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Abstract. Masking is a popular countermeasure to protect cryptographic implemen-
tations against side-channel attacks (SCA). In the literature, a myriad of proposals of
masking schemes can be found. They are typically defined by a masked multiplication,
since this can serve as a basic building block for any nonlinear algorithm. However,
when masking generic Boolean functions of algebraic degree t, it is very inefficient to
construct the implementation from masked multiplications only. Further, it is not
immediately clear from the description of a masked multiplication, how to efficiently
implement a masked Boolean function.

In this work, we fill this gap in the literature with a detailed description and investi-
gation of a generic masking methodology for Boolean functions of any degree t at
any security order d.

Keywords: SCA - DPA - Threshold Implementations - d + 1 Masking - Hamming
Graph - Graph Colouring

1 Introduction

Since the seminal works on Side-Channel Attacks (SCA) and more particularly Differential
Power Analysis (DPA) by Kocher et al. [10, 11], masking has emerged as one of the most
popular countermeasures. The idea is to split each sensitive variable x into multiple shares.
When the splitting operation is an Exclusive OR (XOR), we refer to it as a Boolean
masking. Many Boolean masking schemes have been proposed over the years, to name a
few: ISW [9], TT [12], CMS [13], DOM [7]. It is well known that the non-linear parts of a
circuit grow exponentially with the masking order, while linear operations can simply be
duplicated and performed on each share independently, i.e. a linear increase in the area.
As such, these works typically describe only a masked multiplication, i.e. a monomial
of algebraic degree 2 (x - y). In order to protect against d*’-order DPA, the minimal
number of shares to split  and y into is d + 1. The number of expansion shares of a
multiplication is then (d + 1)2. More generally, it is known that a monomial of higher
degree t expands to (d+1)* intermediate shares. However, the efficient masking of a generic
Boolean functions, consisting of multiple monomials of algebraic degree up to t, does not
trivially follow from the description of a single multiplication. Only a few examples can
be found in the literature. Ueno et al. [14, 15] and Bozilov et al. [3] present examples of
masked implementations for 4 x 4 Boolean functions appearing in respectively the AES
and Prince ciphers with the minimal number of expansion shares (d + 1)*. However, it is
not always possible to implement the entire Boolean function with the minimal number
of intermediate shares (d + 1)*. Bozilov et al. [3] showed that a sharing with minimal
number of intermediate shares (d + 1)! exists for any ¢-degree Boolean function with ¢ + 1
input variables. In this work, we refine and prove this statement and introduce a generic
methodology for masking any degree-t function, even with more than ¢ + 1 variables. In
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Section 3, we investigate what properties allow a generic Boolean function to be shared
with the minimal number of shares (d + 1)¢. In Section 4, we present an algorithm which
allows one to share any Boolean function with s x (d + 1)! shares with s minimal.

2 Preliminaries

2.1 Boolean Algebra

We define (GF(2), +, -) as the field with two elements ZERO and ONE. We denote
the n-dimensional vector space defined over this field by GF(2)". Its elements can be
represented by n-bit numbers and added by bit-wise XOR. In contrast, the Galois Field
GF(2") contains an additional field multiplication operation. It is well known that GF(2)™
and GF(2") are isomorphic.

A Boolean function F is defined as F': GF(2)" — GF(2), while we call G : GF(2)" —
GF(2)™ a vectorial Boolean function. A (vectorial) Boolean function can be represented as
a look-up table, which is a list of all output values for each of the 2" input combinations.
Alternatively, each Boolean function can be described by a unique representation - so-called
normal form. Most notably the Algebraic Normal Form (ANF) is the unique representation
of a Boolean function as a sum of monomials. In this work, we designate by m € GF(2")

the monomial z( 0z}t ...2]""[" where (mg,m,...,m,_1) is the bitvector of m. The
monomial’s algebraic degree is simply its hamming weight: deg(m) = hw(m). We can

then write the ANF of any Boolean function F' as

— mo .mMm1 Mnp—1
F(z) = @ amx 0zt .
meGF(2™)

The algebraic degree of F' is the largest number of inputs occurring in a monomial with a
non-zero coefficient:

deg(F') = h
cg(F) = _oomx, —,hwim)

2.2 Boolean Masking in Hardware

We denote the s;-sharing of a secret variable x as © = (zo,...,%s,—1) and similarly an
so-sharing of a Boolean function F(x) as F = (Fy,...,Fs,—1). Each component function
F; computes one share y; of the output y = F'(z). A correctness property should hold for
any Boolean masking:

x = @ z; e F(z) = @ Fj(x)

0<j<si 0<j<so

We define S(z) as the set of all correct sharings of the value z. Creating a secure masking of
cryptographic algorithms in hardware is especially challenging due to glitches. Despite this
major challenge, Nikova et al. [12] introduced a provably secure scheme against first-order
SCA attacks in the presence of glitches, named Threshold Implementation (TI). A key
concept of TI is the non-completeness property which we recall here.

Definition 1 (Non-Completeness). A sharing F' is non-complete if any component function
F; is independent of at least one input share.

Apart from non-completeness, the security proof of TI depends on a uniform distribution
of the input sharing fed to a shared function F'. For example, when considering round-based
block ciphers, the output of one round serves as the input of the next. Hence, a shared
implementation of F' needs to maintain this property of uniformity.
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Definition 2 (Uniformity). A sharing x of x is uniform, if it is drawn from a uniform
probability distribution over S(x).

We call F' a uniform sharing of F'(z), if it maps a uniform input sharing  to a uniform
output sharing y:

Jdc: Vo € GF(2)",Vx € S(z),YVy € S(F(z)) : Pr(F(x) =y) =c.

Finding a uniform sharing without using fresh randomness is often tedious [2, 1] and
may be impossible. Hence, many masking schemes restore the uniformity by re-masking
with fresh randomness. When targeting first-order security, one can re-mask s output
shares with s — 1 shares of randomness as such:

(Fo®ro, Fi®ry, ..., Feo®re_9, Fo_1 @ @ ;)
0<j<s—2

Threshold Implementation was initially defined to need s; > td + 1 shares with d the
security order and ¢ the algebraic degree of the Boolean function F' to be masked. The
non-completeness definition was extended to the level of individual variables in [13], which
allowed the authors to reduce the number of input shares to s; = d + 1, regardless of the
algebraic degree. As a result, the number of output shares s, increases to (d + 1)*. For
example, two shared secrets a = (ag,a1) and b = (bg, b1) can be multiplied into a 4-share
¢ = (cop, c1, 2, c3) by just computing the cross products.

Co — aobo c1 — a0b1

c2 = aiby c3 = ai1b;

The number of output shares can be compressed back to d + 1 after a refreshing and
a register stage. This method was first applied to the AES S-box in [5] and lead to a
reduction in area, but an increase in the randomness cost. A similar method for sharing
2-input AND gates with d+ 1 shares is demonstrated by Gross et al. in [7, 8]. In particular,
they propose to refresh only the cross-domain products a;b; for i # j, resulting in a fresh
randomness cost of (d'gl) units. In [14], Ueno et al. demonstrate a general method to find
a d + 1-sharing of a non-quadratic function with d + 1 input shares in a non-complete way
by suggesting a probabilistic heuristic that produces (d + 1)™ output shares in the worst
case, where n stands for the number of variables.

Masking Cubic Boolean Functions with d + 1 shares. Each cubic monomial abc can
be trivially masked with d + 1 input shares and (d + 1)® output shares (one for each
crossproduct). For example, a first-order sharing (i.e. d = 1) of z = abc is given in (1).

20 = aoboco, 21 = agbpci, zp = agbico, z3 = apbycy,

24 = a1boco, z5 = a1bocy, 26 = ai1bico, z7 = a1bicy (1)

The result can be compressed back into d + 1 shares after a refreshing and register stage.
Our refreshing strategy resembles that of Domain Oriented Masking [7] in such a way
that we apply the same bit of fresh randomness to cross-share terms and do not re-mask
inner-share terms:

26 = [ZO]reg 2] [Zl S2) TO]reg S2) [2:2 52 rl]reg S [ZB 2] T2]reg
Zi = [Z4 D T2]reg @ [25 © Tl]reg ® [26 5> rO]reg 5% ['27]’)"89 (2)

Note that every term after refreshing e.g. zg or z1 @ r¢, is stored in a dedicated register
before going to the XOR chain which produces z{ and 2.

The most basic way to mask a more general t-degree function is thus to expand each
monomial into (d + 1)* shares. However, this is wildly inefficient for a Boolean function
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which combines many monomials. On the other hand, it is impossible to keep certain
monomials together without violating non-completeness. We devise a sharing method that
keeps as many monomials as possible together by splitting the function into a minimum
number of sub-functions. These sub-parts are functions such as for example z = abc @ abd,
for which it is trivial to find a non-complete sharing. For each sub-function, we create
independent sharings, each with (d + 1)" output shares, and recombine them during the
compression stage.

3 Sharing Matrices

We introduce a matrix notation in which each column represents a variable to be shared
and each row represents an output share domain. Output share j only receives share M;;
of variable i. For example, the sharing matrix M of the sharing in Equation (1) is

a b ¢

0 0 O\ z
0 0 1 Z1
0 1 0] 2
1 0 O zZ4
1 0 1 2
1 1 0] 2
1 1 1/ 2z

From this matrix, it is clear that a correct and non-complete sharing for the cubic
function z = abc exists, since the 23 rows of the matrix are unique, i.e. each of the
23 possible rows occur in the matrix. Moreover, this Sharing matrix implies a correct
and non-complete sharing for any function z = f(a, b, ¢). Note also that each column is
balanced, i.e. there are an equal number of 0’s and 1’s. It is also possible to add a fourth
column, such that any submatrix of three columns consists of unique rows:

a b ¢ d

0 0 0 0\ 2
0 0 1 1) =
0 1 0 1 z9
1 0 0 1] 2
1 0 1 0 zZ5
1 1 0 0 26
11 1 1) 2

Hence, the matrix M’ demonstrates the possibility to find a correct and non-complete
sharing with eight output shares for any combination of cubic monomials defined over four
variables a, b, ¢, d. Note that the non-completeness follows from the fact that each output
share (row) only receives one share of each input (column) by construction. To generalize
this observation, we introduce the following concepts:

Definition 3 (Sharing Vector). We call a vector v of length (d + 1)! with entries v; €
{0,...,d} a (t,d)-Sharing Vector, if and only if it is balanced, i.e. each entry occurs an
equal number of times:

vre{0,...,d}: #{ilvi =1} = (d+ 1)}



Lauren De Meyer, Felix Wegener and Amir Moradi )

Definition 4 (Sharing Matrix). We call a (d + 1)" x ¢ matrix M with entries M;; €
{0,...,d} a (t,d)-Sharing Matriz, if and only if every column M; is a (¢, d)-Sharing Vector
and if every (d + 1)* x ¢ sub-matrix of M contains unique rows.

3.1 How to construct Sharing Matrices

The main question in creating masked implementations is thus how to find such a (¢, d)-
Sharing Matrix. Below, we present both provable theoretical and experimental results:

3.1.1 Exact Results

Lemma 1. A (t,d)-Sharing Matriz with t columns exists and is unique up to a reordering
of rows.

Proof. A (t,d)-Sharing Matrix has exactly (d+1)! rows. If the matrix has ¢ columns, then
each row is a t-length word with base d + 1. The existence of such a matrix follows trivially
from choosing as its rows all (d + 1)* elements from the set {0,...,d}'. The uniqueness
follows from the fact that the rows must be unique, hence each of the (d + 1)! elements

can occur exactly once. Up to a permutation of the rows, this matrix is thus unique.
O

Lemma 1 is equivalent to the fact that it is trivial to mask ¢-variable functions of degree
t (e.g. z = abe) with (d + 1)t output shares but also functions such as z = abc + abd (since
¢ and d can use the same Sharing Vector).

Lemma 2. A (t,1)-Sharing Matriz has at most c =t + 1 columns.

Proof. We prove this Lemma by showing that the ¢ + 1** column M, exists and is unique.
Consider the Sharing Matrix M from Lemma 1 with ¢ columns and 2! rows. We reorder
the rows as in a Gray Code. This means that every two subsequent rows have only one
coordinate (or bit) different. Equivalently, since there are ¢ columns, any two subsequent
rows have exactly ¢ — 1 coordinates in common. Consider for example row ¢ and i+ 1. We
have the following properties:

315 s.t. M5 # M,y ; (5)
V] S {07,t—1}\{j} : Mi,j :Mi+1)j (6)

Recall that by definition of Sharing Matrix M, any two rows may have at most ¢ — 1
coordinates in common. For row ¢ and i + 1, these coordinates already occur in the first ¢
columns (22), hence for the last column we must have:

My # M1,

Since this condition holds for every pair of subsequent rows ¢ and i+ 1, we can only obtain
the alternating sequence ...010101...as the last column M;. This column is therefore
unique up to an inversion of the bits. An example for ¢ = 3 is shown below:

0 0 0 0 0 0 0 1
0 0 1 0 0 1 1 0
0 1 0 0 1 1 0 1
0 1 1fg g 0 10 1 0
M=[1 0o of[—/———— 1 1 0 =M= 0 OR 1 (7)
1 0 1 11 1 1 0
1 1 0 1 0 1 0 1
11 1 1 0 0 1 0
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The example shows clearly that adding both columns to the matrix would violate the
Sharing Matrix definition, since a 3-column submatrix including both new columns cannot
have unique rows. Hence, the ¢ 4+ 1** column is unique and thus a (¢, 1)-Sharing Matrix
has at most ¢ + 1 columns. Note also that the labels 0/1 in the last column correspond to
a partitioning of the rows in the first ¢ columns based on odd or even hamming weight.

O

An alternative proof using graph theory is shown in Appendix A.

While the relation between the degree t and the maximum number of columns in a
(t, d)-Sharing Matrix is easily described for masking order d = 1 (c¢f. Lemma 2), no simple
formula can describe the relationship for higher orders. More general (d 4 1)-ary Gray
Codes exist, but the proof of Lemma 2 does not result in uniqueness for d > 1. We
therefore construct an algorithmic procedure for finding Sharing Matrices for higher orders.
The results are shown in Table 1.

3.1.2 Search procedure with backtracking

We start from the t-column (¢, d)-Sharing Matrix from Lemma 1. To extend this matrix
with another column M;, we keep for each column element M, ; a list £; ; of non-conflicting
values € {0, ...,d}. For each new column, these lists are initialized to all possible values.
Without loss of generalization, we set the first element of the column to zero: My, = 0.
For every row ¢ with t — 1 common coordinates, this element then needs to be removed
from its list £; ;.

If there is a row r with a list of length 1 (]£, ;| = 1), then the unique value in that list
is chosen as the value M, ;. Again, this value is subsequently removed from all lists £; ;
for which row ¢ has t — 1 coordinates in common with row r. This process continues until
either the column M, is complete, or until there are only lists of length > 1. In the latter
case, any element of the list £; ; can be chosen as the value M; ;. The choice is recorded so
that it can later be revoked during backtracking. Whenever a value is assigned to a column
element, the remaining lists are updated as before. When a column is fully determined,
the next column is added in the same way. As soon as an empty list is obtained for one of
the column elements, the algorithm backtracks to the last made choice. If for all possible
choices empty lists occur, then the maximum number of columns is obtained and the
algorithm stops.

A simplified version of the procedure is shown in Algorithm 3 in Appendix B. Note that
optimizations are possible for the algorithm, but we leave this for future work since first-
order security is the target in this work. According to the proof of Lemma 2, backtracking
is not necessary for d = 1.

Table 1: Maximum Number of Columns in (¢, d)-Sharing Matrices
Degreet Order d=1 Order d=2 Order d=3

2 3 4 5
3 4 4 6
4 5 5 5
5 6 6 6*
6 7 7 *
7 8 8 8%

* Results of greedy search without backtracking

Table 1 shows that the maximum number of columns does not follow a simple formula
for d > 1. The results in Table 1 without additional indication have been obtained by
exhausting all possible choices via backtracking which takes fractions of seconds for d = 1
and up to several minutes for d = 2 and multiple hours for the parameters t = 4,d = 3. As



Lauren De Meyer, Felix Wegener and Amir Moradi 7

this strategy becomes infeasible with larger matrices, we indicate results of greedy search
without backtracking with an asterisk. This choice is made based on the observation that
(for smaller parameters), if a solution exists, backtracking was never necessary to find it.

3.2 From Sharing Matrices to Sharings

Now consider a mapping p : {0,...,n — 1} — {0,...,¢ — 1} which assigns any input
variable x; to a single column of a Sharing Matrix. That column holds the Sharing Vector
of that variable. For a monomial to be shareable according to those Sharing Vectors, each
variable of that monomial must be mapped to a different column. We therefore introduce
the concept of compatibility between monomials and a mapping p.

Definition 5 (Compatible Mappings). A mapping p : {0,...,n — 1} — {0,...,c— 1}

is compatible with a monomial x{°z™ ...2)""" of degree hw(m) = t if it maps each

variable in the monomial to a different Sharing Vector, i.e.

Vi#je{0,...,n—1}st. my =m; =1:p(i) # p(j)

Lemma 3. Consider a set of monomials of degree <t (of which at least one monomial
has degree t) defined over a set of n variables with ANF

w1
@ amxy oyt

meGF(2™)

and a sharing of each variable x; into d + 1 shares. A correct and non-complete sharing
of this set of monomials with (d + 1)* output shares exists if and only if a (t,d)-Sharing
Matriz can be constructed such that for each variable in the set of monomials, the Sharing
Matriz has exactly one column corresponding to its Sharing Vector and such that for each
monomial, the (up to) t variables of that monomial have different Sharing Vectors. In other
words, there exists a single mapping p: {0,...,n —1} = {0,...,c— 1} that is compatible
with each monomial in the ANF:

Vm e GF(2") s.t. ap,=1:Vi#j€{0,...,n—1} s.t. my=m; =1:p(i) # p(j)

The mapping p assigns to each variable x; column p(i) of the Sharing Matriz as Sharing
Vector.

The terms with degree lower than ¢ also have to be compatible with the mapping p so
that their variables are assigned to different Sharing Vectors. However, lower-degree terms
naturally do not need to appear in each of the (d + 1)* output shares. Given a monomial of
degree | < t and a set of [ (t,d)-Sharing Vectors, it is trivial to choose the (d + 1)! output
shares for the monomial to appear in.

We note that our Sharing Matrices are very similar to the D}-tables of Bozilov et al. [3],
who independently demonstrated that any t-degree function with ¢ + 1 input variables can
be shared with the minimal (d + 1)* output shares. However, their work only treats the
sharing of ¢-degree functions with exactly ¢ 4+ 1 input variables. Since our goal is to find a
sharing of ¢-degree functions with any number of input variables, we consider here the more
general case where both the degree ¢ and the number of variables n are unconstrained.

4 Sharing any ANF

Naturally, not any function is compatible with a (¢, d)-Sharing Matrix. In what follows,
we develop a heuristic method to determine efficient maskings with d + 1 shares for any
degree t-Boolean function starting from its unshared algebraic normal form (ANF). If a
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compatibility mapping with a single Sharing Matrix cannot be found, our approach is to
split the monomials of the ANF into a number of subgroups, each for which a (¢, d)-Sharing
Matrix and thus a correct and non-complete sharing exists. If the ANF is split into s
subgroups, then the number of intermediate shares before compression is s x (d 4+ 1)*.
Our methodology finds the optimal sharing in terms of parameter s. We do not claim
optimality in the number of intermediate shares, since the minimum is not necessarily a
multiple of (d + 1)¢.

4.1 Our Heuristic.

We want to minimize the number of parts the ANF should be split into. This is equivalent
to restricting the expansion of the number of shares and thus limiting both the required
amount of fresh randomness and the number of registers for implementation.

We assume a (t, d)-Sharing Matrix of ¢ columns is known at this point. A procedure
for this was described in §3 and Algorithm 3. There are ¢™ possible mappings p to assign
one of the ¢ Sharing Vectors to each of n variables. In an initial preprocessing step, we
iterate through all possible p and determine which ¢-degree monomials are compatible
with it. During this process, we eliminate redundant mappings (i.e. with an identical list
of compatible monomials) and the mappings without compatible monomials of degree t.
Note that up to this point (including for algorithm 3), the specific function to be shared
does not need to be known.

The next step is function-specific: We first attempt to find one mapping that can
hold all the monomials of the ANF'. Its existence would imply that all the monomials
in the ANF can be shared using the same Sharing Matrix (see Lemma 3). This is not
always possible and even extremely unlikely for ANFs with many monomials. If this first
attempt is unsuccessful, we try to find a split of the ANF. A split is a set of mappings
that jointly are compatible with all monomials in the ANF of the Boolean function, i.e. it
implies a partition of the ANF into separate sets of monomials, each for which a Sharing
Matrix exists. In this search, we first give preference to partitions into a minimal number
of subfunctions, in order to minimize s such that the entire function expands into only
s x (d+1)! intermediate shares.

We note that our search is heuristic and we do not claim optimality except in the
number of split groups s.

4.2 Implementation Details.

We encode mappings and ANFs which are dependent on n inputs as bitvectors with 2"
entries. An entry in the bitvector at position m € GF(2") corresponds to one monomial
g0z oz of degree t = hw(m) and prescribes whether this monomial is present in
the ANF. Recall the ANF of an n-bit Boolean function F:

F(z) = @ amaylT
meGF(2n)

We thus define the bitvector representations

rep(F) = Z am2™ and rep(p) = Z ab 2m

m

where af, = 1 if monomial m is compatible with mapping p. Consider for example the
function F' = xgroxs ® T125:

rep(orars & z175) = (2272 H2) 4+ (22'%) = 02400200000
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Now, we can determine whether for example a set of mappings (p1, p2) specifies a
two-split for a Boolean function F' as follows. Assuming both are represented as a 2"-bit
vector, we check if the following condition holds:

rep(p1) | rep(pz2) | rep(F') = rep(p1) | rep(p2),

where | refers to the Boolean OR~operation. The condition evaluates to true whenever
all monomials of the ANF of F' are also compatible monomials with at least one of the

mappings p; or ps.

Algorithm 1 Preprocessing of mappings

Input: n: number of input bits; ¢: deg(F); ¢: number of columns of (¢, d)-Sharing Matrix
Output: L: list of mappings; o: compatibility af,

1 L e {(p(0), .., p(n — D)|p(i) € {0,...,c — 1}}

2: for p€ L do

3: for m € GF(2") s.t. hw(m) <t¢ do

4: ab, «0

5: if p(i) # p(§)Vi # j s.t. m; =m; =1 then

6: af, + 1

7: end if

8: end for

9: if 3p € L s.t. rep(p) = rep(p) or max,, ,» _, hw(m) <t then
10: L+ L\ {p}

11: end if

12: end for

The preprocessing step is illustrated in Algorithm 1 and creates a list of mappings L.
The list initially contains all ¢ possible mappings, 7.e. all assignments of n variables z; to
one of ¢ Sharing Vectors (1). We iterate over L (2). For each monomial m up to the target
degree t (3), we check whether it is compatible with the mapping p, i.e. whether for any
two variables in the monomial m they do not have the same Sharing Vector (5). After all
compatible monomials for one mapping p have been determined, we check for a duplicate -
another mapping p with an identical list of compatible monomials - and eliminate it. We
also check whether the mapping p is compatible with at least one monomial of the target
degree t and otherwise discard it (9,10). The runtime of the entire preprocessing step is
bounded by O(2" - ™).

Algorithm 2 Search for [-split

Input: L: list of mappings; c: compatibility af,; F: target function
Output: S: a list of I-splits
S+ 0
: for (p1,...,p) € L' do
if rep(p1) | ... | rep(pr) | rep(F) =rep(p1) | ... | rep(p;) then
S« Su{(pr,---,p)}
end if
end for

Do

Algorithm 2 demonstrates the search for an [-split of mappings for a specific target
function F. Its run-time is |L|! = O(c!™). In practice, the computation for our first-order
secure AES design with the parameters ¢ = t+ 1 =4, 1 = 2, n = 8 takes 3.08s for
Algorithm 1 and 5.73s for Algorithm 2 on a recent Desktop PC!.

Conclusion

In this work, we investigated the properties of ¢-degree Boolean functions that can be
masked with the minimal number of expansion shares (d + 1)¢. We proposed the notion of

I Averaged over 100 computations



10 A Note on Masking Generic Boolean Functions

Sharing Matrices as a way of formalizing whether a non-complete masking for a generic
Boolean function exists. We proved that a (¢, 1)-Sharing Matrix has at most ¢ = ¢ + 1
columns, which implies that any ¢-degree Boolean function with ¢ + 1 variables can be
masked with (d 4+ 1)! intermediate shares. An interesting question for future research is
whether a formal result for higher orders (cf. Table 1) can be found. We further introduced
a methodology for splitting any ¢-degree Boolean function into s subfunctions with s
minimal, such that a (¢, d)-Sharing Matrix exists for each subfunction, which can hence be
shared with the minimal number of intermediate shares.

The above methodology was applied to significantly optimize the implementations
of De Meyer et al. [6]. The results are described in the extended version [16]. Since
these implementations are FPGA-specific, the subfunctions in Algorithm 2 are chosen to
minimize the number of variables they depend on. It is trivial to change this for ASICs.
The methodology improved upon the AES implementation of [6] by 21.5% in the number
of FPGA Look-up Tables (LUTs), 25.8% in the number of flip-flops and 33.3% in the

number of slices.
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A Masking and Graph Colouring

In Section 3, we raised the question of how many columns a (¢, d)-Sharing Matrix can have.
We can connect this problem to that of finding balanced colourings of a graph.

Graph Colouring. Consider a graph (V, £) with vertices V = {0,...,d}! corresponding
to the rows of a t-column Sharing Matrix M. In other words, the vertices of G are words
of length ¢ with base d + 1. There are (d 4+ 1)* vertices in total. Let two vertices in G
be connected by an edge when their labels differ in exactly one coordinate, i.e. their
Hamming distance is one?. Such a graph is called a Hamming graph H (¢, d + 1). The case
d =1 is better known as a Hypercube graph [4]. It automatically follows that each pair of
connected vertices {vy,v2} € € have exactly t — 1 coordinates in common. Recall, that in
a (t,d)-Sharing Matrix, no two rows may have ¢ common elements. The problem of finding
column ¢ + 1 is thus equivalent to assigning to each vertex v a label L(v) € {0,...,d} such
that V{vi,v2} € € : L(v1) # L(v2). An example of such a labeling for t = 3 and d = 1 was
shown in Eqn 3. Hence, if we can find a valid (d + 1)-colouring £ of the graph H(t,d + 1),
then this implies the existence of a (¢, d)-Sharing Vector that can be added to the Sharing
Matrix M as extra column.
Given this equivalence, we can also provide an alternative proof for Lemma 2:

Proof. We consider the case d = 1, i.e. the vertices of H(t,2) are bitvectors of length ¢
and H(t,2) defines a ¢-dimensional hypercube. We show the existence and uniqueness of
the ¢ + 15 column by showing the existence and uniqueness of a 2-colouring of the graph.
It is well known that all hypercube graphs are bipartite, i.e. can be coloured with only two
colours. This proves the existence of a t 4+ 1-column (¢, 1)—Sharing Matrix for any ¢. Next,
we show the uniqueness of this column by showing that the 2-colouring of a hypercube
graph is unique up to an inversion of the colours. Figure 1 depicts two 1-hypercubes (¢t = 1)
and shows clearly that a 2-colouring of the vertices is unique up to an inversion of the
colours. We refer to the colouring as £! and its inverse Lt. By definition, they have two
properties:

V{vi,v;} € € L4(v;) # L (vj) and Lt(v;) # L(v)) (8)

Vo s L8 (v) # Lt(v;) 9)

Now, we show by induction that a ¢ + 1-dimensional hypercube only has a unique
colouring L1 and its inverse £+, Consider a ¢t-dimensional hypercube graph G = (V, £),

which can only be coloured using £! or Lt. From this graph, we construct a hypercube
graph of dimension ¢ + 1 with vertices V' =V x {0,1} and edges

&= {{(’Ui,O), (’Ui, 1)},Vl}i S V} U {{(Ui,k‘), (Uj, k)},V{Ui,’Uj} S g,k’ S {0, 1}}

Naturally, a valid colouring £+ has to agree with either £f or £t on the subgraphs Gy, G1
with nodes V x {0} and V x {1}, as both are isomorphic to G, hence

(L% gy, L g,) € {(L£F, £, (L8, L£Y), (L', L), (L8, L")}

Now, edges of the form {(v;,0), (v;,1)} and the colouring property (32) prohibit the choice
of equal labellpoings. Hence, only two possibilities for £¢*! remain, which are identical up
to an inversion:

(£t+1|goa 'Ct+1|g1) = (Ct,gt)7
(L% gy, LM g,) = (L', L),

?Note that we use the general (non-binary) notion of Hamming Weight which counts the number of
different coordinates (not bits)
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(a) Hypercube, H(1,2) (b) Hypercube, H(2,2) (c) Hypercube, H(3,2)

Figure 1: (a) unique 2-colouring of H(1,2) up to inversion (b) extension of H(1,2) to
H(2,2) (c) extension of H(2,2) to H(3,2). Dashed lines indicate new edges.

O

As before, the proof cannot be generalized for d > 1. In Section 3, we therefore provided
specific numbers in Table 1. With this Appendix, we mean to show that the problem
of finding non-complete maskings is related to finding the number of d + 1-colourings of
Hamming graphs. To the best of our knowledge, there is not yet a formula to describe this
number. We note that not all colourings can be transformed into columns for the Sharing
Matrix, since many of them are equivalent up to a renaming of the colours.
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B Finding Sharing Matrices

Algorithm 3 Backtracking Procedure for constructing (¢, d)-Sharing Matrices

1: M < from Lemma 1
2: ¢+t
3: while True do

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

forie{l,...,(d+1)" -1} do
£i,c < {0,,d}

end for

[:()’c < {0}

while M, not completely determined do
if 3r: L, . =0 then

Break
else if 3r: |£, .| =1 then
Mr,c — Lr,c[o]
else
Pick r,l (& record backtrackpoint)
Mr,c <~ ﬁr,c[l]
end if

forie{l,...,(d+1)' =1} \{r} do
if #{] : Mi,j = Mr,j} =t —1 then
»Ci,c — Ei,c \ {Mr,c}
end if
end for
end while
if M. not completely determined then
if Backtracking possible then
Jump to last backtrackpoint
else
Stop Algorithm
end if
end if
c+—c+1

31: end while
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