
Related-key Attack on 5-Round Kuznyechik

Vitaly Kiryukhin

JSC «InfoTeCS», Russia
vitaly.kiryukhin@infotecs.ru

Abstract

The first related-key attack on 3-round (of 9) Kuznyechik with 2-round (of 8) key
schedule was presented in CTCrypt’18. This article describes a related-key attack on
5-round cipher with the same key schedule. The presented one also has a practical
complexity (232 operations, 230 memory, 216 related keys) and verified in practice.
We obtained result due to the simultaneous use of the integral properties of the
cipher transformations and the key schedule.
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1 Introduction
The setting of a related-key attack on cipher was introduced in [6]. Informally this

model assumes that adversary has access to several encryptors with different unknown
keys, but it knows a certain simple relationship (for example, bitwise xor) between these
keys.

In some cases the related-key model is quite consistent with reality. A good example is
an iterative hash function using block cipher as part of compression function. In this case,
adversary has a possibility of manipulating the encryption keys. Some cryptographic pro-
tocols may use related keys by design. One such related-key protocol CTRR was proposed
at CTCrypt’18 [2].

In the same publication [2], the first related-key attack on a reduced variant of block
cipher Kuznyechik [1] was proposed. This approach exploits the ability of attacker to
manipulate keys, and the similarity of the functions in encryption and the key schedule
procedures.

In this paper we present a related-key attack on 5-round (of 9) Kuznyechik with 2-
round (of 8) key schedule. Main result obtained due to the integral properties [4, 5] of
encryption and the key schedule. We also used some approaches from [3]. The simplified
versions of Kuznyechik are described in the next section (equations (2) and (3)).

The presented attack was verified in practice with the help of C++ implementation.
Source codes can be found at https://gitlab.com/v.kir/rk-5R-kuznyechik.

Comparative characteristics of attacks are presented in table 1.
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Cipher rounds Key schedule rounds Operations Keys Memory Source
3 2 212 212 „ [2]
5 2 232 216 230 Section 4

Table 1: Related-key attacks on Kuznyechik

2 Definitions
Let F28 be a finite field as defined in [1]. Each element of F28 can be interpreted as an

integer or binary vector. Field elements are indicated by lowercase letters: a, b. Denote
vector space of dimension n P N over F28 by Fn

28 . Elements from Fn
28 will be denoted by

capital letters: A, B. Blocks of plaintext and ciphertext also belong to Fn
28 .

Denote bitwise xor operation by symbol ‘. Let we have a sequence of blocks

B0, ..., Bd P Fn
28 , d P N,

then we refer to sequence

∆B “ pB0 ‘B1, B0 ‘B2, ..., B0 ‘Bdq P pFn
28q

d (1)

as a difference. Throughout the article we always use d “ 28´1. Differences are indicated
by bold: κ, ∆K.

The transformations over Fn
28 (or sets of elements from Fn

28) are denoted by Sans Serif
font: f, S, L. Such characters may mean a bijective transformation of blocks (fpAq, A P
Fn
28) or non-bijective transformation of differences to the set of differences (for example,

Spκq is a set of differences, κ P
`

Fn
28

˘d). The notation LS indicates a composition of
transformations, where S applies first.

The difference ∆ P
`

Fn
28

˘d can also be interpreted as n «columns» of d bytes each:
∆ P

`

Fd
28

˘n. If i-th «column» (i “ 1, 2, . . . , n) α P Fd
28 contains all different non-zero bytes,

we say that i-th position has an integral property All (A). Similarly, if xor of all bytes
is equal to zero, then i-th position of the difference has an integral property Zero (0).
Obviously, the property A implies the property 0. If at least one byte in such «column»
is non-zero, we say that i-th position is active, otherwise inactive.

Kuznyechik

Kuznyechik [1] consists of a sequence of 9 rounds and a post-whitening key addition.
Each round contains three operations:

X – modulo 2 addition of an input block with an iterative key;
S – parallel application of a fixed bijective substitution to each byte of the block;
L – linear transformation defined as an LFSR over F28 .
The block size is 128 bits (n “ 16 bytes), the size of key K is equal to 256 bits.
Key schedule uses round constants Ci P Fn

28 , i “ 1, 2, . . . , 32.
Round keys Ki P Fn

28 , i “ 1, 2, . . . , 10 are derived from a master key K as follows:

K “ K1||K2,

pK2i`1, K2i`2q “ FrC8pi´1q`8s . . . FrC8pi´1q`1s pK2i´1, K2iq , i “ 1, 2, 3, 4,

FrCs pA1, A2q “ pLSXrCspA1q ‘ A2, A1q , C, A1, A2 P Fn
28 .
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We define 3-round Kuznyechik as in [2]. Each round of the key schedule has only 2
rounds of basic cipher’s Feistel rounds.

EK1,K2pAq “ XrK4sLSXrK3sLSXrK2sLSXrK1spAq, (2)
pK3, K4q “ FrC2sFrC1s pK1, K2q

K3 “ K1 ‘ LSXrC2spK2 ‘ LSXrC1spK1qq,

K4 “ K2 ‘ LSXrC1spK1q.

5-round Kuznyechik is defined in a similar way:

EK1,K2pAq “ XrK6sLSXrK5sLSXrK4sLSXrK3sLSXrK2sLSXrK1spAq,

pK3, K4q “ FrC2sFrC1s pK1, K2q , (3)
pK5, K6q “ FrC4sFrC3s pK3, K4q .

Denote also the block before addition of the key Ki by Pi (for example P2 “

LSXrK1spAq).

3 Technical lemmas and concepts
The polytopic cryptanalysis was first introduced in [3]. We will use some techniques

from this concept along with integral cryptanalysis [4].
In particular, we use the difference (1) as «d-difference» in [3]. Let’s consider how

cipher transformations change this difference.
It’s easy to see, that adding a same round key does not change the difference. The

attack presented in section 4 uses non-equal keys. In this case, the difference between
the round keys is added to the difference between the intermediate states. Note that if
both such differences ∆, κ P

`

Fn
28

˘d have integral property 0, then ∆ ‘ κ has the same
property.

Suppose that the difference ∆ P
`

Fn
28

˘d has only one active position, then after the S-
transformation we have no more than 28 possible differences. Indeed, all inactive positions
remain inactive. We have one non-zero «column» α “ pc1, c2, . . . , cdq P Fd

28 and after
substitution layer:

spαq “ tpspx‘ c1q ‘ spxq, spx‘ c2q ‘ spxq, . . . , spx‘ cdq ‘ spxqq , x P F28u ,

where s : F28 Ñ F28 is cipher Sbox. Obviously, the number of differences spαq does
not exceed the number of x. In most cases, these numbers are equal. If all bytes in α
are different, all bytes in spαq are also different (the bijective Sbox preserve the integral
property A). If we know α and α1 P spαq, we can easily find the corresponding x.

The L-transformation bijectively maps one difference to another:

∆ “ p∆1,∆2, . . . ,∆dq , Lp∆q “ pLp∆1q, Lp∆2q, . . . , Lp∆dqq .

If only one position in input difference is active then all positions in output difference
are active (this is true if L is MDS matrix). Under the same conditions, if one position has
the property A, then all output positions will have this property. The integral property 0
is preserved by L-transformation:

d
à

i“1

∆i “ 0,
d
à

i“1

Lp∆iq “ L

˜

d
à

i“1

∆i

¸

“ 0.

We will use the so-called integral property [4, 5] of LSXLSX transformation.
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Lemma 1. Let one position in the difference ∆ P
`

Fn
28

˘d has integral property A and all
other positions are inactive (so-called δ-set). Then any difference from LSXLSXp∆q has
the integral property 0.

Proof. Adding a round key does not change the difference. Thus, we have LSLSp∆q. After
the first substitution layer, one position will have the property A and all others will
remain inactive. The first linear transformation will make all bytes active. Each of them
will have the property A. The second S transformation will preserve A and consequently
the property 0. Hence, after the last linear transformation we have the property 0 in each
position of the difference.

Equivalent representation of the last two rounds

The presented attack uses an equivalent representation of the last two rounds.
Let A,B P Fn

28 be a plaintext and ciphertext correspondingly. K1, . . . , Kr, Kr`1 are
round keys, Ki P Fn

28 , i “ 1, 2, . . . , r ` 1.
The original cipher has the form

B “ XrKr`1sLSXrKrs . . .XrK1spAq “ Er`1 pAq .

Apply the inverse linear transformation to the known ciphertext

L´1 pBq “ L´1 pXrKr`1sLSXrKrs . . .XrK1spAqq ,

L´1 pBq “ L´1 pKr`1q ‘ SXrKrs . . .XrK1spAq.

We denote B1

“ L´1 pBq, K 1

i “ L´1 pKiq, then the cipher has the form

B
1

“ XrK
1

r`1sSXrKrsLSXrKr´1s . . .XrK1spAq.

Similarly, for the penultimate round. Let’s consider the transformation

XrKrsL pAq “ Kr ‘ L pAq “ L
`

A‘ L´1 pKrq
˘

“ LXrK
1

rs pAq .

Therefore, the cipher transformation can be represented by the formula

B
1

“ XrK
1

r`1sSLXrK
1

rsSXrKr´1s . . .XrK1spAq.

4 Related-key attack
Let’s represent 5-round Kuznyechik (3) in equivalent form

EK1,K2pAq “ XrK
1

6sSLXrK
1

5sSXrK4sLSXrK3sLSXrK2sLSXrK1spAq,

pK3, K4q “ FrC2sFrC1s pK1, K2q ,

K4 “ K2 ‘ LSXrC1spK1q,

K3 “ K1 ‘ LSXrC2spK4q,

pK5, K6q “ FrC4sFrC3s pK3, K4q ,

K6 “ K4 ‘ LSXrC3spK3q, K
1

6 “ L´1pK6q,

K5 “ K3 ‘ LSXrC4spK6q, K
1

5 “ L´1pK5q.

The attack consists of the following steps:
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1. Adversary chooses 28 collections of related keys, 28 keys in each collection. One
plaintext C1 (first constant in the key schedule) will be used.

2. For one of these collections, the special easy verifiable property (integral distin-
guisher) is true.

3. The round keys K6, K5 are recovered by using integral and polytopic properties.

Let’s describe these steps in more detail. We denote

κ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0 1
0 0 . . . 0 2

. . . . . .
. . . . . . . . .

0 0 . . . 0 255
loooooooooooooomoooooooooooooon

n“16

˛

‹

‹

‹

‹

‹

‹

‹

‚

the difference between keys K1. The set LSpκq contains 28 differences. The collection of
the related keys looks like

pK1, K2q and set pK1 ‘ κ, K2 ‘ κ
2
q , where κ2 P LSpκq.

It is easy to see that each collection contains the «main» key and a set of 255 related
keys. Adversary does not know the keys, but it know all relations (κ and κ2 P LSpκq)
between them. Adversary encrypts only one plaintext C1 and gets 28 ciphertexts for each
collection of keys. In total we have 1` 28 ¨ p28 ´ 1q different keys and different ciphertexts
correspondingly. In the same collection we refer to the difference between i-th round keys
Ki as ∆Ki, for example κ “ ∆K1 and κ2 “ ∆K2.

4.1 Integral property

Figure 1 shows the propagation of differences, which is true for only one collection of
keys (for only one κ2 P LSpκq). Active Sboxes have a gray background. Integral properties
are indicated in red bold (A – all bytes are different, 0 – bitwise xor of all bytes is zero).
More detailed pictures are presented in Appendix B.

5



Figure 1: Related-key attack on 5-round Kuznyechik

Let’s see the key schedule. After the first LSpC1‘K1q transformation we have differ-
ence κ1 P LSpκq. This difference is the same for all collections of keys, but only for one
κ2 “ κ1 is true. If so, we have ∆K4 “ 0 and ∆K3 “ κ. The difference κ has one active
byte. In the difference κ2 P LSpκq, all bytes are active and have an integral property A.

Similarly,

∆K6 “ κ
3
P LSpκq

and

∆K5 P LSpκ
3
q ‘ κ “ tδ ‘ κ, δ P LSpκ3qu.

We use the equivalent representation of the last two rounds, therefore we consider differ-
ence between the keys K 1

5 “ L´1pK5q instead K5, and K
1

6 “ L´1pK6q instead K6. Thus we
obtain that ∆K

1

6 belongs to Spκq (correspondingly ∆K
1

5 P SLSpκq ‘ L´1pκq).
All bytes of ∆K

1

5 are active and have an integral property 0 (see lemma 1). The
difference ∆K

1

6 has one active byte with the property A.
Now let’s consider the encryption functions. We use only one plaintext C1, therefore

the difference ∆P1 is equal to zero. Note that the first round of encryption also has the
form LSpC1 ‘K1q. Because of this, the difference between the blocks is also equal to κ1.

If in the key schedule κ1 “ κ2 “ ∆K2 then the difference between the blocks becomes
zero and also ∆P3 “ 0.

The addition of the third round key K3 adds the non-zero difference κ. We do not
know the exact value of the difference ∆P4, but we know that ∆P4 belongs to the set
LSpκq. Similarly, after the following substitution layer, we have ∆P

1

5 P SLSpκq. All bytes
of ∆P

1

5 have an integral property A and consequently property 0. The second one is also
true for ∆K

1

5. Therefore, their sum ∆P
1

5 ‘∆K
1

5 has an integral property 0. The linear
transformation preserves this one.

Obviously, we know the corresponding ciphertexts and the difference ∆B between
them. The difference ∆K

1

6 P Spκq has one active byte.
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Let’s propagate the difference through S´1. For each of 15 Sboxes we have 28 possible
differences and for 16’th Sbox we get 216 differences due to ∆K

1

6 P Spκq.
Let’s check the integral property 0 for each obtained difference. If we correctly guessed

κ2, then there must be at least one such difference for each Sbox. Otherwise, if we do not
guess it correctly, then there is at least one Sbox for which there is no such difference.
Generally speaking, it is possible that a «false» collection of the related keys will satisfy
this property. The probability of the existence of the such «false» collection is approx-
imately 0.23 (for more details see Appendix A). It does not lead to the failure of the
attack. We will be able to distinguish this case through the next step.

We also expect that for each of 15 Sboxes about 2 differences have integral property 0.
For the last Sbox about 28 differences have such property. Thus, the set S´1p∆B‘ Spκqq
will contain about 215 ¨ 28 “ 223 possible differences, each of them has the property 0.

4.2 Recovering of the round keys

Let’s consider the last linear transformation. We know that ∆P
1

5 P SLSpκq and
∆K

1

5 P SLSpκq ‘ L´1pκq. The difference before the linear transformation is the sum

∆P
1

5 ‘∆K
1

5 P pSLSpκq ‘ SLSpκq ‘ L´1pκqq “
 

δ1 ‘ δ2 ‘ L´1pκq, δ1 P SLSpκq, δ2 P SLSpκq
(

.

On the other hand we have the set of possible differences S´1p∆B ‘ Spκqq after the
linear transformation.

The intersection of sets

pSLSpκq ‘ SLSpκq ‘ L´1pκqq X L´1S´1p∆B ‘ Spκqq

must contain at least one element. We use only one byte position to determine the in-
equality of elements from these two sets.

After checking the integral property in the set L´1S´1p∆B‘Spκqq there will be about
223 possible differences.

Recall that the set Spκq contains 28 elements. The linear transformation does not
change the number of differences (LSpκq contains 28 elements). After another substitution
layer we have 216 possible differences at each Sbox. The difference κ is known, therefore
L´1pκq is also known. Consequently, the set SLSpκq ‘ SLSpκq ‘ L´1pκq contains

216 ¨ p216 ´ 1q

2
` 1 ă 231

possible differences at each Sbox.
Select the position of one of the block bytes. Recall also that each difference contains

28´ 1 vectors and consequently difference in one position contains 28´ 1 bytes. We store
in memory all possible differences from SLSpκq ‘ SLSpκq ‘ L´1pκq for selected position.
Let’s iterate through all differences γ in L´1S´1p∆B ‘ Spκqq. If γ matches one of the
stored differences then we assume that γ “ ∆P

1

5 ‘∆K
1

5. We can expect that γ is the
only such element even if we compare on eight bytes of a difference rather than 28 ´ 1.
Note that if the collection of the related keys is «false» (κ2 ‰ κ1), the match will probably
not be found.

At this step we know ∆P
1

5 ‘∆K
1

5, Lp∆P
1

5 ‘∆K
1

5q, ∆P
1

6, ∆K
1

6, ∆B. Block

Y : S´1p∆P
1

6q “ Lp∆P
1

5 ‘∆K
1

5q
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can be easily found. Let B0 be first ciphertext, then K
1

6 “ B0‘Y . The entire set of related
keys K 1

6 can also be obtained by adding with ∆K
1

6. Therefore, it is possible to decipher
all 28 ciphertexts through the last round.

We know that ∆P4 P LSpκq, ∆K
1

5 P Sp∆K
1

6q ‘ L´1pκq and also ∆P
1

5 ‘∆K
1

5. Let’s
iterate through possible τ P Sp∆K 1

6q ‘ L´1pκq and propagate ∆P
1

5 ‘∆K
1

5 ‘ τ through
S´1. If we guess τ “ ∆K

1

5, then S´1p∆P
1

5‘∆K
1

5‘τ q “ S´1p∆P
1

5q P LSpκq. Otherwise,
we expect that S´1p∆P 1

5‘∆K
1

5‘τ q R LSpκq. In the matching process, each Sbox can be
viewed independently of the others. After that we will know the differences ∆P4, ∆P

1

5,
∆K

1

5. The ciphertexts after 5’th round are also known. Therefore, the keys K 1

5 can be
found in the same way as K 1

6. Due to the reverse key schedule, the master key K “ K1||K2

can be easily obtained.

4.3 Complexity

As mentioned before, the attack requires 1` 28 ¨ p28 ´ 1q ă 216 related keys and one
chosen ciphertext.

The integral property for all 28 related key collections can be checked in about 28 ¨

p15 ¨ 28 ` 216q « 224 operations.
The most time-consuming stage is the construction of the set SLSpκq‘SLSpκq‘L´1pκq.

We construct this set for only one Sbox, and store only eight bytes for each difference.
It requires about 231 operations and 231 ¨ 8 “ 234 bytes of memory. These constructed
differences are stored in a hash table. The set L´1S´1p∆B ‘ Spκqq contains much fewer
elements. Checking for a single element in a hash table requires constant time. Therefore,
the complexity of constructing the hash table will be the most important. The difficulty
of recovering the keys K 1

5 is also small: 16 ¨ 28 ¨ 28 ` 28 « 220 operations.
The total complexity does not exceed 232 memory access operations and 230 memory

(in sixteen-byte blocks). We also note that the attack is deterministic.
We modeled the attack with a non-optimized C++ implementation. The average

attack time is about 5 minutes on a common PC. The amount of used memory did not
exceed 17 GB.

5 Conclusion
In this paper we present the related-key attack on 5-round Kuznyechik with 2-round

key schedule. The attack has a practical complexity (232 operations, 230 memory, 216

related keys) and has been verified with the help of С++ implementation. The experiments
confirmed the correctness of the attack.

Source codes can be found at https://gitlab.com/v.kir/rk-5R-kuznyechik.
The main result was achieved by using the well-known integral property of LSX-

transformations. We were able to use this property both in the cipher itself and in the
key schedule.

We did not use any specific properties of the linear transformation and the Sbox. We
think that through the use of such properties it is possible to obtain new results. Another
possible way is the use of integral distinguishers for a greater number of rounds.

The presented attack also shows a significant security margin of the Kuznyechik’s key
schedule.
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A Probability aspects and experimental verification
«True» and «false» collections of the related keys

We know that there is at least one «true» collection. What is the probability that the
integral property (section 4.1) will be correct for the «false» collection?

Assume that all ciphertexts are equally probable and independent of each other. We
propagate the difference of each Sbox thorough nonlinear layer. For each of 15 Sboxes we’ll
have 28 possible differences and for 16’th Sbox we get 216 differences. We also assume that
the sum of the elements of any difference is uniformly distributed. Hence, the probability
of the property 0 is equal to p “ 1

256
for each difference of any Sbox. Denote the probability

of the opposite event by q “ 1´ p “ 255
256

.
Thus, we have:
q2

8
“ 0.367... – there is no difference that has the property 0 for one Sbox;

1´ q2
8
“ 0.632... – there is at least one such difference;

p1´ q2
8
q15 “ 0.001... – there is at least one such difference for each of the 15 Sboxes.

The probability that one collection of the related keys has the integral property is

r “
´

1´ q2
8
¯15

¨

´

1´ q2
16
¯

“ 0.001...

We have 28 collections of keys and only one «true» collection. The probability that
«false» collections do not exist is

p1´ rq255 “ 0.765....

The opposite probability is
1´ p1´ rq255 “ 0.234....

We performed N “ 5000 experiments. The number of cases where collections exist is

equal to 1179. The obtained value
1179

5000
“ 0.236 is close to theoretical.
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Number of possible differences

Let we have «true» collection of the related keys. We estimate the number of possible
differences in the set L´1S´1p∆B ‘ Spκqq.

Each Sbox gives at least one possible difference. The probability of the property 0 is
equal to p “ 1

256
for each difference of any Sbox. We also have 28 possible differences for

each of 15 Sboxes and 216 for 16’th Sbox.
Thus, average number of elements in the set is equal to

ˆ

1`
1

256
¨ p28

´ 1q

˙15

¨

ˆ

1`
1

256
¨ p216

´ 1q

˙

« 223
! 231.

The average experimental value is 222.7. The maximum value among all N experiments is
229.

Matching differences

The intersection of sets

pSLSpκq ‘ SLSpκq ‘ L´1pκqq X L´1S´1p∆B ‘ Spκqq

must contain at least one element. We use only one position to determine the inequality
of elements from these two sets.

One position of the first set contains no more than 231 differences. The number of
elements of the second set is approximately 223. We also assume that the elements of these
sets are random and equally probable.

Only the first 8 bytes (64 bits) of the difference are stored in memory. Then the
average number of «false» matches can be estimated as

231 ¨ 223

264
“ 2´10.

A «false» match can be easily detected by an additional check. In N “ 5000 experi-
ments, we got only 7 cases of it.

Eight-byte numbers were chosen for ease of implementation.
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B Detailed pictures

Figure 2: The difference propagation through the key schedule
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Figure 3: The difference propagation through the cipher
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