
The Price of Active Security in Cryptographic Protocols

Carmit Hazay
Bar-Ilan University

Muthuramakrishnan Venkitasubramaniam
University of Rochester

Mor Weiss
Bar-Ilan University

Abstract

We construct the first actively-secure Multi-Party Computation (MPC) protocols with an arbitrary
number of parties in the dishonest majority setting, for an arbitrary field F with constant communica-
tion overhead over the “passive-GMW” protocol (Goldreich, Micali and Wigderson, STOC ‘87). Our
protocols rely on passive implementations of Oblivious Transfer (OT) in the boolean setting and Obliv-
ious Linear function Evaluation (OLE) in the arithmetic setting. Previously, such protocols were only
known over sufficiently large fields (Genkin et al. STOC ‘14) or a constant number of parties (Ishai et
al. CRYPTO ‘08).

Conceptually, our protocols are obtained via a new compiler from a passively-secure protocol for a
distributed multiplication functionality FMULT, to an actively-secure protocol for general functionalities.
Roughly, FMULT is parameterized by a linear-secret sharing scheme S, where it takes S-shares of two
secrets and returns S-shares of their product.

We show that our compilation is concretely efficient for sufficiently large fields, resulting in an over-
head of 2 when securely computing natural circuits. Our compiler has two additional benefits: (1) it can
rely on any passive implementation of FMULT, which, besides the standard implementation based on OT
(for boolean) and OLE (for arithmetic) allows us to rely on implementations based on threshold cryp-
tosystems (Cramer et al. Eurocrypt ‘01); and (2) it can rely on weaker-than-passive (i.e., imperfect/leaky)
implementations, which in some parameter regimes yield actively-secure protocols with overhead less
than 2.

Instantiating this compiler with an “honest-majority” implementation of FMULT, we obtain the first
honest-majority protocol (with up to one-third corruptions) for boolean circuits with constant communi-
cation overhead over the best passive protocol (Damgård and Nielsen, CRYPTO ‘07).

1

Contents

1 Introduction 3
1.1 Our Results – A New Framework . 4
1.2 Related Work . 7
1.3 Subsequent Work . 8

2 Our Techniques 8

3 Preliminaries 12
3.1 Layered Arithmetic Circuits . 13
3.2 Oblivious Transfer . 13
3.3 Oblivious Linear Evaluation . 13
3.4 Commitment Schemes . 14
3.5 Multiplication Functionalities . 14
3.6 Secret-Sharing . 15
3.7 Error Correcting Codes . 16
3.8 Packed Secret Sharing over Constant-Sized Fields . 17
3.9 Secure Multiparty Computation (MPC) . 18

4 Basic MPC Protocol 19
4.1 Instantiating FRMULT . 31

5 Actively Secure MPC with Constant Communication Overhead 33

6 Corollaries and Applications 39
6.1 Constant Overhead MPC for Constant-Size Fields . 39
6.2 Constant Overhead MPC over Fields of Arbitrary Size . 40

7 Extensions and Further Corollaries 41
7.1 Imperfect FMULT . 41
7.2 Constant-Round Protocols in the Boolean Setting . 43

A Concrete Analysis for Large Fields 47

B Proof of Lemma 4.4 from [AHIV17] 48

2

1 Introduction

The problem of Secure Multi-party Computation (MPC) considers a set of parties with private inputs that
wish to jointly compute a function of their inputs while simultaneously preserving correctness of the outputs,
and guaranteeing privacy of the inputs, i.e., nothing but the output is revealed. These properties are required
to hold in the presence of an adversary that controls a subset of the parties, and attacks the protocol in an
attempt to breach its security, e.g., learn more than it should about the honest parties’ inputs.

Secure computation was first defined and explored in the mid 80s [Yao86, CCD87, GMW87, BGW88],
and has been the focus of intensive study ever since. In the first two decades, research focused mainly on
theoretical foundations, establishing the boundaries of feasibility and complexity. More recently, the focus
has shifted to making MPC efficient and reducing its overhead over insecure implementations, both in terms
of asymptotic and concrete efficiency (See [LP07, IPS08, IPS09, DPSZ12, WRK17a, WRK17b, HSS17,
GLS19], and references therein.)

A basic classification in MPC considers protocols in which security is guaranteed with: (1) an honest
majority, namely when the adversary corrupts a minority of the participants; or (2) a dishonest majority,
where the adversary can corrupt arbitrarily many parties. The second category, which captures two-party
protocols as a special case, has the advantage that any single party need not trust anyone but itself. De-
signing protocols from the second category is significantly more challenging, and they can only guaran-
tee computational security, i.e., against computationally-bounded adversaries. On the other hand, the first
category admits conceptually simpler solutions with statistical (or even perfect) security, namely against
computationally-unbounded adversaries.

An orthogonal classification of MPC protocols is based on the adversarial behavior: (1) passive adver-
saries that follow the protocol’s instructions but try to learn more than the prescribed information; and (2)
active adversaries that may arbitrarily deviate from the protocol. A common paradigm in MPC is to design
first a passively-secure protocol, and then compile it into an actively-secure one.

Hence, an important efficiency metric for MPC protocols is the overhead of actively-secure protocols
over (the best) passively-secure ones. A primary goal in MPC today is to reduce this overhead, and specifi-
cally to design actively-secure protocols with constant overhead over state-of-the-art passively-secure pro-
tocols. That is, to design protocols whose communication and computation overheads grow only by a
constant factor compared to the underlying passive protocols.

This work focuses on one of the most challenging MPC settings: active security with an arbitrary
number of parties. Ideally, we would like the price of achieving active security to be minimal compared to
the passively-secure counterparts.

The past decade has seen tremendous progress in the design of concretely-efficient actively-secure pro-
tocols for arbitrary functions, specified as boolean or arithmetic circuits, in either the two-party [ST04,
LP07, KS08, NO09, LP12, NNOB12, SS13, HKK+14, ZRE15, RR16, LR15, GLNP15, WMK17, WRK17a,
HIV17], or the multi-party setting with an arbitrary number of parties [IPS08, DPSZ12, DKL+13, LPSY15,
WRK17b, HSS17, KPR18]. See Section 1.2 below for more details.

Despite this impressive progress there still remain important gaps between what is achievable with pas-
sive and active security. Indeed, no protocols for boolean computations with an arbitrary number of parties
and constant communication overhead (even asymptotically) are known, both in the honest and the dishon-
est majority settings. For arithmetic computations with an arbitrary number of parties and over sufficiently
large fields, the best concrete overhead (of 12x [GIP+14]) still seems large. In the honest majority setting
an overhead of 2 has been achieved only for large fields [CGH+18].

Given this state of affairs, in this work we set out to answer the following fundamental open problem:

3

Can actively-secure protocols over an arbitrary field match the complexity of passively-secure protocols,
in the dishonest and honest majority settings, with an arbitrary number of parties?

We resolve this open problem in terms of communication complexity in the affirmative, designing an
asymptotically-efficient actively-secure protocol for boolean circuits (as well as arithmetic circuits over any
field) in both the honest majority and dishonest majority settings, with constant communication overhead
over the (best known) passively-secure counterparts.

We note that constant-overhead protocols are known based on general zero-knowledge proofs [GMW87],
but these solutions rely on “heavy” tools and are practically inefficient. Instead, we focus on designing pro-
tocols that make black-box use of simpler (and lightweight) primitives such as One-Way Functions (OWFs),
and parallel Oblivious-Transfer (OT) or parallel Oblivious Linear function Evaluation (OLE) in the boolean
and arithmetic settings (resp.). Relying on OTs/OLEs is, in a sense, necessary since these are special cases of
secure computation in their respective settings. Moreover, since our protocols make black-box use of these
primitives, they will benefit from future improvements in the costs of OT/OLE implementations, which have
been steadily decreasing.

Moreover, to frame a clean theoretical question, we focus on designing modular protocols in which the
(relatively) computationally-expensive “cryptographic” component is separated from the rest of the proto-
col, and abstracted as an ideal functionality. Specifically, the “cryptographic” abstraction we consider in
this work is a (constant-round) parallel protocol for computing distributed multiplication. Relying on a
general multiplication functionality instead of OT/OLE allows us to simultaneously capture many settings
of interest (booealn/arithmetic computations, two/multi-party, honest/dishonest majority) in a unified way.
More specifically, we abstract distributed multiplication as an FMULT functionality that is parameterized
by a secret sharing scheme S over some field F, takes S-shares of two secrets, and produces S-shares of
their product. It is easy to see that one can use a general reduction from OT (resp. OLE) to a random
instance FRMULT of FMULT (which generates additive shares of random multiplication triples in the sense of
Beaver’s triples [Bea91]) for boolean (resp. arithmetic) computations. In the multi-party setting, one can
also realize FMULT using more general protocols based on threshold additively-homomorphic encryption
schemes [CDN01].

Given the previous discussion, we can rephrase our motivating question as follows:

Can actively-secure protocols over an arbitrary field match the complexity of passively-secure imple-
mentations of FMULT, in the dishonest and honest majority settings, with an arbitrary number of parties?

1.1 Our Results – A New Framework

In this work we answer the open problem stated above with respect to communication complexity on the af-
firmative, introducing the first actively-secure protocol with constant communication overhead over passive
GMW [GMW87], for any number of parties and over any field, in the FMULT-hybrid model.

We obtain our result via a new compiler which transforms a passively-secure protocol for FMULT into an
actively-secure protocol for arbitrary functionalities, while inheriting the setting of the FMULT protocol (i.e.,
boolean/arithmetic, two/multi-party, and honest/dishonest majority). Specifically, the compiler is described
in the FMULT-hybrid model, and using different instantiations of FMULT we obtain actively-secure protocols
with constant communication overhead in the boolean and arithmetic, two-party and multi-party, and honest
and dishonest majority settings. Moreover, for large fields and “typical” circuits,1 the overhead of our

1By “typical” circuits we mean ones that are sufficiently wide (in terms of parallel multiplication gates). For our asymptotic
result, it suffices for the width to be Ω(s), where s is a statistical security parameter.

4

Corruption Number of Field Hybrid Asymptotic Best Theorem
Threshold Parties Size Model Overhead Passive Number

t < n Arbitrary O(1) OT Constant [GMW87] Theorem 5

t < n Arbitrary Arbitrary OLE Constant∗ [GMW87] Theorem 7

t < (1− ϵ)n/3 ∗∗ Arbitrary O(1) — Constant [DN07] Theorem 8

t < n/2 ∗∗ Arbitrary Large fields — Constant [DN07] Theorem 8

Table 1: Asymptotic communication overheads of our results in both the dishonest and honest majority settings for
boolean and arithmetic computations. The “best passive” column refers to the passively-secure protocol over which
the overhead is computed. The “theorem number” column specifies the theorem which implies the corresponding
result.
∗ Concretely, this constant is 2 for moderately wide circuits.
∗∗ We note that though in the honest majority setting guaranteed output delivery is achievable, our protocol
only guarantees security with abort.

protocols is 2.
Working in the FMULT-hybrid model allows us to preserve a clear separation between the “passive” (al-

ternatively, cryptographic) components of our protocol, namely the implementation of FMULT, which relies
on cryptographic assumptions; and the “correctness-enforcing” (alternatively, non-cryptographic) compo-
nents which involve tools from the literature of honest-majority protocols, employing consistency tests to
enforce honest behavior. Besides scalability (and reduced communication complexity), we believe our ap-
proach is simple and modular.

Our compiler improves over the state-of-the-art in several settings; see Table 1 for a summary, and
Section 6 for a detailed discussion.

New protocols in the dishonest majority setting. Our complier exhibits the most substantial improvements
in the dishonest majority setting, yielding the first constant-overhead actively-secure protocol with a dishon-
est majority over an arbitrary number of parties for boolean circuits. The concrete constants of our compiler
are yet unknown since they depend on the concrete efficiency of Algebraic Geometric (AG) secret sharing
schemes over constant-size fields [CC06]. The result is summarized in the following informal theorem; see
Theorem 5 for the formal statement.

Theorem 1 (Informal). Any m-party function f over a constant-size field (resp., arbitrary size field) can be
securely realized by an O(d)-round protocol in the OT-hybrid (resp., OLE-hybrid) model against an active
adversary corrupting an arbitrary number of parties with total communication O(m2 |C|) + poly(κ, d,m)
field elements, where C is a depth-d circuit for f , and κ is a computational security parameter.

For arithmetic computations, we can concretely analyze the constants introduced by our compiler, and
show that they can be as small as 2 for moderately wide circuits and sufficiently large fields. This improves
over [GIP+14] in two aspects. First, their work requires at least 12 invocations of an active implementation
of FMULT, while ours requires only two invocation of a passive implementation. This allows us to instantiate
our compiler with passive implementations of FMULT based on threshold additively homomorphic encryption

5

schemes [CDN01, BDOZ11]. Second, their result is only useful for computations over sufficiently large
fields (where the statistical error O (|C| / |F|) is small), whereas our result applies to fields of arbitrary size.

Building on the recent result of Hazay et al. [HIMV19], we can extend our compiler to rely on a weaker-
than-passive (e.g., imperfect or leaky) implementation of FMULT. Consequently FMULT can be instantiated
with lattice-based protocols with “aggressive” (weaker) parameters, yielding actively-secure compiled pro-
tocols whose communication cost almost matches that of the best passive protocols, namely, essentially
achieving active security at the cost of passive!

Additionally, we achieve an interesting corollary in the constant-round regime for boolean computations.
By viewing distributed garbling [BMR90] as an arithmetic functionality over GF(2κ), we can instantiate
our compiler for arithmetic circuits to achieve constant-overhead over that passive variant of [BMR90]
instantiated with FMULT over GF(2κ). See section 7.2 for details.

We believe our protocols can also be made to tolerate adaptive corruptions by instantiating the under-
lying cryptographic primitives (namely, FMULT and FCOM) with their adaptively-secure counterparts, and
leave this to future work.

New protocols in the honest majority setting. In the honest majority regime for t < n/2 (t < (1− ε)n/3,
respectively), our compiler gives an actively-secure protocol for arithmetic (boolean, respectively) circuits
with constant overhead over a variant of [DN07] that is instantiated using AG secret sharing schemes (see
Theorems 6 and 8). This should be contrasted with the recent protocol by Chida et al. [CGH+18], which only
achieves constant overhead for large fields (introducing an extra statistical security parameter s for small
fields with an overhead of s/ log2(|F|)), and with Ishai et al. [IKP+16] who achieve constant-overhead
for arbitrary fields, but only for few parties. We note that these two results are in the honest majority
setting t < n/2, whereas for boolean circuits our corruption threshold is t < (1 − ε)n/3. We further note
that [DI06] achieves constant-rate secure protocols, but only for some constant corruption threshold. For
boolean computation with an arbitrary number of parties and optimal threshold, the best protocols are due
to Genkin et al. [GIW16] and achieve a polylog(|C| , s) overhead, where |C| is the circuit size.

On concrete efficiency. The work of [HIMV19] demonstrated that in the dishonest majority setting, IPS-
style compilation yields the best communication and computation in the two-party setting for computations
over large-prime finite fields. To date, even with the recent advances in PCGs [BGIN21, BGIN22], this re-
mains the most competitive protocol with practical efficiency. A main drawback with PCG-based approaches
is that there does not exist a passive-to-active compiler based on standard assumptions. The recent work of
Boyle et al. [BGIN22] provides two compilers, one that is based on lattice assumption with a “linear-only”
homomorphism property, and a second compiler that is not practically feasible as it uses the generic GMW
paradigm, employing sublinear zero-knowledge proofs in a non black-box way. Making this line of work
practical against active adversaries remains an open question.

Our work generalizes the work of [HIMV19] to the multiparty setting, with similar computation and
communication efficiency, and we believe it will be competitive with the state-of-the-art. (cf. Table 3 for
a concrete analysis of the communication complexity of our protocol.) In the honest majority setting, the
recent works based on so-called distributed zero-knowledge proofs and replicated secret-sharing have been
able to achieve tight compilation from passive to active, with some protocols achieving communication
overheads that are only additive and even sublinear in the cost of the passive protocol additive [BGIN19,
BGIN20, DEN22]. However, all these works are efficient only when there is a constant number of parties,
and it is an open question to make them practical for an arbitrary number of parties. Our protocol, on the
other hand, will yield an efficient protocol for an arbitrary number of parties.

6

For constant-sized fields, our work relies on AG codes which have not yet been demonstrated to be
practical as they do not admit efficiency similar to FFTs.

1.2 Related Work

We give a brief overview of recent efficient protocols, summarized in Table 2.

The state-of-the-art: boolean multi-party setting. For boolean circuits, secure protocols against a dishon-
est majority with an (asymptotic) constant overhead over passively-secure protocols was achieved for a con-
stant number of parties by Ishai, Prabhakaran and Sahai [IPS08] (referred to as the “IPS-compiler”). Their
protocol operates in the OT-hybrid model, achieving constant overhead over passive-GMW. It also achieves
constant rate, namely the communication complexity of evaluating a circuit C isO (|C|)+poly (log |C| , d,m, κ),
where d,m, κ are the depth of C, the number of parties, and a security parameter, respectively. For an ar-
bitrary number of parties, the protocol of Genkin et al. [GIW16] obtains polylog (|C| , s) overhead over
passive-GMW, where s is a statistical security parameter. This result is obtained by converting a boolean
circuit C into a functionally-equivalent randomized circuit C′ that is immune against so called “additive
attacks”, and evaluating C′ using the semi-honest protocol of [GMW87]. (This technique was originally
introduced by [GIP+14], but was essentially only useful over large fields, see discussion below.) In the
honest-majority setting for the special case of 3 parties and 1 corruption, Boneh et al. [BBC+19] design
a protocol with communication complexity O(|C|) making black-box use of a Pseudo-Random Generator.
(We note that [BBC+19] acturally obtain a stronger result: their 3-party protocol works for any field or
ring Zw, and they also have extensions for n-party honest-majority protocols, as long as the underlying
passively-secure protocol has a specific structure, which is satisfied by, e.g., [GMW87].)

The state-of-the-art: arithmetic multi-party setting. In the arithmetic setting in which the computation
is performed over an arbitrary field F, Genkin et al. [GIP+14] designed MPC protocols in the OLE-hybrid
model, with a statistical error of O(|C|/F), and constant communication overhead compared to an algebraic
variant of passive-GMW [GMW87], for sufficiently large fields F. As described above, their result is ob-
tained by converting a circuit C over some field F into its additively-secure variant C′, and evaluating C′

using passive-GMW and actively secure implementation of OLE. In practice, the constant in the commu-
nication overhead of their protocol is 12, and moreover their protocol is only useful for circuits over large
fields (for which O(|C|/F) is sufficiently small). For arbitrary fields, the work of Döttling et al. [DGN+17]
gives an actively secure protocol where the overhead is 22 invocations of an actively secure implementation
of FMULT per multiplication gate of the circuit. A practical implementation for arbitrary number of parties
was given in [KPR18] based on “tailor-made” zero-knowledge proofs to achieve active security.

We note that in the honest majority setting, the recent work by Chida et al. [CGH+18] presents a new
actively-secure protocol for arithmetic circuits that obtains overhead 2 over passive protocols for sufficiently
large fields. Similar to our protocol, their protocol is in the FMULT-hybrid model, where FMULT can be instan-
tiated with any passively-secure protocol that further guarantees a notion of “security up to additive attacks”
in the presence of active adversaries. It is unclear whether their paradigm extends to the dishonest majority
setting, since their model of additive attacks is weaker than the standard one formulated in [GIP+14], where
in all natural candidates an active attack translates into an additive attack in the latter (stronger) attack model,
and is therefore not protected against by the framework of [CGH+18].

In an orthogonal vein, we note that Applebaum et al. [ADI+17] designed the first (variant of) passively-
secure OLE based on LPN-style assumptions, implying secure arithmetic computation with asymptotic
constant computational overhead over an insecure evaluation of the circuit.

7

The state-of-the-art: two-party setting. In the boolean setting, the protocols of [IPS08] and [HIV17]
achieve (asymptotic) constant communication overhead over the passive protocols of [GMW87] and [Yao86],
respectively. The latter has the added benefit of matching the number of OT calls in [Yao86], which (un-
like [GMW87]) is sublinear in the circuit size. Practical implementations of [IPS08] have been studied
in [LOP11], who identified bottlenecks in obtaining concretely-efficient protocols based on the IPS pro-
tocol due to the implementation of the so-called “watchlist channels”. In the arithmetic setting, a recent
work by Hazay et al. [HIMV19] instantiated the framework of [IPS08] with a concretely-efficient honest
majority protocol, obtaining small multiplicative overheads (between 2-8) compared to the passive protocol
of [GMW87].

1.3 Subsequent Work

Following the original publication of this work, several works [CG20, BGIN21, BGIN22] obtained MPC
protocols over arbitrary fields in the dishonest majority setting, withstanding an arbitrary number of cor-
ruptions with total communication O(n |C|) (the result of [CG20] is over small fields, and the communi-
cation complexity is obtained for sufficiently wide circuits, or amortized over multiple executions of the
circuit). We note that these works focused on orthogonal research questions in the context of MPC, such
as obtaining general GMW-style compilers for MPC protocols with pre-processing [BGIN21] or having the
pre-processing communication complexity be sublinear in the cirucit size [BGIN22], and the MPC protocols
mentioned above are obtained as a corollary of their more general results. We note that another subsequent
work [GPS22] also employed packed secret sharing to obtain constant overhead. However, their techniques
and results differ significantly from this work. In particular, their protocols are in the pre-processing model,
withstand t = (1− ε)n corruptions, for an arbitrary constant ε > 0, and the communication complexity of
the online phase is O(|C| /ε).

In the honest majority setting, Polychroniadou and Song [PS21] designed a concrete protocol for boolean
circuits with an amortized communication complexity ofO(n) bits per gate where n is the number of parties.
Similar to our protocol, they also use two types of secret sharing schemes, but they use the double sharing
to build a new authentication mechanism of a secret that is shared additively.

2 Our Techniques

We first recall the so-called “IPS framework” of Ishai, Prabhakaran and Sahai [IPS08], that constructs
actively-secure m-party protocols for a function f using the following two weaker ingredients as a black-
box: (1) an actively-secure honest-majority protocol (the “outer protocol”) for f with m clients and n
servers, tolerating active corruption of a minority t < n/2 of the servers and an arbitrary number of clients;
and (2) a passively secure m-party protocol (the “inner protocol”) for a “simpler” functionality, tolerating
an arbitrary number of corruptions.

Using appropriate instantiations of the outer and inner protocols, this framework yields a constant-
overhead (in fact, constant-rate) actively-secure protocol for boolean functionalities in the dishonest majority
setting with a constant number of parties m. However, it does not obtain constant overhead for a super-
constant m, as we now explain.

To watch or not to watch? The high-level idea of the IPS compiler it to have the m parties “virtually”
execute the outer protocol by emulating its n servers. Specifically, the parties first obtain (through some
joint computation) secret shares of the initial server states, then use the inner protocol on the shared states
to generate (secret shares) of the outputs of the “next message” functions of each server. Since the outer

8

Number of Hybrid Asymptotic Concrete
Construction Parties Model Overhead Overhead

[IPS08] Constant OT (passive) Constant∗ Unexplored
[NNOB12] Two OT∗∗ (active) O (s/ log s) —
[GIP+14] Arbitrary OLE∗∗∗ (active) Constant 12†

[DGN+17] Two OLE (active) Constant 22††

[WRK17b] Arbitrary OT∗∗ (active) O (s/ log |C|) —
Here Arbitrary FMULT (passive) Constant 2

Table 2: Asymptotic and concrete communication overheads of state-of-the-art 2PC and MPC protocols in the dishon-
est majority setting. The overhead is measured as the number of calls to the underlying (passively or actively seucre)
OT or OLE functionality, compared to the number of calls made by the passive-GMW to the corresponding (passively
secure) functionality (OT or OLE). The concrete overhead column is specified only when the overhead is constant,
and holds over sufficiently large fields. s denotes a statistical security parameter, and C is the circuit being evaluated.
∗ In terms of asymptotic complexity, we note that [IPS08] also achieves constant rate.
∗∗ Security is proven in the random oracle model.
∗∗∗ The result was extended to other models in [GIP15].
† From personal communication with the authors.
†† This constant holds for a particular instantiation of OLE based on noisy encoding.

protocol is only secure when a majority of the servers are honest, the parties must insure that most servers
were correctly emulated, for which it suffices to verify that the parties behave honestly in sufficiently many
of the inner protocol executions. The IPS compiler introduces a novel “watchlist” mechanism in which
parties “watch” each other to enforce such honest behaviour. More precisely, every party Pi picks a random
subset of t servers for which it learns the entire internal state throughout the computation. Consequently,
Pi can check that all parties honestly emulated the t servers, and abort if some party misbehaves. The
identity of servers watched by honest parties remains hidden from the adversary, thus even a single honest
party forces the adversary to honestly emulate most (specifically, a majority) of the servers. In terms of
parameters, obtaining a 2−Ω(s) soundness error for a statistical security parameter s requires t, n = Ω(s).
Since each corrupted party can choose an arbitrary subset of t watched servers, and there could be m − 1
corrupted parties, privacy is only preserved when (m − 1)t < n/2. Since achieving constant-overhead
requires n = O(s), this is only possible for m = O(1).

Compute first, check later. To solve this problem, our first idea is to have a single random subset of t
servers which are simultaneously watched by all parties. Of course, now that the identity of the watched
servers is known to all parties, it cannot be revealed before the computation has been completed. Instead,
the subset is chosen using joint coin-tossing after the circuit has been evaluated, but before the output is
reconstructed from the output shares. Correctness is preserved similarly to the original IPS compiler, but
checking honest behavior after-the-fact might violate privacy. Indeed, unlike the IPS compiler we can no
longer “catch” the adversary as soon as it deviates from the protocol, which raises two privacy concerns.
First, by actively deviating from the protocol, the adversary can potentially violate the inner protocol privacy,
and learn intermediate values during the circuit evaluation. Second, the adversary can potentially violate the
privacy of the outer protocol, by “corrupting” a majority of the servers in the outer protocol (i.e., by not
emulating them correctly). We note that even if the inner protocol has the stronger guarantee of remaining
private even against active adversaries, this does not resolve the second issue because as long as the inner
protocol is not actively-secure, active corruptions in it might violate correctness, which corresponds to

9

corrupting servers in the outer protocol. Thus, an active adversary might still violate privacy in the outer
protocol by violating correctness in the inner protocol (thus, in effect, corrupting possibly a majority of the
servers).

Which outer protocol to use? Even if we could somehow overcome these issues, the overhead for
m = ω(1) parties might still be large due to the communication complexity of the outer protocol. Specif-
ically, [IPS08] obtain constant overhead by instantiating the outer protocol with the protocol of [DI06]. In
this protocol, the servers compute over secret shares, and they need to perform a global operation on their
shares (specifically, degree reduction). This is achieved by having the servers execute a randomized proto-
col, where the randomness is provided by the clients. Thus, the communication complexity scales with the
number of clients, and cannot be constant for m = ω(1).

Our approach. Due to these issues, we take a step back, and (instead of extending the IPS framework)
focus on designing a new compiler that amplifies the security of a passively-secure inner protocol via a
tailor-made outer protocol. Since we use different instantiates of the inner protocol, we model it more
generally, assuming the parties have oracle access to an ideal multiplication functionality FMULT that works
over some agreed-upon secret sharing scheme S. We note that in our compiler, we will not refer to “servers”
(or an “outer” protocol), but rather think of these as “copies” of the circuit.

The combined protocol. To highlight the main components of our framework, we describe a basic MPC
variant that will loosely rely on the passive BGW [BGW88] protocol. Though this does not yield our
asymptotic results, it will serve as a good starting point, which we build on to obtain our final framework
(as described towards the end of the section).

At the onset of the computation each party Pi secret shares its input xi using Shamir’s secret sharing
scheme with privacy parameter t, to obtain the shares

(
X1, . . . , Xn

)
(as in the passive-BGW protocol).

Then, Pi generates additive shares
(
xlj

)
of each Shamir share X l, and sends

(
xlj

)
l∈[n]

to Pj . The protocol

will evaluates the circuit gate-by-gate as in passive-BGW, where addition gates are locally computed. We
will preserve the invariant that when parties evaluate a gate G, they collectively hold additive shares of the
Shamir shares of the values of G′s input wires. That is, if G’s inputs are values a, b which in the passive-
BGW protocol have Shamir shares

(
A1, . . . , An

)
,
(
B1, . . . , Bn

)
(respectively), then for every l ∈ [n], party

Pi holds values ali, b
l
i such that

∑
i a

l
i = Al and

∑
i b

l
i = Bl.

In passive-BGW, multiplications are performed by having each party locally multiply its Shamir shares
Al, Bl, followed by all parties jointly running a degree-reduction sub-protocol on these products. However,
in our modified protocol parties can no longer locally compute the products Al ·Bl, because no party knows
Al, Bl (parties only know additive shares of these values). To solve this issue, we use an ideal distributed-
multiplication functionality FMULT which takes as input additive shares of two values x, y, and outputs a
(fresh) additive sharing of their product x · y. (We discuss FMULT instantiations below.) This allows parties
to learn additive shares of each product Al ·Bl.

Once (additive shares of) the products Al · Bl have been computed, degree reduction should be per-
formed. In the classical passive-BGW protocol, degree reduction requires expensive communication, which
is improved by protocols such as [DN07]. We use a new approach that significantly reduces the communi-
cation complexity, leveraging the fact that degree-reduction is a linear operation over the Shamir shares.

Local degree-reduction. Each party locally performs degree reduction over its additive shares of the Shamir
shares. Across all parties, the additive shares obtained as a result of this procedure constitute a valid Shamir
sharing of the “right” value, due to the linearity properties of Shamir’s secret sharing scheme. Intuitively, the
second secret-sharing layer allows parties to locally perform degree reduction, because it gives each party a

10

global “view” of the protocol execution, as an additive share of the global view of the protocol execution.
We note that performing degree-reduction locally also has the advantage of eliminating the need for global
randomness which should be generated from the contributions of all parties. (As discussed above, this was
one of the causes of super-constant overhead in [IPS08] when m = ω(1).)

Enforcing correctness. Once the computation is completed in all copies, we ensure it was performed cor-
rectly by incorporating a “correctness-enforcing” mechanism into the protocol. Specifically, before opening
the output shares obtained at the outputs of all copies, we first run some correctness tests which will check
that (with high probability) all parties honestly executed the computation. The output shares are revealed
(and the output is reconstructed from these shares) only if all correctness tests pass.

To explain our correctness tests, we first analyze possible malicious strategies of corrupted parties.
Roughly, a corrupted party can deviate from the protocol in one of four ways. First, it can incorrectly
share its input (i.e., the “sharing” isn’t of the right degree t). Second, it can incorrectly perform the degree-
reduction procedure, by generating a fresh sharing that either isn’t of the right degree (i.e., t), or doesn’t share
the right value (i.e., the value shared before degree reduction). Third, when evaluating a multiplication gate
(i.e., computing the product of Shamir shares as described above), it can use different values than the ones
provided by FMULT. Fourth, it can incorrectly perform the local linear computations.

To handle such deviations from the protocol, we introduce three tests. The first is a degree test, which
checks that the secrets sharings used by all parties, either to share their inputs or as input to multiplication
gates, have the right degree. The second is an equality test, which checks that the secret sharings before
and after degree reduction share the same value. The degree and equality tests jointly guarantee that with
overwhelming probability, the input sharings are valid, and the degree reduction procedure was executed
correctly (in most copies). Similar degree and equality tests were used in [AHIV17, HIMV19] to check
similar conditions. The last test is a consistency test, which verifies that (with high probability) parties
correctly performed the local computations in (most) copies of the circuit. This checks that the values used
by the parties when evaluating a multiplication gate are consistent with the values they obtained from FMULT,
that the local linear operations were performed correctly, and will also guarantee the soundness of the degree
and equality tests. For this test, a random subset of copies is chosen, each party reveals its local view of the
computation in those copies, and all parties check that the views are consistent with each other. Similar tests
were used in the context of MPC-in-the-head [IKOS07, IPS08].

We note that this high-level overview omits important details (see Section 4). For example, the order
in which parties commit and reveal the correctness tests’ values is crucial to preserving privacy even when
the computations in most copies are incorrect. Using this combination of correctness tests, and proving the
security of this approach is novel to our work, and requires subtle analysis.

Achieving constant communication overhead. Our basic MPC protocol does not achieve constant commu-
nication overhead since it increases the communication complexity of the underlying BGW protocol [BGW88]
by O(s), where s is a security parameter. We reduce this overhead to constant by replacing [BGW88] with
the protocol of Franklin and Yung [FY92] that uses packed secret sharing.

Loosely speaking, packed secret sharing extends Shamir’s secret sharing, allowing a block of B secrets
to be shared within a single set of shares. To exploit the advantages of packed secret sharing, we will
assume the circuit is arranged in layers that contain only one type (addition/multiplication) of gates, where
each phase of the protocol evaluates the gates in one layer.

Using packed secret sharing introduces two main differences from the basic protocol. First, before
evaluating a specific layer the parties need to rearrange (repack) the shared secrets corresponding to the
input wire values of that layer, to align the packing in blocks with the order of gates within the layer.
Then, the layer can be evaluated similarly to the basic protocol (where additions are computed locally, and

11

multiplications involve a call to FMULT, followed by a local degree-reduction step). The second difference
from the basic protocol is that to insure correctness we must now check that the parties correctly rearranged
the shared secrets between layers. This is checked through an additional “permutation test” [DI06, AHIV17].
See Section 5 for further details.

This protocol reduces the amortized per-gate communication overhead to constant, because in effect the
packed secret sharing allows us to evaluate many gates in one “shot”. In particular, the wider the circuit to
be evaluated, the larger the gains from employing packed secret sharing.

Instantiating the multiplication functionality FMULT. We instantiate FMULT through a reduction to a
simpler functionality FRMULT which generates (unauthenticated) random triples. All prior protocols that
relied on this abstraction (apart from [IPS08]), used actively-secure multiplication protocols to instantiate
FMULT. Interestingly, we can greatly weaken the security of the multiplication protocol, requiring only a
passively-secure instantiation, together with a coin tossing protocol to ensure correctly-sampled randomness.
Moreover, our protocol can benefit from a preprocessing stage in an offline/online setting, where the triples
are generated in the offline phase, and used in the online phase. The consistency test (described for our
basic MPC protocol) will ensure, at the cost of a small overhead, that the triples were correctly generated
with respect to the tossed coins. We note that unlike prior works, our security analysis can tolerate a small
number of ill-formed triples without violating secrecy.

Related techniques. Conceptually, our consistency test can be viewed as a combination of the cut-and-
choose approach [LP07] and the watchlist mechanism of [IPS08]. Indeed, on the one hand we maintain
multiple copies of the computed circuit, yet unlike the cut-and-choose technique the checked copies are not
discarded, but rather used in the remainder of the computation to reconstruct the outputs. On the other hand,
the purpose of our consistency test is similar to the watchlist channels, which add privacy and correctness
to passively-secure protocols. The main difference between our tests and the watchlists of [IPS08] is that in
IPS these channels are used to constantly enforce correct behaviour throughout the protocol execution (and
consequently also cause a high overhead), whereas we perform a single consistency test after the protocol
execution has (essentially) ended, right before the output is reconstructed. These correctness enforcement
mechanisms are known to have limitations to achieving scalable MPC. Specifically, the asymptotic limit of
cut-and-choose is O(s/ log |C|) [WRK17b], whereas the watchlists mechanism requires O(s · n) virtual
servers for the outer protocol [LOP11]. In both cases, the communication grows with some statistical
parameter, and is hence neither constant-overhead nor scalable.

3 Preliminaries

Basic notations. We denote a security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N. We assume functions to be represented by an arithmetic circuit C (with addition and
multiplication gates of fan-in 2), and denote the size of C by |C|. By default we define the size of the circuit
to include the total number of gates including input gates. For a random variable X , we use Supp(X) to
denote the set of values which X takes with positive probability.

In this work, we focus on designing actively-secure protocols with constant communication overhead
over the best passively-secure protocols. More specifically, we say that an MPC protocol Π for a funcionality
F has communication overhead o over an MPC protocol Π′ for F if CCΠ

CCΠ′
= o, where CCΠ,CCΠ′ are

the communication complexities of Π,Π′, respectively. If Π′ is the passively-secure protocol for F with

12

Functionality FOT

Functionality FOT communicates with sender S, receiver R, and adversary S.

1. Upon receiving input (sid, sender, v1, v2) from S, where each vi ∈ {0, 1}ℓ, record (sid, v1, v2).

2. Upon receiving (sid, receiver, u) from R where u ∈ {0, 1}, check if a (sid, sender, . . .) message
was previously sent. If yes, send (ouput, sid) to S. Upon an answer OK, deliver (sid, vu) to R.
Otherwise, abort.

Figure 1: The oblivious transfer functionality.

smallest known communication complexity, then we say that Π has communication overhead o over the best
passively-secure protocol.

3.1 Layered Arithmetic Circuits

An arithmetic circuit defined over a finite field F is a directed acyclic graph, where nodes (or gates) are
labelled either as input gates, output gates or computation gates. Input gates have no incoming edges (or
wires), while output gates have a single incoming wire and no outgoing wires. Computation gates are
labelled with a field operations (either addition or multiplication),2 and have exactly two incoming wires,
which we denote as the left and right wire. A circuit with i input gates and o output gates over a field F
represents a function f : Fi → Fo whose value on input x = (x1, . . . , xi) can be computed by assigning
a value to each wire of the circuit. Note that this abstraction captures boolean circuits as well, by setting
F = GF(2). In this work, we will exploit an additional structure of the circuit. Specifically, the gates of
an arithmetic circuit can be partitioned into ordered layers L1, . . . ,Ld, such that i) a layer only consists of
gates of the same type (i.e., addition, multiplication, input or output gates belonging to the same party), and
ii) the incoming wires of all gates of layer i originate from gates in layers 0 to i− 1.

3.2 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) [Rab81, EGL85] is a fundamental functionality in secure computation
between a sender S and a receiver R, which allows R to learn only one of the S’s inputs while S learns
nothing about R’s input. In this paper we consider the basic 1-out-of-2 OT functionality, and employ it to
implement a product of two values using their additive shares; see Figure 1 for the formal description.

3.3 Oblivious Linear Evaluation

An extension of the oblivious transfer functionality for larger fields is the Oblivious Linear Evaluation
functionality (OLE) [NP06]. More concretely, OLE over a field F takes a field element x ∈ F from the
receiver and a pair (a, b) ∈ F2 from the sender and delivers ax + b to the receiver. Note that in the case
of binary fields, OLE can be realized via a single call to the standard (bit-) 1-out-of-2 OT functionality; see
Figure 2 for the formal description.

2Subtraction gates can be handled analogously to addition gates, and we ignore them here for simplicity.

13

Functionality FOLE

Functionality FOLE communicates with sender S, receiver R, and adversary S.

1. Upon receiving the input (sid, sender, (a, b)) from S where a, b ∈ F, record (sid, sender, (a, b)).

2. Upon receiving (sid, x) from R where x ∈ F, check if a (sid, sender, . . .) message was previously
sent. If yes, send (ouput, sid) to S. Upon an answer OK, deliver (sid, a · x + b) to R. Otherwise,
abort.

Figure 2: The oblivious linear evaluation functionality.

Functionality FCOM

Functionality FCOM communicates with sender S, receiver R, and adversary S.

1. Upon receiving input (commit, sid,m) from S where m ∈ {0, 1}t, internally record (sid,m) and
send message (sid, S,R) to the adversary. Upon receiving approve from the adversary send sid to
R. Ignore subsequent (commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from S, where a tuple (sid,m) is recorded, send message m to adver-
sary S and R. Otherwise, ignore.

Figure 3: The string commitment functionality.

3.4 Commitment Schemes

A commitment scheme is a two-phase protocol that allows a sender S to commit some value v to a re-
ceiver R while simultaneously hiding v from R during the first “Commit” phase (the hiding property), and
guaranteeing that the commit phase determines a unique value which can be later revealed in the second
“Opening” phase (this property is called binding, the sender can always refuse to open the commitment, but
cannot open it to a different value). The formal description of functionality FCOM is depicted in Figure 3.

3.5 Multiplication Functionalities

A core building block in our protocols is a multiplication functionality FMULT shown in Figure 4, that takes
additive shares of two secrets over some field F and produces additive shares of their product. In fact, we
will reduce FMULT to a random instance FRMULT, shown in Figure 5, where all shares are chosen uniformly
at random from F. The reduction, due to Beaver [Bea91], is as follows. Denote by [a] the additive sharing
of some value a ∈ F, namely, the tuple (a1, . . . , am). Then, given a random triple [a], [b], [c] obtained as the
output of FRMULT, and inputs [x], [y] for FMULT, we can compute [xy] by first reconstructing e = [x + a]
and d = [y + b]. Next, the parties compute a (trivial) secret sharing [ed] of ed by having P1 set its share to
ed, and the rest of the parties set their shares to 0. Finally, the parties compute the following equation (each
party locally computes the equation on its own shares)

[xy] = [c] + e[y] + d[x]− [ed] = [ab] + (x+ a)[y] + (y + b)[x]− (x+ a)(y + b).

14

Functionality FMULT

Functionality FMULT communicates with parties P1, . . . , Pm and adversary S corrupting a subset I ⊂ [m]
of parties. It is parameterized by a secret sharing scheme S = (Share,Recon) (see Section 3.6 below).

1. Upon receiving the input (sid, aj , bj) from Pj record (sid, (aj , bj)).

2. If a tuple is recorded from all parties continue as follows:

(a) Compute c = Recon(a1, . . . , am) · Recon(b1, . . . , bm).

(b) Receive corrupted parties’ shares {cj}j∈I .

(c) Sample a secret sharing (c′1, . . . , c
′
m) uniformly at random from Supp(Share(c)) subject to

the constraint that c′j = cj for every j ∈ I . For every j /∈ I , set cj = c′j .

(d) Forward cj to party Pj .

Figure 4: The multiplication functionality.

Functionality FRMULT

Functionality FRMULT communicates with parties P1, . . . , Pm and adversary S corrupting the subset of
parties in I ⊂ [m]. It is parameterized by a secret sharing scheme S = (Share,Recon) (see Section 3.6
below).

1. Receive corrupted parties’ shares {aj , bj , cj}j∈I .

2. Sample secret shares (a′1, . . . , a
′
m) and (b′1, . . . , b

′
m) uniformly at random from Supp(Share(·))

subject to the constraint that a′j = aj and b′j = bj for every j ∈ I . For every j /∈ I , set aj = a′j and
bj = b′j .

3. Compute c = Recon(a1, . . . , am) · Recon(b1, . . . , bm).

4. Sample a secret sharing (c′1, . . . , c
′
m) uniformly at random from Supp(Share(c)) subject to the

constraint that c′j = cj for every j ∈ I . For every j /∈ I , set cj = c′j .

5. Forward aj , bj , cj to party Pj .

Figure 5: The random multiplication functionality.

3.6 Secret-Sharing

A secret-sharing scheme allows a dealer to distribute a secret among n parties, where each party receives
a share (or piece) of the secret during a sharing phase. In its simplest form, the goal of (threshold) secret-
sharing is to allow only subsets of players of size at least t + 1 to reconstruct the secret. More formally
a t + 1-out-of-n secret sharing scheme comes with a sharing algorithm that on input a secret s outputs n
shares s1, . . . , sn and a reconstruction algorithm that takes as input ((si)i∈S , S) where |S| > t and outputs
either a secret s′ or ⊥. In this work, we will use Shamir’s secret sharing scheme [Sha79] with secrets in
F = GF(2κ). We present the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of degree t in the polynomial-field
F[x] with the condition that p(0) = s and output p(1), . . . , p(n).

15

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, compute a
polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange interpolation
where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

Packed secret-sharing. The concept of packed secret-sharing was introduced by Franking and Yung in
[FY92] in order to reduce the communication complexity of secure multi-party protocols, and is an extension
of standard secret-sharing. In particular, the authors considered Shamir’s secret sharing with the difference
that the number of secrets s1, . . . , sℓ is now ℓ instead of a single secret, where the secrets are represented as
the evaluations of a polynomial p(·) at ℓ distinct points. To ensure privacy in case of t colluding corrupted
parties, p(·) must have degree at least t+ ℓ. Packed secret sharing inherits the linearity property of Shamir’s
secret sharing, with the added benefit that it supports batch (block-wise) multiplications. This was used to
design secure computation protocols with an honest majority and constant amortized overhead [DI06]. For
this reason, we use this tool in our honest majority MPC protocol embedded within our dishonest majority
protocol from Section 4, leveraging its advantages to improve the overhead of the former protocol.

3.7 Error Correcting Codes

A crucial ingredient in our construction is the use of Reed-Solomon codes as a packed secret sharing
scheme [FY92] (as defined in Section 3.6). In what follows, we provide our coding notations and related
definitions.

Coding notation. For a code C ⊆ Σn and vector v ∈ Σn, we denote by d(v, C) the minimal distance
of v from C, namely the number of positions in which v differs from the closest codeword in C, and by
∆(v, C) the set of positions in which v differs from such a closest codeword (in case of a tie, take the
lexicographically first closest codeword). For any k ≤ d(v, C), we say that v is k-close to C, and for every
k > d(v, C), we say that v is k-far from C. We further denote by d(V,C) the minimal distance between a
vector set V and a code C, namely d(V,C) = minv∈V {d(v, C)}.

Definition 1 (Reed-Solomon code). For positive integers n, k, finite field F, and a vector η = (η1, . . . , ηn)
∈ Fn of distinct field elements, the code RSF,n,k,η is the [n, k, n − k + 1]-linear code3 over F that consists
of all n-tuples (p(η1), . . . , p(ηn)) where p is a polynomial of degree < k over F.

Definition 2 (Encoded message). Let L = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζw) be a sequence of
distinct elements of F for w ≤ k. For u ∈ L we define the message Decodeζ(u) to be (pu(ζ1), . . . , pu(ζw)),
where pu is the polynomial (of degree < k) corresponding to u. For U ∈ Lm with rows u1, . . . , um ∈ L, we
let Decodeζ(U) be the lengthmw vector x = (x11, . . . , x1w, . . . , xm1, . . . , xmw) such that (xi1, . . . , xiw) =
Decodeζ(u

i) for i ∈ [m]. We say that u L-encodes x (or simply encodes x) if x = Decodeζ(u).

Moreover, we recall that Decodeζ(·) is a linear operation, i.e. for any a, b ∈ Fn (even if a, b are not in
L), Decodeζ(a+ b) = Decodeζ(a) + Decodeζ(b).

3We denote by [n, k, d]-linear code a linear code of length n, rank k and minimum distance d, where the minimum distance of
the code is the minimal weight of a codeword in the code.

16

It will be convenient to view m-tuples of codewords in L as codewords in an interleaved code Lm. We
formally define this notion below.

Definition 3 (Interleaved code). Let L ⊂ Fn be an [n, k, d] linear code over F. We let Lm denote the
[n,mk, d] (interleaved) code over Fm whose codewords are all m × n matrices U such that every row Ui

of U satisfies Ui ∈ L. For U ∈ Lm and j ∈ [n], we denote by U [j] the j’th symbol (column) of U .

3.8 Packed Secret Sharing over Constant-Sized Fields

Using a Reed-Solomon (i.e. Shamir-sharing) based scheme will require an underlying field of size at least
as as large as the “length of the code plus the number of packed secrets”. Thus, Reed-Solomon codes
as described in the previous section will suffice for our main results over large fields, but for small fields
(including, the Boolean field), this results in a multiplicative overhead which is logarithmic in the field size,
and will increase the overhead by too much. We will instead rely on a packed-secret sharing scheme based
on Algebraic-Geometric (AG) Codes whose use in MPC was first identified by Chen and Cramer [CC06].

The precise object that we need in our results is a strongly-multiplicative linear secret sharing scheme
that admits packing. We use the following definitions that are almost verbatim from [LXYY23].

Definition 4 (Packed Secret Sharing). For integers n,w, and finite field F, a packed-secret sharing over F
with t-privacy and r-reconstruction is a vector of random variables X = (X0, X1, . . . , Xn) where X0 is
over Fw and each Xi, for i > 0, is over F such that:

1. X0 is uniformly distributed over Fw.

2. t-privacy: For any subset B ⊆ [n] of size at most t, x ∈ X0, xB ∈ F|B|, it holds that

Pr[XB = xB|X0 = x] > 0 and Pr[X0 = x|XB = xB] = 1/|F|

where XB = (Xi)i∈B .

3. r-reconstruction: Given any subset B ⊆ [n] of size at least t + 1, and any xB ∈ F|B| in the support
of XB , there is a unique x0 ∈ Fw with Pr[X0 = x0|XB = xB] = 1.

Definition 5 (Packed Secret Sharing scheme with strong multiplicativity). We say that a packed secret-
sharing scheme X = (X0, X1, . . . , Xn) is t-strongly multiplicative if it has t-privacy, (n−t)-reconstruction
and additionally satisfies:

product reconstruction: The secret sharing scheme obtained by considering the uniform distribution over
spanF{c1 ⊙ c2|c1, c2 ∈ X} has (n− t)-reconstruction.

We will be interested only in linear secret-sharing schemes where sharing, reconstruction and product
reconstruction are affine functions over a prime power finite field, i.e. F = Fq for some prime power q.
We rely on the following theorem stated in [LXYY23] that is instantiated using Garcia-Stichtenoth tower
[SG95] based on AG-codes.

Theorem 1 (Corollary 4 [LXYY23]). Let 0 < ϵ < 1, q ≈ 144
ϵ2

be an even power of a prime, and γ = ϵ
6 .

There exists a family of (1−ϵ)ni

3 -strongly multiplicative linear secret sharing schemes with X0 ∈ F
ϵni
6

q when
ni → ∞.

We note that for any small prime p, we can embed the field Fp in Fq for q being an even prime power of
p.

17

3.9 Secure Multiparty Computation (MPC)

We use a standard stand-alone definition of secure multi-party computation protocols. In this work, we only
consider static corruptions, i.e. the adversary decides which parties it corrupts before the execution begins.
Following [HL10], we use two security parameters in our definition: a computational security parameter κ,
and a statistical security parameter s that captures a statistical error of up to 2−s. We assume that s ≤ κ. We
let F be a multi-party functionality that maps a set of n inputs to an output over some field F (w.l.o.g).

Let Π = ⟨P1, . . . , Pn⟩ denote a multi-party protocol, where each party is given an input xi and security
parameters 1s and 1κ. We allow honest parties to be PPT in the entire input length (this is needed to
ensure correctness when no party is corrupted), but bound adversaries to time poly(κ) (this effectively
means that we only require security when the input length is bounded by some polynomial in κ). We
denote by REALΠ,A(z)(x1, . . . , xn, κ, s) the output of the honest parties and the adversary A controlling
a subset I ⊂ [n] of parties in the real execution of Π, where z is the auxiliary input, xi is Pi’s initial
input, κ is the computational security parameter, and s is the statistical security parameter. We denote
by IDEALF ,S(z)(x1, . . . , xn, κ, s) the output of the honest parties and the simulator S in the ideal model
where F is computed by a trusted party. In some of our protocols the parties have access to ideal model
implementations of certain cryptographic primitives such as ideal oblivious-transfer (FOT). We denote such
executions by REALFOT

Π,A(z)(x1, . . . , xn, κ, s).

Definition 6. A protocol Π = ⟨P1, . . . , Pn⟩ is said to securely compute a functionality F in the presence
of active adversaries if the parties always have the correct output F(x1, . . . , xn) when neither party is
corrupted, and moreover the following security requirement holds. For any probabilistic poly(κ)-time ad-
versary A controlling a subset I ⊂ [n] of parties in the real world, there exists a probabilistic poly(κ)-time
adversary (simulator) S controlling I in the ideal model, such that for every non-uniform poly(κ)-time dis-
tinguisher D there exists a negligible function ν(·) such that the following ensembles are distinguished by
D with at most ν(κ) + 2−s advantage:

• {REALΠ,A(z),Pi
(x1, . . . , xn, κ, s)}κ∈N,s∈N,x1,...,xn,z∈{0,1}∗

• {IDEALF ,S(z),Pi
(x1, . . . , xn, κ, s)}κ∈N,s∈N,x1,...,xn,z∈{0,1}∗

Secure circuit evaluation. The above definition considers F to be an infinite functionality, taking inputs
of an arbitrary length. However, our protocols (similarly to other protocols from the literature) are formu-
lated for a finite functionality F : Fα1 × · · · × Fαn → F described by an arithmetic circuit C (where the
computation is performed over a finite field F). Such protocols are formally captured by a polynomial-time
protocol compiler that, given security parameters 1κ, 1s and a circuit C, outputs n circuits (P1, . . . , Pn)
that implement the next message function of n parties in the protocol (possibly using oracle calls to a cryp-
tographic primitive or an ideal functionality oracle). Similar to Definition 6, the correctness requirement
(when no party is corrupted) holds for any choice of κ, s,C, while the security requirement only considers
adversaries that run in time poly(κ). That is, we require indistinguishability (in the sense of Definition 6)
between

• {REALΠ,A(z)(C, x1, . . . , xn, κ, s)}κ∈N,s∈N,C∈C,x1,...,xn,z∈{0,1}∗

• {IDEALF ,S(z),Pi
(C, x1, . . . , xn, κ, s)}κ∈N,s∈N,C∈C,x1,...,xn,z∈{0,1}∗

where C is the class of arithmetic circuits that take n vectors of field elements as inputs and output a field
element, x1, . . . , xn are of lengths corresponding to the inputs of C, F is the functionality computed by C,

18

and the next message functions of the parties P1, . . . , Pn are as specified by the protocol compiler on inputs
1κ, 1s,C. We assume that C is arranged in d layers where each layer contains only multiplication gates or
only addition gates over F. We further assume that each layer takes its input only from the previous layers,
and provides output to subsequent layers. The size of the circuit C, denoted by |C|, is defined as the number
of gates plus the number of wires. Its depth is the length of the longest path from an input to an output
which, in the case of layered circuits, is equal to the number of layers.

4 Basic MPC Protocol

In this section we describe a simple variant of our MPC protocol, which we build on in Section 5 to achieve
constant overhead.

Our starting point is a passively-secure variant of the BGW protocol [BGW88], which we amplify to
the actively-secure dishonest-majority setting. Amplifying the security of this protocol requires facing three
challenges: (1) high overhead due to the degree-reduction sub-protocol; (2) security holds only with a
dishonest minority; and (3) security holds only against passive corruptions.

Our strategy towards addressing the first issue is to have parties locally perform the degree-reduction
procedure which the degree-reduction sub-protocol implements, thus (almost) eliminating the interaction it
requires. This is achieved by using a second layer of secret-sharing.

Concretely, our MPC protocol with m parties relies on two layers of secret sharing schemes: (1) first
layer sharing: Reed-Solomon codes (which can be thought of as Shamir’s secret sharing), denoted by L-
encoding, where L = RSF,n,k,η (cf. Section 3.7); and (2) second layer sharing: additive secret sharing.4

Throughout the execution, the parties hold additive shares of the L-encodings of the wires of the evaluated
circuit C. We note that using this two-layer secret sharing decouples the number of partiesm from the length
of the encoding n, since (unlike passive-BGW) parties no longer hold the symbols of the L-encodings. In
fact, it will be useful to have m ̸= n. Intuitively, this can be though of as having the parties emulate n
copies of C, where the wires of the l’th copy carry the l’th symbol in the L-encodings of the wire values
of C, and these symbols are additively shared among the parties. The execution maintains the invariant that
when evaluating the gates in layer L, the parties hold for each copy l additive shares of the l’th symbols in
the L-encodings of the outputs of previous layers.

Our protocol is described in the FRMULT-hybrid model (cf. Section 3.5) which generates m additive
shares of random triples, and is used to execute multiplications. In more detail, the parties evaluate the n
copies of C layer by layer, locally performing additions, substractions and multiplications by a constant
(this is possible due to the linear nature of our secret sharing schemes), whereas multiplication gates require
communication.

Roughly, a multiplication gate G in the l’th copy of C is evaluated as follows. The parties hold additive
shares of the l’th symbols Al, Bl at the inputs of G, and use FRMULT (and a reduction from FMULT to
FRMULT, described in Section 3.5) to obtain additive shares of the product AlBl. Across all copies, these
products form an L̃-encoding of the output wire of G, where L̃ = RSF,n,2k,η. To obtain a fresh L-encoding
of the output wire, each party interprets its additive shares of the L̃-encoding (across all copies) as an
encoding in RSF,n,n,η, decodes it, and then generates a fresh L-encoding of this decoded value. The additive
shares obtained through this procedure reconstruct to the correct value because degree reduction is a linear
operation.

4We note that the second layer sharing is added “on top” of the secret sharing used in BGW, and differs from the resharing
performed in BGW (in which Shamir shares are reshared using Shamir’s scheme). This additional layer of additive sharing allows
us to exploit the linearity of BGW’s degree reduction procedure to perform degree reduction locally.

19

Employing a second secret-sharing layer solves the second challenge (that passive-BGW is only private
in the honest majority setting) since a subset of parties learn only a strict subset of additive shares. The third
challenge (passive-BGW is only secure against passive corruptions) is handled by incorporating correctness-
enforcing tests into the protocol, as described in Section 2.

Our detailed protocol is given in Figures 6-8. We next state the following theorem:

Theorem 2. Protocol Φ described in Figures 6-8 securely realizes F in the (FCOM,FRMULT,FCOIN)-hybrid
model, tolerating m− 1 active (static) corruptions, with statistical security error

(1− e/n)δ +
n− k + 2

|F|
+ 2−Ω(e)

where k > δ + 4e,n > 2k + 4e and e ≤ (n− k + 1)/3.

We first give an overview of the proof.

Proof Overview. The simulation follows by having the simulator Sim execute the protocol with the adver-
sary, emulating the ideal functionalities for it, and emulating the honest parties on dummy 0-inputs. Before
executing the output decommitment step, Sim performs several checks regarding the actions of the cor-
rupted parties. Specifically, the simulator determines the set E of copies for which, if they were chosen
during the consistency test, the test would fail. It also identifies the set E′ of copies in which the FRMULT

values the corrupted parties committed to are inconsistent with the ones Sim provided to them. Then, it

verifies that |E| ≤ e, |E|′ ≤ 3e, and that there exist Û , ˆ⃗Xi, i ∈ [m], and ˆ⃗z which are valid encodings in the
appropriate (interleaved) codes that agree with

∑
i∈[m] Ui, X⃗i, i ∈ [m], and

∑
i∈[m] z⃗i (respectively) except

for the copies in E. It also verifies that there exists a V̂ in the interleaved code over L̃ that agrees with∑
i∈[m] Vi except for the copies in E ∪E′. We note that Sim can perform these checks because it emulated

the internal ideal functionalities for the adversary, whereas the honest parties in the protocol cannot perform
these checks. If all checks pass then Sim can extract effective inputs for the corrupted parties, and use them
to obtain the output from the trusted party. Finally, Sim “corrects” the output shares of the honest parties to
share the correct outputs.

Next, we highlight some of the challenges we face when proving indistinguishability of the simulated
and real views. Recall that unlike [IPS08] we run a single consistency test, right before output reconstruc-
tion. Thus, we essentially have one “shot” to catch the adversary, causing the test to be more involved.
Another challenge is that parties are only committed to small portions of the execution, whereas in [IPS08]
parties commit to all their messages via the watchlists channels. Consequently, Sim cannot verify correct
behavior directly by checking the messages, and instead we need to show that the messages can be extracted
from the partial information which parties commit to. Fortunately, we show that correctness can be defined
based on the FRMULT inputs, and the transcript of the reduction from FMULT to FRMULT. Finally, correctness
is guaranteed by the combination of local and global checks in our protocol. Specifically, the consistency
test verifies local correctness of the computation within each copy, by inspecting a subset of copies; and the
degree and equality tests verify that some global relation holds over all copies (i.e., all additive shares).

In the proof, we show that if all the protocol tests pass then except with negligible probability, all the
conditions checked by the simulator before the output reconstruction phase hold, and moreover the output is
consistent with the outputs of the honest parties, and the effective outputs that Sim extracts for the corrupted
parties. Thus, it suffices to prove indistinguishability of the simulated distribution and a hybrid distribution
which is obtained from the real execution by performing Sim’s checks, and aborting if they are violated.
The difference between the hybrid and simulated distributions is that the honest parties use their real inputs

20

Protocol Φ.

• Inputs. Pi’s input is xi for all i ∈ [m]. The parties share a description of an arithmetic circuit C with fan-in 2
which contains h multiplication gates and implements functionality F .

• Initialization.
The parties invoke the FRMULT functionality hn times. Each invocation yields additive shares

(
r11, . . . , r

1
m

)
,(

r21, . . . , r
2
m

)
and

(
r31, . . . , r

3
m

)
, with party Pi holding (r1i , r

2
i , r

3
i), such that rj =

∑m
i=1 r

j
i for j ∈ {1, 2, 3},

and r3 = r1 · r2. Each party Pi generates a random L-encoding γ⃗i = (γ1i , . . . , γ
n
i) of a random value, a

random L encoding ν⃗i = (ν1i , . . . , ν
n
i) of 0, and a random L̃ encoding ⃗̃γi = (γ̃1i , . . . , γ̃

n
i) of 0. Pi samples a

tuple (ψ⃗1
i , . . . , ψ⃗

m
i) such that ψ⃗j

i ∈ Fn and
∑m

j=1 ψ⃗
j
i is the all-⃗0 vector. Pi sends ψ⃗j

i to party Pj . These
“blinding” encodings are used in the degree and equality tests of Figure 7.
Then, for every copy l ∈ [n], Pi commits using FCOM to:

– The triples obtained from the (l − 1) · h+ 1, . . . , hl’th invocations of the FRMULT oracle.

– γli, ν
l
i , γ̃

l
i and ψj,l

i (i.e., the l’th element of ψ⃗j
i) for every j.

• Input sharing. Each party Pi generates a random L-encoding X⃗i =
(
X1

i , . . . , X
n
i

)
of its input xi (where X l

i

will be used in the evaluation of the l’th copy of C), and commits to X1
i , . . . , X

n
i using FCOM. For every

1 ≤ l ≤ n, Pi generates an additive sharing
(
xli,1, . . . , x

l
i,m

)
of X l

i , and sends
(
xli,j

)
l∈[n]

to Pj . Each party Pi

uses the shares xlj,i (j ∈ [n]) as its inputs to the l’th copy.

• Emulating the computation. For every copy l ∈ [n] of C, every layer L ∈ [d] in C, and every gate G ∈ [w] in
layer L (where w is the width of C), do:

1. Additions/subtractions. If G is an addition or subtraction gate, each Pi performs the gate operation by
applying it locally on the additive shares maintained as the inputs of that gate in the l’th copy.

2. Multiplications. To compute a multiplication gate, the parties invoke the following multiplication
protocol, where each party uses as inputs its l’th-copy shares of the inputs of G.

– For every i, let ali, b
l
i denote the shares of the inputs of G which Pi holds in the l’th copy of C.

Then the parties compute additive shares
(
c̃l1, . . . , c̃

l
m

)
of (

∑m
i=1 a

l
i)(

∑m
i=1 b

l
i), where Pi receives

c̃li, via the reduction from FMULT to FRMULT (described in Section 3.5), using the first unused triple
obtained from FRMULT in the (next unused portion of the) randomness generation phase above.

– Then, Pi locally performs degree reduction on its shares c̃1i , . . . , c̃
n
i as follows: it interprets(

c̃1i , . . . , c̃
n
i

)
as an encoding in RSF,n,n,η , and applies the decoding procedure to obtain a value oi.

It then generates a fresh L-encoding
(
c1i , . . . , c

n
i

)
of oi, which it uses as the additive shares of the

output of G across the n copies. (We note that c̃1i , . . . , c̃
n
i are additive shares of a purported

L̃-encoding where L̃ = RSF,n,2·k,η , but as a length-n encoding it is always consistent with some
valid encoding in RSF,n,n,η .)

• Output commitments. For the output wire z, let w⃗i be the additive shares held by party Pi for the output.
Then, Pi computes z⃗i = w⃗i + ν⃗i where ν⃗i is the L-encoding of 0 committed to during the initialization step.
Then, Pi commits using FCOM to its shares z⃗i =

(
z1i , . . . , z

n
i

)
.

Figure 6: Actively Secure MPC Φ – Part 1 (Circuit Emulation).

21

Correctness tests. The following tests are performed to verify that the parties correctly evaluated the n copies of
C (including the degree reduction step executed after each multiplication gate).

• Commit to degree test. This test checks that the input encodings and the shares produced by all parties
at the end of every degree reduction step are valid L-encodings. This is done by checking that a random
linear combination of the sum of all these shares is a valid encoding in L = RSF,n,k,η .

More precisely, the parties first obtain from FCOIN random vectors r⃗ ∈ Fh, r⃗′ ∈ Fm, and r′′ ∈ F (recall
that h is the number of multiplication gates in C, and m is the number of inputs — one from each party).
Next, each party Pi constructs the matrix Ui ∈ Fh×n that contains the L-encodings obtained after the
degree reduction step of all multiplication gates (arranged in some arbitrary order, agreed upon by all
parties). Then, Pi locally computes

qi = r⃗TUi + r′iX⃗i + r′′ν⃗i + γ⃗i,

where X⃗i is the L-encoding of Pi’s input xi committed at the input sharing step, ν⃗i is the L-encoding of 0
committed to by Pi at the initialization step and γ⃗i is the blinding L-encoding committed to at the
initialization step. Pi then commits to each element of qi, and each column of Ui, using FCOM.

• Commit to equality test. This test checks that the degree reduction step was performed correctly. This is
done by checking that a random linear combination of the sum of differences of shares before and after
the degree reduction step (performed as part of evaluating a multiplication gate) is a valid encoding of 0
in L̃ = RSF,n,2k,η .

Specifically, the parties obtain from FCOIN a random vector α⃗ = (α1, . . . , αh) ∈ Fh and random element
β ∈ F. Pi sets Vi to contain the additive shares which Pi obtains from the FMULT to FRMULT reduction
computed during the evaluation of multiplication gates. Next, Pi locally computes:

q̃i = α⃗T (Vi − Ui) + βν⃗i + ⃗̃γi + b⃗i

where b⃗i =
(
b1i , . . . , b

n
i

)
, bli =

∑m
j=1 ψ

i,l
j , and ⃗̃γi is the L̃-encoding of 0 from the initialization step.

Finally, Pi commits to each element of q̃i using FCOM.

Figure 7: Actively Secure MPC Φ – Part 2 (Correctness Tests Commitments).

in the former, and 0-inputs in the latter. We prove indistinguishability by a case analysis based on which
tests pass. Intuitively, the views revealed during the consistency tests are identically distributed due to the
secrecy of Shamir’s secret sharing scheme (alternatively, Reed-Solomon codes). The degree test values are
indistinguishable because the honest parties’ values are valid L-encodings, which are uniformly random
due to the masking by the γ⃗i’s. The equality test values are indistinguishable because the sum of honest
parties’ values are valid L̃-encodings of 0⃗, which are uniformly random subject to this constraint due to the
masking by the ⃗̃γi’s. Since the equality test values are masked by additive shares of 0⃗, the values themselves
are identically distributed. Finally, conditioned on all tests passing, the output shares are uniformly random
L-encodings whose sum encodes the correct output, due to the masking by the ν⃗i’s. We note that the ν⃗i’s
are used only to mask the output shares. They are included in the degree and equality tests to guarantee
they form a correct sharing (i.e., a sharing of 0 of the appropriate degree), but are not used for privacy of
these latter tests. Instead, the γ⃗i’s and ⃗̃γi’s are used to guarantee the privacy of the degree and equality tests,
respectively. We proceed to formally prove Theorem 2.

22

• Consistency test. This test checks that the parties correctly executed the local computations in each copy.

P1, . . . , Pm obtain from FCOIN a random subset Γ ⊂ [n] of size δ. For every l ∈ Γ, each Pi opens its
entire view of the execution of the l’th copy of C. Specifically, Pi decommits X l

i , and the randomness
(including all components of the commitments generated in the initialization step) it used in the execution
of the l’th copy. It also opens the commitments to the degree and equality tests, and the additive shares of
the final outputs of the l’th copy. Then, Pi checks (as described next) that all local computations in the
copies in Γ were performed correctly, aborting if an inconsistency is detected.

To check the l’th copy, Pi first checks that for every j ∈ [m],
∑

j′∈[m] ψ
j′,l
j = 0. Then, it obtains the l’th

column of Uj and z⃗j from the decommitments of Pj , and uses the decommitments to FRMULT values to
determine the multiplication triples used by all parties for the l’th copy. Using these triples, Pi determines
the inputs and outputs each party used in each multiplication gate of the l’th copy. Having determined the
outputs of multiplication gates, Pj can reconstruct the l’th column of Vj . Moreover, since the final output
is a linear combination of outputs of multiplication gates and parties’ inputs,

∑
j w⃗

l
j can be obtained by

computing this linear combination over the corresponding rows in
∑

j Uj’s and the X⃗j’s.
Since addition gates are evaluated locally, correct execution of addition gates can be verified by checking
that the inputs to all multiplication gates were computed correctly. Recall that an input to a multiplication
gate is a linear combination of outputs of previous multiplication gates and parties’ inputs. Thus,
correctness can be checked by verifying that the sum of additive shares used as inputs to multiplication
gates by all parties (as inferred from the FRMULT triples, and the transcript), and the linear combination of
the corresponding rows in

∑
j Uj and the X⃗j’s, are equal. Parties also verify that the reduction from

FMULT to FRMULT was computed correctly in the l’th copy, and that zli = wl
i + νli for every i.

• Degree test check. The parties decommit the degree test commitments for all remaining copies l /∈ Γ,
namely each Pi opens the commitment to the value qi computed in Figure 7. (Note that the parties do not
decommit the remaining columns of Ui.) Each party computes the vector q = (q1 + . . .+ qm) and aborts
if q is not a valid L-encoding.

• Equality test check. The parties decommit their equality test commitments for all copies l /∈ Γ, namely
each Pi opens the commitment to the value q̃i computed in Figure 7. Each party computes
q̃ = (q̃1 + . . .+ q̃m), and aborts if either q̃ ̸∈ L̃ or q̃ does not decode to the value 0.

• Output decommitments. If the consistency, degree and equality tests pass correctly, then every party Pi

decommits its output commitments for all copies l /∈ Γ. The parties then locally reconstruct z⃗ =
∑

i z⃗i,
and if it is an L-encoding, decode the output of C from the encoding.

Figure 8: Actively Secure MPC Φ – Part 3 (Correctness Tests).

Proof of Theorem 2. We begin by defining the simulator, and then prove indistinguishability of the real
and simulated views.

Simulation overview. On a high-level, the simulator Sim will emulate an execution of the protocol with
the adversary A by honestly playing the role of the honest parties with arbitrary inputs (specifically, 0). If
all the tests pass, it will extract effective inputs for the adversary, use them to obtain the output from the
functionality, and manipulate the output to reveal the correct values.

More formally, let A be an adversary corrupting a set T of at most m − 1 parties. We describe the
simulator Sim for A. Sim begins an emulation with A, and emulates FCOM,FCOIN and FRMULT for the
adversary.

23

1. In the initialization phase, Sim emulates the FRMULT and FCOM oracles for A while honestly simulat-
ing the uncorrupted parties. Then, it obtains from A the randomness which the corrupted parties send
to the commitment oracle, and records these values.

2. In the input sharing step, Sim obtains from the corrupted parties the purported L-encoding which
they send to the commitment oracle, as well as the messages they send to the honest parties (i.e., the
additive shares), and records these values. Additionally, Sim honestly emulates the honest parties
with input 0 to generate the L-encodings of their inputs, and the additive shares of these encodings.
Finally, Sim sends the corrupted parties’ shares (of the input encodings of the honest parties) to the
adversary.

3. In the emulation phase, Sim emulates the computation gate by gate. Notice that messages are only
exchanged for multiplication gates. For multiplication gates, the simulator emulates the FMULT to
FRMULT reduction with the adversary, honestly playing the role of the honest parties (with the values
computed for them so far).

4. In the output commitment step, Sim records the output commitments sent by the corrupted parties to
FCOM. Then, Sim honestly emulates the honest parties and records their re-randomized output shares
they would have committed to.

5. In the commit to degree and equality test steps, the simulator emulates the coin tossing oracle for the
parties, and sends its output to the adversary. Then, Sim obtains and records the degree and equality
test values which the corrupted parties send to the commitment oracle.

6. In the consistency test, the simulator honestly emulates the coin tossing oracle for the parties, and
sends FCOIN’s output Γ ⊆ [n] , |Γ| = δ to the adversary. Then, for every l ∈ Γ it sends to A the
view of the honest parties in the execution of the l’th copy of C. Next, A decides whether to open the
commitments to the corresponding views of the corrupted parties. If A decides not to open the views,
or an inconsistency is detected, the simulator halts and outputs the view generated so far.

7. In the degree test check, Sim sends to A the values generated by the honest parties for the degree test.
Then, A decides whether to open the commitments to the degree test. If A decides not to open, or
the degree test fails (i.e., the decommitted values do not constitute a valid L-encoding) then Sim halts
and outputs the view generated so far.

8. In the equality test check, Sim sends to A the values generated by the honest parties for the equality
test. Then, A decides whether to open the commitments to the equality test. If A decides not to open,
or the equality test fails (i.e., the decommitted values do not constitute a valid L̃-encoding of 0) then
Sim halts and outputs the view generated so far.

9. Let Γ be the set of indices that were opened in the consistency test. Before proceeding to the output
decommitment phase, the simulator performs the following tests, aborting with output fail if any of
them fail:

(a) Consistency of local computations: There exists a set E of size at most e, such that in all but
the copies in E the views of all parties are locally consistent. We say that the view of Pi in a
copy l is locally consistent if the consistency test passes for copy l when it is chosen in Γ.

24

(b) Consistency with L-encodings: Let Ui be the matrix that Pi computed and committed to during
the degree test. Let X⃗i, z⃗i be the input and output shares committed by party Pi during the input-
sharing and output steps (respectively), and let U =

∑m
i=1 Ui and z⃗ =

∑m
i=1 z⃗i. Sim checks if

∆(U,Lh) ⊆ E, ∆(X⃗i, L) ⊆ E for every i ∈ [m], and ∆(z⃗, L) ⊆ E. (See Section 3.7 for the
∆(·, ·) notation.)

(c) Consistency of FRMULT inputs with commitments: There exists a set E′ of size at most 3e,
such that except for the copies in E′, the inputs provided by FRMULT to the corrupted parties are
consistent with the commitments they made in the initialization step. (We note that the simulator
can perform this check because it simulates FRMULT for the corrupted parties, whereas the honest
parties in a real execution cannot perform this check since the messages exchanged with FRMULT

cannot be monitored in the real world.)

(d) Input extraction: For every i ∈ T , Sim can extract an effective input for Pi. Specifically, let
X⃗i =

(
X1

i , . . . , X
n
i

)
denote the purported L-encoding to which Pi committed to in Step 2 of

the simulation, and notice that X⃗i is |E| ≤ e close to a valid L-encoding (because the tests in

Steps 9b and 9a above passed). Since n− 4e > k, there exists a unique ⃗̂
Xi ∈ L that agrees with

X⃗i on all columns except those in E ∪ E′ (and ⃗̂
Xi can be efficiently computed given E,E′ and

X⃗i). Sim computes ⃗̂Xi, and decodes it to obtain x∗i .

(e) Correctness of degree-reduction: The simulator verifies that the degree reduction step follow-
ing each multiplication step was performed correctly. In more detail, the simulator reconstructs
Vi for every party Pi as in the equality test (for corrupted parties Pi, Vi can be inferred from
the transcript and the FRMULT inputs committed to in the initialization step). Then, Sim decodes
each row in U and V =

∑m
i=1 Vi by computing the unique Û ∈ Lh and V̂ ∈ L̃h that agree with

U, V (Respectively) in all columns except those in E,E∪E′ (respectively), and decoding Û , V̂ .
Next, Sim verifies that the decoded vectors are equal. We now use the fact that the previous tests
have passed, to argue that decoding succeeds and is unique. Specifically, since Steps 9a and 9b
passed we have

|∆(U,Lh)| ≤ |E| ≤ e < (n− k + 1)/3.

In particular, n−e > k so Û is unique. As for V , the fact that Steps 9a and 9c passed implies that
all multiplications were correctly computed by all parties in all copies excluding E ∪E′. Using
also the fact that n− 4e > 2k (so n− 4e columns of V uniquely determine the encoded value),
V̂ is unique. Following a similar decoding procedure, Sim decodes w⃗ =

∑
j w⃗j and z⃗ =

∑
j z⃗j

w.r.t L by excluding the columns in E, constructing L-encodings ⃗̂w and ⃗̂z and checking if the
decoded values are equal.

10. In the output decommitment phase, for all honest parties but one, denoted by Pi∗ , Sim reveals the
output values computed for these parties during the simulation. For Pi∗ it proceeds as follows. Since
the simulator did not abort in Step 9, an effective input x∗i was determined in Step 9d of the simulation
for every i ∈ T . Sim provides {x∗i }i∈T to the trusted party and obtains the output y. Next, it extracts
the value o encoded in the output obtained in the simulation. This can be done in the same way as the
rows of U are decoded (because Steps 9a and 9b passed). Sim computes an L-encoding o⃗ of the value
y − o in which the entries corresponding to the columns in Γ ∪E ∪E′ are 0 (this is possible because
k > δ + 4e), and adds o⃗ to the output shares of Pi∗ before revealing them.

25

Indistinguishability. Next, we prove indistinguishability of the real and simulated views. Intuitively, the
secrecy of the encoding and secret sharing scheme guarantees that the adversary learns nothing beyond the
output. (Recall that the encoding we use can be thought of as Shamir’s secret sharing scheme, so it guaran-
tees secrecy.) The consistency, degree and equality tests further ensure, with overwhelming probability, the
correct behaviour of the adversary.

We proceed to formally prove indistinguishability through a sequence of hybrids, where in each hybrid
we output the view of the adversary.

H0 = REAL: This is the real-world adversarial view.

We first prove that there exists a set of effective inputs for the corrupted parties such that with high
probability either one of the tests in the protocol execution fails, or the output is consistent with the
output of F on the inputs of the honest parties, and the effective inputs for the corrupted parties. Thus,
if all the tests pass then with overwhelming probability the computation was correct. Formally,

Claim 4.1. Suppose e < (n− k + 1)/3. Then, except with probability

(1− e/n)δ +
n− k + 2

|F|
+ 2−Ω(e)

either one of the degree, equality or consistency test fails, or all of the following holds:

(a) There exists a set E of size at most e such that all parties correctly performed the local compu-
tations in all copies except those in E.

(b) ∆(U,Lh),∆(X⃗i, L),∆(ν⃗, L) ⊆ E, where U =
∑

i Ui and Ui is the matrix which Pi committed
to during the degree test; and X⃗i, ν⃗i are the input and output-masking shares committed by party
Pi during the input-sharing and initialization steps (respectively).

(c) There exists a set E′ of size at most 3e such that except for the copies in E′, the initial commit-
ments of all parties (during the initialization step) are consistent with the values they received
from FRMULT.

(d) There exist unique Û ∈ Lh, V̂ ∈ L̃h, ⃗̂
Xi ∈ L for all i, ⃗̂wi ∈ L and ⃗̂νi ∈ L that agree

with U =
∑

i Ui, V =
∑

i Vi, X⃗i,
∑

i w⃗i and ν⃗i, respectively, on all columns except E ∪ E′.
Moreover, Û and V̂ decode to the same value w.r.t L and L̃ respectively, and ⃗̂ν decodes to 0.
Furthermore, the output reconstructed in H0 is F(x⃗∗T , x⃗T), where x⃗T denotes the inputs of the

honest parties, and x⃗∗T are effective inputs for the corrupted parties, encoded in the ⃗̂
Xi’s (i.e.,

following the procedure described in Step 9d of the simulation.)

Proof: We identify a set of bad events, bound their probabilities, and conclude using a union bound.

• Event |E| > e. Then except with probability (1− e/n)δ, the consistency test fails because it
checks at least one of the inconsistent copies.

For the next event, we define the matrix

M =


U

X⃗1
...

X⃗m∑
i ν⃗i

 .

26

• Event |E| ≤ e, and d(M,Lh+m+1) > e. Since e < (n − k + 1)/3 then [AHIV17, Lemma
4.4]5 guarantees that

Pr
r

[
d(r⃗TU +

m∑
i=1

r′iX⃗i + r′′
m∑
i=1

ν⃗i, L) ≤ e

]
≤ (n− k + 1)/|F|.

Furthermore, whenever d(r⃗TU +
∑m

i=1 r
′
iX⃗i+ r

′′∑m
i=1 ν⃗i, L) > e and |E| ≤ e, then the degree

test fails (because the degree test was correctly computed in all copies not in E.) Overall, the
degree test fails except with probability (n− k + 1)/|F|.

• Event |E| ≤ e, d(M,Lh+m+1) ≤ e and ∅ ≠ ∆(M,Lh+m+1) ̸⊆ E. We show that in this
case the degree test fails except with probability 1/ |F|. Since d(M,Lh+m+1) ≤ e, |E| ≤ e
and n − 2e > k, then there exists a unique M̂ ∈ Lh+m+1 that agrees with M on all columns
except those in ∆(M,Lh+m+1)∪E. Moreover, since the degree test was computed correctly in
all columns excluding E (and therefore excluding E ∪∆(M,Lh+m+1)) then for every column
l /∈ E ∪∆(M,Lh+m+1), the restriction of the linear combination computed during the degree
test to column l is equal to this linear combination applied to the l’th column of M̂ . Let v⃗ denote
the word constructed during the degree test (i.e., obtained through the aforementioned linear
combination), and let v⃗′ ∈ L denote the word that would have been constructed had the degree
test been applied to M̂ . Then the degree test passes only if v⃗ ∈ L, and since d (v⃗, v⃗′) ≤ 2e and
n− 2e > k, then v⃗ = v⃗′. Therefore, if there exist j ∈ [h+m+1], l ∈ [n] such that the j’th row
w⃗ ofM has l ∈ ∆(w⃗, L)\E, then the degree test was performed correctly for the l’th copy (i.e.,
column), and moreover the linear combination it computed on the l’th column was consistent
with this linear combination over the l’th column of M̂ (i.e., vl = v′l). This happens only with
probability 1/ |F| (because for every r⃗ = (r1, . . . , rj−1, rj+1, . . . , rn) chosen by FCOIN for the
degree test, there is at most one value of rj for which this happens).

• Event |E| ≤ e and |E′| > 3e. For every copy l ∈ E′, if l ∈ Γ then the consistency test passes
only if A successfully performed a selective attack on the FMULT to FRMULT reduction, which
happens with probability at most 1/ |F|. Moreover, an unsuccessful selective attack in copy l
causes a local inconsistency in that copy, so |E| ≤ e implies that the selective attack failed in at
most e copies. However, using a Chernoff-Hoeffding bound, if |E′| > 3e then the probability
that the selective attacks failed in at most e copies is at most

2−2(3e)(
2e−3e/|F|−1

3e
)2 = 2−Ω(e).6

We now assume that |E| ≤ e,∆
(
M,Lh+m+1

)
⊆ E, and |E′| ≤ 3e, and show that U, V =∑

i Vi, X⃗i, ν⃗i can be uniquely “corrected” to valid encodings. More formally, Since |E| ≤ e, ∆(U,Lh) ⊆
E and n− e > k, there exists a unique matrix Û ∈ Lh that agrees with U on all columns except those

in E. Similarly, there are unique L-encodings ⃗̂
Xi and ⃗̂νi that agree with X⃗i and ν⃗i on all columns

5Lemma 4.4 in [AHIV17] was stated conditioned on a conjecture (Conjecture 4.1), but was later proven to hold unconditionally
(i.e., irrespective of the conjecture); we are grateful to the authors of [AHIV17] for sharing their proof with us and letting us include
it in Appendix B.

6Chernoff-Hoeffding bound states that for independent random variables X1, . . . , Xn ∈ [0, 1] and X = 1
n

∑
i Xi,

Pr[|X − E[X]| > t] ≤ e−2nt2 .

27

excluding those in E. Since multiplications were correctly performed in every column except those
in E ∪ E′, and n − 4e > 2k, then there exists a unique matrix V̂ ∈ L̃h that agrees with V =

∑
i Vi

on all columns except those in E ∪ E′.

Now, since the equality test was performed correctly in all columns excluding those in E ∪ E′ (in
particular,

∑
j ψ⃗

j,l
i = 0⃗ for every l /∈ E ∪ E′, so the b⃗ element in the equality test does not affect the

encoded value) then for every l /∈ E ∪ E′, the restriction to the l’th column of the linear combination
computed during the equality test is equal to this linear combination computed over the l’th columns of
Û , V̂ , and

∑
i
⃗̂νi. Therefore, the soundness of the equality test guarantees that except with probability

1/ |F|, if the equality test passes then the values decoded in each row of Û and V̂ are equal, and the
value decoded from ⃗̂νi is 0. Since addition gates were correctly executed on all columns except those
in E, it follows that in all columns excluding those in E ∪ E′ the entire computation was computed

correctly according to the inputs decoded from ⃗̂
Xi. Consequently, since n− |E ∪ E′| ≥ n− 4e > k,

the output reconstructed in H0 is F(x⃗∗T , x⃗T), where x⃗T denotes the inputs of the honest parties, and

x⃗∗T are effective inputs for the corrupted parties obtained by decoding ⃗̂
XT .

Using a union bound, we can now conclude that, except with probability(
1− e

n

)δ
+
n− k + 2

|F|
+ 2−Ω(e)

either all the tests pass, or the four conditions in the claim hold.

H1: In H1, we check the conditions of Step 9 of the simulation above before the output decommitment
phase, and abort with output fail if any of them fail. Observe that conditioned on any of the degree,
equality, or consistency tests failing, the two hybrids are identically distributed as they proceed iden-
tically. Therefore, it suffices to bound the statistical distance of the hybrids when all the tests pass.

Conditioned on the tests passing, the two hybrids differ only if one of the tests of Step 9 fails, which
we now show happens only with negligible probability. By Claim 4.1, except with probability(

1− e

n

)δ
+
n− k + 2

|F|
+ 2−Ω(e)

all the conditions of the claim hold (since the tests pass). In particular, since conditions (a)- (c) of
Claim 4.1 hold then Steps 9a-9c hold (respectively). For the test of Step 9b, we also use the fact that
the output encoding z⃗ =

∑
i z⃗i satisfies z⃗ = w⃗ + ν⃗, where w⃗ =

∑
i w⃗i is the sum of rows of U

and the X⃗i’s (and therefore differs from a valid encoding only in the columns in E). Moreover, since
condition (d) holds then the tests in Steps 9d and 9e pass (here, we also use the fact that conditions (a)
and (c) hold, so |E ∪ E′| ≤ 4e, and that n − 4e > 2k). Therefore, the two hybrids are statistically
close.

H2: In this hybrid, we switch to the IDEAL experiment. Notice that this is equivalent to the following
experiment: first, run the protocol with A, where the honest parties use 0 instead of their inputs.
Second, before decommitting the outputs, check whether the conditions of Step 9 of the simulation
hold, and abort if not. Finally, reveal the output, but manipulate the shares of one honest party as the
simulator does in Step 10 of the simulation to reveal the correct output.

We prove indistinguishability of H1 and H2 by considering the following mutually disjoint cases. Let
hyb1 and hyb2 denote the random variables representing the outputs of hybrid experiments H1 and
H2, respectively.

28

C: Consistency test fails: The view of the adversary until (including) the consistency test contains:
(1) messages from FRMULT; (2) messages exchanged during the FMULT to FRMULT reduction
(computed for each multiplication gate across all copies); (3) input shares obtained from the
honest parties; and (4) the decommitments made during the consistency test. We analyze each
of these separately, and show they are identically distributed in both hybrids.
(1) and (2): messages from FRMULT, and the transcripts of the FMULT to FRMULT reductions, are
identically distributed in both hybrids as A only learns additive shares of the outputs.
(3): the input shares of the honest parties are similarly uniformly random in both hybrids.
(4): the values decommitted by Pi during the consistency test are the restriction to Γ of: his
input encoding X⃗i, the matrix Ui, the values provided by FRMULT (during the initialization step),
the randomness γ⃗i, ⃗̃γi, ν⃗i,

(
ψ⃗j
i

)
j∈[m]

, the degree and equality test values qi, q̃i, and the output

shares z⃗i. The entries of the inputs X⃗i of honest parties Pi revealed during the consistency
test are uniformly random, because only |Γ| < k entries are decommitted, and X⃗i is a random
valid L-encoding. Similarly, the columns of Ui decommitted during the consistency test are also
distributed uniformly at random, since each row of Ui is a fresh L-encoding sampled by Pi,
and only |Γ| columns are revealed. The values provided by RRMULT are generated in the same
way in both hybrids and are therefore identically distributed. As for the degree test equality test
outcomes of honest parties Pi for copies l ∈ Γ, they are uniquely determined by X l

i , the l’th
columns of Ui, Vi, and the l’th entries of ν⃗i, γ⃗i, ⃗̃γi, b⃗i (and the coin tosses of FCOIN). Notice
that the l’th column of Vi is uniquely determined by the values decommitted by Pi during the
consistency check, and bli is uniquely determined by the values decommitted by all parties for
the l’th copy. Moreover, γ⃗i, ⃗̃γi are uniformly sampled L- and L̃-encodings (respectively) in both
hybrids, and ν⃗i is a random valid L-encoding in both hybrids, so the restriction of γ⃗i, ⃗̃γi, and ν⃗i
to |Γ| copies are uniformly random, and consequently the degree and equality test outcomes are
identically distributed in both hybrids. Finally, the decommitted output shares of honest parties
Pi for columns in Γ are uniquely determined by the restriction of Ui, ν⃗i to the columns in Γ, and
the input shares

{
xlj,i

}
j∈[m],l∈Γ

(because z⃗i = w⃗i + ν⃗i, where w⃗i is a sum over the rows of Ui

and the input shares provided to Pi by all parties). Since Ui and the input shares are identically
distributed in both hybrids, and (as noted above) the restriction of ν⃗i to the columns in Γ is
uniformly random in both hybrids, the decommitted output shares are identically distributed in
both hybrids.
Therefore, conditioned on the consistency test failing, the hybrids are identically distributed.
Moreover, the probability that the consistency test fails is independent of the honest parties’
inputs. Indeed, whether or not the test fails depends only on the view of the adversary, which
at the end of the consistency test includes the values computed during the FMULT to FRMULT

reductions (thorough this reduction, the adversary learns only subsets of additive shares, which
are independent of the inputs of the honest parties), and the views of all honest parties in |Γ|
copies (which are independent of the inputs of honest parties due to the secrecy parameter of the
L-encodings, alternatively Shamir’s secret sharing scheme).

D: Degree test fails: In this case the consistency test passes, so the degree test outcomes qi are re-
vealed by all parties Pi. Recall from case C above that the adversarial views up to (including)
the consistency test are identically distributed in both hybrids. We claim that conditioned on the
consistency test passing, the degree test outcomes are L-encodings that are distributed uniformly

29

at random subject to the constraint that they are consistent with the values revealed during the
consistency test. Indeed, for every honest party Pi, r⃗TUi + r′iX⃗i + r′′ν⃗i ∈ L, and this value is
blinded by a uniformly random L-encoding γ⃗i.
Therefore, conditioned on the degree test failing, the hybrids are identically distributed. Again,
the probability that the degree test fails is independent of the honest parties’ inputs, as it only
depends on the qi supplied by the corrupted parties for the degree test outcome.

EQ: Equality test fails: First, by the analysis in cases C and D above, the two hybrids are identically
distributed up to (including) the opening of the degree test commitments. Conditioned on the
consistency and degree tests passing, the proof of Claim 4.1 shows that conditions (a)-(c) of the
claim hold except with probability (1− e/n)δ + n−k+2

|F| + 2−Ω(e). Therefore, |E ∪ E′| ≤ 4e,

and there exists a unique L̃-encoding ⃗̃q that agrees with
∑
q̃i on all columns except those in

E ∪ E′.
Consequently, to show that the two hybrids are statistically close conditioned on EQ, it suffices to
argue that they are identically distributed conditioned on EQ and conditions (a)-(c) of Claim 4.1.
Let W be the set of executions where both EQ and these conditions hold. Then∣∣Γ ∪ E ∪ E′∣∣ ≤ δ + 4e < k

for all executions in W , so similar arguments to case C above show that the adversarial view up
to (including) the degree test check, together with the view of the honest parties in the executions
of all copies in Γ ∪ E ∪ E′, are identically distributed in both hybrids.
For an execution inW , let view denote the view of the adversary up to (including) the degree test
check, together with the view of the honest parties in the executions of all copies in Γ∪E ∪E′.
Let Qi and Q′

i be the distribution of the equality test outcome ⃗̃qi revealed by party Pi in hybrids
H1 and H2, respectively, conditioned on the partial view view. Recall that∑

i

⃗̃qi =
∑
i

α⃗T (Vi − Ui) + βν⃗i + ⃗̃γi + b⃗i

where b⃗i =
∑

j∈[m] ψ⃗
i
j , and

∑
i∈[m] ψ⃗

j
i = 0⃗. We want to prove that (Qi)i∈[m] and (Q′

i)i∈[m]

are identically distributed conditioned on view, but since the Qi’s and Q′
i’s are blinded by the

additive 0⃗-sharings ψ⃗j’s of all Pj’s, this will follow from proving that
∑

i/∈T Qi and
∑

i/∈T Q
′
i

are identically distributed conditioned on view. We proceed to prove the latter claim.

Recall that there exist unique V̂ ∈ L̃h, Û ∈ Lh, ⃗̂ν ∈ L,
⃗̂
γ̃ ∈ L that agree with

∑
i Vi,

∑
i Ui,

∑
i ν⃗i,

∑
i
⃗̃γi

(respectively) except for the columns in E ∪ E′. Therefore, conditioned on view then
∑

iQi −∑
iQ

′
i are valid L̃-encoding of 0 in which the entries in Γ ∪ E ∪ E′ are all 0. Moreover, the

equality test values ⃗̃qi of corrupted Pi’s are committed to before the consistency test, so they
depend on the adversarial view up to that point, which we have already shown is identically dis-
tributed. Therefore, (Qi)i∈T and (Q′

i)i∈T are identically distributed point distributions (since
they are conditioned on view). Therefore, conditioned on view,

∑
i∈T̄ Qi −

∑
i∈T̄ Q

′
i are valid

L̃-encoding of 0 in which the entries in Γ ∪ E ∪ E′ are all 0. Since ⃗̃γi are random valid L̃-
encodings of 0, this implies that

∑
i∈T̄ Qi and

∑
i∈T̄ Q

′
i are identically distributed conditioned

on view, as we set out to prove. We conclude that the hybrids are statistically close conditioned
on the equality test failing.

30

O: All tests pass: By Claim 4.1, conditioned on all tests passing then except with probability (1− e/n)δ+
n−k+2

|F| + 2−Ω(e) the final outputs
∑

i z⃗i are valid L-encoding of y = F(x⃗T̄ , x⃗
∗
T) (in H1) and

o = F (⃗0T̄ , x⃗
∗
T) (in H2), where x⃗∗T are the effective inputs extracted for the corrupted parties

in these hybrids. Thus, it suffices to prove indistinguishability of the hybrids conditioned on O
and all the conditions of Claim 4.1. The remainder of the argument is similar to that of case
EQ above. Let view denote the view of the adversary up to (including) the equality test check,
together with the view of the honest parties in the executions of all copies in Γ ∪ E ∪ E′. Let
Zi and Z ′

i be the distributions of the outputs z⃗i of party Pi in hybrids H1,H2 (respectively),
conditioned on view. (Notice that in H2 these shares are manipulated before they are revealed.)
Then

∑
i Zi −

∑
i Z

′
i is distributed as a random L-encoding of y − o conditioned on the entries

in Γ ∪ E ∪ E′ being 0, because the shares are blinded using the random L-encodings ν⃗i of 0.
Therefore, the two hybrids are identically distributed conditioned on view, because the output
manipulation exactly adds a random L-encoding of y − o to the output shares.

This concludes the proof of indistinguishability of the last two hybrids, and the proof of security.

Communication complexity of protocol Φ. Assuming the existence of a PRG, parties can commit to
their FRMULT triples by committing (during the initialization step) to a PRG seed for each copy (the other
initialization-phase commitments are generated as in Figure 6). Consequently, the total communication,
assuming rate-1 commitments, is:

n ·m · (κ+ (3 +m) · log2 |F|)︸ ︷︷ ︸
rnd/blind com.

+ m · n · log2 |F|︸ ︷︷ ︸
input commitments

+m2 · n · log2 |F|︸ ︷︷ ︸
input sharing

+ n · h · CCMULT︸ ︷︷ ︸
multiplication

+ |Γ| ·m · (κ+ (4 +m) · log2 |F|)︸ ︷︷ ︸
consistency test

+ 2 ·m · n · log2 |F|︸ ︷︷ ︸
degree test com. and dec.

+ 2 ·m · n · log2 |F|︸ ︷︷ ︸
equality test com. and dec.

+ 2 · n ·m · log2 |F|︸ ︷︷ ︸
output com. and dec.

where CCMULT is the communication complexity of the m-party multiplication protocol (implementing
FRMULT and the FMULT to FRMULT reduction), and h is the number of multiplication gates in the circuit.
(We note that the degree and equality test commitments revealed during the consistency test are counted
as part of the degree and equality test terms, resp.) In order to get 2−Ω(s) soundness, we need to set n =
O(s). Assuming s ≤ κ, the overall communication complexity can be bounded by O(s · h · CCMULT) +
poly(m,κ, log2 |F|). Since h represents the size of the circuit (i.e. number of multiplication gates), the best
passive protocol in the FMULT-hybrid can be bounded by O(h) · CCMULT. Therefore, the communication
overhead of our basic variant is O(s).

4.1 Instantiating FRMULT

Recall from Section 3.5 (Figure 5) that FRMULT is the multiplication functionality that outputs three tuples
of additive shares a⃗, b⃗, c⃗ such that the “inputs” a⃗, b⃗ share random values a, b, and the “output” c⃗ shares the
product a · b. In this section we discuss how to realize this functionality, while identifying the minimal
security properties required from it.

Our first observation is that we do not need an actively-secure implementation of the FRMULT function-
ality. In fact, it suffices to consider a protocol that is only “private” against active adversaries, in the sense

31

that throughout the protocol execution, an actively corrupted party cannot violate the privacy of the honest
parties’ inputs. In particular, the underlying implementation does not have to retain correctness in this case,
or provide a mechanism for extracting the adversary’s inputs. Extraction in our protocol is achieved by re-
quiring the adversary to commit to its input and randomness used for the FRMULT-functionality. Correctness,
on the other hand, is enforced through our consistency test that ensures correctness of the computations in
most of the copies, by checking a random subset of δ copies.

When computing a boolean circuit, the pairwise products of the shares can be computed using Oblivious
Transfer (OT) [Bea91, NNOB12]. Based on the discussion above, it suffices to use a private OT protocol
[HK12]. Indeed, consistency between the different OT executions will be verified during the consistency test
of our protocol, as discussed above.7 Intuitively, privacy is guaranteed because an OT sender has no output
in the execution, and the security/privacy of OT ensures that even if the sender cheats it learns nothing about
the receiver’s input. Moreover, though an OT receiver can use inconsistent inputs in the OT executions
with different honest parties, this can only violate correctness, and not privacy, since the output of each
OT execution is an additive share of the cross product (e.g., ai · bj), which reveals nothing about the other
party’s share. Similarly, when working over large fields, FRMULT can be realized using private OLE (cf.
Section 3.3), where private OLE can be defined analogously to private OT, requiring that parties do not infer
any additional information (except what can be inferred from their inputs and outputs).

Relaxing to passive implementation of the FRMULT-functionality. We can further weaken the security
requirement on the FRMULT implementation, by incorporating the reduction from defensible privacy to pas-
sive security. We first informally review the notion of defensible privacy which was introduced by Haitner
in [Hai08, HIK+11]; see [HIK+11] for the formal definitions. Let π be a two-party protocol between P1

and P2, and let trans = (q1, a1, . . . , qℓ, aℓ) be a transcript of an execution of π when P1 is controlled by an
adversary A, where qi denotes the i’th message from P1, and ai denotes the i’th message from P2 (that is,
ai is the response to qi). Informally, a defence of A relative to trans, which is provided after the protocol
execution ends, is a pair (x, r) of input and random tape for P1. We say that a defence (x, r) of A relative
to trans is good if the transcript generated by running the honest P1 with input x and random tape r against
P2’s messages a1, . . . , aℓ results exactly in trans. Intuitively, a defense (x, r) is good relative to trans if,
whenever Pi uses (x, r) in an honest execution of π, the messages sent by Pi are identical to the messages
sent by the adversary in trans. Thus, in essence, a defense serves as a “proof” of honest behavior. Defensi-
ble privacy guarantees that when the adversary provides a good defence, then it learns nothing beyond what
can be inferred from its input and prescribed output.8 We note that in our protocols, the consistency tests
guarantee that (if the tests pass) the adversary has a good defence, so defensible privacy implies privacy
against active corruptions.

The security of a passive protocol can be amplified to defensible privacy by adding a coin tossing phase
(which, in our case, samples the inputs to FRMULT), and ensuring that these coins were indeed used in the
passive execution. The latter can be checked as part of our consistency test, however to guarantee privacy we
cannot postpone this check until the consistency test is performed at the end of the circuit emulation, since by
that time the adversary could have already violated privacy by using badly-sampled randomness. Thus, we
include in our protocol two consistency tests: the first is the consistency test described in Figure 7, and the

7More specifically, we use OT between pairs of parties to compute a 2-out-of-2 additive secret sharing of the product they should
compute. Then. we perform the consistency check, and reconstruct the outputs of OTs only if this test passes.

8For instance, an OT protocol is defensibly private with respect to a corrupted sender if any adversary interacting with an honest
receiver with input u, and providing a good defence at the end of the execution, does not learn u. Similarly, an OT protocol is
defensibly private with respect to a corrupted receiver if for any input u, and any inputs (v0, v1) for the sender, any adversary
interacting with the honest sender with input (v0, v1), that is able to provide a good defense for input u, does not learn v1−u.

32

second checks consistency of FRMULT inputs and the tossed coins, and is executed during the initialization
phase. This second consistency test ensures that with overwhelming probability, all but (possibly) a small
subset of random triples are correct (namely, the aggregated parties’ shares correspond to c = a · b), and
consistent with the random coins. This will suffice for our security analysis, because the number of copies
will be sufficiently large such that by cheating in a small number (< k) of copies, the adversary learns
nothing. See Appendix A for further details and the concrete overhead our protocols achieve. In summary,
we obtain the following from Theorem 2 and the discussion above:

Corollary 3. Let ϕ be a passively-secure protocol realizing FRMULT. Then Protocol Φ described in Fig-
ures 6-8, when the FRMULT oracle is replaced with ϕ, securely realizes F in the (FCOM,FCOIN)-hybrid
model, tolerating m− 1 active (static) corruptions, with statistical security error

(1− e/n)δ +
n− k + 2

|F|
+ 2−Ω(e) + (1− e/(n+ δ′))δ

′

where k > δ + 4e,n > 2k + 4e, e ≤ (n− k + 1)/3, and δ′ > 0.

Relaxing further to weaker than passive. Following ideas from [HIMV19], our protocol can, in fact,
tolerate an imperfect passive OLE, namely one that has a non-negligible statistical privacy or correctness
error. This security feature can be turned into an efficiency advantage. For example, imperfect FRMULT

can be implemented more efficiently by aggressively setting the parameters in existing LWE-based OLE
constructions, see Section 7.1 for details.

5 Actively Secure MPC with Constant Communication Overhead

In this section we present our main result, namely, an MPC protocol for an arbitrary number of parties that
achieves constant communication overhead over the passive GMW protocol.

On a high-level, we will incorporate a variant of the protocol of Frankling and Yung [FY92] instead of
[BGW88] in our basic MPC protocol. Recall that the main overhead in the basic MPC protocol is caused
by the n = O(s) copies of the circuit used to perform the computation, where s is a statistical security
parameter. Then, similar to [FY92] we improve the communication overhead, achieving constant overhead,
by having all copies evaluate multiple gates in parallel using packed secret sharing. Our protocol will achieve
constant-overhead for moderately wide circuits (See Section 6 for a more detailed discussion.)

In more detail, given a circuit C, and block-width parameter B, the parties agree on a divisions of the
circuit evaluation into layers, where at most B multiplication gates are evaluated in parallel in each layer, and
arbitrary linear operations are performed between layers. During the evaluation of the protocol on a specific
input, we can associate with each layer of gates G a vector (block) BG

O of B values whose i’th position
contains the output value assigned to the i’th gate in the layer (or 0 if the block has less than B gates). For
each layer (except blocks of input gates), we will associate two additional blocks: a “left” block BG

L and
“right” block BG

R whose i’th position contains the value of the left input wire and right input wire of the i’th
gate, respectively. In other words, the value of the i’th gate of a multiplication block can be expressed as
(BG

O)i = (BG
L)i(B

G
R)i. In the protocol, the parties will collectively operate on an efficient (constant-rate)

Reed-Solomon encoding (equivalently, packed secret shares) of each block. The protocol parameters include
a description of the Reed-Solomon code L = RSF,n,k,η, and a vector of elements ζ = (ζ1, . . . , ζB) ∈ FB

which is used for decoding.
Next, we describe our protocol, simulation and proof by specifying the main differences from the de-

scription of the basic protocol from Section 4.

33

• INITIALIZATION. Recall that each party generates γ⃗i, ν⃗i, ⃗̃γi and (ψ⃗1
i , . . . , ψ⃗

m
i). The parties generate

the same vectors except that γ⃗i is a random L-encoding of a random block of values, and ν⃗i and ⃗̃γi are
random L and L̃ encodings of the all 0’s block. In addition, the parties generate a random L′-encoding
γ⃗′

i
= (γ′i1, . . . , γ

′i
n) of a block of values that are random subject to the condition that they add up to

0, where L′ = RSF,n,k+B,η.

• INPUT SHARING. The parties share a block rather than a single element. Namely, the parties embed
their input value(s) into a block of length B, and generates a packed secret sharing L-encoding for this
block (as described in Section 3.6), distributing the outcome as in the basic protocol.

• EMULATING THE COMPUTATION. The computation proceed in layers of multiplication gates, where
for each layer, we maintain the invariant that the parties hold additive shares of the inputs to the
(at most) B multiplication gates in the layer. The difference from the basic protocol is that before
evaluating a layer, the parties need to repack the inputs to the layer. (See discussion below on why
repacking might be needed.)

Concretely, to evaluate a layer, each party first rearranges the left wire values and right wire values
of the multiplication gates in the layer into blocks BL and BR, and generates an L-encoding of each
block. For every i, let ali, b

l
i denote Pi’s shares ofBL, BR (respectively) corresponding to the l’th copy.

Then the parties compute (via the reduction from FMULT to FRMULT) additive shares
(
c̃l1, . . . , c̃

l
m

)
of

(
∑m

i=1 a
l
i)(

∑m
i=1 b

l
i), where Pi receives c̃li, just as in the basic MPC protocol. Then, each Pi locally

performs the degree reduction procedure as in the basic MPC protocol, with the difference that Pi

decodes (c̃1i , . . . , c̃
n
i) to obtain a block of values which it uses as the additive shares of the outputs of

the multiplication gates in the layer.

Why repacking is needed. To see why rearranging the values within and between blocks might be
necessary, consider a circuit that has a wire connecting the 3’rd value in the 2’nd block in layer 1 with
the 5’th value in the 3’rd block in layer 2; or a wire connecting the 4’th value in the 1’st block in layer
1 with the 2’nd value in the 1’st block in layer 2. We note that addition gates do not require repacking,
because the following invariant is maintained throughout the evaluation: parties hold additive shares
of the wire values (essentially, after a degree-reduction step parties can “unpack” the shared values
to obtain additive shares of each individual wire). Therefore, additions can be computed locally per
gate, then repacked for the next multiplication layer.

• CORRECTNESS TESTS. We will employ the equality test as before, modify the degree test to also
check the repacked encodings, and add an additional permutation test, as described next.

THE MODIFIED DEGREE TEST. As in the basic protocol, the degree test will compute a random linear
combination of the tested encodings. These encodings include the blocks X⃗i encoding the parties’
inputs (which were committed in the input sharing step), the block of 0s encoded in ν⃗i (which was
committed in the initialization step), and the matrix Ui which contains L-encodings of the blocks
of additive shares that were obtained from the degree reduction step following a multiplication step
(Ui was committed to during the commit to degree test step). The difference from the degree test of
the basic MPC protocol is that the linear combination will now also include an additional matrix U ′′

i

which contains the L-encodings of the repacked blocks of additive shares that were used as inputs to
multiplication gates. (We note that these values are never committed to, but as explained in the proof
of Corollary 4 below, can be extracted by the simulator from the transcript of the execution.) More
formally, the parties will obtain from FCOIN random vectors r⃗, r⃗′, r⃗′′′, and a random value r′′, and

34

party Pi will compute
qi = r⃗TUi + r⃗′′′TU ′′

i + r′iX⃗i + r′′ν⃗i + γ⃗i.

Permutation test: this test verifies that the parties correctly permute (i.e., rearrange) the additive
shares of wire values between layers. In particular, the test verifies that the encodings of the left and
right input blocks of each computation layer correctly encode the values from the previous layers (and
similarly for the output blocks). Note that the set of constraints that the blocks of values have to satisfy
can be expressed as a set of linear equations in at most mB equations and mB variables (where w is
the width, d is the depth of the computed circuit, and m = dw/B), where variable xi,j represents the
j’th value in the i’th block. (For example, if the circuit has a wire between the 3’rd value of the 2’nd
block and the 5’th value in the 3’rd block, the corresponding constraint would be x2,3 − x3,5 = 0.)
These linear equations can be represented in matrix form as Ax = 0mB, where A ∈ FmB×mB is a
public matrix which only depends on the circuit being computed. The permutation test simply picks
a random vector r⃗ ∈ FmB and checks that (r⃗TA)x = 0. To check these constraints, the parties obtain
from FCOIN a random vector r⃗ ∈ FmB and compute

r⃗TA = (r′11, . . . , r
′
1B, . . . , r

′
m1, . . . , r

′
mB).

Now, let rj(·) be the unique polynomial of degree < B such that rj(ζQ) = r′jQ for every Q ∈ [B] and
j ∈ [m]. Then party Pi locally computes q′i = (r1(ζi), . . . , rm(ζi))

TU ′
i + γ′i, where γ′i is the blinding

encoding from the initialization step (that encode in RSF,n,k+B,η random blocks of values that sum to
0), and U ′

i is the matrix obtained by concatenating the rows of Ui and U ′′
i from the degree test. Notice

that the rows of U ′
i consist of the L-encodings which Pi obtained at the output of multiplication

layers (after degree reduction), and the L-encodings it used as inputs to multiplication layers (after
repacking). Finally, Pi commits to each element of q′i using FCOM.

• CONSISTENCY TEST CHECK. In the consistency test, we also check for all l ∈ Γ that the permutation
test values of copy l were computed correctly. Specifically, each party checks that for every i ∈ [m],
the l’th element of q′i is consistent with the l’th element of γ′i, the l’th column of U ′

i , and r⃗ (the coins
obtained from FCOIN for the permutation test).

• PERMUTATION TEST CHECK. The parties decommit their permutation test commitments for all
copies l /∈ Γ, namely each Pi opens the commitment to the value q′i computed above. Each party
computes q′i = (q′1 + . . .+ q′m), and aborts if q′ = (q′1, . . . , q

′
n) ̸∈ RSF,n,k+B,η or x1 + · · ·+ xw ̸= 0

where x = (x1, . . . , xw) = Decodeζ(q
′).

The following Theorem follows from Theorem 2 and the discussion above.

Theorem 4. The packed variant of protocol Φ of Figures 6-8 securely realizes F in the (FCOM,FRMULT,
FCOIN)-hybrid model, tolerating m− 1 active (static) corruptions, with statistical security error

(1− e/n)δ + ((e+ k + B)/n)δ + (n− k + 3)/ |F|+ 2−Ω(e)

where k > δ + 4e+ B, n > 2k + 4e, and e < (n− k + 1)/3.

We only sketch the proof, which is very similar to that of Theorem 2.

Proof sketch. The proof follows similarly to that of Theorem 2. We highlight the difference below.

35

First, we revise the simulator description by modifying two of the tests it performs in Step 9. First, in
Step 9b Sim additionally checks that ∆

(
U ′, Lℓ

)
⊆ E, where U ′ =

∑
i∈[m] U

′
i , U

′
i is the matrix which

Pi (should have) used during the permutation test, and ℓ denotes the number of rows in U ′. (Notice that
the simulator can determine U ′

i even for corrupted parties: Ui was committed to, and U ′′
i can be extracted

from the messages exchanged with the corrupted parties during the FMULT to FRMULT reductions.) Second,
in Step 9e, Sim additionally checks that repacking was performed correctly. This is done by decoding the
values of U ′ similarly to how the simulator decodes U, V (by constructing the unique Lℓ-encoding Û ′ that
agrees with U ′ on all columns except those in E, and decoding Û ′; such a Û ′ exists because

∣∣∆ (
U ′, Lℓ

)∣∣ ≤
|E| ≤ e < n− k + 1), and uses the decoded values to verify that repacking was performed correctly. (That
is, if the decoded values are x⃗, it verifies that Ax⃗ = 0⃗.) We also note that in Step 10 the simulator is able
to “correct” the output shares as in the proof of Theorem 2, even though the shares might pack B values,
because k > δ + 4e+ B.

Second, we revise the statement of Claim 4.1, where the soundness error increases by an additive 1/ |F|+
((e+ k + B)/n)δ term,9 and except with this probability, either one of the consistency, degree, equality or
permutation tests fails, or all the conditions stated in the claim hold. We additionally change Condition (b)
to include ∆

(
U ′, Lℓ

)
⊆ E, and Condition (d) to include the existence of a unique Û ′ ∈ Lℓ that agrees with

U ′ on all columns except those in E, and decodes to values x⃗ such that Ax⃗ = 0⃗.
Then, we modify the proof of Claim 4.1 to account for the probability that the permutation test fails. In

more detail, we change the case |E| ≤ e, d
(
M,Lh+m+1

)
> e in the proof of Claim 4.1 to the case |E| ≤ e,

d
(
M ′, Lℓ+m+1

)
> e, where the rows of M ′ consist of U,U ′′ =

∑
i∈[m] U

′′
i , X⃗1, . . . , X⃗m and

∑
i∈[m] ν⃗i.

Since our modified degree test computes a linear combination overM ′ (instead ofM), an analogous analysis
to that of case |E| ≤ e, d

(
M,Lh+m+1

)
> e in the proof of Claim 4.1 guarantees that the modified degree

test fails except with probability (n− k + 1)/ |F|, because e < (n− k + 1)/3.
Similarly, we replace the case |E| ≤ e, d

(
M,Lh+m+1

)
≤ e and ∆

(
M,Lh+m+1

)
⊈ E in the proof

of Claim 4.1 with the case |E| ≤ e, d
(
M ′, Lℓ+m+1

)
≤ e, and ∆

(
M ′, Lℓ+m+1

)
⊈ E, and an analogous

analysis to one provided in the proof of Claim 4.1 shows that in this case the degree test fails except with
probability 1/ |F|.

Conditioned on none of the (modified) bad events (from the proof of Claim 4.1, modified as described
above) occurring, then U can be uniquely extended to a Û ∈ Lh that agrees with U on all columns except
those in E, and V can be uniquely extended to a V̂ ∈ L̃h that agrees with V on all columns except those in
E∪E′. This follows identically to the analysis in the proof of Claim 4.1. Moreover, a similar analysis shows
that U ′ can be uniquely extended to a Û ′ ∈ Lℓ that agrees with U ′ on all columns except those in E. Now,
since |E| ≤ e, then d

(
U ′, Û ′

)
≤ e. If Û ′ decodes to values x⃗ such that Ax⃗ ̸= 0⃗, then by [AHIV17, Lemma

4.6], either the permutation or the consistency tests fail except with probability 1/ |F|+ ((e+ k + B)/n)δ.
Therefore, except for this probability, Û ′ encodes values x⃗ such that Ax⃗ = 0⃗, i.e., repacking was computed
correctly in all columns except those inE. Thus, it follows similarly to the proof of Claim 4.1 that the output
reconstructed in H0 is F

(
xT , x

∗
T
)
.

The description and analysis of hybrid H1 follows identically to Theorem 2.
The description of H2 is identical to the proof of Theorem 2, where in the case analysis we add after

case EQ the case “P: permutation test fails”. The analysis of cases C, D, and O follows identically to
9Overall, the soundness error is now

(1− e/n)δ + ((e+ k + B)/n)δ + (n− k + 3)/ |F|+ 2−Ω(e).

36

the proof of Theorem 2. The analysis of case EQ only differs in the following point. The claim that for
all executions in W the joint view of the adversary up to (including) the degree test check, together with
the views of the honest parties in copies Γ ∪ E ∪ E′ are identically distributed in H1,H2, holds because
|Γ ∪ E ∪ E′|+ B ≤ δ + 4e+ B < k.

We now analyze case P. In this case, the equality test passes, so the permutation test outcomes q′i are
revealed by all parties Pi. From the analysis of cases C, D and EQ in the proof of Theorem 2, except
with probability (1− e/n)δ + n−k+2

|F| + 2−Ω(e), conditions (a)-(c) of Claim 4.1 hold, in which case the
adversarial views up to (including) the equality test check are identically distributed in H1,H2. We claim
that conditioned on the consistency test passing, the permutation test outcomes of honest parties are L-
encodings that are distributed uniformly at random subject to the constraint that they are consistent with the
values revealed during the consistency test, and the values they encode sum to 0. Indeed, for every honest
party Pi, pi = (r1(ζi), . . . , rm(ζi))

TU ′
i ∈ L′, and pi decodes to values that sum to 0. Therefore, since pi

is blinded by an L′-encoding γ⃗′i that is uniformly random subject to the constraint that it encodes random
values that sum to 0, then q′i is uniformly random in L′ subject to the constraint that the values it encodes
sum to 0.

Therefore, conditioned on the permutation test failing, and on conditions (a)-(c) of Claim 4.1, the hybrids
are identically distributed. Moreover, the probability that the permutation test fails is independent of the
honest parties’ inputs, as it only depends on the q′i’s supplied by the corrupted parties as their degree test
outcomes. Therefore, the hybrids are statistically close in this case.

Communication Complexity. Assuming that each layer of the circuit has at least B parallel multiplications,
the communication complexity of this variant is given by O(n · h

B · CCMULT) + poly(m,κ, log2 |F|) since
we amortize over B multiplications. By setting n = O(s), the amortized communication overhead of this
protocol becomes O(1) per copy. Circuits of an arbitrary structure can be easily handled at a worst-case
additional cost of poly(s, d). The statistical error can be improved by repeating the tests.

Extending the analysis for small fields. The analysis presented above works for fields of size larger than
n, for smaller fields, we present a modified analysis, which is inspired by the analysis of [DI06, Appendix
A]. Notice that the soundness error of our protocol depends on the field size due to the error probability
of the degree, equality and permutation tests, where the error term is at most (n − k + 3)/ |F|. These are
all instances of tests that check membership in a linear (error-correcting) code, as well as checking that the
encoded message satisfies certain constraints. We now show that the soundness error of these tests is 1/ |F|,
and thus can be reduced to 2−s by standard soundness amplification. (We note that this analysis works for
any field size, but will only be useful for small fields, since for large fields the analysis described above gives
better parameters.)

Specifically, for the following analysis we assume that n > 2k+8e+2 and discuss a modified protocol
in which we run σ independent instances of each of the degree, equality and permutation test.10 We say that
a test passes if all of its σ instances pass. (Each instance of a test is identical to the tests described in our
protocol; notice that parties now need to commit during the initialization phase to blinding encodings for all
instances.) We will show that except with probability 3n · 2−σ + ((e+ k + B)/n)δ + (1− e/n)δ + 2−Ω(e)

either one of the tests fails, or U, V, U ′ are consistent (except for the coordinates in E ∪ E′) with Û , V̂ , Û ′

in the corresponding interleaved codes, and moreover the messages encoded in these codewords satisfy the
required constraints. (That is, Û , V̂ encode the same messages, and the messages x⃗ encoded in Û ′ satisfy
the linear constraints Ax⃗ = 0⃗ defined by the circuit structure.) In particular, to reduce the 3n · 2−σ term

10We do not optimize our parameters as we are interested only in establishing asymptotic bounds.

37

to soundness 2−s, it suffices to choose σ = (s + 2) log((h + 3m)n). We show this bound by analyzing
each test separately, conditioned on the event that |E ∪ E′| ≤ 4e. As shown in the proof of Theorem 2, if
the consistency test passes then this holds except with probability (1 − e/n)δ + 2−Ω(e). First, we consider
the degree test. Let W denote the linear subspace spanned by the purported codewords checked during the
degree test, namely by the rows of U , as well as (Xi, νi, γi)i∈[m]. We consider two cases.

CASE I: W CONTAINS A VECTOR w⃗ WHICH IS (8e + 2)-FAR FROM L. We claim that in this case, with
probability at least 1/ |F| over the coefficients of a random linear combination used in an instance of the
degree test, the resultant linear combination is (4e+ 1)-far from L. Notice that if this claim holds then with
probability at least 1/ |F| the resultant linear combination is not a valid L-encoding (causing this instance
of the degree test to fail). Indeed, a random linear combination computed as part of the degree test was
computed correctly in all but the (at most) 4e copies in E ∪ E′, and so the result will differ in at least one
coordinate from the closest codeword. It remains, therefore, to prove the claim. For this, consider a basis
for W in which one of the basis vectors is w⃗. The linear combination computed in an instance of the degree
test is simply a random vector in W , and so is obtained by a random linear combination of the basis vectors.
Fix some possible value w⃗′ of the linear combination over all basis vectors excluding w⃗. If w⃗′ is (4e+1)-far
from L then with probability 1/ |F| w⃗ isn’t part of the linear combination (i.e., appears with coefficient 0)
and consequently the linear combination is (4e+ 1)-far from L. Otherwise, w⃗′ is (4e+ 1)-close to L, then
with probability (|F| − 1)/ |F| ≥ 1/ |F|, w⃗ appears in the linear combination (i.e., with non-0 coefficient),
and consequently the linear combination is (4e+ 1)-far from L (because w⃗ is (8e+ 2)-far from L).

CASE II: ALL VECTORS IN W ARE (8e + 2)-CLOSE TO L. In this case, we claim that all purported
encodings tested during the degree test (i.e., the rows of U , and (Xi, νi, γi)i∈[m]) are consistent with L-
encodings except for the coordinated in E ∪ E′. To prove this claim, it suffices to prove that for every
such purported encoding v⃗, if l ∈ ∆(v⃗, L) then l ∈ E ∪ E′ except with probability 2−σ, since in this case
the claim holds except with probability (h + 3m) · n · 2−σ (by the union bound). Indeed, we show that if
l /∈ E ∪ E′ then each instance of the degree test fails with probability ≥ 1/ |F|, and conclude that if all
instances of the degree test pass then l ∈ E ∪E′ (with high probability). Consider some linear combination
computed in an instance of the degree test, and let v⃗′′ denote the linear combination over all vectors except v⃗.
By the case assumption, v⃗′′ is (8e+ 2)-close to L. We now consider two cases, based on whether or not v⃗′′

can “cancel out” the l’th coordinate in v⃗. First, if l ∈ ∆(v⃗′′, L) then if v⃗ isn’t part of the linear combination
(i.e., appears with coefficient 0), which happens with probability 1/ |F|, then this instance of the degree test
fails (because this instance simply checks whether v⃗′′ ∈ L). Second, assume that l /∈ ∆(v⃗′′, L). In this case,
if v⃗ does appear in the linear combination (i.e., with a non-0 coefficient), which happens with probability
(|F| − 1)/ |F| ≥ 1/ |F|, then this instance of the degree test fails, because the tested value, which is v⃗′′ + cv⃗
for some constant c ̸= 0, differs from the closest codeword in L in the l’th coordinate (in particular, it is not
a valid codeword).

Next, we analyze the permutation and equality tests. These differ from the degree test since they check
not only that the linear combination is a valid encoding, but also that the encoded messages satisfy certain
constraints. The analysis follows similarly to the degree test analysis, where we define W to be the subspace
spanned by the purported encodings checked during the corresponding test (either the degree or the equality
test). We note that in the equality test, we disregard the bli values (see bottom of Figure 7 for the definition
of bli), which are not valid encodings. This does not affect the analysis since these are locally computed, and
so are correctly computed in all copies except those in E ∪ E′. (Indeed, by the definition of E, the local
computations in all copies not in E are correctly performed. In particular,

∑
i b

l
i for l /∈ E.) In particular,

these don’t affect the linear combination in copies l /∈ E ∪E′ since in such copies these are additive shares
of 0. The only other difference in the analysis is that we divide case II into two subcases depending on

38

whether or not the encoded messages satisfy the constraints. (We note that in both subcases the message
encoded by a purported codeword is well defined, because n > 2k + 8e+ 2.)

CASE II.1: ALL VECTORS IN W ARE (8e + 2)-CLOSE TO THE CODE, AND THE ENCODED MESSAGES

SATISFY THE CONSTRAINTS. In this case, the analysis follows similarly to case II above.

CASE II.2: ALL VECTORS IN W ARE (8e + 2)-CLOSE TO THE CODE, BUT THE ENCODED MESSAGES

DON’T SATISFY THE CONSTRAINTS. In this case, by the analysis in the proof of Theorem 4, either the
consistency or the permutation tests fail except with probability (1/ |F|)σ + ((e+ k + B)/n)δ.

The Overhead. We note that the soundness amplification described above preserves constant overhead.
Indeed, repeating the tests σ times adds an additive O(σd) term, where d is the degree of the packed secret
sharing. In our protocol, d ≤ k + B. Therefore, if the width of the circuit is at least Ω(σ) then this additive
term becomes O(σ2).

6 Corollaries and Applications

In this section we consider several different instantiations of the FRMULT functionality, thus obtaining our
main results in the different settings as instances of the generic protocol of Section 5.

6.1 Constant Overhead MPC for Constant-Size Fields

Dishonest majority. Our main result is obtained by replacing the Reed-Solomon codes in our protocol
with Algebraic Geometric (AG) secret sharing over fields of constant size [CC06], instantiating the FRMULT

functionality with pairwise calls to a passively-secure implementation of the FOT functionality, and instan-
tiating commitments using a pseudorandom generator. Specifically our analysis and construction extends to
packed secret-sharing schemes that are linear and strongly multiplicative. From Theorem 1, we have such
schemes for constant-size fields by embedding the secret in Fq where q is a (sufficiently large) even power
of the underlying prime. Formally:

Theorem 5 (Theorem 1, restated). Let κ, s denote computational and statistical security parameters (resp.),
m denote the number of parties, and F be a constant-size field. Then there exists a protocol compiler that,
given a pseudorandom generator G with seed length κ, s, a constant-round implementation of the FOT

functionality with total communication complexity CCOT, and a description of an m-party functionality
expressed as a depth-d circuit C with constant fan-in, outputs a UC-secure O(d)-round m-party protocol
realizing f with communication complexity O(m2 |C|CCOT) + poly(m,κ, d), where security holds against
an active adversary corrupting an arbitrary number of parties.

We note that the exact constants in the overhead of Theorem 5 depend on the concrete constants of the
underlying AG code, which have not been studied before. The communication complexity of our protocol
using a bit-OT protocol for the boolean setting asymptotically matches the communication complexity of
the best known passively-secure protocol, namely [GMW87] using a passively-secure OT protocol. The best
known previous result for active security is due to Genkin et al. [GIW16] who achieveO(m2 |C| poly log(s))
communication complexity, i.e., a multiplicative factor of poly log(s) over GMW.

Honest majority. To obtain our main result for the honest majority setting, we need to slightly modify our
protocol in two ways. First, we will rely on the passive variant of a protocol of Damgård and Nielsen [DN07],
instantiated with secret-sharing based on AG codes over constant-size finite fields, to instantiate the parallel

39

FRMULT functionality (i.e., to generate the triples in the initialization phase). Specifically, we replace the
underlying secret sharing used in our protocol with secret sharing based on AG codes for constant-size fields
from Theorem 1. The passive protocol additionally requires ramp hyper-invertible matrices which we rely
on the construction from [CCXY18, LXYY23]. We note that the passively-secure honest-majority m-party
protocol of [DN07] can generate T = Ω(m) random triples with total communication complexity O(mT).
Second, we will consider FRMULT and FMULT whose underlying secret sharing scheme is based on the same
AG secret sharing scheme. Specifically, parallel FRMULT distributes secret-shares of many triples a, b and
c such that a · b = c. Then the FMULT to FRMULT reduction works essentially as described in Section 3.5,
where the only difference is that the values e, d are reconstructed using the reconstruction procedure of the
AG secret sharing scheme. Consequently, we obtain the following theorem.

Theorem 6. Let κ, s denote computational and statistical security parameters (resp.), m denote the number
of parties, and F be a constant-size field. Then, for ϵ > 0, there exists a protocol compiler that, given a
pseudorandom generator G with seed length κ, s, and a description of an m-party functionality expressed
as a depth-d circuit C with constant fan-in, outputs a UC-secure O(d)-round m-party protocol realizing f
with O(m|C|) + poly(m,κ, d) bits total communication complexity, and security against a static adversary
corrupting at most (1− ϵ)n/3 of parties.

A few remarks about the preceding theorem are in order. First, we do not achieve optimal threshold.
From Theorem 1, we have that the required packed secret-sharing scheme can only be instantiated with
threshold (1−ϵ)n/3. For this threshold, we remark that it improves over the result of Chida et al. [CGH+18]
that achievesO(s) overhead for binary fields, and generalizes the result of Ishai et al. [IKP+16] that achieves
the same result, but only for a constant number of parties. We remark that the latter protocol additionally
achieves constant-rate communication,11 while our protocol only achieves constant-overhead.

6.2 Constant Overhead MPC over Fields of Arbitrary Size

Dishonest majority. To obtain our result for fields of arbitrary size, we realize the FRMULT functionality
using a passively-secure OLE protocol. For fields of size ≤ s we rely on AG sharing, whereas for fields of
size Ω(s) we use Reed-Solomon codes. Thus, we can re-derive a result of Genkin et al. [GIP+14] (Theo-
rem 5.7 in the full version), who construct an actively-secure m-party protocol for arbitrary functionalities
(represented by an arithmetic circuit C), in the dishonest majority setting, using O(m2 |C|) calls to an OLE
oracle. More precisely, we have the following theorem:

Theorem 7. Let κ, s denote computational and statistical security parameters (resp.), m denote the number
of parties, and F be a field. Then there exists a protocol compiler that, given a pseudorandom generator G
with seed length κ, s, a constant-round implementation of the FOLE functionality over F with total commu-
nication complexity CCOLE, and a description of anm-party functionality expressed as a depth-d arithmetic
circuit C over F with constant fan-in, outputs a UC-secure O(d)-round m-party protocol realizing f with
communication complexityO(m2 |C|CCOLE)+poly(m,κ, d) field elements, with security against an active
adversary corrupting an arbitrary number of parties.

This result asymptotically matches the communication complexity of the best known passively-secure
protocol [GMW87] using a passively-secure OLE protocol. Furthermore, for sufficiently wide circuits, we
can show that the overhead of our protocols is 2. We present the concrete parameters in Appendix A.

11Namely, their total communication is O(|C|) + poly(n, κ) bits for a circuit of size |C|.

40

Honest majority. Just as in Section 6.1, we can obtain constant overhead over the best passively-secure
protocol in the honest majority setting:

Theorem 8. Let κ, s denote computational and statistical security parameters (resp.), m denote the number
of parties, and F be a field. Then, for every ϵ > 0 there exists a protocol compiler that, given a pseudo-
random generator G with seed length κ, s, and a description of an m-party functionality expressed as a
depth-d arithmetic circuit C over F with constant fan-in, outputs a UC-secureO(d)-roundm-party protocol
realizing f with total communication complexityO(m|C|)+poly(m,κ, d) bits, where security holds against
a static adversary corrupting a minority of parties for large fields |F| = Ω(log n) and corrupting at most
(1− ϵ)n/3 parties for constant-sized fields.

Applying the concrete analysis from Appendix A we re-derive the result of Chida et al. [CGH+18] who
show an overhead-2 actively-secure honest-majority protocol. Their result applies to arbitrary circuits over
sufficiently large fields, whereas ours achieves overhead of 2 for sufficiently wide circuits.

7 Extensions and Further Corollaries

In this section, we discuss various generalizations and extensions of our compiler.

7.1 Imperfect FMULT

As discussed in the introduction we can instantiate the FMULT-functionality via a protocol that only guaran-
tees “weaker” than passive security.

In this section, we describe how to instantiate our compiler with an imperfect passive implementation
of FMULT, which may have a non-negligible simulation error. This is particularly relevant to lattice-based
implementations for which one can obtain better efficiency, at the cost of causing a simulation error, by
setting the parameters more “aggressively”. Hazay et al. [HIMV19] show how to compile an imperfect
OLE protocol into a fully-secure OLE protocol. In their work, “imperfectness” was modeled via a natural
“exclusion set” model described below.

We will restrict our attention to FMULT implementations based on OLEs, leaving more general discus-
sions to future work. We also consider only the case of employing OLE over random inputs, since this
suffices for our compiler. Furthermore, we will focus on the case of an OLE that is (fully) computationally
secure against passive corruption of the sender, and is ϵ-statistically secure against passive corruption of the
receiver on random inputs (see below). This will be sufficient to capture our OLE instantiations based on
lattice assumptions. We start by defining the notion of ϵ-secure OLE over uniformly random inputs. Let
Π = ⟨P0, P1⟩ denote a two-party protocol, where each party is given an input (x for P0 and y for P1).
Denote by ViewPi(P0(x), P1(y)) the view of the party Pi in the real execution of Π where x is P0’s initial
input, and y is P1’s initial input.

Definition 7 (ϵ-secure OLE). We say that a two party protocol Π = (S,R) is an ϵ-secure OLE implementa-
tion over Fp w.r.t the uniform distribution, if for every x ∈ Fp the statistical distance between the following
two distributions is bounded by ϵ:

• {(a, b,ViewR(S(a, b),R(x)))}

• {(a′, b′,ViewR(S(a, b),R(x)))}

41

over a, b sampled uniformly from Fp, and a′, b′ sampled uniformly from Fp subject to a′x+ b′ = ax+ b over
Fp.

We conjecture that given an ϵ-secure OLE, our compiler from Section 5 can compile it to a fully-secure
OLE. We leave the question of proving/disproving this conjecture as an interesting open problem. For evi-
dence in support of this conjecture, we refer to [HIMV19] who analyzed a similar compiler with an imperfect
OLE that is an instance of an ϵ-secure OLE. More precisely, they consider an ideal OLE functionality that
asks the adversary to specify an exclusion set A, and leaks to the adversary the single information bit of
whether the honest party’s input belongs to A. They prove that if the exclusion set is relatively small com-
pared to the field size, then security can be amplifies via the IPS compiler. On a high-level, they argue that
in the IPS compiler, even if the adversary learns all the shares of servers on its watchlist, and a small amount
of leakage (via exclusion sets) on each of the remaining shares, the actual secret remains hidden. More
formally, they quantify leakage following the framework of Benhamouda et al. [BDIR18]. The bottom line
in their analysis shows that an ϵ-imperfect OLE (in the exclusion set model) additionally adds a statistical
error of p−k+1 ·O((ϵ · p)n−t−e) where p = |F|.

Concrete LWE parameters based on our conjecture. We repeat the crude analysis verbatim
from [HIMV19] which suggests a choice of parameters for imperfect LWE-based OLE that the compiler
can tolerate. To understand the leakage in standard Ring-LWE based schemes [LPR10], we recall some rel-
evant parameters. Denote the plaintext modulus by p, and the ciphertext modulus by q. Then the magnitude
of the statistical error is bounded by log2(q) − log2(O(c · p2 · Φ)) where c ≡ q mod p (typically made
small by choosing an appropriate q), and Φ is the packing factor. In other words, the statistical distance
between encryptions of different inputs is roughly c · p2 · Φ/q, which could be large for aggressive param-
eter choices. Applying the standard implementation of (passive) OLE based on additively homomorphic
encryption, instantiated with Ring-LWE encryption with these parameters, will result in an imperfect OLE
where the amount of entropy from the sender’s inputs leaked to the receiver (on a random input) is roughly
c · p2 · Φ/q bits. Our analysis only considers a simple leakage where the leakage functions are exclusion
sets. We conjecture that this model is “complete” in the sense that (in the context of the IPS-style compiler
of [HIMV19]) it captures a general leakage with the same amount of entropy, namely, by setting log2(ϵ) as
c · p2 · Φ/q.

In order to get a passive OLE, one needs the magnitude of this error to be at least the statistical parameter
(eg, 40, 80 or 128). For example, if p is a 20-bit prime and Φ = 213, then a 127-bit modulus q gives a passive
OLE with 64-bit security (where typically c and the constant behind O(·) are roughly 25). However, if we
use a 88-bit modulus q, the statistical error will be roughly 2−25. For these parameters, the error is roughly
1/

√
p and allows us to get negligible statistical error. Therefore, the

compiler of [HIMV19] can amplify this to a fully-secure OLE. Since their compiler requires twice as
many passive/imperfect OLEs, the communication overhead of an actively secure OLE protocol against the
passive OLE protocol can be estimated by 2 · 88/127 = 1.38 < 2.

For some parameter regimes (e.g., larger statistical security parameters), their construction of actively-
secure OLE is actually more communication efficient than a naive construction of passively-secure OLE
with a larger security parameter. If we used the parameters described above but demanded 128-bit security,
log2(q) will be 184 and 85 respectively for passive and active and the overhead will be 2 ·85/184 = 0.924 <
1.

42

7.2 Constant-Round Protocols in the Boolean Setting

We remark that our techniques also yields an interesting corollary for securely computing boolean function-
alities in the constant-round regime. This follows from two observations:

1. Securely evaluating a boolean circuit can be reduced to securely computing a distributed garbling of
the underlying circuit [BMR90].

2. The BMR distributed garbling scheme can be expressed as an arithmetic circuit over the fieldGF (2κ)
with O(|C|) multiplication gates, and depth-2, where C is the circuit being garbled.

Now, we can rely on our protocol for arithmetic circuits to first securely compute a distributed garbling of
the underlying functionality, and then follow the standard protocol based on BMR garbling.

We highlight that distributed garbling would be an instance of a “very-wide” circuit, as the width of the
garbling circuit is O(|C|).

In the regime of constant-round protocols, the state-of-the-art is due to Wang et al. [WRK17b] who show
how to achieve actively-secure multiparty computation for boolean computations with s/ log |C| overhead
over the best passive protocol, namely [BMR90]. Their work is incomparable to ours, as theirs is in the
OT-hybrid model, whereas ours requires OLE.

Acknowledgments

The first author is supported by the BIU Center for Research in Applied Cryptography and Cyber Security
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and by ISF grant
1316/18. The second author is supported by Google Faculty Research Grant, NSF Award CNS-1618884 and
Intelligence Advanced Research Projects Activity (IARPA) via 2019-19-020700009. The views expressed
are those of the author and do not reflect the official policy or position of Google, the Department of Defense,
the National Science Foundation, or the U.S. Government. The third author is supported by ISF grants
1861/16 and 1399/17, and AFOSR Award FA9550-17-1-0069.

References
[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arithmetic

computation with constant computational overhead. In CRYPTO, pages 223–254, 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In CCS, pages 2087–2104, 2017.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear PCPs. In CRYPTO, Proceedings, Part III, pages 67–97, 2019.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage resilience of
linear secret sharing schemes. In Advances CRYPTO, pages 531–561, 2018.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT, pages 169–188, 2011.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages 420–432,
1991.

43

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-party computation via
sublinear distributed zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2019, London, UK, November 11-15, 2019, pages 869–886. ACM, 2019.

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation via distributed
zero-knowledge proofs. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASI-
ACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III, volume 12493 of
Lecture Notes in Computer Science, pages 244–276. Springer, 2020.

[BGIN21] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear GMW-style compiler for MPC with
preprocessing. In CRYPTO, Proceedings, Part II, pages 457–485, 2021.

[BGIN22] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Secure multiparty computation with sublinear
preprocessing. In EUROCRYPT, Proceedings, Part I, pages 427–457, 2022.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In STOC, pages 503–513, 1990.

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party com-
putations over small fields. In CRYPTO, pages 521–536, 2006.

[CCD87] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (ab-
stract). In CRYPTO, page 462, 1987.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized complexity of information-
theoretically secure MPC revisited. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part III, volume 10993 of Lecture Notes in Computer Science,
pages 395–426. Springer, 2018.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from threshold homo-
morphic encryption. In EUROCRYPT, pages 280–299, 2001.

[CG20] Ignacio Cascudo and Jaron Skovsted Gundersen. A secret-sharing based MPC protocol for boolean cir-
cuits with good amortized complexity. In TCC, Proceedings, Part II, pages 652–682, 2020.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof.
Fast large-scale honest-majority MPC for malicious adversaries. In CRYPTO, pages 34–64, 2018.

[DEN22] Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. Fast fully secure multi-party computation over
any ring with two-thirds honest majority. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 653–666. ACM, 2022.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Trifiletti. TinyOLE:
Efficient actively secure two-party computation from oblivious linear function evaluation. In CCS, pages
2263–2276, 2017.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520,
2006.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In ESORICS, pages 1–18,
2013.

44

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation. In
CRYPTO, pages 572–590, 2007.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended ab-
stract). In STOC, pages 699–710, 1992.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient to
additive attacks with applications to secure computation. In STOC, pages 495–504, 2014.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party computation: From
passive to active security via secure SIMD circuits. In CRYPTO, pages 721–741, 2015.

[GIW16] Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary amd circuits from secure multiparty computation. In
TCC-B, 2016.

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under standard
assumptions. In CCS, pages 567–578, 2015.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC with guaranteed
output delivery. In CRYPTO, pages 85–114, 2019.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[GPS22] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest majority
MPC with packed secret sharing. In CRYPTO, Proceedings, Part IV, pages 3–32, 2022.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In TCC, pages 412–426,
2008.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions
of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

[HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkitasubramaniam. Leviosa:
Lightweight secure arithmetic computation. In CCS, pages 327–344, 2019.

[HIV17] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively secure garbled cir-
cuits with constant communication overhead in the plain model. In TCC, pages 3–39, 2017.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. J.
Cryptology, 25(1):158–193, 2012.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Malozemoff. Amortizing
garbled circuits. In CRYPTO, pages 458–475, 2014.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques and Constructions.
Information Security and Cryptography. Springer, 2010.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining BMR
and oblivious transfer. In ASIACRYPT, pages 598–628, 2017.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In STOC, pages 21–30, 2007.

[IKP+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu. Secure protocol
transformations. In CRYPTO, pages 430–458, 2016.

45

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO, pages 572–591, 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority.
In TCC, pages 294–314, 2009.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In EURO-
CRYPT, pages 158–189, 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In ICALP, pages 486–498, 2008.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimizations, variants and concrete
efficiency. In CRYPTO, pages 259–276, 2011.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
J. Cryptology, 25(4):680–722, 2012.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, pages 1–23, 2010.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party
computation combining BMR and SPDZ. In CRYPTO, pages 319–338, 2015.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with security for malicious
adversaries. In CCS, pages 579–590, 2015.

[LXYY23] Hongqing Liu, Chaoping Xing, Yanjiang Yang, and Chen Yuan. Ramp hyper-invertible matrices and their
applications to MPC protocols. volume 14438, pages 204–236. Springer, 2023.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach
to practical active-secure two-party computation. In CRYPTO, pages 681–700, 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In TCC, pages
368–386, 2009.

[NP06] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput., 35(5):1254–1281,
2006.

[PS21] Antigoni Polychroniadou and Yifan Song. Constant-overhead unconditionally secure multiparty compu-
tation over binary fields. In EUROCRYPT, pages 812–841, 2021.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Tech. Memo TR-81, Aiken Computation
Laboratory, Harvard U., 1981.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with online/offline dual
execution. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016., pages 297–314, 2016.

[RZ17] Ronny Roth and Gilles Zémor. Personal communication, 2017.

[SG95] Henning Stichtenoth and Arnaldo Garcia. A tower of artin-schreier extensions of function fields attaining
the drinfeld-vladut bound. Inventiones mathematicae, 121(1):211–222, 1995.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SS13] Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assumptions. In CCS,
pages 523–534, 2013.

46

[ST04] Berry Schoenmakers and Pim Tuyls. Practical two-party computation based on the conditional gate. In
ASIACRYPT, pages 119–136, 2004.

[WMK17] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster secure two-party computation in the single-
execution setting. In EUROCRYPT, pages 399–424, 2017.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient maliciously
secure two-party computation. In CCS, pages 21–37, 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In CCS,
pages 39–56, 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in
garbled circuits using half gates. In EUROCRYPT, pages 220–250, 2015.

A Concrete Analysis for Large Fields

In this section we analyze the concrete constants achieved by our protocols over large fields. The first
part analyzes the constants when the underling OLEs are defensibly private, and is taken almost verbatim
from [HIMV19], where we extend their analysis for tolerating passively secure OLEs in our protocol.

Analysis for defensibly private OLEs. Our protocol (Section 4) depends on different parameters. Below,
we discuss the different constraints on these parameters and the choices that optimize concrete performance.
We remark that when FMULT is instantiated with a concrete protocol, we can further prevent the adversary
from launching selective attacks by requiring the parties to also commit to the randomness used in the
protocol. Consequently, the 2−Ω(e) term in the soundness error can be dropped. Let s be the statistical
security parameter. The set of parameters includes the number of servers n, the block width B, the size
δ of the subset of servers chosen during the consistency test, the number of corrupted copies e, and the
parameters k, d of the Reed Solomon encodings. These parameters are subject to the following constraints:

(1− e/n)δ + (n− k + 2)/ |F| < 2−s, k ≥ δ + e+ B, 2k + e < n, and e < (n− k + 1)/3.

The dominating costs in our protocol are computing the OLE functionality, and (to a minor extent) also
computing the Reed Solomon encodings. To optimize the concrete efficiency, we first wish to minimize the
number of OLE calls. Note that for every block of B multiplication gates in the circuit, the parties engage
in a single multiplication for each of the n copies. Therefore, if all the blocks of B gates are “full”, i.e. they
all contain exactly B gates, then the protocol requires n/B calls to FMULT per multiplication layer. Another
useful optimization is setting k to be a power of two, as this greatly increases the encoding efficiency since
finite-field FFT algorithms can be used.

We provide a few examples of different sets of parameters in Table 3, where we consider 40 bits statis-
tical security, and additionally set k = δ + B + e. It can be inferred from the table that as B grows, n/w
approaches 2.
Analysis for passively-secure OLEs.12 When the FMULT functionality is instantiated using passively-secure
OTs/OLEs, as described in Section 4.1, we need to perform a cut-and-choose step to insure that FMULT was

12We note that the cut-and-choose analysis described in this paragraph holds over any field, but the concrete constants mentioned
are obtained for large fields.

47

computed correctly. Recall that our protocol employs n copies and each requires h calls to FMULT (where h
denotes the number of multiplication gates in the circuit). To ensure correctness, it would suffice to ensure
that at most e of the n-sets were faulty. To achieve this, we instead begin with n′ sets of h outputs of
FMULT, and perform a cut-and-choose test which checks the correctness of δ′ of these sets, which are then
discarded. Thus, we have n′ = n + δ′, and we need to verify that except with negligible probability, if the
cut-and-choose test passes then at most e of the sets contain incorrect outputs of FMULT. Since

Pr [cut-and-choose passes ∧ more than e copies contain errors] ≤
(
n′−e
δ′

)(
n′

δ′

) ≤ (1− e/n′)δ
′

then to get negl (s) error, it suffices to set δ′ = O(s). Table 3 shows that as B grows, n′/B approaches 2, so
we obtain overhead 2 also when using passively-secure OLEs.

B e δ n δ′ n′ = n+ δ′ n/B n′/B
1317 272 459 4640 514 5154 3.52 3.91
3065 362 669 8916 749 9665 2.91 3.15
6749 509 934 17402 1046 18448 2.58 2.73

14332 690 1362 34147 1525 35672 2.38 2.49
29864 987 1917 67493 2147 69640 2.26 2.33
61386 1369 2781 133769 3115 136884 2.18 2.23
125195 1964 3913 265987 4383 270370 2.12 2.16
253781 2778 5585 529690 6255 535945 2.09 2.11
512404 3951 7933 1056213 8885 1065098 2.06 2.08

Table 3: Concrete parameters of our protocol for 40-bit security. B is the block size, e is the number of tolerated errors,
δ, δ′ are the number of copies tested during the consistency and cut-and-choose tests (resp.), n′ is the initial number
of copies, where only n copies are used during the evaluation of the circuit. The two rightmost columns describe the
overhead when using actively-secure and passively-secure OTs/OLEs (resp.).

B Proof of Lemma 4.4 from [AHIV17]

In this section, we provide a direct proof of [AHIV17, Lemma 4.4] for the case when e < (n−k+1)/3, i.e.,
without relying on [AHIV17, Conjecture 4.1]. The proof was provided to us by the authors of [AHIV17]
and is reproduced here verbatim with their permission. The proof of claim B.2 below is due to Ronny Roth
and Gilles Zémor [RZ17].

Lemma B.1 (restatement of Lemma 4.4 from [AHIV17]). Let e be a positive integer such that e < (n −
k + 1)/3. Suppose d(U,Lm) > e. Then, for a random w∗ in the row-span of U , we have

Pr[d(w∗, L) ≤ e] ≤ (n− k + 1)/|F|.

Proof: Suppose that d(U∗, Lm) > e andL∗ is the span of the vectors inU∗. Assume towards a contradiction
that d(v∗, L) ≤ e for all v∗ ∈ L∗. Suppose v∗0 ∈ L∗ maximizes the distance from L. Since d(U∗, Lm) > e,
there must be a row U∗

i such that ∆(U∗
i , L) \ ∆(v∗0, L) ̸= ∅. Let v∗0 = u0 + χ0 and U∗

i = ui + χi for
u0, ui ∈ L and χ0, χi of weight ≤ e. We argue that there exists α ∈ F such that for v̂ = v∗0 + αU∗

i we

48

have d(v̂, L) > d(v∗0, L), contradicting the choice of v∗0 . This follows by a union bound, noting that for any
j ∈ ∆(v∗0, L) ∪∆(U∗

i , L) there is at most one choice of α such that v̂j = 0.
Now, it suffices to show that in any affine subspace of Fn, either all points are e-close to L or almost all

are not. This reduces to showing the following claim. We state an explicit version of the conjecture for the
case of RS codes.

Claim B.2. Let L be an arbitrary linear code over F of length n. Let e be a positive integer such that
e < (n − k + 1)/3. Then for every u, v ∈ Fn, defining an affine line ℓu,v = {u + αv : α ∈ F}, either (1)
for every x ∈ ℓu,v we have d(x, L) ≤ e, or (2) for at most (n− k+1) points x ∈ ℓu,v we have d(x, L) ≤ e.

We begin with the observation that for any two length n vectors u and v of weight at most e, ℓu,v contains
N points at most distance e from L if and only if ℓu,v+c contains N points of distance at most e from L for
any codeword c ∈ L. This means it suffices to prove the claim for vectors u and v of weight at most e.

We now prove the lemma in two cases

Case 1: |Support(u) ∪ Support(v)| ≤ e This means that ℓu,v is entirely contained in the ballBe(0) where
0 is the all 0s vector which in turn means all the vectors in the line are at most t from L.

Case 2: |Support(u) ∪ Support(v)| ≥ e+ 1 Since u and v each have weight at most e, the intersection of
their supports can be of cardinality at most e−1. For each of the coordinates in the intersection of the
supports, there can be at most one vector in ℓu,v such that the entry in that coordinate is 0. Therefore,
there are at most e− 1 vectors in ℓu,v that are contained in the ball Be(0) where 0 is the all 0s vector.

To conclude this case, we need to demonstrate that there exists no codeword c ̸= 0 such that the line
ℓu,v intersects with a vector inside the ball of radius e around c. Assume for contradiction there exists
a codeword c and vector w of weight at most e such that c+ w ∈ ℓu,v. Then we have that

c+ w = u+ αv

This means that c is equal to the sum of three vectors each of weight at most e. Now we arrive at a
contradiction because the minimum distance of L is (n− k + 1) and e < (n− k + 1)/3.

49

	Introduction
	Our Results – A New Framework
	Related Work
	Subsequent Work

	Our Techniques
	Preliminaries
	Layered Arithmetic Circuits
	Oblivious Transfer
	Oblivious Linear Evaluation
	Commitment Schemes
	Multiplication Functionalities
	Secret-Sharing
	Error Correcting Codes
	Packed Secret Sharing over Constant-Sized Fields
	Secure Multiparty Computation (MPC)

	Basic MPC Protocol
	Instantiating FRMULT

	Actively Secure MPC with Constant Communication Overhead
	Corollaries and Applications
	Constant Overhead MPC for Constant-Size Fields
	Constant Overhead MPC over Fields of Arbitrary Size

	Extensions and Further Corollaries
	Imperfect FMULT
	Constant-Round Protocols in the Boolean Setting

	Concrete Analysis for Large Fields
	Proof of Lemma 4.4 from AmesHIV17

