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Abstract. Encrypt-then-MAC (EtM) is a popular mode for authenti-
cated encryption (AE). Unfortunately, almost all designs following the
EtM paradigm, including the AE suites for TLS, are vulnerable against
nonce misuse. A single repetition of the nonce value reveals the hash
key, leading to a universal forgery attack. There are only two authenti-
cated encryption schemes following the EtM paradigm which can resist
nonce misuse attacks, the GCM-RUP (CRYPTO-17) and the GCM/2+

(INSCRYPT-12). However, they are secure only up to the birthday bound
in the nonce respecting setting, resulting in a restriction on the data limit
for a single key. In this paper we show that nEHtM, a nonce-based vari-
ant of EHtM (FSE-10) constructed using a block cipher, has a beyond
birthday bound (BBB) unforgeable security that gracefully degrades un-
der nonce misuse. We combine nEHtM with the CENC (FSE-06) mode of
encryption using the EtM paradigm to realize a nonce-based AE, CWC+.
CWC+ is very close (requiring only a few more xor operations) to the
CWC AE scheme (FSE-04) and it not only provides BBB security but
also gracefully degrading security on nonce misuse.

Keywords: Graceful Security, Faulty Nonce, Mirror Theory, Extended Mirror
Theory, Expectation Method, CWC, GCM.

1 Introduction

An authenticated encryption (AE) mode is a cryptographic scheme that guaran-
tees the privacy and authenticity of a message concurrently. Authenticated en-
cryption has received much attention from the cryptographic community mostly
due to its application to TLS and many other protocols. The ongoing CAESAR
competition [1] which aims to identify a portfolio of authenticated encryption
schemes has drafted three use cases, namely lightweight, high-performance, and
defense-in-depth. The competition considers GCM [25] as the baseline algorithm
as it is widely adopted (e.g. in TLS 1.2 and in its variant RGCM [6], which shall
soon be considered in TLS 1.3 [11]) and standardized. ChaCha20+Poly1305 [7] is
a popular alternative for settings where AES-NI is not implemented.

? This is the full version of the article accepted in IACR-EUROCRYPT 2019.
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Encrypt-then-MAC. Both ChaCha20+Poly1305 and GCM follow the Encrypt-
then-MAC (EtM) paradigm [5]. Some other popular AE designs following the
same paradigm are CWC [23], GCM/2+

[3], CHM [21], CIP [22], GCM-RUP [4],
OGCM1 [40], OGCM2 [40] etc. The authenticated encryption of this paradigm
is described as follows. Let E be a nonce-based encryption scheme and I be a
message authentication code. Given a nonce N , a message M and an associated
data A, the ciphertext C = EN (M) is first computed, which is then used to
compute the tag T = I(N,A,C). All the aforementioned algorithms can be
described by an encryption EN (involving stream cipher encryptions) and a
MAC I (all constructions are algebraic hash function-based and most of them
uses Wegman-Carter MAC (WC) [39]). EtM is a popular design paradigm due to
its generic security guarantee. Authors of [12] showed that (stating informally)
if E is a secure symmetric encryption scheme and I is a secure MAC family then
this method of implementing EtM results in secure channels. This has later also
been analyzed by [5, 30].

1.1 Nonce Misuse Resistance Security

As shown in Joux’s forbidden attack [2], GCM turns out to leak the hash key
whenever an encryption query with a repeated nonce is executed. A similar
forgery attack can be applied against all aforementioned AE, except GCM-RUP
and GCM/2+

, as they use some variants of WC MAC. GCM-RUP resists this
attack as it uses the XEX [37] construction to define the tag. The tag of XEX
for a data D is computed as EK(HKh(D) ⊕ N) ⊕ HKh(D). However, in nonce-
respecting settings it gives up to the birthday bound security due to the following
attack.

- After making 2n/2 nonce-respecting queries, we expect a collision amongst
the values of HKh(D)⊕N , where n is the block size of the underlying block
cipher. This can be detected through a collision amongst the values of N⊕T ,
where T denotes the tag. Whenever this collision happens, one knows the
difference between the hash outputs, which eventually leaks the hash key.

GCM/2+
resists the attack as it uses the Encrypted Wegman-Carter-Shoup

(EWCS) [13] construction to define the tag. The tag of EWCS for a data D
is computed as EK2

(EK1
(N) ⊕ HKh(D)). However, in nonce-respecting settings

it gives up to the birthday bound PRF security as an adversary makes 2n/2

nonce respecting queries with the same message and observes no collision in the
tag.

In some contexts, it becomes challenging to maintain the uniqueness of the nonce,
for example on implementations in a stateless device or in cases where the nonce
is chosen randomly from a small set. Moreover, due to the faulty implementation
of the cipher or occurrence of some fault (for example, if the nonce gets reset),
the nonce may repeat. After making an internet-wide scan, Böck et al. [9] found
184 devices that used a duplicate nonce. Thus a construction which provides
security against nonce misuse is desirable.
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1.2 Beyond Birthday Bound Security with Graceful Degradation

Achieving beyond birthday security would provide a larger data limit for a single
key. GCM-RUP can be proven to have at most `q2

m/2
n forging advantage (in the

nonce-respecting model), where qm is the number of encryption queries and `
is the maximum number of data blocks a message and an associated data can
possess. For example, the GCM-RUP based on AES which can process a data
of size at most ` = 232 blocks should have a data limit qm ≤ 232 so as to
allow an advantage of at most 2−32, a tolerance level much smaller than that
provided by beyond birthday security. To achieve security beyond the birthday
bound in a nonce respecting setting, Encrypted Wegman-Carter with Davies-
Meyer [13] (or EWCDM) and Decrypted Wegman-Carter with Davies-Meyer [16]
(or DWCDM) have been proposed. However, these constructions provide birthday
bound security with only a single misuse of nonce. In other words, they do
not provide graceful degradation of security in nonce misuse settings. There
are other known constructions such as Dual Encrypted Wegman-Carter with
Davies-Meyer (or EWCDMD) [26, 31], Encrypted Wegman-Carter-Shoup [13] (or
EWCS) and single hash-key variants of CLRW2 [24]. However, these constructions
provide birthday bound PRF security in nonce-respecting settings. Note that the
PRF security of the MAC contributes to the privacy of the encryption of EtM
constructions.

Goal of the paper. The main goal of this paper is to find an efficient MAC
which is BBB (beyond birthday bound) secure both as a PRF and a MAC. More-
over, it should provide graceful security degradation in a nonce-misuse setting.
It must be mentioned here that there are some deterministic MAC construc-
tions (not requiring any nonce) that provide BBB security. These mainly follow
a double-block hash-then-sum approach [14, 15] and hence require the computa-
tion of two blocks of algebraic hashes (or one pass of block cipher or tweakable
block cipher executions). However, a single-block hash (which would be definitely
faster than two blocks of hash and require a smaller hash-key size) would be a
better option. So, this paper focuses on getting a design based on a single-block
algebraic hash (e.g., a single-call of the polynomial hash [29]).

Graceful Degradation of Security on Nonce Misuse. The most popular
metric to measure nonce misuse is the maximum number of multicollisions in
nonce values amongst all queries [36]. To the best of our knowledge, none of
the existing block cipher-based nonce-based MACs adhere to this notion with
BBB security guarantee. We have also explored many other variants of MAC
constructions using at most two block cipher calls and a single hash function
call. Unfortunately, we found that none of them give beyond birthday bound
security in terms of multicollision nonce misuse, even with multicollisions of size
2.

In this paper we instead consider another natural definition of nonce misuse,
called the number of faulty nonces. An authentication query is said to be a faulty
query if there exists a previous MAC query such that their corresponding nonces
match. The nonce in a faulty query is called a faulty nonce. The notion of a
faulty nonce is weaker than multicollision. When a counter is implemented in an
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aperiodic manner (e.g., timely nonce [9] used in TLS 1.2), a simple reset does not
give a large number of faulty nonces; there are easy countermeasures to prevent
a large number of faulty nonce encryptions.

1.3 Our Contribution

Our contribution in this paper is threefold which we outline as follows:

1. Multicollision on Universal Hash. We study the probability of occur-
rence of multicollisions in a universal hash function. In particular, we have shown
that the probability of obtaining a (ξ+ 1)-multicollision tuple amongst q inputs
is at most q2ε/ξ (see Sect. 5). This is clearly an improved bound as compared to
a straightforward application of the union bound. We believe that this problem
can have independent interest in the cryptographic community and can be used
to get improved bounds for other constructions also.

2. BBB Secure MAC with Graceful Security. In [28], a probabilistic
MAC EHtM has been analyzed and shown to have roughly 3n/4-bit MAC se-
curity which is also tight [18]. This paper analyzes a construction, which shall
be denoted as nEHtM, where (1) the random salt is replaced by the nonce and
(2) the two independent pseudorandom functions are replaced by a single-keyed
block cipher. Given a data D and a nonce N the tag is computed as follows (see
Fig. 1.1(b)):

nEHtMK,Kh(N,D)
∆
= EK(0‖N)⊕ EK(1‖HKh(D)⊕N).

We have shown that nEHtM is secure roughly up to 22n/3 authentication queries
and 2n verification queries in the nonce-respecting setting. Moreover, this secu-
rity degrades in a graceful manner on introduction of faults in the nonce. The
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Fig. 1.1. (a) On the left is the CWC MAC (MAC algorithm used in CWC); (b) on the
right is the domain separation variant of nonce-based Enhanced Hash-then-Mask.
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unforgeability of this construction shall be shown through an extended distin-
guishing game. We apply the expectation method (as it shall later be shown to
give a better bound than the coefficients-H technique) to bound the distinguish-
ing advantage of two worlds. In the ideal world, once we realize the random
tags Ti, we need to sample the hash key. This would determine all inputs of
the underlying block cipher. The equality patterns amongst the nonce values
are deterministic and we bound the number of faulty nonces by a parameter µ.

However, the equality patterns among other inputs of the form X
∆
= HKh(D)⊕N

are probabilistic due to randomness of the hash key. As there may not be suf-
ficient entropy in the hash-key (which could be n-bit for polynomial hash), the
number of multicollisions amongst the values of X may not be easy to compute.
We have tackled this problem using the multicollision result (as stated in the
first contribution) of the underlying hash function.

After we limit the multicollisions in the values of both X and N , we shall be
in a position to apply mirror theory to show a beyond birthday bound security
on the distinguishing advantage of nEHtM. Note that mirror theory cannot give
a beyond birthday bound security without restricting the number of multicolli-
sions.

It must be noted here that nEHtM (like all other candidates) is not secure
beyond the birthday bound under the notion of multicollision nonce misuse se-
curity and the corresponding attack is discussed in Supplementary Sect. A.

3. Application to a CWC-like AE Construction. We propose CWC+,
which is an instance of the EtM composition based on the CENC type encryption
with maximum width parameter and the nEHtM MAC. Moreover, we apply an
appropriate domain separation to make it a single-keyed construction (even the
hash key is generated from the the block cipher). The construction is a very
close variant of CWC as it requires a few additional xor computations, without
requiring any extra calls to the block cipher. Furthermore, CWC+ gives both (1)
BBB security and (2) graceful security degradation in the faulty nonce misuse
model. In particular, we have the following forging advantage of CWC+:

Auth[CWC+] =
105σ3`

22n
+

6σ`

2n
+

2qd
2ρ

+
2qd`

2n
+

(2qe + qd)2`µ

2n
+

(
5σ`µ

2n

)2

,

where qe and qd is the number of encryption and decryption queries, ρ is the
tag size, ` is the maximum number of message blocks queried including the
associated data blocks, σ is the total number of message blocks queried and µ is
the total number of faulty queries. Moreover, the security of CWC+ gracefully
drops to birthday bound when `µ is about 2n/2. However, when ` ≤ 2n/4, then
the security bound of CWC+ caps at roughly 27n/12, which is strictly greater
than the birthday bound. A better bound can be obtained if we assume some
restrictions over all the message lengths.

(3) Another notable feature of CWC+ is that the scheme remains secure even
with short tag lengths. In GCM, if the tag length is only 32 bits, then an ad-
versary forges the construction with just 1024 verification attempts by querying
with a single message consisting of 222 blocks. However, for the same tag size,
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authenticity advantage of CWC+ is 2−21 when adversary forges the construction
with 1024 verification attempts.

2 Preliminaries

Basic Notations: For a set X , X ←$X denotes that X is sampled uniformly at
random from X and is independent to all other random variables defined so far.
{0, 1}n denotes the set of all binary strings of length n and {0, 1}∗ denotes the
set of all binary strings of finite arbitrary length. We denote 0n (i.e., n-bit string
of all zeroes) by 0. For any element X ∈ {0, 1}∗, |X| denotes the number of bits
in x. For any two elements X,Y ∈ {0, 1}∗, X‖Y denotes the concatenation of
X followed by Y . For X,Y ∈ {0, 1}n, X ⊕ Y denotes the addition modulo 2 of
X and Y . For any X ∈ {0, 1}∗, parse X as X = X1‖X2‖ . . . ‖Xl where for each
i = 1, . . . , l − 1, Xi is an element of {0, 1}n and 1 ≤ |Xl| ≤ n. We call each Xi

a block. For a sequence of elements (X1, X2, . . . , Xs) ∈ {0, 1}∗, Xi
a denotes the

a-th block of i-th element Xi.

The set of all functions from X to Y is denoted as Func(X ,Y) and the set
of all permutations over X is denoted as Perm(X ). Func(X ) denotes the set of
all functions from X to {0, 1}n and Perm denotes the set of all permutations
over {0, 1}n. We often write Func instead of Func(X ) when the domain of the
functions is understood from the context. For integers 1 ≤ b ≤ a, (a)b denotes
a(a−1) . . . (a−b+1), where (a)0 = 1 by convention. [q] refers to the set {1, . . . , q}
and [q1, q2] to the set {q1, q1 + 1 . . . , q2 − 1, q2}.

2.1 Security Definitions

Pseudo Random Function (PRF) and Psuedo Random Permutation
(PRP). A keyed function F : K × X → Y with key space K, domain X and
range Y is a function for which F(K,X) shall be denoted by FK(X). Given an
oracle algorithm A that has oracle access to a function from X to Y, makes at
most q queries in time at most t, and returns a single bit, the prf-advantage of
A against the family of keyed functions F is defined as

AdvPRF
F (A)

∆
=
∣∣∣Pr
[
K ←$K : AFK(·) = 1

]
− Pr

[
RF←$ Func(X ,Y) : ARF(·) = 1

]∣∣∣ .
F is said to be a (q, `, σ, t, ε)-secure PRF if AdvPRF

F (q, `, σ, t)
∆
= maxA AdvPRF

F (A) ≤
ε, where the maximum is taken over all adversaries A that make q queries, with
a maximum of ` data blocks in a single query and the total number of data
blocks at most σ, with maximum running time t. Similarly, the prp-advantage
of A against a family of keyed permutations E is defined as

AdvPRP
E (A)

∆
=
∣∣∣Pr
[
K ←$K : AEK(·) = 1

]
− Pr

[
Π←$ Perm(X ) : AΠ(·) = 1

]∣∣∣ .
E is said to be a (q, t, ε)-secure PRP if AdvPRP

E (q, t)
∆
= maxA AdvPRP

E (A) ≤ ε,
where maximum is taken over all adversaries A that make q queries and have
running time at most t.
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Message Authentication Code (MAC). Let K,N ,M and T be four non-
empty finite sets, F : K ×N ×M→ T be a nonce-based MAC. For K ∈ K, let
AuthK be the authentication oracle, which takes as input (N,M) ∈ N ×M and
outputs T = F(K,N,M) and let VerK be the verification oracle, which takes as
input (N,M, T ) ∈ N ×M× T and outputs 1 if F(K,N,M) = T and otherwise
outputs 0. An authentication query (N,M) by an adversary A is called a faulty
query if A has already queried to the first oracle with the same nonce but with
a different message.

A (µ, qm, qv, t)-adversary against the unforgeability of F is an adversary A
with oracle access to AuthK and VerK such that it makes at most µ faulty au-
thentication queries out of at most qm authentication queries and qv verification
queries, with running time at most t. The adversary is said to be nonce respect-
ing if µ = 0 and nonce misusing if µ ≥ 1. However, the adversary may repeat
nonces in its verification queries. A is said to forge F if for any of its verification
queries (not obtained through a previous authentication query), the verification
oracle returns 1. The advantage of A against the unforgeability of F is defined as

AdvMAC
F (A)

∆
= Pr

[
K ←$K : AAuthK(·,·),VerK(·,·,·) forges

]
.

We write AdvMAC
F (µ, qm, qv, t)

∆
= maxA AdvMAC

F (A) where the maximum is
taken over all (µ, qm, qv, t)-adversaries. In all of these definitions, we skip the
parameter t, whenever we maximize over all unbounded adversaries.

Almost XOR Universal (AXU) Hash Function. Let K and X be two non-
empty finite sets and H be a keyed function H : Kh × X → {0, 1}n. Then, H is
said to be an ε-almost xor universal hash function if for any distinct X,X ′ ∈ X
and for any Y ∈ {0, 1}n,

Pr [Kh←$Kh : HKh(X)⊕ HKh(X ′) = Y ] ≤ ε.

We say that (X,X ′) is a colliding pair for a function HKh if HKh(X) = HKh(X ′).
H is said to be an ε-universal hash function if for any distinct X,X ′ ∈ X ,

Pr [Kh←$Kh : HKh(X) = HKh(X ′)] ≤ ε.

Polyhash Function. A general algebraic hash function is a multivariate poly-
nomial. Polyhash [29], one of the most popular examples of an algebraic hash
function, is a univariate polynomial over the hash key Kh and its coefficients are
the message blocks. For an n-bit hash key Kh, a message M ∈ {0, 1}∗ is first
padded with 10∗ such that the number of bits in the padded message becomes
a multiple of n. Let the padded message be M∗ = M1‖M2‖ . . . ‖Ml, where for
each i = 1, . . . , l, |Mi| = n. Then the PolyHash function is defined as follows:

PHKh(M) = MlKh ⊕Ml−1K
2
h ⊕ . . .⊕M1K

l
h,

where l is the number of n-bit blocks of the padded message M∗. It is a well
known result [17] that PolyHash is `/2n-universal hash function, where ` is the
maximum number of message blocks and the hash key is an element of the field
GF(2n).
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2.2 A Brief Revisit to the expectation method

System and Distinguisher. Consider a computationally unbounded distin-
guisher A (hence assumed deterministic) that interacts with either of the possibly
randomized stateful systems Sre or Sid, after which it returns a single bit 0 or 1.
For any such system Sre or Sid, the interaction between A and the system defines
an ordered sequence of queries and responses, τ = ((X1, Y1), (X2, Y2), . . . , (Xq, Yq))
called a transcript, where Xi is the i-th query of A and Yi is the corresponding
response from the system. Let Xre (resp. Xid) be the random variable that takes
a transcript resulting from the interaction between A and Sre (resp. A and Sid).
Then the advantage of A in distinguishing Sre from Sid is bounded from above
by the statistical distance between the two random variables Xre and Xid, which
is

∆(Xre, Xid)
∆
=
∑
τ

max {0,Pr [Xid = τ ]− Pr [Xre = τ ]} .

In the following, we briefly state the main result of the Expectation Method and
show that the coefficients-H technique [32] is a special case of the expectation
method. Both these techniques are used for bounding the information theoretic
distinguishing advantage of two random systems as defined above.

expectation method. The expectation method was introduced by Hoang and
Tessaro to derive a tight multi-user security bound of the key-alternating ci-
pher [19]. Subsequently, this technique has been used for proving the multi-user
security of the double encryption method in [20] and recently by Bose et al. to
bound the multi-user security of AES-GCM-SIV [10]. This method is a generaliza-
tion of coefficients-H technique. Let φ : Θ → [0,∞) be a non-negative function
which maps any attainable transcript to a non-negative real value. Suppose there
is a set of good transcripts such that for any good transcript τ ,

Pr [Xre = τ ]

Pr [Xid = τ ]
≥ 1− φ(τ). (1)

The statistical distance between the two random variables Xre and Xid can then
be bounded as

∆(Xre, Xid) ≤ E[φ(Xid)] + Pr[Xid ∈ Θbad], (2)

where Θbad is the set of all bad transcripts. In other words, the advantage of
A in distinguishing Sre from Sid is bounded by E[φ(Xid)] + Pr[Xid ∈ Θbad].
coefficients-H technique can be seen as a simple corollary of the expectation
method when φ is taken to be a constant function.

3 Design and Security Result of nEHtM and CWC+

In this section we discuss the design and the security result of our proposed
nonce-based message authentication code, called nEHtM and a nonce-based au-
thenticated encryption scheme, called CWC+. We begin our discussion with the
EtM composition result that combines a standard encryption and a MAC scheme
to achieve authenticated encryption.
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3.1 Encrypt-then-MAC: Generic Composition Result

Bellare and Namprempre in [5] and Canetti and Krawczyk in [12] explored ways
to combine standard encryption schemes with MACs to achieve authenticated
encryption schemes. Their results yield three different types of combinations:
(a) Encrypt-and-MAC (E&M), (b) MAC-then-Encrypt (MtE) and (c) Encrypt-
then-MAC (EtM). In this paper we focus only on EtM.

Let E = (E .KGen, E .Enc, E .Dec) be a nonce-based symmetric key encryption
scheme and I = (I.KGen, I.Tag, I.Ver) be a nonce-based message authentication
code. The function E .Enc : Ke × N ×M → C maps a tuple (Ke, N,M) to a
ciphertext C and the decryption function E .Dec : Ke×N ×C →M∪{⊥} maps
a legitimate tuple (Ke, N,C) to the corresponding message M and otherwise
returns the error symbol ⊥.

For the message authentication code I, I.Tag : Km × N × D → T maps a
tuple (Km, N,D) to a tag T and the verification function I.Ver : Km×N ×M×
T → {>,⊥} maps a quadruple (Ke, N,D, T ) to one of the two symbols {>,⊥}
such that if T is the valid tag for the tuple (Kn, N,D) then the verification
functions returns > (i.e., accept the message), otherwise it returns ⊥ (i.e., reject
the message).

Based on these two schemes, we define the EtM authenticated encryption
scheme AEE,I = (AE.KGen,AE.Enc,AE.Dec) where the key-generation algorithm
generates a random pair of keys (Ke,Km) ∈ Ke × Km. The encryption and
decryption algorithms are defined as follows:

AE.Enc(Ke‖Km, N,A,M) =

{
C ← E .Enc(Ke, N,M)

T ← I.Tag(Km, N,A‖C)

AE.Dec(Ke‖Km, N,A,C, T ) =

{
M ← E .Dec(Ke, N,C), if Z = >
⊥, if Z = ⊥

for Z ← I.Ver(Km, N,A‖C, T ). We consider two security notions for the AE
scheme: privacy and authenticity. The privacy advantage of AE is defined as
follows:

Advpriv
AE (A)

∆
= Pr[(Ke ×Km)←$ (Ke ×Km) : AAE.Enc(Ke,Km) = 1]− Pr[A$ = 1],

where the random oracle $ takes (N,A,M) as input and returns (C, T )←$ {0, 1}|M |+ρ.
We assume that the adversary A is nonce respecting, that is it does not make
two queries with the same nonce.

If an adversary A interacts with the encryption and the decryption oracles of
the AE, then the authenticity advantage of the AE is defined as follows:

Advauth
AE (A)

∆
= Pr[(Ke×Km)←$ (Ke×Km) : AAE.Enc(Ke,Km),AE.Dec(Ke,Km) forges],

where we say that the adversary A forges if the AE.Dec oracle returns a bit string
(which is not ⊥) for a query (N,A,C, T ) such that (C, T ) was not returned by
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the AE.Enc oracle as a result of the encryption query (N,A,M). Moreover, we
assume that A can repeat nonces in decryption queries and can also use the
nonces used in encryption queries.

The security of an AE scheme refers to the sum of its privacy and authenticity
advantages. The privacy advantage of a nonce-based encryption scheme E that
forms an AE with a MAC I is bound by the PRF advantage E and I, while
its authenticity advantage is bound by the forging advantage of the underlying
I. The achievement of a beyond birthday bound secure nonce-based AE scheme
following the EtM paradigm thus requires a nonce respecting BBB secure nonce-
based encryption scheme and a MAC mode that gives beyond birthday bound
security for PRF-distinguishability and unforgeability (possibly in the nonce
misuse model).

3.2 Encryption Modes used in Encrypt-then-MAC-based AE

A symmetric encryption scheme is generally defined through a pseudorandom
number generator (PRNG) that takes a short master key K and an initial value
or nonce N that generates a key stream (S1, S2, . . .). Then the ciphertext is gen-
erated from the plaintext and the key stream by applying the one time padding
technique.

The counter mode of encryption (CTR) is a popular symmetric key encryp-
tion scheme, which gives birthday bound security in terms of the number of
blocks, and is used as the underlying encryption scheme in AE constructions
such as CWC [23], GCM [25], GCM/2+ [3], GCM-RUP [4]. On the other hand
Multi-EDM [40] and Multi-EDMD [40], which give an almost n-bit security, are
used as the underlying encryption scheme in OGCM1 [40] and OGMC2 [40] re-
spectively.

Cipher-Based Encryption. Cipher-based encryption [21] (CENC) is parametrized
by a fixed non-negative integer w and so can be denoted as CENCw. The PRNG
of CENCw takes a key K, a nonce ctr and a length l as input and outputs a
sequence of fixed length key stream blocks, where the i-th key stream block is
defined as

Si
∆
= EK(ctr + j(w + 1))⊕ EK(ctr + j(w + 1) + i), j ∈ [0, l′ − 1], i ∈ [1, w],

where l′ = l/w. The optimal security of CENCw has been shown in [8] and it is
used as the underlying encryption scheme of CHM and CIP AE constructions.
An optimally secure nonce-based encryption mode CENCmax [8], in which w is
set to the maximum number of message blocks, is applied as the underlying
encryption scheme of mGCM [8].

3.3 MACs used in Encrypt-then-MAC-based AEs

Wegman-Carter MAC. The Wegman-Carter (WC) MAC [39] is an early
and popular nonce-based MAC that authenticates a message by masking its
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hash value with a random number generated through a pseudorandom function
applied on a nonce i.e.

WC[F,H](N,M)
∆
= FK(N)⊕ Hkh(M).

The WC MAC provides O(εqv) security when nonces are never reused, where ε
is the hash differential probability and qv is the number of verification attempts.
However, the construction has no security when the nonce repeats even once.
For some constructions, the hash key is revealed and for others, a simple forgery
is possible. Different instantiations of the pseudorandom function and hash func-
tion gives different instances of the WC MAC. The Wegman-Carter-Shoup (WCS)
MAC [38] is a popular instantiation of WC MAC, where the pseudorandom func-
tion is replaced by a block cipher. WCS has been used as the underlying MAC in
GCM, CHM and CIP. EDM and EDMD are used as instantiations of the PRF in
WC MAC and the resultant MACs are used as the underlying MAC algorithms
in OGCM1 and OGCM2 respectively. CWC MAC [23] (used as the MAC function
in the CWC AE construction) is an another variant of the WC MAC where the
pseduorandom function is replaced by a block cipher and the hash function is
defined as EK2(HKh(M)).

Encrypted Wegman-Carter-Shoup. The Encrypted Wegman-Carter-Shoup
(EWCS) MAC [13] has been proposed as a remedy to the problem of nonce mis-
use security over the WC MAC. The EWCS MAC encrypts the output of the
WCS MAC to generate the tag, and it is then used as the underlying MAC of
GCM/2+ construction. EWC gives a security of around 2n/2 when nonces do not
repeat. An attacker can make approximately 2n/2 queries with distinct nonces
but the same message and observe no collisions in the tag.

Xor-Encrypt-Xor. Xor-Encrypt-Xor (XEX) was originally proposed as a
mode of designing a tweakable block cipher [37]. Luykx et al. [4] used it as
the underlying MAC in GCM-RUP. For a nonce N and a message M , XEX works
as follows

XEX[E,H](N,M)
∆
= EK(N ⊕ HKh(M))⊕ HKh(M).

XEX is secure upto the birthday bound when nonces do no repeat. It can be
easily seen that a collision amongst the values of N ⊕HKh(M) leads to a forgery
which can be easily detected by finding collision in the values N ⊕ T .

EWCDM [13] and a single-keyed hash variant of CLRW2 [24] are some possible
alternatives of nonce-based MACs that can potentially be applied as the MAC
function of any EtM-based AE mode. EWCDM has been proven to be secure upto
approximately 22n/3 queries when nonces do not repeat [13], and the single-keyed
hash variant of CLRW2 can be shown to be birthday bound secure in the nonce
respecting setting.

It is to be noted that all these constructions has birthday bound PRF security
as an attacker can make 2n/2 queries with distinct nonces but same message and
observes no collision in the tag.
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3.4 Security Result of nEHtM: A Nonce-Based Version of EHtM

The previous section demonstrates that the MACs used in the existing AE modes
are not secure beyond the birthday bound when nonces repeat just once, making
them unsuitable for use in designing an AE that is resilient in the faulty nonce
model. This section introduces the nonce-based Enhanced Hash-then-Mask nE-
HtM and gives upto 2n/3-bit unforgeability in faulty nonce model. The Enhanced
Hash-then-Mask (EHtM) proposed by Minematsu [28], is the first BBB secure
PRF-based probabilistic MAC that uses only an n-bit random salt and an n-bit
PRF. nEHtM is structurally similar to EHtM, except that the random salt is
replaced by a nonce and the PRF by a block cipher. Moreover, for the purpose
of domain separation, we consider an (n− 1)-bit nonce and an (n− 1)-bit keyed
hash function. For any message M and nonce N , nEHtM is defined as follows

nEHtM[E,HKh ](N,M)
∆
= EK(0‖N)⊕ EK(1‖(N ⊕ HKh(M))).

We now state Theorem 1, which bounds the unforgeability of nEHtM in the faulty
nonce model. We also demonstrate a birthday bound forging attack on nEHtM
when the number of faulty nonces reaches an order of 2n/2. The underlying idea
of the attack is to form an alternating cycle of length 4 in the input of the block
cipher; details may be found in Supplementary Sect. A.

Theorem 1. Let M,K and Kh be finite and non-empty sets. Let E : K ×
{0, 1}n → {0, 1}n be a block cipher and H : Kh ×M → {0, 1}n−1 be an ε-AXU
(n − 1)-bit ε-AXU hash function. Let µ be a fixed parameter. Then the forg-
ing advantage for any (µ, qm, qv, t)-adversary against nEHtM[E,H] that makes
authentication queries with at most µ faulty nonces is given by

AdvMAC
nEHtM[E,H](µ, qm, qv, t) ≤ AdvPRP

E (µ, qm + qv, t
′) +

48q3
m

22n
+

12q4
mε

22n
+

12µ2q2
m

22n

+
qm + 2qv

2n
+

4q3
mε

2n
+ (2qm + qv)µε+ qvε,

where the time parameter t′ is of the order of t+ (qm + qv)tH and tH is the time
required for computing the hash function. Assuming ε ≈ 2−(n−1) and qm ≤ ε−1

simplifies this bound to

AdvMAC
nEHtM[Perm,H](µ, qm, qv, t) ≤

72q3
m

22n
+

(
12µ2q2

m

22n
+

(4qm + 2qv)µ

2n

)
+

(
qm + 4qv

2n

)
.

The proof of this theorem is deferred until Sect. 6. The forging advantage of
nEHtM for µ ≤ 2n/3 and qm ≤ 22n/3 is thus given by

AdvMAC
nEHtM[Perm,H](qm, qv, t) ≤

13qm
22n/3

+
4qv

22n/3
.

Remark 1. EHtM offers 3n/4-bit security [18], whereas its nonce-based variant
offers 2n/3-bit security. This is because of the need to bound the number of
multicollisions in the underlying hash function, for which the only source of
randomness present in nEHtM is the hash key whereas EHtM also involves the
random salts as an additional source of entropy.
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3.5 CWC+: A beyond birthday bound variant of CWC

We have already seen that CENCmax is a highly efficient optimally secure nonce
respecting encryption scheme and nEHtM is a nonce-based MAC that is secure
beyond the birthday bound in the faulty nonce model. Glueing them together
using the EtM paradigm, we realize an authenticated encryption scheme, called
CWC+, which gives a beyond the birthday bound security in the faulty nonce
model. The encryption and decryption functions of CWC+ are shown in Fig. 3.1.
The privacy and the authenticity advantages of CWC+ are stated in the following
theorem, the proof of which is deferred until Sect. 7.

Theorem 2 (Privacy and Authenticity Bound of CWC+). Let E : K ×
{0, 1}n → {0, 1}n be a block cipher and Poly : {0, 1}n × {0, 1}∗ → {0, 1}n−1

be the (n − 1)-bit truncated PolyHash function which truncates the first bit of
the PolyHash output. Let ρ and µ be two fixed parameters. Then the privacy
advantage for any (qe, qd, `, σ, t)-nonce respecting adversary against CWC+[E, ρ]
is given by

Advpriv
CWC+[E,ρ](qe, qd, `, σ, t) ≤ AdvPRP

E (σ + 2q, t′) +
105σ3`

22n
+

6σ`

2n
+

2qd
2ρ

+
2qd`

2n
.

The authenticity advantage for any (µ, qe, qd, `, σ, t)-adversary against CWC+[E, ρ]
is given by

Advauth
CWC+[E,ρ](µ, qe, qd, `, σ, t) ≤ AdvPRP

E (σ + 2q, t′) +
105σ3`

22n
+

6σ`

2n
+

2qd
2ρ

+
2qd`

2n

+
(2qe + qd)2`µ

2n
+

(
5σ`µ

2n

)2

.

We denote q = qe + qd, the total number of encryption and decryption queries
and t′ = O(t+ qtH + σ + 2q), where tH denotes the time for computing the hash
function and µ denotes the total number faulty encryption queries.

4 Mirror Theory

Mirror theory, introduced by Patarin in [33], is a technique to provide a lower
bound for the number of solutions to a given system of linear (more precisely,
affine) bivariate equations and non-equations in a finite field (e.g., GF(2n)).
Solving a system of linear or affine equations is straightforward and a common
problem in linear algebra. However, the problem starts complicating when non-
equations are included. A special form of problems involving non-equations is to
find distinct solutions to all the variables present in the system. If Y1, . . . , Ys are
the variables, the system of non-equations Yi ⊕ Yj 6= 0 for all i 6= j essentially
restricts the solutions to those in which all variables take distinct values. We
call such a solution an injective solution. However, Patarin did not consider any
other forms of non-equations [33–35]. This has been considered and termed as
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Algorithm CWC+.EncK(N,A,M)

1. L← EK(0); N ′ ← N‖0n/4−1;

2. l← d|M |/ne;
3. S ← CENCmax(K, 0‖N ′, l);
4. C ←M ⊕ first(S, |M |);
5. T̃ ← nEHtM[E,PolyEK(0)](N

′, C‖A);

6. T ← chopρ(T̃ );

7. return (C, T )

Algorithm CWC+.DecK(N,A,C, T )

1. L = EK(0); N ′ ← N‖0n/4−1;

2. l← d|C|/ne;
3. T̃ ′ ← nEHtM[E,PolyEK(0)](N

′, C‖A);

4. if chopρ(T̃
′) 6= T then return ⊥;

5. S ← CENCmax(K,N ′, l);

6. M ← C ⊕ first(S, |C|);
7. return M

Fig. 3.1. Encryption and Decryption functions of CWC+. PolyEK(0) denotes the Poly-
hash function with its n-bit hash key set to the encrypted value of 0. first(S, |M |)
denotes the first |M | bits in the sequence S. chopρ is a function that truncates the last
n− ρ bits of its input.

extended mirror theory in a recent work of Datta et al. [16]. In [16], the authors
provided a lower bound on the number of injective solutions when the maximum
component size wmax (a parameter that shall be defined soon) is three or less.
This paper extends their analysis for an arbitrary wmax.

Injective Solution of Equations. Let G = (V ∆
= {Y1, . . . , Yα},S) be a

simple acyclic graph with an edge-labelling function L : S → {0, 1}n. For an
edge {Yi, Yj} ∈ S, we write L({Yi, Yj}) = λij (and so λij = λji). The system of
equations induced by G, denoted EG, is then defined as:

EG
∆
= {Yi ⊕ Yj = λij ; {Yi, Yj} ∈ S}. (3)

That is, each vertex of G denotes a variable in the system of equations and each
edge of G denotes an equation in EG. We denote the set of components in G by
comp(G) = (C1, . . . , Ck), where k is the number of components in G. wi denotes
the size of (i.e. the number of vertices in) the component Ci, wmax denotes the
quantity max{w1, . . . , wk} (also commonly denoted as ξ in Patarin’s papers) and
σi the sum (w1 + · · ·+ wi) with the convention that σ0 = 0.

Definition 1. With respect to the system of equations EG (as defined above),
an injective function Φ : V → {0, 1}n is said to be an injective solution if
Φ(Yi) + Φ(Yj) = λij for all {Yi, Yj} ∈ S.

As the graph G is acyclic, there exists a unique path in the graph between any
two vertices Ys and Yt in the same connected component, which shall be denoted
by Pst. Adding all equations induced by the edges of any such path Pst gives

L(Pst) :=
∑
e∈Pst

L(e) = Ys ⊕ Yt.

So, for an injective solution to exist, the graph G (along with the label function)
must satisfy the following property:
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NPL (non-zero path label): For all paths P in graph G, L(P ) 6= 0.

It may be noted here that the NPL condition formalizes the notion of non-
degeneracy as mentioned in [33, 27]. The restriction on the graph to be acyclic
implies that the equations are linearly independent (since otherwise, there is a
possibility that the system becomes inconsistent).

Having identified the necessary condition for the existence of an injective
solution to EG corresponding to any simple edge-labeled undirected acyclic graph
G, we now state the following claim due to Patarin [33], which gives a lower
bound on the number of injective solutions to EG. Suppose G has α vertices and
q edges. Patarin claimed that the number of injective solutions to EG is at least
(2n)α
2nk

, provided σk(wmax − 1) ≤ 2n/64. Unfortunately, the proof of this claim
is unverifiable. [16] gives a detailed proof for the following lower bound on the

number of injective solutions: (2n)α
2nk
· (1− ε), with ε ≈ 0 and σ3

kw
2
max � 22n.

Injective Solution to a System of Equations and Non-Equations.
An extended system involving a system of non-equations along with a system

of equations shall now be examined. Let G = (V ∆
= {Y1, . . . , Yα},S t S ′,L)

be a simple undirected edge-labelled graph (L is a label function), whose edge
set is partitioned into two disjoint sets S and S ′. As before, we simply write
L({Yi, Yj}) = λij for all {Yi, Yj} ∈ S and L({Yi, Yj}) = λ′ij for all {Yi, Yj} ∈ S ′.
Let such a graph G induce a system of equations and non-equations EG as follows:

Yi ⊕ Yj = λij ∀ {Yi, Yj} ∈ S, (4)

Yi ⊕ Yj 6= λ′ij ∀ {Yi, Yj} ∈ S ′, (5)

For a system of equations and non-equations EG, an injective function Φ : V →
{0, 1}n is said to be an injective solution function if Φ(Yi)⊕ Φ(Yj) = λij for all
{Yi, Yj} ∈ S and Φ(Yi)⊕ Φ(Yj) 6= λ′ij for all {Yi, Yj} ∈ S ′.

Y1

Y2 Y3

λ1

λ1 + λ2

λ2

Fig. 4.1. EG
∆
= {Y1 ⊕ Y2 = λ1, Y1 ⊕ Y3 = λ2, Y2 ⊕ Y3 6= λ1 ⊕ λ2}. The continuous red

edges represent equations and the dashed blue edges represent non-equations. Clearly,
the system of equations and non-equations is inconsistent.

Good Graphs. We shall first investigate the case when EG has at least one so-

lution. To ensure this, the subgraph G= ∆
= (V,S,L|S), where L|S is the function

L restricted over the set S, must
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(i) be acyclic (i.e. No Cycle or NC)
(ii) satisfy the NPL condition and

(iii) satisfy the NCL (non-zero cycle label) property which says that for all
cycles C in G such that the edge set of C contains exactly one non-equation
edge e′ ∈ S ′, L(C) 6= 0 (see Fig.4.1 for an example).

If a graph G satisfies the above three conditions (i)-(iii), it is said to be a good
graph. In [16], authors have proved the following lower bound for wmax = 3.
Let G = (V,S t S ′,L) be a good graph with |V| = α, |S| = qm, |S ′| = qv. Let
comp(G=) = (C1, . . . , Ck) with |Ci| = wi (≤ 3) and σi = (w1 + · · · + wi). Let
Z ⊆ {0, 1}n such that |{0, 1}n \ Z| = c. The total number of injective solutions
(each solution is chosen from the set Z) for the induced system of equations and
non-equations EG is at least:

(2n)α
2nk

(
1− 5k3

22n
− qv + cα

2n−1

)
. (6)

Observe that qv+cα is the number of non-equations, considering univariate non-
equations arising from the constraint of each solution being from the set of size
2n − c. Now we state our theorem, which generalizes this result for any wmax.

Theorem 3. Let G = (V,S t S ′,L) be a good graph with α vertices such that
|S| = qm, |S ′| = qv. Let comp(G=) = (C1, . . . , Ck) and |Ci| = wi, σi = (w1 + · · ·+
wi). Then the total number of injective solutions chosen from a set Z of size
2n − c, for some c ≥ 0, for the induced system of equations and non-equations
EG is at least:

(2n)α
2nq

(
1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

− 2(qv + cα)

2n

)
, (7)

provided σkwmax ≤ 2n/4.

Proof. We give here a brief sketch of the proof. A detailed proof of the theorem
can be found in Supplementary Sect. B. The proof proceeds by counting the
number of solutions in each of the k components. We denote w̃ij to be the
number of edges from S ′ connecting vertices between i-th and j-th component
of G= and w′i to be the number of edges in S ′ incident on vi ∈ V\G=(V). It is easy
to see that the number of solutions for the first component is exactly (2n− cw1).
We fix a solution and count the number of solutions for the second component
which is (2n−w1w2− w̃1,2− cw2) as it must discard (i) w1 values (yi1 , . . . , yiw1

)
from the first component, (ii) w1(w2 − 1) values (yi1 ⊕L(Pj), . . . , yiw1

⊕L(Pj))
for all possible paths Pj from a fixed vertex to any other vertex in the second
component and (iii) cw2 + w̃12 values to compensate for the fact that the set
of values is no longer a group. In general, the total number of solutions for the

i-th component is at least
k∏
i=1

(
2n− σi−1wi−

i−1∑
j=1

w̃ij − cwi
)

. Suppose there are
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k′ vertices that do not belong to the set of vertices of the subgraph G=. Fix
such a vertex Yσk+i and let us assume that w′σk+i blue dashed edges are incident
on it. If yσk+i is a valid solution to the variable Yσk+i, then we must have (a)
yσk+i should be distinct from the previous σk assigned values, (b) yσk+i should
be distinct from the (i − 1) values assigned to the variables that do not belong
to the set of vertices of the subgraph G=(V) and (c) yσk+i should not take those
w′σk+i values.

Therefore, the total number of solutions is at least

hα ≥
k∏
i=1

(
2n − σi−1wi −

i−1∑
j=1

w̃ij − cwi
)
·
∏
i∈[k′]

(2n − σk − i+ 1− w′σk+i). (8)

Let us denote (w̃i1 + . . .+ w̃i,i−1) by pi and (w′σk+1 + . . .+w′σk+k′) by q′′v . After
a simple algebraic calculation on Eqn. (8), we obtain

hα
2nqm

(2n)α
≥

k∏
i=1

(2n − σi−1wi − pi − cwi)2n(wi−1)

(2n − σi−1)wi︸ ︷︷ ︸
D.1

(
1− 2q′′v

2n

)
. (9)

Let us denote the expression

((
wi
2

)
σ2
i−1 +

(
wi
2

)
(wi− 1)σi−1 +

(
wi
2

) (wi−2)(3wi−1)
12

)
by Ai. Expanding (2n − σi−1)wi along with some simple computations on D.1
gives

D.1 ≥
k∏
i=1

(
1− Ai

22n − 2n(σi−1wi +
(
wi
2

)
) +Ai

− 2n(pi + cwi)

22n − 2n(σi−1wi +
(
wi
2

)
) +Ai

)

(4)

≥
k∏
i=1

(
1− 2Ai

22n
− 2(pi + cwi)

2n

)
(5)

≥
(

1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

−

k∑
i=1

2(pi + cwi)

2n

)

(6)

≥
(

1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

− 2q′v
2n
− 2cα

2n

)
, (10)

where (4) follows from the fact that 2n(σi−1wi+
(
wi
2

)
)−Ai ≤ 22n/2, which holds

true when σkwmax ≤ 2n/4, (5) holds true due to the fact that Ai ≤ 3σ2
i−1

(
wi
2

)
and (6) holds true as we denote (p1 + . . . + pk) = q′v, the total number of blue
dashed edges across the components of G= and w1 + . . .+wk ≤ α. Finally, from
Eqn. (9), Eqn. (10) and qv = q′v + q′′v , the result follows. ut

5 Mutlicollision in Universal Hash Function

In this section, we study the muticollision advantage of a universal hash func-
tion. Suppose HKh is an ε universal hash function where the hash key Kh is cho-
sen uniformly at random from the hash-key space. For any q distinct messages
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M1, . . . ,Mq, the probability that there exist i 6= j, such that Mi and Mj collide
under the hash function HKh is at most ε

(
q
2

)
(by the union bound). Extending

this result for multicollisions, we say that (M1, . . . ,Mξ) is a ξ-multicollision tu-
ple for HKh if HKh(M1) = HKh(M2) = · · · = HKh(Mξ). When HKh is a ξ-wise
independent hash function [39] the probability that a ξ-tuple (M1, . . . ,Mξ) is a
ξ-multicollision tuple for HKh is 1/2n(ξ−1). Clearly, this cannot be concluded for
a universal hash function. In fact, one can easily construct a ξ-tuple of messages
such that the multicollision probability under the PolyHash function is `/2n.

In the following, we now provide a bound (better than ε
(
q
2

)
) on the existence

of a multicollision tuple for any given q messages.

Theorem 4 (Multicollision Theorem). Let X1, . . . , Xq be q distinct mes-
sages and HKh be an ε-universal hash function. Then for ξ ∈ N, the probability
that a (ξ + 1)-multicollision tuple exists in this set of messages is no more than
q2ε/2ξ.

Proof. Let us denote the required probability by P and set Zi = HKh(Xi),
i ∈ [q]. Also let X denote a (ξ + 1)-tuple (X1, . . . , Xξ+1) ∈ Vξ+1. Consider the
graph G = (V,S) whose vertex set V contains each of the q messages. An edge
between two nodes exists in S if and only if the hash values of the corresponding
messages collide. Therefore, the event HKh(X1) = . . . = HKh(Xξ+1) boils down
to the existence of a clique of size ξ + 1 in G. Due to Lemma 1, if G has q2/2ξ
edges, then any collection of ξ+ 1 vertices of the q vertices in V must contain at
least one pair which is in S. i.e. there must exist {v1, . . . , vs} ⊆ [q], for s = q2/ξ,
such that

Z1 = Z2 = . . . = Zξ+1 ⇒ Zv1 = Zv2 ∨ Zv3 = Zv4 ∨ . . . ∨ Zvs−1 = Zvs , (11)

Therefore, the probability P is:

max
X

Pr
[
Kh←$ {0, 1}n : ∃i1, · · · , iξ ∈ [q],HKh(Xi1) = · · · = HKh(Xiξ)

]
≤ Pr[Zv1 = Zv2 ∨ . . . ∨ Zvs−1 = Zvs ]≤

s/2∑
i=1

Pr[Zvi = Zvi+1
]≤sε

2
=
q2ε

2ξ
.

Lemma 1. Let q, ξ ∈ N. Then for any set V with |V| = q, there exists a graph

G = (V,S) with |S| =
⌈
q2

2ξ

⌉
such that any collection C of ξ + 1 vertices has at

least one edge in S joining two vertices in C.

Proof. Divide the q vertices into ξ subcollections of size
⌈
q
ξ

⌉
each, the last

subcollection possibly containing a lesser number of vertices. Construct S by
adding in it, all the edges required to form a clique Ci, i ∈ [ξ] out of each of the

ξ subcollections. Thus, there are at most ξ ·
(d qξe−1

2

)
edges in all the ξ cliques.

Observe that,

ξ ·
(⌈ q

ξ

⌉
− 1

2

)
< ξ ·

( q
ξ

2

)
≤ q2

2ξ
≤
⌈
q2

2ξ

⌉
.
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Hence, S must contain more edges, distinct from those involved in the ξ cliques,
which must exist between at least one pair of vertices in different cliques Ci and
Cj (i 6= j). Since there are ξ+ 1 vertices in C and a total of ξ cliques Ci formed
so far in G2, it can thus be inferred from the pigeonhole principle that at least
one clique Ci contains more than one edge from S, making clear the existence
of an edge from S in C. ut

6 Proof of Theorem 1

In this section, we prove Theorem 1. We shall often refer to the construction
nEHtM[E,H] as simply nEHtM when the underlying primitives are assumed to
be understood.

The first step of the proof is the standard switch from the computational setting
to the information theoretic one by replacing the block cipher EK with an n-
bit uniform random permutation Π at the cost of AdvPRP

E (qm + qv, t
′), where

t′ = O(t + (qm + qv)tH) and tH is the time required for computing the hash
function. Let us denote this modified construction as nEHtM∗[Π,H]. Hence,

AdvMAC
nEHtM(qm, qv, t) ≤ AdvPRP

E (qm + qv, t
′) + AdvMAC

nEHtM∗(qm, qv, t)︸ ︷︷ ︸
δ∗

. (12)

To get an upper bound for δ∗, we consider a perfect random oracle Rand, which
on input (N,M) returns T , sampled uniformly at random from {0, 1}n, and an
oracle Rej which always returns ⊥ (i.e., rejects) for all inputs (N,M, T ). Now,
due to [13, 18, 16] we have

δ∗ ≤ max
D

Pr[DTG[Π,HKh ],VF[Π,HKh ] = 1]− Pr[DRand,Rej = 1],

where the maximum is taken over all non-trivial distinguishers D. This formu-
lation allows us to apply the expectation method [19, 10] to prove that

δ∗ ≤ 48q3
m

22n
+

12q4
mε

22n
+

12µ2q2
m

22n
+
qm + 2qv

2n
+

4q3
mε

2n
+ (2qm + qv)µε+ qvε. (13)

Attack Transcript. Henceforth, we fix a deterministic non-trivial (i.e., one
that makes no repeated queries) distinguisher D that interacts with either (1)
the real oracle (TG[Π,HKh ],VF[Π,HKh ]) for a uniform random permutation Π
and a random hashing key Kh or (2) the ideal oracle (Rand,Rej) making at most
qm queries to its left (authentication) oracle with at most µ faulty nonces and
at most qv queries to its right (verification) oracle, and returning a single bit.
Then

Adv(D) =
∣∣∣Pr
[
DTG[Π,HKh ],VF[Π,HKh ] = 1

]
− Pr

[
DRand,Rej = 1

]∣∣∣ .
Let τm

∆
= {(N1,M1, T1), (N2,M2, T2), . . . , (Nqm ,Mqm , Tqm)}
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be the list of authentication queries made by D and the corresponding responses
it receives. Also let

τv
∆
= {(N ′1,M ′1, T ′1, b′1), (N ′2,M

′
2, T

′
2, b
′
2), . . . , (N ′qv ,M

′
qv , T

′
qv , b

′
qv )}

be the list of verification queries made by D and the corresponding responses
it receives, where for all j, b′j ∈ {>,⊥} denotes the set of accept (b′j = >) and
reject (b′j = ⊥) responses. The pair τ = (τm, τv) constitutes the query transcript
of the attack. For convenience, we slightly modify the experiment to reveal to
the distinguisher (after it made all its queries and obtained the corresponding
responses, but before it outputs its decision) the hashing key Kh, if D interacts
with the real world, or a uniformly random dummy key Kh if D interacts with
the ideal world. Hence, the extended transcript of the attack is τ ′ = (τ,Kh) where
τ = (τm, τv), τm and τv being the tuples of the authentication and verification
queries respectively. We shall often simply name a tuple (N,M, T ) ∈ τm an
authentication query, and a tuple (N ′,M ′, T ′, b′) ∈ τv a verification query.

A transcript τ ′ is said to be an attainable transcript (with respect to D) if the
probability of realizing this transcript in the ideal world is non-zero. It must be
noted that since attainability is with respect to the ideal world, any verification
query (N ′i ,M

′
i , T
′
i , b
′
i) even in an attainable transcript τ ′ = (τ,Kh) is such that

b′i = ⊥. We denote Θ to be the set of all attainable transcripts and Xre and Xid

to be the random variables that take an extended transcript τ ′ induced by the
real world and the ideal world respectively.

6.1 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the
ideal world. For notational simplicity, we denote Ni⊕HKh(Mi) as Xi. Note that
Xi is an n− 1 bit string.

Definition 2 (Bad Transcript). Given a paramter ξ ∈ N, where ξ ≥ µ, an
attainable transcript τ ′ = (τm, τv,Kh) is called a bad transcript if any one of
the following holds:

- B1 : ∃ i ∈ [qm] such that Ti = 0.
- B2 : ∃ i 6= j, j 6= k such that Ni = Nj and Xj = Xk.
- B3 : {i1, . . . , iξ+1} ⊆ [qm] such that Xi1 = Xi2 = . . . = Xiξ+1

(the optimal
value of ξ shall be determined later in the proof).

- B4 ∃ a ∈ [qv], ∃ i ∈ [qm] such that Ni = N ′a, Xi = X ′a and Ti = T ′a.

We denote by Θbad (resp. Θgood) the set of bad (resp. good) transcripts. We
bound the probability of bad transcripts in the ideal world as follows.

Lemma 2. Let Xid and Θbad be defined as above. Then

Pr[Xid ∈ Θbad] ≤ εbad =
qm
2n

+
q2
mε

2ξ
+ (2qm + qv)µε+ qvε.



BBB Secure MAC in Faulty Nonce Model 21

Proof. By the union bound,

Pr[Xid ∈ Θbad] ≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4]. (14)

In the following, we bound the probabilities of all the bad events individually.
The lemma will follow by adding the individual bounds. Clearly,

Pr[B1] ≤ qm
2n
. (15)

Bounding B2. Let F be the set of all query indices i for which there is a j 6= i
such that Ni = Nj . It is easy to see that |F| ≤ 2µ. Event B2 occurs if for some
j ∈ F , HKh(Mj) = Nk ⊕HKh(Mk) for some k 6= j. For any such fixed i, j, k, the
probability of the event is at most ε. The number of such choices of (j, k) is at
most 2µqm. Hence,

Pr[B2] ≤ 2µqmε. (16)

Bounding B3. Event B3 occurs if there exist ξ + 1 distinct authentication
query indices {i1, . . . , iξ+1} ⊆ [qm] such that Xi1 = . . . = Xiξ+1

. This event is
thus a (ξ+ 1)-multicollision on the ε universal hash function mapping (N,M) to
HKh(M)⊕N (as HKh is an ε-almost-xor universal). Therefore, by Theorem 4:

Pr[B3] ≤ q2
mε/2ξ. (17)

Bounding B4. For some a ∈ [qv] and i ∈ [qm], ifNi = N ′a,Xi = X ′a and Ti = T ′a,
then Mi 6= M ′a (as the adversary does not make any trivial query). Hence the
probability that Xi = X ′a holds is at most ε. Now, for any a, there can be at
most (µ + 1) indices i such that Ni = N ′a. Hence, the required probability is
bounded as

Pr[B4] ≤ (µ+ 1)qvε. (18)

The proof follows from Eqn. (14)-Eqn. (18). ut

6.2 Analysis of Good Transcripts

In this section, we show that for a good transcript τ ′ = (τ,Kh), realizing τ ′ is
almost as likely in the real world as in the ideal world.

Consider a good transcript τ ′ = (τm, τv,Kh). Since in the ideal world the au-
thentication oracle is perfectly random and the verification oracle always rejects,

Pr[Xid = τ ′] =
1

|Kh|
· 1

2nqm
(19)

We must now lower bound Pr[Xre = τ ′] i.e., the probability of getting τ ′ in the
real world. We say that a permutation Π is compatible with τm (respectively with
τv) if (A) (respectively (B)) holds.

(A) ∀i ∈ [qm],Π(N̂i)⊕ Π(X̂i) = Ti, (B) ∀a ∈ [qv],Π(N̂ ′a)⊕ Π(X̂ ′a) 6= T ′a,
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where N̂i = 0‖Ni, X̂i = 1‖Xi, N̂ ′a = 0‖N ′a and X̂ ′a = 1‖X ′a. We simply say that
Π is compatible with τ = (τm, τv) if it is compatible with τm and τv. We denote
by Comp(τ) the set of permutations Π that are compatible with τ . Therefore,

Pr[Xid = τ ′] =
1

|Kh|
· Pr[Π←$ Perm : Π ∈ Comp(τ)]

=
1

|Kh|
· Pr[Π(N̂i)⊕ Π(X̂i) = Ti,Π(N̂ ′a)⊕ Π(X̂ ′a) 6= T ′a]︸ ︷︷ ︸

Pmv

. (20)

We refer to the system of equations as “authentication equations” as they involve
only the authentication queries and to the system of non-equations as “verifi-
cation non-equations” as they involve only the verification queries. We denote
the system of authentication equations by Em and the system of verification
non-equations by Ev.

(Em) =


Π(N̂1)⊕ Π(X̂1) = T1

Π(N̂2)⊕ Π(X̂2) = T2

...

Π(N̂qm)⊕ Π(X̂qm) = Tqm

(Ev) =


Π(N̂ ′1)⊕ Π(X̂ ′1) 6= T ′1
Π(N̂ ′2)⊕ Π(X̂ ′2) 6= T ′2
...

Π(N̂ ′qv )⊕ Π(X̂ ′qv ) 6= T ′qv

Equation and Non-Equation Inducing Graph. From the above system of
bivariate affine equations and non-equations, we induce the edge-labelled undi-
rected graph Gτ ′ = (V,S t S ′), where the set of nodes V is the set of variables
{Y1, . . . , Yα}, S is the set of edges corresponding to each authentication equation
and S ′ is the set of edges corresponding to each verification non-equation. More-
over, if there is an authentication equation Ys⊕Yt = Ti, then the corresponding
edge {Ys, Yt} ∈ S is labelled Ti. Similarly, if there is a verification non-equation
Ys⊕Yt 6= T ′i , then the corresponding edge {Ys, Yt} ∈ S ′ is labelled T ′i . Moreover,
G=
τ ′ = (V,S) is the subgraph of Gτ ′ .

The proof of the following claim can be found in Supplementary Sect. C.

Claim 1. If the transcript τ ′ is good, then the induced graph Gτ ′ is valid.

Suppose there are k components in the subgraph G=
τ ′ and the size of the i-th

component is Wi. Thus, Wi is a random variable, and so is Wmax, which denotes
the size of the largest component. It is easy to see that Wmax ≤ ξ. As the graph
Gτ ′ is valid (follows from Claim 1), we assume ξ ≤ 2n/8qm (from the condition
of Theorem 3), which allows us to apply Theorem 3 with c = 0 to obtain,

Pmv ≥
1

2nqm
·
(

1−

k∑
i=1

6σ2
i−1

(
Wi

2

)
22n

− 2qv
2n

)
. (21)
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Therefore, Eqn. (19)-Eqn. (21) imply that the ratio Pr[Xre=τ ′]
Pr[Xid=τ ′] is no less than

(
1−

k∑
i=1

6σ2
i−1

(
Wi

2

)
22n

− 2qv
2n

)
(1)

≥ 1−
( k∑

i=1

24q2
m

(
Wi

2

)
22n

+
2qv
2n︸ ︷︷ ︸

φ(τ ′)

)
, (22)

where (1) follows due to the inequality σi−1 ≤ 2qm.

We now compute the expectation of φ(Xid) as follows.

E

[( k∑
i=1

24q2
m

(
Wi

2

)
22n

+
2qv
2n

)]
=

(
2qv
2n

+
24q2

m

22n
E

[ k∑
i=1

(
Wi

2

)])
. (23)

Let W̃i = Wi − 1 and therefore,

E

[ k∑
i=1

(
Wi

2

)]
= E

[ k∑
i=1

(
W̃i

2

)]
+ E

[ k∑
i=1

W̃i

]
(2)

≤ E

[ k∑
i=1

(
W̃i

2

)]
+ 2qm,(24)

where (2) holds as (W̃1 + . . . W̃k) = σk − k ≤ 2qm. Let us consider the following
two indicator random variables

Iij =

{
1, if Xi = Xj

0, otherwise
Ĩij =

{
1, if Ni = Nj

0, otherwise.

Therefore,

E

[ k∑
i=1

(
W̃i

2

)]
(3)
=

qm∑
i 6=j

E[Iij ] +

µ∑
i 6=j

E[Ĩij ]

(4)
=

qm∑
i 6=j

Pr[HKh(Mi)⊕ HKh(Mj) = Ni ⊕Nj ] + µ2/2

(5)

≤
(
qm
2

)
ε+ µ2/2 ≤ q2

mε/2 + µ2/2, (25)

where (3) holds due to the linearity of expectation, (4) holds from the definition
of the indicator random variable and (5) holds from the ε-almost-xor universal
probability of the underlying hash function. Therefore, from Eqn. (23)-Eqn. (25),
we have

E[φ(Xid)] ≤
(

12q4
mε

22n
+

12µ2q2
m

22n
+

48q3
m

22n
+

2qv
2n

)
. (26)
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Finalizing the proof. We have assumed that ξ ≥ µ and from the condition
of Theorem 3, we have ξ ≤ 2n/8qm. By assuming µ ≤ 2n/8qm (otherwise the
bound becomes vacuously true) we choose ξ = 2n/8qm. Hence, the result follows
by applying Eqn. (2), Lemma 2, Eqn. (26) and ξ = 2n/8qm. ut

6.3 Security Bound using the Coefficients-H Technique

We instantiate the underlying hash function of nEHtM by a truncated n-bit
PolyHash function that truncates the first bit of the PolyHash output which is
2`/2n-axu hash function [14], where ` is the maximum number of message blocks.

Therefore, from Lemma 2, Eqn. (22) and the inequality
∑k
i=1

(
Wi

2

)
≤ ξqm, we

obtain the following bound using the coefficients-H technique.

δhc ≤
qm + 2qv

2n
+
q2
m`

2nξ
+

(2qm + qv)2`µ

2n
+

2qv`

2n
+

24q3
mξ

22n
. (27)

We choose the optimal value of ξ such that the right hand side of the Eqn. (27)

gets maximized. To obtain such a value of ξ, we must have
q2m`
2nξ =

24q3mξ
22n . By

solving the equality for ξ, we obtain ξopt =

(
`2n

24qm

) 1
2

. Plugging-in this optimal

value of ξopt into Eqn. (27) gives

δhc ≤
qm + 2qv

2n
+

(2qm + qv)2`µ

2n
+

2qv`

2n
+ 10

(
q5
m`

23n

) 1
2

.

The above bound holds true as long as q ≤ 23n/5/`1/5 ≈ O(23n/5), which is
weaker than the boundO(22n/3) that we obtained using the expectation method.

7 Proof of Theorem 2

In this section we prove Theorem 2. Instead of separately proving the privacy and
the authenticity result of the construction, we bound the distinguishing advan-
tage of the two random systems: (i) the pair of oracles (CWC+.Enc,CWC+.Dec)
for a random permutation Π, which is called the real system or the real world and
(ii) the pair of oracles (Rand,Rej), which is called the ideal system or the ideal
world. The privacy and authenticity bounds of CWC+ then follow as a simple
corollary of this result. We prove the following information theoretic bound of
CWC+.

δ∗ ≤ 97σ3`

22n
+

5σ

2n
+
σ`

2n
+

8σ3

22n
+

2qd
2ρ

(
1+

`

2n−ρ

)
+

(2qe + qd)2`µ

2n
+

(
5σ`µ

2n

)2

, (28)

where δ∗ is the maximum advantage in distinguishing the real world from the
ideal world and we assume qe` ≈ σ, σ ≤ 2n/48. Due to limitations in space, we
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provide here only a sketch of the proof, and details may be found in Supplemen-
tary Sect. D.

Description of the ideal world. We begin with the assumption that all
the queried messages of an adversary are of length multiple of n and the number
of blocks of i-th message is li. Now, we consider a deterministic distinguisher
A that interacts either with the real world or with the ideal world. Rej simply
rejects all the verification attempts of A whereas Rand, on the i-th encryption
query (Ni,Mi, Ai) works as shown in Fig. 7.1.

Algorithm Rand(Ni, Ai,Mi)

1. if Ni ∈ D, let Ni = N
2. if li = lN , then Si ← L(N)
3. if li < lN , then Si ← L(N)[1, nli]
4. if li > lN , then
5. R←$ ({0, 1}n)li−lN , Si ← L(N)‖R
6. lN = li
7. else
8. Si ←$ ({0, 1}n)li , L(Ni)← Si, lNi = li
9. D ← D ∪ {Ni}

10. T̃i ←$ {0, 1}n; Ti ← chopρ(T̃i)
11. return (Si, Ti)

Fig. 7.1. Random oracle for the ideal world. lN denotes the updated number of
keystream blocks for nonce N and L(N) denotes the updated keystream blocks for
nonce N of length lN . D denotes the domain of the nonce. chopρ is a function that
truncates the last n− ρ bits of its input.

Attack Transcript. Let D be a fixed non-trivial computationally unbounded
deterministic distinguisher that interacts with either the real world or the ideal
world, making at most qe queries to the left (encryption) oracle with at most
µ faulty nonces and at most qd queries to its right (decryption) oracle, and
returning a single bit.

Let τe
∆
= {(N1,M1, A1, S1, T1), . . . , (Nqe ,Mqe , Aqe , Sqe , Tqe)} be the list of en-

cryption queries and τd
∆
= {(N ′1, A′1, C ′1, T ′1, Z1), . . . , (N ′qd , A

′
qd
, C ′qd , T

′
qd
, Zqd)} be

the list of decryption queries, where Zi = Mi ∪ {⊥}. Note that the encryption
oracle in both the worlds releases the keystream as it determines the cipher-
text uniquely. For convenience, we reveal the hash key Kh, which is EK(0), if
D interacts with the real world or a uniform random element from {0, 1}n, if D
interacts with the ideal world, and also the n-bit tag (without truncating) i.e.,

T
∆
= (T̃1, . . . , T̃qe) to the distinguisher after it made all its queries and obtains

corresponding responses but before it output its decision and thus the extended
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query transcript of the attack is τ ′ = (τ,Kh, T̃), which is called the extended
transcript.

Bad Transcripts. Recall that Ni is a 3n/4-bit string. We denote 0‖Ni‖0n/4−1

as N̂i and 1‖Xi as X̂i, where Xi
∆
= Ni‖0n/4−1 ⊕ PolyKh(Mi). Moreover, Si[j]

denotes the j-th keystream block for i-th message. With these notations, we
define the bad transcript as follows: a transcript τ ′ = (τe, τd,Kh, T̃) is called
bad if any one of the following holds:

- B.1 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = Kh.

- B.2 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = 0.

- B.3 : ∃ i ∈ [qe] and j, j′ ∈ [li] such that Si[j] = Si[j
′].

- B.4 : ∃ i ∈ [qe] such that T̃i = 0.

- B.5 : ∃i 6= j, j 6= k such that N̂i = N̂j and X̂j = X̂k.

- B.6 : {i1, . . . , iξ+1} ⊆ [qe] such that X̂i1 = X̂i2 = . . . = X̂iξ+1
for some

parameter ξ ≥ µ.

- B.7 ∃ a ∈ [qd], ∃ i ∈ [qe] such that N̂i = N̂ ′a, X̂i = X̂ ′a and T̃i = T ′a.

Θbad (resp. Θgood) denotes the set of bad (resp. good) transcripts. Moreover, Xre

and Xid denotes the probability distribution of realizing an extended transcript
τ ′ in the real and the ideal world respectively. We bound the probability of bad
transcripts in the ideal world as follows.

Lemma 3. Let Xid and Θbad be defined as above. Then

Pr[Xid ∈ Θbad] ≤ εbad =
2σ

2n
+
qe`

2

2n
+
qe
2n

+
q2
e`

ξ2n
+

(2qe + qd)2`µ

2n
+

2qd`

2n
.

Proof of the lemma can be found in Supplementary Sect. D.

Good Transcripts. Let τ ′ = (τe, τd,Kh, T̃) be a good transcript. Since in the
ideal world the encryption oracle is perfectly random and the decryption oracle
always rejects, one simply has

Pr[Xid = τ ′] =
1

2n
·
r∏
t=1

1

2nlt
· 1

2nqe
(29)

where r is the number of groups of nonces and lt be the updated number of
generated keystream blocks for group t.

Real Interpolation Probability. To bound the probability of getting τ ′ in
the real world from below, we model the system of equations and non-equations
into the graph theoretic setting to obtain the graph Gτ ′ , where we have σ + qe
equations and 2n−ρqd non-equations. Similar to the analysis of good transcripts
in the proof of Theorem 1, one can argue that as τ ′ is good, Gτ ′ is valid (i.e.,
it satisfies NC, NPL and NCL conditions). Thus, we assume ξ ≤ 2n/8σ` (from
the condition of Theorem 3), which allows us to apply Theorem 3 with c = 1,
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σi−1 ≤ σk ≤ 2σ and α ≤ σ and then dividing by Eqn. (29) we have,

Pr[Xre = τ ′]

Pr[Xid = τ ′]
≥ 1−

( k∑
i=1

24σ2
(
W ′i
2

)
22n

+
2qd
2ρ

+
2σ

2n

)
︸ ︷︷ ︸

φ(τ ′)

, (30)

where k is the number of components of Gτ ′ and W ′i denotes the size of the i-th
component. Note that there are 2n−ρqd non-equations as the adversary forges
with ρ bit tags T ′a and there are 2n−ρ tags T̃ s whose first ρ bits match with T ′a.
Moreover, we consider c = 1 due to the fact that we choose elements from the
set {0, 1}n excluding the hash key.

Finalizing the proof. We calculate the expectation of φ(τ ′) as follows:

E[φ(Xid)] =

(
2qd
2ρ

+
2σ

2n
+

24σ2

22n
E

[ k∑
i=1

(
W ′i
2

)])
. (31)

It is easy to see that
(
W ′i
2

)
≤
(
Wi

2

)(
2`
2

)
, where Wi is defined in the proof of Theo-

rem 1. Therefore from Eqn. (24) and Eqn. (25),

E

[ k∑
i=1

(
W ′i
2

)]
≤ 2q2

e`
3

2n
+ µ2`2 + 4qe`

2, (32)

where the almost xor universal probability of the truncated PolyHash is at most
2`/2n. Finally, from Eqn. (31) and Eqn. (32) we obtain

E[φ(Xid)] ≤
(

2qd
2ρ

+
2σ

2n
+

48σ4`

23n
+

(
5σ`µ

2n

)2

+
96σ3`

22n

)
, (33)

where we assume that `qe ≈ σ, the total number of message blocks queried.

Finalization. We have assumed that ξ ≥ µ and from the condition of The-
orem 3, we have ξ ≤ 2n/8σ`. By assuming µ ≤ 2n/8σ` (otherwise the bound
becomes vacuously true) we choose ξ = 2n/8σ`. Hence, the bound stated in
Eqn. (28) follows by applying Eqn. (2), Lemma 3, Eqn. (33), ξ = 2n/8σ` and
σ ≤ 2n/48. ut
Concluding the proof of theorem 2. The privacy bound of CWC+ is
derived from Eqn. (28) by setting µ = 0 and the bound stated in Eqn. (28) is
itself the authenticity bound of CWC+.
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Supplementary Materials

A Nonce Misuse Attack on nEHtM

In the following we discuss the birthday bound forging attack on nEHtM when
the number of faulty query is roughly 2n/2. As stated before that the underlying
idea of the attack is to form an alternating cycle of length 4 in the input of
the block cipher. For this an adversary A makes two sets of 2n/2 MAC queries;
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one with message M and another with message M ′(6= M) and then finds four
queries such that the sum of their tag becomes zero. A mounts the attack in the
following two phases. (a) In the first phase it finds out the quadruple that makes
the tag sum zero. (b) In the second phase it forges the MAC. The algorithmic
description of the attack is shown in part (b) of Fig. A.1.

First phase of the attack:

1. A makes q∗ = 2n/2 MAC queries with distinct nonces but same message M ,
i.e., (N1,M) 7→ T1, (N2,M) 7→ T2, . . . , (Nq∗ ,M) 7→ Tq∗ , where T1, T2, . . . , Tq∗

are the tags.

2. A makes another 2n/2 MAC queries with same nonces but different message
M ′, i.e., (Nq∗+1,M

′) 7→ Tq∗+1, . . . , (N2q∗ ,M
′) 7→ T2q∗ , where Nq∗+i = Ni

for all i ∈ [q∗] and Tq∗+1, Tq∗+2, . . . , T2q∗ are the tags.

3. A finds two distinct query indices i, j ∈ [q∗] such that Ti⊕Tj⊕Tq∗+i⊕Tq∗+j =
0.

N

EK

0
⊕

M

EK

1

HKh

⊕

T

M M ′

...

...
...

...
...

N1 Nq∗+1

Ni Nq∗+i

Nj Nq∗+j ,

δ

Fig.A.1. (a) Left part is the domain separation variant of Nonce based Enhanced
Hash-then-Mask with an n-bit keyed hash function HKh and an n-bit block cipher EK ;
(b) Right part is the forging attack on the construction.

Note that, the event CollT
∆
= Ti ⊕ Tj ⊕ Tq∗+i ⊕ Tq∗+j = 0 can take place either

because of (i) the collision of the hash i.e., HK(M) ⊕ HK(M ′) = Ni ⊕ Nj or
(ii) due to the random output of the underlying permutation Π. Probability of
occurring the second case is extremely low (we call it as false positive) and
therefore, when CollT takes place, we can assume with high probability that the
hash value collides. As a result, A obtains the hash difference Ni ⊕Nj .
Second phase of the attack:

A chooses two distinct noncesN2q∗+1, N2q∗+2 /∈ {N1, . . . , Nq∗} such thatN2q∗+1⊕
N2q∗+2 = Ni ⊕ Nj and makes queries (N2q∗+1,M) 7→ T2q∗+1, (N2q∗+1,M

′) 7→
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T2q∗+2 and (N2q∗+2,M) 7→ T2q∗+3. This allows A to forge with (N2q∗+2,M
′, T2q∗+1⊕

T2q∗+2 ⊕ T2q∗+3).

Note that, the step (3) holds with probability (q∗)2/2n. Therefore, the above
attack holds for q ≈ 2n/2+1 and µ = 2n/2, but ν = 2.

B Proof of Theorem 3

Before we prove the theorem, we remind the reader that we can represent an
extended system of equations and non-equations with a simple undirected edge-
labelled graph G where the edge set of the graph is partitioned into two disjoint
sets S and S ′ and V = {Y1, . . . , Yα} such that the following happens:

Yi ⊕ Yj = λij ∀ {Yi, Yj} ∈ S, (34)

Yi ⊕ Yj 6= λ′ij ∀ {Yi, Yj} ∈ S ′, (35)

where λij is the label of the edge {Yi, Yj} ∈ S and λ′ij is the label of the edge
{Yi, Yj} ∈ S ′. We are interested to find a good lower bound on the number of in-
jective solutions to the system of linear equations and non-equations induced by
the graph G. We said that G is valid if it satisfies NC, NPL and NCL properties.
We once again recall Theorem 3.

Theorem 4. Let G = (V,S t S ′,L) be a good graph with α vertices such that
|S| = qm, |S ′| = qv. Let comp(G=) = (C1, . . . , Ck) and |Ci| = wi, σi = (w1 + · · ·+
wi). Then, the total number of injective solutions, chosen from a set Z of size
2n − c, for some c ≥ 0, for the induced system of equations and non-equations
EG is at least:

(2n)α
2nq

(
1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

− 2(qv + cα)

2n

)
,

provided σkwmax ≤ 2n/4.

As a warm up, the reader may first consider the same problem with only a
system of affine equations. In specific, we prove the following result.

Lemma 4. Let G = (V,S,L) be a simple edge-labelled undirected acyclic graph
that satisfies the NPL condition. Let COMP(G) = (C1, . . . , Ck) be the set of
component of G such that |Ci| = wi, for each i = 1, . . . , k and let the number
of edges in G is q. We denote σi = (w1 + . . . , wi), to be the number of vertices
upto the first i components of G with σ0 = 0. Then, the total number of injective
solutions for the induced system of equations EG, denoted by hα, is at least

hα ≥
(2n)α
2nq

(
1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

)
,

provided σkwmax ≤ 2n/4, where wmax = max{w1, . . . , wk}.
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Proof. Consider the first component C1 of the graph G. Let Yi1 ∈ V be any
arbitrary vertex of C1. There are 2n choices for assigning values to the variable
Yi1 . Let the assigned value to Yi1 be yi1 . Now, for any other variable Yi2 of C1,
we consider the path P from Yi1 to Yi2 and assign the value yi1 ⊕ L(P ) to the
variable Yi2 . Let this value be yi2 . Note that, the path is unique as the graph is
acyclic and due to the NPL property, L(P ) 6= 0 and hence yi1 6= yi2 . Therefore,
assigned values to all the variables in C1 is different from yi.

Now, we argue that if Yj and Yk are any two arbitrary variables in C1, then
the assigned values to them must be distinct. Suppose, Pj and Pk are the paths
from the vertex Yi1 to Yj and Yk respectively (the path should exists and it
is unique as the component is connected and contains no cycle). Let P be the
common prefix (which may be empty) of Pj and Pk. Therefore, we can write
Pj = P‖P ′j , Pk = P‖P ′k. Note that P ′j‖P ′k is itself is the path from vertex Yj to
Yk. Now, from the definition yj = yi1 ⊕ L(Pj) and yk = yi1 ⊕ L(Pk), where yj
and yk are the assigned values to the variable Yj and Yk respectively and hence,

yj ⊕ yk = L(Pj)⊕ L(Pk) = L(P ′j)⊕ L(P ′k) = L(P ′j‖P ′k) 6= 0,

where the last equality holds due to the NPL condition. It is also straightforward
to verify that for all edges {j, k} ∈ S, yj ⊕ yk = λjk. Therefore, yi1 sets the
solution uniquely to all the variables in C1. Let (yi1 , . . . , yiw1

) denotes one such
possible solution, where each element of the tuple is pairwise distinct and hence
the tuple is an injective solution to all the variables in the first component. Once
such a value is fixed for Yi1 , we consider the second component.

We do a similar calculation for the second component C2. Let Yiw1+1 ∈ V be
a variable in C2. For any valid solution yiw1+1

for Yiw1+1
, we set yiw1+1

⊕ L(P )
as a solution to the variable Yj ∈ V, where Yj be any arbitrary vertex in C2
and P is the unique path from Yiw1+1

to Yj . Therefore, yiw1+1
actually uniquely

determines the values of the remaining w2− 1 variables. Now, if yiw1+1 is a valid
solution to Yiw1+1 , then

- yiw1+1
must be distinct from (yi1 , . . . , yiw1

) values which are already been
assigned to the variables in C1.

- yiw1+1
must be distinct from (yi1 ⊕ L(Pj), . . . , yiw1

⊕ L(Pj)) for all possible
paths Pj , the path from the vertex Yiw1+1

to any other vertex Yj in C2.

Thus, at most w1w2 values get discarded for assignment to the vertex Yiw1+1
.

Thus, there are at least (2n − w1w2) choices for assigning values to the ver-
tex Yiw1+1 and hence the number of injective solutions to exist for the second
component.

In general, for the i-th component, once the injective solution is fixed for previous
i− 1 components, there are at least (2n−w1wi− · · · −wi−1wi) = (2n− σi−1wi)
ways for an injective solution to exist for the i-th component, when the vertices
of the first i− 1 components have already been assigned values. Hence, the total
number of possible injective solutions for the induced system of equations is at
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least

hα ≥
k∏
i=1

(
2n − σi−1wi

)
(36)

Finalizing the proof of Lemma. By doing a simple algebra on Eqn. (36) we
have,

hα
2nq

(2n)α
≥ 2nq

(2n)α

k∏
i=1

(2n − σi−1wi) =

k∏
i=1

(2n − σi−1wi)2
n(wi−1)

(2n − σi−1)wi
, (37)

where q and α is the number of edges and vertices of G respectively. Now, we
have

(2n − σi−1)wi
(1)

≤ 2nwi − 2n(wi−1)

(
σi−1wi +

(
wi
2

))
+2n(wi−2)

((
wi
2

)
σ2
i−1 +

(
wi
2

)
(wi − 1)σi−1 +

(
wi
2

)
(wi − 2)(3wi − 1)

12

)
︸ ︷︷ ︸

Ai

.

Plugging-in the inequality (1) into Eqn. (37) gives

hα
2nq

(2n)α
≥

k∏
i=1

(
1 +

2n(wi−1) ·
(
wi
2

)
− 2n(wi−2) ·Ai

2nwi − 2n(wi−1)(σi−1wi +
(
wi
2

)
) + 2n(wi−2)Ai

)

≥
k∏
i=1

(
1− Ai

22n − 2n(σi−1wi +
(
wi
2

)
) +Ai

)

(2)

≥
k∏
i=1

(
1− 2Ai

22n

)
(3)

≥
(

1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

)
,

where (2) follows from the fact that 2n(σi−1wi +
(
wi
2

)
) − Ai ≤ 22n/2, which

holds to true when σkwmax ≤ 2n/4 and (3) holds to true due to the fact that
Ai ≤ 3σ2

i−1

(
wi
2

)
. ut

B.1 Proof of Theorem 3

To prove Theorem 3, we first state and prove the following lemma. Proof of
Theorem 3 will then be directly followed from Lemma 5 (proven below) and the
constraint σkwmax ≤ 2n/4, where wmax denotes the maximum component size
of the graph G=. Recall that, qv denotes the number of non-equation edges in
graph G.

The proof of the following lemma will be similar to that of Lemma 4, the only
difference is that we need to incorporate the non-equation edges along with the
equation edges and that makes a difference in the counting.
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Notation. For the purpose of proving the following lemma, we recall the fol-
lowing notation: a blue dashed edge represents a non-equation edge and hence
belongs to the set S ′ and a red continuous edge represents a equation edge and
hence belongs to the set S. Moreover, G=(V) denotes the set of all vertices of
the subgraph G= and the graph G is said to be valid if it satisfies the “no-cycle”,
“NPL” and “NCL” properties.

Lemma 5. Let G = (V,S t S ′,L) be a valid graph such that V = {Y1, . . . , Yα}
and |S| = qm, |S ′| = qv. Let COMP(G=) = (C1, . . . , Ck) be the set of components
of G= such that |Ci| = wi, for each i = 1, . . . , k. For every i 6= j ∈ [k], suppose
there are w̃ij edges from S ′ connecting vertices of the i-th and j-th components
of G= and σi = (w1 + . . . + wi) denotes the number of vertices upto the first
i components of G= with σ0 = 0. Moreover, let |V \G=(V)| = k′ and for any
vertex vi ∈ V \G=(V), there are w′i blue dashed edges incident on vi. Then, the
total number is injective solutions, chosen from a set Z of size 2n − c, for some
c ≥ 0, for the induced system of equations and non-equations EG, denoted by hα,
is at least

hα ≥
k∏
i=1

(
2n − σi−1wi −

i−1∑
j=1

w̃ij − cwi
)
·
∏
i∈[k′]

(
2n − σk − i− w′i

)
. (38)

Proof. There are clearly (2n − cw1) ways to assign values to any one of the
vertices of the first component C1 of G= which uniquely determines the assigned
values to the rest of the variables in C1, as argued in the proof of Lemma 4.
Thus, there are (2n − cw1) ways for an injective solution to exist for the first
component. Once such a solution is fixed for the first component, we consider
the second component.

We consider any arbitary vertex in the second component C2 of G=. Let Yiw1+1 ∈
V be a variable in C2 and we have argued in the proof of Lemma 4 that for any
valid solution yiw1+1

for Yiw1+1
, Yiw1+1

should not take w1w2 values. Additionally,
as there are w̃12 blue dashed edges connecting the component C1 and C2, there are
w̃12 paths from the vertex Yiw1+1

to the vertices of the component C1. Moreover,
yiw1+1 cannot take additional cw2 values. As a result, if yiw1+1 is a valid solution
to the variable Yiw1+1 , then

yiw1+1 should not take w̃12 values that violates the non-equality conditions of
w̃12 blue dashed edges and also cw2 values.

Thus, there are at most w1w2 + w̃12 + cw2 values get discarded for assignment
to the vertex Yiw1+1 and as a result there are at least (2n −w1w2 − w̃1,2 − cw2)
valid choices for Yiw1+1

. Once a valid value is assigned to the variable Yiw1+1
,

remaining variables in the second component will be assigned uniquely. Thus,
there are (2n −w1w2 − w̃12 − cw2) ways for an injective solution to exist for the
second component.
In general, for the i-th component, once the injective solution is fixed for previous
i − 1 components, there are at least (2n − σi−1wi − w̃i1 − . . . − w̃i,i−1 − cwi)
ways for an injective solution to exist for the i-th component, when the vertices
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of the first i− 1 components have already been assigned values. Hence, the total
number of possible injective solutions for the induced system of equations and
non-equations is at least

k∏
i=1

(
2n − σi−1wi −

i−1∑
j=1

w̃ij − cwi
)
.

Now, there could be the vertices which do not belong to the set G=(V). Let, there
are k′ such vertices. Fix such a vertex Yσk+i and let us assume that w′σk+i blue
dashed edges are incident on Yσk+i. If yσk+i is a valid solution to the variable
Yσk+i, then we must have the following:

- yσk+i should be distinct from previous σk assigned values.
- yσk+i should be distinct from (i− 1) assigned values to the variables of the

set V \G=(V).
- yσk+i should not take w′σk+i values such that it violates the non-equality

conditions of w′σk+i blue dashed edges.

Therefore, the number of valid choices of yσk+i is at least (2n − σk − i + 1 −
w′σk+i). Summarizing above, the total number of possible injective solutions for
the induced system of equations and non-equations is at least

k∏
i=1

(
2n − σi−1wi −

i−1∑
j=1

w̃ij − cwi
)
·
∏
i∈[k′]

(2n − σk − i+ 1− w′σk+i)

which proves the result. ut

Finalizing the proof of Theorem 3. From Lemma 5, the number of injective
solutions to the system of equations EG is at least

∏k
i=1(2n − σi−1wi − w̃i1 −

. . . − w̃i,i−1 − cwi) ·
∏
i∈[k′](2

n − σk − i + 1 − w′σk+i), where wi is the size of

the i-th component Ci, σi−1 = (w1 + . . . + wi−1), k′ is the number of vertices
in G \ G=(V) and w′σk+i is the number of blue dashed edges incident on the
vertex Yσk+i. Similar to the proof of Lemma 4, we derive the expression of
Theorem 3 by doing the following algebra. For the notational simplicity, we
denote (w̃i1 + . . .+ w̃i,i−1) as pi.

hα
2nqm

(2n)α
≥ 2nqm

(2n)α

k∏
i=1

(2n − σi−1wi − pi − cwi)
k′∏
i=1

(2n − σk − i+ 1− w′σk+i)

=

k∏
i=1

(2n − σi−1wi − pi − cwi)2n(wi−1)

(2n − σi−1)wi︸ ︷︷ ︸
D.1

k′∏
i=1

(2n − σk − i+ 1− w′σk+i)

(2n − σk − i+ 1)︸ ︷︷ ︸
D.2

,

where qm is the number of edges of the subgraph G= and α is the number of
vertices of G. In the following, we compute D.1 and D.2.
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Compute D.1. By doing the similar algebra as in the proof of Lemma 4, we
have

D.1 ≥
k∏
i=1

(
1− Ai

22n − 2n(σi−1wi +
(
wi
2

)
) +Ai

− 2n(pi + cwi)

22n − 2n(σi−1wi +
(
wi
2

)
) +Ai

)

(4)

≥
k∏
i=1

(
1− 2Ai

22n
− 2(pi + cwi)

2n

)
(5)

≥
(

1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

−

k∑
i=1

2(pi + cwi)

2n

)

(6)

≥
(

1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

− 2q′v
2n
− 2cα

2n

)
,

where (4) follows from the fact that 2n(σi−1wi +
(
wi
2

)
) − Ai ≤ 22n/2, which

holds to true when σkwmax ≤ 2n/4, (5) holds to true due to the fact that
Ai ≤ 3σ2

i−1

(
wi
2

)
and (6) holds to true as we denote (p1 + . . .+pk) = q′v, the total

number of blue dashed edges across the components of G= and w1+. . .+wk ≤ α.

Compute D.2. For computing D.2, we have

D.2 =

k′∏
i=1

(2n − σk − i+ 1− w′σk+i)

(2n − σk − i+ 1)
≥

k′∏
i=1

(
1−

w′σk+i

(2n − σk − i+ 1)

)

(7)

≥
(

1−

k′∑
i=1

2w′σk+i

2n

)
(8)

≥
(

1− 2q′′v
2n

)
,

where (7) follows due to the fact that (σk + i − 1) ≤ 2n/2 and (8) follows as
we denote (w′σk+1 + . . . + w′σk+k′) = q′′v , the total number of blue dashed edges
incident on the vertices outside of the set G=(V).

Combining D.1 and D.2. Finally, by combining the expression of D.1 and D.2,
we have

hα
2nqm

(2n)α
≥
(

1−

k∑
i=1

6σ2
i−1

(
wi
2

)
22n

− 2(qv + cα)

2n

)
,

where qv = q′v + q′′v , the total number of non-equation edges in G. ut

C Proof of Claim 1

We recall claim 1 which says that if τ ′ = (τm, τv,Kh) is a good transcript then the
induced graph Gτ ′ is valid. To prove that Gτ ′ is valid, we need to show (i) G=

τ ′ is
acyclic, (ii) Gτ ′ satisfies NPL condition and (iii) Gτ ′ satisfies NCL condition. For
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doing this, we inherit the notations introduced while analysing the probability of
good transcripts in the proof of Theorem 1. N̂i denotes 0‖Ni, X̂i denotes 1‖Xi,

N̂ ′a denotes 0‖N ′a and X̂ ′a denotes 1‖X ′a where Xi = Ni ⊕ HKh(Mi).

(1) G=
τ ′ is acylic. For the sake of contradiction, let us assume there is a cycle

C in the graph G=
τ . If |C| = 2, then there must exist two authentication

equations
Π(N̂i)⊕ Π(X̂i) = Ti, Π(N̂j)⊕ Π(X̂j) = Tj

in Em with Ni = Nj and Xi = Xj . But this event is nothing but the bad
event (B2) in Definition 2. As the transcript τ ′ is good, this event cannot
hold and therefore, there cannot be any cycle of length 2 in G=

τ ′ . A careful
observation reveals that there cannot be any cycle of length 3 in the graph.
Moreover, if there is any cycle of length at least 4 in G=

τ ′ , there must exist
three authentication equations

Π(N̂i)⊕ Π(X̂i) = Ti, Π(N̂j)⊕ Π(X̂j) = Tj , Π(N̂k)⊕ Π(X̂k) = Tk

in Em with Ni = Nj and Xj = Xk. But this event is simply the bad event
(B2) as Definition 2. As the transcript τ ′ is good, this event cannot hold and
therefore there cannot be any cycle in G=

τ ′ with length at least 4. Summa-
rizing above, graph G=

τ ′ is acyclic.

(2) Gτ ′ satisfies NPL. First of all, label of each edge of the graph is non-zero
as τ ′ is good. Now, we consider any path P of length 2 in G=

τ . Let the label
of the edges of the path be Ti and Tj . This implies that there must be two
authentication equations

Π(N̂i)⊕ Π(X̂i) = Ti, Π(N̂j)⊕ Π(X̂j) = Tj

in Em with Ni = Nj or Xi = Xj . Now, if Ti = Tj , then this would create
a cycle of length 2 in G=

τ ′ which is impossible as we have proved that G=
τ ′

is acyclic. Therefore, there cannot be any path of length 2 in G=
τ ′ such that

the label of the path becomes zero. Moreover, one cannot have any path
of length at least 3 in G=

τ ′ ; otherwise bad condition (B2) would have been
satisfied. Therefore, Gτ ′ satisfies Non-zero path label condition.

(3) Gτ ′ satisfies NCL. Consider first, a cycle of length 2 where one edge is a
blue dotted edge. Then there must be one authentication equation and one
verification non-equation

Π(N̂i)⊕ Π(X̂i) = Ti, Π(N̂ ′a)⊕ Π(X̂ ′a) 6= T ′a

such that Ni = N ′a, Xi = X ′a and Ti = T ′a. But this implies that the event
actually satisfies the bad condition (B4) in Definition 2. As the transcript
τ ′ is good, this event cannot hold and therefore, there cannot be any cycle
of length 2 with one blue dotted edge. Moreover, as we have argued before,
there cannot be any cycle of length 3 with exactly one non-equation edge.
Now, for the existence of a cycle with length at least 4 that contains exactly
one non-equation edge, there must be a path with at length least 3 in G=

τ ′ .
But clearly, this is impossible. In summary, Gτ ′ satisfies Non-zero cycle
label condition. ut
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D Details Proof of Theorem 2

We start by recalling the definition of bad transcripts and the lemma for bound-
ing the probability of bad transcripts in the ideal world. An attainable transcript
τ ′ = (τe, τd,Kh, T̃) is said to be bad if any one of the following conditions occurs:

- B.1 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = Kh.
- B.2 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = 0.
- B.3 : ∃ i ∈ [qe] and j, j′ ∈ [li] such that Si[j] = Si[j

′].

- B.4 : ∃ i ∈ [qe] such that T̃i = 0.

- B.5 : ∃i 6= j, j 6= k such that N̂i = N̂j and X̂j = X̂k.

- B.6 : {i1, . . . , iξ+1} ⊆ [qe] such that X̂i1 = X̂i2 = . . . = X̂iξ+1
for some

parameter ξ ≥ µ.
- B.7 ∃ a ∈ [qd], ∃ i ∈ [qe] such that N̂i = N̂ ′a, X̂i = X̂ ′a and T̃i = T ′a.

Θbad (resp. Θgood) denotes the set of bad (resp. good) transcripts. Moreover, Xre

and Xid denotes the probability distribution of realizing an extended transcript
τ ′ in the real and the ideal world respectively. We once again recall Lemma 3 to
bound the probability of bad transcripts in the ideal world

Lemma 4. Let Xid and Θbad be defined as above. Then

Pr[Xid ∈ Θbad] ≤ εbad =
2σ

2n
+
qe`

2

2n
+
qe
2n

+
q2
e`

ξ2n
+

(2qe + qd)2`µ

2n
+

2qd`

2n
.

Proof. By the union bound,

Pr[Xid ∈ Θbad] ≤
7∑
i=1

Pr[B.i]. (39)

In the following, we only bound Pr[B.1],Pr[B.2] and Pr[B.3] as the bound for
the remaining events can be found in the proof of Lemma 2. Clearly,

Pr[B.1] ≤ σ

2n
. (40)

Bounding B.2. Event B.2 occurs if there exists a zero keystream block in any
query. For a fixed query and a block, the probability of this event holds is exactly
2−n. When the i-th query is not faulty, then the probability of any block takes
the output 0 is exactly 2−n. If the i-th query is faulty, then we have the following
two cases:

- Case (i): When the j-th block is sampled in executing the i-th query, then
the probability is 2−n.

- Case (ii): When the j-th block is not sampled in executing the i-th query.
That implies there must be some previous encryption query for which the
j-th block is freshly sampled and hence the probability is 2−n.
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By summing over all choices of i and j, we bound the probablity to σ/2n. There-
fore, we have

Pr[B.2] ≤ σ

2n
. (41)

Bounding B3. Event B3 occurs if there is a collision in two different keystream
blocks in an encryption query. For a fixed query and two fixed distinct blocks,
the probability of this event holds is exactly 2−n. When the i-th query is not
faulty, then the probability of such collision is exactly 2−n. If the i-th query is
faulty, then we have the following two cases:

- Case (i): When either of the blocks is sampled in executing the i-th query,
then the probability is 2−n.

- Case (ii): When none of the two blocks are sampled in executing the i-th
query, it means that there must be some previous encryption query for which
either of the blocks was freshly sampled, and hence the probability is 2−n.

By summing over all choices of i, j and j′, we bound the probability to at most
qe`

2/2n. Therefore, we have

Pr[B.3] ≤ qe`
2

2n
. (42)

From Lemma 2, we obtain the bound of Pr[B.4] + Pr[B.5] + Pr[B.6] + Pr[B.7].
Therefore, from Eqn. (39), Eqn. (40), Eqn. (41), Eqn. (42) and from Lemma 2,
the result follows with ε ≤ 2`/2n; almost xor universal probability of the trun-
cated PolyHash. ut

D.1 Analysis of Good Transcripts

In this section, we show that for a good transcript τ ′ = (τ,Kh, T̃), realizing τ ′

is almost as likely in the real world as in the ideal world. Formally, we prove the
following lemma.

Lemma 6. Let τ ′ = (τe, τd,Kh, T̃) be a good transcript. Then

Pr[Xre = τ ′]

Pr[Xid = τ ′]
≥
(

1−

k∑
i=1

24σ2
(
Wi

2

)
22n

− 2qd
2ρ
− 2σ

2n

)
,

where σ is the number of message blocks queried and ρ is the size of the tag.

Proof. Let us consider a good transcript τ ′ = (τe, τd,Kh, T̃). Since in the ideal
world the encryption oracle is perfectly random and the decryption oracle always
rejects, one simply has

Pr[Xid = τ ′] =
1

2n
·
r∏
t=1

1

2nlt
· 1

2nqe
(43)
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where r is the number of groups of nonces and lt be the updated number of
generated keystream blocks for group t. Now, we lower bound the probability
of getting τ ′ in the real world. A permutation Π is compatible with τe if (A)
happens

(A) =

{
∀i ∈ [qe], j ∈ [li],Π(N̂i)⊕ Π(0‖Ni‖〈j〉) = Si[j]

∀i ∈ [qe]Π(N̂i)⊕ Π(X̂i) = Ti

and compatible with τd if (B) happens

(B) = ∀a ∈ [qd],Π(N̂ ′a)⊕ Π(X̂ ′a) 6= T ′a‖β,

where recall that N̂i = 0‖Ni, X̂i = 1‖Xi, N̂ ′a = 0‖N ′a and X̂ ′a = 1‖X ′a and
β ∈ {0, 1}n−ρ. Moreover, 〈j〉 denotes the n/4 − 1 bit binary representation of
non-zero integer j. Π is compatible with τ ′ if it is compatible with τe and τd.
Let Comp(τ) denote the set of all permutations that are compatible with τ .
Therefore,

pre(τ)
∆
= Pr[Xre = τ ′] =

1

|Kh|
· Pr[Π←$ Perm : Π ∈ Comp(τ)]

= 2−n · Pr[(A), (B) holds]︸ ︷︷ ︸
Ped

, (44)

where the third equality occurs due to the randomness of the hash key EK(0).
Now. if we model the system of equations and non-equations into the graph
theoretic setting, one can see that graph Gτ ′ generated out of the transcript τ ′

is valid (i.e., it satisfies NC, NPL and NCL conditions). By assuming ξ ≤ 2n/8σ`
(follows from Theorem 3), we apply Theorem 3 with c = 1 and assuming α ≤ σ,
to obtain,

Ped ≥
1

2nqe

r∏
t=1

1

2nlt
·
(

1−

k∑
i=1

6σ′2i−1

(
W ′i
2

)
22n

− 2qd
2ρ
− 2σ

2n

)
, (45)

where k is the number of components of Gτ ′ , W
′
i denotes the size of the i-th

component and σ′i = W ′1 + . . .W ′i . Note that there are 2n−ρqd non-equations

as the adversary forges with ρ bit tags T ′a and there are 2n−ρ T̃ ’s whose first
ρ bits matches with T ′a. Moreover, we consider c = 1 due to the fact that we
choose elements from the set {0, 1}n excluding the hash key. Finally, the result
follows from Eqn. (43), Eqn. (44), Eqn. (45) and the inequality σ′i−1 ≤ σ′k =
(W ′1 + . . .+W ′k) ≤ 2σ. ut

Finalizing the proof. From Lemma 6, we define φ(τ ′) as follows:

φ(τ ′)
∆
=

k∑
i=1

24σ2
(
W ′i
2

)
22n

+
2qd
2ρ

+
2σ

2n
.
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Now, we calculate the expectation of φ(τ ′) as follows:

E[φ(Xid)] =

(
2qd
2ρ

+
2σ

2n
+

24σ2

22n
E

[ k∑
i=1

(
W ′i
2

)])
. (46)

Moreover, one can easily see the following inequality(
W ′i
2

)
≤
(
Wi

2

)(
2`

2

)
, (47)

where ` is the maximum number of message blocks and Wi is as defined in the
proof of Theorem 1. Therefore, from Eqn. (24) and Eqn. (47), we have

E

[ k∑
i=1

(
W ′i
2

)]
≤ 2`2E

[ k∑
i=1

(
Wi

2

)]
≤ 2`2E

[ k∑
i=1

(
W̃i

2

)]
+ 4qe`

2 (48)

Moreover, from Eqn. (25) we have

E

[ k∑
i=1

(
W̃i

2

)]
≤

qe∑
i 6=j

E[Iij ] +

µ∑
i 6=j

E[Ĩij ] ≤ q2
e`/2

n + µ2/2 (49)

where the almost xor universal probability of the truncated PolyHash is at most
2`/2n. Finally, from Eqn. (46), Eqn. (48) and Eqn. (49) we have

E[φ(Xid)] ≤
(

2qd
2ρ

+
2σ

2n
+

48σ4`

23n
+

(
5σ`µ

2n

)2

+
96σ3`

22n

)
, (50)

where we assume that `qe ≈ σ, the total number of message blocks queried.
Finally, by applying Eqn. (2), Lemma 3, Eqn. (50), ξ = 2n/8σ` and σ ≤ 2n/48,
the proof follows. ut


