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Abstract

We show that the recently introduced notion of round-by-round soundness for interactive proofs
(Canetti et al.; STOC 2019) is equivalent to the notion of soundness against state restoration attacks
(Ben-Sasson, Chiesa, and Spooner; TCC 2016). We also observe that neither notion is implied by the
random-oracle security of the Fiat-Shamir transform.

1 Introduction

The Fiat-Shamir transform [FS86] is a heuristic methodology for using a hash family H to convert a public-
coin interactive protocol II (either a proof or argument) into a non-interactive protocol FS[II,H]. In this
protocol, a hash function H < H is first chosen as a public parameter. A proof for a claim x then consists
of messages (aq, ..., ;) such that with 8; = H(ay, 01, ..., q;), the transcript (a1, f1, - . ., ar, 5;) is accepted
on input z in II. It is also often convenient to model H as a random oracle, in which case we will denote the
resulting random oracle protocol by FSRO[II].

It is known that FSRO[IT] is sound for all constant-round protocols IT [PS96] and, more generally, for all
protocols II that resist state restoration attacks [BCS16]. In a state restoration attack, a malicious prover
P* interacting with a verifier V may at any point reset V' to a state that V was previously in. Then, P*
may continue to interact with V', with V' using fresh randomness.

Returning our attention to the soundness of Fiat-Shamir in the plain model, the state of the art is
that FS[II,H] is (computationally) sound if II is round-by-round sound [CCH'19] and H is correlation
intractable [CGHO4]. Round-by-round soundness stipulates that there is a way to label certain transcript
prefixes as “doomed” relative to an input x such that:

e If x is an input that represents a false claim, then the empty transcript () is doomed relative to x.

e If 7 is any transcript prefix (ending in a verifier message) that is doomed relative to x, then for all
choices « of the prover’s next messages, it holds with overwhelming probability over § that 7|a|S is
also doomed relative to z.

e If 7 is a complete transcript that is doomed relative to x, then the verifier on input x will reject the
transcript 7.

These two results and two subclasses of public-coin interactive proofs naturally raise the question:

What is the relation between soundness against state-restoration attacks and round-by-round
soundness?

It was observed by [CCH™19] that if a protocol IT is round-by-round sound, then I is also sound against
state restoration attacks. Proving the converse (or indeed instantiating Fiat-Shamir by any means for this
potentially broader class of protocols) was left as an open question.

In this work, we show that the converse holds.
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Theorem 1.1. For any public-coin protocol 11, if I1 is sound against state restoration attacks, then II is
round-by-round sound.

We also show that soundness against state restoration attacks is a strictly stronger notion for a protocol
IT than the soundness of FSRC[IT].

Theorem 1.2. There exists a public-coin interactive proof I1 such that 11 is unsound against state restoration
attacks, but FSRO[T] is secure.

Our separation leverages the fact that in a state restoration attack a prover may rewind to the same
state multiple times, each time obtaining a freshly random verifier messages. On the other hand, in FSRO [I1],
verifier messages are deterministically generated as a function of the random oracle and the preceding partial
transcript.

2 Preliminary Definitions

2.1 Interactive Protocols

It will be convenient for us to consider separately from interactive proofs (which are associated with a
language £, involve an input z, and have completeness / soundness properties depending on whether = € £)
a notion of an interactive game, which has no input.

We think of an interactive game as something that is played by a single player in r rounds. At the
beginning of the i*" round, the player must specify a message o; € {0,1}*. Then, a message j3; is sampled
uniformly from {0, 1}% for some ¢; that is pre-specified independently of any of the player’s choices. At the
end of the 7" round, a predicate W is applied to (a1, B1, ..., ay, Br) to determine whether the player wins.

More formally:

Definition 2.1 (Interactive Game). An (r-round) public-coin interactive game is a tuple (¢1,...,¢., W),
where each ¢; € Zt and W C {0,1}* is an “acceptance” set. A strategy is a function s : {0,1}* — {0,1}*.

IfG = (¢4,...,4.,W) is a public-coin interactive game and s is a strategy, then the value of G with respect
to s (alternatively the probability with which s wins G) is

def

v[s](G) = Pr (a1, B1,. .. an, By) € W],

B1+{0,1}%1
Br—{0,1}%r

where each «; is defined to be s(81,...,8i—1). The value of G, denoted v(G), is sup, v[s](G).

Definition 2.2 (Interactive Proof). An (7(-)-round) public-coin interactive proof for a language £ with sound-
ness error €(-) is a pair (P, V), where V is a polynomial-time algorithm mapping any string « € {0, 1}* to an
r(]z|)-round single-player game with the following properties:

e (Completeness) If x € £, then P(x) is a strategy that wins V(x) with probability 1.
e (Soundness) If ¢ L, then all strategies P* win V(x) with probability at most €(|z]).
The interactive proof is said to be public-coin if each V' (z) is public-coin.

Definition 2.3 (Game Transcript). If G = (¢1,...,£., W) is a public-coin interactive game, then a (complete)
transcript for G is ay|B1|- - - |a.|8, with each 8; € {0,1}% and «; € {0,1}*. An accepting transcript is one
that is contained in W. A transcript prefix is any aq|81|- - |ay|8; for i € {0,...,r}.

Definition 2.4 (Game Suffix). If § = (¢1,...,¢,,W) is an r-round public-coin interactive game and
a1|B1]|- - || Bi is a transcript prefix for G, we denote by G|, the game (¢;11,...,4., W|;), where W|, is
the set of strings of the form o y1|Bi11] -+ || By for which aq|51]- - || 8- € W.

We refer to G|, as the suffix of G following 7.



2.2 Notions of Soundness

Let £ be a language and let IT = (P,V) be a public-coin interactive proof for £. Recall the following
definition from [CCH™19]. Suppose without loss of generality that all verifier messages are of length /.

Definition 2.5 (Round-by-Round Soundness Error [CCHT19]). II has round-by-round soundness error €(-)
if there exists a “doomed set” D C {0,1}* such that the following properties hold:

1. If x € L, then (z,0) € D, where () denotes the empty transcript.

2. If (x,7) € D for a transcript prefix 7, then for every potential prover next message «, it holds that

S P (@ rlal®) ¢ D] < )

3. For any complete transcript 7, if (z,7) € D then V(z,7) = 0.

Definition 2.6 (Asymptotic Round-by-Round Soundness [CCH19]). II is said to be round-by-round sound
if there is a negligible function e such that IT has round-by-round soundness error e.

To define soundness of public-coin interactive proofs against state restoration attacks, we first define
corresponding notions for public-coin interactive games.

Definition 2.7. For any public-coin interactive game G = (¢1,...,£,., W) and any query-bound ¢, we define
a corresponding g-query state restoration game SR?(G). We only informally describe how this game is played:

1. A referee initializes a set S := {(}}, where () denotes the empty transcript.

2. Up to ¢ times, P* may specify a pair (7, «) where 7 = a1|f1] - - |o;|8; € S and « € {0,1}*. The referee
samples 3 < {0,1}%+1, and adds 7|a|3 to S.

3. P* wins if S contains any 7 € W.
In our notation, the notion of state restoration soundness from [BCS16] can be formulated as follows.

Definition 2.8 (State Restoration Soundness [BCS16]). For functions ¢ : ZT — Z* and ¢ : Z+ — R, a
public-coin interactive proof (P, V') for L is said to be (g, €)-sound against state restoration attacks if for all n
and all z € {0,1}™\ £, the value of SRI™ (V(z)) < e(n).

II is said simply to be sound against state restoration attacks if for all polynomially bounded q : ZT — Z7,
there is a negligible function e such that IT is (g, €)-sound against state restoration attacks.

3 Proof of Theorem 1.1

Let £ be a language, and let IT = (P, V) be an r(-)-round public-coin interactive proof for £. For simplicity
suppose that all verifier messages are of length ¢ = ¢(n).

Proposition 3.1. Let G be a public-coin interactive game, and let 7 = aq1|f1] - |a;| B be a transcript prefix
for G.
If v(SRY(G|+)) <€, then for all ¢ < q, all € > ¢, and all o € {0,1}*, it holds that
/ In(e’ —¢)
P [SW e >1<f———f 1
Be{o,ée(lwl) v( (gl l ‘B)) 1= q—q ( )

Proof. For any «, let p, denote the left-hand side of Eq. (1). Consider the following (informally specified)
strategy for SRY(G|,).



1. Specify (7,a) repeatedly. Specifically, do so ¢ — ¢’ times. Let S be the set as in the definition of
SRY(G|;) (Definition 2.7).

2. Let S be such that 7|a|8 € S and v(SRq,(Q|T‘a|5)) is maximal.
3. From this point on, P* plays according to an optimal strategy for SRY (Glrialp)-

In order for this strategy to not contradict the assumption that v(S R(G |T)) < €, it must hold with probability
at least ¢ — e that at the beginning of Step 2, for all 5 with 7|a|8 € S, v(SRq/ (g\ﬂaw)) < ¢’. Because each
B is chosen independently, this is equivalent to saying that (1 — pa)q_q/ > ¢ —e. Thus

o In(¢/ —) In(¢’ — ¢
qa—4q
Theorem 3.2. IfII is (q,¢)-sound against state-restoration attacks for e < 1, then it has round-by-round
soundness error g -In (12_7”6

Proof. Define Ae = 1=¢ and Ag = £. Define the set D C {0, 1}* such that if 7 is an i-round transcript prefix

for V(x), then (x,7) € D if and only if v(Squi'Aq(V(xﬂT)) <e+i-Ae
We now show that D satisfies the requirements of Definition 2.5.

Claim 3.3. Forxz ¢ L, (z,0) € D where ) denotes the empty transcript.

Proof. We have
v(SRTO2U(V (2)]p)) = v(SRU(V (2))),

which by assumption that IT is (g, €)-sound, must be bounded by e. Thus (z,?) € D. O]
Claim 3.4. For all x, 7, if (x,7) € D then for all a,

(orlals) ¢ D < 2o (221)).

Pr
Be{0,1}¢=D

Proof. Suppose that 7 is an i-round transcript prefix. Then by definition of D we have v(SRq_i'Aq(V(x) \T)) <
€ +1i- Ae. Then for any a, we have

_ q—(i+1)-Aq : . }
ol el gDl = e [v(sR (V(@)lrjags)) > ¢ + (i +1) - Ac] .
By Proposition 3.1, this is bounded by —% = g -In (12_:). O

Claim 3.5. For any = and any complete transcript T, if (x,7) € D, then V(x,7) = 0.

Proof. This follows from the fact that for any complete transcript 7, either 7 is an accepting transcript for
V(z) or it is not, and the definition of D implies that the probability that 7 is accepting for V' (z) is at most
e+r-Ae= % < 1. O

This completes the proof of Theorem 3.2. O
Theorem 1.1 follows as a corollary, also using Proposition 3.6 below.

Proposition 3.6. If II is sound against state restoration attacks, then there exists a super-polynomial ¢
and a negligible function e such that 11 is (g, €)-sound against state restoration attacks.



Proof. Suppose that II is sound against state restoration attacks. This implies that there exist 1 = Ny <
N1 < Ny < --- such that for all n > N, and all z € {0,1}" \ L, v (SR"C(V(QC))) <n”C

Define q : ZT — Z* as follows. For any n, let ¢ be such that N, < n < N.; 1 and define q(n) = n¢. It
follows by definition that g(rn) > n*® and max,e(g,1}m\ ¢ {v (SRQ(”)(V(I)))} < e, O

We remark that Proposition 3.6 is very similar to an observation of Bellare [Bel02] that there is no
difference between the following two types of security definition:

e For every polynomial-time adversary A, there exists a negligible function € bounding A’s advantage in
breaking the primitive.

e There exists a negligible function e such that for all polynomial-time adversaries A, ¢ bounds the
advantage of A in breaking the primitive.

4 Proof of Theorem 1.2

Let r(+) be any function with r(n) = w(1), and consider the r-round public-coin interactive proof Il = (P, V)
for the empty language in which all verifier messages are log n-bit strings. The verifier accepts if the prover
sent only empty strings, and all of the verifier’s messages were the all-zero string. It is easy to see that
FS[II, ] has soundness error equal to

P . H (i—=1)-logny _ logn:|
AL Vi € [r(n)], H(O )=20 ,

which is negligible if H is replaced by a random oracle.
However, because each verifier message has only logn bits, II can only possibly have round-by-round
soundness error € if € > L.
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