, x1 ∈ {0, 1}`(λ).
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• Statistical Circuit Privacy: There exist unbounded algorithms, probabilistic Sim and determin-
istic Ext such that:

– For every x ∈ {0, 1}∗, ct ∈ SFE.Enc(x), the extractor outputs Ext(ct) = x.
– For any polynomial s(·),

{SFE.Eval(C, ct∗)}λ,C,ct∗ ≈s {Sim( 1λ, C(Ext(1λ, ct∗)) )}λ,C,ct∗ ,

where λ ∈ N, C is a s(λ)-size circuit, and ct∗ ∈ {0, 1}∗.

The next claim follows directly from the circuit privacy property, andwill be used throughout the analysis.

Claim 2.2 (Evaluations of Agreeing Circuits are Statistically Close). For any polynomial s(·),

{SFE.Eval(C0, ct
∗)}λ,C0,C1,ct ≈s {SFE.Eval(C1, ct

∗)}λ,C0,C1,ct ,

where λ ∈ N, C0, C1 are two s(λ)-size functionally-equivalent circuits, and ct∗ ∈ {0, 1}∗.

Instantiations. Such secure function evaluation schemes are known based onQLWE [OPCPC14, BD18].

2.2.5 Quantum Rewinding Lemma

We use Lemma 9 from [Wat09], which constructs a quantum algorithm for amplifying the success
probability of quantum sampler circuits under some conditions.

Lemma 2.1 (Lemma 9, [Wat09]). There is a quantum algorithm R that gets as input:

• A general quantum circuit Q with n input qubits that outputs a classical bit b and an additionalm
output qubits.

• An n-qubit state |ψ〉.

• A number t ∈ N.

R executes in time t · poly(|Q|) and outputs a distribution overm-qubit states Dψ := R(Q, |ψ〉, t) with
the following guarantees.

For an n-qubit state |ψ〉, denote byQψ the conditional distribution of the output distributionQ(|ψ〉),
conditioned on b = 0, and denote by p(ψ) the probability that b = 0. If there exist p0, q ∈ (0, 1),
ε ∈

(
0, 12
)
such that:

• Amplification executes for enough time: t ≥ log(1/ε)
4·p0(1−p0) ,

• There is some minimal probability that b = 0: For every n-qubit state |ψ〉, p0 ≤ p(ψ),

• p(ψ) is input-independant, up to ε distance: For every n-qubit state |ψ〉, |p(ψ)− q| < ε, and

• q is closer to 1
2 : p0(1− p0) ≤ q(1− q),

then for every n-qubit state |ψ〉,

TD
(
Qψ, Dψ

)
≤ 4
√
ε

log(1/ε)

p0(1− p0)
.

The exact wording in the Lemma from [Wat09] differs from the above in two manners. First, the
original lemma states that for each circuit Q there exists an amplified circuit Q′, but actually the proof
of the Lemma proves that there is an algorithm R that on input Q, executes an amplified version of Q
(and thus the circuit implementation of R(Q) can be thought of as Q′). Second, the original lemma
deals with unitary quantum circuits i.e. Q contains no measurement gates. By standard quantum circuit
purification, it follows that the above formulation is equivalent to the analogous statement that includes
only unitary circuits.
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3 Constant-Round Zero-Knowledge Arguments for NP

In this section we construct a classical argument system for an arbitrary NP language L, with a constant
number of rounds, quantum soundness and quantum zero-knowledge (according to Definition 2.6).
Ingredients and notation:

• A non-interactive commitment scheme Com.

• A CC obfuscator Obf.

• Aquantum fully homomorphic encryption scheme (QHE.Keygen,QHE.Enc,QHE.QEnc,QHE.Dec,
QHE.QDec,QHE.Eval).

• A 2-message function-hiding secure function evaluation scheme (SFE.Gen, SFE.Enc, SFE.Eval,
SFE.Dec).

• A 3-message WI proof (WI.P,WI.V) for L ∈ NP.

• A 3-message sigma protocol (Σ.P,Σ.V) for L ∈ NP.

We describe the protocol in Figure 1.

3.1 Quantum Soundness

Proposition 3.1 (The Protocol is Sound). Let V be the verifier from Protocol 1. For any quantum
polynomial-size prover P∗ = {P∗λ, ρλ}λ∈N, there exists a negligible function µ(·) such that for any
security parameter λ ∈ N and any x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗λ(ρλ),V〉(x) = 1] ≤ µ(λ) .

Proof. Let P∗ = {P∗λ, ρλ}λ∈N a polynomial-size quantum prover and let x = {xλ}λ∈N be a sequence
such that ∀λ ∈ N : xλ ∈ {0, 1}λ \ L. We prove soundness by a hybrid argument. We consider a series
of hybrid processes with output over {0, 1}, starting from OUTV〈P∗(ρ),V〉(x) the output distribution
of V in the interaction with P∗. The proof will show that the probability to output 1 is negligible, which
proves the soundness of the protocol.

We assume without the loss of generality that the first prover message is deterministic, and that the
commitments cmt1, cmt2 it sends are both valid commitments and furthermore, there is some SFE secret
key dk ∈ SFE.Gen(1λ) such that cmt2 ∈ Com(1λ, dk). First note that if the above property is false,
then the whole WI statement of the prover is false (because the first statement in P∗’s OR statement, that
claims x ∈ L, is always false in the case of a cheating prover).

This assumption is without the loss of generality because we can consider a new prover that chooses
the first message (and quantum inner state at the end of this message) as the message that maximizes the
probability that V outputs 1. If this message is such that cmt1, cmt2 are not consistent with the prover’s
WI statement, then by the soundness of the proof that P∗ gives, with overwhelming probability V outputs
0 and soundness already holds.

As a final note, observe that because cmt1, cmt2 are consistent with the prover’s WI statement,
cmt1 is necessarily a commitment to a non-witness u /∈ RL(x), and denote by ru a string s.t. cmt1 =
Com(1λ, u; ru).

Define the following hybrid distributions.

• Hyb0 : The output distribution of OUTV〈P∗(ρ),V〉(x).
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• Hyb1 : This hybrid process is identical to Hyb0, with the exception that in step 4 (verifier WI), V
uses the information (u, ru) as witness for its WI statement, instead of the witness that shows its
transcript is explainable.

• Hyb2 : This hybrid process is identical to Hyb1, with the exception that V obtains dk, and when
it gets the prover message ctP in step 2c, it performs the following check: If t = SFE.Decdk(ctP)
then the process halts and outputs ⊥, otherwise the interaction carries on regularly.

• Hyb3 : This hybrid process is identical to Hyb2, except that in step 2d when the verifier responds
with an SFE evaluation, instead of performing an SFE evaluation of CC[Id(·), t, s], the verifier
performs an SFE evaluation of C⊥, a circuit that always outputs ⊥.

• Hyb4 : This hybrid process is identical to Hyb3, except that the verifier does not perform the check
at step 2c like described in Hyb2.

• Hyb5 : This hybrid process is identical to Hyb4, except that in step 2b where V sends its first
message, the reward value of the CC program C̃C it uses is (r, 0|β|) instead of (r, β).

We now explain why each consecutive pair of the distributions above are statistically indistinguishable
(recall that for a pair of distributions over a single bit, they are statistically indistinguishable iff they are
computationally indistinguishable). We will then use the last process Hyb5 to show that soundness
follows from the soundness of the sigma protocol (Σ.P,Σ.V).

• Hyb0 ≈s Hyb1 : Follows from the witness indistinguishability property of the WI proof that the
verifier gives.

• Hyb1 ≈s Hyb2 : Follows from Claim 3.1, which says that the probability that ctP is an encryption
of (the correct) t with the secret key dk (that is inside cmt2) is negligible, and thus the erasure of
such cases can’t be noticed by a distinguisher.

• Hyb2 ≈s Hyb3 : As a basic explanation, this indistinguishability follows from the combination of
the circuit privacy property of the SFE and the soundness of the WI proof that P∗ gives.
As a fuller explanation, assume toward contradiction there’s a distinguisher D∗ that tells the
difference between the two distributions, and by an averaging argument, consider the transcript
(and inner quantum state of P∗) generated at the end of step 2c (where P∗ sends ctP), which
maximizes D∗’s distinguisability adventage - other than the prover’s ciphertext ctP, this transcript
fixes t, s, which in turn fix the circuit CC

[
Id(·), t, s

]
. We now consider three cases, and explain

why we get a contradiction in each of them.

1. ctP ∈ SFE.Encdk(t): In this case, no matter what will be generated next in the transcript,
the output will be⊥ (by the check described in Hyb2), thus it is impossible to distinguish the
outputs of the two processes and we get a contradiction.

2. ∃y ∈ {0, 1}λ \ {t} s.t. ctP ∈ SFE.Encdk(y): In this case, ⊥ = CC
[
Id(·), t, s

]
(y) and thus

we get a contradiction by using the circuit privacy property of the SFE.
3. Else: In that case, either ctP is a ciphertext encrypted with some other SFE key dk′, or it is

not a valid ciphertext at all and in any case, it is not a valid ciphertext encrypted with the
secret key dk. In that case, the WI statement of the prover is necessarily false, and thus a 1
output happens with at most negligible probability in both cases (by the soundness of the WI
proof of P∗), thus the statistical distance between them is at most negligible, in contradiction.

• Hyb3 ≈s Hyb4 : Follows from the same reasoning as in the indistinguishability Hyb1 ≈s Hyb2.
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• Hyb4 ≈s Hyb5 :Follows from the simulation property (obfuscation security) of the CCobfuscation
scheme.

Now, assume toward contradiction thatP∗ succeeds inmaking the verifier acceptwith some noticeable
probability ε(λ), that is, the probability for the output 1 in Hyb0 is noticeable. Hyb0 ≈s Hyb5, and
thus the probability for the output 1 in Hyb5 is also noticeable. Finally, we get a contradiction to the
soundness of the sigma protocol (Σ.P,Σ.V), by using the prover sigma protocol messages from steps
3a, 6 as messages to convince a sigma protocol verifier Σ.V. Since the probability that the verifier V is
convinced in Hyb5 is noticeable, and such verifier is convinced if and only if the sigma protocol verifier
is convinced, we get our contradiction.

Claim 3.1 (Producing an SFE Encryption of t with dk is Hard). Let P∗ = {P∗λ, ρλ}λ∈N be a quantum
polynomial-size prover in Protocol 1, sending a deterministic first message cmt1, cmt2 where there exists
dk ∈ SFE.Gen(1λ) s.t. cmt2 ∈ Com(1λ, dk). Then there exists a negligible function µ(·) such that the
probability that t = SFE.Decdk(ctP) is bounded by µ(λ).

Proof. The proof will be based on the security of the QFHE, and on the security of the CC obfuscation.
We start with observing that the security of the QFHE implies that for every efficient quantum adversary
A∗ = {A∗λ, ρλ}λ∈N, there’s a negligible function µ(·) s.t. the probability that A∗ finds t given pk, ct ←
QHE.Encpk(t) for a uniformly random t ← {0, 1}λ, is bounded by µ(λ) - we will assume toward
contradiction that our claim is false, that is, we assume that P∗ sends ctP s.t. t = SFE.Decdk(ctP) with
noticeable probability (for infinitely many security parameters), and get a contradiction with the last
claim about the hardness of finding a random encrypted t.

Using P∗ and the fact that t = SFE.Decdk(ctP) with noticeable probability, we now describe a
(non-uniform) algorithm A∗ that finds t given pk, ct ← QHE.Encpk(t) for t ← {0, 1}λ and thus breaks
the security of the QFHE. As part of the non-uniform advice of A∗, it will have the secret SFE key dk,
which is fixed. Given pk, ct← QHE.Encpk(t), the algorithm A∗ will use the simulator SimCC (from the
simulation property of the CC obfuscation) and send to P∗ the following, as the protocol message sent at
step 2b,

pk, ct, SimCC(1|QHE.Dec|, 1`+|β|, 1λ) ,

where ` is the randomness complexity of the QFHE key generation algorithm QHE.Keygen. P∗ will
respond with ctP, and A∗ uses dk to output SFE.Decdk(ctP).

We nowuse the simulation property guarantee of the CCobfuscation: Note that the probability thatP∗
outputs ctP s.t. SFE.Decdk(ctP) = t in the simulated setting, whereA∗ sendsSimCC(1|QHE.Dec

0|sk| |, 1|sk|+|β|, 1λ)

instead of C̃C, is negligibly close to the probability that it outputs ctP s.t. SFE.Decdk(ctP) = t in the
regular setting where it gets C̃C - this is due to the security of the CC obfuscator. Because we know
that in the regular interaction, P∗ sends ctP s.t. t = SFE.Decdk(ctP) with a noticeable probability, this
implies that so does A∗, in contradiction.

3.2 Quantum Zero-Knowledge

We construct a quantum polynomial-time universal simulator Sim that for a quantum verifier V∗, an
arbitrary quantum auxiliary input ρ and an instance in the language x ∈ L, simulates the output
distribution of the verifier after the real interaction, OUTV∗〈P,V∗(ρ)〉(x). Throughout this section, a
malicious verifier V∗ is modeled as a family of non-uniform quantum circuits with auxiliary quantum
input, consistently with the rest of the paper.
High-Level Description of Simulation. Our simulation is composed as follows. We first describe two
simulators, Sima and Simna that try to simulate different types of transcripts, specifically, Sima will try to
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simulate an aborting interaction, and Simna will try to simulate a non-aborting interaction. By "aborting
interaction" and "non-aborting interaction" we formally mean the following:

• An aborting interaction is one where the verifier V∗ either aborts before the end of step 5 (prover
WI), or fails to prove its WI statement in step 4.

• A non-aborting interaction is one that is not aborting. More precisely, a non-aborting interaction
is one where the verifier did not abort before the end of step 5 (prover WI), and also succeeded in
proving its WI statement in step 4.

Our next step will be to describe a unified simulator Simcomb that randomly chooses b ← {a, na}
and then uses Simb to simulate the interaction. We will prove that on input (x,V∗, ρ), Simcomb outputs a
quantum state that is computationally indistinguishable from OUTV∗〈P,V∗(ρ)〉(x), with the following
exception: Simcomb outputs a quantum state ÕUT that indistinguishable from the real verifier output
OUTV∗〈P,V∗(ρ)〉(x) conditioned on ÕUT 6= Fail. Furthermore ÕUT 6= Fail with probability
negligibly close to 1/2. In other words, Simcomb is going to succeed simulating only with probability
(negligibly close to) 1

2 .
We further show that Simcomb satisfies the required conditions for applying Watrous’ quantum

rewinding lemma so that the success probability can be amplified from ≈ 1/2 to ≈ 1.
The Actual Proof. We start by describing the above mentioned simulators.

Sima(x,V
∗, ρ) :

1. Simulation of Initial Commitments and Verifier Message:

(a) Sima computesdk← SFE.Gen(1λ) and sends toV∗ the commitments cmt1 ← Com(1λ, 0|w|),
cmt2 ← Com(1λ, dk).

(b) V∗ sends pk, ctV∗ , C̃C.

2. Trying to get an Abort: Sima interacts with V∗ as the honest prover P until the end of step 5 of
the original protocol, with exactly 2 differences:

• The message α at step 3a is generated by the sigma protocol simulator α ← Σ.S(x, 0|β|),
and not by the sigma protocol prover.

• At step 5, the witness used to prove the WI statement is for the second statement in the OR
expression (that the commitments cmt1, cmt2 are valid and consistent), and not the first (that
x ∈ L).

3. Simulation Verdict: If at some point V∗ aborts or fails in its WI proof, Sima outputs the aborting
verifier’s output. Otherwise, Sima outputs Fail.

Simna(x,V
∗, ρ) :

1. Simulation of Initial Commitments and Verifier Message:

(a) Simna computesdk← SFE.Gen(1λ) and sends toV∗ the commitments cmt1 ← Com(1λ, 0|w|),
cmt2 ← Com(1λ, dk).

(b) V∗ sends pk, ctV∗ , C̃C.

2. Non-Black-Box Extraction Attempt:
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(a) Simna computes

r1 ← {0, 1}∗, ctSFEt = QHE.Evalpk(SFE.Encdk(·; r1), ctV∗) .

Simna also encrypts ρ(1), the inner (quantum) state of the verifier after its first message:

ctρ(1) ← QHE.QEncpk(ρ
(1)) .

(b) Simna performs a quantum homomorphic evaluation of the verifier’s response. It computes,(
ctSFEs , ctρ(2)

)
← QHE.Evalpk

(
V∗,
(
ctSFEt , ctρ(1)

))
.

(c) Simna computes cts ← QHE.Evalpk
(
SFE.Decdk(·), ctSFEs

)
, and then computes (r, β′) =

C̃C(cts).
(d) Simna checks validity: (pk′, sk) = QHE.Keygen(1λ; r), if pk′ 6= pk then it halts simulation

and outputs Fail. Otherwise, Simna obtains the inner state of V∗ by decryption: ρ(2) ←
QHE.QDecsk(ctρ(2)). Additionally, Simna simulates the missing transcript (for the verifier
to later prove that its messages were explainable): for the prover message at step 2c it
inserts ctt = SFE.Encdk(t; r1), and for the verifier message at step 2d it inserts ĉts =
QHE.Decsk(ct

SFE
s ).

3. Sigma Protocol Messages Simulation:

(a) Simna executes the sigma protocol simulator (α, γ)← Σ.S(x, β′) and sends α to V∗.
(b) V∗ returns β.

4. WI Proof by the Malicious Verifier: Simna takes the role of the honest prover P in the WI proof
V∗ gives. If V∗ fails to prove the statement, the simulation fails and the output is Fail.

5. Simulation of the Prover’sWI Proof and Information Reveal: Simna givesV∗ aWI proof using
the witness that shows cmt1, cmt2 are both valid commitments (and that cmt2 is a commitment to
the SFE key dk used in step 2c). After the proof, Simna sends γ to V∗.

6. Simulation Verdict: If V∗ completed interaction without aborting and gave a convincing WI
proof, Simna outputs the verifier’s output. Otherwise, Simna outputs Fail.

Simcomb(x,V∗, ρ) : Sample b← {0, 1} and execute Simb(x,V
∗, ρ).

Sim(x,V∗, ρ) :

1. Generate the circuit Simcomb,x,V∗ , which is the circuit implementation of Simcomb, with hardwired
input x, V∗, that is, the only input to Simcomb,x,V∗ is the quantum state ρ.

2. Let R be the algorithm from Lemma 2.1. The output of the simulation is R(Simcomb,x,V∗ , ρ, λ).

Proof of Simulation Validity. We now turn to prove that the simulated output Sim(x,V∗, ρ) is compu-
tationally indistinguishable from OUTV∗〈P,V∗(ρ)〉(x). This is done in several steps:

1. Simulating aborting interactions: Let V∗a be the augmented verifier that is identical to V∗,
with the exception that if V∗ does not abort, V∗a outputs Fail. Then the output of Sima is
indistinguishable from the output of V∗a in a real interaction.
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2. Simulating non-aborting interactions: Let V∗na be the augmented verifier that is identical
to V∗, with the exception that if V∗ aborts, V∗na outputs Fail. Then the output of Simna is
indistinguishable from the output of V∗na in a real interaction.

3. The above two statements imply:

• Simcomb 6= Fail with probability negligibly close to 1
2 , for every verifier and auxiliary input

ρ.
• The output of V∗ in a real interaction is indistinguishable from the output of Simcomb

conditioned on Simcomb 6= Fail.

These in turn imply that we can use Watrous’ quantum rewinding lemma in order to amplify
Simcomb into a full-fledged simulator Sim

Proposition 3.2 (Similarity ofAborting Part). LetV∗ = {V∗λ, ρλ}λ∈N a polynomial-size quantum verifier,
and let OUTV∗a be the verifier’s output at the end of protocol such that if V

∗ does not abort, the output is
Fail. Then,

{OUTV∗a 〈P(w),V∗λ(ρλ)〉(x)}λ,x,w ≈c {Sima(x,V
∗
λ, ρλ)}λ,x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x).

Proof. We prove the claim by a hybrid argument, specifically, we consider hybrid distributions, all of
which will be computationally indistinguishable.

• Hyb0 : The output distribution of Sima.

• Hyb1 : This hybrid process is identical to Hyb0, with the exception that when the simulator gives
a WI proof in the simulation, it uses the witness w in the proof, that proves the first statement in
the OR statement (x ∈ L) rather then the second statement.

• Hyb2 : This hybrid process is identical to Hyb1, with the exception that cmt1 is a commitment to
w rather than to 0|w|.

• Hyb3 : This hybrid process is identical to Hyb2, with the exception that the message α that the
simulator sends toV∗ is generated by the actual sigma protocol (α, τ)← Σ.P1(x,w), and not by the
sigma protocol simulator Σ.S(x, 0|β|). Note that this process is exactly OUTV∗a 〈P(w),V∗(ρ)〉(x).

It is left to reason about the indistinguishability between each two subsequent hybrids.

• Hyb0 ≈c Hyb1 : Follows from the witness-indistinguishability property of the WI proof that the
simulator gives (as the prover) in step 5 of the protocol.

• Hyb1 ≈c Hyb2 : Follows from the hiding property of the commitment cmt1.

• Hyb2 ≈c Hyb3 : Follows from Claim 2.1.

Proposition 3.3 (Similarity of Non-Aborting Part). Let V∗ = {V∗λ, ρλ}λ∈N a polynomial-size quantum
verifier, and let OUTV∗na be the verifier’s output at the end of protocol such that if V∗ aborts, the output
is Fail. Then,

{OUTV∗na〈P(w),V∗λ(ρλ)〉(x)}λ,x,w ≈c {Simna(x,V
∗
λ, ρλ)}λ,x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x).
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Proof. We prove the claim by a hybrid argument, specifically, we consider hybrid distributions, all of
which will be computationally indistinguishable.

• Hyb0 : The output distribution of Simna.

• Hyb1 : This hybrid process is identical to Hyb0, with the exception that when the simulator gives
a WI proof in the simulation, it uses the witness w in the proof, that proves the first statement in
the OR statement (x ∈ L) rather then the second statement.

• Hyb2 : This hybrid process is identical to Hyb1, with the exception that cmt1 is a commitment to
the witness w rather than to 0|w|, and cmt2 is a commitment to 0|dk| rather than to the generated
SFE key dk← SFE.Gen(1λ).

• Hyb3 : This hybrid process is identical to Hyb2, with the exception that if the verifier’s message β
from part 3b of the simulation does not match the extracted β′ from part 2c of the simulation, the
process halts on the spot and outputs Fail.

• Hyb4 : This hybrid process is identical to Hyb3, with the exception that in parts 3a, 5 where the
simulator sends α and γ, instead of computing α, γ using Σ.S, it computes (α, τ)← Σ.P1(x,w)
and γ ← Σ.P3(β, τ).

• Hyb5 : This hybrid process is identical to Hyb4, with the exception that it does not perform the
check described in Hyb3, that is, even if the extracted challenge and sent challenge are distinct
β′ 6= β, the process carries on regularly.

• Hyb6 : At this point in our series of hybrid distributions, we do not use the extracted challenge β′,
and we would like to move to a process that does not perform extraction. The current hybrid will
still perform extraction, but will not use the extracted information. This hybrid process is identical
to Hyb5, with the changes described next. If the first verifier message is not explainable then the
process chooses to fail and outputs Fail. If the first verifier message is explainable, note that it
fixes a public and secret key pair (pk, sk) = QHE.Keygen(1λ; r), and a string s ∈ {0, 1}λ hidden
inside the CC program C̃C. In that case, the process acts like Hyb5, except that at the end of
step 2b of the simulation, the process inefficiently obtains sk and uses it to decrypt

(
ctSFEs , ctρ(2)

)
,

instead of using the program C̃C to get sk. The process also inefficiently obtains s and performs
a check: if s 6= SFE.Decdk(QHE.Decsk(ct

SFE
s )) then the process fails and outputs Fail, and

otherwise continues the simulation regularly as in the rest of Hyb5.

• Hyb7 : This process will get rid of extraction altogether and will not perform the homomorphic
evaluation of the verifier’s response. This distributions is the output of a process that acts like
Hyb6, with the exception that if the first verifier message is explainable (in particular, ctV is a
QFHE encryption of some t ∈ {0, 1}λ), then as the prover message from step 2c of the protocol,
the process sends SFE.Encdk(t). If at step 2d the verifier responds with ĉt s.t. s = SFE.Decdk(ĉt)
then the simulation continues regularly as in Hyb6, and otherwise the process fails and outputs
Fail.

• Hyb8 : Like the previous two processes, this process is also inefficient. This hybrid process is
identical to Hyb7, with the exception that it does not perform the check on the verifier’s response
ĉt, and continues regularly either way, even when s 6= SFE.Decdk(ĉt).

• Hyb9 : We now go back to an efficient hybrid process. This hybrid process is identical to Hyb8,
with the exception that instead of performing the inefficient check on the verifier’s first message
from step 1b (and then either halting and outputting Fail, or sending SFE.Encdk(t) to V∗), the
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process always sends SFE.Encdk(0λ) to V∗, and continues simuation regularly. Observe that this
process is exactly OUTV∗na〈P(w),V∗(ρ)〉(x).

We now prove that each pair of consecutive distributions are computationally indistinguishable, and
our proof is finished.

• Hyb0 ≈c Hyb1 : This indistinguishability follows from the witness-indistinguishability property
of the WI proof that the simulator gives in step 5 of the simulation.

• Hyb1 ≈c Hyb2 : This indistinguishability follows from the hiding of the commitments cmt1, cmt2
that the simulator gives in step 1a of the simulation.

• Hyb2 ≈s Hyb3 : The indistinguishability follows from the perfect correctness of both the CC
obfuscation and the SFE schemes, along with the soundness of the WI proof. Assume toward
contradiction that the two distributions are distinguishable and fix, by an averaging argument, the
partial transcript T ′ that is generated at the end of step 3b of the simulation, which maximizes
distinguishability. We consider two cases for T ′:

– T ′ is explainable. In that case it follows from the perfect correctness of the CC obfuscation
and the perfect correctness of the SFE evaluation, that the extracted β′ and the sent β are
necessarily equal, and the processes are identical (and have statistical distance of 0), in
contradiction.

– T ′ is not explainable. In that case, recall that cmt1 is a commitment to a witness and thus the
statement in the verifier’s WI proof is necessarily false. By the soundness of the WI proof,
V∗ will fail in proving the statement with overwhelming probability, which implies that with
the same probability the output in the process Hyb2 is Fail. Because with at least the same
probability, the output in Hyb3 is also Fail, the contradiction follows.

• Hyb3 ≈c Hyb4 : This indistinguishability follows from the special zero-knowledge property of the
sigma protocol.

• Hyb4 ≈s Hyb5 : The statistical indistinguishability follows from the exact same reasoning that
explains why distributions Hyb2 ≈s Hyb3.

• Hyb5 ≈s Hyb6 : This indistinguishability will follow from the perfect correctness of the CC
obfuscation, the statistical correctness of the QFHE and from the soundness of the WI proof that
V∗ gives. Formally, assume toward contradiction that the two distributions are distinguishable
and fix, by an averaging argument, the partial transcript T ′ and inner quantum state ρ(1) of V∗
generated at the end of step 1b of the simulation, that maximize the distinguishability. Denote by

˜Hyb5, ˜Hyb6 the distributions that carry on from the point that T ′, ρ(1) are fixed, according toHyb5,
Hyb6, respectively. Consider two cases for T ′.

– T ′ is not explainable. In that case, ˜Hyb6 outputs Failwith probability 1, and by the soundness
of the WI proof of the verifier, the proof is going to fail with overwhelming probability (in
the process ˜Hyb5) and with at least the same probability the output is going to be Fail, and
the two distributions will have at most negligible statistical distance, in contradiction.

– T ′ is explainable, which means that the verifier’s first message fixes t, s, sk, and also rt the
QFHE encryption randomness s.t. ctV∗ = QHE.Encpk(t; rt). Consider the quantum circuit
C that for input (t, ρ(1)), encrypts ctt ← SFE.Encdk(t), executes (ĉt, ρ(2))← V∗(ctt, ρ

(1)),
decrypts s′ = SFE.Decdk(ĉt) and outputs s′, ĉt, ρ(2). Now, observe the following about the
distributions ˜Hyb5, ˜Hyb6.
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∗ ˜Hyb5 can be described by the following process: Encrypt ctV∗ = QHE.Encpk(t; rt),
ctρ(1) ←← QHE.QEncpk(ρ

(1)), perform homomorphic evaluation of the circuit C, and
then decrypt with sk to get

(
s′, ĉt, ρ(2)

)
.

If s′ 6= s then output Fail, otherwise carry on the simulation as in Hyb5. The fact
that ˜Hyb5 can be described by this process follows from the fact that by the perfect
correctness of the CC obfuscation, if the first verifier message is explainable then C̃C
indeed executes the decryption circuit QHE.Decsk(·) s.t. if the result was s, it outputs
the QFHE key-generation randomness r (which in turn yields sk), and if the result wasn’t
s, C̃C necessarily yields ⊥.

∗ ˜Hyb6 can be described by the following process: the exact same homomorphic evaluation
process as described above, except that after getting the output

(
s′, ĉt, ρ(2)

)
, the check

is that s = SFE.Decdk(ĉt), and if the check fails the output is Fail, and if the check
succeeds then the process continues simulation regularly in the exact same way as in

˜Hyb5.
The above descriptions of ˜Hyb5, ˜Hyb6 imply that the statistical distance between them is
bounded by the probability that the check in one process fails and in the other it succeeds,
which in turn bounded by the probability that s′ 6= SFE.Decdk(ĉt). The point is, due to the fact
that the SFE decryption algorithm is deterministic, it is always the case when evaluating the
circuit C (out in the open, not under homomorphic evaluation) we have s′ = SFE.Decdk(ĉt).
It follows by the statistical correctness of the QFHE that the probability that the evaluated
s′, ĉt are s.t. s′ 6= SFE.Decdk(ĉt), and thus the bound on the statistical distance between

˜Hyb5, ˜Hyb6, in contradiction.

• Hyb6 ≈s Hyb7 : This indistinguishability follows directly from the statistical correctness of the
QFHE. Assume toward contradiction that the two distributions are distinguishable and fix, by an
averaging argument, the partial transcript T ′ and inner quantum state ρ(1) of V∗ generated at the
end of step 1b of the simulation, that maximize the distinguishability. Denote by ˜Hyb6, ˜Hyb7
the distributions that carry on from the point that T ′, ρ(1) are fixed, according to Hyb6, Hyb7,
respectively. Consider two cases for T ′.

– T ′ is not explainable. In that case both processes act the same and output Fail, and are
indistinguishable.

– T ′ is explainable, which means that the verifier’s first message fixes t, s, sk, and also rt the
QFHE encryption randomness s.t. ctV∗ = QHE.Encpk(t; rt). In that case, recall the circuit
C from the above proof of the indistinguishability Hyb5 ≈s Hyb6, and observe the following
about the distributions ˜Hyb6, ˜Hyb7.

∗ The distribution ˜Hyb6 can be described by the following process: Encrypt ctV∗ =
QHE.Encpk(t; rt), ctρ(1) ←← QHE.QEncpk(ρ

(1)), perform homomorphic evaluation
of the circuit C, and then decrypt with sk to get

(
s′, ĉt, ρ(2)

)
. If s = SFE.Decdk(ĉt)

then process continues simulation regularly as in Hyb6, and otherwise fails and outputs
Fail.

∗ The distribution ˜Hyb7 can be described by the following process: Instead of encrypting
t, ρ(1) and computing C under homomorphic evaluation (and then decrypting), we
simply execute

(
ĉt, ρ(2)

)
← C(t, ρ(1)) in the clear. The process continues in the exact

sameway as described after the homomorphic evaluation in ˜Hyb6; If s = SFE.Decdk(ĉt)
then process continues simulation regularly, and otherwise fails and outputs Fail.

The above implies that the only difference between the two processes is the fact that in ˜Hyb6
we execute C under homomorphic evaluation, and in ˜Hyb7 we execute C in the clear. By

26



the statistical correctness of the QFHE, it follows that the two processes are statistically
indistinguishable, in contradiction.

• Hyb7 ≈s Hyb8 : This indistinguishability follows from the perfect correctness of the SFE en-
cryption and the soundness of the WI proof that V∗ gives. Assume toward contradiction that the
distributions are distinguishable and fix, by an averaging argument, the partial transcript T ′ (and
inner verifier state ρ(2)) generated after the verifier’s secondmessage ĉt. If the first verifier message
was explainable and also s = SFE.Decdk(ĉt) then then processes are identical, as they carry on
simulation in the exact same way. If the first verifier message was not explainable then again, both
processes fail and output Fail and are identical, and if the first verifier message is explainable but
s 6= SFE.Decdk(ĉt), it follows Hyb7 outputs Fail, and in Hyb8, by the perfect correctness of the
SFE evaluation, the transcript cannot be explainable, and thus the WI proof by the verifier fails
with overwhelming probability, and with the same probability the output of Hyb8 is Fail, and the
processes are indistinguishable.

• Hyb8 ≈c Hyb9 : This indistinguishability follows from the input privacy property of the SFE
encryption. More precisely, as usual, we assume toward contradiction that the distributions are
distinguishable and we fix the transcript until the end of step 1b of the simulation. If the transcript
is not explainable thenHyb8 outputs Fail, andHyb9 outputs Failwith overwhelming probability,
because the WI proof of the verifier will fail with overwhelming probability. If the transcript is
explainable, we can get either an SFE encryption of t or of 0, as t is fixed by the averaging
argument. By continuing the simulation regularly, as identically performed in both processes, we
get the reduction from breaking the security of the SFE encryption to distinguishing betweenHyb8
and Hyb9.

Corollary 3.1 (Probabilities to Abort are Negligibly Close Over Different Cases). For a quantum
auxiliary input ρ, instance in the language x ∈ {0, 1}λ∩L and witnessw ∈ RL(x), define the following
probabilities.

• a(x, ρ) : The probability that in the simulation Sima(x,V
∗, ρ), the verifier V∗ aborted before

the end of step 5 where the simulator simulates the Prover’s WI proof, or failed to prove its WI
statement in step 4 (i.e. the simulation of Sima(x,V

∗, ρ) was aboting).

• b(x, ρ) : The probability that in the simulation Simna(x,V
∗, ρ), the verifier V∗ aborted before

the end of step 5 where the simulator simulates the Prover’s WI proof, or failed to prove its WI
statement in step 4 (i.e. the simulation of Simna(x,V

∗, ρ) was aboting).

• c(x, ρ, w) : The probability that the interaction 〈P(w),V∗(ρ)〉(x) was aborting.

There exists a negligible function negl(·) s.t. for every sequences ρ = {ρλ}λ∈N, x = {xλ}λ∈N,
w = {wλ}λ∈N where,

• ∀λ ∈ N : ρλ is a λc-size quantum state (for some constant c ∈ N),

• ∀λ ∈ N : xλ ∈ {0, 1}λ ∩ L,

• ∀λ ∈ N : wλ ∈ RL(xλ),

we have

∀λ ∈ N : |a(xλ, ρλ)− b(xλ, ρλ)| , |b(xλ, ρλ)− c(xλ, ρλ, wλ)| , |c(xλ, ρλ, wλ)− a(xλ, ρλ)| ≤ negl(λ) .
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Proof. It immediately follows from Proposition 3.2 that the distance between a(x, ρ) and c(x, ρ, w)
is negligible. By the same reasoning it follows from Proposition 3.3 that b(x, ρ) and c(x, ρ, w) are
negligibly close. By triangle inequality it follows that also a(x, ρ) and b(x, ρ) are negligibly close.

From the above it follows that the success probability of Simcomb(x,V∗, ρ) is negligibly close to 1
2 ,

regardless of the quantum state ρ.

Corollary 3.2 (Success Probability of Simcomb is Input-Oblivious). For every quantum verifier V∗ =
{V∗λ}λ∈N there exists a negligible function negl(·) s.t. for every instance in the language x = {xλ}λ∈N
and quantum auxiliary input ρ = {ρλ}λ∈N for the verifier, we have

∀λ ∈ N :

∣∣∣∣Pr [The simulation Simcomb(xλ,V
∗
λ, ρλ) succeeds]− 1

2

∣∣∣∣ ≤ negl(λ) .

Proof.

∀λ ∈ N :

∣∣∣∣Pr [The simulation Simcomb(xλ,V
∗
λ, ρλ) succeeds]− 1

2

∣∣∣∣
=

∣∣∣∣12 · Pr [The simulation Sima(xλ,V
∗
λ, ρλ) succeeds]

+
1

2
· Pr [The simulation Simna(xλ,V

∗
λ, ρλ) succeeds]− 1

2

∣∣∣∣
=

∣∣∣∣12 · a(xλ, ρλ) +
1

2
·
(
1− b(xλ, ρλ)

)
− 1

2

∣∣∣∣
=

1

2
· |a(xλ, ρλ)− b(xλ, ρλ)| ≤ negl(λ) ,

where the last inequality is due to Corollary 3.1.

We next prove that conditioned on succeeding, the output distribution of the simulator Simcomb is
indistinguishable from the real interaction.

Proposition 3.4 (The Output of a Successful Simcomb is Indistinguishable from Real Interaction). Let
V∗ = {V∗λ, ρλ}λ∈N be a polynomial-size quantum verifier. For x ∈ L, let ˜Simcomb(x,V∗, ρ) denote the
conditional distribution of Simcomb(x,V∗, ρ), conditioned on the simulation being successful. Then,

{OUTV∗〈P(w),V∗λ(ρλ)〉(x)} λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c { ˜Simcomb(x,V∗λ, ρλ)} λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

Proof. Denote the following conditional distributions.

• ASim = {ASim,λ}λ∈N :A conditional distribution of Sima(x,V
∗, ρ), conditioned on that the output

is not Fail (might be an empty distribution, if a(x, ρ) = 0).

• SSim = {SSim,λ}λ∈N : A conditional distribution of Simna(x,V
∗, ρ), conditioned on that the

output is not Fail (might be an empty distribution, if b(x, ρ) = 1).

• A〈P,V∗〉 = {A〈P,V∗〉,λ}λ∈N : A conditional distribution of OUTV∗a 〈P,V
∗〉 (from 3.2), conditioned

on that the output is not Fail (might be an empty distribution, if c(x, ρ, w) = 0).

• S〈P,V∗〉 = {S〈P,V∗〉,λ}λ∈N : A conditional distribution of OUTV∗nm〈P,V
∗〉 (from 3.3), conditioned

on that the output is not Fail (might be an empty distribution, if c(x, ρ, w) = 1).
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Observe that the distribution ˜Simcomb(x,V∗, ρ) is the distribution generated by outputting a sample
from ASim with probability a(x,ρ)

1+a(x,ρ)−b(x,ρ) , and a sample from SSim with probability 1−b(x,ρ)
1+a(x,ρ)−b(x,ρ) .

Additionally, observe that the distribution OUTV∗〈P(w),V∗(ρ)〉(x) is the distribution generated by
outputting a sample from A〈P,V∗〉 with probability c(x, ρ, w) and from S〈P,V∗〉 with probability 1 −
c(x, ρ, w). We will show that the two distributions are computationally indistinguishable by a hybrid
argument. Consider the following distributions.

• Hyb0 : The distribution ˜Simcomb(x,V∗, ρ).

• Hyb1 : Same as in Hyb0, with the exception that instead of sampling from ASim with probabil-
ity a(x,ρ)

1+a(x,ρ)−b(x,ρ) (and from SSim with probability 1−b(x,ρ)
1+a(x,ρ)−b(x,ρ) ), it samples from ASim with

probability a(x, ρ) (and from SSim with probability 1− a(x, ρ)).

• Hyb2 : Same as in Hyb1, but the probability a(x, ρ) is changed to c(x, ρ, w).

• Hyb3 : Same as in Hyb2, with the exception that with probability c(x, ρ, w), the process outputs a
sample from A〈P,V∗〉 rather than from ASim.

• Hyb4 : Same as inHyb3, with the exception that with probability 1−c(x, ρ, w), the process outputs
a sample from S〈P,V∗〉 rather than from SSim. This process is exactly OUTV∗〈P(w),V∗(ρ)〉(x).

It is left to explain why each consecutive pair of distributions are computationally indistinguishable,
and our proof is finished. For the following, define a′(λ) := a(xλ, ρλ), b′(λ) := b(xλ, ρλ), c′(λ) :=
c(xλ, ρλ, wλ).

• Hyb0 ≈s Hyb1 : Due to the fact that a′(λ) and b′(λ) are negligibly close (Corollary 3.1), it
follows that a′(λ) and a(x,ρ)

1+a(x,ρ)−b(x,ρ) are also negligibly close, and thus follows the statistical
indistinguishability.

• Hyb1 ≈s Hyb2 : The probabilities a′(λ) and c′(λ) are negligibly close due to Corollary 3.1, and
the statistical indistinguishability follows.

• Hyb2 ≈c Hyb3 :Assume toward contradiction that the indistinguishbility does not hold, this means
there is a distinguisher D∗, an infinite subset Q ⊆ N and a polynomial p : N → N, s.t. for all
λ ∈ Q, D∗ distinguishes with advantage at least 1/p(λ) between Hyb2,λ and Hyb3,λ. We consider
two cases for the function c′, and show that in both of them the contradiction follows from 3.2.

– Case 1: for every polynomial function q : N → N, there are only finitely-many λ ∈ Q
s.t. 1 − c′(λ) > 1/q(λ). This means that there is a negligible function µ s.t. ∀λ ∈ N :
1 − c′(λ) ≤ µ(λ). In that case, the contradiction follows directly from Proposition 3.2,
because for indices λ ∈ Q, a sample from Sima(xλ,V

∗
λ, ρλ) is statistically indistinguishable

from a sample from Hyb2,λ, and a sample from OUTV∗a 〈P(wλ),V∗λ(ρλ)〉(xλ) is statistically
indistinguishable from a sample from Hyb3,λ.

– Case 2: there is a polynomial function q′ : N → N, s.t. there are infinitely-many λ ∈ Q
s.t. 1 − c′(λ) > 1/q′(λ), we denote this infinite set of indices by Q′. For these indices we
can violate the indistinguishbility from 3.2. More specifically, for λ ∈ Q′ we can sample
in polynomial time (say, q′(λ)2) and using polynomial-size quantum advice, from a distri-
bution that is statistically indistinguishable from SSim,λ, and reduce distinguishing between
Sima(xλ,V

∗
λ, ρλ) and OUTV∗a 〈P(wλ),V∗λ(ρλ)〉(xλ), to distinguishing between Hyb2,λ and

Hyb3,λ in the following way.
When getting a sample from either Sima(xλ,V

∗
λ, ρλ) or OUTV∗a 〈P(wλ),V∗λ(ρλ)〉(xλ), if the

sample’s value was Fail, approximately sample (as mentioned above, in time q(λ)2) from
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SSim,λ. This can be done, for example, by using a polynomial amount of copies (i.e. q′(λ)2)
of the quantum advice ρ of the verifier. This output of the reduction (whether it was Fail that
was swapped to a sample that is close to SSim,λ, or whether it was a non-Fail and was not
swapped) is sent to the distinguisher D∗. Due to the fact that for the cases we got Fail, the
generated sample is statistically indistinguishable from SSim,λ, it follows that when we get a
sample from Sima(xλ,V

∗
λ, ρλ) then the output sample of our reduction is statistically close to

Hyb2,λ, and when we get a sample fromOUTV∗a 〈P(wλ),V∗λ(ρλ)〉(xλ) then the output sample
of our reduction is statistically close to Hyb3,λ, and we get a contradiction.

• Hyb3 ≈c Hyb4 :Assume toward contradiction that the indistinguishbility does not hold, this means
there is a distinguisher D∗, an infinite subset Q ⊆ N and a polynomial p : N → N, s.t. for all
λ ∈ Q, D∗ distinguishes with advantage at least 1/p(λ) between Hyb3,λ and Hyb4,λ. We consider
two cases for the function c′, and show that in both of them the contradiction follows from 3.3.

– Case 1: for every polynomial function q : N → N, there are only finitely-many λ ∈ Q s.t.
c′(λ) > 1/q(λ). This means that there is a negligible function µ s.t. ∀λ ∈ N : c′(λ) ≤ µ(λ).
In that case, the contradiction follows directly from Proposition 3.3, because for indices
λ ∈ Q, a sample from Simna(xλ,V

∗
λ, ρλ) is statistically indistinguishable from a sample from

Hyb3,λ, and a sample from OUTV∗na〈P(wλ),V∗λ(ρλ)〉(xλ) is statistically indistinguishable
from a sample from Hyb4,λ.

– Case 2: there is a polynomial function q′ : N → N, s.t. there are infinitely-many λ ∈ Q
s.t. c′(λ) > 1/q′(λ), we denote this infinite set of indices by Q′. For these indices
we can violate the indistinguishbility from 3.3. More specifically, for λ ∈ Q′ we can
sample, in polynomial time (say, q′(λ)2) and using polynomial-size quantum advice, from
a distribution that is statistically indistinguishable from ASim,λ, and reduce distinguishing
between Simna(xλ,V

∗
λ, ρλ) and OUTV∗na〈P(wλ),V∗λ(ρλ)〉(xλ), to distinguishing between

Hyb3,λ and Hyb4,λ in the following way.
When getting a sample from either Simna(xλ,V

∗
λ, ρλ) or OUTV∗na〈P(wλ),V∗λ(ρλ)〉(xλ), if

the sample’s value was Fail, approximately sample (as mentioned above, in time q(λ)2) from
ASim,λ. This can be done, for example, by using a polynomial amount of copies (i.e. q′(λ)2)
of the quantum advice ρ of the verifier. This output of the reduction (whether it was Fail that
was swapped to a sample that is close to ASim,λ, or whether it was a non-Fail and was not
swapped) is sent to the distinguisher D∗. Due to the fact that for the cases we got Fail, the
generated sample is statistically indistinguishable from ASim,λ, it follows that when we get a
sample from Simna(xλ,V

∗
λ, ρλ) then the output sample of our reduction is statistically close

to Hyb3,λ, and when we get a sample from OUTV∗na〈P(wλ),V∗λ(ρλ)〉(xλ) then the output
sample of our reduction is statistically close to Hyb4,λ, and we get a contradiction.

We conclude with proving that the output of the simulation Sim(x,V∗, ρ) is indeed computationally
indistinguishable from the output of the real interaction OUTV〈P,V∗(ρ)〉(x).

Proposition 3.5 (SimulationOutput is Indistinguishable from Interaction). For any quantum polynomial-
size verifier V∗ = {V∗λ, ρλ}λ∈N,

{OUTV∗〈P(w),V∗λ(ρλ)〉(x)} λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c {Sim(x,V∗λ, ρλ)} λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

Proof. Let V∗ = {V∗λ}λ∈N be a quantum polynomial-size verifier. According to Corollary 3.2, there is
a negligible function negl(·) s.t. for every instance in the language x = {xλ}λ∈N and auxiliary input
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quantum state ρ = {ρλ}λ∈N for the verifier, we have

∀λ ∈ N :

∣∣∣∣Pr [The simulation Simcomb(xλ,V
∗
λ, ρλ) succeeds]− 1

2

∣∣∣∣ ≤ negl(λ) .

Consider the quantum circuit Simcomb,x,V∗ , which is the circuit implementation of Simcomb with hard-
wired inputs x and V∗, that gets as input only the quantum state ρ. As mentioned above, the success
probability of Simcomb,x,V∗ is negligibly close 1

2 , for any quantum state ρ. If we denote the success
probability for input ρ by p(ρ) and denote ε := negl(λ) + 2−λ·

3
4 , p0 := 1

4 and q := 1
2 , we can see that

the 4 conditions for the Quantum Rewinding Lemma 2.1 are satisfied:

• λ ≥ log(1/ε)
4·p0(1−p0) .

• For every state ρ, p0 ≤ p(ρ).

• For every state ρ, |p(ρ)− q| < ε.

• p0(1− p0) ≤ q(1− q).

This implies that R(Simcomb,x,V∗ , ρ, λ) has trace distance bounded by 4
√
ε log(1/ε)
p0(1−p0) from the success-

conditioned output distribution of Simcomb(x,V∗, ρ). Since ε is a negligible function of λ, so is
4
√
ε log(1/ε)
p0(1−p0) .
Finally, recall that Sim(x,V∗, ρ) = R(Simcomb,x,V∗ , ρ, λ), and that proposition 3.4 says that the

success-conditioned distribution of Simcomb(x,V∗, ρ) is computationally indistinguishable from
OUTV∗〈P(w),V∗(ρ)〉(x), and our proof is concluded.

Remark 3.1 (Classical Universal Simulator for Classical Verifiers). As a side note, we observe that the
protocol preserves the trait of classical ZK, that is, classical verifiers learn nothing from the protocol
(formally, for classical verifiers there is a classical simulator). A classical simulator showing this will
simply execute Simcomb(x,V∗) repeatedly some polynomial number of times (either until it succeeds
in one of the tries, or fails in all and then the output is Fail), specifically, λ tries will do. Since the
probability for Simcomb to succeed is ≈ 1

2 , the probability to successfully sample from the success-
conditioned distribution is overwhelming, and thus the output of the simulator is indistinguishable from
the output of the verifier in the real interaction.

4 Quantumly-Extractable Classical Commitments

In this section we show how to use any constant-round post-quantum zero-knowledge argument for NP
(and standard cryptographic assumptions) in order to construct a constant-round, quantumly-extractable
classical commitment scheme. We start with the definition, and proceed to the construction.

Definition 4.1 (Quantumly-Extractable Commitment). A quantumly-extractable commitment scheme
consists of three interactive PPT algorithms (Sen,Rec,VDcom) with the following syntax.

• Sen(1λ,m) : The sender algorithm gets as input the public security parameter 1λ and the secret
messagem to commit to.

• Rec(1λ) : The receiver algorithm gets only the public security parameter 1λ.

• The algorithms Sen,Rec interact and generate transcript T .

• VDcom(T,m, r) : For a transcript, message and randomness, the decommitment verification
algorithm outputs a bit.
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The scheme satisfies the following conditions.

• Perfect Binding: Letm0,m1, r0, r1 ∈ {0, 1}∗, and let T be a transcript. If VDcom(T,m0, r0) =
VDcom(T,m1, r1) = 1, then m0 = m1. Accordingly, for a transcript T denote by mT the
(unique) string such that if there exist r s.t. VDcom(T,m, r) = 1, thenmT := m, andmT := ⊥
otherwise.

• Computational Hiding: For every polynomial-size quantum receiverRec∗ = {Rec∗λ, ρλ}λ∈N and
polynomial `(·),

{OUTRec∗λ
〈Sen(m0),Rec

∗
λ(ρλ)〉(1λ)}λ,m0,m1 ≈c {OUTRec∗λ

〈Sen(m1),Rec
∗
λ(ρλ)〉(1λ)}λ,m0,m1 ,

where λ ∈ N,m0,m1 ∈ {0, 1}`(λ).

• Extractability: There exists a quantum polynomial-time algorithm Ext s.t. for every polynomial-
size quantum sender Sen∗ = {Sen∗λ, ρλ}λ∈N outputs a quantum state σExt and messagemExt, with
the following guarantee.{

(σ,mT ) | (T, σ,mT )← 〈Sen∗λ(ρλ),Rec〉(1λ)
}
λ∈N

≈c
{

(σExt,mExt) | (σExt,mExt)← Ext(1λ, Sen∗λ, ρλ)
}
λ∈N

,

where σ is the inner state of Sen∗ after executing the interaction with Rec.

Remark 4.1. In the standard definition of extraction and more broadly, of simulation, the simulator
does not output the interaction transcript (in classical-interaction protocols). It is noted however that it
can be assumed without the loss of generality that the simulator also outputs the simulated transcript
whenever needed. This is because, given a classical (or quantum) interactive circuit, it can be compiled
in polynomial time (in the circuit size) to a circuit with identical functionality, that records the interaction
transcript into its private inner state. Since the simulator simulates the inner state of the adversary at the
end of interaction it in particular simulates the transcript.

We describe the protocol between Sen and Rec in Figure 2.
Ingredients and notation:

• A non-interactive commitment scheme Com.

• A 2-message function-hiding secure function evaluation scheme (SFE.Gen, SFE.Enc, SFE.Eval,
SFE.Dec).

• A constant-round post-quantum zero-knowledge argument system (PNP,VNP) for NP.

Decommitment Verification. On input (T,m, r) the decommitment verification algorithm VDcom
deduces the security parameter λ (the security parameter is public and can be assumed to be part of the
transript). It then checks two things:

• The argument that Sen gave at the last step of the transcript T is convincing (this is possible as the
argument is publicly verifiable).

• The commitment cmtSen from step 1 in the transcriptT indeed decommits tom, r (i.e. Com(1λ,m; r) =
cmtSen).
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The output is 1 iff the check succeeds.
Binding and Hiding. The perfect binding property of the scheme follows readily from the perfect
binding of the non-interactive commitment scheme Com. We next show hiding.

Proposition 4.1 (The Commitment Scheme is Computationally Hiding). For every polynomial-size
quantum receiver Rec∗ = {Rec∗λ, ρλ}λ∈N and polynomial `(·),

{OUTRec∗λ
〈Sen(m0),Rec

∗
λ(ρλ)〉(1λ)}λ,m0,m1 ≈c {OUTRec∗λ

〈Sen(m1),Rec
∗
λ(ρλ)〉(1λ)}λ,m0,m1 ,

where λ ∈ N,m0,m1 ∈ {0, 1}`(λ).

Proof. Weprove the claim by a hybrid argument. Define the following hybrid distributions on transcripts.

• Hyb0 : This is the output distribution VIEWRec∗〈Sen(m0),Rec
∗(ρ)〉.

• Hyb1 : The output distribution of a process that acts like Hyb0, with the exception that in step
5, instead of Sen communicating with Rec∗ to give a ZK argument, we take the ZK simulator
Sim of the argument system (PNP,VNP) and use it to simulate the argument by Sen, by executing
Sim(T ′,Rec∗, ρ′), where T ′ (resp. ρ′) is the transcript (resp. inner quantum state of Rec∗)
generated at the end of step 4 of the interaction.

• Hyb2 : The output distribution of a process that acts like Hyb1, with the exception that in step
4b, instead of actually performing an SFE evaluation of C1→m0 , the process performs an SFE
evaluation of the circuit C⊥ that always outputs ⊥.

• Hyb3 : The output distribution of a process that acts like Hyb2, with the exception that in step 1,
instead of committing tom0, the sender commits tom1.

• Hyb4 : The output distribution of a process that acts like Hyb3, with the exception that in step 4b,
the process performs an SFE evaluation of the circuit C1→m1 , and not of the circuit C⊥.

• Hyb5 : The output distribution of a process that acts like Hyb4, with the exception that in step 5,
instead of using the ZK simulator for the sender’s argument, the process uses the ZK argument
regularly, that is, the sender proves that the transcript so far is consistent. Observe that this is
exactly the output distribution VIEWRec∗〈Sen(m1),Rec

∗(ρ)〉.

We now explain why each consecutive pair of distributions are computationally indistinguishable,
and our proof is finished.

• Hyb0 ≈c Hyb1 : Follows from the post-quantum zero-knowledge property of the protocol
(PNP,VNP).

• Hyb1 ≈s Hyb2 : Assume toward contradiction that the two distributions are distinguishable, and
fix, by an averaging argument, the partial transcript T ′ (and inner state of Rec∗) that is generated
at the end of step 2 of the protocol and maximizes the distinguishing advantage between the two
distributions.
We consider two cases for the commitment cmtRec in the transcript T ′: The simpler case is if
cmtRec is not a commitment to 0 (i.e. there is no r0 ∈ {0, 1}∗ s.t. cmtRec = Com(1λ, 0; r0)), in that
case, by the soundness of the argument that Rec∗ gives in step 3, with overwhelming probability
Sen is going to reject the proof and end communication, and only with a negligible probability the
process continues to a point where the two processes Hyb1, Hyb2 differ, in contradiction.
In the second case cmtRec is a valid commitment to 0. In that case, the contradiction follows from
(an implication of) the circuit privacy property of the SFE encryption, specifically, it follows from
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Claim 2.2. From the perfect binding of the non-interactive commitment scheme Com, there is no
string r1 s.t. cmtRec = Com(1λ, 1; r1), which in turn implies that the circuit C1→m0 is identical
in functionality to the circuit C⊥ that outputs ⊥ on any input. By Claim 2.2 it follows that the
responses from Sen in step 4b are statistically indistinguishable, and thus also the distributions
Hyb1 and Hyb2, again in contradiction.

• Hyb2 ≈c Hyb3 : Follows from the hiding of the commitment cmtSen that Sen gives in step 1, that
is, the hiding property of the commitment scheme Com.

• Hyb3 ≈s Hyb4 : This indistinguishability follows from the exact same reasoning as in the expla-
nation for the indistinguishability Hyb1 ≈s Hyb2, by swappingm0 withm1 in the explanation.

• Hyb4 ≈c Hyb5 : Like the indistinguishability Hyb0 ≈c Hyb1, this indistinguishability follows
again from the zero-knowledge property of the argument system (PNP,VNP).

4.1 Extractability

We show a quantum polynomial-time extractor Ext s.t. for any polynomial-size quantum sender Sen∗ =
{Sen∗λ, ρλ}λ∈N extracts the sender’s committed message (if it exists) and also simulates its quantum state
at the end of the protocol.

Ext(1λ,Sen∗, ρ) :

1. Simulation of Commitments: Sen∗ outputs cmtSen. Ext then sends to Sen∗ a commitment to 1:
cmtExt = Com(1λ, 1; r1), where r1 ∈ {0, 1}poly(λ,1) is the random string used as the randomness
of the commitment algorithm.

2. Simulation of ZKArgument byRec: Ext uses the zero-knowledge simulator Sim of the argument
system (PNP,VNP). Ext executes Sim(cmtExt, Sen

∗, ρ(1)) to simulate the argument that Rec gives
to Sen∗ at step 3 of the protocol (ρ(1) is the inner state of Sen∗ after step 1 of the extraction). At
the end of the zero-knowledge simulation, we have a simulated argument transcript and a quantum
state ρ′ for Sen∗ to carry on to the next step of extraction.

3. Extraction of Message from Sen∗:

• Ext computes dk← SFE.Gen(1λ) and sends ctExt ← SFE.Encdk(r1).
• Sen∗ outputs a response ĉt.

Ext then decrypts the evaluated ciphertext to get a messagem′.

4. ZK Argument by Sen∗: Ext takes the role of the honest receiver Rec in the ZK argument Sen∗
gives.

5. Extraction Procedure Output: The output (σExt,mExt) of the extraction procedure is as follows.

• The simulated inner state σExt for the sender is set to be the inner state of Sen∗ at the time of
halting of the procedure.

• If the argument that Sen∗ gave in step 4 of the procedure is convincing then mExt = m′,
otherwisemExt = ⊥.

34



It remains to explain why the extraction process yields an output that is computationally indistin-
guishable from a tuple (T, σ,mT ) generated by the real interaction between Sen∗(ρ) and Rec, and also
that the extracted messagemExt is indeed the message that TExt can be decommitted to.

Proposition 4.2. Let Sen∗ = {Sen∗λ, ρλ}λ∈N be a polynomial-size quantum sender, then,{
(σ,mT ) | (T, σ,mT )← 〈Sen∗λ(ρλ),Rec〉(1λ)

}
λ∈N
≈c
{
Ext(1λ,Sen∗λ, ρλ)

}
λ∈N

.

Proof. We prove the claim by a hybrid argument. Define the following hybrid processes:

• Hyb0 : This distribution is the output distribution (σ,mT ) of the real interaction 〈Sen∗(ρ),Rec〉.

• Hyb1 : The output distribution of a process that acts like Hyb0, with the exception that in step
3, instead of Rec communicating with Sen∗ to give a ZK argument, we take the ZK simulator
Sim of the argument system (PNP,VNP) and use it to simulate the argument by Rec by executing
Sim(T ′,Sen∗, ρ′), where T ′ (resp. ρ′) is the transcript (resp. inner quantum state of Rec∗)
generated at the end of step 2 of the interaction.

• Hyb2 : The output distribution of a process that acts like Hyb1, with the exception that when Rec
sends cmtRec, it commits to 1 instead of to 0.

• Hyb3 : The output distribution of a process that acts like Hyb2, with the exception that in step 4a,
Rec sends an SFE encryption ctRec of the randomness r1 that it used in step 2 when it committed
for 1. Note that this output distribution is identical to the extraction’s output Ext(1λ, Sen∗, ρ), with
the only change being thatmT is generated as in 〈Sen∗(ρ),Rec〉.

• Hyb4 : The output distribution of a process that acts like Hyb3, with the exception that the
output message mT is generated differently, specifically, mT is mExt that is generated as in
step 5 of the extraction procedure. Note that this process is exactly the output distribution
(σExt,mExt)← Ext(1λ, Sen∗, ρ).

We now explain why each pair of consecutive distributions are computationally indistinguishable,
and our proof is finished.

• Hyb0 ≈c Hyb1 : Assume toward contradiction that the two distributions are distinguishable,
and fix, by an averaging argument, the partial transcript T ′ and inner quantum state σ′ of Sen∗
generated at the end of step 1 of the simulation, that maximizes the distinguishing advantage of
the two distributions. Inside such transcript T ′ we consider the sender commitment cmtSen, and
the (unique, by the perfect binding of the commitment scheme Com) message mT ′ that is inside
this commitment (if the commitment cannot be opened to any message,mT ′ := ⊥).
From our assumption that Hyb0, Hyb1 are distinguishable, follows the existence of a distinguisher
that breaks the zero-knowledge property of (PNP,VNP). Specifically, the distinguisher uses as
non-uniform advice the partial transcript T ′ and the message mT ′ , gets either a real interaction
transcript or a simulation of the argument that Rec gives in step 3 of the protocol, then executes the
rest of the commitment protocol, and uses the knowledgemT ′ at the end of protocol execution to
output mT . It follows that such distinguisher breaks the zero knowledge property of (PNP,VNP),
in contradiction.
In the following explanations for the indistinguishabilities wewill use the same averaging argument
and non-uniform advice that includes the message mT ′ , and refer to it simply as the "averaging
argument with non-uniform advice message".
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• Hyb1 ≈c Hyb2 : Follows from the same averaging argument and non-uniform advice message
reasoning from the proof of Hyb0 ≈c Hyb1, along with the hiding of the commitment scheme
Com.

• Hyb2 ≈c Hyb3 : Follows from the same averaging argument and non-uniform advice message
reasoning from the proof of Hyb0 ≈c Hyb1, along with the input privacy (encryption security)
property of the SFE encryption.

• Hyb3 ≈s Hyb4 : Recall that both processes Hyb3, Hyb4 generate the output state σExt as in the
extraction procedure, but differ only in the way they generate the output message. Assume toward
contradiction that Hyb3, Hyb4 are distinguishable and fix, by an averaging argument, the partial
transcript T ′ (and inner state σ′ of Sen∗) generated at the end of step 3 of the extraction.
Consider two cases for the partial transcript T ′.

– T ′ is consistent. In that case, by the (perfect) correctness of the SFE evaluation it follows
that the generated messages mT (from Hyb3) and mExt (from Hyb4) are identical. The
rest of the protocol execution, which includes only the argument by Sen∗, is also identical
between the two distributions. The distinguisher between Hyb3, Hyb4 (we assumed toward
contradiction exists) cannot distinguish between these two distributions as they are identical,
in contradiction.

– T ′ is not consistent. In that case, by the soundness of the argument system (PNP,VNP), the
argument by Sen∗ fails with overwhelming probability, and with the same probability the
values of both mT (from Hyb3) and mExt (from Hyb4) are ⊥. It follows that the statistical
distance between the distributions is negligible, in contradiction.

5 Constant-Round Zero-Knowledge Quantum Arguments for QMA

In this section we explain how the tools from previous sections imply a constant-round zero-knowledge
quantum argument for QMA, that is, according toDefinition 2.7where honest parties are polynomial-time
and quantum (prover is efficient given a quantum witness) and communication is quantum.

The construction uses constant-round (post-quantum) zero-knowledge arguments for NP, quantumly-
extractable commitments and a quantum sigma protocol for QMA5.
We now proceed to the construction and proof.
Ingredients and notation:

• A constant-round quantumly-extractable commitment scheme (Sen,Rec).

• A constant-round post-quantum zero-knowledge argument system (PNP,VNP) for NP.

• A quantum sigma protocol for QMA (Ξ.P,Ξ.V).

We describe the protocol in Figure 3.

5In a previous version of this work we used the QMA zero-knowledge (with large soundness error) protocol of [BJSW16]
instead of sigma protocols. Using sigma protocols yields a simplified protocol.
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5.1 Computational Soundness

We prove that Protocol Protocol 3 has quantum computational soundness.

Proposition 5.1. For any quantum polynomial-size prover P∗ = {P∗λ, ρλ}λ∈N, there exists a negligible
function µ(·) such that for any security parameter λ ∈ N and any x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗λ(ρλ),V〉(x) = 1] ≤ µ(λ) .

Proof. Let P∗ = {P∗λ, ρλ}λ∈N a polynomial-size quantum prover and let x = {xλ}λ∈N be a sequence
such that ∀λ ∈ N : xλ ∈ {0, 1}λ \ L. We prove soundness by a hybrid argument. We consider a series
of hybrid processes with output over {0, 1}, starting from OUTV〈P∗(ρ),V〉(x) the output distribution of
V in the interaction with P∗.

• Hyb0 : The output distribution of OUTV〈P∗λ(ρλ),V〉(xλ).

• Hyb1 : Identical to the process Hyb0, with the exception that in step 3b when the verifier gives a
ZK argument, the process instead uses the ZK simulator Sim of the argument system (PNP,VNP).
To simulate the prover’s view, the process executes Sim ((TSen, β),P∗, ρ′), where ρ′ is the inner
quantum state of P∗ at the end of step 3a where the verifier sends β.

• Hyb2 : Identical to the process Hyb1, with the exception that in step 1 when the verifier commits
to β, the process instead commits to 0|β|.

We next explain why each consecutive pair of distributions are indistinguishable.

• Hyb0 ≈c Hyb1 : Follows from the quantum zero knowledge property of the protocol (PNP,VNP).

• Hyb1 ≈c Hyb2 : Follows from the computational hiding of the commitment scheme (Sen,Rec).

Now, assume toward contradiction thatP∗ succeeds inmaking the verifier acceptwith some noticeable
probability ε(λ), that is, the probability for the output 1 in Hyb0 is noticeable. Hyb0 ≈c Hyb2, and
thus the probability for the output 1 in Hyb2 is also noticeable. Finally, we get a contradiction to the
soundness of the sigma protocol (Ξ.P,Ξ.V), by using the prover sigma protocol messages from steps 2,
4 as messages to convince a quantum sigma protocol verifier Ξ.V. Since the probability that the verifier
V is convinced in Hyb2 is noticeable, and such verifier is convinced if and only if the sigma protocol
verifier is convinced, we get our contradiction.

5.2 Computational Zero Knowledge

We prove that Protocol Protocol 3 is quantum computational zero knowledge.
We describe a universal simulator Sim for the protocol. We denote by V∗ = {V∗λ, ρλ}λ∈N a

polynomial-size quantum verifier. The simulator takes as input an instance in the language x ∈ {0, 1}λ∩
L, a verifier circuit V∗λ and quantum auxiliary input ρλ for V∗λ. Subscripts are dropped when are clear
from the context.
Sim(x,V∗, ρ):

1. Extraction of Message from Verifirer: Sim executes the extractor Ext of the extractable com-
mitment scheme (Sen,Rec). Sim computes a simulation of the commitment interaction transcript,
inner state at the end of interaction and extracted message (TExt, σExt, βExt)← Ext(1λ,V∗, ρ) and
uses the simulated state σExt as inner state for V∗ in order to continue the protocol simulation6.

6By the standard definition, the extractor Ext simulates only the state and extracted message (σExt,mExt), but recall we can
assume without the loss of generality that it also simulates the commitment transcript TExt (see Remark 4.1), and the triplet is
indistinguishable from (T, σ,mT )← 〈Sen∗(ρ),Rec〉(1λ).
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2. Sigma Protocol First Part Simulation: Sim executes (αSim, γSim)← Ξ.Sim(x, βExt) and sends
αSim.

3. Malicious Verifier Challenge and ZK Argument: Sim takes the role of the honest prover P
when the verifier sends β and gives a ZK argument that ∃r ∈ {0, 1}∗ : 1 = VDcom(TExt, β, r). If
the argument was not convincing the simulator halts and concludes simulation.

4. Sigma Protocol Second Part Simulation: Sim sends γSim and concludes simulation.

It remains to prove that the simulator’s output is computationally indistinguishable from the verifier’s
output in the real interaction.

Proposition 5.2. For any polynomial-size quantum verifier V∗ = {V∗λ, ρλ}λ∈N,

{OUTV∗λ
〈P(w⊗k(λ)),V∗λ(ρλ)〉(x)}λ,x,w ≈c {Sim(x,V∗λ, ρλ)}λ,x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x).

Proof. We prove the claim by a hybrid argument, specifically, we consider hybrid distributions, all of
which will be computationally indistinguishable.

• Hyb0 : The output distribution of the simulator Sim(x,V∗, ρ).

• Hyb1 : Identical to the process Hyb0, except that we erase some extreme cases from the output
distribution, by making a check. Specifically, in step 3 when the verifier sends β and a ZK
argument, if βExt 6= β and also the argument by V∗ was convincing, the output of the process is⊥.

• Hyb2 : Identical to the process Hyb1, except that in steps 2, 4 where the simulator sends αSim

and γSim, the process instead uses the real sigma protocol prover to generate the messages,
(α, τ)← Ξ.P1(x,w

⊗k(λ)), γ ← Ξ.P3(βExt, τ).

• Hyb3 : Identical to the process Hyb2, except that when computing the the last sigma protocol
message γ ← Ξ.P3(βExt, τ), the process uses the β that V∗ sent instead of the extracted βExt, that
is, γ ← Ξ.P3(β, τ).

• Hyb4 : Identical to the process Hyb3, except that the check described in Hyb1 is not performed,
that is, even if the extracted challenge βExt and the challenge β sent by V∗ are distinct and the ZK
argument by V∗ succeeds, the process carries on to the last step 4 and does not outputs ⊥.

• Hyb5 : At this point in our series of hybrid distributions we do not use the extracted challenge βExt,
and we would like to move to a final process that does not use extraction at all. This process is
identical to Hyb4, with the exception that in step 1 of the simulation, where the simulator executes
Ext to simulate the transcript and inner state of V∗, the process simply executes the real interaction
between V∗ and Rec, (T, σ)← 〈V∗(ρ),Rec〉(1λ). Observe thatHyb5 is exactly the real interaction
output OUTV∗〈P(w⊗k),V∗(ρ)〉(x).

Before proving that each consecutive pair of hybrids is indistnguishable,
We prove why each consecutive pair of distributions are computationally indistinguishable, and our

proof is finished.

• Hyb0 ≈s Hyb1 : To show the indistinguishability we need to prove that the probabilistic event
that exists in Hyb0 but is erased in Hyb1 happens with a negligible probability. This is exactly the
statement proven in Claim 5.1.
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• Hyb1 ≈c Hyb2 : This indistinguishability follows from the special zero knowledge property of the
quantum sigma protocol.

• Hyb2 ≡ Hyb3 : Due to the fact that in both hybrid processes, whenever βExt 6= β the process halts
and outputs ⊥, it is always the case that the first prover sigma protocol message γ is computed
with respect to the sent β.

• Hyb3 ≈s Hyb4 : The reasoning for this indistinguishability is identical to the reasoning for the
indistinguishability Hyb0 ≈s Hyb1, and follows from Claim 5.1.

• Hyb4 ≈c Hyb5 : This indistinguishability follows from the extractability property (in Definition
4.1) of the commitment scheme (Sen,Rec).

Claim 5.1 (Extracted Information is Correct Under an Argument). Let V∗ = {V∗λ, ρλ}λ∈N a polynomial-
size quantum verifier. Consider the process of interaction between V∗(ρ) and P in the original protocol,
with one change: when V∗ gives an extractable commitment, instead of executing the interaction
(T, σ) ← 〈V∗(ρ),Rec〉(1λ), the process executes the extractor (TExt, σExt, βExt) ← Ext(1λ,V∗, ρ).
Then, there is some negligible function negl such that,

Pr [(β 6= βExt) ∧ (V∗ gives a convincing argument)] ≤ negl(λ) .

Proof. Let TSen be the transcript generated at the end of the extractable commitment protocol, in the
original interaction between V∗ and P. By the perfect binding of the commitment scheme (Sen,Rec)
it follows that if the statement from V∗’s ZK argument is correct, that is, there is some r ∈ {0, 1}∗
s.t. 1 = VDcom(TSen, β, r), then β is necessarily the committed message, in symbols (denoted in the
binding property in Definition 4.1) β = mTSen . It follows from the soundness of the argument that V∗
gives, that only with a negligible probability negl′(λ) it happens that both, β 6= mTSen , and V∗ gives a
convincing argument.

Recall that by the extractability property of the commitment scheme (Extractability property in
Definition 4.1), the following two distributions are indistinguishable,{

(T, σ,mT ) | (T, σ,mT )← 〈Sen∗λ(ρλ),Rec〉(1λ)
}
λ∈N

≈c
{

(TExt, σExt,mExt) | (σExt,mExt)← Ext(1λ,Sen∗λ, ρλ)
}
λ∈N

.

This means that when considering the process described in this claim’s statement, where extraction
takes place (instead of executing the commitment procedure), only with some negligible probability
negl(λ) it can happen that both, β 6= βExt, and V∗ gives a convincing argument, this is because if this
probability wasn’t negligible we would be able to break the extractability property of the commitment
scheme (Sen,Rec).
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Protocol 1

Common Input: An instance x ∈ L ∩ {0, 1}λ, for security parameter λ ∈ N.

P’s private input: A classical witness w ∈ RL(x) for x.

1. ProverCommitment: P sends non-interactive commitments to thewitnessw and to a string
of zeros in the length of an SFE secret key dk: cmt1 ← Com(1λ, w), cmt2 ← Com(1λ, 0|dk|).

2. Extractable Commitment to Verifier Challenge:

(a) V computes a challenge β ← Σ.V.
(b) V computes s ← {0, 1}λ, t ← {0, 1}λ, (pk, sk) = QHE.Keygen(1λ; r) where r is the

sampled randomness for the QFHE key generation algorithm. V sends

pk, ctV ← QHE.Encpk(t), C̃C← Obf
(
CC

[
QHE.Decsk(·), s, (r, β)

])
.

(c) P computes dk← SFE.Gen(1λ) and sends ctP ← SFE.Encdk(0
λ).

(d) V sends ĉt← SFE.Eval
(
CC

[
Id(·), t, s

]
, ctP

)
, where Id(·) is the identity function.

3. Sigma Protocol Execution:

(a) P computes (α, τ)← Σ.P1(x,w) and sends α.
(b) V sends the challenge β.

4. WI Proof by the Verifier: V gives a WI proof of the following statement:

• The transcript of the verifier so far is explainable.
• Or, cmt1 is a commitment to a non-witness u /∈ RL(x).

The witness that V uses for the proof is its randomness, that proves that the transcript is
explainable.

5. WI Proof by the Prover: P gives a WI proof of the following statement:

• x ∈ L.
• Or, cmt1, cmt2 are both valid commitments and furthermore, ctP is a valid SFE
encryption and is encrypted with a key dk which is the content of the commitment
cmt2.

The witness that P uses for the proof is w, that proves x ∈ L.

6. Sigma Protocol Completion: P sends γ = Σ.P3(β, τ).

7. Acceptance: V accepts if Σ.V(α, β, γ) = 1.

8. Reactions to Aborts: During the protocol, if either party sends a message of an incorrect
form or provides a non-convincing WI proof, the other party terminates the interaction.

Figure 1: A classical constant-round zero-knowledge argument for L ∈ NP with quantum security.
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Protocol 2

Common Input: A security parameter λ ∈ N.

Private Input of Sen: A messagem ∈ {0, 1}∗ to commit to.

1. Commitment by Sen: Sen sends a commitment tom, cmtSen ← Com(1λ,m).

2. Commitment by Rec: Rec sends a commitment to 0, cmtRec ← Com(1λ, 0).

3. ZK Argument by Rec: Rec interacts with Sen through (PNP,VNP) to give a ZK argument
that cmtRec is indeed a commitment to 0, that is, there exists randomness r0 ∈ {0, 1}poly(λ,1)
stringa s.t. cmtRec = Com(1λ, 0; r0).

4. Sen Challenges Rec: The parties interact so that Sen can offer to sendm if Rec managed to
trick Sen in the ZK argument.

(a) Rec computes dk← SFE.Gen(1λ) and sends ctRec ← SFE.Encdk(0
poly(λ,1)).

(b) Sen sends ĉt ← SFE.Eval
(
C1→m, ctRec

)
, where C1→m is the (canonical) circuit that

for input r1 ∈ {0, 1}poly(λ,1) s.t. cmtRec = Com(1λ, 1; r1), outputs m, and for any
other input outputs ⊥.

5. ZK Argument by Sen: Sen interacts with Rec through (PNP,VNP) to give a ZK argument
for the statement that its transcript until the end of step 4b is consistent, that is, there exists a
message and randomness for the honest sender algorithm Sen that generates the transcript.

aLet poly(λ, `) denote the polynomial that represents the amount of randomness the commitment algorithm Com(·)
needs for security parameter λ and message length `.

Figure 2: A Quantumly-Extractable Classical Commitment Scheme.
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Protocol 3

Common Input: An instance x ∈ L ∩ {0, 1}λ, for security parameter λ ∈ N.

P’s private input: Polynomially many identical witnesses for x: w⊗k(λ) s.t. w ∈ RL(x).

1. Verifier Extractable Commitment to Challenge: V computes β ← Ξ.V and commits
to it using the extractable commitment (Sen,Rec). V executes Sen(1λ, β) and P executes
Rec(1λ), and commitment transcript TSen is generated.

2. Prover Commitment: P computes (α, τ)← Ξ.P1(x,w
⊗k(λ)) and sends α to V.

3. Verifier Challenge and ZK Argument:

(a) V sends β.
(b) V proves in ZK (using the argument system (PNP,VNP)) that the sent β is the value inside

the extractable commitment, that is, ∃r ∈ {0, 1}∗ such that 1 = VDcom(TSen, β, r). If
the argument was not convincing P terminates communication.

4. Sigma Protocol Completion: If the proof by V was convincing then P computes γ ←
Ξ.P3(β, τ) and sends γ.

5. Acceptance: The verifier accepts iff 1 = Ξ.V(α, β, γ).

Figure 3: A quantum constant-round zero-knowledge argument for L ∈ QMA.
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