
Observations on the Quantum Circuit of the
SBox of AES

Jian Zou1,2, Yongyang Liu1,2, Chen Dong1,2, Wenling Wu3, Le Dong4

1Mathematics and Computer Science of Fuzhou University, Fuzhou, China, 350108
2Key Lab of Information Security of Network Systems (Fuzhou University), Fuzhou,

China, 350108
3 Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China
4 Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal

Control, Henan Normal University, Xinxiang, China, 453007
fzuzoujian15@163.com

Abstract. In this paper, we propose some improved quantum circuits
to implement the Sbox of AES. Our improved quantum circuits are based
on the following strategies. First, we try to find the minimum set of the
intermediate variables that can be used to compute the 8-bit output
of the Sbox. Second, we check whether some wires store intermediate
variables and remain idle until the end. And we can reduce the number
of qubit by reusing some certain wires. Third, we try to compute the
output of the Sbox without ancillas qubits, because we do not need to
be clean up the wires storing the output of the Sbox. This operation
will reduce the number of Toffoli gates. Our first quantum circuit only
needs 26 qubits and 46 Toffoli gates, while quantum circuit proposed by
Langenberg et al. required 32 qubits and 55 Toffoli gates. Furthermore,
we can also construct our second quantum circuit with 22 qubits and 60
Toffoli gates.

Key words: quantum circuit, AES, Sbox, Grovers algorithm

1 Introduction

Post-quantum cryptography studies the security of cryptographic systems against
quantum attackers. Due to the rapid development of quantum computer, many
cryptographic schemes have been found out to be insecure in quantum com-
puting. Asymmetric cryptographic primitives encounter devastating attacks due
to Shor’s algorithm [1]. In contrast to asymmetric cryptographic, the impact
of quantum computing on secret-key cryptography is is not so clear. It’s well
known that Grover’s algorithm [2] will solve the problem of finding keys with
quadratic speed-up, i.e. O(2n/2). It is worth realizing such attack so as to obtain
the precise resource estimate for implementing Grover’s algorithm.

There are some research on how to implement quantum circuits of AES and
its Sbox. In [3], Grassl et al. proposed a quantum circuit for the Sbox of AES
with 40 qubits, 512 Toffoli, 469 CNOT, and 4 NOT gates. In addition, they [3]

also proposed a quantum circuit for Sbox with 9 qubits, 1385 Toffoli plus 1551
CNOT or NOT gates. Compare with their first construction, this circuit should
need more Toffoli gates so as to use only one ancilla qubit. Almazrooie et al. in
[4] also presented a quantum circuit for the Sbox with 56 qubits and 448 Toffoli
gates. In [5], Kim et al. presented an improved quantum circuit for the Sbox
with 40 qubits and 448 Toffoli gates. Saravanan and Kalpana in [6] proposed a
quantum circuit for Sbox with 35 Toffoli, 152 CNOT, and 4 NOT gates, which
required dozens of garbage outputs qubits. By utilizing the algebraic structure
of the Sbox [7], Langenberg et al. [8] proposed a quantum circuit for Sbox with
32 qubits, 55 Toffoli, 314 CNOT, and 4 NOT gates.

In this paper, we try to construct some improved quantum circuits for the
Sbox of AES. Since the cost of Toffoli gate is more expensive than the gates
in Clifford group, our primary objective is to reduce the number of qubit and
Toffoli gates in this paper. Our results are summarized in Table 1.

Table 1. Comparison of circuit designs for the Sbox of AES

Number of qubits Number of Toffoli gate Source

40 512 [3]

9 1385 [3]

56 448 [4]

40 448 [5]

32 55 [8]

26 46 Section 3

22 60 Appendix B

Organization. This paper is organized as follows. In Section 2, we make a
brief introduction to the structure of the Sbox of AES. Section 3 show our new
techniques for constructing the improved quantum circuits for Sbox. Section 4
concludes this paper.

2 AES algorithm

The round function of AES consists of the following four operations:

1. AddRoundKey: The AddRoundKey operation xor the round key to the state.

2. SubBytes: The SubBytes transformation applies the Sbox operation to each
8-bit cell of the state.

3. ShiftRows: The ShiftRows transformation cyclically rotates the cells of the
i-th row leftward by shift vector.

4. MixColumns: In the MixColumns operation, each column of the state is
multiplied by an MDS matrix.

Since we just consider how to obtain some improved quantum circuits for the
Sbox of AES, we just omit the left three operations of AES. For a full description
of AES, please refer to [9].

2.1 The Sbox of AES

There are several ways to implement Sbox. On the one hand, we can implement
Sbox as a look-up table. On the other hand, if we treat an input byte as an
element b ∈ GF (2)[x]/(x8 + x4 + x3 + x + 1), then the 8-bit output of Sbox
(s0, s1, · · · , s7) can be realized by computing multiplicative inverse of b followed
by affine transformations. Define b′ as b−1, then (s0, s1, · · · , s7)T = M ·b′T +CT ,
where CT = [1, 1, 0, 0, 0, 1, 1, 0] and

M =



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1


(1)

2.2 The algebraic structure of the Sbox of AES

In [7], Boyar and Peralta proposed a low-depth circuit for the Sbox in AES with
only 34 AND gates. It is easy to construct a quantum circuit with 68 Toffoli
gates combining Bennett’s method [10] with Boyar and Peralta’s work. In [8],
Langenberg et al. constructed their quantum circuit by utilizing the algebraic
structure of the Sbox proposed by Boyar and Peralta [7]. In detail, their proposed
a quantum circuit of the of Sbox AES with 32 qubits, 55 Toffoli, 314 CNOT, and
4 NOT gates. Since we try to improve their quantum circuit of the Sbox, we also
focus on the work proposed by Boyar and Peralta [7]. However, our techniques
can also be applied to other constructions of the Sbox of AES, i.e. the other
work proposed by Boyar and Peralta [11].

In [7], Boyar and Peralta observed the Sbox of AES could be represented as
S(x) = B ·F (U · x), where matrices B ∈ F 8×18

2 , U ∈ F 22×8
2 , and F : F 22

2 → F 18
2

is a non-linear function. The B, U and F are presented as follows.

The matrix B ∈ F 8×18
2 takes x0, x1, · · · , x7 as input, and outputs x7, y1, · · · , y21,

which are inputs to the non-linear function F .

y14 = x3 + x5, y13 = x0 + x6, y9 = x0 + x3, y8 = x0 + x5, t0 = x1 + x2,
y1 = t0 + x7, y4 = y1 + x3, y12 = y13 + y14, y2 = y1 + x0, y5 = y1 + x6,
y3 = y5 + y8, t1 = x4 + y12, y15 = t1 + x5, y20 = t1 + x1, y6 = y15 + x7,

y10 = y15 + t0, y11 = y20 + y9, y7 = x7 + y11, y17 = y10 + y11,
y19 = y10 + y8, y16 = t0 + y11, y21 = y13 + y16, y18 = x0 + y16.

The non-linear function F : F 22
2 → F 18

2 takes x0, x1, · · · , x7 as input, and
outputs z0, z1, · · · , z17, which are inputs to the matrix U .

t2 = y12 · y15, t3 = y3 · y6, t4 = t3 + t2, t5 = y4 · x7, t6 = t5 + t2,
t7 = y13 · y16 t8 = y5 · y1, t9 = t8 + t7, t10 = y2 · y7 t11 = t10 + t7,

t12 = y9 · y11, t13 = y14 · y17 t14 = t13 + t12, t15 = y8 · y10, t16 = t15 · t12
t17 = t4 · t14, t18 = t6 + t16, t19 = t9 + t14, t20 = t11 + t16, t21 = t17 + y20,

t22 = t18 + y19 t23 = t19 + y21, t24 = t20 + y18 t25 = t21 + t22,
t26 = t21 · t23, t27 = t24 + t26, t28 = t25 · t27, t29 = t28 + t22, t30 = t23 + t24,

t31 = t22 + t26, t32 = t31 · t30, t33 = t32 + t24, t34 = t23 + t33,
t35 = t27 + t33, t36 = t24 · t35 t37 = t36 + t34, t38 = t27 + t36, t39 = t29 · t38,

t40 = t25 + t39, t41 = t40 + t37, t42 = t29 + t33, t43 = t29 + t40,
t44 = t33 + t37, t45 = t42 + t41, z0 = t44 · y15, z1 = t37 · y6, z2 = t33 · x7,
z3 = t43 · y16, z4 = t40 · y1, z5 = t29 · y7, z6 = t42 · y11, z7 = t45 · y17,
z8 = t41 · y10, z9 = t44 · y12, z10 = t37 · y3, z11 = t33 · y4, z12 = t43 · y13,
z13 = t40 · y5, z14 = t29 · y2, z15 = t42 · y9, z16 = t45 · y14, z17 = t41 · y8.

The inputs to the matrix U are z0, z1, · · · , z17, while the outputs are s0, s1, · · · , s7.

t46 = z15 + z16, t47 = z10 + z11, t48 = z5 + z13, t49 = z9 + z10,
t50 = z2 + z12, t51 = z2 + z5, t52 = z7 + z8, t53 = z0 + z3, t54 = z6 + z7,

t55 = z16 + z17, t56 = z12 + t48, t57 = t50 + t53, t58 = z4 + t46,
t59 = z3 + t54, t60 = t46 + t57, t61 = z14 + t57, t62 = t52 + t58,

t63 = t49 + t58, t64 = z4 + t59, t65 = t61 + t62, t66 = z1 + t63, s0 = t59 + t63,
s6 = t56 XNOR t62, s7 = t48 XNOR t60, t67 = t64 + t65, s3 = t53 + t66,
s4 = t51 + t66, s5 = t47 + t65, s1 = t64 XNOR s3, s2 = t55 XNOR t67.

3 Main Result

In this article, we try to improve the quantum circuit proposed by Langenberg
et al. in [8]. In detail, we propose two improved quantum circuits for the Sbox
of AES. The goal of our first quantum circuit is reducing the number of Toffoli
gates as small as possible, while we try to construct our second quantum circuit
with the least number of qubits. Compared with the quantum circuit in [8],
our two quantum circuits not only reduce the number of Toffoli gates, but also
reduce the number of qubits. In the following, we will show how to construct

our first quantum circuit. Since our second quantum circuit is similar to our
first quantum circuit, we just show the detail of our first quantum circuit in
this section. The detail of our second quantum circuit is shown in Appendix B.
As shown in Appendix A and B, our quantum circuits adopt the same notation
in [8]. The 8-bit input of Sbox and the 8-bit output of Sbox are expressed as
U [0], · · · , U [7] and s[0], · · · , s[7] respectively. We also use T (ancillas qubits) to
store the intermediate values of computation, which shall return to zero at the
end of computation. Note that we do not need the ancilla qubit Z in our quantum
circuit.

Our first quantum circuit is constructed by adopting the following strategies.

1. In the quantum circuit, we shall clean up the wires with the intermediate
values, while the wires of the output of Sbox do not need to be clean up. In
order to reduce the number of Toffoli gates, we shall apply Toffoli gates to
the wires of the output of the Sbox.

2. In the quantum circuit proposed by Langenberg et al. [8], some wires re-
mained idle until the end of the quantum circuit. By uncomputing these
wires, we can reuse these wires so as to reduce the number of qubits.

Note that Langenberg et al. [8] also used the above strategies to construct
their quantum circuit for the Sbox of AES. However, we can improve their quan-
tum circuit with the following observations, which utilizes the linear relationship
between different variables.

Observation 1. As pointed out in [7], the 18 values of z0, · · · , z17 can be ob-
tained with the knowledge of t29, t33, t37, t40, t42, t42, t43, t44, t45 and x7, y0, · · · , y17,
where y0, · · · , y17 can be obtained by the linear combination of x0, x1, · · · , x7.
In addition, t29, t33, t37, t40, t41, t42, t43, t44, t45 can be obtained by the linear
combination of t29, t33, t37, t40. In other words, we can obtain z0, · · · , z17 with
the knowledge of t29, t33, t37, t40 and x0, x1, · · · , x7.

According to Observation 1, we only need to store t29, t33, t37, t40 and x0, x1,
· · · , x7 instead of t29, t33, t37, t40, t42, t42, t43, t44, t45 and x7, y0, · · · , y17, which
could save some qubits.

Observation 2. As pointed out in[7], the 8-bit output of Sbox s0, s1, · · · , s7
can be seen as a linear combination of the 18 values of z0, · · · , z17. Given the 18
values of z0, · · · , z17, we can express the linear expression of si (for 0 ≤ i ≤ 7)
as follows.

s0 = z3 + z4 + z6 + z7 + z9 + z10 + z15 + z16,

s1 = z0 + z1 + z6 + z7 + z9 + z10 + z15 + z16,

s2 = z0 + z2 + z6 + z8 + z12 + z14 + z15 + z17,

s3 = z0 + z1 + z3 + z4 + z9 + z10 + z15 + z16,

s4 = z1 + z2 + z4 + z5 + z9 + z10 + z15 + z16,

s5 = z0 + z2 + z3 + z4 + z7 + z8 + z10 + z11 + z12 + z14 + z15 + z16,

s6 = z4 + z5 + z7 + z8 + z12 + z13 + z15 + z16,

s7 = z0 + z2 + z3 + z5 + z12 + z13 + z15 + z16,

where ′+′ means ⊕, and s̄ applies the NOT operation on s.

As shown in [8], the quantum circuit proposed by Langenberg et al. used 15
ancilla qubits to store the intermediate values, which could be used to compute
z0, · · · , z17. Based on our observation 1 and 2, we can reduce the number of
Toffoli gates and qubits of the quantum circuits in [8] simultaneously as follows.
According to our Observation 1, we do not need to store the values of t41,
t42, t43, t44, t45, which saves 5 qubits. In other words, we only need 10 ancilla
qubits to store the intermediate values that could be used to compute z0, · · · ,
z17. According to our Observation 2, we observe that we could compute the
8-bit output of the Sbox without utilizing the ancilla qubit Z in our quantum
circuit. This observation can reduce the number of Toffoli gate and the number
of qubit further, because we do not need to recompute the toffoli gates so as to
initialize ancilla qubit Z in our quantum circuit. Given the values of z0, · · · , z17,
we will show the detail of how to obtain the 8-bit output of Sbox without the
ancilla qubit Z in the following. Compared with the quantum circuits proposed
by Langenberg et al. [8], our quantum circuit only needs 26 qubits, 46 Toffoli,
304 CNOT, and 4 NOT gates.

Algorithm 1 Compute the output of Sbox without the ancilla qubit Z

Require:
input, z0, · · · , z17;
input, s0 = 0, · · · , s7 = 0;

1: s2 = z12; s6 = s2;
2: s2 = z14; s5 = s2;
3: s4 = z5; s6 = s4;
4: s1 = z1; s3 = s1;s4 = s1;
5: s7 = z8; s4 = s7;s6 = s7;
6: s7 = z2; s1 = s7;s3 = s7;s4 = s7;
7: s7 = z0; s1 = s7;s2 = s7;s3 = s7;s5 = s7;
8: s6 = z13; s7 = s6;
9: s0 = z3; s4 = s0;s6 = s0;s7 = s0;

10: s0 = z4; s1 = s0;s2 = s0;s3 = s0;s4 = s0;s5 = s0;s6 = s0;
11: s0 = z6; s2 = s0;s5 = s0;s6 = s0;
12: s0 = z7; s3 = s0;s4 = s0;s5 = s0;s6 = s0;
13: s0 = z9; s5 = s0;
14: s0 = z10; s6 = s0;s7 = s0;
15: s0 = z16; s2 = s0;
16: s0 = z15; s1 = s0;s2 = s0;s3 = s0;s4 = s0;s5 = s0;s6 = s0;s7 = s0;
17: s5 = z11;
18: s2 = z17;
19: Output s0, s1, s2, s3, s4, s5, s6, s7 as the 8-bit output of the Sbox;

Based on the above two observations, we can construct our first quantum
circuit with 26 qubits, 46 Toffoli, 304 CNOT, and 4 NOT gates. We will show a
detailed description of this quantum circuit in Appendix A.

4 Conclusion

By using our two observations, we can improve the quantum circuits for Sbox
proposed by Langenberg et al. [8]. Note that our observations can also be applied
to the other constructions of the Sbox of AES [11]. With our quantum circuits
for Sbox, we can improve the quantum circuits for AES with the techniques in
[8], such as parallelization and ”zig-zag” method.

5 References

[1] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484C1509,
October 1997.

[2] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the 28th Annual ACM Symposium on the Theory of Com-
puting STOC 1996, pages 212C219, 1996.

[3] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying Grovers Algorithm to AES: Quantum Resource Estimates.
In Tsuyoshi Takagi, editor, Post-Quantum Cryptography PQCrypto 2016,
volume 9606 of Lecture Notes in Computer Science, pages 29C43. Springer,
2016.

[4] Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mut-
ter. Quantum reversible circuit of AES-128. Quantum Information Process-
ing, 17(5):112, 2018.

[5] Panjin Kim, Daewan Han, and Kyung Chul Jeong. TimeCspace complexity
of quantum search algorithms in symmetric cryptanalysis: applying to AES
and SHA-2. Quantum Information Processing, 17:339, 2018.

[6] P. Saravanan and P. Kalpana. Novel Reversible Design of Advanced En-
cryption Standard Cryptographic Algorithm forWireless Sensor Networks.
Wireless Personal Communications, 100(4):1427C1458, 2018.

[7] Joan Boyar and Rene Peralta. A New Combinational Logic Minimization
Technique with Applications to Cryptology. In Paola Festa, editor, Interna-
tional Symposium on Experimental Algorithms SEA 2010, volume 6049 of
Lecture Notes in Computer Science, pages 178C189. Springer, 2010. Preprint
available at https://eprint.iacr.org/2009/191.

[8] Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the cost
of implementing AES as a quantum circuit. Cryptology ePrint Archive, Re-
port 2019/854, 2019.

[9] NIST. Advanced Encryption Standard (AES). Federal Information Process-
ing Standards Publication 197, November 2001.

[10] Charles H. Bennett. Logical Reversibility of Computation. IBM Journal of
Research and Development, 17(6):525C532, 1973.

[11] Joan Boyar and Rene Peralta. A depth-16 circuit for the AES S-box. Cryptol-
ogy ePrint Archive: Report 2011/332, June 2011. Available at https://eprint.iacr.org/2011/332.

6 Appendix A

In this section, we show the detail of our quantum circuit with 26 qubits, 46
Toffoli, 304 CNOT, and 4 NOT gates.

import math
from projectq.ops import CNOT, Measure, X, Toffoli
from projectq import MainEngine
from projectq.meta import Compute , Uncompute
from projectq.backends import CircuitDrawer, ResourceCounter,

ClassicalSimulator
import projectq.libs.math
drawing engine = CircuitDrawer()
resource counter = ResourceCounter()
sim = ClassicalSimulator()
eng = MainEngine(sim)
def aes box (eng) :

U = eng . allocate qureg (8)
T = eng . allocate qureg (10)
S = eng . allocate qureg (8)
input m = [0]*(8)
output m = [0]*(8)

with Compute (eng) :
CNOT | (U[0] ,U[5])
CNOT | (U[3] ,U[5])
CNOT | (U[6] ,U[5])
CNOT | (U[0] ,U[4])
CNOT | (U[3] ,U[4])
CNOT | (U[6] ,U[4])
Toffoli | (U[5] ,U[4] ,T[0]) #t2
CNOT | (T[0] ,T[5])

CNOT | (U[1] ,U[3])
CNOT | (U[2] ,U[3])
CNOT | (U[7] ,U[3])

Toffoli | (U[3] ,U[7] ,T[0]) #t6

CNOT | (U[0] ,U[6])

CNOT | (U[0] ,U[2])

CNOT | (U[4] ,U[2])

CNOT | (U[5] ,U[2])

CNOT | (U[6] ,U[2])

Toffoli | (U[6] ,U[2] ,T[1]) #t7

CNOT | (T[1] ,T[2])

CNOT | (U[2] ,U[1])

CNOT | (U[4] ,U[1])

CNOT | (U[5] ,U[1])

CNOT | (U[7] ,U[1])

CNOT | (U[1] ,U[0])

CNOT | (U[6] ,U[0])

Toffoli | (U[1] ,U[0] ,T[1]) #t9

CNOT | (U[1] ,U[6])

CNOT | (U[0] ,U[2])

Toffoli | (U[6] ,U[2] ,T[2]) #t11

CNOT | (U[6] ,U[3])

CNOT | (U[7] ,U[2])

Toffoli | (U[3] ,U[2] ,T[3]) #t12

CNOT | (T[3] ,T[4])

CNOT | (U[1] ,U[6])

CNOT | (U[5] ,U[6])

CNOT | (U[2] ,U[0])

CNOT | (U[4] ,U[0])

CNOT | (U[7] ,U[0])

Toffoli | (U[6] ,U[0] ,T[3]) #t14

CNOT | (U[6] ,U[3])

CNOT | (U[2] ,U[0])

Toffoli | (U[3] ,U[0] ,T[4]) #t16

CNOT | (T[3] ,T[1]) #t19

CNOT | (U[1] ,U[3])

CNOT | (U[7] ,U[4])

Toffoli | (U[3] ,U[4] ,T[5]) #t4

CNOT | (T[5] ,T[3]) #t17

CNOT | (T[4] ,T[0]) #t18

CNOT | (T[2] ,T[4]) #t20

CNOT | (U[1] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
CNOT | (U[6] ,T[3]) #t21

CNOT | (U[0] ,U[1])
CNOT | (U[3] ,U[1])
CNOT | (U[1] ,T[0]) #t22

CNOT | (U[1] ,U[5])
CNOT | (U[4] ,U[5])
CNOT | (U[6] ,U[5])
CNOT | (U[7] ,U[5])
CNOT | (U[5] ,T[1]) #t23

CNOT | (U[1] ,U[4])
CNOT | (U[3] ,U[4])
CNOT | (U[5] ,U[4])
CNOT | (U[4] ,T[4]) #t24

Toffoli | (T[3] ,T[1] ,T[6]) #t26
CNOT | (T[0] ,T[3]) #t25

CNOT | (T[4] ,T[7])
CNOT | (T[6] ,T[7]) #t27

CNOT | (T[0] ,T[6]) #t31
Toffoli | (T[3] ,T[7] ,T[0]) #t29

CNOT | (T[1] ,T[4]) #t30

Toffoli | (T[6] ,T[4] ,T[9]) #t32

CNOT | (T[1] ,T[4])
#T[4] is set to t24 again

CNOT | (T[4] ,T[9]) #t33
CNOT | (T[9] ,T[1]) #t34

CNOT | (T[9] ,T[7]) #t35

Toffoli | (T[4] ,T[7] ,T[8]) #t36

CNOT | (T[9] ,T[7])
#T[7] is set to t27 again

CNOT | (T[8] ,T[1]) #t37
CNOT | (T[8] ,T[7]) #t38

Toffoli | (T[0] ,T[7] ,T[3]) #t40

The T[0-9] are assigned as follows. T[0]=t29, T[1]=t37, T[2]=t11,
T[3]=t40, T[4]=t24, T[5]=t4, T[6]=t31, T[7]=t38, T[8]=t36, T[9]=t33.

CNOT | (U[0] ,U[2])
CNOT | (U[1] ,U[2])
CNOT | (U[6] ,U[2]) # for z16

CNOT | (U[1] ,U[4])
CNOT | (U[3] ,U[4])
CNOT | (U[5] ,U[4]) # for z1

CNOT | (U[1] ,U[6])
CNOT | (U[3] ,U[6])
CNOT | (U[4] ,U[6])
CNOT | (U[5] ,U[6])
CNOT | (U[7] ,U[6]) # for z11

CNOT | (U[1] ,U[0])
CNOT | (U[3] ,U[0]) # for z13

CNOT | (U[0] ,U[3])
CNOT | (U[2] ,U[3])
CNOT | (U[6] ,U[3]) # for z14

The U[0-7] are assigned as follows. U[0]=y5, U[1]=y19, U[2]=y14,
U[3]=y2, U[4]=y6, U[5]=y21, U[6]=y4, U[7]=x7.

CNOT | (U[0], U[3])
CNOT | (T[0], T[3])
Toffoli | (T[3], U[3], S[2]) #z12
CNOT | (S[2], S[6])
CNOT | (U[0], U[3])

CNOT | (T[0], T[3])
Toffoli | (T[0], U[3], S[2]) #z14
CNOT | (S[2], S[5])

CNOT | (U[0], U[6])
CNOT | (U[1], U[6])
CNOT | (U[2], U[6])
CNOT | (U[4], U[6])
CNOT | (U[5], U[6])
Toffoli | (T[0], U[6], S[4]) #z5
CNOT | (S[4], S[6])
CNOT | (U[0], U[6])
CNOT | (U[1], U[6])
CNOT | (U[2], U[6])
CNOT | (U[4], U[6])
CNOT | (U[5], U[6])

Toffoli | (T[1], U[4], S[1]) #z1
CNOT | (S[1], S[3])
CNOT | (S[1], S[4])

CNOT | (U[1], U[6])
CNOT | (U[2], U[6])
CNOT | (U[3], U[6])
CNOT | (T[1], T[3])
Toffoli | (T[3], U[6], S[7]) #z8
CNOT | (S[7], S[4])
CNOT | (S[7], S[6])
CNOT | (U[1], U[6])
CNOT | (U[2], U[6])
CNOT | (U[3], U[6])
CNOT | (T[1], T[3])

Toffoli | (T[9], U[7], S[7]) #z2
CNOT | (S[7], S[1])
CNOT | (S[7], S[3])
CNOT | (S[7], S[4])

CNOT | (U[7], U[4])
CNOT | (T[9], T[1])

Toffoli | (T[1], U[4], S[7]) #z0
CNOT | (S[7] ,S [1])
CNOT | (S[7] ,S [2])
CNOT | (S[7] ,S [3])
CNOT | (S[7] ,S [5])
CNOT | (U[7] ,U[4])
CNOT | (T[9], T[1])

Toffoli | (T[3], U[0], S[6]) #z13
CNOT | (S[6], S[7])

CNOT | (U[0] ,U[5])
CNOT | (U[3] ,U[5])
CNOT | (T[0], T[3])
Toffoli | (T[3], U[5], S[0]) #z3
CNOT | (S[0], S[4])
CNOT | (S[0], S[6])
CNOT | (S[0], S[7])
CNOT | (U[0] ,U[5])
CNOT | (U[3] ,U[5])
CNOT | (T[0], T[3])

CNOT | (U[1] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
CNOT | (U[4] ,U[6])
Toffoli | (T[3], U[6], S[0]) #z4
CNOT | (S[0], S[1])
CNOT | (S[0], S[2])
CNOT | (S[0], S[3])
CNOT | (S[0], S[4])
CNOT | (S[0], S[5])
CNOT | (S[0], S[6])
CNOT | (U[1] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
CNOT | (U[4] ,U[6])

CNOT | (U[0], U[7])
CNOT | (U[1], U[7])
CNOT | (U[2], U[7])

CNOT | (U[4], U[7])
CNOT | (U[5], U[7])
CNOT | (U[6], U[7])
CNOT | (T[0], T[9])
Toffoli | (T[9], U[7], S[0]) #z6
CNOT | (S[0], S[2])
CNOT | (S[0], S[5])
CNOT | (S[0], S[6])
CNOT | (U[0], U[7])
CNOT | (U[1], U[7])
CNOT | (U[2], U[7])
CNOT | (U[4], U[7])
CNOT | (U[5], U[7])
CNOT | (U[6], U[7])
CNOT | (T[0], T[9])

CNOT | (U[0] ,U[7])
CNOT | (U[3] ,U[7])
CNOT | (U[4] ,U[7])
CNOT | (U[5] ,U[7])
CNOT | (T[0], T[9])
CNOT | (T[3], T[9])
CNOT | (T[1], T[9])
Toffoli | (T[9], U[7], S[0]) #z7
CNOT | (S[0], S[3])
CNOT | (S[0], S[4])
CNOT | (S[0], S[5])
CNOT | (S[0], S[6])
CNOT | (U[0] ,U[7])
CNOT | (U[3] ,U[7])
CNOT | (U[4] ,U[7])
CNOT | (U[5] ,U[7])
CNOT | (T[0], T[9])
CNOT | (T[3], T[9])
CNOT | (T[1], T[9])

CNOT | (U[0] ,U[3])
CNOT | (U[2] ,U[3])
CNOT | (T[1], T[9])
Toffoli | (T[9], U[3], S[0]) #z9
CNOT | (S[0], S[5])
CNOT | (U[0] ,U[3])
CNOT | (U[2] ,U[3])

CNOT | (T[1], T[9])

CNOT | (U[0] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
Toffoli | (T[1], U[6], S[0]) #z10
CNOT | (S[0], S[6])
CNOT | (S[0], S[7])
CNOT | (U[0] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])

CNOT | (T[0], T[9])
CNOT | (T[3], T[9])
CNOT | (T[1], T[9])
Toffoli | (T[9], U[2], S[0]) #z16
CNOT | (S[0], S[2])
CNOT | (T[0], T[9])
CNOT | (T[3], T[9])
CNOT | (T[1], T[9])

CNOT | (U[3], U[6])
CNOT | (T[0], T[9])
Toffoli | (T[9], U[6], S[0]) #z15
CNOT | (S[0], S[1])
CNOT | (S[0], S[2])
CNOT | (S[0], S[3])
CNOT | (S[0], S[4])
CNOT | (S[0], S[5])
CNOT | (S[0], S[6])
CNOT | (S[0], S[7])
CNOT | (U[3], U[6])
CNOT | (T[0], T[9])

CNOT | (U[2], U[6])
CNOT | (U[3], U[6])
Toffoli | (T[8], U[6], S[2]) #z17
CNOT | (U[3], U[6])
CNOT | (U[2], U[6])

Toffoli | (T[9], U[6], S[5]) #z11

X | S[1]
X | S[2]
X | S[6]
X | S[7]

Uncompute (eng)

7 Appendix B

In this section, we show the detail of our quantum circuit with 22 qubits and 60
Toffoli gates. As pointed out in our Observation 2, we need at least 4 ancilla
qubits to store the 4 values of t29, t33, t37, t40. However, we can not construct
the quantum circuit for Sbox with only 4 ancilla qubits. In the following, we
propose a quantum circuit with 22 qubits, including 6 ancilla qubits. Note that
our second quantum circuit is similar to our first quantum circuit. The part
of computing the values of s0, · · · , s7 with the 4 values of t29, t33, t37, t40 in
our second circuit is the same as our first circuit. As a result, we just show a
description of our second quantum circuit with 6 ancilla qubits in the following
pseudo code, where x7, y1, y2, · · · , y17 are the input to the non-linear function
F and T [0], · · · , T [5] are the 6 ancilla qubits. Note that we shall clean up the 6
ancilla qubits T [0], · · · , T [5] in the end, which means we need 21× 2 + 18 = 60
Toffoli gates in this circuit.

Algorithm 2 Output t29, t33, t37, t40 with 6 ancilla qubits

Require:
input, x7, y1, y2, · · · , y17;
input, T [0], · · · , T [5];

1: for 0 ≤ i ≤ 5 do
2: T [i] = 0;
3: end for
4: T [0] = Toffoli(y13, y16, T [0]); # T[0]=t7
5: T [0] = Toffoli(y5, y1, T [0]); # T[0]=t9
6: T [1] = Toffoli(y9, y11, T [1]); # T[1]=t12
7: T [1] = Toffoli(y14, y17, T [1]); # T[1]=t14
8: T [2] = CNOT (T [1], T [2]); # T[2]=t14
9: T [2] = CNOT (T [0], T [2]); # T[2]=t19

10: T [2] = CNOT (y19, T [2]); # T[2]=t23
11: T [0] = Toffoli(y5, y1, T [0]); # T[0]=t7
12: T [0] = Toffoli(y2, y7, T [0]); # T[0]=t11
13: T [3] = Toffoli(y12, y15, T [3]); # T[3]=t2
14: T [3] = Toffoli(y3, y6, T [3]); # T[3]=t4
15: T [1] = CNOT (T [3], T [1]); # T[1]=t17
16: T [1] = CNOT (y20, T [1]); # T[1]=t21
17: T [3] = Toffoli(y3, y6, T [3]); # T[3]=t2
18: T [3] = Toffoli(y4, x7, T [3]); # T[3]=t6
19: T [4] = Toffoli(y9, y11, T [4]); # T[4]=t12
20: T [4] = Toffoli(y8, y10, T [4]); # T[4]=t16
21: T [3] = CNOT (T [4], T [3]); # T[3]=t18
22: T [3] = CNOT (y19, T [3]); # T[3]=t22
23: T [0] = CNOT (T [4], T [0]); # T[0]=t20
24: T [0] = CNOT (y18, T [0]); # T[0]=t24
25: T [4] = Toffoli(y8, y10, T [4]); # T[4]=t12
26: T [4] = Toffoli(y9, y11, T [4]); # T[4]=0

Here T[0]=t24, T[1]=t21, T[2]=t23, T[3]=t22, T[4]=0, T[5]=0.
27: T [4] = Toffoli(T [2], T [1], T [4]); # T[4]=t26
28: T [2] = CNOT (T [0], T [2]); # T[2]=t30
29: T [4] = CNOT (T [3], T [4]); # T[4]=t31
30: T [5] = Toffoli(T [2], T [4], T [5]); # T[5]=t32
31: T [5] = CNOT (T [0], T [5]); # T[5]=t33
32: T [2] = CNOT (T [0], T [2]); # T[2]=t23
33: T [2] = CNOT (T [5], T [2]); # T[2]=t34
34: T [4] = CNOT (T [3], T [4]); # T[4]=t26
35: T [4] = CNOT (T [0], T [4]); # T[4]=t27
36: T [5] = CNOT (T [4], T [5]); # T[5]=t35
37: T [2] = Toffoli(T [0], T [5], T [2]); # T[2]=t37
38: T [1] = CNOT (T [3], T [1]); # T[1]=t25
39: T [3] = Toffoli(T [4], T [1], T [3]); # T[3]=t29
40: T [4] = Toffoli(T [0], T [5], T [4]); # T[4]=t38
41: T [1] = Toffoli(T [3], T [4], T [1]); # T[1]=t40
42: T [4] = Toffoli(T [0], T [5], T [4]); # T[4]=t27
43: T [5] = CNOT (T [4], T [5]); # T[5]=t33

