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Abstract. Succinct non-interactive arguments (SNARGs) enable veri-
fying NP computations with substantially lower complexity than that
required for classical NP verification. In this work, we construct a zero-
knowledge SNARG candidate that relies only on lattice-based assump-
tions which are claimed to hold even in the presence of quantum com-
puters.
Central to our construction is the notion of linear-targeted malleabil-
ity introduced by Bitansky et al. (TCC 2013) and the conjecture that
variants of Regev encryption satisfy this property. Then, using the effi-
cient characterization of NP languages as Square Arithmetic Programs
we build the first quantum-resilient zk-SNARG for arithmetic circuits
with a constant-size proof consisting of only 2 lattice-based ciphertexts.
Our protocol is designated-verifier, achieves zero-knowledge and has shorter
proofs and shorter CRS than the previous such schemes, e.g. Boneh et
al. (Eurocrypt 2017).
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1 Introduction

1.1 Zero-Knowledge Arguments

Zero-knowledge arguments are cryptographic protocols between two parties, a
prover P and a verifier V, in which the prover can convince the verifier about the
validity of a statement without leaking any extra information beyond the fact
that the statement is true.

Since their introduction in [25] zero-knowledge (ZK) proofs have been shown
to be a very powerful instrument in the design of secure cryptographic protocols.

Related to efficiency and to optimization of communication complexity, it
has been shown that statistically-sound proof systems are unlikely to allow for
significant improvements in communication [13, 23, 24, 42]. When considering
proof systems for NP this means that, unless some complexity-theoretic col-
lapses occur, in a statistically sound proof system any prover has to communi-
cate, roughly, as much information as the size of the NP witness. The search
for ways to beat this bound motivated the study of computationally-sound proof
systems, also called argument systems [15], where soundness is required to hold
only against computationally bounded provers.
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1.2 SNARG: Succinct Non-Interactive Arguments

Assuming the existence of collision-resistant hash functions, Kilian [30] showed
a four-message interactive argument for NP. In this protocol, membership of an
instance x in an NP language can be proven with communication and verifier’s
running time significantly smaller than required in the classical NP verification.
Argument systems of this kind are called succinct. A challenge, which is of both
theoretical and practical interest, is the construction of non-interactive succinct
arguments. Starting from Kilian’s protocol that requires four messages, Micali
[35] used the Fiat-Shamir heuristic [17] to construct a one-message succinct
argument for NP whose soundness is set in the random oracle model.

In the plain model, a non-interactive argument requires the verifier V (or
a trusted party) to generate a common reference string crs ahead of time and
independently of the statement to be proved by the prover P. Such systems are
called succinct non-interactive arguments (SNARGs) [22]. Several SNARGs con-
structions have been proposed [26, 33, 8, 19, 39, 16, 27], and the area of SNARGs
has become popular in the last years with the proposal of constructions which
introduced significant improvements in efficiency. Many of these SNARGs are
also arguments of knowledge – so called SNARKs [8, 7].

In parallel with improvements in efficiency, there has been interesting work
on understanding SNARGs. An important remark is that all such construc-
tions are based on non-falsifiable assumptions [38], a class of assumptions that
is likely to be inherent in proving the security of SNARGs for general NP lan-
guages (without random oracles), as shown by Gentry and Wichs [22]. Bitansky
et al. [8] proved that designated verifier SNARKs exist if and only if extractable
collision-resistant hash functions exist. Bitansky et al. [9] give an abstract model
of SNARKs that rely on linear encodings of field elements. Their information
theoretic framework called linear interactive proofs (LIPs) capture proof sys-
tems where the prover is restricted to using linear operations in computing the
expected proof. They give a generic conversion of a 2-move LIP to a publicly veri-
fiable SNARK using pairing-based techniques or to a designated verifier SNARK
using additively homomorphic encryption techniques.

1.3 SNARGs for Arithmetic Circuits

The methodology for building SNARGs common to a family of constructions,
some of which represent the state of the art [39, 34, 16, 27, 20], has as a cen-
tral starting point the framework based on quadratic programs introduced by
Gennaro et al. in [19]. This common framework allows to build SNARGs and
SNARKs for programs instantiated as boolean or arithmetic circuits.

This approach has led to fast progress towards practical verifiable computa-
tions. For instance, using span programs for arithmetic circuits (QAPs), Pinoc-
chio [39] provides evidence that verified remote computation can be faster than
local computation. At the same time, their construction is zero-knowledge, en-
abling the server to keep intermediate and additional values used in the compu-
tation private.
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1.4 Post-Quantum SNARGs

Most of the SNARGs constructed so far are based on discrete-logarithm type
assumptions, that do not hold against quantum polynomial-time adversaries
[41], hence the advent of general-purpose quantum computers would render in-
secure the constructions based on these assumptions. Efforts were made to design
such systems based on quantum resilient assumptions. We note that the orig-
inal protocol of Micali [35] is a zk-SNARG which can be instantiated with a
post-quantum assumption since it requires only a collision-resistant hash func-
tion – however (even in the best optimized version recently proposed in [6]) the
protocol does not seem to scale well for even moderately complex computations.

Some more desirable assumptions that withstand quantum attacks are the
lattice assumptions [1, 37]. Nevertheless, few non-interactive proof systems are
built based on lattices. Some recent works that we can mention are the NIZK
constructions for specific languages, like [31, 32, 5] and the two designated ver-
ifier SNARG constructions [10, 11], designed by Boneh et al. using encryption
schemes instantiated with lattices. A similar approach is used by [20] to design
a designated-verifier zk-SNARK (that is a SNARG of knowledge) for boolean
circuits.

We attempt to make a step forward in this direction by building a designated-
verifier zk-SNARG from quantum-resilient assumptions with better efficiency
and succinctness than previous such schemes.

1.5 Our Contribution

We introduce in this work a new lattice-based designated-verifier zk-SNARG.
Our scheme uses as a main building block encodings that rely on the Learning

With Errors (LWE) assumption, more precisely, we employ a variant of the
encryption scheme proposed by Regev in 2005 [40]. We further assume linear-
only properties of this lattice encryption scheme conjectured before by [10, 11].

The underlying relation of our zk-SNARG is a square arithmetic program,
which is a very efficient characterization of arithmetic circuits. Square arith-
metic programs are closely related to quadratic arithmetic programs [19], but
use only squarings instead of arbitrary multiplications. As suggested by Groth
[27] the use of squarings give nice symmetry properties and a more compact
proof. This efficient language allow us to build a zk-SNARG that achieves better
succinctness, CRS size and verification time than the previous similar schemes.

We provide a generalization to our scheme, in the spirit of [19, 20], by us-
ing encoding schemes with certain properties. We achieve the most compact
proofs known to date, consisting in just 2 lattice-based encodings and veri-
fication time in the size of the arithmetic circuit representing the statement.
This contribution is of independent interest and consists in a generic framework
for SNARGs from Square Arithmetic Programs (SAPs). The stronger notion of
knowledge soundness (which leads to zk-SNARKs) can be achieved by replacing
the linear-targeted malleability property of our encoding schemes with a stronger
(extractable) assumption [9].
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1.6 Related Work

Recently, in two companion papers [10, 11], Boneh et al. provided the first
designated-verifier SNARGs construction based on lattice assumptions.

The first paper [10] has two main results: an improvement on the LPCP con-
struction in [9] and a construction of linear-only encryption based on LWE. The
second paper [11] presents a different approach where the information-theoretic
LPCP is replaced by a LPCP with multiple provers, which is then compiled
into a SNARG again via linear-only encryption. The main advantage of this ap-
proach is that it reduces the overhead on the prover, achieving what they call
quasi-optimality1.

Then, [20] exploits the square span program language for boolean circuits
in order to introduce a general-purpose framework for SNARGs that can ac-
comodate lattice-based encodings. The main improvements over the previous
lattice-based SNARGs showed by [20] are zero-knowledge property and knowl-
edge soundness, this being the first construction of a lattice-based zk-SNARK.

1.7 Techniques and Comparison to Other SNARGs

Our new framework for building SNARGs exploits the advantages of previous
proposals taking the best of these approaches. It uses the simple and efficient
representation of a arithmetic circuit satisfiability problem, SAP and minimizes
the proof size. Also, our scheme does need only plausible hardness assumptions
for the underlying encoding scheme for proving computational soundness.

Although conceptually similar to the recent scheme by Gennaro et al. [20],
our construction is designed for arithmetic circuits and achieves better properties
and efficiency:

SNARG for Arithmetic Circuit Satisfiability. In contract to previous lattice-
based constructions, designed for boolean circuit satisfiability, our SNARG is
built for proving satisfiability of arithmetic circuits which makes it a better
candidate for practical applications.

Standard results show that polynomially sized arithmetic circuits are equiv-
alent (up to a logarithmic factor) to Turing machines that run in polynomial
time, though of course the actual efficiency of computing via circuits versus on
native hardware depends heavily on the application; for example, an arithmetic
circuit for matrix multiplication adds essentially no overhead, whereas a boolean
circuit for integer multiplication is far less efficient.

While we describe a SNARG for arithmetic circuit satisfiability (over a field
F = Zp), the problem of boolean circuit satisfiability easily reduces to arithmetic
circuit satisfiability with only constant overhead (see [9] Claim A.2).

We remark also that we compare well in terms of efficiency with the quasi-
optimal SNARG of [10, 11] in the case of arithmetic circuit satisfiability over

1 This is the first scheme where the prover does not have to compute a cryptographic
group operation for each wire of the circuit, which is instead true e.g., in QSP-based
protocols.



Lattice-based Zero-knowledge SNARGs for Arithmetic Circuits 5

large fields (Zp, where p = 2λ).2 In this case, their proof system is no longer a
SNARG (not quasi-optimally succinct).

SAP Language for Arithmetic Circuits. Our scheme exploits the simplicity of
Square Arithmetic Program to optimize the size of the proofs. Due to their con-
ceptual simplicity, SAPs offer several advantages over previous constructions for
arithmetic circuits. Their reduced number of constraints lead to smaller pro-
grams, and to lower sizes and degrees for the polynomials required to represent
them, which in turn reduce the computation complexity required in SNARG
schemes. Notably, their simpler ”square” form requires only a single polyno-
mial to be evaluated for verification (instead of two for earlier QSPs, and three
for QAP) leading to a simpler and more compact setup, smaller crs, and fewer
operations required for proof and verification.

Long-Standing Assumptions. Another simplification is the use of the more gen-
eral long-standing assumption of linear-targeted malleability of the encoding (see
Section 5.1 for details) instead of the recent introduced knowledge of exponent
assumptions for lattice encodings of [20]. The soundness of our SNARG is based
on a plausible intractability assumption, which is in the spirit of assumptions
on which previous SNARGs were based. Moreover, with minimal modifications,
based on a stronger variant of the assumption, we can get a SNARK (i.e., a
SNARG of knowledge) with similar complexity.

Designated-verifier. One limitation is that our new constructions are designated-
verifier, while existing constructions are publicly verifiable.

2 Definitions

2.1 Notation

Let λ ∈ N be the computational security parameter, and κ ∈ N the statistical
security parameter. We say that a function is negligible in λ, and we denote it
by negl(λ), if it is a f(λ) = O(λ−c) for any fixed constant c. We also say that a
probability is overwhelming in λ if it is 1− negl(λ).

When sampling uniformly at random the value a from the set S, we employ
the notation a←$S. When sampling the value a from the probabilistic algorithm
M, we employ the notation a ← M. We use := to denote assignment. For an n-
dimensional column vector a, we denote its i-th entry by ai. In the same way,
given a polynomial f , we denote its i-th coefficient by fi. Unless otherwise stated,
the norm ‖·‖ considered in this work is the `2 norm. We denote by a · b the dot
product between vectors a and b.

Unless otherwise specified, all the algorithms defined throughout this work
are assumed to be probabilistic Turing machines that run in time poly(λ) - i.e.,
PPT. An adversary is denoted by A.

2 Quasi-optimal succinctness refers to schemes where the argument size is quasilinear
in the security parameter
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2.2 Succinct Non-Interactive Arguments

In this section we provide formal definitions for the notion of succinct non-
interactive arguments (SNARGs).

A SNARG can be defined for a specific efficiently decidable binary relation
R. Let R be a relation generator that given a security parameter λ in unary
returns a polynomial time decidable binary relation R. The relation generator
may also output some side information, an auxiliary input z, which will be given
to the adversary.

For pairs (u,w) ∈ R we call u the statement and w the witness. Let LR be
the language consisting of statements for which there exist matching witnesses
in R.

Definition 1 (zk-SNARG for NP). An efficient prover designated-verifiable
non-interactive argument for R is a quadruple of probabilistic polynomial algo-
rithms Π = (Gen,P,V,Sim) such that:

(crs, vrs, td)← Gen(1λ,R) the CRS generation algorithm takes as input some se-
curity parameter λ and outputs a common reference string crs, a verification
state vrs, and a trapdoor td.

π ← P(crs, u, w) the prover algorithm takes as input the crs, a statement u, and
a witness w. It outputs some argument π.

b← V(vrs, u, π) the verifier algorithm takes as input a statement u together with
an argument π, and vrs. It outputs b = 1 (accept) if the proof was accepted,
b = 0 (reject) otherwise.

π ← Sim(crs, td, u) the simulator takes as input a simulation trapdoor td and a
statement u together with a proof π and returns an argument π.

In the same line of past works [16, 18, 20], we will assume for simplicity that
crs can be extracted from the verification key vrs, and that the unary security
parameter 1λ as well as the relation R can be inferred from the crs.

Non-interactive proof systems are generally asked to satisfy some security
properties that simultaneously protect the prover from the disclosure of the
witness, and the verifier from a forged proof. We now state the security notions
necessary to define a zk-SNARG:

– Completeness. For every relation R, given a true statement, a honest
prover P with a valid witness should convince the verifier V with overwhelm-
ing probability. More formally, for all λ ∈ N, for all R ← R(1λ) and for all
(u,w) ∈ R:

Pr

[
V(vrs, u, π) = 1 (crs, vrs, td)← Gen(1λ,R)
∧ (u,w) ∈ R π ← P(crs, u, w)

]
= 1− negl(λ)

– Computational Soundness. An argument system requires that no com-
putationally bounded adversary can make an honest verifier accept a proof
of a false statement u 6∈ LR. More formally, for every PPT adversarial prover
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A, for any relation R ← R(1λ) there is a negligible function negl(λ) such
that:

Pr

[
V(vrs, u, π) = 1 (crs, vrs, td)← Gen(1λ,R)
∧ u 6∈ LR (u, π)← A(crs)

]
= negl(λ)

– Succinctness. A non-interactive argument where the verifier runs in poly-
nomial time in λ+ |u| and the proof size is polynomial in λ is called a prepro-
cessing succinct non-interactive argument (SNARG). If we also restrict the
common reference string to be polynomial in λ we say the non-interactive
argument is a fully succinct SNARG. Bitansky et al. [8] show that preprocess-
ing SNARKs can be composed to yield fully succinct SNARKs. The focus of
this paper is on preprocessing SNARKs, where the common reference string
may be long.

– Statistical Zero-knowledge. An argument is zero-knowledge if it does not
leak any information besides the truth of the statement. Formally, if for all
λ ∈ N, for all R ← R(1λ), for all (u,w) ∈ R and for all PPT adversaries A
the following two distributions are statistically close:

D0 =
[
π0 ← P(crs, u, w) : (crs, vrs, td)← Gen(1λ,R)

]
,

D1 =
[
π1 ← Sim(crs, td, u) : (crs, vrs, td)← Gen(1λ,R)

]
.

Adaptive Soundness. A SNARG is called adaptive if the prover can choose the
statement u to be proved after seeing the reference string crs and the argument
remains sound.

SNARG vs. SNARK. If we replace the computational soundness with compu-
tational Knowledge Soundness we obtain what we call a SNARK, a succinct
non-interactive argument of knowledge.

– Knowledge Soundness. The notion of knowledge soundness implies that
there is an extractor that can compute a witness whenever the adversary
produces a valid argument. The extractor gets full access to the adversary’s
state, including any random coins. Formally, we require that for all PPT
adversaries A there exists a PPT extractor εA such that

Pr

[
V(vrs, u, π) = 1 (crs, vrs, td)← Gen(1λ,R)
∧ (u,w) 6∈ R ((u, π);w)← A‖εA(crs)

]
= negl(λ)

Publicly verifiable vs. Designated Verifier. We define a SNARG such that the
setup algorithm for the argument system also outputs a secret verification state
vrs which is needed for proof verification. If adaptive soundness holds against
adversaries that also have access to the verification state vrs, then the SNARG
is called publicly verifiable; otherwise it is designated verifier. A key question
that arises in the design and analysis of designated verifier arguments is whether
the same common reference string can be reused for multiple proofs. Formally,
this “multi-theorem” setting is captured by requiring soundness to hold even
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against a prover that makes adaptive queries to a proof verification oracle. If
the prover can choose its queries in a way that induces noticeable correlations
between the outputs of the verification oracle and the secret verification state,
then the adversary can potentially compromise the soundness of the scheme.
Thus, special care is needed to construct designated-verifier argument systems
in the multi-theorem setting.

3 Building Blocks

3.1 Arithmetic Circuits.

Informally, an arithmetic circuit consists of wires that carry values from a field
F and connect to addition and multiplication gates.

We designate some of the input/output wires as specifying a statement and
use the rest of the wires in the circuit to define a witness. This gives us a
binary relation R consisting of statement wires and witness wires that satisfy
the arithmetic circuit, i.e., make it consistent with the designated input/output
wires.

3.2 Square Arithmetic Programs

We characterize NP as Square Arithmetic Programs (SAPs) over some field F of
order p ≥ 2λ−1. SAPs were introduced first by Groth et al. in [28].

The main idea is to represent each gate input and each gate output as a
variable. Then we may rewrite each gate as an equation in some variables repre-
senting the gate’s input and output wires. These equations are satisfied only by
the values of the wires that meet the gate’s logical specification. By composing
such constraints for all the gates in the circuit, a satisfying assignment for any
arithmetic circuit can be specified first as a set of quadratic equations, then mod-
ified to a square equivalent, and finally, seen as a constraint on the span of a set
of polynomials, defining the SAP for this circuit. As a consequence, the prover
needs to convince the verifier that all the quadratic equations are satisfiable by
finding a solution of the equivalent polynomial problem.

Definition 2 (SAP). A Square Arithmetic Program SAP over the field F con-
tains two sets of polynomials {v0(x), . . . , vm(x)}, {w0(x), . . . , wm(x)} ∈ F[x] and
a target polynomial t(x) such that deg(vi(x)),deg(wi(x)) ≤ d := deg(t(x)) for
all i = 0, . . . ,m.

We say that SAP accepts an input a1, . . . , a` ∈ F if and only if there exist
{ai}mi=`+1 ∈ F satisfying:

t(x) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

−

(
w0(x) +

m∑
i=1

aiwi(x)

)
.
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A SAP with such a description defines the following binary relation R, where
we define a0 = 1,

R =


u = (a1, . . . , a`u)
w = (a`u+1, . . . , am)

(u,w)
∃h(x) ∈ F[x],deg(h(x)) ≤ d− 2 :(∑m

i=0 aivi(x)
)2

=
∑m
i=0 aiwi(x) + h(x)t(x)


3.3 Encoding Schemes

The main ingredient for an efficient preprocessing SNARG is an encoding scheme
E over a field F with some important properties that allow proving and verifying
on top of encoded values. Well-known schemes use deterministic pairing-based
encodings, where the values are hidden in the exponent and the security is guar-
anteed by discrete logarithm type assumptions, e.g. [39, 34, 16, 27]. A formalisa-
tion of these encoding schemes was initially introduced in [19]. Here, we recall a
variant of this definition that was used for a recent SNARK construction based
on lattices in [20]. This definition has the advantage that it accommodates for
encodings with noise.

An encoding scheme E = (K,E) over a field F is composed of the following
algorithms

K(1λ)→ (pk, sk): a key generation algorithm that outputs some secret state sk
together with some public information pk.

E(a)→ C: a (non-deterministic) encoding algorithm mapping a ∈ F to some
encoding space C, such that {{E(a)} : a ∈ F} partitions C, where {E(a)}
denotes the set of the possible evaluations of the algorithm E on a.
Depending on the encoding algorithm, E will be either deterministic or not
and will require either only the public information pk, or the secret state sk.
For our application, it will be the case of sk. To ease notation, we will omit
this additional argument.

The above algorithms must satisfy the following properties:

– d-linearly homomorphic: there exists a poly(λ) algorithm Eval that, given
as input the public parameters pk, a vector of encodings (E(a1), . . . ,E(ad)),
and coefficients c = (c1, . . . , cd) ∈ Fd, outputs a valid encoding of a ·c where
a = (a1, . . . ad) with probability overwhelming in λ.

– quadratic root detection: there exists an efficient algorithm that, given
some parameter δ (either pk or sk), E(a0), . . . ,E(at), and the quadratic poly-
nomial p ∈ F[x0, . . . , xt], can distinguish if p(a1, . . . , at) = 0. With a slight
abuse of notation, we will adopt the writing p(ct0, . . . , ctt) = 0 to denote the
quadratic root detection algorithm with inputs δ, ct0, . . . , ctt, and p.

– image verification: there exists an efficiently computable algorithm ∈
that, given as input some parameter δ (again, either pk or sk), can dis-
tinguish if an element c is a correct encoding of a field element.
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Decoding Algorithm. When using a homomorphic encryption scheme in order
to instantiate an encoding scheme, we simply define the decoding algorithm Dec
as the decryption procedure of the scheme. More specifically, since we study
encoding schemes derived from encryption functions, quadratic root detection
and image verification for designated-verifiers are trivially obtained by using the
decryption procedure Dec together with the secret key sk.

One-way Encodings. If such a secret state is not needed to perform the quadratic
root detection, we will consider sk =⊥ and call it ”one-way” or publicly-verifiable
encoding. At present, the only candidates for such a ”one-way” encoding scheme
that we know of are based on bilinear groups, where the the bilinear maps
support efficient testing of quadratic degrees without any additional secret in-
formation.

4 zk-SNARG for Arithmetic Circuits

The idea of our SNARG is simple and follows the common paradigm of many
well-known pairing-based constructions. The prover has to convince the verifier
that it knows some polynomials, such that a division property between them
holds (a solution to SAP problem). Instead of sending the entire polynomials as
a proof, it evaluates them in a secret point s (hidden by the encoding) to obtain
some scalar values. The verifier, instead of checking a polynomial division, has
only to check a division between scalars, which makes the task extremely fast.

4.1 Framework for zk-SNARGs from SAP

In a nutshell, in order to construct succinct proofs of knowledge using our frame-
work, one must use the following building blocks:

– an SAP, a way of ”translating” the circuit satisfiability problem into a poly-
nomial division problem, meaning that we reduce the proof of computing a
circuit to the proof of a solution to this SAP problem,

– an E encoding scheme that hides scalar values, but allows linear operations
on the encodings for the prover to evaluate polynomials, and some quadratic
check property for the verifier to validate the proofs,

– a CRS generator that uses this encoding scheme to hide a secret random
point s and all the necessary powers of s needed later by the prover to
compute polynomial evaluations on s.

Our new framework for building SNARGs exploits the advantages of previ-
ous such proposals taking the best of each one. It uses the simple and efficient
representation of a arithmetic circuit satisfiability problem, SAP and minimizes
the proof size of our SNARG scheme. Also, our scheme does need only plausible
hardness assumptions for the underlying encoding scheme for proving computa-
tional soundness.
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Gen(1λ,R)

β, δ, s←$F; (pk, sk)← K(1λ)

crs :=
(
SAP =

(
{vi(x), wi(x)}mi=0, t(x)

)
, pk, E

(
δt(s)2

)
, E
(
βt(s)

)
,

{E(δsi)}d−1
i=0 , {E(δsit(s))}d−2

i=0 , {E(δwi(s) + βvi(s))}mi=`u+1

)
vrs := sk; td := (β, δ, s)

return (vrs, crs, td)

P(crs,u,w)

u := (a1, . . . , a`u)

w := (a`u+1, . . . , am)

v(x) :=
∑m
i=0 aivi(x)

vmid(x) :=
∑
i>`u

aivi(x)

w(x) :=
∑m
i=0 aiwi(x)

wmid(x) :=
∑
i>`u

aiwi(x)

h(x) = (v(x)2 − w(x))/t(x)

r←$F
f(w) := δwmid(s) + βvmid(s)

g(r) := r2δt(s)2 + 2rδt(s)v(s) + rβt(s)

A := E
(
δv(s) + rδt(s)

)
B := E(f(w) + δt(s)h(s) + g(r))

return π := (A,B)

V(vrs,u, π)

π := (A,B)

vin(x) :=
∑`u
i=0 aivi(x)

win(x) :=
∑`u
i=0 aiwi(x)

V := E(βvin(s))

W := E(δwin(s))

Check

A(A+ β) = δ(B +W + V )

Sim(crs, td,u)

td := (β, δ, s), µ←$F
φ(u) := δwin(s) + βvin(s)

A := E(δµ)

B := E
(
δµ2 + βµ− φ(u)

)
π := (A,B)

Fig. 1. Framework for zk-SNARG from SAP

Efficiency. The proof size is 2 encodings. The common reference string contains
a description of R and implicitly the polynomials in SAP, a public key for an
encoding scheme and m+2d+1−`u encodings of field elements. The verification
consists of checking one quadratic equation on the encoded values.

The prover has to compute the polynomial h(x). It depends on the relation
how long time this computation takes; if it arises from an arithmetic circuit
where each multiplication gate connects to a constant number of wires, the
relation will be sparse and the computation will be linear in d. The prover also
computes the coefficients of the representation v(x) :=

∑m
i=0 aivi(x). Having

all these coefficients, the prover applies m + 2d + 1 − `u linear homomorphic
operations on the encodings from the given crs.
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K(1λ, Γ )

s←$Znq

return s

E(s,m)→ ct

a←$Znq

σ := qα; e← χσ

ct := (−a, a · s + pe+m)

Dec(s, (c0, c1))→ m

m := (c0 · s + c1) mod p

return m

Fig. 2. An encoding scheme based on LWE.

Besides the improvements mentioned above, one of the most remarkable fea-
tures of this framework is the fact that it can accommodate for lattice-based
encodings, meaning that we can use it to obtain a quantum-resilient SNARGs.

4.2 Lattice-based Instantiation

In this section, we describe a possible encoding scheme based on learning with
errors (LWE) that will be used as a building block for our post-quantum SNARG
scheme.

Lattice-Based Encoding Scheme. In order to instantiate our SNARG encoding,
we just use Enc = (K,E,Dec) encryption scheme depicted in figure 2. This
is the same encoding used to construct lattice-based SNARKs in [20], a slight
variation of the classical LWE cryptosystem initially presented by Regev [40]
and later extended in [14].

The encryption scheme Enc is described by parameters Γ := (p, q, n, α),
with q, n, p ∈ N such that (p, q) = 1, and 0 < α < 1. In the corresponding
description of our building block E, the public information is constituted by the
LWE parameters pk = Γ and an encoding of m is simply an LWE encryption
of m. The LWE secret key constitutes the secret state sk = s of the encoding
scheme.

Basic Properties. We briefly recall the main properties Enc should satisfy as a
building block in a SNARG scheme.

correctness. Let ct = (−a,a · s + pe + m) be an encoding. Then ct is a valid
encoding of a message m ∈ Zp if e < q

2p .

d-linearly homomorphicity. Given a vector of d encodings ct ∈ Zd×(n+1)
q

and a vector of coefficients c ∈ Zdp, the homomorphic evaluation algorithm
is defined as follows: Eval(ct, c) := c · ct.

quadratic root detection. The algorithm for quadratic root detection can be
implemented using Dec and the secret key (i.e., sk := s): decrypt the message
and evaluate the polynomial, testing if it is equal to 0.

image verification. Using the decryption algorithm Dec and sk, we can imple-
ment image verification (algorithm ∈).
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4.3 Technical Challenges

Noise growth. During the homomorphic evaluation, the noise grows as a result
of the operations which are performed on the encodings. Consequently, in order
to ensure that the output of Eval is a valid encoding of the expected result, we
need to start with a sufficiently small noise in each of the initial encodings.

In order to bound the size of the noise, we first need a basic theorem on the
tail bound of discrete Gaussian distributions due to Banaszczyk [3]:

Lemma 1 ([3]). For any σ, T ∈ R+ and a ∈ Rn:

Pr[x← χnσ : |x · a| ≥ Tσ ‖a‖] < 2 exp(−πT 2). (1)

At this point, this corollary follows:

Corollary 1. Let s←$ Znq be a secret key and m = (m0, . . . ,md−1) ∈ Zdp be a
vector of messages. Let ct be a vector of d fresh encodings so that cti ← E(s,mi),

and c ∈ Zdp be a vector of coefficients. If q > 2p2σ
√

κd
π , then Eval(c, ct) outputs

a valid encoding of m · c under the secret key s.

Smudging. When computing a linear combination of encodings, the distribution
of the error term in the final encoding does not result in a correctly distributed
fresh encoding. The resulting error distribution depends on the coefficients used
for the linear combination, and despite correctness of the decryption still holds,
the error could reveal more than just the plaintext. We combine homomorphic
evaluation with a technique called noise smudging [21, 2, 4], which “smudges
out” any difference in the distribution that is due to the coefficients of the linear
combination, thus hiding any potential information leak.

Zero-Knowledge. We now present a version of the the famous “leftover hash
lemma” introduced in [29] that will be useful later when proving the zero-
knowledge property of our construction. In a nutshell, it says that a random
linear combination of the columns of a matrix is statistically close to a uniformly
random vector, for some particular choice of coefficients.

Lemma 2 (Specialized leftover hash lemma). Let n, p, q, d be non-negative
integers. Let A←$ Zn×dq , and r←$ Zdp. Then we have

∆(A,Ar ), (A,u ) ≤ 1

2

√
p−d · qn,

where Ar is computed modulo q, and u←$Znq .

Practical Considerations. A single encoded value has size (n + 1) log q = Õ(λ).
Therefore, as long as the prover sends only 2 encodings, the proof is guaranteed
to be (quasi) succinct.

Although the scheme requires the noise terms to be sampled from a dis-
crete Gaussian distribution, for practical purposes we can sample them from
a bounded uniform distribution (see, e.g., [36] for a formal assessment of the
hardness of LWE in this case).
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(pk, st, {mi}, {Dec(ctj)})← D0(λ)

(pk, sk)← K(1λ)

(st,m1, . . . ,md)← M(1λ)

σ ← (pk,E(m1), . . . ,E(md))

{ctj}nj=1 ← A(σ; z)

where Dec(ctj) 6=⊥

(pk, st, {mi}, {dj})← D1(λ)

(pk, sk)← K(1λ)

(st,m1, . . . ,md)← M(1λ)

(a1, · · ·an,b)← S(pk; z)

aj ,b ∈ Fd

dj :=
∑d
i=1 ajimi + bi

Fig. 3. Distributions D0 and D1 in Linear-Targeted Malleability.

5 Security of our zk-SNARG

Following our framework for SAP and implementing it with the encryption
scheme Enc as described above and making some modification for the zero-
knowledge, we obtain a new lattice-based zk-SNARG scheme with short proofs
consisting in 2 ciphertexts instead of 5 in [20]. The soundness of the result-
ing SNARG scheme relies on the long-standing hardness assumption of linear
targeted malleability of the encoding scheme.

Moreover, the same construction yields a zk-SNARK (a zero-knowledge suc-
cinct non-interactive argument of knowledge) if the soundness property is re-
placed with a corresponding knowledge property, and the scheme E satisfies
linear-only encryption, where the simulator is required to be efficient (i.e., PPT).
For more details, we refer to [9]. Roughly, the knowledge property states that
there exists an extractor such that for every linear strategy that convinces the
verifier of some statement u with high probability, the extractor outputs a wit-
ness w such that (u,w) ∈ R.

5.1 Hardness Assumptions

Linear-Only Encoding Schemes. A linear-only encoding scheme is an encoding
scheme where any adversary can output a valid new encoding only if this is a
linear combination of some previous encodings that the adversary had as input.
At high-level, a linear-only encoding scheme does not allow any other form of ho-
momorphism than linear operations. If we require from the adversary to actually
know the coefficients of the linear combination, we assume extractable linear-
only, and model this knowledge by the existence of a non-black-box polynomial
time extractor.

In this work, we use the weaker notion of linear-targeted malleability, em-
ployed also in [9]. This is closer to the definition template of Boneh et al. [12]. In
such a notion, the extractor is replaced by an efficient simulator. Relying on this
weaker variant, if the simulator is allowed to be inefficient, we are only able to
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prove soundness of the SNARG, though not knowledge soundness as needed for
SNARKs. Concretely, the linear-only property rules out any encryption scheme
where ciphertexts can be sampled obliviously; instead, the weaker notion does
not, and thus allows for shorter ciphertexts.

Definition 3 (Linear-Targeted Malleability, [9]). An encoding scheme
satisfies linear-targeted malleability property if for all PPT adversaries A and
plaintext generation algorithm M there exists a simulator S such that, for any
sufficiently large λ ∈ N, any ”benign” auxiliarly input z the following two distri-
butions D0(λ),D1(λ) in figure 3 are computationally inistinguishable.

5.2 Security Proof

Before formally proving this is a SNARG, let us give a little intuition behind the
different components in the scheme (see figure 1). The role of β is to ensure A
and B are consistent with each other in the choice of coefficients a0, . . . , am. In
the verification equation the product A(A+ β) involves a linear dependence on
β, and we will later prove that this linear dependence can only be balanced out
by the term B with a consistent choice of a0, . . . , am in A and B. The role of δ
to make the product δB of the verification equation independent from the first
product and preventing mixing and matching of elements intended for different
products in the verification equation. Finally, the prover algorithm uses r to
randomize the proof to get zero-knowledge.

Theorem 1. Assuming that the scheme Enc is a linear-targeted malleable en-
coding scheme, the protocol given in figure 1 is a non-interactive zero-knowledge
argument.

Completeness. Completeness holds by direct verification.

Zero-Knowledge. To obtain a zero-knowledge protocol, we do two things: we add
a smudging term to the noise of the encoding, in order to make the distribution
of the final noise independent of the coefficients ai, and we randomize the tar-
get polynomial t(x) to hide the witness from the verifier. The random vectors
constituting the first element of the ciphertext are guaranteed to be statistically
indistinguishable from uniformly random vectors by leftover hash lemma (cf.
Lemma 2).

To see that the simulated proofs are indistinguishable from the real proofs,
first observe that the simulation procedure always produces verifying proofs.
Next, observe that for a given instance and proof π = (A,B) the element A
uniquely determines B through the verification equation. In a real proof the
random choice of r makes the value encoded in A uniformly random, and in
a simulated proof the random choice of µ makes the value inside A uniformly
random. So in both cases, we get the same probability distribution over the
values hidden by the encodings A,B with uniformly random A and the unique
matching B.
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We are left with showing that after applying our encoding scheme on these
values, the two proofs, the real one and the simulated one, are statistically in-
distinguishable.

In both worlds, the proof is a couple of encodings (A,B). Once the vrs is
fixed, each encoding can be written as (−a,a · s + pe + m), for some a ∈ Znq
and some m ∈ Zp satisfying the verification equations. Due to Lemma 2, the
random vectors a are indistinguishable from uniformly random in both worlds.
The error terms are statistically indistinguishable due to smudging techniques
applied to the ciphertexts. The zero-knowledge follows from these claims, since
the simulator can use re-randomization to ensure that its actual encodings (not
just what is encoded) are appropriately uniform.

Computational Soundness. The linear-targeted malleability property of the en-
cryption scheme constrains the prover to only use affine strategies. This ensures
soundness for our SNARG. To check a proof, the verifier decrypts the prover’s
responses and checks the corresponding quadratic equation on these values.

What remains is to demonstrate that for any affine prover strategy that is
able to produce a couple statement-proof (u, π) that passes the verification test,
there exists the simulator S as defined in figure 3 that outputs a valid witness
w for the statement u.

For any prover algorithm A(crs) → (u, π), by our linear-targeted malleabil-
ity assumption the values A,B encoded in the proof π = (A,B) are iden-
tically distributed as two simulated linear combination of some initial values
σ = (δt(s)2, βt(s), {δsi)}d−1i=0 , {δsit(s)}

d−2
i=0 , {δwi(s)+βvi(s)}mi=`+1) encoded in

the crs. More formally, we consider the simulator S that on input σ and some
auxiliary input z (which corresponds to the rest of the SNARG’s crs) outputs a
pair of coefficients such that the resulting values c, d are indistinguishable from
the values encoded by the proof π:

(σ, st,Dec(A),Dec(B))← D0(λ)

(pk, sk)← K(1λ)

(st,m1,m2,m3,m4,m5)← M(1λ)

σ ← (pk,E(m1), . . . ,E(m5))

where m1 = δt(s)2, m2 = βt(s),

{m3i = δsi)}d−1
i=0 , {m4i = δsit(s)}d−2

i=0 ,

{m5i = δwi(s) + βvi(s)}mi=`+1(
u, π := (A,B)

)
← A(σ; z)

such that V(vrs,u, π) = 1

(σ, st, c, d)← D1(λ)

(pk, sk)← K(1λ)

(st,m1, . . . ,mn)← M(1λ)

where m3, . . .mn is a reordering of

the entries in m3,m4,m5

(c′, c, b′,b)← S(pk; z)

cj ,bj ∈ Fn

c :=
∑n
i=1 cimi + c′

b :=
∑n
i=1 bimi + b′

If A convinces the verifier to accept with probability at least ε(λ), then, with
at least ε(λ) − negl(λ) probability, the distribution on the left satisfies that
V(vrs,u, (E(c),E(b))) = 1. However, in this distribution, the generation of ({mi})
is independent of the generation of the simulated affine function coefficients
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(c′, c, b′,b). Therefore, by averaging, there exists some (c′, c, b′,b) such that,
with probability at least ε(λ)/2 over the choice of {mi}i it holds that π′ =
(E(c),E(b)) is a valid proof for u. We can use some basic linear algebra techniques
to recombine the coefficients (c′, c, b′,b) and extract an actual witness w =
(a`u+1, . . . am) for the statements u = (a1, . . . a`u).

Given that the number of variables and the lenght of the equation is signifi-
cant we will not detail all the computations, but the intuition of how we recover
these coefficients from the values c, b is the following:

We can rewrite c as

c := c(β, δ, s) = c1δt(s)
2 + c2βt(s) + c3(s)δ+

+c4(s)δt(s) +
∑
i>`u

c5i
(
δwi(s) + βvi(s)

)
for known field elements c1, c2, {c5i}i>`u and polynomials c3(x), c4(x) of degrees
d − 1 and d − 2, respectively. We can write out b := b(β, δ, s) in a similar fash-
ion from the values in σ. By the Schwartz-Zippel lemma the proof π′ = (c, d)
has negligible probability to pass the check unless the verification equation
c2 + βc = δ(b + φ(u)) holds not only for the values c, b, but for some actual
polynomials c(xβ , xδ, xs), b(xβ , xδ, xs) in indeterminates xβ , xδ, xs. We now view
the verification equation as an equality of multivariate polynomials in xβ , xδ, xs
and by cancelling the respective terms in this polynomial equality (for example
the terms with indeterminate x2β , then the ones with xδxβ , etc.), we eventually
remain only with the terms involving powers of xs that should satisfy:

( m∑
i=0

civi(xs)
)2

=

m∑
i=0

ciwi(xs) + bh(xs)t(xs).

This shows that (a`u+1, . . . am) = (c`u+1, . . . cm) is a witness for the statement
(a1, . . . a`u).

Lower Bounds for SNARGs. It is an intriguing question how efficient non-
interactive arguments can be and what is the minimal size of the proof. Groth
showed in [27] that a pairing-based non-interactive argument with generic group
algorithms must have at least two group elements in the proof. We do not have
an equivalent result for lower bounds in the post-quantum setting, but recent
construction aim to minimize the number of lattice-encodings in the proof and
the verification overhead. Our lattice-based SNARG seems to be the most opti-
mal to date in the size of the proof and the number of verification equations, we
achieve proofs of size 2 encodings and only one verification equation.
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2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction via
threshold FHE. pp. 483–501 (2012). https://doi.org/10.1007/978-3-642-29011-429

3. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices inr n.
Discrete & Computational Geometry 13(2), 217–231 (1995)

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. pp. 719–737
(2012). https://doi.org/10.1007/978-3-642-29011-442

5. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO (2). Lecture Notes in Computer Science, vol. 10992,
pp. 669–699. Springer (2018), http://dblp.uni-trier.de/db/conf/crypto/crypto2018-
2.htmlBaumBCPGL18

6. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046
(2018), https://eprint.iacr.org/2018/046

7. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A., Tromer,
E.: The hunting of the SNARK. Cryptology ePrint Archive, Report 2014/580 (2014),
http://eprint.iacr.org/2014/580

8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. pp. 326–349
(2012). https://doi.org/10.1145/2090236.2090263

9. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct
non-interactive arguments via linear interactive proofs. pp. 315–333 (2013).
https://doi.org/10.1007/978-3-642-36594-218

10. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application
to more efficient obfuscation. pp. 247–277 (2017). https://doi.org/10.1007/978-3-319-
56617-79

11. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal snargs via linear multi-
prover interactive proofs. Cryptology ePrint Archive, Report 2018/133 (2018),
https://eprint.iacr.org/2018/133

12. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption for
restricted computations. pp. 350–366 (2012). https://doi.org/10.1145/2090236.2090264

13. Boppana, R.B., Hastad, J., Zachos, S.: Does co-np have short inter-
active proofs? Information Processing Letters 25(2), 127 – 132 (1987).
https://doi.org/http://dx.doi.org/10.1016/0020-0190(87)90232-8

14. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (stan-
dard) LWE. pp. 97–106 (2011). https://doi.org/10.1109/FOCS.2011.12
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