
A Comprehensive Framework for Fair and Efficient
Benchmarking of Hardware Implementations of

Lightweight Cryptography∗

Jens-Peter Kaps1, William Diehl2, Michael Tempelmeier3, Farnoud Farahmand1,
Ekawat Homsirikamol4 and Kris Gaj1

1 Cryptographic Engineering Research Group
George Mason University, Fairfax, Virginia 22030, USA

email: {jkaps, ffarahma, kgaj}@gmu.edu
2 Signatures Analysis Lab

Virginia Tech, Blacksburg, Virginia 24061, USA
email: wdiehl@vt.edu

3 Lehrstuhl für Sicherheit in der Informationstechnik
Technische Universität München, 80333 München, Germany

email: michael.tempelmeier@tum.de
4 Independent Researcher
email: ekawat@gmail.com

Abstract. In this paper, we propose a comprehensive framework for fair and efficient benchmarking of
hardware implementations of lightweight cryptography (LWC). Our framework is centered around the
hardware API (Application Programming Interface) for the implementations of lightweight authenticated
ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the
minimum compliance criteria, interface, and communication protocol supported by the LWC core. The
proposed API is intended to meet the requirements of all candidates submitted to the NIST Lightweight
Cryptography standardization process, as well as all CAESAR candidates and current authenticated
cipher and hash function standards. In order to speed-up the development of hardware implementations
compliant with this API, we are making available the LWC Development Package and the corresponding
Implementer’s Guide. Equipped with these resources, hardware designers can focus on implementing
only a core functionality of a given algorithm. The development package facilitates the communication
with external modules, full verification of the LWC core using simulation, and generation of optimized
results. The proposed API for lightweight cryptography is a superset of the CAESAR Hardware API,
endorsed by the organizers of the CAESAR competition, which was successfully used in the development
of over 50 implementations of Round 2 and Round 3 CAESAR candidates. The primary extensions include
support for optional hash functionality and the development of cores resistant against side-channel attacks.
Similarly, the LWC Development Package is a superset of the part of the CAESAR Development Package
responsible for support of Use Case 1 (lightweight) CAESAR candidates. The primary extensions include
support for hash functionality, increasing the flexibility of the code shared among all candidates, as well as
extended support for the detection of errors preventing the correct operation of cores during experimental
testing. Overall, our framework supports (a) fair ranking of candidates in the NIST LWC standardization
process from the point of view of their efficiency in hardware before and after the implementation of
countermeasures against side-channel attacks, (b) ability to perform benchmarking within the limited
time devoted to Round 2 and any subsequent rounds of the NIST LWC standardization process, (c)
compatibility among implementations of the same algorithm by different designers and (d) fast deployment
of the best algorithms in real-life applications.

Keywords: Lightweight cryptography · Authenticated cipher · Hash function · Hardware · API · Side-
Channel Analysis
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1 Introduction
Among the major cryptographic competitions, the first attempt at defining a hardware API (Application
Programming Interface) took place during the SHA-3 contest [1], [2]. In the area of high-speed implementations,
all 14 Round 2 candidates, all 5 Round 3 candidates, and the previous standard SHA-2 were implemented
using the proposed interface and communication protocol by the group from George Mason University
(GMU) [1]–[3]. This interface and protocol were then extended to the case of lightweight applications and
applied to the implementations of 13 Round 2 and 5 Round 3 SHA-3 candidates [4]. Alternative interfaces of
hash function cores were proposed in [5], [6]. No specific interface was endorsed by NIST as a requirement for
all implementations.

During the subsequent CAESAR contest (Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness), conducted in the period 2013-2019, all major decisions were made by the CAESAR
Committee, composed of 18 renowned cryptographers, representing multiple institutions worldwide [7].

The first version of the proposed hardware API for CAESAR was reported in [8]. This version was later
substantially revised, endorsed by the CAESAR Committee in May 2016, and published as a Cryptology
ePrint Archive in June 2016 [9]. A relatively minor addendum was proposed in the same month, and endorsed
by the CAESAR Committee in November 2016 [10].

The commonly accepted CAESAR Hardware API provided the foundation for the GMU Development
Package, released in May and June 2016 [11]. This package included in particular: a) VHDL code of a
generic PreProcessor, PostProcessor, and CMD FIFO, common for all Round 2 and Round 3 CAESAR
Candidates (except Keyak), as well as AES-GCM, b) Universal testbench common for all API-compliant
designs (aead_tb), c) Python app used to automatically generate test vectors (aeadtvgen), and d) Reference
implementations of several dummy authenticated ciphers.

This package was accompanied by the Implementer’s Guide to Hardware Implementations Compliant with
the CAESAR Hardware API, v1.0, published at the same time [12]. A few relatively minor weaknesses of this
version of the package, discovered when performing experimental testing using general-purpose prototyping
boards, were reported in [13], [14].

In December 2017, a substantially revised version of the Development Package (v.2.0) and the corresponding
Implementer’s Guide were published by the GMU Benchmarking Team [11], [15]. The main revisions included
a) Support for the development of lightweight implementations of authenticated ciphers, b) Improved support
for the development of high-speed implementations of authenticated ciphers, and c) Improved support for
experimental testing using FPGA boards, in applications with intermittent availability of input sources and
output destinations.

It should be stressed that at no point was the use of the Development Package required for compliance with
the CAESAR Hardware API. To the contrary, [12] clearly stated that the implementations of authenticated
ciphers compliant with the CAESAR Hardware API could also be developed without using any resources
belonging to the package [11], by just following the specification [9] directly.

In spite of being non-mandatory and the lack of official endorsement by the CAESAR Committee,
the CAESAR Development Package played a significant role in increasing the number of implementations
developed during Round 2 of the CAESAR contest. Out of 43 implementations reported before the end of
Round 2, 32 were fully compliant, and one partially compliant with the CAESAR Hardware API. All fully
compliant code used the GMU Development Package. The fully and partially compliant implementations
covered 28 out of 29 Round 2 candidates (all except Tiaoxin) [11]. In Round 3, the submission of the hardware
description language code (VHDL or Verilog) was made obligatory by the CAESAR Committee. As a result,
the total number of designs reached 27 for 15 Round 3 candidates. Out of these 27 designs, 23 were fully
compliant and 1 partially compliant with the CAESAR Hardware API [11]. Overall, publishing the CAESAR
Hardware API, as well as its endorsement by the organizers of the contest, had a major influence on the
fairness and the comprehensive nature of the hardware benchmarking during the CAESAR competition.

Several optimized lightweight implementations compliant with the CAESAR API, and based on v.2.0 of the
Development Package, were reported in [16]. In [17]–[20], several other implementations were enhanced with
countermeasures against Differential Power Analysis. In order to facilitate this enhancement, an additional
Random Data Input (RDI) port was added to the CAESAR Hardware API.

In this paper, we propose leveraging all resources developed and experiences gained during the CAESAR
competition, and applying them toward the development of a comprehensive framework for fair and efficient
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hardware benchmarking of candidates during Round 2 and any subsequent rounds of the NIST Lightweight
Cryptography standardization process. In Section 2, we describe the proposed hardware API for lightweight
cryptography, with a special focus on extensions compared to the CAESAR Hardware API [9], [10]. In
Section 3, we summarize the features of the LWC Development Package, including all extensions compared
to the corresponding parts of the CAESAR Development Package. In Section 4, we provide the suggested
timeline for the comprehensive hardware benchmarking effort focused on candidates qualified to Round 2 of
the NIST Lightweight Cryptography standardization process.

2 Hardware API for Lightweight Cryptography

2.1 Minimum Compliance Criteria
The main reasons for defining a common API for all hardware implementations of candidates submitted
to the NIST Lightweight Cryptography standardization project [21] are: a) Fairness of benchmarking,
b)Compatibility among implementations of the same algorithm by different designers, and c) Ease of creating
the supporting development package, aimed at simplifying and speeding up the design process. The
recommended minimum compliance criteria, supporting all the aforementioned objectives, are listed below.

Authenticated encryption and decryption should be implemented within one core, but only one of these
two operations should be executed at a time (half-duplex). If a given algorithm supports hashing, then
designers should develop two versions of the LWC core, capable of performing a) encryption, decryption, and
hashing, and b) encryption and decryption only.

Key scheduling of authenticated ciphers should be fully implemented within the LWC core. The LWC core
should properly handle incomplete blocks in associated data (AD), plaintext, hash message, and ciphertext.
In particular, padding should be implemented in hardware, and any unused portions of the last block released
to the output should be cleared (filled with zeros).

The decrypted plaintext blocks should be released immediately, without waiting for the result of authenti-
cation. We assume that the delayed release of decrypted data, dependent on the result of authentication,
will be handled by an external circuit, which is FIFO-based and similar for each candidate. Storing a
decrypted plaintext internally, until the result of the verification is known would a) complicate the design and
benchmarking, and b)make the calculation of the output latency and throughput dependent on the output
buffer size and implementation details (e.g., support for simultaneous reading and writing).

The LWC core should support only inputs composed of full bytes. The core should support empty
AD, plaintext, hash message, ciphertext, and any meaningful combination thereof. For the purpose of
benchmarking, the LWC core should support at least the following maximum sizes of associated data, plaintext,
and hash messages:
For single-pass algorithms:
Sa) 216 − 1 : default; used for comparison with implementations of two-pass algorithms
Sb) 232 − 1 : kept for compatibility with the CAESAR API; practical only for single-pass algorithms
Sc) 250 − 1 : minimum limit established by NIST for algorithms submitted to the Lightweight Cryptography
standardization process.
For two-pass algorithms:
Ta) 216 − 1 : default; used for comparison with implementations of single-pass algorithms
Tb) 211 − 1 : kept for compatibility with the CAESAR API
Tc) 250 − 1 : minimum limit established by NIST for algorithms submitted to the Lightweight Cryptography
standardization process.

The core should also support the corresponding ciphertext sizes. However, the size limit 216 − 1 should be
treated as default, and the implementers should do their best to eliminate (or at least minimize to negligible)
the influence of the remaining size limits on the a) maximum clock frequency, b) total number of clock cycles
for short messages, c) throughput for long messages.

The use of external memory is allowed only for two-pass algorithms, and only for results of the first pass.
For single-pass algorithms, no external memory should be used. Two-pass algorithms can typically benefit
from external memory, used to store intermediate values utilized as inputs to the second pass. An alternative
is to provide an entire input for the second time to the data inputs of the LWC core. However, doing that is
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Figure 1: LWC interface options

typically less efficient in terms of throughput. Additionally, providing the same input twice through the same
port complicates the input circuit, e.g., by requiring two costly DMA transfers, or placing external memory
and the associated control logic before the data input ports.

The core should have only one clock input and one internal clock signal. The implementation should be
able to operate at the maximum clock frequency determined by the critical path located entirely inside of the
LWC core. Using a single clock domain simplifies static timing analysis, generation of post-place and route
results, and optimization of FPGA tool options.

Parts of the data inputs that are not changed by encryption or decryption operations, respectively, should
not be passed to the output. In particular, Npub and AD should not be a part of the output from either
encryption or decryption (see Fig. 4). This assumption removes the need for any bypass FIFO necessary
to pass any unchanged data to the output. Any formatting of output from encryption/decryption, for the
purpose of transmission through the network or subsequent decryption/encryption, respectively, is assumed
to be performed outside of the LWC core.

The permitted widths of the data buses for the Public Data Input (PDI), Secret Data Input (SDI), and
Data Output (DO) ports are as follows: PDI and DO: w = 8, 16, or 32; SDI: sw = 8, 16, or 32. 8-bit,
32-bit, and 16-bit processors are among the most popular processors used in embedded systems, especially in
resource constrained environments. An LWC core needs to be able to communicate with at least one of these
processors. Hardware architectures of lightweight ciphers and hash functions often use the internal datapath
width equal to 8, 16, or 32 bits. It is quite natural (although not required) for an external data bus width to
match the internal datapath width. The permitted widths of external data buses also match those defined in
the CAESAR Hardware API [9]. This feature makes all existing lightweight implementations of CAESAR
candidates compatible with the proposed hardware API, which provides many helpful reference points for the
comparison of results, as well as many helpful open-source examples.

2.2 Interface
The proposed interface of the LWC core for single-pass algorithms is shown in Fig. 1a. This interface includes
three major data buses: PDI, SDI, and DO, as well as the corresponding handshaking control signals, named
valid and ready. The valid signal indicates that the data is ready at the source, and the ready signal
indicates that the destination is ready to receive it. The signal do_last is an optional signal which simplifies
the connection to an AXI4-Stream Slave (see Fig. 2). The physical separation of Public Data Inputs (such as
the plaintext, AD, public message number, etc.) from Secret Data Inputs (such as the key) is dictated by the
resistance against any potential attacks aimed at accepting public data, manipulated by an adversary, as a
new key.

The handshaking signals are a subset of major signals used in the AXI4-Stream interface [22]. As a result,
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LWC can communicate directly with the AXI4-Stream Master through the Public Data Input, and with the
AXI4-Stream Slave through the Data Output, as shown in Fig. 2. At the same time, LWC is also capable of
communicating with much simpler external circuits, such as FIFOs, as shown in Fig. 3. An advantage of
using FIFOs at all data ports is their potential role as suitable boundaries between two clock domains, one
used for communication and one for computation. This role is facilitated by the use of separate read and
write clocks, shown in Fig. 3 as rd_clk and wr_clk, respectively.

The reset input can be either synchronous or asynchronous, and either active-high or active-low, depending
on the conventions used in a given technology (e.g., FPGA vs. ASIC), as well as the personal preference of
the designers.

The recommended interface of two-pass algorithms is shown in Fig. 1b. Compared to the interface of
single-pass algorithms, shown in Fig. 1a, additional ports used for communication with the external Two-Pass
FIFO have been added. The width of the data buses of these ports is defined by a constant, denoted in Fig. 1b
as fw. The value of this constant can be selected freely by the designers, depending on the specific feature of
each two-pass algorithm and its implementation. In modern FPGAs, the Two-Pass FIFO will be implemented
using block memories (such as BRAMs of Xilinx FPGAs and embedded memory blocks of Intel FPGAs). A
FIFO with a capacity of 216 bytes can be built using a relatively small percentage of the total size of on-chip
block memories. Thus, the two-pass algorithms are not in any significant way disadvantaged compared to
single-pass algorithms. Additionally, even for single-pass algorithms, a NIST compliant implementation of
authenticated decryption is expected to store the deciphered plaintexts until the authenticity of the plaintext
is verified. Only then, the plaintext is allowed to be released. Implementing this feature in hardware would
require the memory approximately equal in size to the two-pass FIFO. Taking these considerations into
account, the two-pass FIFO is treated as an external circuit, located outside of the LWC core, and, as such,
should not affect either the resource utilization or the maximum clock frequency of the LWC core.
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2.3 Communication Protocol
All parts of a typical input and a typical output of an authenticated cipher and a hash function are shown
in Fig. 4. The proposed format of the Secret Data Input is shown in Fig. 5. The entire input starts with
an instruction, which in the case of SDI is limited to Load Key (LDKEY). The instruction is followed by
segments. Each segment begins with a separate header, describing its type and size. In the case of SDI,
the only segment type necessary to meet the minimum compliance criteria is: Key, denoting a string of bits
carrying an authenticated cipher key.

The proposed format of the Public Data Input is shown in Figs. 6(a)(c) and 7(a)(c). The allowed
instruction types are Activate Key (ACTKEY), Authenticated Encryption (ENC), Authenticated Decryption
(DEC), and Hash. The Activate Key instruction, typically directly precedes the Authenticated Encryption or
Authenticated Decryption instruction. Public Data Input (PDI) is divided into segments. Each segment
starts from the segment header, describing its type and length. If no data is to be sent to the LWC core for a
segment, in case of AD, Plaintext, Ciphertext, and Hash Message segments, the segment header still has to
be sent with the Segment Length field of the respective header set to 0.

The AD, Plaintext, and Hash Message can be (but do not have to be) divided into multiple segments
(as shown in Fig. 7(c)). The maximum size of each segment is assumed to be 216 − 1 bytes. The primary
reason for dividing AD, Plaintext, and Hash Message into multiple segments is that the full input size may
be unknown when the authenticated encryption or hashing starts. Npub can only use one segment, as its size
is typically quite small (in the range of 16 bytes).

Figures 6 and 7 present the typical format of input (PDI) and output (DO) of authenticated encryption,
decryption, and hash operation, respectively, for the ciphers that do not use Nsec. The order of segment
types that can be processed by a given core is a feature of the implemented algorithm and needs to be clearly
documented.

2.4 Side-channel Resistant Implementations
The NIST LWC Standardization Process does not mandate, but does encourage, algorithms and implementa-
tions that support effective and efficient side-channel countermeasures [21]. This includes implementations
secure against power analysis side-channel attacks (SCA), such as Simple Power Analysis (SPA) and Differential
Power Analysis (DPA).

One common requirement for nearly all algorithmic power analysis countermeasures, e.g., Boolean Masking
and Threshold Implementations (TI), is the consumption of randomness during cipher operations. An example
is the necessity of meeting the TI uniformity property, which often requires so-called refreshing randomness
[23], [24]. To facilitate side-channel resistant implementations that require refreshing randomness, we propose
an additional Random Data Input (RDI) bus, comprised of the signals rdi_data (of user selectable width
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rw), rdi_ready and rdi_valid (see Fig. 8a). No protocol support is provided for this optional interface.
The protected LWC core simply asserts the rdi_ready signal, checks rdi_valid and then reads rw bits of
random data.

The LWC API makes no assumptions on which kind of SCA protection is being implemented. However, if
data has to be separated into shares, this task should be performed in software. All shares should be sent to
the LWC cipher through the regular inputs, i.e., all public data should still arrive via PDI, and depart via DO.
For an n-share implementation, the Plaintext segments should then contain shares 1 through n, w bits each,
followed by the next w bits of each share, and so on. In the same fashion, separated data should leave the
core. Fig. 8b shows how a m · w/8-byte Plaintext, split into n shares, should arrive at PDI.

Share separation in software facilitates verification of countermeasures in hardware using leakage detection
techniques (e.g., t-test or χ2-test), for which false-positive results could occur if share separation were
performed in hardware. The implementation designer should provide two scripts, one that takes as input
the test vectors of an unprotected implementation and outputs the share separated data, and one that
combines share separated outputs back, so that they can be compared to the test vectors for the output of an
unprotected implementation.

2.5 Differences Compared to the CAESAR Hardware API
Major differences between the proposed Lightweight Cryptography Hardware API and the CAESAR Hardware
API, defined in [9], [10], are as follows:
In terms of the Minimum Compliance Criteria: a) One additional configuration, encryption/decryption/hash-
ing, has been added on top of the previously supported configuration: encryption/decryption. b) On top
of the maximum sizes of AD/plaintext/ciphertext already supported in the CAESAR Hardware API, two
additional maximum sizes, 216 − 1 and 250 − 1, have been added.
In terms of the Interface: An additional optional output, do_last, has been added to the Data Output ports.
In terms of the Communication Protocol: a) In the Instruction/Status, an additional opcode value, repre-
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senting a hash function, has been added. b) In the Segment Header word, two additional Segment Type
values, representing Hash Message and Hash Value, have been added.
In terms of Support for Side-Channel Resistant Implementations: No support for side-channel resistant hard-
ware implementations was provided in the CAESAR Hardware API. This specification addresses this issue in
Section 2.4, by defining a) An extended interface, shown in Fig. 8a, b) The requirement for the generation
and merging of shares outside of the LWC core, and c) The mechanism for passing the input shares to the
core and the output shares from the core, as shown in Fig. 8b.

3 Development Package and Implementer’s Guide
To make our framework more efficient in terms of the hardware development time, the designers are provided
with the following important resources, compliant with the use of the proposed LWC Hardware API:
a) VHDL code supporting the API protocol, common to all Lightweight Cryptography standardization
process candidates, as well as all CAESAR candidates and AES-GCM (LWCsrc)
b) Universal testbench, common for all API-compliant designs (LWC_TB)
c) Python app used to automatically generate test vectors (cryptotvgen)
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Figure 10: Top-level block diagram of the LWC core

d) Reference implementations of a dummy authenticated cipher and a dummy hash function
e) Implementer’s Guide, describing all steps of the development and benchmarking process, including
verification, experimental testing, and generation of results.

It should be stressed that the implementations of authenticated ciphers (with an optional hash functionality),
compliant with the LWC Hardware API, can also be developed without using any of the aforementioned resources,
by just following the specification of the LWC Hardware API directly. However, the necessary development
time would be most-likely significantly longer, and the obtained results very comparable.

The major phases of the API-compliant code development process are summarized in Fig. 9. The manual
design process is based on the specification and the reference C code of a given algorithm. The HDL code
specific for a given algorithm is combined with the code shared among all algorithms, provided in the folder
LWCsrc of the Development Package. Comprehensive test vectors are generated automatically by cryptotvgen
based on the reference C code. These vectors are used together with the universal testbench, LWC_TB, to
verify the HDL code using simulation. The verification is used to confirm the required functionality as well as
formulas for the execution time and throughput derived during the design process. Automated optimization
tools, such as Minerva [25], combined with FPGA tools, such as Vivado, are then used to generate post-place
and route results, to be entered into the results database.

3.1 Block Diagram and Design Methodology
Fig. 10 shows the proposed top-level block diagram of the lightweight architecture of an authenticated cipher
compliant with the LWC Hardware API. The top-level unit is made of four lower-level units called the
PreProcessor, CryptoCore, Header FIFO, and PostProcessor.

The PreProcessor is responsible for the following tasks: a) parsing segment headers, b) loading keys,
c) passing input blocks to the CryptoCore, along with information required for padding, and d) keeping
track of the number of data bytes left to process. The PostProcessor is responsible for the following tasks:
a) clearing any portions of output words not belonging to the ciphertext or plaintext, b) generating the header
for the output data blocks, and c) generating the status block with the result of authentication. The Header
FIFO is a small FIFO that temporarily stores all segment headers that need to be passed to the output.

Our Development Package supports the following dependencies between the data bus widths shown in
Fig. 10: a) sw = w (for w=8, 16, 32), b)Values of (w, ccw) pairs, where ccw is the bdi and bdo data bus
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width, equal to (8, 8), (16, 16), (32, 32), as was the case in the CAESAR Development Package v.2.0, and
(32, 8) and (32, 16), as two new variants. In general, when comparing the following variants: (32, 8) vs. (8,
8) and (32, 16) vs. (16, 16), we expect (a) negligible differences in throughput and latencies, especially for
medium to long messages, and (b) minimal differences in area.

The code of the PreProcessor, PostProcessor, and Header FIFO is provided as a part of the Development
Package. A designer only needs to develop the CryptoCore. The development of this module is left to
individual designers and can be performed using their own preferred design methodology. An example design
of the lightweight CryptoCore for a dummy authenticated cipher and a dummy hash function is provided as a
part of our distribution. The corresponding code is developed to work correctly with ccw = ccsw = 8, 16, and
32. Multiple examples of full designs developed during the CAESAR competition are also available at [11].

3.2 Test Vector Generator (cryptotvgen) and Universal Testbench (LWC_TB)
The Python script called cryptotvgen and accompanying examples provide a framework to generate test
vectors for any authenticated cipher, with optional hash functionality, based on the user’s specified parameters.
The framework relies on the reference implementations of the respective algorithms. The arguments of
cryptotvgen are the function of the a) algorithm, b) parameters of the algorithm (e.g., key size, block size),
and c) phase of verification. While it is possible to generate test vectors using pure shell command syntax,
this process is likely to be error-prone due to a large number of available options. Instead, we recommend that
the user creates a Python script that utilizes cryptotvgen as a third party library in Python, and then calls it
using cryptotvgen(args). Various examples of such Python scripts are provided as a part of the Development
Package.

A typical process of verifying the functionality of an authenticated cipher module includes several phases,
devoted to the verification of: a) a Single AD/Plaintext/Ciphertext/Hash Message block, b) Random inputs
with custom selected sizes, c) Empty AD/Plaintext/Ciphertext/Hash Message, and d) randomly generated
test vectors with varying AD, Plaintext, Ciphertext, and Hash Message lengths. The designer has the
flexibility of generating his/her own verification strategy, based on the detailed knowledge and understanding
of options of cryptotvgen. Test vectors should be selected in such a way that all corner cases specific to a
given algorithm are covered. Particular attention should be paid to the generation of inputs with partial
blocks.

Once test vectors are generated, they should be copied to the simulation folder. The simulation is
performed using the universal testbench (LWC_TB) until the end-of-file is reached or a mismatch between
expected output and actual output occurs. The testbench can also be configured to ignore errors and allow
the simulation to run until the specified time.

In practical applications, there is no guarantee that the input source will be ready with the new data
whenever the LWC core attempts to read it. Similarly, the destination circuit may not always be ready
to receive a new output. These conditions must be comprehensively verified using simulation before the
experimental testing is attempted. The provided testbench can be configured with specific values of the
intervals at which the source or destination are not ready to exchange data with the LWC core, expressed in
clock cycles.

3.3 Generation and Publication of Results
The generation of results is possible for the LWC core and the CryptoCore. We recommend generating results
primarily for the LWC cores. Benchmarking and reporting results for FPGAs should be performed using the
most-recent low-cost families of FPGA devices from at least two major vendors, Intel and Xilinx. For Intel,
such families include Cyclone V and Cyclone 10 FPGAs, and Cyclone V SoC FPGAs; for Xilinx Artix-7
and Spartan-7 FPGAs, and Zynq-7000 All Programmable SoCs. The most recent versions of tools from the
respective vendors should be used. Only the final results obtained after placing and routing should be reported.
In terms of optimization of tool options, for Xilinx FPGAs and SoCs, we recommend generating results using
Minerva [25]. In the case of ASICs, state-of-the-art libraries of standard cells should be used. Comprehensive
results, generated after the respective submission deadlines for the hardware description language code, are
expected to be made publicly available in the ATHENa Database of Results for Authenticated Ciphers [26]
or an equivalent or extended database of results, focused on LWC candidates.
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3.4 Experimental Testing
The framework from [13] and its extended version from [14] can be used for hardware testing. This framework
is based on the use of the Xilinx PYNQ board, including the Zynq-7000 All Programmable SoC. This
open-source project provides a hardware testbed for authenticated ciphers. It uses the Processing System
(PS) of Zynq SoC to generate test vectors. It then sends these test vectors to the Programmable Logic (PL)
and reads the results back, with the use of the Xilinx Direct Memory Access (DMA) to AXI4-Stream (AXIS)
controllers. Additionally, it features two hardware timers to measure the time needed in the core itself and
the overhead required to send data to and from the authenticated cipher core through DMA. It supports
on-chip power measurements and determining the maximum clock frequency using experimental testing.

This framework has been used successfully to locate errors in the HDL code of CAESAR candidates [13],
[14], preventing the corresponding implementations from running properly on the board. Even though
the generation of primary timing and resource utilization results does not require experimental testing,
the detected errors and the follow-up changes in the code may influence the final results. Additionally,
experimental measurements of power consumption and maximum clock frequency can be used to verify the
accuracy of the respective FPGA tools and the validity of assumptions used by these tools.

4 Proposed Timeline and Future Work
The initial version of the Hardware API for Lightweight Cryptography was submitted for discussion at
the lwc-forum on July 17, 2019. The received comments were addressed through direct responses sent to
the lwc-forum, as well as changes incorporated into the LWC Hardware API, Development Package, and
Implementer’s Guide. All the aforementioned resources were made publicly available on October 14, 2019.

For the maximum effectiveness of the hardware benchmarking process, we highly recommend that NIST
endorses the final version of the proposed API, reflecting the consensus of the cryptographic engineering
community. The authors also suggest that NIST enforces the submission of the hardware description language
code, compliant with this Hardware API, for all candidates qualified to Round 2. The deadline for such
submissions could be set in the middle of Round 2, e.g., to January 31, 2020. This first deadline should
concern only implementations unprotected against side-channel attacks, supported by the Development
Package released on October 14, 2019.

The GMU team is planning to a) support all Round 2 submission teams with their hardware implemen-
tation efforts, by providing technical support regarding the aforementioned Development Package and its
documentation, b) take responsibility for the uniform implementation of a significant subset of all Round 2
candidates. After the deadline for submitting unprotected hardware implementations passes, e.g., in February
2020, our team would be happy to perform the comprehensive benchmarking of all submitted codes, publish
the obtained results in an online database, and develop the corresponding written report with the thorough
analysis of the obtained results. Shortly after, our team will also review any comments received from NIST
and the entire cryptographic community and release the revised and extended version of the Development
Package and the corresponding Implementer’s Guide, supporting the design of implementations protected
against side-channel attacks. The deadline for submitting such implementations could be then set to the date
coinciding with the deadline for the complete Round 3 submissions.
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